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Abstract

This thesis is concerned with the curvature of pseudo-Riemannian manifolds. A pseudo-
Riemannian manifold is called flat when it can be covered by charts that intertwine the pseudo-
metrics of the manifold and psuedo-Euclidian space. In general, the curvature of a manifold is
described by an operator κ∇, called the Riemann curvature. In the main theorem of this thesis,
we will prove that a pseudo-Riemannian manifold is flat if and only if κ∇ vanishes identically.
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1 Introduction

1.1 Main Result and Motivation

Compare the country Greenland and the continent Africa on a chart in an atlas and on a globe.

The Problem with our Maps [1]

On a chart in the atlas, Greenland has roughly the same size as Africa. On the globe,
Greenland is much smaller in comparison to Africa. In general, one may wonder why such
representations (charts in an atlas) are not scaled to reality (a globe):

Question 1: Why are (local) representations of the Earth’s surface in an atlas distorted?

The answer is that it is impossible to cover the surface of the Earth (modeled as a Riemannian
manifold) with charts that intertwine the metrics of the Earth’s surface and the Euclidian
metric on open subsets of the Euclidian plane.

To explain this, we need the theory of Riemannian geometry. A Riemannian manifold is a
manifold M together with a choice of innerproduct gp on each tangent space TpM that varies
smoothly with respect to p ∈M . Such a collection of innerproducts is called a metric. A metric
allows us to measure geometrical quantities such as angles, distances and (hyper)volumes on
the manifold.

Let us model the globe as the manifold S2. A chart in the atlas can then be viewed as a
chart

χ : U → Ũ , χ(p) := (χ1(p), . . . , χm(p))

of S2 in the mathematical sense, i.e. a diffeomorphism. Here U ⊂ S2 and Ũ ⊂ R2 are open
subsets. To answer Question 1, we want to know when charts preserve geometrical quantities.

This introduces the main concept of flatness: charts that intertwine metrics. Our intuition
tells us that (an open subset of) the Euclidian space Rm equipped with the Euclidian metric
is a flat space. Now, one may wonder when a given Riemannian m-dimensional manifold M ,
such as the Earth’s surface, is flat. Naively, one could ask the following question:

1



Question 2: Does there exist an open subset Ũ ⊂ Rm and a diffeomorphism χ : M → Ũ
(i.e. a global chart) that intertwines the metric of M and the Euclidian metric on Ũ?

If the answer is ‘yes’, it means that an ‘m-dimensional being’ is not able to distinquish between
M and Ũ by global and local measurements. However, the answer to this question is in general
not very interesting, since often the answer is ‘no’ for a topological reason. As an example, no
compact manifold 1 admits a global chart. In such cases the metric plays no role. A better
question is the following:

Question 3: Can we cover M by local charts that intertwine the metric of M and the
Euclidian metric?

We call M flat if and only if the answer is ‘yes’. It means that an ‘m-dimensional being’ can
not distinguish between the manifold M and Euclidian space Rm by local measurements. To
clarify the discussion above, we give two examples.

Suppose that we have a sheet of paper. Now roll the paper into a cylinder. Locally, this
construction preserves distances, areas and angles on the surfaces. So the metric on the cylinder
is locally preserved: around every point in the cylinder we can find a local chart that preserves
the metric of the cylinder. However, the cylinder and sheet of paper are not homeomorphic,
i.e. there exists no global chart. Hence, for the 2-dimensional cylinder the answer to Question
2 is ‘no’ and the answer to Question 3 is ‘yes’.

Now consider a 2-dimensional sphere. The sphere is compact and hence we already know
that the answer to Question 2 is ‘no’. The answer to Question 3 is more subtle, but turns out
to be ‘no’. To verify this, we must show that there exists a point on the sphere such that every
chart around that point distorts the properties of the metric. Suppose that there exists a chart
χ : U → Ũ of S2 that intertwines the metrics of S2 and Ũ . Let ∆ ⊂ U be a spherical triangle.
Suppose that the angles of ∆ are given by α, β and γ. One can show (see [5]) that

α + β + γ = area(∆) + π.

Since area(∆) > 0, it follows that the sum of the angles of a spherical triangle are strictly
greater than π.

Spherical Triangle [2]

Since χ preserves angles and distances, it follows that χ∗∆ ⊂ Ũ must be a planar triangle
with the same angles and sides as ∆. But it is a well-known fact that the angles of a planar

1Throughout this thesis, all manifolds are assumed to be manifolds without boundary.
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triangle precisely add up to π. Hence we find a contradiction. It therefore follows that χ can
not exist.

More generally, the following question arises:

Question 4: Does there exist an invariant that distinguishes flat Riemannian manifolds
from curved ones?

The answer is ‘yes’ and the invariant is called Riemann curvature 2. However, to understand
the definition of Riemann curvature, we must first introduce a lot of technical machinery.

Moreover, as the title of this thesis suggests, we will study a more generalized form of
Riemannian manifolds: pseudo-Riemannian manifolds. They play an essential role in Einstein’s
theory of relativity. Here, gravity is described by the Riemann curvature of such pseudo-
Riemannian manifolds.

Gravity Modeled as the Curvature of Spacetime [3]

The precise answer to Question 4 is contained in the following theorem:

Main Theorem: A pseudo-Riemannian manifold is flat if and only if its Riemann cur-
vature vanishes identically.

The theorem also says that the Riemann curvature is sufficient for flatness, i.e. it is precisely the
obstruction to being flat. In other words: we find a characterization of flat pseudo-Riemannian
manifolds.

1.2 Organization

In Chapter 2 we discuss the notion of vector bundles. We also introduce the sections of a vector
bundle. The tangent bundle is an example of a vector bundle and vector fields are the sections
of the tangent bundle. We then study connections on vector bundles. A connection is a choice
of additional structure which can be added to a vector bundle.

In Chapter 3 we give the precise definition of pseudo-Riemannian manifolds. We also intro-
duce the Levi-Civita connection, which is a connection on the tangent bundle that is completely
determined by the pseudo-metric on a pseudo-Riemannian manifold.

A connection on a vector bundle induces the covariant derivative operator along a curve
on the manifold. In Chapter 4 we introduce and use this operator to study how a vector in
the vector bundle changes when we move it along a curve in the base space. In particular, it
allows us to define the notion of parallel transport. In Chapter 4 we also study the curvature
of vector bundles, which is an operator defined in terms of the connection the vector bundle is

2There are different kinds of curvature (e.g. Ricci curvature, scalar curvature, Gaussian curvature and
sectional curvature), but they can all be expressed in terms of the Riemann curvature (see [10]).
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equipped with. The Riemann curvature of a manifold is then defined as the curvature of its
tangent bundle.

Finally, in Chapter 5 we define flatness of pseudo-Riemannian manifolds and we prove the
main theorem.

1.3 Preknowledge

This thesis requires basic knowledge of calculus, topology and manifolds. In particular the
reader should be familiar with the definitions of smooth maps between manifolds, (co)tangent
spaces and tensors.
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2 Vector Bundles with Connection

2.1 Vector Bundles

A vector bundle is a special kind of manifold which plays an important role throughout this
thesis. Intuively, a vector bundle is a manifold that is made of vector spaces which are ‘smoothly
glued together’. Let M be a manifold. A vector bundle of rank n over M is a manifold E
together with a smooth surjective map π : E → M (called the bundle projection) that maps
onto M (called the base space) such that the following conditions are satisfied:

• For each p ∈ M the fibre π∗{p} is endowed with a (real) n-dimensional vector space
structure.

• Around every point in M there exists an open neighbourhood U together with a diffeo-
morphism Φ: π∗U → U × Rn (called a local trivialization) which satisfies the following
properties:

– Let πU be the map π but with its domain and codomain restricted to π∗U and U
respectively. Then the following diagram commutes:

π∗U U × Rn

U

Φ

πU

– For each p ∈ U the map

π∗{p} → {p} × Rn, ε 7→ Φ(ε)

is an isomorphism of vector spaces.

The following lemma introduces an important construction of vector bundles.

Lemma 2.1 (Vector Bundle Chart Lemma). Let M be a m-dimensional manifold and suppose
that for each p ∈M we are given an n-dimensional vector space Ep. Define the set

E :=
⋃
p∈M

{p} × Ep

and consider the map

π : E →M, π(p, u) := p.

Suppose that for every chart χ : U → Ũ of M we are given a bijection Φχ : π∗U → U × Rn in
such a way that the following conditions are satisfied:

• For every chart χ : U → Ũ of M and each p ∈ M , the bijection Φχ restricts to an
isomorphism

Φ(p)
χ : {p} × Ep → {p} × Rm

of vector spaces.
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• If χ : U → Ũ and ψ : V → Ṽ are two charts of M with overlapping domains, then the
map

U ∩ V × Rn → U ∩ V × Rn, (p, ~y) 7→ Φψ(Φ−1
χ (p, ~y))

is of the form

Φψ(Φ−1
χ (p, ~y)) = (p,Aχ,ψ(p)~y)

for some smooth map Aχ,ψ : U ∩ V → Aut(Rn).

Then E admits a unique topology and smooth structure making it into a (m + n)-dimensional
manifold and a vector bundle of rank n over M for which the map π is the bundle projection
and the maps Φχ are local trivializations.

Proof. The map π is surjective and for each p ∈ M the fibre π∗{p} is precisely equal to the

vector space {p}×Ep. Also, because the maps Φ
(p)
χ are isomorphisms of vector spaces, it follows

that the following diagram commutes:

π∗U U × Rn

U

Φχ

πU

We now construct a topology on the set E:

Topology on E: We use the topology on M × Rn in order to create one for E. To be precise,
we prove that the collection

{Φ∗χΩU | χ : U → Ũ chart of M, ΩU ⊂ U × Rn open}

defines a base for a topology on E. It certainly covers E and hence it suffices to show
that the intersection Φ∗χΩU ∩ Φ∗ψΩV of two base sets is again a base set. To see this,
first observe that the map

U ∩ V × Rn → U ∩ V × Rn, (p, ~y) 7→ Φψ(Φ−1
χ (p, ~y))

is a continuous bijection. This implies that (Φχ)∗(Φ
∗
ψ(ΩV ∩ (U ∩ V × Rn))) is open

in U ∩ V × Rn and hence also open in U × Rn. Therefore we conclude that

Φ∗χΩU ∩ Φ∗ψΩV = Φ∗χ(ΩU ∩ (Φχ)∗(Φ
∗
ψ(ΩV ∩ (U ∩ V × Rn))))

is also a base set, as claimed.

As a direct consequence we see that the maps Φχ are homeomorphisms. Also, the set π∗V ⊂ E
is open whenever V ⊂M is open. Indeed, for any open subset V ⊂M we have

π∗V =
⋃

χ : U→Ũ
chart of M

Φ∗χ(U ∩ V × Rn).

We now show that the topological space E is a topological manifold.

≫ Claim 1: The topological space E is Hausdorff.

To see that E is Hausdorff, suppose that we have two distinct points ε1, ε2 ∈ E. Note that
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ε1 ∈ π∗{p1} and ε2 ∈ π∗{p2} for some p1, p2 ∈ M . We distinguish the two cases p1 = p2 and

p1 6= p2. First assume that p := p1 = p2. We can find a chart χ : U → Ũ of M such that
π∗{p} ⊂ π∗U . In particular it follows that ε1, ε2 ∈ π∗U . The first case now follows from the
fact that Φχ is a homeomorphism from π∗U to the Hausdorff space U ×Rn. Now assume that
p1 6= p2. Since M is Hausdorff we can find two disjoint open neighbourhoods U and V around
p1 and p2 respectively. The sets U and V yield, in their turn, two disjoint open neighbourhoods
π∗U and π∗V around ε1 and ε2 respectively. This proves the second case. C1

≫ Claim 2: The topological space E is second-countable.

