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Abstract

There are many mathematical techniques of which it is unclear how
they find their application. We exemplify the diverse application of inte-
gral transformations by solving three mechanical and quantummechanical
problems in the solution of which integral transformations play a cen-
tral role. After introducing the general formalism of integral operators
we use the Abel operator to determine an exact parametrisation of the
isochrone curve. Then we use Fourier transformations to obtain an exact
solution for the ground state energy of the one-dimentional Heisenberg
model of E0/JL = −0.44, which we compare to a numerical result of
E0/JL = −0.43. Lastly we use the Laplace transformation to find the
form of the effective Liouvillian Leff

S which acts on the reduced density
matrix ρS of a single spin- 1

2
particle coupled to a large reservoir in Laplace

space. Lastly, we reflect on these results and conclude that the ability to
use integral transformations is essential for any physicist.

The picture on the front page depicts the isochrone curve. On this curve, the
time it takes for an object to reach the ground is independent of the height at
which it is released. Source: Matemateca (IME/USP), provided via digitaliza-
tion project by the user: Rodrigo Tetsuo Argenton.
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1 Introduction

In physics courses, much time and effort is attributed to the development and
usage of mathematical techniques. One class of techniques that are particularly
useful are integral transformations. Not only can the use of these transforma-
tions greatly simplify mathematical problems, some problems can only be solved
with the use of these transformations. Because of the nature of these transfor-
mations, one often has to use the residue theorem to evaluate relevant integrals.
The exercises and problems posed in some courses often lack a connection with
real research. Therefore we wish to show the reader how useful integral transfor-
mations can be by solving real problems in which integral transformations play
a crucial role. We will expound three problems, namely the mechanical problem,
the determination of the ground state energy of the onedimentional Heisenberg
model and lastly, the determination of the form of the reduced density matrix
in the single-impurity Kondo model. In order to solve these problems we will
respectively make use of three integral transforms, namely the Abel operator,
the Fourier transformation and lastly, the Laplace transformation.

In this thesis we shall first present an overview of the abovementioned in-
tegral transforms. In the next chapter, we will derive an expression for the
mechanical problem using conservation of energy, which we will then solve us-
ing the Abel operator. Using this general expression we derive a parametrisation
of the isochrone curve. In the chapter after that, we will find an expression for
the density of states of the onedimentional Heisenberg model, which we can then
find explicitly using the Fourier transformation. With this density of states we
then calculate the ground state energy, which we then verify with a numerical
diagonalisation of the Hamiltonian. In the chapter following that, we will first
get the density matrix of the full single-impurity Kondo model using the Von
Neumann equation. After using the Laplace transformation we will find the re-
duced density matrix in Laplace space. Transforming back to time-space using
the inverse Laplace transformation will give us an expression for the reduced
density matrix of the spin. In the last chapter we will recapitulate the results
and reflect on them. In the appendix we prove some results which are used in
the thesis.
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2 Integral Transforms

An integral transform is a relation of the form

f(x) =

∫ b

a

g(t)K(x, t) dt, (2.1)

where f(x) is the transform of g(t) with respect to the kernel K(x, t) [1, Chapter
15]. Should we write the integral transform as an operator L such that

f(x) = Lg(t), (2.2)

then L is easily seen to be a linear operator. So we might wonder under which
conditions on g, the inverse L−1 exists for a kernel K. In this thesis we will be
considering three integral transforms: the Fourier transform, the Abel operator
and the Laplace transform. Firstly, the Fourier transform F defined by

f(x) = F [g(t)] =
1

2π

∫ ∞
−∞

g(t)eixt dt (2.3)

has an inverse F−1 given by

g(t) = F−1[f(x)] =

∫ ∞
−∞

f(x)e−ixt dx (2.4)

if f is absolutely integrable and satisfies the Dirichlet conditions. That is: f
has only a finite number of finite discontinuities, no infinite discontinuities and
only a finite number of extrema [4]. Note that there exist some functions on
which it is possible to apply the Fourier transformation and its inverse, whilst
not satisfying the Dirichlet conditions. These functions are not the within focus
of this thesis. Secondly, the Abel operator Jα defined by

f(x) = Jα[g(t)] =

∫ x

0

(x− t)α−1

Γ(α)
g(t) dt, (2.5)

