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Chapter 1

Introduction

1.1 Motivation

This section is based mostly on [2], [3] and [5].

For many years, information was primarily transferred genetically from one individual to

another, from one generation to the next. About one million years ago, human language

started to evolve. Information could then be transferred by language as well, which gave

rise to a new form of evolution, namely, cultural evolution (M.A. Nowak. Evolutionary

Dynamics: Exploring the Equations of Life, [2]). However, humans from different lan-

guage communities make use of different sounds to denote the same object, action or

property. A main topic in modern linguistics therefore is the search for properties that

are shared by all languages. A certain collection of concept-to-sign mappings can be seen

as a proto-language. Evolutionary game theory - which provides a formal framework for

studying both biological and cultural evolution of frequency-dependent phenomena - can

be used to show how such a proto-language can evolve from a pre-linguistic environment

(C. Pawlowitsch. Finite populations choose an optimal language, [5]). From a linguistic

point a view, an interesting question in the evolution of concept-to-sign mappings is

whether a simple replication mechanism will always lead to bidirectionality, that is, the

property that whenever a specific signal is used to communicate a specific object, this

signal will also evoke the image of this object. It turns out that in an infinitely large

population, this is not necessarily the case, since the deterministic replicator dynamics

can be blocked in a suboptimum state, where one object of communication is linked to

two or more signals, or where one signal is used for two or more objects (C. Pawlowitsch.

Why evolution does not always lead to an optimal signaling game, [6]). However, in the

beginning of language, small population size presumably played a crucial role. Hence, in

order to obtain a good model for the beginning of language, it is important to consider

finite population sizes.

1



Chapter 1. Introduction 2

1.2 Synopsis

In this thesis we discuss the evolution of language in a finite population by considering

a mathematical framework based on game theory and evolutionary dynamics. In par-

ticular, we are interested in the evolution of vocabulary, hence the association between

signals and objects. Therefore we consider the Language Game. The Language Game

is a sender-receiver game in which the sender wishes to transfer information about a

certain object to a receiver and where we precisely examine associations between used

signals and objects. We will explain the Language Game in more detail in chapter 4.

Our aim in this thesis is to show that in a finite population, efficient proto-languages,

where one object of communication is associated by a unique signal and vice versa, are

the only strategies that are protected by selection. In order to show this, we discuss the

evolution of a lexical matrix in a finite population under the frequency dependent Moran

process in the style of Nowak et al. [4], as Pawlowitsch did in [5]. Eventually, the Moran

process leads to fixation of a single strategy throughout the entire population. How-

ever, new variants can arise by mutations. A crucial aspect of the frequency-dependent

Moran process in a finite population is that a single mutant strategy can take over the

entire population through the effects of drift, even if this mutant strategy has a slight

disadvantage in terms of relative fitness against the resident type. Hence, it is not

straightforward that there exist evolutionary stable strategies.

In the first two chapters we introduce some background information on evolutionary

game theory in a finite population, essential for this thesis. For this, we make use of [1],

[2], [4], [5] and [7]. In chapter 2 we discuss the influence of population size on evolutionary

dynamics and give a short recap of the frequency dependent Moran process, which is

often used to describe evolutionary dynamics in a finite population. In chapter 3 we give

a definition on evolutionary stability in a finite population as proposed by Nowak et al.

[4]. This definition requires two conditions: selection opposes a mutant strategy invading

the resident strategy, and, selection opposes a mutant strategy replacing the resident

strategy. In section 3.1 we show that in case of a symmetric game, the first condition

is equivalent with the resident strategy being a strict Nash strategy. In section 3.2 we

show that in a symmetric game under weak selection, the second condition is equivalent

with saying that no mutant strategy has a chance of reaching fixation greater than the

neutral threshold, which is equal to the inverse population size.

In chapter 4 we explain and analyse the Language Game, based on [3], [5], [6] and [8].

In section 4.1 we begin with introducing the strategy sets, where we suppose that an

individual can either be in the role of the sender or in the role of the receiver. From

this, we derive in section 4.2 the potential of communication between a sender and a
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receiver, which is similar to the payoff of the game. Then we determine the set of best

responses for both the sender and the receiver in section 4.3. Furthermore we give a

characterisation of best-response properties which are needed later on. The obtained

symmetric payoff function together with the strategy sets of the sender and receiver

then constitute a two-player asymmetric game with a symmetric payoff function. In

section 4.4 we symmetrize the asymmetric game by assuming that an individual adopts

both the role of a sender and a receiver with equal probabilities depending on its relative

position in different situations. From this, we derive the payoff in the symmetric game

in section 4.5 and we give an upper bound for this payoff in section 4.6. Lastly, we

determine (strict) Nash equilibria of the game in section 4.7. Here we will also see that

in a Nash equilibrium, the strategies of an individual played in both the role of the

sender and the receiver have to be best responses to each other, that is, equivalent to

the best responses in the asymmetric game.

In chapter 5 we view the definition of evolutionary stability in finite populations, as

given in chapter 3, in context of the Language Game. Our main focus lies on the second

condition of this definition. Here, we show that the only evolutionary stable strategies

of the Language Game are indeed efficient proto-languages, where there is a bijective

map from objects of communication to used signals and vice versa.

In chapter 6 we give a few examples of competing languages to clarify the notion of

evolutionary stability and the outcome that efficient proto-languages are the only evo-

lutionary stable strategies.

We end this thesis by combining all results in a recap in chapter 7.

This thesis is based mostly on the article ”Finite Populations Choose an Optimal Lan-

guage” by Christina Pawlowitsch [5]. In all chapters we clarify the sources that are used

mostly.



Chapter 2

Evolutionary Game Theory
This chapter is based on [2], [5] and [7].

Evolutionary game theory is based on populations of players of a certain type and

focuses on the evolutionary dynamics, which can be both genetic or cultural. Hence,

the distribution of the population can evolve over time. This can be due to fitness

of a certain type or efficiency of strategies. Since evolutionary game theory is based

on the assumption that fitness is frequency dependent, it follows that the evolutionary

dynamics are influenced by the frequency in occurrence of the competing strategies inside

the population. Furthermore, new strategies may arise over time. The main question

in evolutionary game theory is therefore which strategies become extinct and which

can survive over time. Generally, evolutionary dynamics in games is studied through

replicator equations, which show the growth rate of the proportion of the population

that plays a certain strategy. However, these equations are not representative for the real

situation in a finite population. In the next section, we therefore explain the influence

of the population size on evolutionary dynamics.

2.1 Infinite and finite population sizes
This section is based mostly on [7].

We draw a distinction between an infinite and a finite population size. If the model is

based on an infinite population size, the frequency changes of different types are deter-

ministic. This is due to dynamic rules of the reproduction process, such as the replicator

dynamics. Here, the frequency of a certain type changes deterministically in proportion

to the difference of its own fitness and the average population fitness. If the popula-

tion size is sufficiently large, the replicator dynamics gives a good approximation (P.D.

Taylor and L. Jonker Evolutionary stable strategies and game dynamics, [7]). However,

4



Chapter 2. Evolutionary Game Theory 5

the deterministic replicator dynamics does not take any effects of drift into considera-

tion. Whereas in a finite population, drift is automatically present since differences in

relative fitness only translates into expected and not realised offspring. Hence, random

genetic drift is considered to play an important role in the evolution of finite populations.

Therefore, if the model is based on a finite population size, the frequencies will fluctuate

by chance. The smaller the population is, the greater the frequency fluctuations are.

A model that captures such stochastic effects and that is often used to describe finite

populations is the Moran process, as we will elaborate on in the next section.

In this thesis we assume well-mixed populations, which mathematically corresponds to

populations under random mating.

2.2 The Moran process

This section is based mostly on [2].

The Moran process is a simple stochastic process that describes the evolutionary dy-

namics in a finite population of constant size N with overlapping generations. In order

to ensure that the total population size remains constant, there is always assumed one

birth and one death event in each time step. Hence, one individual is chosen at random

for reproduction and one individual is chosen at random for removal. The identical

offspring of the first individual replaces the second individual in the population. If the

individual chosen to reproduce is under uniform random sampling among all individuals

inside the population, the process is under neutral evolution. If this sampling depends

on the fitness of a certain type, then selection acts on the population dynamics. As a

consequence, a type that has a higher fitness is more likely to be chosen for reproduction.

Note that it is possible that an individual gets replaced by its own offspring. This is the

case when one and the same individual from the population is chosen to reproduce and

die at the same time.

The only stochastic variable in the Moran process is the number of individuals inside

the population that are of a certain type. Hence, in a population consisting of only two

types of individuals, I1 and I2, we can let the number of individuals of type I1 equal

k, consequently the number of individuals of type I2 equals N − k. It follows that the

Moran process is defined on the state space k = 0, 1, ..., N . We denote the state of the

population with the vector X = (k,N − k). As this process can be seen as a Brownian

motion, the Moran process eventually leads to fixation of a single type throughout the

entire population, where new variation can only be brought in by mutations.