To verify the second-countability condition of E, observe that we can find a countable open
subcover

{Ui}i∈N ⊂ {U | χ : U → Ũ chart of M}

of M . The latter observation is a consequence of the fact that M is second-countable. Thus,
the collection {π∗Ui}i∈N of open sets forms a countable open cover of E. Each one of those
open sets π∗Ui is homeomorphic to Ui × Rn and is therefore second-countable. It follows that
E is second-countable. C2

≫ Claim 3: The topological space E is locally Euclidian.

To see that E is locally Euclidian, just note that the compositions

π∗U U × Rn Ũ × RnΦχ χ×idRn

are homeomorphisms between open subsets of E and open subsets of Rm × Rn. C3

It follows that E is a topological manifold. We now construct a smooth structure on the
(m+ n)-dimensional topological manifold E:

Smooth structure on E: For each chart χ : U → Ũ of M , define Φ̃χ to be the homeomorphism
we used to show that E is locally Euclidian. In order to prove that the collection

{Φ̃χ | χ : U → Ũ chart of M}

defines a smooth atlas, we have to show that the maps in it are smoothly compatible.
In other words, we must show that the transition map

χ∗(U ∩ V )× Rn → ψ∗(U ∩ V )× Rn, (~x, ~y) 7→ Φ̃ψ(Φ̃−1
χ (~x, ~y))

is smooth for all charts χ : U → Ũ and ψ : V → Ṽ of M that satisfy U ∩ V 6= ∅.
Since

Φ̃ψ(Φ̃−1
χ (~x, ~y)) = (ψ(χ−1(~x)), Aχ,ψ(χ−1(~x))~y),

we conclude that the transition maps are indeed smooth. Any smooth atlas is con-
tained in a unique smooth structure. Thus we have constructed a smooth structure
on E.

It follows that E is a smooth (m + n)-dimensional manifold. The maps π and Φχ are smooth
since both of the following diagrams commute:
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π∗U U π∗U U × Rn

Ũ × Rn Ũ Ũ × Rn Ũ × Rn

πU

χ

Φχ

χ×idRnΦ̃−1
χ Φ̃−1

χ

id
Ũ×Rn

Observe that the diagram on the right-hand side also commutes when we reverse the directions.
We therefore deduce that the maps Φχ are diffeomorphisms and hence also local trivializations.

It is clear that this topology and smooth structure are the unique ones satisfying the con-
clusions of the lemma. �

Let M be an m-dimensional manifold. Using Lemma 2.1, one can show that the tangent
bundle TM and cotangent bundle T ′M are vector bundles. Recall that

T ′pM := Lin(TpM,R)

and also that

TM :=
⋃
p∈M

{p} × TpM, T ′M :=
⋃
p∈M

{p} × T ′pM.

Lemma 2.2 (Tangent and Cotangent Bundle). Suppose that M is a m-dimensional manifold.
Then the tangent bundle TM and cotangent bundle T ′M are both smooth vector bundles of rank
m over M .

Proof. Consider the surjective maps π : TM →M and π′ : T ′M →M defined by

π(p,Xp) := p, π′(p, ωp) := p.

Let χ : U → Ũ be a chart of M . Define Φχ : π∗(U)→ U ×Rm and Φ′χ : (π′)∗(U)→ U ×Rm by

Φχ

(
p,
∑
j

yj · ∂

∂χj

∣∣∣∣p) := (p, (y1, . . . , ym)), Φ′χ

(
p,
∑
j

yj · ∂χj|p
)

:= (p, (y1, . . . , ym)).

The maps Φχ and Φ′χ are both bijective. Also, Φχ restricts to an isomorphism of vector spaces
from {p}×TpM to {p}×Rm and Φ′χ restricts to an isomorphism of vector spaces from {p}×T ′pM
to {p}×Rm. Suppose we have two charts χ : U → Ũ and ψ : V → Ṽ of M such that U ∩V 6= ∅.
Consider the smooth transition function

τχ,ψ : χ∗(U ∩ V )→ ψ∗(U ∩ V ), τχ,ψ(~x) := ψ(χ−1(~x))

and its inverse τψ,χ. For any index 1 ≤ j ≤ m and any point p ∈ U ∩ V we know that

∂

∂χj

∣∣∣∣p =
∑
i

∂τ iχ,ψ
∂xj

(χ(p)) · ∂

∂ψi

∣∣∣∣p, ∂χj|p =
∑
i

∂τ jψ,χ
∂xi

(ψ(p)) · ∂ψi|p.

Thus for (p, ~y) ∈ U ∩ V × Rm we get

Φψ(Φ−1
χ (p, ~y)) = (p,Aχ,ψ(p)~y), Φ′ψ((Φ′χ)−1(p, ~y)) = (p,A′(χ,ψ)(p)~y),

where the smooth maps Aχ,ψ : U ∩ V → Aut(Rm) and A′χ,ψ : U ∩ V → Aut(Rm) are given by

Aχ,ψ(p) =

[
∂τ iχ,ψ
∂xj

(χ(p))

]
i,j

, A′(χ,ψ)(p) =

[
∂τ jψ,χ
∂xi

(ψ(p))

]
i,j

.

Usage of Lemma 2.1 finishes the proof. �
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Recall that a (k, l)-tensor on a d-dimensional vector space Λ is a multilinear map

V × k. . .× V × V ′ × l. . .× V ′ → R.

The set of all (k, l)-tensors is denoted by Tenk,l(Λ) and naturally comes with a dk+l-dimensional
vector space structure. Just as in the proof of Lemma 2.2, one can use Lemma 2.1 and show
that the (k, l)-tensor bundle

Tk,lM :=
⋃
p∈M

{p} × Tenk,l(TpM)

is also a vector bundle of rank mk+l over M .

2.2 Sections

One of the main objects on vector bundles are their (local) sections. We have already seen
sections, namely, in the form of vector fields. Let E be a vector bundle over M and let π be the
corresponding bundle projection. A (global) section of E is a smooth map s : M → E satisfying
π ◦ s = idM . We denote the set of all sections of E by Γ(E). Now suppose that s1 and s2 are
sections of E and that f : M → R is a smooth real-valued map. Using the fact that the fibres
of π are vector spaces, we can naturally define f · s1 + s2 pointwise. One can verify that the
map f · s1 + s2 is indeed a section of E. Hence the set Γ(E) is endowed with a C∞(M)-module
structure. By identifying any real scalar with its corresponding constant map from M to R, we
see that any C∞(M)-module comes with a natural real vector space structure.

Similarly, a local section of E is a smooth map s : U → E defined on some open subset
U ⊂ M that satisfies π ◦ s = ιU . The set of such local sections of E is denoted by ΓU(E) and
admits the structure of a C∞(U)-module.

A (local) vector field is a local section of Γ(TM) and a (local) covector field is a (local)

section of Γ(T ′M). If χ : U → Ũ is a chart of M , then for 1 ≤ i ≤ m it is easy to see that

∂

∂χi
: U → TM,

∂

∂χi
(p) :=

(
p,

∂

∂χi

∣∣∣∣p)
is a local vector field (called a coordinate vector field) and that

∂χi : U → TM, ∂χi(p) := (p, ∂χi|p)

is a local covector field (called a coordinate covector field).
A (local) (k, l)-tensor field is a (local) section of Tk,lM . Note that the definition of the

tensor product ⊗ on tensors can be extended to tensor fields by pointwise evaluation. This
extention of the tensor product preserves smoothness.

For technical reasons we often need global extensions of local sections. The following two
lemmas discuss the existence of such extensions.

Lemma 2.3 (Extension Lemma Version 1). Let E be a vector bundle over M and let U ⊂ M
be an open subset. If s : U → E is a local section of E and p0 ∈ U a given point, then there
exists an open neighbourhood V ⊂ U around p0 and a global section ŝ : M → E such that s and
ŝ coincide on V .

Proof. Choose any open neighbourhood V ⊂ U around the given point p0 such that V ⊂ U and
let η1, η2 ∈ C∞(M) be a partition of unity subordinate to the open cover of M given by U and
M \V . Because supp(η1) ⊂ U , it follows that η1|U · s vanishes on the open subset U \ supp(η1).
Thus we can extend η1|U ·s by zero outside U . We obtain a global section ŝ : M → E that agrees

9



with η1|U · s on U and vanishes outside supp(η1). Since supp(η2) ⊂ M \ V , we observe that
η2|V ≡ 0. The partition of unity satisfies η1 +η2 ≡ 1. So it follows that η1|V ≡ 1. Consequently,
for any p ∈ V we get

ŝ(p) = η1|U · s(p) = η1(p) · s(p) = s(p),

which finishes the proof. �

Lemma 2.4 (Extension Lemma Version 2). Let E be a vector bundle of rank n over a manifold
M . Given p0 ∈M and ε0 ∈ π∗{p0}, there exists a local section s : U → E such that s(p0) = ε0.

Proof. First choose any local trivialization Φ: π∗U → U × Rn around ε0. Since Φ is bijective,
there is a unique ~y0 ∈ Rn such that Φ sends ε0 to (p0, ~y0). Now define a smooth map

s : U → E, s(p) := Φ−1(p, ~y0).

Since we have

π(Φ−1(p, ~y)) = p

for all (p, ~y) ∈ U ×Rn, we conclude that π ◦ s = ιU . It follows that s is a local section with the
desired property. �

2.3 Local Frames

Let E be a vector bundle of rank n over an m-dimensional manifold M and let U ⊂ M be
an open subset. Suppose that we have an n-tuple (s1, . . . , sn) consisting of local sections of E
which are defined on an open set U ⊂M . We say that (s1, . . . , sn) is a local frame of E if and
only if (s1(p), . . . , sn(p)) is a basis for the fibre π∗{p} for every p ∈ U . The open set U is called
the domain of the local frame.

For example, note that any chart χ : U → Ũ of M induces local frames (∂/∂χ1, . . . , ∂/∂χm)
and (∂χ1, . . . , ∂χm) of the tangent bundle TM and the cotangent bundle T ′M respectively. We
refer to these local frames as the coordinate frame and coordinate coframe of χ. Their domains
equal U , i.e. the domain of the given chart χ.

Another important example of local frames of a general vector bundle involves local triv-
ializations. Suppose we are given a local trivizalization Φ: π∗U → U × Rn of E. For every
1 ≤ i ≤ n we define a smooth map

siΦ : U → E, siΦ(p) := Φ−1(p,~ei).

Observe that π ◦ siΦ = ιU . It follows that siΦ is a local section. Note that Φ−1 restricts to
an isomorphism of vector spaces from {p} × Rn to π∗{p} and that it takes the standard basis
((p,~e1), . . . , (p,~en)) of {p} × Rn to (s1

Φ(p), . . . , snΦ(p)) for each p ∈ U . Hence (s1
Φ(p), . . . , snΦ(p))

is a basis for π∗{p}. We conclude that (s1
Φ, . . . , s

n
Φ) is a local frame of E. We say that this local

frame is associated with Φ.

Lemma 2.5. Let E be a vector bundle over M . Every point in M is contained in the domain
of some local frame of E.

Proof. By definition of a vector bundle, every point in M is contained in the domain of a
local trivialization. Therefore, every point in M is contained in the domain of the local frame
associated to a local trivialization. �

Lemma 2.6. Let E be a vector bundle of rank n over M . Every local frame of E is associated
to a local trivialization.
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Proof. Suppose (s1, . . . , sn) is a local section of E over a domain U ⊂M . Let Φ: π∗U → U×Rn

be the inverse of the bijective map

U × Rn → π∗U, (p, ~y) 7→
∑
i

yi · si(p).

Then Φ restricts to an isomorphism of vector spaces from π∗{p} to {p} × Rn for each p ∈ U .
Moreover, it satisfies

si(p) = Φ−1(p,~ei)

for each p ∈ U and every 1 ≤ i ≤ n. Hence to prove that it is the desired local trivialization,
we have to show that Φ and its inverse Φ−1 are smooth. It suffices to prove that Φ is a local
diffeomorphism. Fix a point in U and choose a neighbourhood V over which there exists a local
trivialization L : π∗V → V ×Rn. By shrinking V if necessary, we may assume that V ⊂ U . We
now prove that the restriction

ΦV : π∗V → V × Rn, ΦV (ε) := Φ(ε)

is a diffeomorphism. Since L is a diffeomorphism, we may aswell prove that L ◦ Φ−1
V is a

diffeomorphism.

