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Introduction

Martingales are very important when we talk about stochastic processes. Martingales have a constant ex-
pectation regardless of time. In Financial Mathematics Martingales are crucial, when we model a financial
asset as a random process we want to use a different measure under which this process is a Martingale. This
particular measure is often called the risk-neutral measure and we will be using this to solve the Black-Scholes
partial stochastic differntial equation. The Black-Scholes equation is one of the most well known equations
in Financial Mathematics. The solution to this equation, the Black-Scholes formula, calculates the price of
European call options. European call options give the buyer the right to buy stock at time T for a fixed price
K, which is often called the strike price of the option. We also must note that the buyer is not obligated to
buy the stock at time T , he can also decide to not buy it at all.

Section 1 will introduce two important concepts in the probability theory, namely expectation and con-
ditional expectation. An exposure to Measure theory is recommended while reading this section as some
concepts will be assumed to be known (Such as the L2-space and the Lebesgue integral). For section 1
we used Chapter 1-2 from [1] as a guideline while Chapters 1-4 in [2] are referred to for more background
information and a more abstract approach. In Section 2 we treat the concept of Martingales and Brownian
motion, which will be used frequently in later Sections. Guidelines for this section were Chapter 3 from [1]
and Chapters 6-7 from [5], while the introduction for Brownian motion was partly inspired by [8]. In Section
3 we talk about the Itô Integral where we use the Brownian motion to introduce the stochastic integral
and a whole different form of Calculus, namely Stochastic Calculus. Chapter 10 from [5] and Chapter 4
[1] were used as guidelines for this section. Section 4 introduces the Black-Scholes equation and derives the
solution to this equation making use of Martingales to move to a risk-free measure. The ideas proposed in
this section are based upon Chapter 4 in [1]. Section 5 is the last section of this thesis. We talk about how
to estimate the volatility of the model, i.e. Geometric Brownian motion, used to determine the stock prices
in the Black-Scholes Equation and Formula. In this section [3],[4] and [6] were consulted to derive a proper
estimation.
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1 Expectation and Conditional Expectation

In this chapter we will cover the basis of expectation of a so called random variable. We will use this chapter
as the setup for the concepts introduced in later chapters. We start with the concept of expectation in
general measure spaces.

1.1 Expectation

The average value of a random variable is very important while we also would like to account for the
probabilities that one value might occur. We do this by defining the expectation in this section.

Definition 1.1.1 (Random Variable and Probability Measure)

Given a probability space (Ω,F ,P), an arbitrary measurable function X : (Ω,F) → (R,B(R)) is called a
random variable. Now we define the probability measure µX : B(R)→ [0, 1] by

µX(A) = P
(
X−1 (A)

)
,

where A is a Borel measurable set of R. Often µX is also called the distribution measure of X. Note that
this is equivalent to

µX(A) = P{ω ∈ Ω;X(ω) ∈ A} = P{X ∈ A}.

Remark 1.1.1:

We claim that µX is indeed a probability measure, we can check this by checking the definition of a (prob-
ability) measure. The definition of a measure is as follows, let F be a sigma algebra then P : F → [0, 1] is
called a probability measure when

(i) P(∅) = 0

(ii) Let A be a countable collection where all the Ai ∈ A are disjoint then there must hold that

P(A) = P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)

It is easy to see that (i) holds for µX , for (ii) consider a countable collection A where all the Ai ∈ A are
disjoint we have that

µX(A) = P
(
X−1(A)

)
= P

(
X−1

( ∞⋃
i=1

Ai

))
= P

( ∞⋃
i=1

X−1 (Ai)

)
=

∞∑
i=1

P
(
X−1 (Ai)

)
=

∞∑
i=1

µX(Ai)

Definition 1.1.2 (Probability Density Function)

Now if there exists a measurable function fX ≥ 0 on R such that∫
A

fX(x)dλ(x) = µX(A),

where λ is the Lebesgue measure, then we call fX the probability densitity function of the random variable
X. Note that when fX is Riemann-integrable this is equal to∫

A

fX(x)dx = µX(A).
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Definition 1.1.3 (Expectation)

Given a probability space (Ω,F ,P) and a measurable function X ∈ L1, we define the expectation of X as

E[X] :=

∫
Ω

XdP.

The expectation of a random variable X can be seen as an average value where we account for different
probabilites of ω ∈ Ω. We require X ∈ L1 because it implies that E [|X|] <∞.

Remark 1.1.2

Suppose we have a probability space (Ω,F ,P), we consider the expectation of X ∈ L1 as defined in Definition

1.1.3. Now consider that we have a different measure on this measurable space (Ω,F), say P̃, then we can

calculate the expectation under this measure P̃ which will be denoted by

Ẽ[X] =

∫
Ω

XdP̃.

1.2 Conditional Expectation

From an elementary probabality course one may know that for two given events A and B with P(B) > 0,
we have that the conditional probability of A given B is defined by

P(A|B) :=
P(A ∩B)

P(B)
.

In a similar fashion we can define the conditional expectation. Consider first a specific situation. Given
a random variable X on a probability space (Ω,F ,P) and let A ∈ F with P(A) > 0. Then we define the
conditional expectation of X given A by

E[X|A] :=

∫
A
XdP

P(A)
=

E[IAX]

P(A)
.

We can extend this notion of conditional expectation. Consider a sample space Ω for which we can write

Ω =

∞⋃
i=1

Ai.

where Ai are disjoint for all i and we have that P(Ai) > 0. We define G := σ(A1, A2, . . .) as the σ-algebra
generated by the Ai. We then define

E[X|G](ω) = E[X|Ai], ω ∈ Ai

and thus follows

E[X|G] =

∞∑
i=1

E[X|Ai]IAi .

Note that we have that E[X|G] is G-measureable, i.e. the preimage of every Borel-measurable set is in F .
Now we will give a more general definition of the conditional expectation.
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Definition 1.2.1 (Conditional Expectation)

Consider the probability space (Ω,F ,P) and let G be a sub-σ-algebra on F . If X ∈ L1 is a random variable
and if we have a random varibale Y which is G-measurable such that∫

A

Y dP =

∫
A

XdP,

for every A ∈ G. We say that Y is the conditional expectation given a σ-algebra of X and we write
Y = E[X|G]. The Y in Definition 1.2.4 always exists and is unique almost surely. Hence we prove the
following theorem

Theorem 1.2.1 (Existence and Uniqueness of Conditional Expectation)

The conditional expectation defined in Defenition 1.2.1, always exists and is unique almost everywhere.

Proof
Consider a random variable X. We assume that X ∈ L1, hence it meets the condition in Definition 1.2.4.
We denote X+ = max{X, 0} and X− = max{−X, 0}. Then we know that X = X+ − X− and we have
written X as a sum of postive elements. Consider a sub-σ-algebra G, we will define Q+ : G → [0,∞) as

Q+(A) :=

∫
A

X+dP.

By the Theorem A.1 presented in Appendix (A.1) we know that Q+(A) is a measure. Because Q+ is
absolutely continous with respect to P|G we know by the Radon-Nikodym Theorem, see Theorem 4.2.2 in
[1], that there must exist a G-measurable function Y1 such that

Q+(A) =

∫
A

Y1dP,

where A is arbitrary in G. Similary since X− is postive, there exists G-measurable function Y2 such that

Q−(A) =

∫
A

Y2dP.

Now if we write that Y := Y1 − Y2, then Y is a G-measurable function and for any A ∈ G we have∫
A

XdP =

∫
A

X+ −X−dP

=

∫
A

X+dP−
∫
A

X−dP

=

∫
A

Y1dP−
∫
A

Y2dP

=

∫
A

(Y1 − Y2) dP =

∫
A

Y dP

.

Thus we have proven the existence of such a Y . Suppose we have Y and Z both G-measurable such that∫
A

XdP =

∫
A

Y dP =

∫
A

ZdP.

Then we know that ∫
A

(Y − Z)dP = 0,

for any A ∈ G. Hence Y = Z a.e. Thus we have that the conditional expectation always exists and is unique
a.e.
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Theorem 1.2.2 (Properties of the Conditional Expectation)

Consider a probability space (Ω,F ,P), let G and H be sub-σ-algebras of F then the following hold

1. E[aX + bY |G] = aE[X|G] + bE[X|G], with a, b ∈ R

2. E[E[X|G]] = E[X]

3. If X is G-measurable and XY is integrable, we have that E[XY |G] = XE[Y |G]

4. Let H ⊂ G then we have that E[E[X|G]|H] = E[X|H]

Proof

1. We know that ∀A ∈ G there holds∫
A

E[aX + bY |G]dP =

∫
A

aX + bY dP

= a

∫
A

XdP + b

∫
A

Y dP

= a

∫
A

E[X|G]dP + b

∫
A

E[Y |G]dP

=

∫
A

aE[X|G] + bE[Y |G]dP

.

Thus we see that E[aX + bY |G] = aE[X|G] + bE[X|G].

2. If we take A = Ω we have

E[E[X|G]] =

∫
Ω

E[X|G]dP =

∫
Ω

XdP = E[X].

Thus there follows that E[E[X|G]] = E[X].

3. If we have that X = IA with A ∈ G then for B ∈ G we have∫
B

E[IAY |G] =

∫
B

IAY dP

=

∫
A∩B

Y dP

=

∫
A∩B

E[Y |G]dP

=

∫
B

IAE[Y |G]dP

.

Thus the result hold whenever X is a simple function, we know that we can write a non-negative
measurable function X as a convergent sequence of increasing simple functions, then with the Montone
Convergence Theorem one can conclude this holds for all non-negative measurable X. To show that
this hold for all measurable X consider X = X+ −X−, where we define X+ and X− in the same way
as the proof of Theorem 1.2.1. Since both X+ and X− are non-negative G-measurable functions then
we can conclude that this holds for all G-measurable functions.

4. For A ∈ H ⊂ G we have that∫
A

E[E[X|G]|H]dP =

∫
A

E[X|G]dP =

∫
A

XdP =

∫
A

E[X|H]dP.

Thus we see that indeed E[E[X|G]|H] = E[X|H].

Note that for more properties one could view Theorem 2.3.2 in [1].
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Theorem 1.2.3

Consider a probability space (Ω,F ,P). Let Z ≥ 0 a.s. and E[Z] = 1. We define P̃(A) =
∫
A
ZdP. Suppose X

is measurable function then
Ẽ[X] = E[XZ].

Proof
First of all note that P̃ is indeed a measure, see Appendix A.1. Now suppose X = IA then

Ẽ[X] = Ẽ [IA] =

∫
Ω

IAZdP = E [IAZ] = E [XZ] .