Chapter 3

Evolutionary Stability
This chapter is based on [4] and [5].

As mentioned in section 2.2, the frequency-dependent Moran process leads to fixation

of a single strategy throughout the entire population, where the only way new variation

can be brought in is by mutations. Assume that the population has reached a state

where all individuals use the same strategy. We refer to this strategy as the resident

strategy. In order to evaluate the stability of this resident strategy in an evolutionary

sense, we need the notion of evolutionary stability. For finite populations, there is no

formal definition for a strategy to be evolutionary stable. However, we consider the

following definition as proposed by Nowak et al. [4].

Definition 3.1 (Nowak et al. [4]). In a finite population of size N , a strategy is

evolutionary stable if it satisfies the following two conditions

(1) selection opposes all mutant strategies invading the resident strategy,

(2) selection opposes all mutant strategies replacing the resident strategy.

Here, condition (1) means that a single mutant must have a lower fitness than the

rest of the population, who use the resident strategy. And condition (2) means that

the probability that a single mutant will invade and take over the entire population, is

smaller than 1/N , the neutral threshold. Hence, for an evolutionary stable language, it

holds true that once it is fixed in a population, natural selection alone is sufficient to

prevent mutant strategies from invading successfully.

In the sequel we assume that there are only two competing strategies: the resident

strategy, indicated by R, and an arbitrary mutant strategy, indicated by M . Restricting

attention to these two strategies, the payoff matrix becomes

6
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R M( )
R a b

M c d

Where a, b, c and d are real numbers.

From this payoff matrix, we can derive the fitness of R and M . Assume that the state

of the population is given by X = (X1, X2), where X1 is the number of individuals who

use the resident strategy R and X2 is the number of individuals who use the mutant

strategy M . Since R and M are the only two competing strategies in the population, we

have X1 +X2 = N . The fitness of R, depending linearly on frequencies, can be derived

as follows. Consider an individual who uses the resident strategy R. This individual can

interact with the other N −1 individuals in the population. From this N −1 individuals

there are X1 − 1 individuals left who use R and X2 individuals who use M . Hence, the

chance of meeting another individual who uses R is X1−1
N−1 and the chance of meeting an

individual who uses M is X2
N−1 . The payoff from interaction with another individual who

uses R equals a, whereas the payoff from interaction with an individual who uses M

equals b. Therefore the expected payoff for an individual who uses the resident strategy

R equals X1−1
N−1 · a + X2

N−1 · b. In the same way we can determine the expected payoff

for an individual who uses a mutant strategy M . We obtain that the fitness of R, and,

respectively M , given the state of the population, is equal to

F (R|X1, X2) =
X1 − 1

N − 1
· a+

X2

N − 1
· b. (3.1)

F (M |X1, X2) =
X1

N − 1
· c+

X2 − 1

N − 1
· d. (3.2)

In the next two sections we shall discuss conditions (1) and (2) from Definition 3.1 in

more detail.

3.1 Selection opposes all mutant strategies invading the

resident strategy
This section is based mostly on [4].

The first condition that needs to be satisfied in order for the resident strategy to be

evolutionary stable, is that selection must oppose all mutant strategies invading the

resident strategy. This is the case when a single mutant has a lower fitness than the

rest of the population, who use the resident strategy. We look further into when this

condition is satisfied. Specifically, we prove the following theorem.



Chapter 3. Evolutionary stability 8

Theorem 3.2. In case of a symmetric game, selection opposes all mutant strategies

invading the resident strategy if and only if the resident strategy is a strict Nash strategy.

This theorem states that in case of a symmetric game, condition (1) of Definition 3.1 is

equivalent to the condition that the resident strategy should be a strict Nash strategy.

We prove the above theorem.

Proof. First we show the direct implication. Given a symmetric game. Let M be an

arbitrary mutant strategy and let R be the resident strategy. In this case, after the

mutation has appeared, there is one individual who plays strategy M in a population

consisting otherwise of individuals playing R. Therefore, we have X1 = N − 1 and

X2 = 1. Assume that selection opposes M invading R. That is, the single M mutant

has a lower fitness than the rest of the population, who play R. Hence

F (M |N − 1, 1) < F (R |N − 1, 1). (3.3)

By filling in the corresponding fitness-functions (3.1) and (3.2), equation (3.3) is equiv-

alent to
N − 1

N − 1
· c+

1− 1

N − 1
· d < N − 2

N − 1
· a+

1

N − 1
· b,

hence

c <
N − 2

N − 1
· a+

1

N − 1
· b. (3.4)

By using symmetry of the game, that is b = c, we obtain that

b <
N − 2

N − 1
· a+

1

N − 1
· b,

hence
N − 2

N − 1
· b < N − 2

N − 1
· a,

and thus

b < a.

Therefore equation (3.3) is equivalent to

a > b. (3.5)

This means that the resident strategy R is a unique best response to itself. Since M

was an arbitrary mutant strategy, it follows that R is a unique best response to itself

against all mutant strategies M ′. Hence by definition, the resident strategy R is a strict

Nash strategy in the complete strategy space. This proves the direct implication. For

the reverse implication, one can simply go through the steps of the proof given, but in

reverse order. This concludes the proof of theorem 3.2.
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This interpretation of the first condition of Definition 3.1 seems to make sense, since the

entire concept of a Nash equilibrium is precisely based on the idea of a single deviation.

Usually this would mean that the strategy choice of a single individual has a fading

effect on the population’s average strategy. However, in a finite population this is not

necessarily true. Looking at condition (3.4), where the mutant’s payoff is compared to

the payoff of another, non-mutant, individual inside the population, the effect of the

deviation is brought into the equation. If the weight of the deviant fades, then we do

find ourselves in the case where the strategy choice of a single individual has a fading

effect on the population’s average. However, the same is true if the term that reflects the

deviation cancels out for some other reason, such as symmetry of the payoff function.

3.2 Selection opposes all mutant strategies replacing the

resident strategy

This section is based mostly on [1] and [4].

The second condition that needs to be satisfied in order for the resident strategy to be

evolutionary stable, is that selection must oppose all mutant strategies replacing the

resident strategy. Even though a single mutant strategy has a lower fitness than the

regular type, the frequency dependent Moran process can still favor the fixation of this

mutant strategy due to drift. In order to avoid this, we must have that the probability

that a single mutant will invade and take over the entire population is smaller than the

inverse population size. We look further into the derivation of this condition and when

this condition is satisfied.

First of all, the frequency-dependent Moran process allows us to introduce a parameter

ω ∈ [0, 1], which determines the contribution of the game’s payoff to fitness. Therefore,

this parameter measures the intensity of selection. We replace the fitness functions (3.1)

and (3.2) by the modified fitness functions

Fω(R |X1, X2) = 1− ω + ω · F (R |X1, X2). (3.6)

Fω(M |X1, X2) = 1− ω + ω · F (M |X1, X2). (3.7)

If ω = 0, then the game’s payoff does not contribute to fitness at all and it follows that

F0(R |X1, X2) = F0(M |X1, X2) = 1. This is the case of neutral evolution. There is

no selection, but random drift can replace R by M . If ω = 1, then equations (3.6) and

(3.7) are equivalent to the fitness functions (3.1) and (3.2). Therefore, the game’s payoff

completely determines fitness and selection is considered strong.
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We can determine the probability ρ that a single individual who uses an arbitrary mutant

strategy M can invade and take over a population consisting otherwise of individuals

playing the resident strategy R. This probability is also referred to as the fixation

probability of M . We can consider this as the probability that a stochastic process

starting from the state where X2 = 1 reaches the absorbing state X2 = N rather than

X2 = 0, which is given by (S. Karlin and H. M. Taylor [1])

ρ = 1

/1 +
N−1∑
k=1

k∏
X2=1

Fω(R |X1, X2)

Fω(M |X1, X2)

 . (3.8)

Note that in case of neutral evolution, hence if ω = 0, it follows from equations (3.6)

and (3.7) that F0(R |X1, X2) = F0(M |X1, X2) = 1. Therefore, equation (3.8) reduces

to ρ = 1/N and we obtain a neutral threshold equal to 1/N .

Now, the idea of Nowak et al. [4] for evaluating the stability of the resident strategy

in an evolutionary sense is to compare the fixation probability ρ of a single M mutant

under the frequency-dependent Moran process to this neutral threshold. If ρ < 1/N ,

we say that selection opposes a mutant strategy M replacing the resident strategy R.

If ρ > 1/N , we say that selection favors a mutant strategy M replacing the resident

strategy R.

In practice, it can require much work to calculate fixation probabilities. However, under

weak selection (ω << 1) we show that the following theorem holds.

Theorem 3.3 (Nowak et al. [4]). For a symmetric game, given a finite population of

size N ≥ 3 and sufficiently weak selection (ω << 1), it holds true that selection favors

a mutant strategy replacing the resident strategy, that is ρ > 1
N , if and only if

d+ c > 2a.