V × Rn π∗V V × Rn

V

ΦV

πV

L

For all (p, ~y) ∈ V × Rn we calculate

L ◦ Φ−1
V (p, ~y) =

∑
i

yi · L(si(p)).

For every 1 ≤ i ≤ n the map

V → V × Rn, p 7→ L(si(p))

is smooth by the chain-rule. Thus, for every 1 ≤ i ≤ n there are αi,1, . . . , αi,n ∈ C∞(V ) such
that

L(si(p)) = (p, (αi,1(p), . . . , αi,n(p)))

for all p ∈ U . We get a smooth map

A : V → End(Rn), A(p) := [αi,j(p)]i,j

and it follows that

L ◦ Φ−1
V (p, ~y) = (p,A(p)~y),

which clearly depends smoothly on (p, ~y) ∈ V ×Rn. Since L◦Φ−1
V restricts to an isomorphism of

vector spaces from {p}×Rn to itself, we see that A(p) is invertible for each p ∈ V . Consequently,
we have shown that the inclusion A∗V ⊂ Aut(Rn) holds. The matrix inversion map is a smooth
map from Aut(Rn) to itself. Hence, the chain-rule implies smoothness of the map

V → Aut(Rn), p 7→ A(p)−1.

Finally, we conclude that

ΦV ◦ L−1(p, ~y) = (p,A(p)−1~y)

depends smoothly on (p, ~y) ∈ V × Rn. �
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Let (s1, . . . , sn) be a local frame of E with domain U ⊂M . Since (s1(p), . . . , sn(p)) forms a
basis for π∗{p} for each point p ∈ U , any map s : U → E (not necessarily smooth) that satisfies
π ◦ s = ιU can be written as

s =
∑
i

fi · si,

where fi : U → R is a real-valued function for every 1 ≤ i ≤ n. We call these functions
the component functions of s with respect to (s1, . . . , sn). It turns out that we can use the
component functions to verify whether such a map s is smooth or not.

Lemma 2.7 (Smoothness Criterion). Let E be a vector bundle of rank n over M and let
(s1, . . . , sn) be a local frame of E on some domain U ⊂ M . Suppose that s : U → E is a map
that satisfies π ◦ s = ιU . Then s is a local section of E if and only if its component functions
with respect to (s1, . . . , sn) are smooth.

Proof. Using Lemma 2.6 we can find a local trivialization Φ: π∗U → U ×Rn that is associated
with (s1, . . . , sn). Because Φ is a diffeomorphism, the map s is smooth if and only if

U → U × Rn, p 7→ Φ(s(p))

is smooth. If f1, . . . , fn are the component functions of s with respect to (s1, . . . , sn), then

Φ(s(p)) =
∑
i

fi(p) · Φ(si(p)) = (p, (f1(p), . . . , fn(p))).

So Φ(s(p)) depends smoothly on p ∈ U if and only if fi(p) depends smoothly on p ∈ U for
every 1 ≤ i ≤ n. �

2.4 Connections

Essentially, a connection is a mechanism which allows us to differentiate local and global sections
of a vector bundle. Let E be a vector bundle over M . Note that the set consisting of linear
maps from Γ(E) to itself, as usual denoted by End(Γ(E)), admits a C∞(M)-module structure.
Recall that for every vector field X ∈ Γ(TM) the Lie derivative with respect to X is defined as
the map

LX : C∞(M)→ C∞(M), LX(f)(p) = Xpf

For any open subset U ⊂M , the Lie derivative with respect to a local vector field X ∈ ΓU(TM)
is defined as the map

LUX : C∞(U)→ C∞(U), LUX(f)(p) := Xpf̂ ,

where f̂ : M → R is some smooth function that agrees with f in a neighbourhood of p in U .
For a chart χ : U → Ũ of M and a smooth function f : U → R, we also write

∂f

∂χi
:= LU∂/∂χi(f).

A connection on E is any C∞(M)-linear map

Γ(TM)→ End(Γ(E)), X 7→ ∇X

12



that satiesfies

∇X(f · s) = LX(f) · s+ f · ∇X(s)

for all X ∈ Γ(TM), s ∈ Γ(E) and f ∈ C∞(M). We refer to the latter property as the Leibniz-
rule. Furthermore, note that any C∞(M)-linear map between C∞(M)-modules is also linear
over the real numbers. A connection is a choice of additional structure which we can add to a
vector bundle. The following three lemmas reveal the local nature of connections.

Lemma 2.8 (Locality of Connections Version 1). Let E be a vector bundle over a manifold M
and suppose that E is equipped with a connection. Suppose that U ⊂M is an open subset.

(i) If X ∈ Γ(TM) vanishes on U , then ∇X(s) vanishes on U for every s ∈ Γ(E).

(ii) If s ∈ Γ(E) vanishes on U , then ∇X(s) vanishes on U for every X ∈ γ(TM).

Proof. We prove part (ii). The proof of part (i) is similar to the proof of part (ii). Fix a vector
field X ∈ Γ(TM). Let p ∈ U be a point and let 0(p) denote the zero-element of the vector

space π∗{p}. Let the maps η
(p)
1 , η

(p)
2 ∈ C∞(M) be a smooth partition of unity subordinate to

the open cover of M given by U and M \ {p}. Since the support of η
(p)
1 is contained in U , it

follows that η
(p)
1 vanishes outside U . Combining this with the fact that s vanishes on U yields

that η
(p)
1 · s must be the zero-section of E. Hence on the one hand we find that

∇X(η
(p)
1 · s)(p) = 0(p)

and on the other hand we use Leibniz-rule to find that

∇X(η
(p)
1 · s)(p) = LX(η

(p)
1 ) · s(p) + η

(p)
1 · ∇X(s)(p) = η

(p)
1 (p) · ∇X(s)(p).

Note that η
(p)
2 (p) = 0 and η

(p)
1 + η

(p)
2 ≡ 1. Thus η

(p)
1 (p) = 1, which proves that

∇X(s)(p) = 0(p).

Since p was chosen arbitrarily in U , it follows that ∇X(s) must vanish on U . �

The locality of connections is an important result. In particular, for any open subset U ⊂M ,
we note that a connection on E induces a local connection

ΓU(TM)→ End(ΓU(E)), X 7→ ∇U
X .

Let X ∈ ΓU(TM) be a local vector field. To see how ∇U
X acts on a local section s ∈ ΓU(E),

we have to show how ∇U
X(s) acts on some point p ∈ U . Using Lemma 2.3 we can find a global

vector field X̂ ∈ Γ(TM), a global section ŝ ∈ Γ(E) and an open neighbourhood V ⊂ U of p
such that X̂|V = X|V and ŝ|V = s|V . Indeed, Lemma 2.8 now implies that the assignment

∇U
X(s)(p) := ∇X̂(ŝ)(p)

is independent of the choices of X̂ and ŝ. Moreover, it is C∞(U)-linear and satisfies the Leibniz-
rule. To summarize the preceding lemma, it tells us that we can compute ∇X(s)(p) knowing
only the values of X and s near p. However, we can prove a stronger result. The next lemma
shows that we can compute ∇X(s)(p) knowing the value of X at p and values of s near p.

Lemma 2.9 (Locality of Connections Version 2). Let E be a vector bundle over a manifold
M and suppose that E is equipped with a connection. Let p0 ∈ M be a point. Suppose that
X ∈ Γ(TM) is a vector field that vanishes in the point p0. Then ∇X(s) vanishes in p0 for each
section s ∈ Γ(E).
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Proof. Fix a section s ∈ Γ(E) and choose a chart χ : U → Ũ of M around p0. Using this chart
we can write X locally as

X|U =
∑
i

Xχ
i ·

∂

∂χi
,

where Xχ
i : U → R is a smooth function that is zero in p0 for every 1 ≤ i ≤ n. We compute

∇X(s)(p0) = ∇U
X|U (s|U)(p0) =

∑
i

Xχ
i (p0) · ∇U

∂/∂χi(s|U)(p0) = 0(p0)

and finish the proof. �

Consequently, for each open subset U ⊂M and p ∈ U we get a well-defined linear map

TpM → Lin(ΓU(E), π∗{p}), u 7→ ∇U
u .

Let p ∈ M be a point and u ∈ TpM a tangent vector at p. Indeed, using Lemma 2.4 we are
able to find a local vector field X ∈ ΓU(TM) such that Xp equals u. The map ∇U

u acts on local
sections s ∈ ΓU(E) by

∇U
u (s) := ∇U

X(s)(p).

Lemma 2.9 shows that this definition is independent of the choice of X.

Lemma 2.10 (Locality of Connections Version 3). Let E be a vector bundle with a connection
over a manifold M . Let p0 ∈M be a point, X ∈ Γ(TM) a vector field and s ∈ Γ(E) a section.
Suppose that there exists a smooth curve γ : I →M and a t0 ∈ I such that γ(t0) = p0, γ̇t0 = Xp0

and s ◦ γ(t) = 0(γ(t)) for all t ∈ I. Then ∇X(s) vanishes in p0.

Proof. By shrinking I if necessary, we may assume that γ∗I is contained in the domain U of a
local frame (s1, . . . , sn) of E. We can find functions f1, . . . , fn ∈ C∞(U) such that

s|U =
∑
i

fi · si.

Note that fi(p0) = 0 for all 1 ≤ i ≤ n. Using the Leibniz-rule we find

∇X(s)(p0) = ∇U
X|U (s|U)(p0) =

∑
i

LUX|U (fi) · si(p0) + fi · ∇U
X|U (si)(p0) =

∑
i

(Xp0 f̂i) · si(p0),

where f̂i : M → R is some smooth map that coincides with fi in a neighbourhood of p0 in U
for every 1 ≤ i ≤ n. Using the chain-rule and the fact that f̂i ◦ γ vanishes in a neighbourhood
around t0 we observe that

Xp0 f̂i = (∂f̂i)γ(t0)(γ̇
t0) = ∂(f̂i ◦ γ)t0

(
d

dt

∣∣∣∣t0) =
d

dt

∣∣∣∣t0 f̂i ◦ γ = 0. �
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3 Pseudo-Riemannian Manifolds

3.1 Pseudo-Innerproducts

In this subsection we discuss some linear-algebraic preliminaries. Let Λ be a real d-dimensional
vector space and b : Λ × Λ → R a bilinear map. We say that b is symmetric if and only if
b(u, v) = b(v, u) for all u, v ∈ Λ. We say that b is non-degenerate if and only if b(u, v) = 0
for all v ∈ Λ implies that u = 0Λ. A pseudo-innerproduct on Λ is a symmetric non-degenerate
bilinear function from Λ×Λ to R. Two vectors u, v ∈ Λ are said to be orthonormal if and only
if b(u, v) = 0, b(u, u) = ±1 and b(v, v) = ±1. A basis (u1, . . . , ud) for Λ is orthonormal if and
only if the vectors of the basis (u1, . . . , ud) are pairwise orthonormal, i.e. b(ui, uj) = ±δi,j for
all 1 ≤ i, j ≤ d. For u ∈ Λ we define the set

u⊥ := {v ∈ Λ | b(u, v) = 0}.

It is easy to see that u⊥ is a linear subspace of Λ. We will use the following technical lemma
to prove the existence of orthonormal bases.

Lemma 3.1. Suppose that Λ is a finite dimensional vector space equipped with a pseudo-
innerproduct b. Let u0 ∈ Λ be a vector that satisfies b(u0, u0) 6= 0. Then Λ = span(u0) + u⊥0
and span(u0) ∩ u⊥0 = {0Λ}.