where the Euler-Gamma function for α > 0 is given by

Γ(α) =

∫ ∞
0

tα−1e−t dt, (2.6)

has an inverse Dα := (Jα)−1 given by

g(t) = Dα[f(x)] =
1

Γ(1− α)

d

dt

∫ t

0

(t− x)−αf(x) dx (2.7)

if f is absolutely continuous [3]. Lastly, the Laplace transform L defined by

f(z) = L[g(t)] =

∫ ∞
0

e−ztg(t) dt (2.8)

has an inverse L−1 given by

g(t) = L[f(z)] =
1

2πi

∫ γ+i∞

γ−i∞
eztf(z) dz (2.9)
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with the convergence condition Re(z) ≥ γ. In addition the integrand must
satisfy the abovementioned Dirichlet contitions. Equivalently, by substituting
z → −iz, and introducing a “starting time” t0 we may write the transform as
follows:

f ′(z) = f(−iz) = L[g(t)] =

∫ ∞
t0

eiz(t−t0)g(t) dt, (2.10)

and the inverse L−1 is given by

g(t) = L[f ′(iz)] =
−1

2π

∫ iγ+∞

iγ−∞
e−iz(t−t0)f ′(z) dz. (2.11)

The convergence condition now becomes Im(z) ≥ γ.
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3 Mechanical problem

In this section we follow the book by Gorenflo and Vessella [3]. Consider the
following problem: Consider a particle that is subject to gravity g. Let the y be
the height in the x, y-plane, and let there be no friction. Let the falling τ(y0)
be defined as the time it takes the particle to reach the ground (y = 0) if it is
released from some height y0. Which curve x = φ(y) must the particle follow
such that it corresponds to a given falling time τ for each starting height y0?

Figure 1: For each starting height y0 there is a falling time τ(y0). If τ is given,
what is the curve φ(y)?

The relation between τ and φ can by found by using conservation of energy:

mg(y0 − y) =
1

2
mv2, (3.1)

2g(y0 − y) =

(
dx

dt

)2

+

(
dy

dt

)2

=

((
dφ

dy

)2

+ 1

)(
dy

dt

)2

, (3.2)

such that

√
2g =

1√
y0 − y

√
1 +

(
dφ

dy

)2
dy

dt
. (3.3)

Integrating, we obtain

(3.4)

τ(y0) =
1√
2g

∫ τ(y0)

0

√
1 + φ′(y)2

y0 − y
dy

dt
dt (3.5)

=
1√
2g

∫ y0

0

√
1 + φ′(y)2

y0 − y
dy . (3.6)
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Figure 2: Plot of the isochrone curve. Under constant acceleration g in the
downward y direction and without friction, the falling time is equal to c, re-

gardless of the starting height y0. We denote Q = gc2

π2 .

Now we will write this equation in the formalism of the abel operator. Noting
that Γ

(
1
2

)
=
√
π we can write

τ(y0) =

√
π

2g
J

1
2

[√
1 + φ′(y)2

]
, (3.7)

so, for given τ(y0), we obtain the following result:

√
1 + φ′(y)2 = D

1
2

[√
2g

π
τ(y0)

]
(3.8)

=

√
2g

π

d

dy

∫ y

0

τ(y0)√
y − y0

dy0 , (3.9)

such that

1 + φ′(y)2 =
2g

π2

(
d

dy

∫ y

0

τ(x)√
y − x

dx

)2

. (3.10)

Now we shall use this result to calculate the slope of the isochrone problem. The
isochrone problem is a well known curve on which the time it takes a particle
to reach the ground is always equal to some constant c, regardless of the initial
starting height y0. That is, τ(y0) = c for all y0. So

1 + φ′(y)2 =
2g

π2

(
d

dy

∫ y

0

c√
y − x

dx

)2

(3.11)

=
2gc2

π2y
. (3.12)

This equation is solved by the following parametrisation: [3, p.13]

y =
gc2

π2
(1− cos(t)), (3.13)

x =
gc2

π2
(t+ sin(t)). (3.14)
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Indeed, we can see that(
dy

dt

)2[
1 + φ′(y)2

]
=

(
dy

dt

)2

+

(
dx

dt

)2

= 2

(
gc2

π2

)2

(1 + cos(t)) (3.15)

= 2

(
gc2

π2

)2
sin2(t)