Remark We notice that weak selection is indeed the natural case. In reality, the overall

fitness of an individual does not depend exclusively on its communicative strategy, but

on other cultural and biological traits as well. Therefore, the payoff of the game is only

a small part that is added to the background fitness of an individual, hence ω << 1.

For the proof of Theorem 3.3, we make use of the following lemma.

Lemma 3.4 (Nowak et al. [4]). For a given finite population of size N and sufficiently

weak selection (ω << 1) it holds true that ρ > 1
N if and only if

d(N − 2) + c(2N − 1) > b(N + 1) + a(2N − 4).
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We shall not prove Lemma 3.4. However, for more details one can view Nowak et al.[4].

Below we prove Theorem 3.3.

Proof. First, we show the direct implication. Let M be an arbitrary mutant strategy

and let R be the resident strategy. Assume that selection favors the mutant strategy M

replacing the resident strategy R. Hence ρ > 1
N . By Lemma 3.4 it follows that

d(N − 2) + c(2N − 1) > b(N + 1) + a(2N − 4). (3.9)

Since we assume a symmetric payoff function, that is b = c, equation (3.9) reduces to

d(N − 2) + c(2N − 1) > c(N + 1) + a(2N − 4),

that is

d(N − 2) + c(N − 2) > a(2N − 4). (3.10)

For N ≥ 3 we can divide equation (3.10) by (N − 2) to obtain

d+ c > 2a. (3.11)

This proves the direct implication. For the reverse implication, one can simply go

through the steps of the proof given, but in reverse order. This concludes the proof of

theorem 3.3.

Note, that we can rearrange the terms in equation (3.11) to obtain that

d− a > a− c.

Hence,

ρ >
1

N
⇔ d− a > a− c. (3.12)

We can interpret this as follows. A single mutant strategy M that appears in a popula-

tion consisting otherwise of the resident strategy R, can reach fixation with a probability

greater than 1/N if and only if its disadvantage in relative fitness against the resident

type, that is c−a < 0, is outweighed by a payoff advantage that the mutant strategy has

against itself relative to the payoff that the resident strategy has against itself, that is

d−a. Hence, a mutant strategy that appears in a population consisting otherwise of the

resident type, can reach fixation with a probability greater than the inverse population

size, even though it has a strict disadvantage in relative fitness against the resident type.



Chapter 4

The Language Game
This chapter is based on [3], [5], [6] and [8].

The Language Game is a sender-receiver game in which we examine associations between

signals and objects. Consider two players, one in the role of the sender (speaker) and

one in the role of the receiver (listener). Both players are able to produce a number of

signals (sounds). The sender wants to transfer information about a certain object. An

object can be anything that can be referred to, such as items, events or other individuals.

In order to do this, the sender uses one of the signals it possesses. If the chosen signal

evokes the image of the particular object in the receiver, then communication has been

successful and both players receive a relative high positive payoff. If communication has

not been successful, hence if the chosen signal does not evoke the image of the particular

object in the receiver, then both players receive a relative low positive payoff (could be 0

as well). In the next section, we formulate the corresponding model based on [3]. After

that, we discuss various charasteristics of the game.

4.1 The Model
This section is based mostly on [5].

Consider a group of individuals. Suppose there are n objects that can potentially become

the subject of communication. Furthermore, suppose there are m available signals to

describe these n objects. A strategy in role of the sender can be represented by a n×m
probability matrix P , also referred to as the active matrix, in which rows represent

objects and columns represent signals. The entries pij denote the probability that a

sender uses signal j in order to refer to object i. Since a sender will always link a signal

to an object, it follows that the rows of P add up to 1. In a similar way we represent a

strategy in the role of the receiver by a m× n probability matrix Q, also referred to as

12
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the passive matrix, in which rows represent signals and columns represent objects. The

entries qji denote the probability that a receiver infers object i when observing signal j.

Since a receiver will always link an object to a signal, it follows that the rows of Q add

up to 1 as well. Hence we obtain the strategies

P =



p11 . . . p1j . . . p1m
...

...
...

pi1 . . . pij . . . pim
...

...
...

pn1 . . . pnj . . . pnm


∈ Pn×m, Q =



q11 . . . q1i . . . q1n
...

...
...

qj1 . . . qji . . . qjn
...

...
...

qm1 . . . qmi . . . qmn


∈ Qm×n,

where

Pn×m =

P ∈ Rn×m+

∣∣∣ m∑
j=1

pij = 1 ∀i

 , (4.1)

Qm×n =

{
Q ∈ Rm×n+

∣∣∣ n∑
i=1

qji = 1 ∀j

}
. (4.2)

4.2 The potential of communication

This section is based mostly on [3] and [5].

When a sender and a receiver wish to interact with each other, communication depends

on the degree to which sender and receiver understand each other. Hence, when the

sender uses certain signals to transfer information about a particular object i, it is

crucial that the receiver evokes the image of this object when observing these signals

from the sender. Therefore, the probability that a sender with strategy P and a receiver

with strategy Q communicate correctly about object i is given by

m∑
j=1

pijqji.

If we take the sum over all possible n objects of communication, we obtain to what

extent a sender with strategy P and a receiver with strategy Q are able to communicate

correctly about all n objects. We call this the potential of communication of the pair

(P,Q), given by

π(P,Q) :=
n∑
i=1

m∑
j=1

pijqji.

Note that the potential of communication between the strategies P and Q equals the

trace of the n× n matrix PQ, that is, the sum of the elements on the main diagonal of
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the square matrix PQ, since

tr(PQ) =
n∑
i=1

(PQ)ii =
n∑
i=1

m∑
j=1

pijqji.

Assuming that correct communication is mutually beneficial, we assign the potential of

communication to the payoff that both the sender and the receiver gain from interacting

with each other. Hence

πP (P,Q) = π(P,Q) = πQ(P,Q). (4.3)

Therefore, the strategy sets for the sender and receiver, as denoted in (4.1) and (4.2)

respectively, together with the payoff function in (4.3) form a two-player asymmetric

game with a symmetric payoff function. That is, the two players have different strategy

sets but receive the same payoff out of their interaction.

4.3 Best responses

This section is based mostly on [5] and [6].

The strategy that yields the highest payoff for a player, considering the other player’s

strategy to be left unchanged, is called a best response to the other player’s strategy. In

the asymmetric game, for a receiver, the set of best responses to a strategy P ∈ Pn×m
of the sender, is given by

B(P ) =
{
Q ∈ Qm×n | tr(PQ) ≥ tr(PQ′) for allQ′ ∈ Qm×n

}
.

And for a sender, the set of best responses to a strategy Q ∈ Qm×n of the receiver, is

given by

B(Q) =
{
P ∈ Pn×m | tr(PQ) ≥ tr(P ′Q) for allP ′ ∈ Pn×m

}
.

We give the following two propositions without proof as a characterisation of best-

response properties. For a proof of Propositions 4.1 and 4.2 we refer to Pawlowitsch [6].

These propositions are needed for the proof of Proposition 5.1 later on.
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Proposition 4.1 (Pawlowitsch [6], Lemma 2). Let P ∈ Pn×m and Q ∈ Qm×n.

(a) If Q ∈ B(P ), then

∑
i∈argmaxi(pij)

qji = 1 and qji = 0 for all i /∈ argmaxi(pij).

(b) If P ∈ B(Q), then

∑
j∈argmaxj(qji)

pij = 1 and pij = 0 for all j /∈ argmaxj(qji).

If pij is the unique maximal element in the j-th column of P , then, for any Q ∈ B(P )

it follows that qji = 1. By interchanging the roles of P and Q we obtain the same result

vice versa.

Proposition 4.2 (Pawlowitsch [6], Lemma 4). Let P ∈ Pn×m and Q ∈ Qm×n.

(a) If Q ∈ B(P ), then

qji 6= 0 ⇒ pij = max
i

(pij) ⇒ pij 6= 0 or pi′j = 0 ∀i′.

(b) If P ∈ B(Q), then

pij 6= 0 ⇒ qji = max
j

(qji) ⇒ qji 6= 0 or qj′i = 0 ∀j′.

4.4 The symmetric game
This section is based mostly on [5].

When we research language as a social phenomena, we do not find individuals that

are either only senders or only receivers. An individual shall adopt the role of sender or

receiver depending on its relative position in different situations of interaction with other

individuals. Therefore, we assume that interaction is pairwise and that individuals adopt

both social roles with equal probabilities. Formally, this corresponds to symmetrizing

the asymmetric game. A strategy of the symmetric game, then, is a pair of an active

and a passive matrix

L = (P,Q) ∈ Pn×m ×Qm×n,

also called a language in the sequal.
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4.5 Communication payoff
This section is based mostly on [3] and [5].