Proof. Consider the linear maps

ϕ1 : Λ→ Λ, ϕ1(u) :=
b(u0, u)

b(u0, u0)
· u0

and ϕ2 := idΛ−ϕ1. Clearly idΛ = ϕ1 + ϕ2 and therefore we know that Λ = (ϕ1)∗Λ + (ϕ2)∗Λ.
Observe that (ϕ1)∗Λ ⊂ span(u0). Bilinearity of b implies that

b(u0, ϕ2(u)) = b

(
u0, u−

b(u0, u)

b(u0, u0)
· u0

)
= b(u0, u)− b(u0, u)

b(u0, u0)
· b(u0, u0) = 0

for each u ∈ Λ. Hence we have (ϕ2)∗Λ ⊂ u⊥0 . We conclude that Λ = span(u0) + u⊥0 . We now
prove that the intersection of span(u0) and u⊥0 is trivial. Suppose that u ∈ span(u0)∩u⊥0 . Then
u = α · u0 for some α ∈ R and b(u0, u) = 0. We also find that

b(u0, u) = b(u0, α · u0) = α · b(u0, u0).

Because b(u0, u0) 6= 0, we must have α = 0 and thus u = 0Λ. We conclude that span(u0)∩u⊥0 =
{0Λ}. �

Lemma 3.2. Every finite-dimensional vector space equipped with a pseudo-innerproduct has
an orthonormal basis.

Proof. We will prove this lemma by using induction on the dimension d of vector spaces. The
case d = 0 is obvious. So assume that the result holds for vector spaces of dimension d. Let Λ
be a (d+ 1)-dimensional vector space together with a pseudo-innerproduct b. There must be a
vector u0 ∈ Λ with b(u0, u0) 6= 0, because otherwise the polarization identity

b(u, v) =
1

4
(b(u+ v, u+ v)− b(u− v, u− v))
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would imply that b ≡ 0. Using Lemma 3.1 we see that Λ = span(u0) +u⊥0 and span(u0)∩u⊥0 =
{0Λ}. Note that dim(u⊥0 ) = d. We now prove that the restriction b0 := b|u⊥0 ×u⊥0 is a pseudo-

innerproduct on u⊥0 . Suppose that u ∈ u⊥0 satisfies b0(u, v) = 0 for all v ∈ u⊥0 . If w ∈ Λ, then
we can find a α ∈ R and a v ∈ u⊥0 such that w = α · u0 + v. Hence we have

b(u,w) = b(u, α · u0 + v) = α · b(u0, u) + b0(u, v) = 0.

Since this is true for all w ∈ Λ and b is non-degenerate, we conclude that u = 0Λ. It follows
that b0 is non-degenerate. The induction hypothesis implies that there exists an orthonormal
basis (u1, . . . , ud) for u⊥0 . If we define ud+1 := u0, then (u1, . . . , ud+1) is easily seen to be an
orthonormal basis for Λ. �

Lemma 3.3 (Sylvester’s Law of Inertia). Suppose that Λ is a d-dimensional vector space
equipped with a pseudo-innerproduct b. Then there exists a basis (u1, . . . , ud) for Λ∗ with respect
to which b has the expression

b = u1 ⊗ u1 + . . .+ uk ⊗ uk − uk+1 ⊗ uk+1 − . . .− ud ⊗ ud

for some integer 0 ≤ k ≤ d. This number k is independent of the choice of basis.

Proof. Because of Lemma 3.2 we are able to find an orthonormal basis (u1, . . . , ud) of Λ. We
can rearrange the basis vectors. Therefore we may assume that

b(u1, u1) = 1, . . . , b(uk, uk) = 1, b(uk+1, uk+1) = −1, . . . , b(ud, ud) = −1.

A straightforward computation shows that the dual basis (u1, . . . , ud) with respect to which b
has the required expression. Now suppose that there are two bases (u1, . . . , ud) and (v1, . . . , vd)
of V ∗ such that

b = u1 ⊗ u1 + . . .+ uk ⊗ uk − uk+1 ⊗ uk+1 − . . .− ud ⊗ ud,
= v1 ⊗ v1 + . . .+ vl ⊗ vl − vl+1 ⊗ vl+1 − . . .− vd ⊗ vd

for some integeres 1 ≤ k, l ≤ d. We will prove that k = l. Define the subspaces

S := span(u1, . . . , uk), T := span(vl+1, . . . , vd).

If u ∈ S\{0Λ} and v ∈ T \{0Λ}, then there are real numbers α1, . . . , αk ∈ R and βl+1, . . . , βd ∈ R
such that

u = α1 · u1 + . . .+ αk · uk, v = βl+1 · vl+1 + . . .+ βd · vd.

It follows that

b(u, u) = (α1)2 + . . .+ (αk)2 > 0, b(v, v) = −(βl+1)2 − . . .− (βd)2 < 0.

Hence we see that S ∩ T = {0Λ}. Combining this result with the fact that S + T ⊂ Λ, we
conclude that dim(S) + dim(T ) ≤ dim(Λ). Thus we get the inequality k + (d − l) ≤ d, i.e.
k ≤ l. A similar argument shows that k ≥ l. �

The integer k introduced in Lemma 3.3 is called the signature of b.
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3.2 Pseudo-Metrics

Let M be a manifold. A pseudo-metric on M with signature r is a smooth symmetric (2, 0)-
tensor field

g : M → T2,0M, g(p) := (p, gp)

such that gp is non-degenerate at each point p ∈ M and has the same signature r everywhere.
Hence gp defines a pseudo-innerproduct on the tangent space TpM for each p ∈M . Just as the
topology and smooth structure, the pseudo-metric g is a choice of additional structure on the
manifold. If gp is a regular innerproduct on TpM for each p ∈M , we say that g is a metric on
M . If M is equipped with a (pseudo-)metric g (with signature r), we say that M is a (pseudo-
)Riemannian manifold (with signature r). It is easy to see that every innerproduct is also an
pseudo-innerproduct and hence that every Riemannian manifold is also a pseudo-Riemannian
manifold.

Important examples of pseudo-Riemannian manifolds are given by pseudo-Euclidian spaces:
an m-dimensional pseudo-Euclidian space with signature r is an open subset Ũ ⊂ Rm equipped
with the pseudo-metric

g̃m,r := ∂x1 ⊗ ∂x1 + . . .+ ∂xr ⊗ ∂xr − ∂xr+1 ⊗ ∂xr+1 − . . .− ∂xm ⊗ ∂xm.
Note that we use the same notation for Euclidian pseudo-metrics on any open subset of Rm.

If χ : U → Ũ is a chart of a pseudo-Riemannian manifold M , then the pseudo-metric g can
locally be written as

g|U =
∑
i,j

gχi,j · ∂χi ⊗ ∂χj,

where the component functions are given by the formula

gχi,j = g

(
∂

∂χi
,
∂

∂χj

)
for all 1 ≤ i, j ≤ n. For any p ∈ U , we can identify gp with the matrix [gχi,j(p)]i,j by the matrix
equation[

gp

(∑
i

ui · ∂

∂χi

∣∣∣∣p,∑
j

vj · ∂

∂χj

∣∣∣∣p)] =
[
u1 · · · um

] g
χ
1,1(p) · · · gχ1,m(p)

...
. . .

...
gχm,1(p) · · · gχm,m(p)


v

1

...
vm

 .
Lemma 3.4. Let M be a pseudo-Riemannian manifold. For any chart χ : U → Ũ and p ∈ U ,
the matrix [gχi,j(p)]i,j is non-singular.

Proof. Suppose that u1, . . . , um ∈ R satisfy∑
j

gχi,j(p) · uj = 0

for all 1 ≤ j ≤ m. Let u be the tangent vector in TpM that has u1, . . . , um as components with
respect to the coordinate frame of χ. Then for all v1, . . . , vm ∈ R we have

gp

(
u,
∑
j

vj · ∂

∂χj

)
=
∑
i,j

gχi,j(p) · ui · vj = 0.

Since gp is non-degenerate, it follows that u must be the zero tangent vector. Hence

ker[gχi,j(p)]i,j = {~0}
and we conclude that [gχi,j(p)]i,j is invertible. �

We denote the inverse matrix of [gχi,j(p)]i,j by [gi,jχ (p)]i,j. The symmetry of g implies that
both of these matrices are symmetric.

17



3.3 Raising and Lowering Indices

Let M be a pseudo-Riemannian manifold and consider the map

[(p) : TpM → T ′pM, [(p)(u)(v) := gp(u, v).

Lemma 3.5. Let M be a pseudo-Riemannian manifold. Then for each p ∈ M the map [(p) is
an isomorphism of vector spaces.

Proof. Let p ∈M be a point. The map [(p) is obviously linear. Since dim(TpM) = dim(T ′pM),

it suffices to prove that [(p) is injective. Suppose that [(p)(u) = [(p)(v). Then gp(u − v, w) = 0
for all w ∈ TpM . Since gp is non-degenerate, it follows that u − v must be the zero tangent
vector at p. �

We denote the inverse of [(p) by ](p). Now consider the map

[ : Γ(TM)→ Γ(T ′M), [(X)(p) := (p, [(p)(Xp)).

We show that [ is well-defined, i.e. that [(X) is smooth for every vector field X : M → TM .

Let χ : U → Ũ be a chart of M and observe that

[(p)
(

∂

∂χj

∣∣∣∣p) =
∑
i

gχi,j(p) · ∂χi|p

for all p ∈ U . It follows that

[(X)p = [(p)(Xp) =
∑
j

Xj
χ(p) · [(p)

(
∂

∂χj

∣∣∣∣p) =
∑
i,j

gχi,j(p) ·Xj
χ(p) · ∂χi|p.

So the component functions of [(X) with respect to the coordinate coframe (∂χ1, . . . , ∂χm) are
given by

[(X)χi =
∑
j

gχi,j ·Xj
χ.

Therefore we see that [(X) is smooth and hence that [ is indeed well-defined. We say that [
lowers the index of vector fields.

Lemma 3.6. Let M be a pseudo-Riemannian manifold. Then the map [ is an isomorphism of
C∞(M)-modules.

Proof. The C∞(M)-linearity of [ follows from a straightforward calculation. The injectivity is
a pointwise application of Lemma 3.5. To prove surjectivity, suppose that ω ∈ Γ(T ′M) is given.
Define a map

X : M → TM, X(p) := (p, ](p)(ωp)).

We claim that X is smooth, i.e. that X ∈ Γ(TM). Let χ : U → Ũ be a chart and p ∈ U a
point. On the one hand we find

[(p)(Xp) =
∑
i,j

gχi,j(p) ·Xj
χ(p) · ∂χi|p

and on the other hand we find

[(p)(Xp) = [(p)(](p)(ωp)) = ωp =
∑
i

ωχi (p) · ∂χi|p.
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From this we read that

ωχi =
∑
j

gχi,j ·Xj
χ

and therefore we conclude that

X i
χ =

∑
j

gi,jχ · ω
χ
j .

It follows that X is smooth. Finally, it is obvious that [ maps X to ω. �

We denote the inverse of the map [ by ]. Let ω : M → T ′M be a covector field. Then
](ω)(p) = (p, ](p)(ωp) for each p ∈M . In terms of a coordinate frame, the component functions
of ](ω) are given by

](w)iχ =
∑
j

gi,jχ · ω
χ
j .

We say that ] raises the index of covector fields.

3.4 Levi-Civita Connection

Suppose that M is a pseudo-Riemannian manifold. We restrict our attention to connections on
the tangent bundle TM . A connection on TM is said to be compatible with the pseudo-metric
g if and only if

LX(g(Y, Z)) = g(∇X(Y ), Z) + g(Y,∇X(Z))

for all vector fields X, Y, Z ∈ Γ(TM). It turns out that requiring a connection to be compatible
with g is not enough to determine a unique connection on TM . However, because we are working
with TM instead of general vector bundles, we can talk about the torsion of a connection on
TM which is defined as the map

τ∇ : Γ(TM)× Γ(TM)→ Γ(TM), τ∇(X, Y ) := ∇X(Y )−∇Y (X)− [X, Y ].