Then we can show that this holds for simple functions, i.e. a sum of indicator functions. This works because
of the linearity of the expectation. Then in a similar way as for the proof of Theorem 1.2.2(3) we can show
this for arbitrary measurable functions. Note that we cannot have that

E[X+Z] = E[X−Z] =∞.

This is because then

E[XZ] = E
[(
X+ −X−

)
Z
]

= E[X+Z]− E[X−Z] =∞−∞,

hence we must have that one of the two expectations is finite. Note that if X ∈ L1(P̃) this problem wil not

occur. So Theorem 1.2.3 holds for all X ∈ L1(P̃)
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2 Martingales and Brownian Motion

In this chapter we will talk about the Martingale property of an adpated process. We will also introduce the
concept of Brownian motion. We will see that given the filtration {F(t) : t ≥ 0} that a Brownian motion is
a Martingale. This is an important result as it will be used often in later chapters.

2.1 Stochastic Processes

We would like to make sense of two important classes of stochastic processes, namely Martingales and
Brownian Motions. Since these are stochastic processes we should first define what we mean with a stochastic
process.

Definition 2.1.1 (Filtration)

Let Ω be a non empty set. Let T be a fixed positive number, which mostly denotes time in the thesis. We
assume that for every t ∈ [0, T ] there is a σ−algebra F(t). If ∀s ≤ t we have that F(s) ⊂ F(t), we call the
collection {F(t) : 0 ≤ t ≤ T}, a filtration.

Definition 2.1.2 (Random Variable Adapted to a Filtration)

A stochastic process is a sequence of random variables X(t) : Ω → R parametrized by t ∈ [0, T ]. The
stochastic process X : [0, T ] × Ω → R is a measurable mapping. In this thesis the we will most likely talk
about stochastic processes indexed by an interval [0, T ]. Since this interval is uncountable we say that in
this case we have a continuous stochastic variable. If we were to have a stochastic process indexed by a
countable set, we say that the process is discrete. The filtration {F(t) : 0 ≤ t ≤ T}, generated by a process
with F(t) = σ({X(s) : 0 ≤ s ≤ t}) is called a natural filtration for {X(t) : 0 ≤ t ≤ T}. We say that
{X(t) : 0 ≤ t ≤ T} is adapted to the filtration {F(t): 0 ≤ t ≤ T}, if X(t) is measurable with respect to F(t)
for all t.

2.2 Martingales

In essence a Martingale, is a process for which based on what happened until time s, the expected change
in the future is 0. Hence our best guess for what happens at time t where t > s is just to expect it having
the same value as at time s. Now remember when we say that {F(t) : 0 ≤ t ≤ T} is the natural filtration of
a process {X(t) : t ≥ 0}. It can be thought of as saying that F(t) contains all the information up until t.
Now we will define the Martingale property of a stochastic process.

Definition 2.2.1 (Martingale)

Let (Ω,F ,P) be a probability space. Suppose we have a fixed number T ≥ 0. Let {F(t) : 0 ≤ t ≤ T},
be a filtration of sub-σ-algebras of F . Consider an adapted process {X(t) : 0 ≤ t ≤ T}. Then if for any
0 ≤ s ≤ t ≤ T we have that

E[X(t)|F(s)] = X(s),

{X(t), 0 ≤ t ≤ T}, is called a Martingale. On the otherhand if

E[X(t)|F(s)] ≥ X(s),

for 0 ≤ s ≤ t ≤ T then {X(t), 0 ≤ t ≤ T}, is called a submartingale, if we have that

E[X(t)|F(s)] ≤ X(s),

for 0 ≤ s ≤ t ≤ T we say that {X(t), 0 ≤ t ≤ T} is called a supermartingale.
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Theorem 2.2.1

If {X(t) : 0 ≤ t ≤ T}, is a martingale with respect to the filtration {F(t) : 0 ≤ t ≤ T} for which
F(0) = {∅,Ω}, then E[X(t)] = E[X(0)] for all 0 ≤ t ≤ T .

Proof
We have that for 0 ≤ s ≤ t

E[X(t)] = E[E[X(t)|F(s)]] = E[X(s)].

If we let s = 0 we get the desired result. This means that the expectations of all X(t) are equal.

Definition 2.2.2 (Radon-Nikodým Derivative Process)

Consider (Ω,F ,P) and F(t) a filtration for 0 ≤ t ≤ T , let Z ≥ 0 almost surely and let E[Z] = 1, we define
the measure

P̃(A) =

∫
A

ZdP.

Since P (Z > 0) = 1, Z is called the Radon-Nikodým derivative of P̃ and

Z(t) = E[Z|F(t)] 0 ≤ t ≤ T,

is called a Radon-Nikodým derivative process.

Theorem 2.2.2

Suppose we have a probability space (Ω,F ,P) and let {F(t) : 0 ≤ t ≤ T} be filtration. Let Z(t) be a

Radon-Nikodým derivative process as defined in definition 2.2.2. Define P̃(A) =
∫
A
ZdP and let Y be a

F(t)-measurable function.

Then {Z(t) : 0 ≤ t ≤ T} is a martingale and

Ẽ[Y ] = E [Y Z(t)] , Ẽ [Y |F(s)] =
1

Z(s)
E [Y Z(t)|F(s)] .

Proof
Let 0 ≤ s ≤ t ≤ T , then

E [Z(t)|F(s)] = E [E [Z|F(t)] |F(s)] = E [Z|F(s)] = Z(s),

hence Z(t) is a martingale. By Theorem 1.2.2 and since Y is F(t)-measurable

Ẽ[Y ] = E [Y Z] = E [E [Y Z|F(t)]] = E [Y E [Z|F(t)]] = E [Y Z(t)] .

It is clear that 1
Z(s)E [Y Z(t)|F(s)] is F(s)-measurable hence we show that∫

A

1

Z(s)
E [Y Z(t)|F(s)] dP̃ =

∫
A

Y dP̃, ∀A ∈ F .
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Thus with what we just proved∫
A

1

Z(s)
E [Y Z(t)|F(s)] dP̃ =

∫
Ω

IA
1

Z(s)
E [Y Z(t)|F(s)] dP̃

= Ẽ
[
IA

1

Z(s)
E [Y Z(t)|F(s)]

]
= E [IAE [Y Z(t)|F(s)]]

= E [IAY Z(t)]

= Ẽ [IAY ]

=

∫
A

Y dP̃

,

hence

Ẽ [Y |F(s)] =
1

Z(s)
E [Y Z(t)|F(s)] .

2.3 Brownian Motion

Biologist Robert Brown discovered Brownian motion, hence the name, back in 1827. Brown was not able to
fully explain what the origin of Brownian motion was. Then Louis Bachelier provided a theory of Brownian
motion in his PhD thesis in the year 1900. While Albert Einstein, independently provided a probablisitc
model that adequatly explained Brownian motion. Later Norbert Wiener had a great contribution in the
field of Brownian motion, hence Brownian motion is sometimes called a Wiener process.
Brownian motion are often used in Financial Mathematics. One could assume that, for example, stock prices
are random walks. A Brownian motion is essentially a random walk where the change in value is unrelated
to future or past changes, for more information about the ideas behind Brownian motion see Chapter 3
Section 1 and 2 of [1]. Hence this is why Brownian motion can be used in modelling the financial markets.
Brownian motion have useful mathematical properties, for example they are easy to do calculations with
and with the right filtration they are Martingales, hence we can apply the theory we derived for Martingales.
For this reason it is used often when dealing with processes from an unkown origin, i.e. the Stock market.
Later on we assume that the stock price is modelled by a geometric Brownian motion. Hence the concept of
Brownian motion is explained.

Defintion 2.3.1 (Brownian Motion)

A stochastic process {W (t) : t ≥ 0} is called a Brownian motion if it satisfies the following properties:

(1) W (0) = 0 and t 7→W (t), t ≥ 0, is continious with probability 1.

(2) For 0 ≤ s ≤ t we have that W (t) −W (s) ∼ N (0, t − s), i.e. Normally distributed with mean 0 and
variance t− s.

(3) {W (t) : t ≥ 0} has stationary and independent increments.

Remark 2.3.1

Consider the Brownian motion {W (t) : t ≥ 0}. Let t ≥ s, since E [W (t)−W (s)] = 0, then

E
[
(W (t)−W (s))

2
]

= Var (W (t)−W (s)) + E [W (t)−W (s)]
2

= t− s
.
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Definition 2.3.2 (Filtration for the Brownian Motion)

Consider a probability space (Ω,F ,P). Let {W (t) : t ≥ 0} be a Brownian motion defined on this space. A
filtration for the Brownian motion {F(t) : t ≥ 0} satisfies the following:

(1) For 0 ≤ s < t, we have that F(s) ⊂ F(t).

(2) For t ≥ 0, we have that W (t) is F(t)-measurable.

(3) For 0 ≤ u < t, we have that W (t)−W (u) is independent of F(u).

When we talk about a Brownian motion {W (t) : t ≥ 0} and a filtration {F(t) : t ≥ 0}, we suppose that the
properties in Definition 2.3.2 hold unless otherwise specified.

Theorem 2.3.1

Let {W (t) : t ≥ 0} be a Brownian motion with the filtration {F(t) : t ≥ 0} satisfying the properties of
Definition 2.3.2. Then {W (t) : t ≥ 0} is a Martingale with respect to the filtration {F(t) : t ≥ 0}.

Proof Let W (t) be a Brownian motion adapted to the filtration {F(t) : t ≥ 0}. Then we have for 0 ≤ s ≤ t
that

E[W (t)|F(s)] = E[W (t) +W (s)−W (s)|F(s)]

= E[W (t)−W (s)|F(s)] + E[W (s)|F(s)]

= E[W (t)−W (s)] +W (s)

= W (s)

.

Example 2.3.1

Let {W (t) : t ≥ 0}, be a Brownian motion, and let {F(t) : t ≥ 0} be a filtration for this Brownian motion.
Let a ∈ R then

X(t) = eaW (t)− 1
2a

2t,

is a Martingale.

We will show this by using a standard method that is used a lot when dealing with showing that func-
tions of Brownian motions are Martingales. Suppose 0 ≤ s ≤ t. Define Y (t) = aW (t) − 1

2a
2t, then we can

write

X(t) = eY (t)

= eY (t)−Y (s)+Y (s)

= eY (t)−Y (s)eY (s)

= X(s)ea(W (t)−W (s))− 1
2a

2(t−s)

.