1− cos(t)
=

(
dy

dt

)2[(
2gc2

π2

)
1

y

]
, (3.16)

thus solving our differential equation. The isochrone curve is plotted in Figure
2. Since our result is analytical, we will not discuss the vericaty of it. However,
some other remarks can be made, which we will make in section 6.
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4 Heisenberg Model and Bethe Ansatz

Let us consider a one-dimentional chain of L spin- 1
2 particles on a lattice with

lattice spacing a. The spin of the particle at position j is denoted by
−→
Sj =

(Sxj , S
y
j , S

z
j ). J is the interaction energy between the spin components in the

x and y direction, and ∆J is the interaction energy between the z-component
of the spins. This model is also known as the Heisenberg model. Our goal in
this section is to determine the ground state energy E0 of the model. We will
largely follow the book by Thierry Giamarchi [2]. Our result will be determined
analytically using an assumption called the Bethe-Ansatz. In particular we will
make use of the Fourier transformation to calculate our final result, and we will
support this result using a numerical calculation.

Figure 3: L spins are on a lattice with lattice spacing a. The interaction between
adjacent downspins is different from the interaction between alterating spins.

Allowing only for nearest-neighbour interactions we can write the Hamilto-
nian of the one-dimentional spin chain as

H = J
∑
j

(
Sxj+1S

x
j + Syj+1S

y
j

)
+ J∆

∑
j

(
Szj+1S

z
j

)
=
J

2

∑
j

(
S+
j+1S

−
j + S−j+1S

+
j

)
+ J∆

∑
j

(
Szj+1S

z
j

)
. (4.1)

In the following we will begin in a state with L up spins on a lattice with
spacing a=1, and continue with the derivation of the schrödinger equation and
corresponding wavefunction for one and two down spins , before using the Bethe
Ansatz to generalise our findings to N down spins.

Let’s assume periodic boundary conditions throughout this section. In the
all up-spin state it is clear from the hamiltonian (4.1) that the energy is equal to
E0 = LJ∆

4 . If we now consider the situation with one down spin, the Schrödinger
equation reads

Eψ(x) = Hψ(x) = E0ψ(x) +
J

2

(
ψ(x+ 1) + ψ(x− 1)

)
− J∆ψ(x), (4.2)
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in which we recognise that the eigenstates must have the plane wave form

ψ(x) =
1√
L
eikx. (4.3)

Should we now consider the situation with two down spins, we can begin by
noting that for large and small distances between particles the energy and mo-
mentum must be conserved. We must distinguish between the situation where
the spins are either adjacent or not adjacent to each other. This is illustrated
in Figure 3. When the spins are not adjacent (... ↓↑↓ ...) the downspins do not
feel eachother, and we essentially have the same situation that we considered in
the case of one spin down. We can consider two particles in a situation where
particle 1 has momentum k1 and particle 2 has momentum k2, and compare it to
some other situation where the respective momenta of the these particles are k′1
and k′2. Because the total energy and momentum must be conserved it follows
that either k1=k′1 and k2=k′2, or, k1=k′2 and k2=k′1. So when the downspins
are not adjacent, the wavefunction can be written, for some α and β, as

ψ(x1, x2) = αei(k1x1+k2x2) + βei(k1x2+k2x1). (4.4)

From periodic boundary conditions, it follows that

ψ(x1, x2) = ψ(x2, x1) = ψ(x2, x1 + L), (4.5)

α = βeik1L = βe−ik2L. (4.6)

When the spins are adjacent, however, (... ↓↓ ...) the situation is different. In
this case, the wavefunction must satisfy from the Hamiltonian:

(H − E0)ψ(x, x+ 1) =
J

2

(
ψ(x− 1, x+ 1) + ψ(x, x+ 2)

)
− J∆ψ(x, x+ 1).