The torsion map τ∇ is C∞(M)-linear in both entries. We say that a connection on TM is
torsion-free if and only if τ∇ vanishes identically. Note that both of the properties ‘compatible
with a pseudo-metric’ and ‘torsion-free’ are defined for global vector fields. However, one can
use Lemma 2.3 together with the fact that Lie derivatives and connections act locally to show
that both properties imply a similar properties for local vector fields.

A Levi-Civita connection is a torsion-free connection on TM that is compatible with g. As
the following theorem will show, requiring a connection on TM to be torsion-free is precisely
the additional property that will guarantee uniqueness.

Theorem 3.7 (Fundamental Theorem of Pseudo-Riemannian Geometry). There exists a unique
Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold.

Proof. Let M be a pseudo-Riemannian manifold. First we prove uniqueness. Suppose that the
connection on TM is a Levi-Civita connection. Using the fact that the connection is compatible
with the pseudo-metric g and that it is torsion-free, one can verify that

2 · g(∇X(Y ), Z) = LX(g(Y, Z)) + LY (g(Z,X))− LZ(g(X, Y ))

− g(Y, [X,Z])− g(Z, [Y,X]) + g(X, [Z, Y ])
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for all X, Y, Z ∈ Γ(TM). This equation is known as Koszul’s equation. A straightforward
calculation shows that the right-hand side of Koszul’s equation is C∞(M)-linear in Z. By the
tensor characterization lemma (see [9], Lemma 12.24), it follows that there exists a unique
covector field ωX,Y : M → T ′M such that the right-hand side of Koszul’s equation is equal to
ωX,Y (Z). Hence Koszul’s equation can be rewritten as

2 · [(∇X(Y )) = ωX,Y

for all X, Y ∈ Γ(TM). Isolating ∇X(Y ) in this equation yields

∇X(Y ) =
1

2
· ](ωX,Y ).

Since the right-hand side of Koszul’s equation does not depend on the connection, it also follows
that ωX,Y does not depend on the connection. Therefore the connection must be the unique
connection that is compatible with g and torsion-free. The proof of uniqueness suggests the
formula we can use to prove existence: define ∇X(Y ) by raising the index of the covector field
ωX,Y and dividing the resulting vector field by 2. This expression is C∞(M)-linear in X, linear
in Y and it satisfies the Leibniz-rule in Y (see [6]). �

Whenever we speak of a pseudo-Riemannian manifold, we assume that its tangent bundle
is equipped with the Levi-Civita connection. Now, let χ : U → Ũ be a chart of M . For all
1 ≤ i, j ≤ m we can find smooth functions Γ(χ)i,j

1, . . . ,Γ(χ)i,j
m ∈ C∞(U) such that

∇∂/∂χi

(
∂

∂χj

)
=
∑
k

Γ(χ)i,j
k · ∂

∂χk
.

We call these component functions the Christoffel symbols with respect to χ. The following
lemma gives a formula for the Christoffel symbols in terms of the component functions of the
pseudo-metric g.

Lemma 3.8. Let M be a pseudo-Riemannian manifold. The Christoffel symbols with respect
to a chart χ : U → Ũ are given by

Γ(χ)i,j
k =

1

2
·
∑
µ

gk,µχ ·
(
∂gχj,µ
∂χi

+
∂gχi,µ
∂χj

−
∂gχi,j
∂χµ

)
for all 1 ≤ i, j, k ≤ m.

Proof. Let χ : U → Ũ be a chart of M . In the proof of Theorem 3.7 we have seen that the
Levi-Civita connection satisfies Koszul’s equation. Observe that this equation also holds for
local vector fields. Since the Lie brackets of the coordinate frame of χ vanish, it follows that

2 · g
(
∇U
∂/∂χi

(
∂

∂χj

)
,
∂

∂χk

)
= LU∂/∂χi

(
g

(
∂

∂χj
,
∂

∂χk

))
+ LU∂/∂χj

(
g

(
∂

∂χi
,
∂

∂χk

))
− LU∂/∂χk

(
g

(
∂

∂χi
,
∂

∂χj

))
.

Using the fact that g(∂/∂χµ, ∂/∂χν) is equal to gχµ,ν for all 1 ≤ µ, ν ≤ m, we find that

2 ·
∑
µ

Γ(χ)i,j
µ · gχk,µ =

∂gχj,k
∂χi

+
∂gχi,k
∂χj

−
∂gχi,j
∂χk

. �
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4 Curvature

4.1 Covariant Derivative

Let I ⊂ R be an open interval, E a vector bundle over M and γ : I → M a smooth curve. A
section of E along γ is a smooth map σ : I → E with the property that π ◦ σ = γ. We say
that σ is extendible if and only if there exists a local section s : U → E such that γ∗I ⊂ U and
σ(t) = s(γ(t)) for all t ∈ I.

An Extentible (Left) and a Non-extendible (Right) Section Along γ

An important example of a section of TM along a curve γ is the velocity vector field
γ̇ : I → TM along γ.

We denote Γγ(E) for the space of all sections of E along γ. The set Γγ(E) comes with a
natural C∞(I)-module structure and hence also a vector space structure.

A covariant derivative along γ is a linear map

Γγ(E)→ Γγ(E), σ 7→ ∇
γσ

dt

satisfying the following properties:

• For all f ∈ C∞(I) and σ ∈ Γγ(E) the following Leibniz-rule holds:

∇γ(f · σ)

dt
=
df

dt
· σ + f · ∇

γσ

dt
.

• Suppose that σ ∈ Γγ(E) is extendible. If s : U → E is a local section with γ∗I ⊂ U and
σ(t) = s(γ(t)) for all t ∈ I, then

∇γσ

dt
(t) = ∇U

γ̇t(s).

The following lemma shows that there exists a covariant derivatives along γ and that it is
unique.

Lemma 4.1 (Covariant Derivative Along a Curve). Suppose that E is a vector bundle over
M of rank n with a connection. Then for any smooth curve γ : I → M there exists a unique
covariant derivative along γ.
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Proof. First we prove uniqueness. Suppose that there exists a covariant derivative along the
given curve γ. Note that it also induces the existence of a covariant derivative

Γγ|J (E)→ Γγ|J (E), σ 7→ ∇
γ|Jσ

dt

along the restriction γ|J , where J ⊂ I is some open subinterval. Indeed, for any t ∈ J we can
argue as in the proof of Lemma 2.3 to find a section σ̂ ∈ Γγ(E) that coincides with σ on an
open subinterval K ⊂ J around t. We can now define

∇γ|Jσ

dt
(t) :=

∇γσ̂

dt
(t)

and an argument similar to that of Lemma 2.8 shows that this definition is independent of the
extension σ̂. One can verify that this induced operator is a covariant derivative along γ|J . Now
fix a σ ∈ Γγ(E) and a t ∈ I and choose an open subinterval J ⊂ I around t such that γ∗J is
contained in the domain U of a local frame (s1, . . . , sn) of E. For all 1 ≤ i ≤ n we define a
section of E along γ|J by

σi : J → E, σi(t) := si(γ(t)).

With some minor adjustments to the proof of Lemma 2.7, we can use the proof to conclude
that there exist smooth maps f1, . . . , fn ∈ C∞(J) such that

σ|J =
∑
i

fi · σi.

It follows that

∇γσ

dt
(t) =

∇γ|Jσ|J
dt

(t) =
∑
i

dfi
dt
· σi(t) + fi ·

∇γ|Jσi

dt
(t) =

∑
i

dfi
dt

(t) · si(γ(t)) + fi(t) · ∇U
γ̇t(s

i).

Since this expression only on the connection on E, we see that the operator is unique. Observe
that the proof of uniqueness suggests the formula we can use to prove existence of the covariant
derivative along γ. For any open subinterval J ⊂ I with γ∗J contained in the domain U of a
local frame (s1, . . . , sn) of E, one can check that

Γγ|J (E)→ Γγ|J (E), t 7→
∑
i

dfi
dt

(t) · si(γ(t)) + fi(t) · ∇U
γ̇t(s

i).

satisfies the conditions of the covariant derivative along γ|J . Since we can find such an interval
J around any t ∈ I, we can locally define the covariant derivative along γ by the same formula.
Uniqueness ensures that the definitions agree when t lies in the overlap of multiple subintervals
of which the images under γ are contained in the domains of local sections of E. �

4.2 Parallel Transportation

Let I ⊂ R be an open interval, E a vector bundle over M and γ : I →M a smooth curve. Recall
that for any point p ∈M we denote 0(p) for the zero-element of π∗{p}. A section σ : I → E of
E along a curve γ : I →M is said to be parallel along γ if and only if

∇γσ

dt
(t) = 0(γ(t))

for all t ∈ I, i.e. its covariant derivative along γ vanishes identically. A local section s : U → E
is said to be parallel if and only if for every curve γ : I →M that satisfies γ∗I ⊂ U the section

I → E, t 7→ s(γ(t))

along γ is parallel along γ.
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Lemma 4.2. Let E be a vector bundle over M with a connection. A local section s : U → E
is parallel if and only if the map

ΓU(TM)→ ΓU(E), X 7→ ∇U
X(s)

vanishes identically.

Proof. First assume that s is parallel. Fix a point p ∈ U and a local vector field X ∈ ΓU(TM).
Choose an open interval I around 0 and let γ : I → M be a curve that satisfies γ∗I ⊂ U ,
γ(0) = p and γ̇0 = Xp. Since s is parallel, it follows that

σ : I → E, σ(t) := s(γ(t)).

is parallel along γ. We therefore conclude that

∇U
X(s)(p) = ∇U

γ̇t0 (s) =
∇γσ

dt
(0) = 0(p).

We now prove the converse. Let γ : I → M be a curve such that γ∗I ⊂ U and define σ as
before. We prove that σ is parallel along γ. Fix a time t ∈ I. Use Lemma 2.4 to choose a local
vector field X ∈ ΓU(TM) with Xγ(t) = γ̇t. Then it follows that

∇γσ

dt
(t) = ∇U

γ̇t(s) = ∇U
X(s)(γ(t)) = 0(γ(t)).

Hence s is parallel. �

The following lemma shows that parallelism of vector fields on a pseudo-Riemannian man-
ifold preserves the pseudo-innerproducts on the tangent spaces. In particular, it tells us that
the angles between vectors of two parallel vector fields remain constant on the connected com-
ponents of the domain of the vector fields.

Lemma 4.3. Let M be a pseudo-Riemannian manifold. If X1 and X2 are parallel vector fields
defined on an open subset U ⊂M , then g(X1, X2) is constant on the connected components of
U .

Proof. Since the Levi-Civita connection is compatible with g, we see that

LUX(g(X1, X2)) = g(∇U
X(X1), X2) + g(X1,∇U

X(X2))

for all X ∈ ΓU(TM). By Lemma 4.2 it follows that ∇U
X(X1) and ∇U

X(X2) both vanish on U .
Bilinearity of g shows that the Lie derivative of g(X1, X2) with respect to every X ∈ ΓU(TM)
vanishes on U . �

In order to prove that parallel transport exists and is unique, we need the following result
from the theory of linear ordinary differential equations.

Lemma 4.4. Let I ⊂ R be an open interval and t0 ∈ I. Suppose that A : I → End(Rn) is a
smooth map. For every ~y ∈ Rn, there exists a unique smooth map F (~y) : I → Rn that satisfies

dF (~y)

dt
(t) = A(t)F (~y)(t), F (~y)(t0) = ~u

for all t ∈ I and the map

I × Rn → Rn, (t, ~y) 7→ F (~y)(t)

is smooth.
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Proof. See [10], Theorem 4.31. �

Theorem 4.5 (Parallel Transport). Let E be a vector bundle of rank n over M . Suppose
γ : I → M is a curve. Given t0 ∈ I and ε0 ∈ π∗{γ(t0)}, there exists a unique parallel section
σ : I → E along γ that satisfies σ(t0) = ε0.