Then since X(s) is F(s)-measurable and W (t)−W (s) is independent of F(s)

E [X(t)|F(s)] = E
[
X(s)ea(W (t)−W (s))− 1

2a
2(t−s)

∣∣∣∣F(s)

]
= X(s)E

[
ea(W (t)−W (s))− 1

2a
2(t−s)

]
= X(s)e−

1
2a

2(t−s)E
[
ea(W (t)−W (s))

]
= X(s)e−

1
2a

2(t−s)E
[
ea
√
t−sZ

]
,
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where Z =
W (t)−W (s)√

(t− s)
∼ N (0, 1), since W (t) −W (s) ∼ N (0, t − s) per definition. By calculating the

Moment-generating function of a standard normal random variable one can show that E
[
etX
]

= e
1
2 t

2

when
X ∼ N (0, 1). But we are assuming that this is already known. Hence

E
[
ea
√
t−sZ

]
= e

1
2a

2(t−s).

Thus we conclude
X(s)e−

1
2a

2(t−s)E
[
ea
√
t−sZ

]
= X(s),

and we now have shown that X(t) is a Martingale.

Definition 2.3.3 (Quadratic Variation of the Brownian Motion)

Let {W (t) : t ≥ 0} a Brownian motion, let Π = {t0, t1, · · · , tn} be a partition of [0, T ] such that 0 <
t1 < · · · < tn = T . Consider the mesh of the partition ‖Π‖ := max0≤i≤(n−1) |ti+1 − ti|, then the quadratic
variation of the Brownian motion is defined by

[W,W ](T ) := lim
‖Π‖→0

n−1∑
i=0

|W (ti+1)−W (ti)|2 ,

with convergence in the L2-sense, where L2 is induced with the L2-norm.

Theorem 2.3.2

Let {W (t) : t ≥ 0} a Brownian motion, let Π = {t0, t1, · · · , tn} be a partition of [0, T ] such that 0 < t1 <
· · · < tn = T . Then the Quadratic Variation of the Brownian motion is given by and equal to

[W,W ](T ) := lim
‖Π‖→0

n−1∑
i=0

|W (ti+1)−W (ti)|2 = T,

with convergence in the L2 sense. Where L2 is equipped with the semi-norm

‖X‖2 :=
√

E[X2].

We will proof this after we have proven the following 2 lemmas.

Lemma 2.3.1

Let Z ∼ N (0, 1) then
E[Z4] = 3.

Proof
The moment generating function of Z ∼ N (0, 1) is given by

MZ(t) = e
1
2 t

2

.

Therefore

E[Z4] =

[
d4

dt4
e

1
2 t

2

]
t=0

.

It can be show by elementary calculations that

d4

dt4
e

1
2 t

2

= (3 + 3t2)e
1
2 t

2

+ (3t2 + t4)e
1
2 t

2

.

Thus
E[Z4] = 3.
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Lemma 2.3.2

Consider the random variables (Ii)
n
i=1 where we define Ii := (W (ti+1)−W (ti))

2 − (ti+1 − ti). Then

E
[
I2
i

]
= 2(ti+1 − ti)2.

Proof
Define Wi := W (ti+1)−W (ti). Then we find that

E
[
I2
i

]
= E

[
(W 2

i − (ti+1 − ti))2
]

= E
[
W 4
i − 2W 2

i (ti+1 − ti) + (ti+1 − ti)2
]

= E
[
W 4
i

]
− 2(ti+1 − ti)E

[
W 2
i

]
+ (ti+1 − ti)2

.

By definiton of the Brownian motion we know that Wi ∼ N (0, ti+1 − ti). Let Z ∼ N (0, 1), then we know
that

√
ti+1 − tiZ ∼ N (0, ti+1 − ti). Using this, E[Z2] = 1 and Lemma 2.3.1 we conclude:

E[I2
i ] = 3(ti+1 − ti)2 − 2(ti+1 − ti)2 + (ti+1 − ti)2 = 2(ti+1 − ti)2.

Proof of Theorem 2.3.2

Define M (Π) :=
∑n−1
i=0

∣∣Wti+1
−Wti

∣∣2 and note that
∑n−1
i=0 Ii = M (Π)− T , thus

∥∥∥∥∥
n−1∑
i=0

Ii

∥∥∥∥∥
2

=

√√√√√E

(n−1∑
i=0

Ii

)2
 =

√√√√√E

n−1∑
i=0

I2
i +

n−1∑
i=0

∑
j 6=i

IiIj

. (1)

We know

E

n−1∑
i=0

I2
i +

n−1∑
i=0

∑
j 6=i

IiIj

 =

n−1∑
i=0

E
[
I2
i

]
+

n−1∑
i=0

∑
j 6=i

E[IiIj ]. (2)

Then follows by using the same notation for Wi as in Lemma 2.3.2

E[IiIj ] = E
[
(W 2

i − (ti+1 − ti))(W 2
j − (tj+1 − tj))

]
= E[W 2

i W
2
j −W 2

i (tj+1 − tj)−W 2
j (ti+1 − ti) + (ti+1 − ti)(tj+1 − tj)]

.

Thus
E[IiIj ] = E[W 2

i W
2
j ]− (tj+1 − tj)E[W 2

i ]− (ti+1 − ti)E[W 2
j ] + (ti+1 − ti)(tj+1 − tj).

By the fact that the ti, 0 ≤ i ≤ n, form a partition we know that W (ti+1) − W (ti) is independent of
W (tj+1) − W (tj) ∀j 6= i (The independent increments property of the Brownian motion). Thus Wi is
independent of Wj ∀j 6= i, and so follows W 2

i is independent of W 2
j ∀i 6= j. Then we know by Remark

2.3.1 that E[W 2
i ] = (ti+1 − ti). Thus follows

E[IiIj ] = E[W 2
i ]E[W 2

j ]− (tj+1 − tj)E[W 2
i ]− (ti+1 − ti)E[W 2

j ] + (ti+1 − ti)(tj+1 − tj)

Thus

E[IiIj ] = (ti+1 − ti)(tj+1 − tj)− (tj+1 − tj)(ti+1 − ti)− (ti+1 − ti)(tj+1 − tj) + (ti+1 − ti)(tj+1 − tj) = 0.

Note that this only holds for all i 6= j. But this means we can use it in (2). So plugging in gives us

E

n−1∑
i=0

I2
i +

n−1∑
i=0

∑
j 6=i

IiIj

 =

n−1∑
i=0

E
[
I2
i

]
.
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If we use this information in (1) we find ∥∥∥∥∥
n−1∑
i=0

Ii

∥∥∥∥∥
2

=

√√√√n−1∑
i=0

E[I2
i ].

If we now use Lemma 2.3.2 we find∥∥∥∥∥
n−1∑
i=0

Ii

∥∥∥∥∥
2

=

√√√√n−1∑
i=0

2(ti+1 − ti)2 ≤

√√√√2‖Π‖
n−1∑
i=0

ti+1 − ti =
√

2‖Π‖T . (3)

If we now want to show that M(Π) converges to T we want to show that

lim
||Π||→0

‖M(Π)− T‖2 = lim
‖Π‖→0

∥∥∥∥∥
n−1∑
i=0

Ii

∥∥∥∥∥
2

= 0.

By (3)

0 ≤ lim
‖Π‖→0

‖M(Π)− T‖2 = lim
‖Π‖→0

∥∥∥∥∥
n−1∑
i=0

Ii

∥∥∥∥∥
2

≤ lim
‖Π‖→0

√
2‖Π‖T = 0.

Then by the Squeeze Theorem there must hold that

lim
‖Π||→0

‖M(Π)− T‖2 = 0,

and thus we have shown that
lim
‖Π‖→0

M(Π) = T,

in the L2-sense.

Informally we will write
dW (t)dW (t) = dt.

Theorem 2.3.3 (Lévy’s Characterization of Brownian Motion)

Let {W (t) : t ≥ 0}, be a martingale relative to a filtration {F(t) : t ≥ 0}. If W (0) = 0, W (t) has continous
paths and [W,W ] (t) = t, ∀t ≥ 0. Then W (t) is a Brownian motion.

Proof See Theorem 4.6.4 in [2].

Definiton 2.3.4 (Brownian Motion with Drift)

Let {W (t) : t ≥ 0} denote a P-Brownian motion, i.e. {W (t) : t ≥ 0} is a Brownian motion with respect to
the measure P. Let θ be a given constant then we define

X(t) := W (t) + θ,

we call {X(t) : t ≥ 0} a Brownian motion with drift.

Definition 2.3.5 (Geometric Brownian Motion)

Let α > 0 and σ be constant, let W (t) be a Brownian motion. We define the geometric Brownian motion by

S(t) = S(0)eσW (t)+(α− 1
2σ

2)t.

Note that this is closely related to the stochastic process shown in Example 2.3.1.
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3 Itô Integral

In this section we will define the Itô integral, i.e. an integral with respect to a Brownian motion. First we
will define the integral for a simple adapted stochastic process ∆(t), and prove some useful properties of the
Itô integral defined this way. Then we will extend this notion of integral for general stochastic processes.

3.1 Itô integral for Simple Processes

Suppose we have a Brownian motion {W (t) : t ≥ 0} with a filtration {F(t) : t ≥ 0}, we want to make sense
of the integral of an adapted process where we integrate with respect to the Brownian motion {W (t) : t ≥ 0},
which is called the Itô integral. Hence we first define the Itô integral for the more simpler case, the simple
processes.

Definition 3.1.1 (Simple Process)

Let Π = {t0, t1, · · · , tn} be a partition of [0, T ]. Assume that {∆(t) : 0 ≤ t ≤ T} is constant in t on the
interval [ti, ti+1), for all i. We call {∆(t) : 0 ≤ t ≤ T} a simple process.

Definition 3.1.2 (Itô Integral for Simple Processes)

Let {W (t) : t ≥ 0} be a Brownian motion with the filtration {F(t) : t ≥ 0} and let {∆(t) : 0 ≤ t ≤ T} be a
simple adapted process. Then if tk ≤ t ≤ tk+1 define the Itô Integral by

I(t) =

k−1∑
i=0

∆(ti) [W (ti+1)−W (ti)] +∆(tk) [W (t)−W (tk)] =

∫ t

0

∆(t)dW (t).

Theorem 3.1.1

The Itô Integral for simple processes is a Martingale with respect to the filtration {F(t) : t ≥ 0}.

Proof
Let 0 ≤ s ≤ t ≤ T , we assume that s and t are in different intervals of Π. Thus ∃l ≤ k such that s ∈ [tl, tl+1)
and t ∈ [tk, tk+1]. We must show that

E[I(t)|F(s)] = I(s).