(4.7)

Here comes in the idea of the Bethe-Ansatz. We want to generalise the wave-
function 4.4 so that it is a solution to the Schrödinger equation, even when
the down spins are adjacent. This is only the case if the difference between
equations 4.7 and 4.2 is equal to zero:

J∆ψ(x, x+ 1)− J

2

(
ψ(x, x) + ψ(x+ 1, x+ 1)

)
= 0. (4.8)

To accomplish this we may derive that [2, p. 142 ]:

α

β
= −eiΘ(k1,k2), (4.9)

Θ(k1, k2) = 2arctan

(
∆sin(k1−k22 )

∆cos(k1−k22 )− cos(k1+k2
2 )

)
. (4.10)

Using 4.6 we may conclude that

Lk1 = πn+ Θ(k1, k2), (4.11)

Lk2 = πn′ + Θ(k2, k1), (4.12)

For some integers n, n′.
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Should we now consider a system with N down spins, we lose our neat relation
4.6 that we used to derive the previous result. So there is no guarantee that
a wavefunction of the form 4.4 will be a solution to the Schrödinger equation.
However, if we make an attempt to hold this form we might find a solution
anyhow. In the book of Giamarchi [2, paragraph 5.1.3 ] it is derived that, by
looking for a wavefunction of the form

ψ(x1, ..., xN ) =
∑
P∈SN

AP e

[
i
∑N

j=1 kPjxj

]
, (4.13)

where SN is the set of all permutations of down spins and AP is a coefficient
corresponding to a permutation P , that the momenta are determined by

Lki = 2πni +
∑
j

Θ(ki, kj) (4.14)

for ni ∈ Z (odd N), or ni ∈ Z + 1
2 (even N). As such the total energy E and

momentum P are given by

P =
∑
i

ki, (4.15)

E =
∆JL

4
+ J

∑
j

(
cos(kj)−∆

)
. (4.16)

If we consider the situation where ∆ = 1 and parametrise k such that

λ = −1

2
tan(

k − π
2

), (4.17)

the equations become

2πn′i = 2Larctan(2λi)−
∑
j

2arctan(λi − λj), (4.18)

E =
∆|J |L

4
− |J |

∑
j

2

1 + 4λ2
j

, (4.19)

where n′i ∈ Z (L and N have opposite parities), or n′i ∈ Z + 1
2 (L and N have

equal parities). To find a solution we first need to find the density of states. We
define the function Φ(λ) by

Φ(λ) = 2Larctan(2λ)−
∑
j

2arctan(λ− λj). (4.20)

In the thermodynamic limit, if we assume that there is no magnetic field, the
density of states can be defined as follows (for the argument I refer to [2, p.149]):

ρ(λ) =
1

2π

dΦ

dλ
. (4.21)

With this density of states it follows that

Φ(λ) = 2L arctan(2λ)− 2

∫ ∞
−∞

dλ′ρ(λ′)arctan(λ− λ′). (4.22)
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Figure 4: Results of an eigenvalue calculation of the 1D-Heisenberg model sim-
ulation in Mathematica. The ground state energy corresponds to the smallest
eigenvalue: fitting the results leads to the result E0/JL = −0.43.

Now we shall attempt to obtain an explicit formula for the density of states as a
function of λ, such that we may explicitly calculate the energy. In the derivation
we will use fourier transformations, denoting the transform of a function f(x)
by F [f(x)](ω). For the full derivation of some steps we refer to the appendix.

We begin by differentiating 4.22:

2πρ(λ) =
4L

1 + 4λ2
− 2

∫ ∞
−∞

dλ′ ρ(λ′)

1 + (λ− λ′)2
. (4.23)

Next, by applying inverse fourier transformations on the first two terms and
using the convolution theorem (A.1) on the third term, we obtain

2π

∫ ∞
−∞

e−iωλF
[
ρ(λ)

]
(ω) dω =∫ ∞

−∞
e−iωλF

[
4L

1 + 4λ2

]
(ω) dω − 4π

∫ ∞
−∞

e−iωλF
[
ρ(λ)

]
(ω) F

[
1

1 + λ2

]
(ω) dω.

Now note from (A.3) that

F
[

1

1 + (ax)2

]
(ω) =

e−
ω
a

2a
, (4.24)

so ∫ ∞
−∞

e−iωλ
(
F
[
ρ(λ)

]
(ω) 2π(1 + e−ω)− Le

−ω
2

)
dω = 0, (4.25)

such that

F
[
ρ(λ)

]
(ω) =

L

2π

e
−ω
2

1 + e−ω
=

L

4π

1

cosh(ω2 )
. (4.26)
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Now we conclude from (A.3) that

ρ(λ) =

∫ ∞
−∞

e−iωλF
[
ρ(λ)

]
(ω) dω

=

∫ ∞
−∞

e−iωλ
L

4π

1

cosh(ω2 )
dω =

L

2cosh(πλ)
. (4.27)