Proof. First suppose that γ∗(I) is contained in the domain U ⊂ M of some local frame
(s1, . . . , sn) of E. Then there exists a unique vector ~y0 ∈ Rn such that

ε0 =
∑
j

yj0 · sj(γ(t0))

and for any 1 ≤ j ≤ n we can find α1,j, . . . , αn,j ∈ C∞(I) such that

∇U
γ̇t(s

j) =
∑
i

αi,j(t) · si(γ(t)).

Now consider the smooth map

A : I → End(Rm), A(t) := [−αi,j(t)]i,j.

By Lemma 4.4 there exists a unique smooth real-valued map F : I → Rn that satisfies

dF

dt
(t) = A(t)F (t), F (t0) = ~y0

for all t ∈ I. Let f1, . . . , fn ∈ C∞(I) be the component functions of F and observe that∑
j

dfj
dt

(t) · sj(γ(t)) + fj(t) ·
∑
i

αi,j(t) · si(γ(t)) = 0(γ(t))

for all t ∈ I. Hence

σ : I → E, σ(t) :=
∑
j

fj(t) · sj(γ(t))

is the unique section along γ that is parallel along γ.
Now suppose that γ∗I is not covered by a single local frame of E. Choose a bounded open

subinterval J ⊂ I around t0 such that γ∗J is contained in the domain of a local frame of E.
First suppose that I is bounded. We show that there exists a unique parallel section

along the restriction of γ to ] inf I, sup J [ that maps t0 to ε0. The proof for ] inf J, sup I[ is
analogous. Denote B for the set consisting of all b < t0 such that ]b, sup J [⊂ I and there exists
a unique parallel section along the restriction of γ to ]b, sup J [ that maps t0 to ε0. Note that
inf I ≤ inf B ≤ inf J . We may assume that inf B < inf I, because in case of equality we are
done. There is a unique parallel section σ1 along the restriction of γ to ] inf B, sup J [ that
satisfies σ1(t0) = ε0. Now choose a bounded open subinterval K ⊂] inf I, inf J [ around inf B
such that γ∗K is contained in the domain of a local frame of E. Then there exists a unique
parallel section σ2 along γ|K satisfying the initial condition

σ2

(
supK − inf B

2

)
= σ1

(
supK − inf B

2

)
.

By uniqueness, we see that σ1 and σ2 must coincide on the overlap ] inf B, supK[ of their
domains. We can therefore patch together the maps σ1 and σ2 into a unique parallel section
along the restriction of γ to ] inf K, sup J [ that maps t0 to ε0. By definition of B, it follows that
inf B ≤ inf K. This contradicts the fact that K is an open neighbourhood around inf B.

The case where I is not bounded can be proven similarly. �
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Let γ : I → M be a curve. Fix t0 ∈ I and ε0 ∈ π∗{γ(t0)}. We define the parallel transport
of ε0 along γ as the unique parallel section σ : I → E along γ that satisfies σ(t0) = ε0.

Parallel Transport of ε0 along γ

4.3 Curvature of Vector Bundles and Riemannian Curvature

In order to introduce curvature, we first consider the following example.

Example 4.6. Consider the trivial vector bundle M × R of rank 1 over a manifold M . The
single map

M →M × R, p 7→ (p, 1)

defines a global frame of M ×R. Hence, Lemma 2.7 implies that any smooth section of M ×R
is of the form

sf : M →M × R, sf (p) := (p, f(p))

for some smooth map f : M → R. Using the properties of Lie derivative, it is easy to verify
that the map

Γ(TM)→ End(Γ(M × R)), X 7→ LX

defined by the assignment

LX(sf )(p) := (p, LX(f)(p))

defines a connection on the vector bundle M × R. Again, by properties of the Lie derivative,
this connection satisfies

LXLY −LY LX = L[X,Y ]

for all vector fields X, Y ∈ Γ(TM). CExample
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One may wonder if all connections share this property. The answer is ‘no’: an important
fact about connections on a vector bundle E over a manifold M is that, in general,

∇X∇Y −∇Y∇X 6= ∇[X,Y ].

A measure of this lack of commutativity is the curvature of E, which is defined as the map

κ∇ : Γ(TM)× Γ(TM)→ End(Γ(E)), κ∇(X, Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ].

We say that E is curvature-free if and only if κ∇ vanishes identically. In case of the Levi-Civita
connection on the tangent bundle of a pseudo-Riemannian manifold, we call this operator the
Riemannian Curvature of M .

Now let U ⊂M be an open subset. Then there is a natural local operator

κU∇ : ΓU(TM)× ΓU(TM)→ End(ΓU(E)), κU∇(X, Y ) := ∇U
X∇U

Y −∇U
Y∇U

X −∇U
[X,Y ].

Note that κU∇ also vanishes identically if E is curvature-free.

Lemma 4.7. Let E be a vector bundle over M with a connection and U ⊂M an open subset.

(i) The operator κU∇ is C∞(U)-bilinear.

(ii) For every X, Y ∈ ΓU(TM), the map κU∇(X, Y ) is C∞(U)-linear.

Proof. First we prove part (i). Observe that

κU∇(X, Y ) = −κU∇(Y,X)

for all local vector fields X, Y ∈ ΓU(TM). Therefore it suffices to show that the expression
κ∇(X, Y ) is C∞(U)-linear in X. For f ∈ C∞(U) and s ∈ ΓU(E) we calculate

κU∇(f ·X, Y )(s) = f · ∇U
X(∇U

Y (s))−∇U
Y (f · ∇U

X(s))−∇U
f ·[X,Y ]−LUY (f)·X(s).

By the Leibniz-rule we have

∇U
Y (f · ∇U

X(s)) = LUY (f) · ∇U
X(s) + f · ∇U

Y (∇U
X(s)).

Also note that

∇U
f ·[X,Y ]−LUY (f)·X(s) = f · ∇U

[X,Y ](s)− LUY (f) · ∇U
X(s).

Combining the equations yields the desired result. Part (ii) can be proven in a similar manner:
just use the Leibniz-rule successively and recall that

LU[X,Y ](f) = LUX(LUY (f))− LUY (LUX(f))

by definition of the Lie bracket. �

The following lemma plays a crucial role in the proof of the main theorem.

Lemma 4.8 (Parallel Extension). Let E be a vector bundle over an m-dimensional manifold
M with a connection. Suppose that E is curvature-free. Given p0 ∈ M and ε0 ∈ π∗{p0}, there
exists a parallel local section s : U → E defined on an open neighbourhood U of p0 in M such
that s(p0) = ε0.
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Proof. Choose a chart χ : U → Ũ around p0. By shrinking and translating the codomain of
χ if necessary, we may assume that Ũ = Im for some open interval I around 0. We may also
assume that χ(p0) = ~0. For all 1 ≤ k ≤ m and each p ∈M we define a smooth curve by

γ
(p)
k : I →M, γ

(p)
k (t) := χ−1(χ1(p), . . . , χk−1(p), t, 0, . . . , 0).

These curves satisfy

γ
(p)
k+1(0) = γ

(p)
k (χk(p)).

Let σ
(p)
1 : I → E be the parallel transport of ε0 ∈ π∗{γ(p)

1 (0)} along γ
(p)
1 . Inductively define

σ
(p)
k+1 : I → E to be the parallel transport of σ

(p)
k (χk(p)) ∈ π∗{γ(p)

k+1(0)} along γ
(p)
k+1. Observe that

σ
(p)
k+1(0) = σ

(p)
k (χk(p)).

We now claim that

s : U → E, s(p) := σ(p)
m (χm(p))

is a parallel local section of E that maps p0 to ε0. We split this claim into smaller claims.

≫ Claim 1: The map s is a local section.

To prove that s is a section, we must show that s is a smooth map that satisfies π ◦ s = ιU .

≫ Claim 1.1: The map s is smooth.

This follows from an inductive application of the part of Lemma 4.4 that states that solu-
tions to linear ordinary differential equations depends smoothly on the initial data. C1.1

≫ Claim 1.2: The map s satisfies π ◦ s = ιU .

Unwinding the definitions, we see that

π(s(p)) = π(σ(p)
m (χm(p))) = γ(p)

m (χm(p)) = p.

This shows that π ◦ s = ιU . C1.2

Hence, s is indeed a local section of E. C1

≫ Claim 2: The local section s is parallel.

To prove that s is parallel, we can use Lemma 4.2 and show that ∇U
X(s) vanishes for every

X ∈ ΓU(TM). By C∞(U)-linearity, it suffices to prove that ∇U
∂/∂χl

(s) vanishes for every index
1 ≤ l ≤ m. For p ∈M and t ∈ I we observe that

s ◦ γ(p)
k (t) = σ

(γ
(p)
k (t))

m (χm(γ
(p)
k (t))) = σ

(γ
(p)
k (t))

m (0) = σ
(γ

(p)
k (t))

m−1 (χm−1(γ
(p)
k (t)))

= . . . = σ
γ
(p)
k (t)

k (χk(γ
(p)
k (t))) = σ

(γ
(p)
k (t))

k (t)

and also, for each f ∈ C∞(M), that

(γ̇
(p)
k )tf = (dγ

(p)
k )t

(
d

dt

∣∣∣∣t)f =
d

dt

∣∣∣∣tf ◦ γ(p)
k =

∂

∂xk

∣∣∣∣χ(γ
(p)
k (t))

f ◦ ιU ◦ χ−1 =
∂

∂χk

∣∣∣∣γ
(p)
k (t)

f.
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For every 1 ≤ k ≤ m we define the set

Uk := {p ∈ U | χk+1(p) = . . . = χm(p) = 0}.

Now, let p ∈ Uk be a point. We see that

γ
(p)
k (χk(p)) = p.

Therefore, it follows that

(γ̇
(p)
k )χ

k(p) =
∂

∂χk

∣∣∣∣p.
Hence, by definition of parallel transport we have

∇U
∂/∂χk(s)(p) = ∇U

(γ̇
(p)
k )χ

k(p)
(s) =

∇γ
(p)
k σ

(p)
k

dt
(χk(p)) = 0(γ

(p)
k (χk(p))) = 0(p).

This shows that ∇∂/∂χk(s) vanishes on Uk for every 1 ≤ k ≤ m. We will now prove by induction
on 1 ≤ k ≤ m that ∇U

∂/∂χl
(s) vanishes on Uk for every 1 ≤ l ≤ k. The case k = 1 immediately

follows from the fact that ∇∂/∂χ1(s) vanishes on U1. So assume that the statement is true for
some arbitrary k. We prove that the statement also holds for k+ 1. Since ∇U

∂/∂χk+1(s) vanishes
on Uk+1, we may assume that 0 ≤ l ≤ k.

≫ Claim 2.1: The section ∇U
∂/∂χl

(∇U
∂/∂χk+1(s)) vanishes on Uk+1.

Let p ∈ Uk+1 be a point. We will use Lemma 2.10 to show that ∇U
∂/∂χl

(∇U
∂/∂χk+1(s)) vanishes

at p. Define a smooth curve by

z
(p)
l : I →M, z

(p)
l (t) := χ−1(χ1(p), . . . , χl−1(p), t, χl+1(p), . . . , χk+1(p), 0, . . . , 0).

We note that

z
(p)
l (χl(p)) = p

and also that

(ż
(p)
l )χ

l(p)f = (dz
(p)
l )χl(p)

(
d

dt

∣∣∣∣χl(p))f =
d

dt

∣∣∣∣χl(p)f ◦ z(p)
l =

∂

∂xl

∣∣∣∣χ(p)

f ◦ ιU ◦ χ−1 =
∂

∂χl

∣∣∣∣pf
for all f ∈ C∞(M). Observe that (z

(p)
l )∗I ⊂ Uk+1. Since ∇U

∂/∂χk+1(s) vanishes on Uk+1, it
follows that

∇U
∂/∂χk+1(s)(z

(p)
l (t)) = 0(z

(p)
l (t))

for all t ∈ I. Hence, Lemma 2.10 implies that

∇U
∂/∂χl(∇

U
∂/∂χk+1(s))(p) = 0(p).