Consider two individuals I1 and I2 who use languages L1 = (P1, Q1) and L2 = (P2, Q2)

respectively. For individual I1, the entries p
(1)
ij denote the probability of making sound j

when seeing object i, whereas the entries q
(1)
ji denote the probability of thinking of object

i when hearing sound j. For individual I2 these probabilities are given by the entries

p
(2)
ij and q

(2)
ji . Hence, the probability that individual I1 successfully conveys information

about object i to individual I2 is given by
∑m

j=1 p
(1)
ij q

(2)
ji . By summing this probability

over all n objects, we obtain to what extent I1 is able to transfer information to I2,

that is
∑n

i=1

∑m
j=1 p

(1)
ij q

(2)
ji . The total payoff for interaction between I1 and I2 is then

constructed by taking the average sum of I1’s ability to convey information to I2, and

I2’s ability to convey information to I1. Therefore the communication payoff is given by

f(L1, L2) =
1

2

n∑
i=1

m∑
j=1

(
p
(1)
ij q

(2)
ji + p

(2)
ij q

(1)
ji

)
=

1

2
tr(P1Q2) +

1

2
tr(P2Q1). (4.4)

Since both individuals are considered once in the role of speaker and once in the role of

listener together with symmetry of the payoff function in the asymmetric game (4.3), it

follows that there is symmetry in equation (4.4), that is f(L1, L2) = f(L2, L1).

It follows that the Language Game is a doubly symmetric game, that is, a symmetric

game with a symmetric payoff function.

4.6 Maximum communication payoff
This section is based mostly on [5] and [8].

Logically, the payoff function is maximal when two individuals speak the same language

L = (P,Q). It then follows from equation (4.4) that

f(L,L) =

n∑
i=1

m∑
j=1

pijqji. (4.5)

Since the rows of both P and Q add up to 1 by definition, we know that

f(L,L) ≤ min {m,n} .

The following theorem shows that if m = n, then the maximum payoff is reached if and

only if L = (P,Q) is an efficient proto-language, that is, P is a permutation matrix and

Q = P T .
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Theorem 4.3 (P.E. Trapa and M.A. Nowak [8], Lemma 3.3). Suppose L = (P,Q) ∈
Pn×n ×Qn×n. Then f(L,L) = n if and only if L is an efficient proto-language.

Proof. First we prove the direct implication. Assume that f(L,L) = n. By equation

(4.5) we have
n∑
i=1

n∑
j=1

pijqji = n.

Then it must hold true that

n∑
j=1

pijqji = 1 for all i = 1, 2, ..., n.

Fix i∗ ∈ {1, 2, ..., n}. Since the rows of P add up to 1 by definition, it holds true

that
∑n

j=1 pi∗j = 1. Hence we must have qji∗ = 1 for all j such that pi∗j 6= 0. Fix

j∗ ∈ {1, 2, ..., n} such that qj∗i∗ = 1. Since the rows of Q add up to 1 by definition

as well, it holds true that
∑n

i=1 qj∗i = 1. But qj∗i∗ = 1, thus qj∗i = 0 for all i 6= i∗.

Therefore pij∗ = 0 for all i 6= i∗. Hence, in P , it follows that there is only one non-zero

entry per column, while each row adds up to 1. Since m = n, this can only be the case

if P is a permutation matrix. Furthermore, since for each i∗ it holds true that qji∗ = 1

for all j such that pi∗j 6= 0 and since qj∗i = 0 for all i 6= i∗, it follows that Q = P T .

Hence, L = (P, P T ) with P a permutation matrix. This proves the direct implication.

For the reverse implication. Let L = (P,Q) ∈ Pn×n × Qn×n be an efficient proto-

language, that is, P is a permutation matrix and Q = P T . We determine f(L,L). By

equation (4.5) we know that

f(L,L) =

n∑
i=1

n∑
j=1

pijqji.

Fix i∗ ∈ {1, 2, ..., n}. By definition we have that the rows of P add up to 1, hence∑n
j=1 pi∗j = 1. Since L is an efficient proto-language it follows that qji∗ = 1 if and only

if pi∗j = 1. Hence, qji∗ = 1 for every j such that pi∗j 6= 0. Therefore
∑n

j=1 pi∗jqji∗ = 1.

Since i∗ was arbitrary, we obtain that

f(L,L) =
n∑
i=1

n∑
j=1

pijqji =
n∑
i=1

1 = n.

This proves the reverse implication.
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4.7 Nash Equilibria

This section is based mostly on [5], [6] and [8].

In Game Theory, a Nash equilibrium is a set of strategies of the game in which no player

could benefit from changing its own strategy, considering the strategies of the other

players to be left unchanged. Hence, all strategies involved have to be best responses

to each other. Since the Language Game is a symmetric game, a Nash equilibrium is

obtained when a strategy is a best response to itself. In the sequel, we call such strategies

Nash strategies. That is, L is a Nash strategy if

f(L,L) ≥ f(L,L′) for all L′ ∈ Pn×m ×Qm×n.

It is called a strict Nash strategy if it is a unique best response to itself. Hence, if

f(L,L) > f(L,L′) for all L′ ∈ Pn×m ×Qm×n.

Since the Language Game is a symmetric game, it holds true that in a Nash strategy

L = (P,Q), the strategies played in both roles have to be best responses to each other.

That is, P ∈ B(Q) and Q ∈ B(P ). In a strict Nash strategy P has to be a unique best

response to Q and the other way around. We shall give a formal characterisation of the

conditions that P and Q have to satisfy in order for L = (P,Q) to be a (strict) Nash

strategy.

Theorem 4.4 (P.E. Trapa and M.A. Nowak [8], Theorem 5.1). A language L = (P,Q) ∈
Pn×m×Qm×n, where neither P nor Q has a zero-column, is a Nash strategy if and only

if there exist real numbers p1, ..., pm ∈ (0, 1) and q1, ..., qn ∈ (0, 1) such that

(i) for each j = 1, 2, ...,m, the j-th column of P has its entries drawn from {0, pj},

(ii) for each i = 1, 2, ..., n, the i-th column of Q has its entries drawn from {0, qi},

(iii) for all i = 1, 2, ..., n and j = 1, 2, ...,m, the entry pij in P is strict positive if and

only if the entry qji in Q is strict positive.

For the proof of Theorem 4.4 we refer to P.E. Trapa and M.A. Nowak [8]. From theorem

4.4 we deduce that in a Nash strategy, both synonymy as homonymy is allowed. That

is, multiple signals may be used to describe one object and multiple objects may be

associated with the same signal. However, syno-homonymy, where two or more signals

denote exactly the same multiple objects, is only allowed when this happens in equal

proportions.
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Theorem 4.5 (P.E. Trapa and M.A. Nowak [8], Theorem 3.1). A language L = (P,Q) ∈
Pn×m ×Qm×n is a strict Nash strategy in the complete strategy space if and only if

(i) the number of signals is equal to the number of objects, that is n = m,

(ii) the active matrix P is a permutation matrix, that is a square binary matrix with

exactly one entry equal to 1 in every row and every column and all other entries

equal to 0,

(iii) the passive matrix Q is the transpose of the active matrix P , that is Q = P T .

This theorem states that the only strict Nash strategies of the Language Game are

efficient proto-languages, where one object can be referred to by exactly one signal and

where each signal refers to exactly one object. Note from Theorem 4.3 that in this case,

the maximum payoff is reached. Therefore, any player would be worse off by playing a

different strategy, as desired. Since a permutation matrix has exactly one 1 entry in each

row and each column, while all other entries are 0, it follows that for a given number

n of objects and signals, there are n! permutations and hence n! such matrices. Since

Q = P T is fixed, we obtain that there are n! strict Nash strategies in a Language Game

where we consider n objects and signals. We end this section by providing a proof of

theorem 4.5.

Proof. First we prove by contradiction that if a language L = (P,Q) ∈ Pn×m × Qm×n
satisfies conditions (i), (ii) and (iii), then L is a strict Nash strategy. By conditions

(i) and (ii), we have that P is a n × n-permutation matrix. By condition (iii), we

have Q = P T . Since we can rearrange the order of the signals in our language, we are

allowed to assume without loss of generality that P = P T = Q = In, the n× n-identity

matrix. Now, assume that L is not a strict Nash strategy. Hence, there is a language

L′ ∈ Pn×n ×Qn×n with L′ 6= L such that

f(L,L) ≤ f(L,L′). (4.6)

Since L satisfies conditions (i), (ii) and (iii), it holds true that L is an efficient proto-

language. Hence by Theorem 4.3 we know that f(L,L) = n. Therefore equation (4.6)

is equivalent to

n ≤ f(L,L′).
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From this it follows that

n ≤ 1

2

(
tr(PQ′) + tr(P ′Q)

)
≤ 1

2

(
tr(InQ′) + tr(P ′In)

)
(since P = Q = In)

≤ 1

2

(
tr(Q′) + tr(P ′)

)
.