Now that we have explicitly found the density of states, we can use 4.19 in order
to find the ground state energy E0 (For the derivation, see A.3):

E0 =
L|J |

4
− |J |

∑
j

2

1 + 4λ2
j

(4.28)

=
L|J |

4
− |J |

∫ ∞
−∞

2

1 + 4λ2
ρ(λ)dλ (4.29)

=
L|J |

4
− L|J |log(2) ≈ −0.44L|J |. (4.30)

To verify this result, we build the hamiltonian (4.1) in Mathematica and nu-
merically calculate the eigenvalues for different lattice sizes. We then fit linearly
over the first ten sites to obtain the result E0/LJ = −0.43, which is in line with
the result obtained from the exact Bethe-Ansatz derivation. See Figure 4. We
will reflect on this result in section 6.
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5 Kondo Model

In this section we will consider a spin- 1
2 particle that is coupled to a large

reservoir (Figure 5), a model that is also known as the single-impurity Kondo
model. Our goal here is to find an expression for the time evolution of the
reduced density matrix ρS of the spin. To do this, we will make use of the
Laplace transformation.

Following an article of Schuricht and Schoeller [5], we describe the Hamilto-
nian of the system as the sum of a spin part HS , a coupling V and a reservoir
part Hres, such that

H = HS +Hres + V. (5.1)

The density matrix ρ of the entire system must satisfy the Von Neumann
equation

ρ(t) = e−iH(t−t0)ρ(t0)eiH(t−t0) = eiL(t−t0)ρ(t0), (5.2)

where the Liouvillian L is defined by

L = [H, . ]. (5.3)

Thus the Laplace transform ρ̃ of ρ is given by

ρ̃(z) =

∫ ∞
t0

eiz(t−t0)ρ(t) dt (5.4)

=

∫ ∞
t0

ei(z−L)(t−t0)ρ(t0) dt =
i

z − L
ρ(t0), (5.5)

by evaluating the integral. Now we can trace out the reservoir part of the density
matrix to obtain the transform ρ̃S of the reduced density matrix ρS of the spin:

ρ̃S(z) = Trresρ̃(z) =
i

z − LeffS (z)
ρS(t0), (5.6)

Figure 5: A spin- 1
2 particle is coupled to a reservoir. The Hamiltonian can be

decomposed in a spin part HS , a coupling V and a reservoir part Hres, such
that H = HS +Hres + V
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where LeffS = LS + Σ, the term Σ encoding the contribution of the coupling.

LeffS acts as a linear operator on ρS . Since ρS is a linear operator on C2, it has

four entries. Thus LeffS can be written as a 4x4- matrix which acts on C4. So,

if we denote the eigenvectors of LeffS by
∣∣i〉, i ∈ {0, 1,−,+}, we can write

LeffS =
∑
i

ci
∣∣i〉〈i∣∣. (5.7)

Because
∑
i

∣∣i〉〈i∣∣ = I4, we can write

z − LeffS =
∑
i

(z − ci)
∣∣i〉〈i∣∣. (5.8)

Using
〈
i
∣∣j〉 = δi,j we can see immediately that

(z − LeffS )−1 =
∑
i

(z − ci)−1
∣∣i〉〈i∣∣, (5.9)

because

(z − LeffS )−1(z − LeffS ) =
∑
i

∑
j

(z − ci)−1(z − cj)
∣∣i〉〈i∣∣j〉〈j∣∣ (5.10)

=
∑
i

∣∣i〉〈i∣∣ = I4. (5.11)

Using 5.9 and denoting
∣∣i〉〈i∣∣ = Pi, ρ̃S can be written as

ρ̃S(z) =
∑
j

i

z − cj
Pj ρS(t0). (5.12)

Now we can calculate ρS using the inverse Laplace transformation, where we let
γ ↓ 0:

ρS(t) =
−1

2π

∫ +∞+i0+

−∞+i0+

e−iz(t−t0)ρ̃S(z) dz (5.13)

=
1

2πi

∑
j

∫ +∞+i0+

−∞+i0+

e−iz(t−t0)

z − cj(z)
Pj(z)ρS(t0) dz . (5.14)