Note that

I(t) =

l−1∑
i=0

∆(ti) [W (ti+1)−W (ti)]+∆(tl) [W (tl+1)−W (tl)]+

k−1∑
i=l+1

∆(ti) [W (ti+1)−W (ti)]+∆(tk) [W (t)−W (tk)] .

By the linearity of the expectation we consider the conditional expectation of each term. So for the first
term

E

[
l−1∑
i=0

∆(ti) [W (ti+1)−W (ti)]

∣∣∣∣F(s)

]
.

Because tl ≤ s we have that
∑l−1
i=0∆(ti) [W (ti+1)−W (ti)] is F(s)-measurable then by Theorem 1.2.2(3) we

have that

E

[
l−1∑
i=0

∆(ti) [W (ti+1)−W (ti)]

∣∣∣∣F(s)

]
=

l−1∑
i=0

∆(ti) [W (ti+1)−W (ti)] .

For the second term

E
[
∆(tl) [W (tl+1)−W (tl)]

∣∣∣∣F(s)

]
.
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Because again tl ≤ s and because of Theorem 2.3.1 we have that

E
[
∆(tl) [W (tl+1)−W (tl)]

∣∣∣∣F(s)

]
= ∆(tl)E

[
W (tl+1)−W (tl)

∣∣∣∣F(s)

]
= ∆(tl)

(
E
[
W (tl+1)

∣∣∣∣F(s)

]
−W (tl)

)
= ∆(tl) (W (ts)−W (tl))

.

We see that the conditional expectation of the first two terms combined gives us

l−1∑
i=0

∆(ti) [W (ti+1)−W (ti)] +∆(tl) (W (ts)−W (tl)) = I(s).

For the third term

E

[
k−1∑
i=l+1

∆(ti) [W (ti+1)−W (ti)]

∣∣∣∣F(s)

]
.

Because ti ≥ s for i ∈ [l + 1, · · · , k − 1] we know that Fs ⊂ Fti then by linearity, Theorem 1.2.2 (4) and
Theorem 2.3.1

E

[
k−1∑
i=l+1

∆(ti) [W (ti+1)−W (ti)]

∣∣∣∣F(s)

]
=

k−1∑
i=l+1

E
[
∆(ti) [W (ti+1)−W (ti)]

∣∣∣∣F(s)

]

=

k−1∑
i=l+1

E
[
E [∆(ti) [W (ti+1)−W (ti)] |Fti ]

∣∣∣∣F(s)

]

=

k−1∑
i=l+1

E
[
∆(ti) (E [W (ti+1)|F(ti)]−W (ti))

∣∣∣∣F(s)

]

=

k−1∑
i=l+1

E
[
∆(ti) (W (ti)−W (ti))

∣∣∣∣F(s)

]
= 0

.

For the last term follows in the same way that as for the third term that

E [∆(tk) [W (t)−W (tk)]] = 0.

Theorem 3.1.2 (Itô Isometry)

The Itô integral for simple processes statisfies

E
[
I2(t)

]
= E

[∫ t

0

∆2(u)du

]
.

Proof
We know that the Itô Integral is given by

I(t) =

k−1∑
i=0

∆(ti) [W (ti+1)−W (ti)] +∆(tk) [W (t)−W (tk)] .

We can write this as one summation using ∆Wi = W (ti+1)−W (ti) and ∆Wk = W (t)−W (tk). Hence

I(t) =

k∑
i=0

∆(ti)∆Wi.
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Then follows

I2(t) =

(
k∑
i=0

∆(ti)∆Wi

)2

=

k∑
i=0

∆2(ti)∆W
2
i +

∑
i 6=j

∆(ti)∆(tj)∆Wi∆Wj

=

k∑
i=0

∆2(ti)∆W
2
i + 2

∑
i<j

∆(ti)∆(tj)∆Wi∆Wj

.

Hence

E
[
I2(t)

]
= E

 k∑
i=0

∆2(ti)∆W
2
i + 2

∑
i<j

∆(ti)∆(tj)∆Wi∆Wj


= E

[
k∑
i=0

∆2(ti)∆W
2
i

]
+ E

2
∑
i<j

∆(ti)∆(tj)∆Wi∆Wj


=

k∑
i=0

E
[
∆2(ti)∆W

2
i

]
+ 2

∑
i<j

E [∆(ti)∆(tj)∆Wi∆Wj ]

.

Then because ∆Wj is independent of F(tj) and ∆(ti)∆(tj)∆Wi is F(tj)-measurable for i < j

E [∆(ti)∆(tj)∆Wi∆Wj ] = E [E [∆(ti)∆(tj)∆Wi∆Wj |F(tj)]]

= E [∆WjE [∆(ti)∆(tj)∆Wi|F(tj)]]

= E [∆Wj ]E [E [∆(ti)∆(tj)∆Wi|F(tj)]]

= E [∆Wj ]E [∆(ti)∆(tj)∆Wi]

.

Then because ∆Wj is the increment of a Brownian motion

E [∆(ti)∆(tj)∆Wi∆Wj ] = E [∆Wj ]E [∆(ti)∆(tj)∆Wi] = 0.

On the otherhand since ∆2(tj) is F(tj)-measurable and ∆W 2
j is independent of F(tj)

E
[
∆2(ti)∆W

2
i

]
= E

[
∆2(ti)

]
E
[
∆W 2

i

]
.

Then using Remark 2.3.1 we find that E[∆W 2
i ] = ti+1 − ti and E[∆W 2

k ] = t− tk, hence

k∑
i=0

E
[
∆2(ti)∆W

2
i

]
=

k−1∑
i=0

E
[
∆2(ti)

]
(ti+1 − ti) + E

[
∆2(tk)

]
(t− tk)

= E
[
∆2(ti) (ti+1 − ti)

]
+ E

[
∆2(tk) (t− tk)

]
= E

[
∆2(ti) (ti+1 − ti) +∆2(tk) (t− tk)

]
=

∫ t

0

∆2(u)du

.

Hence we have shown that

E
[
I2(t)

]
= E

[∫ t

0

∆2(u)du

]
.
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Theorem 3.1.3

The quadratic variation of the Itô integral for a simple process

[I, I](t) =

∫ t

0

∆2(u)du.

Proof We will proof this in increments. Let [ti, ti+1] be a subinterval on which {∆(t) : 0 ≤ t ≤ T} is constant.
Now consider the partition of the interval given by

ti = s0 < s1 < · · · < sn = ti+1.

Define ‖Π‖ := max0≤i≤(n−1) |ti+1 − ti|. Then the quadratic variation on this interval is given by

lim
‖Π‖→0

n−1∑
j=0

[I(sj+1 − I(sj))]
2

= lim
‖Π‖→0

n−1∑
j=0

[∆(ti) (W (sj+1)−W (sj))]
2

= ∆2(ti) lim
‖Π‖→0

n−1∑
j=0

[W (sj+1)−W (sj)]
2

.

Note that the limit given in this expression is the quadratic variation of a Brownian motion between ti+1

and ti. Then in a similar way as we did in Theorem 2.3.2 we can show that the quadratic variation is in this
case equal to ti+1 − ti. Then because ∆(u) = ∆(tj) for u ∈ [tj , tj+1]

∆2(ti) lim
‖Π‖→0

n−1∑
j=0

[W (sj+1)−W (sj)]
2

= ∆2(ti) (ti+1 − ti) =

∫ ti+1

ti

∆(u)2du.

Note that the quadratic variation between times tk and t is evenso given by∫ t

tk

∆2(u)du.

Then by summing the quadratic variations for the subintervals we find that indeed

[I, I](t) =

∫ t

0

∆2(u)du.

3.2 Itô’s Integral in the General Case

In the previous sections we assumed that ∆(t) was constant on each subinterval of some fixed partition
of [0, T ]. Now we will look at the general case where ∆(t) need not have piecewise constant paths on the
interval [0, T ]. In order to define the Itô Integral for such a process we assume that {∆(t) : t ≥ 0} is adapted
to the filtration {F(t) : t ≥ 0}. We will also assume that

E

[∫ T

0

∆2(t)dt

]
<∞. (4)

We need this assumption to prevent convergence issues. The idea is to find a sequence ∆n(t) such that ∆n(t)
is a simple process for each n, and approaches ∆(t) as n → ∞. We can do this by choosing a partition of
[0, T ], i.e. Π1 = {t0, t1, · · · , tn}. Then we define ∆1(t) to take the value at the left end part, i.e.

∆1(t) = ∆(ti) ti < t < ti+1.

We then proceed to create an increasing sequence of partitions (Πn)n∈N, i.e. Πn ⊂ Πn+1 for all n, with
limn→∞ ‖Π‖ = 0. Remember that ‖Π‖ := max0≤i≤(n−1) |ti+1− ti|. We let ∆n the simple process associated
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with Πn, defined the same way as we did for ∆1 and Π1. Then, we can show that the sequence ∆n(t)
converges to ∆(t) in L2(Ω,F ,P). That is

lim
n→∞

E

[∫ T

0

|∆n(t)−∆(t)|2 dt

]
= 0.

Let In(t) =
∫ t

0
∆n(u)dW (u), that is the Itô integral we defined for simple processes. The idea is to show

that (In(t))n∈N is a cauchy sequence. We consider the same norm as in Theorem 2.3.2. By Theorem 3.1.2

E
[
(In(t)− Im(t))

2
]

= E
[∫ t

0

|∆n(u)−∆m(u)|2 du
]
.

Then as n and m approach infinity

E
[∫ t

0

|∆n(u)−∆m(u)|2 du
]
→ 0.

This is because of assumption (4). Hence we conclude that (In(t))n∈N is a Cauchy sequence. Since L2

induced with the norm we considered is a complete space, we must have that the sequence converges in
L2. In particular the sequence converges to the Itô integral of the adapted process ∆(t). We define the Itô
integral of ∆(t) to be ∫ t

0

∆(u)dW (u) = lim
n→∞

∫ t

0

∆n(u)dW (u).

Note that all the properties proven for the Itô integral for simple processes also hold in the general case.
This is very important for theorems that appear later on.
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4 The Black–Scholes Equation

In this chapter we will derive the Black-Scholes equation. The Black-Scholes equation is a partial stocahstic
differential equation and it describes the price changes of a European call option. An European option gives
the buyer the option to buy a stock for a certain price, called the strike price, regardless of the price of the
stock at that time. The buyer decides at time T whether or not to buy the stock, he is not obligated to do
so. In order to do this we will need to introduce the Itô-Doeblin Formula. Then when we have derived the
Black-Scholes stochastic differntial equation, we will derive its solution, The Black-Scholes Formula, using
Girsanov’s Theorem and using properties of Martingales.