Hence
1

2

(
tr(Q′) + tr(P ′)

)
≥ n. (4.7)

Since the rows of both P ′ and Q′ must add up to 1 by definition and since n = m, it

follows that tr(P ′) ≤ n and tr(Q′) ≤ n. Therefore

1

2

(
tr(Q′) + tr(P ′)

)
≤ n. (4.8)

By equations (4.7) and (4.8) we obtain that

n ≤ 1

2

(
tr(Q′) + tr(P ′)

)
≤ n,

hence
1

2

(
tr(Q′) + tr(P ′)

)
= n.

Since tr(P ′) ≤ n and tr(Q′) ≤ n, we must have that tr(Q′) = tr(P ′) = n. Hence, all

entries on the main diagonal of both P ′ as Q′ must be 1, while each row adds up to 1.

It follows from this that all entries of P ′ and Q′ that are not on the main diagonal must

equal 0. Therefore P ′ = Q′ = In and we obtain that L′ = L. This is a contradiction.

Hence, the assumption that L is not a strict Nash strategy was false. We conclude that

L is indeed a strict Nash strategy. This proves the first half of Theorem 4.5.

Next we would like to show that if L ∈ Pn×m ×Qm×n is a strict Nash strategy, then L

satisfies conditions (i), (ii) and (iii). For this, we start by proving some lemma’s.

Lemma 4.6 (P.E. Trapa and M.A. Nowak [8], Lemma 3.5). If L ∈ Pn×m ×Qm×n is a

strict Nash strategy, then P is binary.

Proof. We use a proof by contradiction. Assume that L ∈ Pn×m×Qm×n is a strict Nash

strategy and that P is not binary. Since all rows of P add up to 1 by definition, while

P is not binary, it follows that there is at least one row with more than one non-zero

entry. Assume this is the case for the i-th row in P and consider the i-th column in Q.

Let j be an index such that qji is a maximal entry in the i-th column of Q. We define

a new matrix P ′ 6= P as follows.
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p′kl =


1 if k = i and l = j

0 if k = i and l 6= j

pkl else

Hence, P ′ is similar to P , except for the i-th row where P has more than one non-zero

entry, whereas P ′ only has one non-zero entry pij equal to 1. Note that the rows of P ′

add up to 1 as well. By construction, we have tr(P ′Q) ≥ tr(PQ). On the other hand,

since L = (P,Q) is a strict Nash strategy, we have that tr(PQ) > tr(P ′Q) by definition.

Hence, we have reached a contradiction. Our assumption that P is not binary was

therefore false. We conclude that if L = (P,Q) is a strict Nash strategy, then P is

binary.

Lemma 4.7 (P.E. Trapa and M.A. Nowak [8], Lemma 3.5). If L ∈ Pn×m ×Qm×n is a

strict Nash strategy, then Q = P T .

Proof. Assume that L ∈ Pn×m × Qm×n is a strict Nash strategy. Then by Lemma 4.6

we know that P is binary. Since the rows of P add up to 1 by definition, it follows that

there is exactly one 1 entry in each row of P , while all other entries equal 0. Fix a row

i of P and let j be the unique index such that pij = 1. From our analysis in the proof

of Lemma 4.6 we know that from this, it follows that qji is a maximal entry in the i-th

column of Q. Suppose that this is not a unique maximal entry in the i-th column of

Q. We show that this leads to a contradiction. Since qji is not a unique maximal entry

in the j-th column of Q, there is a h 6= j such that qji = qhi. We define a new matrix

P ′ 6= P as follows.

p′kl =


1 if k = i and l = h

0 if k = i and l 6= h

pkl else

Hence, P ′ is similar to P , except for the i-th row where P has a 1 at entry pij (and

0 elsewhere), whereas P ′ has a 1 at entry p′ih (and 0 elsewhere). By construction, we

have tr(P ′Q) = tr(PQ). On the other hand, by definition we have tr(PQ) > tr(P ′Q),

since L = (P,Q) is a strict Nash strategy. Hence, we have reached a contradiction. Our

assumption that qji is not a unique maximal entry in the i-th column of Q was therefore

false. We conclude that if pij is the unique maximal entry equal to 1 in the i-th row of P ,

then qji is the unique maximal entry in the i-th column of Q. Since i was arbitrary and

since all rows of Q must add up to 1 by definition, it follows that the unique maximal

entry in each column of Q is equal to 1 as well. Thus we obtain that Q = P T . We

conclude that if L = (P,Q) is a strict Nash strategy, then Q = P T .
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Lemma 4.8 (P.E. Trapa and M.A. Nowak [8], Lemma 3.6). If L ∈ Pn×m ×Qm×n is a

strict Nash strategy, then P is a binary matrix with no two non-zero entries in the same

column.

Proof. We use a proof by contradiction. Assume that L ∈ Pn×m × Qm×n is a strict

Nash strategy. Then by Lemma 4.6 it follows that P is a binary matrix. Suppose to the

contrary that there is a column in P that has two non-zero entries. Let j be this column

in P and assume that the entries pij and phj are non-zero. Since P is binary, it follows

that pij = phj = 1. Consider the entries qji and qjh in Q. By Lemma 4.7 we know that

Q = P T , therefore qji = qjh = 1 as well. We define a new matrix Q′ 6= Q as follows

q′lk =


1 + ε if l = j and k = i

1− ε if l = j and k = h

qlk else

with ε > 0 small. Hence, Q′ is similar to Q, except for the j-th row where in Q a

sufficiently small positive number ε is subtracted from qjh and added to qji to obtain Q′.

By construction, we have tr(PQ) = tr(PQ′). On the other hand, since L = (P,Q) is a

strict Nash strategy, we have tr(PQ) > tr(PQ′) by definition. Hence, we have reached a

contradiction. Our assumption that there is a column in P that has two non-zero entries

was therefore false. We conclude that if L ∈ Pn×m × Qm×n is a strict Nash strategy,

then P is a binary matrix with no two non-zero entries in the same column.

Now, let L ∈ Pn×m × Qm×n be a strict Nash strategy. Then it follows from Lemma

4.6 that all entries of P are equal to 0 or 1. Since the rows of P must add up to 1 by

definition, we obtain that there is exactly one 1 entry in each row of P , while all other

entries equal 0. From Lemma 4.8 it follows that there can also be only one 1 entry in

each column of P , while all other entries equal 0. Hence, there is exactly one entry in

each row and each column equal to 1. That is, each object is associated by a unique

signal and vice versa. Therefore, the number of objects and signals must be identical

and we obtain that n = m. From this it follows that P is a square binary matrix, hence

P is a permutation matrix. By Lemma 4.7 we also have that Q = P T . Therefore, we

conclude that if L ∈ Pn×m × Qm×n is a strict Nash strategy, then n = m and P is a

permutation matrix and Q = P T . This proves the second half of Theorem 4.5, which

concludes the proof of Theorem 4.5.
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Evolutionary stable strategies in

the Language Game
This chapter is based on [5] and [6].

We would like to determine whether there are evolutionary stable strategies in the Lan-

guage Game. Hence, if there are strategies L ∈ Pn×m×Qm×n that satisfy conditions (1)

and (2) from Definition 3.1. In section 3.1 we derived that condition (1) is equivalent

with being a strict Nash strategy. From Theorem 4.5 we know that the only strict Nash

strategies of the Language Game in the complete strategy space are efficient proto-

languages. Hence, strategies L = (P,Q) ∈ Pn×m × Qm×n where P is a permutation

matrix and Q = P T . Therefore, the only strategies in the Language Game that might

fit the definition for evolutionary stability in a finite population, are efficient proto-

languages. We are left with determining if efficient proto-languages satisfy condition (2)

of definition 3.1 as well. That is, the probability that a single mutant will invade and

take over the entire population, is smaller than the neutral threshold. This is indeed the

case. More precisely, the following implications can be shown.

Proposition 5.1 (Pawlowitsch [5], Proposition 1). Let L = (P,Q) ∈ Pn×n × Qn×n be

a strategy. Under the frequency-dependent Moran process with weak selection (ω << 1),

for N ≥ 3, the following implications hold true

1. if L is an efficient proto-language, hence if L is a strict Nash strategy in the

complete strategy space Pn×n × Qn×n, then there is no L′ ∈ Pn×n × Qn×n, with

L′ 6= L, such that ρ′ ≥ 1
N .

2. if L is not an efficient proto-language, then there is some L′ ∈ Pn×n×Qn×n, with

L′ 6= L, such that ρ′ > 1
N .

23



Chapter 5. Evolutionary stable strategies in the Language Game 24

Since we know by Theorem 4.5 that all efficient proto-languages are strict Nash strategies

and vice versa, Proposition 5.1 tells us the following. The first implication states that if

L ∈ Pn×n × Qn×n is an efficient proto-language, then condition (2) of Definition 3.1 is

satisfied, since all mutant strategies L′ ∈ Pn×n×Qn×n have a fixation probability lower

than the neutral threshold, that is ρ′ < 1
N . From this it directly follows that all efficient

proto-languages are evolutionary stable strategies of the game. The second implication

states that if L ∈ Pn×n × Qn×n is not an efficient proto-language, then there exists a

mutant strategy L′ ∈ Pn×n×Qn×n which selection can favor replacing L. Hence, in this

case L does not satisfy condition (2) of Definition 3.1 on being an evolutionary stable

strategy.