This shows that ∇U
∂/∂χl

(∇U
∂/∂χk+1(s)) vanishes on Uk+1. C2.1

≫ Claim 2.2: The section ∇∂/∂χl(s) vanishes on Uk+1.

Suppose that p ∈ Uk+1. We want to show that ∇U
∂/∂χl

(s) vanishes at p. Since

γ
(p)
k+1(χk+1(p)) = p,
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it suffices to prove that the section

ϕ
(p)
l : I → E, ϕl(t) := ∇U

∂/∂χl(s)(γ
(p)
k+1(t))

along γ
(p)
k+1 vanishes identically. By the induction hypothesis, we know that ∇∂/∂χl(s) vanishes

on Uk. Hence, since γ
(p)
k+1(0) ∈ Uk, we see that ϕ

(p)
l vanishes at 0. Because the unique parallel

transport of the zero-vector along γ
(p)
k+1 must be identically zero along γ

(p)
k+1, it therefore suffices

to prove that ϕ
(p)
l is parallel along γ

(p)
k+1. We show that the covariant derivative of ϕ

(p)
l along

γ
(p)
k+1 vanishes on I. Note that the Lie bracket [∂/∂χk+1, ∂/∂χl] vanishes on U . So, because E

is curvature-free, we observe that

∇γ
(p)
k+1ϕ

(p)
l

dt
(t) = ∇U

(γ̇
(p)
k+1)t

(∇U
∂/∂χl(s)) = ∇U

∂/∂χk+1(∇U
∂/∂χl(s))(γ

(p)
k+1(t))

= ∇U
∂/∂χl(∇

U
∂/∂χk+1(s))(γ

(p)
k+1(t))

for all t ∈ I. Since (γ
(p)
k+1)∗I ⊂ Uk+1, it follows that ∇U

∂/∂χl
(s)) vanishes on Uk+1. C2.2

The case k = m shows that ∇∂/∂χl(s) vanishes on Um = U for all 1 ≤ l ≤ m. Hence, it
follows that s is parallel. C2

≫ Claim 3: The parallel local section s sends p0 to ε0.

Indeed, the calculation

s(p0) = σ(p0)
m (χm(p0)) = σ(p0)

m (0) = σ
(p0)
m−1(χm−1(p0)) = σ

(p0)
m−1(0)

= . . . = σ
(p0)
1 (χ1(p0)) = σ

(p0)
1 (0) = ε0

shows that s sends p0 to ε0. C3

This finishes the proof of the lemma. �

Let M be a pseudo-Riemannian manifold and let χ : U → Ũ be a chart of M . For all
1 ≤ i, j, k ≤ m we can find smooth functions R(χ)i,j,k

1, . . . , R(χ)i,j,k
m ∈ C∞(U) such that the

Riemann curvature of M can locally be written as

κU∇

(
∂

∂χi
,
∂

∂χj

)(
∂

∂χk

)
=
∑
l

R(χ)i,j,k
l · ∂
∂χl

.

We call these component functions the Riemann symbols with respect to χ. The following lemma
gives a formula for the Riemann symbols in terms of the Christoffel symbols.

Lemma 4.9. Let M be a pseudo-Riemannian manifold. The Riemann symbols with respect to
a chart χ : U → Ũ are given by

R(χ)i,j,k
l =

∂Γ(χ)j,k
l

∂χi
− ∂Γ(χ)i,k

l

∂χj
+
∑
µ

Γ(χ)j,k
µ · Γ(χ)i,µ

l − Γ(χ)i,k
µ · Γ(χ)j,µ

l

for all 1 ≤ i, j, k, l ≤ m.
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Proof. Since the Lie brackets of coordinate vector fields vanish, we have

κU∇

(
∂

∂χi
,
∂

∂χj

)(
∂

∂χk

)
= ∇∂/∂χi∇∂/∂χj

(
∂

∂χk

)
−∇∂/∂χj∇∂/∂χi

(
∂

∂χk

)
=
∑
l

∇∂/∂χi

(
Γ(χ)j,k

l · ∂
∂χl

)
−∇∂/∂χj

(
Γ(χ)i,k

l · ∂
∂χl

)
.

By the Leibniz-rule it follows that

∑
l

∇∂/∂χi

(
Γ(χ)j,k

l · ∂
∂χl

)
=
∑
l

∂Γ(χ)j,k
l

∂χi
· ∂
∂χl

+ Γ(χ)j,k
l · ∇∂/∂χi

(
∂

∂χl

)
=
∑
l

(
∂Γ(χ)j,k

l

∂χi
+
∑
µ

Γ(χ)j,k
µ · Γ(χ)i,µ

l

)
· ∂
∂χl

and similarly that∑
l

∇∂/∂χj

(
Γ(χ)i,k

l · ∂
∂χl

)
=
∑
l

(
∂Γ(χ)i,k

l

∂χj
+
∑
µ

Γ(χ)i,k
µ · Γ(χ)j,µ

l

)
· ∂
∂χl

.

Substraction yields the desired result. �
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5 Proof of Main Theorem and Application

5.1 Frobenius Theorem

Let X1 and X2 be two local vector fields defined on some open subset U ⊂M . Let D1 ⊂ U×R
and D2 ⊂ U × R be the domains of the flows of X1 and X2 respectively. Recall that the flows
ϕ1 : D1 → U and ϕ2 : D2 → U of X1 and X2 commute if and only if the following condition
holds for every p ∈ U : whenever I1 and I2 are open intervals around 0 satisfying {p}× I1 ⊂ D1

and {p} × I2 ⊂ D2 such that either (ϕ2)∗({p} × I2) × I1 ⊂ D1 or (ϕ1)∗({p} × I1) × I2 ⊂ D2,
then both inclusions hold and

ϕ1(ϕ2(p, t2), t1) = ϕ2(ϕ1(p, t1), t2)

for all (t1, t2) ∈ I1 × I2.

Lemma 5.1. Vector fields commute if and only if their corresponding flows commute.

Proof. See [9], Theorem 9.44. �

The following theorem plays a crucial role in the proof of the main theorem.

Theorem 5.2 (Frobenius Theorem). A local frame (E1, . . . , Em) of TM is locally expressible
as a coordinate frame if and only if Ei and Ej commute for all 1 ≤ i, j ≤ m.

Proof. If (E1, . . . , Em) is a coordinate frame, then it follows from a straightforward calculation
that [Ei, Ej] vanishes identically for every 1 ≤ i, j ≤ n.

Conversely, assume that Ei and Ej commute for all 1 ≤ i, j ≤ m. Let V be the domain of
the given local frame. Fix a point p0 ∈ V . Write Di ⊂ V × R for the domain of the flow of Ei
and let ϕi : Di → V be its flow for all 1 ≤ i ≤ m. The fundamental theorem on flows (see [9],
Theorem 9.12) implies that for each t ∈ R the set

Dt
i := {p ∈ V | (p, t) ∈ Di}

is open in V and the map

ϕti : D
t
i → D−ti , ϕti(p) := ϕi(p, t)

is a diffeomorphism. Choose εm > 0 and a neighbourhood Vm of p0 in V such that ϕm maps
]−εm, εm[×Vm into V . Then, for 1 ≤ i ≤ m−1, inductively choose εi > 0 and a neighbourhood
Vi of p in Vi+1 such that ϕi maps ]− εi, εi[×Vi into Vi+1. Now define ε := min{ε1, . . . , εm} and
I :=]− ε, ε[. By construction, it follows that the smooth map

Φ: Im →M, Φ(~x) := ϕx
m

m (. . . ϕx
1

1 (p0) . . .)

is well-defined. For every 1 ≤ i ≤ m the map

γi : I →M, γi(t) := ϕti(p0)

is an integral curve of Ei. Unwinding the definitions, we see that γi(0) = Φ(~0) = p0. Because
γi is an integral curve of Ei, it follows that

(dΦ)~0

(
∂

∂xi

∣∣∣∣~0)f =
∂

∂xi

∣∣∣∣~0f ◦ Φ =
d

dt

∣∣∣∣0f ◦ γi = (dγi)0

(
d

dt

∣∣∣∣0)f = Ep0
i f
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for every f ∈ C∞(M). It follows that (dΦ)~0 takes the basis (∂/∂x1|~0, . . . , ∂/∂xm|~0) for T~0I
m

to the basis (Ep0
1 , . . . , E

p0
m ) for Tp0M . Consequently, we deduce that the differential (dΦ)~0 is

an isomorphism of vector spaces. The inverse function theorem implies that Φ restricts to a
diffeomorphism on a neighbourhood Ũ of ~0 in Im. Denote U := Φ∗Ũ and let χ : U → Ũ be the
inverse of the diffeomorphism we just found. Then χ is a chart of M around p0 satisfying

∂

∂χi

∣∣∣∣pf = (dιU)p ◦ (dχ)−1
p

(
∂

∂xi

∣∣∣∣χ(p))
f =

∂

∂xi

∣∣∣∣χ(p)

f ◦ ιU ◦ χ−1 =
∂

∂xi

∣∣∣∣χ(p)

f ◦ Φ

for all p ∈ U and f ∈ C∞(M). By Lemma 5.1, vector fields commute if and only if their
corresponding flows commute. Hence the map

γ
(p)
i : I →M, γ

(p)
i (t) := ϕti(ϕ

χm(p)
m (. . . ϕ

χi+1(p)
i+1 (ϕ

χi−1(p)
i−1 (. . . ϕ

χ1(p)
1 (p0) . . .)) . . .))

is well-defined and satisfies

γ
(p)
i (χi(p)) = Φ(χ(p)) = p.

Since γ
(p)
i is an integral curve, it follows that

∂

∂xi

∣∣∣∣χ(p)

f ◦ Φ =
d

dt

∣∣∣∣χi(p)f ◦ γ(p)
i = (dγ

(p)
i )χi(p)

(
d

dt

∣∣∣∣χi(p)) = Ep
i f

and therefore we conclude that

Ei|U =
∂

∂χi
. �

5.2 Flat Pseudo-Riemannian Manifolds

Let m-dimensional pseudo-Riemannian manifold M with signature r. A chart χ : U → Ũ
intertwines the pseudo-metrics of M and Ũ if and only if for each p ∈ U the following diagram
commutes:

TpM × TpM R

TpU × TpU Tχ(p)Ũ × Tχ(p)Ũ

(dιU )−1
p ×(dιU )−1

p

gp

(dχ)p×(dχ)p

g̃m,r
χ(p)

Or, equivalently, if and only if gχi,j ≡ 0 whenever i 6= j and

gχ1,1 ≡ 1, . . . , , gχr,r ≡ 1, gχr+1,r+1 ≡ −1, . . . , gχm,m ≡ −1.

We say that M is flat if and only if each point of M is contained in the domain of a chart
χ : U → Ũ that intertwines the pseudo-metrics of M and Ũ . Intuively, it means that an ‘m-
dimensional being’ can not distinquish between a flat pseudo-Riemannian manifold M with
signature r and pseudo-Euclidian space with signature r by local measurements.

Example 5.3. To illustrate the definition of flatness, we show that the 2-cylinder

C2 := {~y ∈ R3 | (y1)2 + (y2)2 = 1, −1 < y3 < 1}
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is flat. Let ι : C2 → R3 denote the inclusion of C2 into R3. We equip the manifold C2 with the
metric

g : C2 → T2,0C
2, g(~y) := (~y, g̃3,3

~y ◦ ((dι)~y × (dι)~y)).

Observe that the four half cylinders determined by

y1 < 0, y1 > 0, y2 < 0, y2 > 0

form an open cover of the entire cylinder. We claim that cylindrical coordinates preserve the
metric of C2 on each of the four half cylinders. We treat the case in which y2 > 0. The other
cases can be proven analogously. Hence, consider the open subsets

U := {~y ∈ C2 | y2 > 0}, Ũ := {~x ∈ R2 | 0 < x1 < π, −1 < x2 < 1}

of C2 and R2 respectively and define a chart χ : U → Ũ to be the inverse of the local parametriza-
tion of S2 given by

par : Ũ → R3, par(~x) := (cos(x1), sin(x1), x2).