4.1 Itô Process

We can extend the notion of the Itô integral for a more general case. So we can integrate with respect to a
Itô process.

Definition 4.1.1 (Itô Process)

Let {W (t) : t ≥ 0} be a Brownian Motion and {F(t) : t ≥ 0} a filtration for {W (t) : t ≥ 0}, an Itô process
is a stochastic process of the form

X(t) = X(0) +

∫ t

0

∆(u)dW (u) +

∫ t

0

Θ(u)du,

where X(0) is non-random and {∆(u) : u ≥ 0}, {Θ(u) : u ≥ 0} adapted stochastic processes. We assume

that the integrals exist and in particular that E
[∫ T

0
∆2(t)dt

]
<∞. Hence assumption (4) is satisfied. Note

that a Brownian motion is a Itô process.

Definition 4.1.2 (Integral with respect to an Itô Process)

Let {X(t) : t ≥ 0} be an Itô process, let {Γ(t) : t ≥ 0} be an adapted process. Then the integral with respect
to the Itô process is defined by∫ t

0

Γ(u)dX(u) =

∫ t

0

Γ(u)∆(u)dW (u) +

∫ t

0

Γ(u)Θ(u)du.

We assume that the integrals above exist, and in particular that E
[∫ T

0
∆2(t)dt

]
< ∞. Hence it satisfies

assumption (4)

4.2 The Itô-Doeblin Formula

The Itô-Doeblin Formula will be used regularly in the remaining part of this chapter. Hence consider the
following theorem

Theorem 4.2.1 (Itô-Doeblin Formula)

Let f(t, x) be a function which has continous partial derivatives ∂
∂tf(t, x), ∂

∂xf(t, x) and ∂2

∂x2 f(t, x). Let
{X(t) : t ≥ 0} be an Itô process as in Definition 4.1.1 then

f(T,X(T )) = f(0, X(0)) +

∫ T

0

∂

∂t
f(t,X(t))dt+

∫ T

0

∂

∂x
f(t,X(t))dX(t) +

1

2

∫ T

0

∂2

∂x2
f(t,X(t))d[X,X](t).
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Proof
Consider the interval [0, T ] and let Π = {t0, t1, · · · , tn} be a partition of this interval. Recall that we used
‖Π‖ := max0≤i≤(n−1) |ti+1 − ti|. Then we write

f(T,X(T ))− f(0, X(0)) =

n−1∑
i=0

f (ti+1, X (ti+1))− f (ti, X (ti)) .

Then with the use of a 2-dimensional Taylor expansion we write,

n−1∑
i=0

f (ti+1, X (ti+1))− f (ti, X (ti)) =

n−1∑
i=0

∂

∂t
f (ti, X (ti)) (ti+1 − ti)

+

n−1∑
i=0

∂

∂x
f (ti, X (ti)) (X(ti+1)−X(ti))

+
1

2

n−1∑
i=0

∂2

∂x2
f (ti, X (ti)) (X(ti+1)−X(ti))

2

+
1

2

n−1∑
i=0

∂2

∂t∂x
f (ti, X (ti)) (ti+1 − ti) (X(ti+1)−X(ti))

+
1

2

n−1∑
i=0

∂2

∂t2
f (ti, X (ti)) (ti+1 − ti)2

+ H.O.T. (Higher order terms).

Then if ‖Π‖ → 0 we have that

lim
‖Π‖→0

n−1∑
i=0

∂

∂t
f (ti, X (ti)) (ti+1 − ti) =

∫ T

0

∂

∂t
f(t,X(t))dt,

and

lim
‖Π‖→0

n−1∑
i=0

∂

∂x
f (ti, X (ti)) (X(ti+1)−X(ti)) =

∫ T

0

∂

∂x
f (t,X (t)) dX(t),

lim
‖Π‖→0

1

2

n−1∑
i=0

∂2

∂x2
f (ti, X (ti)) (X(ti+1)−X(ti))

2
=

1

2

∫ T

0

∂2

∂x2
f(t,X(t))d[X,X](t).

While for the other terms

lim
‖Π‖→0

1

2

n−1∑
i=0

∂2

∂t∂x
f (ti, X (ti)) (ti+1 − ti) (X(ti+1)−X(ti))

≤ lim
‖Π‖→0

max
0≤i≤(n−1)

(X(ti+1)−X(ti))

n−1∑
i=0

∂2

∂t∂x
f (ti, X (ti)) (ti+1 − ti)

= 0 ·
∫ T

0

∂2

∂t∂x
f (t,X (t)) dX(t) = 0

.

and

lim
‖Π‖→0

1

2

n−1∑
i=0

∂2

∂t2
f (ti, X (ti)) (ti+1 − ti)2

≤ lim
‖Π‖→0

‖Π‖1

2

n−1∑
i=0

∂2

∂t2
f (ti, X (ti)) (ti+1 − ti)

= 0 ·
∫ T

0

∂2

∂t2
f (t,X (t)) dt

.
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Hence

f(T,X(T ))− f(0, X(0)) =

∫ T

0

∂

∂t
f (t,X (t)) dt+

∫ T

0

∂

∂x
f (t,X (t)) dX(t) +

1

2

∫ T

0

∂2

∂x2
f(t,X(t))d[X,X](t).

and thus yields the desired equality which is often written in differential form

df(t,X(t)) =
∂

∂t
f (t,X (t)) dt+

∂

∂x
f (t,X (t)) dX(t) +

1

2

∂2

∂x2
f(t,X(t))dX(t)dX(t)

Remark 4.2.1

Note that in Theorem 4.2.1 we can informally write

dtdt = 0

and
dtdX(t) = dX(t)dt = 0

Theorem 4.2.2 (Product Rule)

Let X(t) and Y (t) be Itô processes, then

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + dX(t)Y (t)

Proof
In similar fashion as for Theorem 4.2.1, i.e. using a 3-dimensional Taylor expansion, one could show that
given f(t, x, y) a function which has continious partial derivatives ∂

∂tf(t, x, y), ∂
∂xf(t, x, y), ∂

∂yf(t, x, y),
∂2

∂x2 f(t, x, y), ∂2

∂y2 f(t, x, y), ∂2

∂x∂yf(t, x, y) and ∂
∂y∂xf(t, x, y) that

df(t,X(t), Y (t)) =
∂

∂t
f (t,X(t), Y (t)) dt+

∂

∂x
f (t,X(t), Y (t)) dX(t) +

∂

∂y
f (t,X(t), Y (t)) dY (t)

+
1

2

∂2

∂x2
f (t,X(t), Y (t)) dX(t)X(t) +

1

2

∂2

∂y2
f (t,X(t), Y (t)) dY (t)Y (t)

+
∂2

∂x∂y
f (t,X(t), Y (t)) dX(t)Y (t)

. (5)

Now let f(t, x, y) = xy, then by (5)

d(X(t)Y (t)) = df(t,X(t), Y (t)) = 0 + Y (t)dX(t) +X(t)dY (t) + 0 + 0 + dX(t)dY (t)

= X(t)dY (t) + Y (t)dX(t) + dX(t)Y (t)
.

4.3 The Black-Scholes Equation

We will derive the Black-Scholes equation for the price of an European option based on an asset modeled as
a geometric Brownian motion. Suppose we have a portfolio, where the value of the portfolio is given by X(t)
for each time t. The portfolio invests in a money market account which yields a constant rate of interest r.
It also invests in a stock which is modeled by a geometric Brownian motion. Recall from Chapter 2 that a
geometric Brownian motion is defined by

S(t) = S(0)eσW (t)+(α− 1
2σ

2)t,
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where α > 0, σ are constants and {W (t) : t ≥ 0} is a Brownian motion. Using the Itô Doeblin formula

derived in Theorem 4.2.1 we can write this in its differential form. Let f(t, x) = S(0)eσx+(α− 1
2σ

2)t then

dS(t) = df(t,W (t)) =

(
α− 1

2
σ2

)
S(t)dt+ σS(t)dW (t) +

1

2
σ2S(t)dt

= αS(t)dt+ σS(t)dW (t)

we will use this later on. Suppose that at each time t ≥ 0 we have ∆(t) shares of the stock. The value of
∆(t) can be random, but must at all times be adapted to the filtration induced by the Brownian motion
{W (t) : t ≥ 0}. The remaining value of the portfolio X(t) − ∆(t)S(t) is invested in the money market
account. Then its clear that the change in portfolio value dX(t) is described by the change in capital gain
∆(t)dS(t) and the earnings by interest r (X(t)−∆(t)S(t)) dt, hence

dX(t) = ∆(t)dS(t) + r (X(t)−∆(t)S(t)) dt.

Using the differntial form of the geometric Brownian motion we can write

∆(t)dS(t) + r (X(t)−∆(t)S(t)) dt = ∆(t) (αS(t)dt+ σS(t)dW (t)) + r (X(t)−∆(t)S(t)) dt

= ∆(t)(α− r)S(t)dt+∆(t)σS(t)dW (t) + rX(t)dt
.

We will often consider the discounted stock price e−rtS(t) and the discounted value of our portfolio e−rtX(t).
Using the Itô-Doeblin formula we can derive the differentials of these functions. Hence

d
(
e−rtS(t)

)
=

∂

∂t
e−rtx

∣∣∣∣
x=S(t)

dt+
∂

∂x
e−rtx

∣∣∣∣
x=S(t)

dS(t) +
1

2

∂2

∂x2
e−rtx

∣∣∣∣
x=S(t)

dS(t)dS(t)

= −re−rtS(t)dt+ e−rtdS(t)

= −re−rtS(t)dt+ e−rt (αS(t)dt+ σS(t)dW (t))

= (α− r) e−rtS(t)dt+ σe−rtS(t)dW (t)

,

and analogously

d
(
e−rtX(t)

)
=

∂

∂t
e−rtx

∣∣∣∣
x=X(t)

dt+
∂

∂x
e−rtx

∣∣∣∣
x=X(t)

dX(t) +
1

2

∂2

∂x2
e−rtx

∣∣∣∣
x=X(t)

dX(t)dX(t)

= −re−rtX(t)dt+ e−rtdX(t)

= −re−rtX(t)dt+ e−rt (∆(α− r)S(t)dt+∆(t)σS(t)dW (t) + rX(t)dt)

= ∆(t) (α− r) e−rtS(t)dt+∆(t)σe−rtS(t)dW (t)

= ∆(t)d
(
e−rtS(t)

)
.