In order to prove Proposition 5.1, we need the notion of neutral stability.

Definition 5.2 (Pawlowitsch [5], Definition 1). A strategy L = (P,Q) ∈ Pn×m×Qm×n
is neutrally stable if and only if

(i) it is a Nash strategy, and if

(ii) whenever f(L,L) = f(L′, L) for some L′ = (P ′, Q′) ∈ Pn×m ×Qm×n, then

f(L,L′) ≥ f(L′, L′).

We conclude this chapter by proving the implications of proposition 5.1.

Proof. First we prove implication (1). We use a proof by contradiction. Let L =

(P,Q) ∈ Pn×n×Qn×n be an efficient proto-language and assume that there is a strategy

L′ ∈ Pn×n×Qn×n such that ρ′ ≥ 1
N . Since ρ′ ≥ 1

N , it immediately follows from Theorem

3.3 that

f(L′, L′) + f(L′, L) ≥ 2f(L,L). (5.1)

We show why this leads to a contradiction. Since L is an efficient proto-language, that

is, P is a permutation matrix and Q = P T , it follows from Theorem 4.3 that L exploits

the maximum payoff. Hence,

f (L,L) = tr
(
P, P T

)
= n ≥ tr

(
P̃ , Q̃

)
= f

(
L̃, L̃

)
,

for all L̃ ∈ Pn×n ×Qn×n. In particular it follows that

f(L,L) ≥ f(L′, L′). (5.2)
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Also, since L is a strict Nash strategy, it follows that L is a unique best reply to itself.

Therefore, f(L,L) > f(L, L̃) for all L̃ ∈ Pn×n ×Qn×n. From which it follows that

f(L,L) > f(L,L′). (5.3)

Hence, we obtain that

f(L′, L′) + f(L′, L) = f(L′, L′) + f(L,L′) (by symmetry)

≤ f(L,L) + f(L,L′) (by (5.2))

< f(L,L) + f(L,L) (by (5.3))

= 2f(L,L).

Thus

f(L′, L′) + f(L′, L) < 2f(L,L),

which is a contradiction with equation (5.1). Therefore, the assumption that there ex-

ists a strategy L′ ∈ Pn×n × Qn×n such that ρ′ ≥ 1
N was false. We conclude that if

L ∈ Pn×n × Qn×n is an efficient proto-language, then there is no L′ ∈ Pn×n × Qn×n,

with L′ 6= L, such that ρ′ ≥ 1
N . This proves (1).

Next, we prove implication (2). We use a proof by exhaustion. Let L ∈ Pn×n × Qn×n
where L is not an efficient proto-language. Consider the following three cases

1. L is not a Nash strategy,

2. L is a Nash strategy, but not a neutrally stable strategy,

3. L is a neutrally stable strategy.

We show for all cases that there is some L′ ∈ Pn×n × Qn×n, with L′ 6= L, such that

ρ′ > 1
N .

1. Assume L = (P,Q) is not a Nash strategy. Then either Q is not a best response to P ,

or P is not a best response to Q, or both. Without loss of generality, assume Q 6∈ B(P ).

Then by definition there exists a Q′ ∈ Qn×n with Q′ 6= Q such that

tr(PQ) < tr(PQ′).
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Consider the strategy L′ = (P,Q′). Then L′ 6= L and tr(PQ′) > tr(PQ). Therefore
3
2 · tr(PQ

′) > 3
2 · tr(PQ), from which we obtain that

tr
(
PQ′

)
+

(
1

2
tr
(
PQ′

)
+

1

2
tr(PQ)

)
> 2 · tr(PQ).

Hence,

f(L′, L′) + f(L′, L) > 2f(L,L).

By Theorem 3.3, this implies that ρ′ > 1
N .

2. Assume L = (P,Q) is a Nash strategy, but not a neutrally stable strategy. Since L is

a Nash strategy, but not a neutrally stable strategy, it follows by Definition 5.2 on being

a neutrally stable strategy that there is some L′ = (P ′, Q′) ∈ Pn×n ×Qn×n such that

f(L,L) = f(L′, L), (5.4)

and

f(L,L′) < f(L′, L′). (5.5)

From this it follows that L′ 6= L and

f(L′, L′) + f(L′, L) > f(L,L′) + f(L′, L) (by (5.5))

= f(L′, L) + f(L′, L) (by symmetry)

= 2f(L′, L)

= 2f(L,L). (by (5.4))

Hence

f(L′, L′) + f(L′, L) > 2f(L,L),

which by Theorem 3.3 implies that ρ′ > 1
N .

3. The last case requires some more steps. We start with the following lemmas.

Lemma 5.3 (Pawlowitsch [6], Theorem 1). Let L = (P,Q) ∈ Pn×m ×Qm×n be a Nash

strategy. Then L is a neutrally stable strategy if and only if

(i) at least one of the matrices P or Q has no zero-column, and

(ii) neither P nor Q has a column with multiple maximal elements that are strictly

between 0 and 1.

For a proof of Lemma 5.3, we refer to Pawlowitsch [6].
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Lemma 5.4. If L = (P,Q) ∈ Pn×n × Qn×n is a neutrally stable strategy, but not an

efficient proto-language, then at least one of the matrices P or Q has at least one row

that has at least two entries strictly between 0 and 1, such that they are unique maximal

entries in their respective columns.

Proof of Lemma 5.4. Assume L = (P,Q) ∈ Pn×n ×Qn×n is a neutrally stable strategy,

but not an efficient proto-language. Then it follows from Lemma 5.3 condition (i) that

at least one of the matrices P or Q has no zero-column. Without loss of generality we

can assume that P has no zero-column. By condition (ii) of Lemma 5.3 we also know

that P does not have a column with multiple maximal elements that are strictly between

0 and 1. Together these conditions imply that for each column of P , its maximum must

satisfy one of the following cases, that is, the maximum is

1. unique and equal to 1,

2. unique, but not equal to 1,

3. equal to 1, but not unique.

In case all columns of P have a unique maximal element which equals 1, it follows that P

is a permutation matrix since all rows of P must add up to 1 by definition. Furthermore,

since L = (P,Q) is a neutrally stable strategy and hence a Nash strategy, it follows that

Q is a best response to P . Thus, by Proposition 4.1 it follows that Q = P T . However,

this would mean that L = (P,Q) is precisely an efficient proto-language, which is a

contradiction with the assumption that L is not an efficient proto-language. Therefore,

there must be at least one column in P that has a unique maximal element unequal to

1, or, that has multiple maximal elements equal to 1. We evaluate both cases.

Suppose P has a column with a unique maximal element unequal to 1. Let j′ be this

column and let pij′ ∈ (0, 1) be the unique maximal element. Notice that pij′ 6= 0

otherwise j′ would be a zero-column which contradicts the assumption that P has no

zero-column. Since L = (P,Q) is a neutrally stable strategy and therefore a Nash

strategy, it follows that Q is a best response to P . Then, by Proposition 4.1 we obtain

that qj′i = 1 and qj′i is a maximal element in column i of Q, hence j′ ∈ argmaxj(qji).

Furthermore, since P is a best response to Q as well, we know from Proposition 4.1 that

∑
j∈argmaxj(qji)

pij = 1,

while pij′ ∈ (0, 1) 6= 1. Therefore, there exists at least one j∗ ∈ argmaxj(qji) with j∗ 6= j′

such that pij∗ 6= 0 and we obtain that qj′i is not a unique maximal element in column

i of Q. Notice that from this it follows that row i in P has at least two entries pij′
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and pij∗ that are strictly between 0 and 1. We show that all such entries are unique

maximal entries in their respective columns. Since qji 6= 0 for all j ∈ argmaxj(qji) and

since Q is a best response to P , it follows from Proposition 4.2 that pij is a maximal

element in the corresponding column j in P . Again by Proposition 4.2 this implies for

all j ∈ argmaxj(qji) that either pij 6= 0, or, pi′j = 0 for all i′. Since we assumed that P

has no zero-column, we must have that pij 6= 0 for all j ∈ argmaxj(qji). Again, since

∑
j∈argmaxj(qji)

pij = 1,

while pij′ ∈ (0, 1) 6= 1, it follows for all j ∈ argmaxj(qji) that pij 6= 1 as well. Therefore

0 < pij < 1 for all j ∈ argmaxj(qji). Now, we obtain for all j ∈ argmaxj(qji) that

pij ∈ (0, 1) while pij is a maximal element in column j in P . However, since L is

a neutrally stable strategy, Lemma 5.3 tells us that P has no column with multiple

maximal elements that are strictly between 0 and 1. Thus it follows that pij is the

unique maximal element in column j for all j ∈ argmaxj(qji), as desired. Therefore, the

matrix P has at least one row that has at least two entries strictly between 0 and 1,

such that they are unique maximal entries in their respective columns. This proves the

lemma in this case.