Cylindrical Coordinates

Unwinding the definitions, we see that

gχi,j(~y) = g~y

(
∂

∂χi

∣∣∣∣~y, ∂

∂χj

∣∣∣∣~y) = g̃3,3
~y

(
(dι)~y

(
∂

∂χi

∣∣∣∣~y), (dι)~y( ∂

∂χj

∣∣∣∣~y))
for all indices 1 ≤ i, j ≤ 2 and each ~y ∈ U . For 1 ≤ k ≤ 2 we have

(dι)~y

(
∂

∂χk

∣∣∣∣~y)f =
∂

∂xk

∣∣∣∣χ(~y)

f ◦ ι ◦ ιU ◦ χ−1 =
∂

∂xk

∣∣∣∣χ(~y)

f ◦ par

=
∂f

∂y1
(~y) · ∂ par1

∂xk
(χ(~y)) +

∂f

∂y2
(~y) · ∂ par2

∂xk
(χ(~y)) +

∂f

∂y3
(~y) · ∂ par3

∂xk
(χ(~y))

33



for all f ∈ C∞(R3). Computing the partial derivatives of par1, par2 and par3 with respect to
the variable x1 yields

(dι)par(~x)

(
∂

∂χ1

∣∣∣∣par(~x))
= − sin(x1) · ∂

∂y1

∣∣∣∣par(~x)

+ cos(x1) · ∂

∂y2

∣∣∣∣par(~x)

for all x ∈ Ũ . Similarly, differentiating with respect to the variable x2 gives

(dι)par(~x)

(
∂

∂χ2

∣∣∣∣par(~x))
=

∂

∂y3

∣∣∣∣par(~x)

.

Straightforward calculations now show that

[gχi,j(~y)]i,j =

[
1 0
0 1

]
.

This proves that χ intertwines the metrics of C2 and Ũ and we conclude that C2 is indeed a
flat space. CExample

Theorem 5.4 (Main Theorem). A pseudo-Riemannian manifold is flat if and only if its Rie-
mann curvature vanishes identically.

Proof. Let M be an m-dimensional pseudo-Riemannian manifold with signature r.

≫ Claim 1: If M is flat, then the Riemann curvature of M vanishes identically.

Suppose that M is flat. We want to prove that κ∇ vanishes identically. Let χ : U → Ũ be
a chart that intertwines the pseudo-metrics of M and Ũ . Since

κ∇(X, Y )(Z)|U = κU∇(X|U , Y |U)(Z|U)

for all vector fields X, Y, Z ∈ Γ(TM), it suffices to prove that κU∇ vanishes identically. We can
restrict our attention even further: by C∞(U)-linearity it suffices to prove that the expression

κU∇

(
∂

∂χi
,
∂

∂χj

)(
∂

∂χk

)
=
∑
l

R(χ)i,j,k
l · ∂
∂χl

is the zero vector field on U for all 1 ≤ i, j, k ≤ m. Because M is flat, the component functions
of g with respect to χ satisfy gχµ,ν ≡ ±δµ,ν for all 1 ≤ µ, ν ≤ m. Hence, the Lie derivatives
of the maps gχµ,ν vanish on U . Thus Lemma 3.8 implies that the Christoffel symbols of the
Levi-Civita connection also vanish on U . Consequently, Lemma 4.9 shows that the Riemann
symbols are zero on U aswell. C1

≫ Claim 2: If the Riemann curvature of M vanishes identically, then M is flat.

Suppose that the Riemann curvature of M vanishes identically. Fix a point p0 ∈M and choose
an orthonormal basis (u1, . . . , um) for Tp0M . We may assume that this basis is in standard
order, i.e.

gp0(u1, u1) = 1, . . . , gp0(ur, ur) = 1, gp0(ur+1, ur+1) = −1, , . . . , gp0(um, um) = −1.

Since TM is curvature-free, we can use Lemma 4.8 to find parallel vector fields E1, . . . , Em
defined on an open neighbourhood V of p0 such that Ep0

i = ui for each 1 ≤ i ≤ m. By shrinking
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V if necessary we may assume that V is connected. Because Ei and Ej are parallel, Lemma
4.3 implies that g(Ei, Ej) is constant on V . Therefore we find that g(Ei, Ej) ≡ gp0(ui, uj) on
V . By virtue of Lemma 4.2 we see that the expression ∇V

X(Ei) vanishes on V for all 1 ≤ i ≤ m
and X ∈ ΓV (TM). Because the Levi-Civita connection is torsion-free, we find that

[Ei, Ej] = ∇V
Ei

(Ej)−∇V
Ej

(Ei).

Hence we observe that [Ei, Ej] vanishes on V . We conclude that (E1, . . . , Em) is a commuting

frame of TM . Using Theorem 5.2 we can find a chart χ : U → Ũ defined on some open neigh-
bourhood U ⊂ V of p0 such that the induced coordinate frame (∂/∂χ1, . . . , ∂/∂χm) coincides
with the local frame (E1|U , . . . , Em|U). Hence we find that

gχi,j(p) = gp

(
∂

∂χi

∣∣∣∣p, ∂

∂χj

∣∣∣∣p) = gp(E
p
i , E

p
j ) = gp0(ui, uj)

for each p ∈ U . It follows that χ intertwines the pseudo-metrics of M and Ũ . C2

This finishes the proof of the main theorem. �

In other words, Theorem 5.4 shows that the Riemann curvature is precisely the obstruction
to being flat

5.3 Application: Cartography of the Earth’s Surface

We demonstrate how the main theorem can be used to show that a pseudo-Riemannian manifold
is not flat.

Example 5.5. Consider the 2-dimensional manifold

S2 := {~y ∈ R3 | (y1)2 + (y2)2 + (y3)2 = 1},

i.e. the 2-sphere. Let g̃3,3 be the Euclidian metric on R3 and let ι : S2 → R3 denote the inclusion
of S2 into R3. The round metric on S2 is defined as

g : S2 → T2,0S
2, g(~y) = (~y, g̃3,3

~y ◦ ((dι)~y × (dι)~y)).

In the introduction of this thesis we have shown that S2 (equipped with the round metric) is
not a flat space. We now prove the same result by partially calculating the Riemann curvature
of S2. To do so, we will use spherical coordinates. Consider the open subsets

U := {~y ∈ S2 | y2 > 0}, Ũ := {~x ∈ R2 | 0 < x1, x2 < π}

of S2 and R2 respectively and define a chart χ : U → Ũ to be the inverse of the local parametriza-
tion of S2 given by

par : Ũ → U, par(~x) := (cos(x1) · sin(x2), sin(x1) · sin(x2), cos(x2)).
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Spherical Coordinates

We can use the same formula as for the 2-cylinder in the preceding subsection to compute

(dι)par(~x)

(
∂

∂χ1

∣∣∣∣par(~x))
= − sin(x1) · sin(x2) · ∂

∂y1

∣∣∣∣par(~x)

+ cos(x1) · sin(x2) · ∂

∂y2

∣∣∣∣par(~x)

.

Similarly, we calculate

(dι)par(~x)

(
∂

∂χ2

∣∣∣∣par(~x))
= cos(x1) · cos(x2) · ∂

∂y1

∣∣∣∣par(~x)

+ sin(x1) · cos(x2) · ∂

∂y2

∣∣∣∣par(~x)

− sin(x2) · ∂

∂y3

∣∣∣∣par(~x)

.

Using the definition of the Euclidian metric g̃3,0, we easily verify that

[gχi,j(par(~x))]i,j =

[
sin(x2)2 0

0 1

]
.

The inverse matrix of this diagonal matrix is given by

[gi,jχ (par(~x))]i,j =

[
1/ sin(x2)2 0

0 1

]
.

We use Lemma 3.8 to calculate

[Γ(χ)i,j
1(par(~x))]i,j =

[
0 cos(x2)/ sin(x2)

cos(x2)/ sin(x2) 0

]
and also

[Γ(χ)i,j
2(par(~x))]i,j =

[
− cos(x2) · sin(x2) 0

0 0

]
.
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To prove that the Riemann curvature of S2 does not vanish identically, it suffices to find a
combination of the indices 1 ≤ i, j, k, l ≤ 2 such that the Riemann symbol R(χ)i,j,k

l is not
identically zero on U . We choose i = k = 1 and j = l = 2 and use Lemma 4.9 to see that

R(χ)1,2,1
2(par(~x)) = − sin(x2)2.

By Theorem 5.4 it now follows that S2 is not flat. CExample

Distortion of Cylindrical Projection [4]

In particular, if we use S2 as a mathematical model for the Earth’s surface, this result
shows that every smooth local Euclidian representation of the Earth’s surface (i.e. a chart of
S2) necessarily distorts angles, areas or distances in some fashion.

37



References

[1] https://www.geospatialworld.net/blogs/maps-that-show-why-some-countries-

are-not-as-big-as-they-look/, 2019

[2] https://commons.wikimedia.org/wiki/File:Spherical-triangle.png, 2019, license:
https://creativecommons.org/licenses/by-sa/4.0/deed.en

[3] https://www.sciencenews.org/article/einsteins-genius-changed-sciences-

perception-gravity, 2019

[4] http://www-personal.umich.edu/~sarhaus/tigdd27proj.html, 2019

[5] https://lamington.wordpress.com/2010/04/10/hyperbolic-geometry-notes-2-

triangles-and-gauss-bonnet/, 2019

[6] https://maths-people.anu.edu.au/~andrews/DG/DG_chap10.pdf, 2019

[7] http://www.staff.science.uu.nl/~crain101/DG-2016/chapter1.pdf, 2019

[8] John M. Lee, Introduction to Topological Manifolds, 2nd edition, Springer, New York, 2011

[9] John M. Lee, Introduction to Smooth Manifolds, 2nd edition, Springer, New York, 2013

[10] John M. Lee, Introduction to Riemannian manifolds, 2nd edition, Springer, New York,
2018

[11] J.J. Duistermaat and W. Eckhaus, Analyse van Gewone Differentiaalvergelijkingen, Ep-
silon Uitgaven, Amsterdam, 4th edition, 2015

38

https://www.geospatialworld.net/blogs/maps-that-show-why-some-countries-are-not-as-big-as-they-look/
https://www.geospatialworld.net/blogs/maps-that-show-why-some-countries-are-not-as-big-as-they-look/
https://commons.wikimedia.org/wiki/File:Spherical-triangle.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.sciencenews.org/article/einsteins-genius-changed-sciences-perception-gravity
https://www.sciencenews.org/article/einsteins-genius-changed-sciences-perception-gravity
http://www-personal.umich.edu/~sarhaus/tigdd27proj.html
https://lamington.wordpress.com/2010/04/10/hyperbolic-geometry-notes-2-triangles-and-gauss-bonnet/
https://lamington.wordpress.com/2010/04/10/hyperbolic-geometry-notes-2-triangles-and-gauss-bonnet/
https://maths-people.anu.edu.au/~andrews/DG/DG_chap10.pdf
http://www.staff.science.uu.nl/~crain101/DG-2016/chapter1.pdf

	Introduction
	Main Result and Motivation
	Organization
	Preknowledge

	Vector Bundles with Connection
	Vector Bundles
	Sections
	Local Frames
	Connections

	Pseudo-Riemannian Manifolds
	Pseudo-Innerproducts
	Pseudo-Metrics
	Raising and Lowering Indices
	Levi-Civita Connection

	Curvature
	Covariant Derivative
	Parallel Transportation
	Curvature of Vector Bundles and Riemannian Curvature

	Proof of Main Theorem and Application
	Frobenius Theorem
	Flat Pseudo-Riemannian Manifolds
	Application: Cartography of the Earth's Surface