Suppose we have a European call option that pays us (S(T )−K)
+

at time T . Where

(S(T )−K)
+

=

{
S(T )−K if S(T ) > K

0 if S(T ) ≤ K
,

and K is a contractual determined value, note that K usually is called the strike price. Black, Scholes and
Merton assumed that the value of this call at any time t, should depend upon the price of the stock and the
time, which is a reasonable assumption. It is true that the value of the call also depends upon the values r,
σ and K, but these can be considered constants. Hence we define c(t, x) to be the function which denotes
the value of the call at a given time t when S(t) = x, at that particular time. Hence c(t, S(t)) is a stochastic
process. Our goal is to find the function c(t, x) so we have information about the future call values for future
stock prices. Using the Itô Doeblin formula we find that

dc(t, S(t)) =
∂

∂t
c(t, x)dt

∣∣∣∣
x=S(t)

+
∂

∂x
c(t, x)dS(t)

∣∣∣∣
x=S(t)

+
1

2

∂2

∂x2
c(t, x)dS(t)dS(t)

∣∣∣∣
x=S(t)

.
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Using Remark 4.2.1

dS(t)dS(t) = α2S2(t)dtdt+ 2σαS(t)dW (t)dt+ σ2S2(t)dW (t)dW (t)

= σ2S2(t)dt
.

Hence

dc(t, S(t)) =
∂

∂t
c(t, x)dt

∣∣∣∣
x=S(t)

+
∂

∂x
c(t, x)dS(t)

∣∣∣∣
x=S(t)

+
1

2

∂2

∂x2
c(t, x)σ2S2(t)dt

∣∣∣∣
x=S(t)

=
∂

∂t
c(t, x)dt

∣∣∣∣
x=S(t)

+
∂

∂x
c(t, x) (αS(t)dt+ σS(t)dW (t))

∣∣∣∣
x=S(t)

+
1

2

∂2

∂x2
c(t, x)σ2S2(t)dt

∣∣∣∣
x=S(t)

=

(
∂

∂t
c(t, x) + αS(t)

∂

∂x
c(t, x) +

1

2
σ2S2(t)

∂2

∂x2
c(t, x)

)
dt

∣∣∣∣
x=S(t)

+ σS(t)
∂

∂x
c(t, x)dW (t)

∣∣∣∣
x=S(t)

,

where for convenience we will now write

dc(t, S(t)) =

(
∂

∂t
c(t, S(t)) + αS(t)

∂

∂x
c(t, S(t)) +

1

2
σ2S2(t)

∂2

∂x2
c(t, S(t))

)
dt+ σS(t)

∂

∂x
c(t, S(t))dW (t).

Analogously, we derive for the discounted option price,

d
(
e−rtc(t, S(t)

)
= e−rt

(
−rc(t, S(t)) +

∂

∂t
c(t, S(t)) + αS(t)

∂

∂x
c(t, S(t)) +

1

2
σ2S2(t)

∂2

∂x2
c(t, S(t))

)
dt

+ e−rtσS(t)
∂

∂x
c(t, S(t))dW (t)

.

For a short hedging portfolio, with initial captial X(0), we must have that the portfolio value X(t) for each
time 0 ≤ t ≤ T agrees with the value of the option c(t, S(t)). This is only true when

e−rtX(t) = e−rtc(t, S(t)), ∀t,

This can be ensured by having {
d (e−rtX(t)) = d (e−rtc(t, S(t)))

X(0) = c(0, S(0))
,

then integration yields

e−rtX(t)−X(0) = e−rtc(t, S(t))− c(0, S(0)), ∀t,
e−rtX(t) = e−rtc(t, S(t)), ∀t,

Hence the desired equality is satisfied. Because d (e−rtX(t)) = d (e−rtc(t, S(t)))

∆(t)d
(
e−rtS(t)

)
= ∆(t)

(
(α− r) e−rtS(t)dt+ σe−rtS(t)dW (t)

)
= e−rt

(
−rc(t, S(t)) +

∂

∂t
c(t, S(t)) + αS(t)

∂

∂x
c(t, S(t)) +

1

2
σ2S2(t)

∂2

∂x2
c(t, S(t))

)
dt

+ e−rtσS(t)
∂

∂x
c(t, S(t))dW (t)

.

Since the left hand side and the right hand side must be equal we have that

∆(t)σe−rtS(t)dW (t) = e−rtσS(t)
∂

∂x
c(t, S(t))dW (t).
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Hence

∆(t) =
∂

∂x
c(t, S(t)) =

∂

∂x
c(t, x)

∣∣∣∣
x=S(t)

,

for 0 ≤ t < T . On the otherhand

∆(t) (α− r) e−rtS(t)dt = e−rt
(
−rc(t, S(t)) +

∂

∂t
c(t, S(t)) + αS(t)

∂

∂x
c(t, S(t)) +

1

2
σ2S2(t)

∂2

∂x2
c(t, S(t))

)
dt,

hence
∂

∂t
c(t, S(t)) + rS(t)

∂

∂x
c(t, S(t)) +

1

2
σ2S2(t)

∂2

∂x2
c(t, S(t)) = rc(t, S(t)),

for 0 ≤ t ≤ T . Hence we should find a twice differentiable function that is a solution to{
∂
∂tc(t, x) + rx ∂

∂xc(t, x) + 1
2σ

2x2 ∂2

∂x2 c(t, x) = rc(t, x)

c(T, x) = (x−K)+
,

where
∂

∂t
c(t, x) + rx

∂

∂x
c(t, x) +

1

2
σ2x2 ∂

2

∂x2
c(t, x) = rc(t, x),

is called the Black-Scholes-Merton equation.

4.4 Girsanov’s Theorem

In this section we will prove Girsanov’s Theorem. Hence consider the probability space (Ω,F ,P). Let
{W (t) : 0 ≤ t ≤ T} be a Brownian motion, let {F(t) : 0 ≤ t ≤ T} be a filtration for {W (t) : 0 ≤ t ≤ T}, and
let {Θ(t) : 0 ≤ t ≤ T} be an adapted process. We define

Z(t) = e−
∫ t
0

Θ(u)dW (u)− 1
2

∫ t
0

Θ2(u)du

W̃ (t) = W (t) +

∫ t

0

Θ(u)du
.

Let Z = Z(T ), we define

P̃(A) =

∫
A

ZdP.

Then E[Z] = 1 and W̃ (t) is a P̃-Brownian motion. In order for the Itô integral to converge properly we
assume that

E

[∫ T

0

(Θ(t)Z(t))
2
dt

]
<∞.

Proof Let

X(t) = −
∫ t

0

Θ(u)dW (u)− 1

2

∫ t

0

Θ2(u)du,

in differntial form

dX(t) = −Θ(t)dW (t)− 1

2
Θ2(t)dt,

and
dX(t)dX(t) = Θ2(t)dt,
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then by the Itô Doeblin formula

dZ(t) =
d

dx
exdX(t) +

1

2

d2

dx2
exdX(t)dX(t)

∣∣∣∣
x=X(t)

= eX(t)

(
−Θ(t)dW (t)− 1

2
Θ2(t)dt

)
+

1

2
eX(t)Θ2(t)dt

= −Θ(t)Z(t)dW (t)

.

Hence we have that

Z(t)− Z(0) = −
∫ t

0

Θ(u)Z(u)dW (u)

Z(t) = Z(0)−
∫ t

0

Θ(u)Z(u)dW (u)

.

Since the Itô integral is a Martingale we have that

E [Z(t)|F(s)] = E
[
Z(0)−

∫ t

0

Θ(u)Z(u)dW (u)

∣∣∣∣F(s)

]
= Z(0)− E

[∫ t

0

Θ(u)Z(u)dW (u)

∣∣∣∣F(s)

]
= Z(0)−

∫ s

0

Θ(u)Z(u)dW (u) = Z(s)

.

Thus Z(t) is a P-Martingale. Then by Theorem 2.2.1 we have that

E[Z] = E[Z(T )] = E[Z(0)] = E[e0] = 1.

and because of the Martingale property

Z(t) = E [Z(T )|F(t)] = E [Z|F(t)] ,

so Z(t) is also a Radon-Nikodým derivative process as defined in Definition 2.2.1. Note that

dW̃ (t) = dW (t) + Θ(t)dt.

Then by using the product rule from Theorem 4.2.2 we find that

d
(
W̃ (t)Z(t)

)
= W̃ (t)dZ(t) + Z(t)dW̃ (t) + dW̃ (t)dZ(t)

= −W̃Θ(t)Z(t)dW (t) + Z(t) (dW (t) + Θ(t)dt) + (dW (t) + Θ(t)dt) (−Θ(t)Z(t)dW (t))

=
(
−W̃Θ(t) + 1

)
Z(t)dW (t)

,

and thus we can show in a similar way as for Z(t) that W̃ (t)Z(t) is a P-Martingale. Then with Theorem
2.2.2

Ẽ
[
W̃ (t)|F(s)

]
=

1

Z(s)
E
[
W̃ (t)Z(t)|F(s)

]
=

1

Z(s)
W̃ (s)Z(s) = W̃ (s),

hence W̃ (s) is a P̃-Martingale. Since W̃ (0) = W (0) = 0 and dW̃ (t)dW̃ (t) = dW (t)dW (t) = dt, then by

Theorem 2.3.4 we have that W̃ (t) is a P̃-Brownian motion.
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4.5 Derivation of the Black-Scholes Formula

Now we have all the necessities to derive the solution to the Black-Scholes equation. In Section 4.3 we showed
that

S(t) = S(0)eσW (t)+(α− 1
2σ

2)t

d
(
e−rtS(t)

)
= (α− r) e−rtS(t)dt+ σe−rtS(t)dW (t)

= σe−rtS(t)

(
α− r
σ

dt+ dW (t)

) .

Define Θ =
α− r
σ

then by Girsanov’s Theorem we have that

d
(
e−rtS(t)

)
= σe−rtS(t)dW̃ (t).

Using σW (t) = σW̃ (t)− (α− r)t, we have

S(t) = S(0)eσW̃ (t)+(r− 1
2σ

2)t.

If we let X(t) denote the portfolio value as we did in Section 4.3 we have

d
(
e−rtX(t)

)
= ∆(t)d

(
e−rtS(t)

)
= ∆(t)σe−rtS(t)dW̃ (t),

Thus we see that e−rtX(t) is a P̃-Martingale. In Section 4.3 we derived the Black-Sholes equation for a
European call, we wanted to know X(0) and what portfolio process was needed to hedge a short position in
the call, that is

X(T ) = (S(T )−K)
+

a.s.

We say that V (T ) = (S(T )−K)
+

is called the derivative security payoff. Since we know that e−rtX(t) is a

P̃-Martingale
e−rtX(t) = Ẽ

[
e−rTX(T )|F(t)

]
= Ẽ

[
e−rTV (T )|F(t)

]
.