Suppose P has a column with multiple maximal elements equal to 1. Then there must

be two rows in P that both have a entry equal to 1 in the same column position. Since

all rows of P must add up to 1 by definition, it follows that all other entries in both rows

must equal 0. However P ∈ Pn×n, that is, P is a square matrix. Since by assumption

P has no zero-column, it follows that there must be at least two columns that have a

unique maximal element strictly between 0 and 1. Hence, we find ourselves in the same

case as above, for which we have already proven the statement of the lemma to be true.

Of course, the roles of P and Q can be interchanged. This concludes the proof of Lemma

5.4.

Now, let L = (P,Q) ∈ Pn×n × Qn×n be a neutrally stable strategy. By the initial

assumption in condition (2) of Proposition 5.1, we have that L is not an efficient proto-

language. Therefore, it follows by Lemma 5.5 that at least one of the matrices P or Q

has at least one row that has at least two entries strictly between 0 and 1, such that

they are unique maximal entries in their respective columns. Assume without loss of

generality that P is this matrix. Let i1 be the row that has at least two entries strictly

between 0 and 1, such that they are unique maximal entries in their respective columns

in P . Since L = (P,Q) is a neutrally stable strategy and therefore a Nash strategy, we

know that Q is a best response to P and vice versa. Therefore Proposition 4.1 tells us

that qji1 = 1 whenever pi1j 6= 0. Since there are at least two entries strictly between 0

and 1 in the i1-th row of P , it follows that there are also at least two entries equal to 1
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in the i1-th column of Q. As a consequence, since all rows of Q must add up to 1 by

definition, there are now two cases

1. the matrix Q has at least one zero-column, or,

2. the matrix Q has at least two columns with unique maximal elements strictly

between 0 and 1.

For both cases, we can construct a potential mutant language L′ = (P ′, Q′) for which it

holds true that its fixation probability ρ′ is greater than the neutral threshold. In case Q

has a zero column, say the i0-th column, we construct P ′ 6= P from P as follows. Replace

the i0-th row with a vector that has a 1 at some position j such that j ∈ argmaxj(qji1)

and 0 elsewhere, and, replace the i1-th row with a vector that has a 1 at some position

j′ ∈ argmaxj(qji1), with j′ 6= j, and 0 elsewhere. Furthermore, we construct Q′ 6= Q

from Q by swapping the entries in the j-th row, such that q′ji0 = 1 and q′ji = 0 for all

i 6= i0, leaving the other rows unchanged. For clarification of this construction, we give

the following example.

if P =

j′ j
i1 1− α α 0

i0 0 0 1

0 0 1

, Q =

i1 i0
j′ 1 0 0

j 1 0 0

0 0 1

,

then P ′ =

j′ j
i1 1 0 0

i0 0 1 0

0 0 1

, Q′ =

i1 i0
j′ 1 0 0

j 0 1 0

0 0 1

.

In case Q has two columns with unique maximal elements strictly between 0 and 1, say

the i2-th and i3-th column, it follows that these unique maximal entries must appear in

one and the same row j∗. This is because all rows must add up to 1 by definition and

the entries in the i1-th column are already 1 for j ∈ argmaxj(qji1). We can construct

P ′ 6= P from P in the same way as above by considering i2 ≡ i0. Similar, we can

construct Q′ 6= Q from Q as above considering i2 ≡ i0, but repeating this step for the

j∗-th row, that is, q′j∗i3 = 1 and q′j∗i = 0 for all i 6= i3. Again, we give an illustration for

clarification.
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if P =

j′ j j∗
i1 1− α α 0

i2 0 0 1

i3 0 0 1

, Q =

i1 i2 i3
j′ 1 0 0

j 1 0 0

j∗ 0 β 1− β

,

then P ′ =

j′ j j∗
i1 1 0 0

i2 0 1 0

i3 0 0 1

, Q′ =

i1 i2 i3
j′ 1 0 0

j 0 1 0

j∗ 0 0 1

.

In both cases, it can easily be seen by a comparison in payoff, that the payoff advantage

that the constructed mutant language L′ = (P ′, Q′) has against itself relative to the

payoff that L = (P,Q) has against itself, is higher than the payoff disadvantage that the

constructed mutant language L′ has against L relative to the payoff that L has against

itself. For more details on the payoff comparison in general, one can view Pawlowitsch

[5]. From this it follows by Theorem 3.3 and equation (3.12) that ρ′ > 1/N , as desired.

Hence, in all three cases we have seen that if L is not an efficient proto-language, then

there exists some L′ 6= L such that ρ′ > 1/N . The proof of the second part of proposition

5.1 is therefore finished. This concludes the proof of Proposition 5.1.



Chapter 6

A few examples
This chapter is based on [5].

In this chapter we give a few examples of competing languages in a finite population

of size N , discussing their stability in an evolutionary sense. In all cases, we assume

that there are only two languages competing with each other. We look at a number of

situations.

6.1 Two neutrally stable strategies competing.

First we consider the case where there are two neutrally stable strategies in the com-

plete strategy space competing with each other. Assume that both strategies have the

same synonymy and homonymy in their active and passive matrices, but with different

probabilities. Let these strategies be given by

L1 = (P1, Q1) =




1− α α 0

0 0 1

0 0 1

 ,


1 0 0

1 0 0

0 1− β β


 ,

L2 = (P2, Q2) =




1− γ γ 0

0 0 1

0 0 1

 ,


1 0 0

1 0 0

0 1− δ δ


 ,

where α, β, γ, δ ∈ (0, 1), with α 6= γ and β 6= δ. Notice that both L1 and L2 satisfy

conditions (i), (ii) and (iii) of Theorem 4.4 for being a Nash strategy. With some simple

calculations, we easily see that f(L1, L1) = f(L1, L2) = f(L2, L1) = f(L2, L2) = 2.

31
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Hence, we obtain the corresponding payoff matrix

L1 L2( )
L1 2 2

L2 2 2

By observing the above payoff matrix, we notice the following. First of all, there are no

strict Nash strategies in this game, since no strategy is a unique best response to itself.

Hence, by Theorem 3.2, both L1 and L2 do not satisfy condition (1) of Definition 3.1

on evolutionary stability. Furthermore, it holds true that

f(L1, L1) + f(L1, L2) = 2 + 2 = 4 = 2 · 2 = 2 · f(L2, L2).

and

f(L2, L2) + f(L2, L1) = 2 + 2 = 4 = 2 · 2 = 2 · f(L1, L1),

Hence, we are in the case of neutral evolution. The fixation probabilities of both L1 and

L2 are equal to the neutral threshold. That is, ρ1 = 1/N and ρ2 = 1/N . Therefore,

drift is the only evolutionary force at work.

6.2 An efficient proto-language competing with a simple

Nash strategy.

Next we consider the case where there is an efficient proto-language competing with a

simple Nash strategy. Let these strategies be given by

L1 = (P1, Q1) =




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 1 0

0 0 1


 ,

L2 = (P2, Q2) =




1 0 0

0 0 1

0 0 1

 ,


1 0 0

1 0 0

0 0 1


 .

Notice that L1 is indeed an efficient proto-language. With some simple calculations, we

easily see that f(L1, L1) = 3 and f(L1, L2) = f(L2, L1) = f(L2, L2) = 2. Hence, we

obtain the corresponding payoff matrix
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L1 L2( )
L1 3 2

L2 2 2

By observing the above payoff matrix, we can say the following. First of all,

f(L2, L2) = 2 = f(L2, L1),

hence L2 is a best response to itself, but not a unique best response. The strategy L1 is a

best response to L2 as well. Therefore, a single L1 mutant that appears in a population

consisting otherwise of L2 has the same fitness as the resident language L2. On the

other hand, since

f(L1, L1) = 3 > 2 = f(L1, L2),

it follows that L1 is a unique best response to itself and thus a strict Nash strategy of

this game. Therefore, the fitness of L1 will already be greater than the fitness of L2 once

there appears a second L1 mutant in the population, as can be seen when calculating

the fixation probabilities of L1 and L2. Since

f(L1, L1) + f(L1, L2) = 3 + 2 = 5 > 4 = 2 · 2 = 2 · f(L2, L2),

it follows by Theorem 3.2 that the fixation probability of L1 is greater than the neutral

threshold, that is ρ1 > 1/N . On the other hand

f(L2, L2) + f(L2, L1) = 2 + 2 = 4 < 6 = 2 · 3 = 2 · f(L1, L1),

hence it follows by Theorem 3.2 that the fixation probability of L2 is not greater than

the neutral threshold, that is ρ2 ≤ 1/N . We conclude that in a population where the

strategy L2 is set as the resident language, selection favors the mutant strategy L1

replacing L2. Whereas in a population where the strategy L1 is set, selection opposes

the mutant strategy L2 replacing L1. Since L1 is a strict Nash strategy as well, it follows

that L1 satisfies both conditions (1) and (2) of Definition 3.1 on evolutionary stability.

Therefore L1 is an evolutionary stable strategy. This general result for efficient proto-

languages of course has already been proven in Theorem 4.5 together with Proposition

5.1.
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6.3 An efficient proto-language competing with a neutrally

stable strategy.

In this case there is an efficient proto-language competing with a neutrally stable strat-

egy. Let these strategies be given by

L1 = (P1, Q1) =




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 1 0

0 0 1


 ,

L2 = (P2, Q2) =



α 1− α 0

0 0 1

0 0 1

 ,


1 0 0

1 0 0

0 1− β β


 .

Where α, β ∈ (0, 1). Notice that L1 is indeed an efficient proto-language and that L2

satisfies conditions (i), (ii) and (iii) of Theorem 4.4 for being a Nash strategy. With

some simple calculations, we easily see that f(L1, L1) = 3 and f(L2, L2) = 2 and

f(L1, L2) = f(L2, L1) = 1 + α
2 + β

2 . Hence, we obtain the corresponding payoff matrix

L1 L2( )
L1 3 1 + α

2 + β
2

L2 1 + α
2 + β

2 2

By observing the above payoff matrix, we can say the following. First of all, since

α, β < 1 it follows that

f(L2, L2) = 2 = 1 +
1

2
+

1

2
> 1 +

α

2
+
β

2
= f(L2, L1),

hence L2 is a unique best response to itself. Also

f(L1, L1) = 3 > 2 = 1 +
1

2
+

1

2
> 1 +

α

2
+
β

2
= f(L1, L2),

hence L1 is a unique best response to itself as well. Therefore, both L1 and L2 are strict

Nash strategies of this game. Hence, a single L1 mutant that appears in a population

consisting otherwise of L2 has a strictly lower fitness than the resident language L2, and

vice versa. Therefore, we cannot distinguish between L1 and L2 based on the fitness of

a single mutant. We determine the fixation probabilities of L1 and L2. Since α, β > 0,

it follows that

f(L1, L1) + f(L1, L2) = 3 + 1 +
α

2
+
β

2
> 4 = 2 · 2 = 2 · f(L2, L2).
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Hence it follows from Theorem 3.2 that the fixation probability of L1 is greater than the

neutral threshold, that is ρ1 > 1/N . Also, since α, β < 1, we have

f(L2, L2) + f(L2, L1) = 2 + 1 +
α

2
+
β

2
< 3 +

1

2
+

1

2
= 4 < 6 = 2 · 3 = 2 · f(L1, L1),

hence it follows by Theorem 3.2 that the fixation probability of L2 is not greater than the

neutral threshold, that is ρ2 ≤ 1/N . We conclude that in a population where the strategy

L2 is set as the resident language, selection favors the mutant strategy L1 replacing L2.

However, in a population where the strategy L1 is set as the resident language, selection

opposes the mutant strategy L2 replacing L1. Hence, we can distinguish L1 from L2

by comparing their fixation probabilities. It follows that only L1 satisfies conditions

(1) and (2) of Definition 3.1 on evolutionary stability. Therefore L1 is an evolutionary

stable strategy. Again, this general result for efficient proto-languages has already been

proven in Theorem 4.5 together with Proposition 5.1.

6.4 Two efficient proto-languages competing.

At last, we consider two efficient proto-languages competing with each other. Let these

strategies be given by

L1 = (P1, Q1) =




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 1 0

0 0 1


 ,

L2 = (P2, Q2) =




0 1 0

0 0 1

1 0 0

 ,


0 0 1

1 0 0

0 1 0


 .

Notice that L1 and L2 are indeed efficient proto-languages. With some simple calcula-

tions, we easily see that f(L1, L1) = 3 and f(L1, L2) = f(L2, L1) = 0 and f(L2, L2) = 3.

Hence, we obtain the corresponding payoff matrix

L1 L2( )
L1 3 0

L2 0 3

By observing the above payoff matrix, we notice the following. First of all,

f(L1, L1) = 3 > 0 = f(L1, L2),
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hence L1 is a unique best reply to itself. Also

f(L2, L2) = 3 > 0 = f(L2, L1),

hence L2 is a unique best reply to itself as well. Therefore, both L1 as L2 are strict

Nash strategies of this game. Of course, this property of efficient proto-languages was

already proven in Theorem 4.5. Hence, a single L1 mutant that appears in a population

consisting otherwise of L2 has a strictly lower fitness than the resident language L2, and

vice versa. Hence, we cannot distinguish L1 from L2 based on the fitness of a single

mutant. We determine the fixation probabilities of L1 and L2. Since

f(L1, L1) + f(L1, L2) = 3 + 0 = 3 < 6 = 2 · 3 = 2 · f(L2, L2),

it follows by Theorem 3.2 that the fixation probability of L1 is not greater than the

neutral threshold, that is ρ1 ≤ 1/N . Also, since

f(L2, L2) + f(L2, L1) = 3 + 0 = 3 < 6 = 2 · 3 = 2 · f(L1, L1),

it follows by Theorem 3.2 that the fixation probability of L2 is not greater than the

neutral threshold either, that is ρ2 ≤ 1/N . We conclude that in a population where

the strategy L1 is set as the resident language, selection opposes the mutant strategy

L2 replacing L1, and vice versa. Therefore we cannot distinguish L1 and L2 based on

the comparison in fixation probabilities either. It follows that both L1 and L2 satisfy

conditions (1) and (2) of Definition 3.1 on evolutionary stability. Therefore L1 and L2

are both evolutionary stable strategies. Again, this general result for efficient proto-

languages has already been proven in Theorem 4.5 together with Proposition 5.1.
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Conclusions

We conclude this thesis with an interpretation of the results from the previous chapters.

First of all we mention that in the modeling framework used here, what we call ’the

payoff of the game’ is just short hand for adding a fitness component to a birth-and-

death process that introduces an element of frequency-dependent selection in addition

to drift (C. Pawlowitsch, Finite populations choose an optimal language, [5]). In chapter

3 we introduced the definition of evolutionary stability in a finite population as proposed

by Nowak et al. [4]. Definition 3.1 stated that a resident strategy is evolutionary stable

if selection opposes all mutant strategies invading the resident strategy, and, if selection

opposes all mutant strategies replacing the resident strategy. The first condition is

satisfied when a single mutant that appears in a population consisting otherwise of the

resident type, has a lower fitness relative to the rest of the population. In section 3.1

we proved with theorem 3.2 that in case of a symmetric game, like the Language game,

this condition is equivalent with the resident strategy being a strict Nash strategy of the

game. In section 4.7 we proved with Theorem 4.5 that the only strict Nash strategies

of the Language Game are strategies for which m = n, the active matrix P is a binary

matrix and the passive matrix Q is the transpose of P , hence Q = P T . That is to say

that the only strict Nash strategies of the Language Game are efficient proto-languages.

Therefore, only efficient proto-languages seem to be eligible as an evolutionary stable

language. The second condition of Definition 3.1 is satisfied if the fixation probability

of all mutant strategies is smaller than the neutral threshold, which equals the inverse

population size. Of course, in a finite population it follows that all mutant strategies

have some positive probability to reach fixation due to the chances of random drift.

In section 3.2 we proved with Theorem 3.3 that in case of a symmetric game, like the

Language Game, and under the assumption of weak selection, which is the natural case,

a mutant strategy has a fixation probability greater than the neutral threshold if and

only if its disadvantage in relative fitness against the resident type is outweighed by

37
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a payoff advantage that the mutant strategy has against itself relative to the payoff

that the resident language has against itself. Therefore, a mutant strategy that has

a strict fitness disadvantage against the resident type can still reach fixation. With

this, we proved in chapter 5 with Proposition 5.1 that under the frequency-dependent

Moran process with weak selection, for a finite population size N ≥ 3 and m = n,

if the resident strategy is an efficient proto-language, then all mutant strategies have

a fixation probability smaller than the neutral threshold. Hence, selection opposes all

mutant strategies replacing the resident strategy in this case. Furthermore, Proposition

5.1 tells us that if the resident language is not an efficient proto-language, then there

exists a mutant language with a fixation probability greater than the neutral threshold.

Therefore, selection favors this mutant strategy replacing the resident strategy in case

the resident strategy is not an efficient proto-language. Hence, efficient proto-languages

are both protected and favored by selection. From Theorem 3.2 together with Theorem

4.5 and Proposition 5.1 it therefore follows that under a frequency-dependent Moran

process with weak selection, the only strategies of the Language Game that satisfy both

conditions of Definition 3.1 on evolutionary stability, are efficient proto-languages.
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