If we now call X(t) the price V (t) of the derivative security at time t we have

e−rtV (t) = Ẽ
[
e−rTV (T )|F(t)

]
V (t) = Ẽ

[
e−r(T−t)V (T )|F(t)

]
.

Where V (t) is often called the risk-neutral pricing formula. Note that this is specific to the assumptions
made in section 4.3. In general σ, r, α need not to be constants. Because the geometric Brownian motion
depends on the stock price S(t) and on time t at which the expectation is computed, but not on the stock
price prior to t, we can conclude it is a markov process, see Definition 2.3.6 and Remark 2.3.7 from [2].
Hence there exists a function c(t, x) such that

c(t, S(t)) = Ẽ
[
e−r(T−t)V (T )|F(t)

]
= Ẽ

[
e−r(T−t) (S(T )−K)

+ |F(t)
].

Let Y (t) = σW̃ (t) +
(
r − 1

2σ
2
)
t then

S(T ) = S(0)eY (T )

= S(0)eY (T )+Y (t)−Y (t)

= S(0)eY (t)eY (T )−Y (t)

= S(t)eY (T )−Y (t))

= S(t)eσ(W̃ (T )−W̃ (t))+(r− 1
2σ

2)(T−t)

.
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For convience we write τ = T − t, with Z =
W̃ (T )− W̃ (t)√

τ
hence

S(T ) = S(t)eσ
√
τZ+(r− 1

2σ
2)τ ,

where Z ∼ N (0, 1). Then since S(t) is F(t)-measurable and eσ
√
τZ+(r− 1

2σ
2)τ is independent of F(t)

c(t, S(t)) = Ẽ
[
e−rτ

(
S(t)eσ

√
τZ+(r− 1

2σ
2)τ −K

)+
]

c(t, x) = Ẽ
[
e−rτ

(
xeσ
√
τZ+(r− 1

2σ
2)τ −K

)+
]
.

Then because Z ∼ N (0, 1)

Ẽ
[
e−rτ

(
xeσ
√
τZ+(r− 1

2σ
2)τ −K

)+
]

=

∫ ∞
−∞

1√
2π
e−rτ

(
xeσ
√
τz+(r− 1

2σ
2)τ −K

)+

e−
1
2 z

2

dz

Then (
xeσ
√
τz+(r− 1

2σ
2)τ −K

)+

> 0,

if and only if

z >
log(Kx )−

(
r − 1

2σ
2
)
τ

σ
√
τ

= α.

Hence we change the set over which we integrate, which yields

c(t, x) =

∫ ∞
α

1√
2π
e−rτ

(
xeσ
√
τz+(r− 1

2σ
2)τ −K

)
e−

1
2 z

2

dz.

Let u = −z, then du = −dz and we have that u <
log( xK )+(r− 1

2σ
2)τ

σ
√
τ

= β1 hence the integral becomes

c(t, x) =

∫ β1

−∞

1√
2π
e−rτ

(
xe−σ

√
τu+(r− 1

2σ
2)τ
)
du

= x

∫ β1

−∞

1√
2π
e−σ
√
τu− 1

2σ
2τe−

1
2u

2

du− e−rτK
∫ β1

−∞

1√
2π
e−

1
2u

2

du

= x

∫ β1

−∞

1√
2π
e−

1
2 (u+σ

√
τ)

2

du− e−rτK
∫ β1

−∞

1√
2π
e−

1
2u

2

du

= xΦ(β1 + σ
√
τ)− e−rτKΦ(β1)

.

Hence the price c(t, x) is given by

c(t, x) = xΦ(β2)− e−rτKΦ(β1),

where Φ(z) = P(Z < z), Z ∼ N (0, 1) and β2 = β1 + σ
√
τ =

log( xK )+(r− 1
2σ

2)τ
σ
√
τ

+ σ
√
τ =

log( xK )+(r+ 1
2σ

2)τ
σ
√
τ

.
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5 Parameter Estimation

In this chapter we will take a look at how to estimate the parameters in the Black-Scholes formula.

5.1 Maximum Likelihood

The Maximum likelihood method of estimating parameters is a method based on observations. We deal with
stock prices and want to derive estimates for the geometric Brownian motion used to model these prices.
That means that we have plenty of observations, hence the maximum likelihood method is a good choice.

Definition 5.1.1 (Maximum Likelihood Function)

Consider X1, X2, · · · , Xn random variables with realisations X1 = x1, X2 = x2, · · ·Xn = xn. Suppose these
random variables follow a distribution characterized by a parameter θ. Suppose that these random variables
have a joint density or mass function fθ(x1, x2, · · · , xn). Then we define the Maximum likelihood function
by

L(θ) = fθ(x1, x2, · · · , xn),

Which is precisely the chance of these realisations occuring. The maximum of this function is called the
Maximum Likelihood Estimator (M.L.E). Hence θ̂ for which L(θ) is maximal, is precisely the value for which
this realisation has the biggest chance of occuring.

Remark 5.1.1

Suppose that random variables X1, · · · , Xn in Definition 6.1.1 are identically independtly distributed (i.i.d),
then we can write

L(θ) =

n∏
i=1

fθ(xi),

where fθ(x) is the density function or mass function of X. Sometimes this function could be hard to
differentiate. Hence often we refer to the log-likelihood function

l(θ) = log

(
n∏
i=1

fθ(xi)

)
=

n∑
i=1

log(fθ (xi)).

This definition is perfectly fine because the natural logarithm is a monotonically increasing function, hence
if we calculate the maximum of l(θ) this gives us the same value as if we were to do it for L(θ).

Example 5.1.1

Consider X1, · · · , Xn i.i.d ∼ N (µ, σ2), each with realisation x1, · · · , xn. Then we can calculate the Maximum
Likelihood Estimates for µ and σ. The density function is given by

fµ,σ2(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

Hence the log-likelihood function is given by

l(µ, σ2) =

n∑
i=1

log
(
fµ,σ2(xi)

)
=

n∑
i=1

−1

2
log (2π)− 1

2
log
(
σ2
)
− (xi − µ)

2

2σ2

= −n
2

log (2π)− n

2
log
(
σ2
)
−

n∑
i=1

(xi − µ)
2

2σ2

.
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If we now calculate its maximum by differentiation we find

∂l

∂µ
=

∂

∂µ

(
−n

2
log (2π)− n

2
log
(
σ2
)
−

n∑
i=1

(xi − µ)
2

2σ2

)

=

n∑
i=1

(xi − µ)

σ2

.

If we set this equal to zero

n∑
i=1

(xi − µ)

σ2
= 0,

n∑
i=1

xi − nµ = 0.

Hence

µ̂ =
1

n

n∑
i=1

xi.

Since µ̂ is the only extremum and the second derivative with respect to µ is negative this should be a
maximum. On the otherhand

∂l

∂σ
=

∂

∂σ

(
−n

2
log (2π)− n

2
log
(
σ2
)
−

n∑
i=1

(xi − µ)
2

2σ2

)

= −n
σ

+

n∑
i=1

(xi − µ)
2

σ3

.

Hence we solve

−nσ2 +

n∑
i=1

(xi − µ)2 = 0.

Which results in

σ̂2 =

∑n
i=1(xi − µ̂)2

n
.

We see that µ̂ and σ̂ indeed maximize l(µ, σ2), then since the pair (µ̂, σ̂2) result in a maximum of l(µ, σ2)
we conclude that the Maximum Likelihood Estimates are given by

µ̂ =
1

n

n∑
i=1

xi, σ̂2 =

∑n
i=1(xi − µ̂)2

n
.

5.2 Estimating the Volatility

Recall from Section 4.5 that the solution to the Black-Scholes-Merton Equation is given by

c(t, x) = xΦ(β2)− e−rτKΦ(β1),

where Φ(z) = P(Z < z), Z ∼ N (0, 1) and β2 = β1 + σ
√
τ =

log( xK )+(r− 1
2σ

2)τ
σ
√
τ

+ σ
√
τ =

log( xK )+(r+ 1
2σ

2)τ
σ
√
τ

.

The parameters in the solution are t, x, σ,K, r. We consider the risk free interest rate r to be known, hence
the parameter that we need to estimate is the volatility σ. Recall that we assume that the stock prices are
modelled by a Geometric Brownian Motion, and that the stock price is given by

S(t) = S(0)eσW (t)+(α− 1
2σ

2)t.
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Hence we can write

log(S(t)) = log(S(0)) + σW (t) +

(
α− 1

2
σ2

)
t,

where we must have that S(0) 6= 0. Hence for u < t we can write that

log(S(t))− log(S(u)) = σ (W (t)−W (u)) +

(
α− 1

2
σ2

)
(t− u).

Since {W (t) : t ≥ 0} is a Brownian motion, we know that (W (t)−W (u)) ∼ N (0, (t− u)). Hence

log(S(t))− log(S(u)) ∼ N
((

α− 1

2
σ2

)
(t− u), σ2(t− u)

)
.

Now suppose we know the values S(ti) for 1 ≤ i ≤ n. For example if we look at the history of some stock.
Take the value of AEX-INDEX at Yahoo! Finance1, where we can consider the weekly closing price for the
year 2018. Hence we have 53 different stock prices recorded every week for the year 2018. We define

X(ti) := log(S(ti))− log(S(ti−1)).

If we let ti − ti−1 = ∆t, ∀i. We have that X(ti) ∼ N
((
α− 1

2σ
2
)
∆t, σ2∆t

)
. If we assume all the X(ti) are

independent. Let x(ti) be the realisation of X(ti) at time ti, then we know by Example 5.1.1(
α̂− 1

2
σ̂2

)
∆t =

1

n

n∑
i=1

x(ti), σ̂2∆t =

∑n
i=1(x(ti)− 1

n

∑n
i=1 x(ti))

2

n
.

Hence we can solve this to find the values of σ̂2 and α̂. Note that we must have that X(ti) are all independent,
else we cannot use Example 5.1.1. We cannot know this for sure, but we can calculate the autocorrelation,
and if it does not exhibit significant lags the assumption of independence is justifiable as shown in [4].

5.3 Example for AEX

Consider the weekly closing prices of the AEX, they can be found at, for example, Yahoo! Finance. We get
data similar to Table 1 shown in Appendix A.2. Then using this data we can calculate the log differences of
every week. So we calculate all the x(ti) where 1 ≤ i ≤ 52. We use MATLAB to plot the Autocorrelation
and Partial Autocorrelation Function of the x(ti), this can be done by using their MATLAB functions. This
results in the following figure

1https://finance.yahoo.com/quote/%5EAEX/history?p=%5EAEX
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Figure 1: Autocorrelation Functions in MATLAB

If the value does not exceed the blue horizontal line we say that the value is not significant from 0. Hence
we see that the there are no significant lags hence the assumption that the log differences are Normally
distributed is justifiable. We have 1 observation every week one year long. Hence ∆t = 1

52 and

σ̂2 =

52∑
i=1

(x(ti)−
1

52

52∑
i=1

x(ti))
2,

where x(ti) = log(S(ti))− log(S(ti−1)) and S(ti) denotes the closed stock price at time ti which can be found
in the table where we referred to earlier. Then σ̂ can be found by taking the square root. Since we now
know σ̂2 we can use this to calculate α̂. Hence

α̂ =

52∑
i=1

x(ti) +
1

2
σ̂2.

We use the Python code in Appendix A.3 and run the function Parameter estimation(). This function has
2 input values, ’data’ and ’invdt’. The data variable is just the .csv file we download from Yahoo! Finance
containing our closing prices. The ’invdt’ variable is 1

∆t . If we run this program on the dataset given in
Appendix A.2 we find2

α̂ = −0.12418951308832828, σ̂ = 0.144129205548125.

Hence we have estimated the parameters in the Geometeric Brownian Motion used to model the stock prices.
To see if these estimates make sense we can generate 20000 data sets containing 52 normally distributed
random variables with mean and standard deviation as given by our python program, i.e. the mean and
standard deviation estimated by the dataset. Then we proceed to calculate the mean and standard deviation
for each of these data sets. Afterwards we use these to calculate α̂ and σ̂. Hence this will result in 20000
values for α̂ and σ̂, we can do this by running the code in Appendix A.4 in MATLAB3. If we run

2If the data file is called ’AEX.csv’ the line ’Parameter estimation(’AEX.csv’, 52)’ executes the code.
3The code used can also be found in [3] Chapter 7
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GBMSIM(−0.0025880024429672135 ,0 .01998712464983283 ,20000 ,52)

We get the following figure

Figure 2: Distribution of the mean (top) and standard deviation (bottom) of 20000 datasets

We conclude that these values which we found by simulation, are rather close to the theoretical values
we found using the maximum likelihood method.
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6 Conclusion

In Section 4.3 we assumed that the price of a stock

S(t) = S(0)eσW (t)+(α− 1
2σ

2)t,

or in differential form
dS(t) = αS(t)dt+ σS(t)dW (t).

We then formulated the portfolio value in terms of an investment in a money market account and the capital
formed by the amount of stock held and the stock price, which resulted in

dX(t) = ∆(t)dS(t) + r (X(t)−∆(t)S(t)) dt.

We then derived a partial differential equation{
∂
∂tc(t, x) + rS(t) ∂

∂xc(t, x) + 1
2σ

2S2(t) ∂2

∂x2 c(t, x) = rc(t, x)

c(T, x) = (x−K)+
,

where
∂

∂t
c(t, x) + rS(t)

∂

∂x
c(t, x) +

1

2
σ2S2(t)

∂2

∂x2
c(t, x) = rc(t, x),

is called the Black-Scholes-Merton equation. Then using Girsanov’s Theorem we created a risk-neutral
measure. This measure was used to derive a solution to the Black-Scholes equation and we found

c(t, x) = xΦ(β2)− e−rτKΦ(β1),

where Φ(z) = P(Z < z), Z ∼ N (0, 1) and β2 = β1 + σ
√
τ =

log( xK )+(r− 1
2σ

2)τ
σ
√
τ

+ σ
√
τ =

log( xK )+(r+ 1
2σ

2)τ
σ
√
τ

.

Since we assume the risk-free interest rate to be constant in c(t, x) we noticed that σ is the only parameter
for which we do not immediatly have a value. Hence we used the Maximum likelihood method on the log
differences from the stock prices to derive an estimate for σ. This was possible because we noticed that

log(S(t))− log(S(u)) ∼ N
((

α− 1

2
σ2

)
(t− s), σ2(t− u)

)
.

Hence we found that

σ̂2∆t =

∑n
i=1(x(ti)− 1

n

∑n
i=1 x(ti))

2

n
,

and thus found an estimate to for the value of σ which can be used in the Black-Scholes formula. We also
used the AEX closing prices to construct an example to see this estimation in practice. Afterwards we used
a simulation to see if our estimate was plausible, and we found that our estimate was close to the simulated
answer.
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Appendix A

A.1 Measure Defined by the Integral of a Postive Function

Suppose we have a measure space (Ω,F , µ) and that f : Ω → [0,∞), if we define Q(A) :=
∫
A
fdµ, then

Q(A) : F → [0,∞) is a measure.

Proof
We are going to prove that Q(A) statisfies the conditions of a measure. We know that

Q(∅) =

∫
∅
fdµ =

∫
Ω

fI∅dµ =

∫
Ω

0dµ = 0.

Suppose B is a countable collection of disjoint subsets of A then we know that ∪B = ∪iBi with Bi disjoint
for all i. Define

fn := fI∪ni=1Bi
.

Because all Bi are disjoint we know that I∪ni=1Bi
=
∑n
i=1 IBi . So there follows∫

Ω

fndµ =

∫
Ω

fI∪ni=1Bi
dµ =

∫
Ω

f(

n∑
i=1

IBi)dµ =

n∑
i=1

∫
Ω

fIBidµ =

n∑
i=1

∫
Bi

fdµ.

We also see that {fn} is a monotone increasing sequence of functions because f : Ω→ [0,∞] and

fn+1 = fI∪n+1
i=1 Bi

= fI∪ni=1Bi
+ fIBn+1

= fn + fIBn+1
.

Note that also holds that limn→∞ fn = f1∪∞i=1Bi
= f1⋃

B. Then by monotone convergence we know that

lim
n→∞

∫
Ω

fndµ =

∞∑
i=1

∫
Bi

fdµ =

∫
Ω

lim
n→∞

fndµ =

∫
Ω

fI⋃Bdµ =

∫
⋃
B
fdµ.

Thus follows that

Q(
⋃
B) =

∞∑
i=1

Q(Bi).

Hence

Q(A) :=

∫
A

fdµ,

is a measure.

A.2 Table With Data

Table 1: AEX closing value

t i Date Close
0 2017-12-31 558.159973
1 2018-01-07 561.099976
2 2018-01-14 569.299988
3 2018-01-21 566.789978
4 2018-01-28 550.080017
5 2018-02-04 518.330017
6 2018-02-11 532.270020
7 2018-02-18 534.090027
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8 2018-02-25 518.719971
9 2018-03-04 537.140015
10 2018-03-11 536.919983
11 2018-03-18 521.450012
12 2018-03-25 529.520020
13 2018-04-01 539.289978
14 2018-04-08 548.049988
15 2018-04-15 550.380005
16 2018-04-22 554.940002
17 2018-04-29 555.700012
18 2018-05-06 562.270020
19 2018-05-13 567.030029
20 2018-05-20 562.770020
21 2018-05-27 559.179993
22 2018-06-03 560.030029
23 2018-06-10 561.710022
24 2018-06-17 560.340027
25 2018-06-24 551.679993
26 2018-07-01 553.619995
27 2018-07-08 560.119995
28 2018-07-15 572.200012
29 2018-07-22 576.239990
30 2018-07-29 572.289978
31 2018-08-05 562.979980
32 2018-08-12 552.950012
33 2018-08-19 560.289978
34 2018-08-26 558.419983
35 2018-09-02 538.510010
36 2018-09-09 540.530029
37 2018-09-16 549.789978
38 2018-09-23 549.619995
39 2018-09-30 539.510010
40 2018-10-07 516.289978
41 2018-10-14 525.169983
42 2018-10-21 507.519989
43 2018-10-28 521.799988
44 2018-11-04 529.549988
45 2018-11-11 522.429993
46 2018-11-18 513.849976
47 2018-11-25 519.369995
48 2018-12-02 503.980011
49 2018-12-09 506.529999
50 2018-12-16 484.809998
51 2018-12-23 484.170013
52 2018-12-30 487.880005

A.3 Python Code

def Parameter est imat ion ( data , invdt ) :
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import csv
import math
with open( data , mode=’ r ’ ) as c s v f i l e :

c s v r e a d e r = csv . DictReader ( c s v f i l e )
datase t = [ ]
for row in c s v r e a d e r :

datase t . append ( row [ ” Close ” ] )
def mean(A) :

dummy = 0
for i in range ( len (A)−1):

dummy = dummy + math . l og ( f loat (A[ i +1]))−math . l og ( f loat (A[ i ] ) )
dummy = dummy/( len (A)−1)
return dummy

def var (A) :
dummy = 0
for i in range ( len (A)−1):

dummy = dummy + (math . l og ( f loat (A[ i +1]))−math . l og ( f loat (A[ i ]))−m)∗∗2
print (dummy)
dummy = dummy/( len (A)−1)
return dummy

m = mean( datase t )
v = var ( datase t )
sigma = math . s q r t ( v∗ invdt )
std = math . s q r t ( v )
alpha = 1/2∗v∗ invdt+invdt ∗m
print ( ’mean= ’+ str (m) , ’ sigma= ’ + str ( sigma ) ,
’ s td= ’ + str ( samplestd ) ,
’ va r i ance= ’ +str ( v ) , ’ alpha= ’+ str ( alpha ) )

A.4 MATLAB Code

f unc t i on GBMSIM( samplemean , samplestd , d a t a s e t s i z e , d e l t a i n v )
Z = normrnd ( samplemean , samplestd , d a t a s e t s i z e , d e l t a i n v ) ;
R = Z ’ ;
m = sum(R)/( d e l t a i n v ) ;
p = m’ ;
f o r k = 1 : d a t a s e t s i z e ;

f o r j = 1 : ( d e l t a i n v ) ;
D(k , j ) = (Z(k , j )−p(k , 1 ) ) . ˆ 2 ;

end ;
end ;
V = sum(D’ ) / ( d e l t a i n v ) ;
V=V’ ;
t = 1/( d e l t a i n v ) ;
S = s q r t (V/ t ) ;
A = 0.5∗S.ˆ2+(1/ t )∗p ;
mymean = mean(A) ;
mystd = mean(S ) ;
subplot ( 2 , 1 , 1 ) ;
histogram (A)
hold on
legend (”mean mean : ” + s t r i n g (mymean) )
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hold o f f
subplot ( 2 , 1 , 2 ) ;
histogram (S)
hold on
legend (”mean std : ” + s t r i n g ( mystd ) )
hold o f f
end
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