Since both the eigenvalues cj and the projectors Pj depend on z, it is not possible
to straightforwardly evaluate the integral. Note however, since we expect Pj(z)
to behave smoothly, that the discontinüıties zj of the integrand are given by the
solutions to the equations

zj = cj(zj). (5.15)

Using the expansions

Pj(z) = Pj(zj), (5.16)

cj(z) = cj(zj) + (z − zj)
dcj
dz

(zj), (5.17)

15



and noting, where C is some constant and U the lower semicircle of the complex
plane, that ∣∣∣∣ ∫

U

e−izt

z − zj
Cdz

∣∣∣∣ = lim
ρ→∞

∣∣∣∣ ∫ −π
0

etρsinθe−itρcosθ

ρeiθ − zj
Cρdθ

∣∣∣∣ (5.18)

≤ lim
ρ→∞

∫ −π
0

∣∣etρsinθ∣∣∣∣C∣∣ = 0, (5.19)

we obtain

ρS(t) =
1

2πi

∑
j

∫ +∞+i0+

−∞+i0+

e−iz(t−t0)

(z − zj)(1− dcj
dz (zj))

Pj(zj)ρS(t0) dz (5.20)

=
∑
j

e−izj(t−t0)

(1− dcj
dz (zj))

Pj(zj)ρS(t0). (5.21)

by Cauchy’s integral formula. We can see that if Im(zi) > 0, we will have
a density matrix which increases exponentially over time. This is unphysical.
So Im(zi) ≤ 0, and we are justified in choosing our contour integral over the
lower semicircle of the complex plane. It is proven that there exists a stationary
state [6]. Because this state is independent of time, there must be at least one
eigenvalue z0 = 0. The density matrix must remain Hermitian regardless of
basis choice: this means that e−iz1 must be real, which is only the case if z1 is
imaginary. The diagonal elements must be complex conjugates. In other words,
e−iRe(z2)=eiRe(z3), which is the case if Re(z2) = −Re(z3). Summing up, for real
Γi, h ≥ 0, we can write

LeffS = −iΓ1P1 + (h− iΓ+)P+ + (−h− iΓ+)P− . (5.22)

As such we have made use of the Laplace transformation to obtain an expression
of the time evolution of the density matrix of the spin, as well as an expression
for the effective Liouvillian LeffS which acts on the density matrix in Laplace-
space. In the following section we will discuss these results.
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6 Conclusions and discussion

We will present a threefold conclusion and discussion, firstly regarding the me-
chanical problem, secondly the Heisenberg model, thirdly the Kondo model.
Lastly we will reflect briefly on the thesis in general.

In the chapter about the mechanical problem (Chapter 3), we derived the
parametrisation for the isochrone curve by exact means:

y =
gc2

π2
(1− cos(t)), (6.1)

x =
gc2

π2
(t+ sin(t)). (6.2)

All functions were continuous, so we were justified in using the Abel operator.
We made the physical assumption that there was no friction: in further research
it could be interesting to look at which types of friction allow for a similar type
of derivation and which types of friction will inhibit the problem from being
exactly solvable. By building the isochrone curve, it could be experimentally
verified that objects released from different heights will meet the bottom of the
slope at the same time.

In the chapter about the Heisenberg model (Chapter 4) we used the Bethe
Ansatz. Because the resulting wavefunction 4.13 is a solution of the Schrödinger
equation, we were justified in the continuation of our calculations using the
Bethe-Ansatz assumption. In the derivation of our result, all functions satisfied
the Dirichlet conditions and therefore we were justified in using the fourier
transformations. Our numerical result E0

JL = −0.43 differed slightly from the

exact result E0

JL = −0.44. This difference can be explained by the fact that our
numerical simulation only considered small chains up to L = 10. By looking at
Figure 4 it can be seen that the values converge for larger L, so it is expected
that calculations of larger samples will yield a more accurate result. It must be
noted that we ommitted the samples for L ≤ 4, which give unrealistic results
because of interfering periodic boundary conditions. Also, we have assumed
that only nearest-neighbour interactions are relevant. Therefore it is expected
to get better agreement with experiment by including next-nearest-neighbour
interactions in the Hamiltonian.

In the chapter about the Kondo model (Chapter 5), we derived that the

effective Liouvillian LeffS acting on the reduced density matrix ρS of a spin
coupled to a reservoir in Laplace space, has to be of the form

LeffS = −iΓ1P1 + (h− iΓ+)P+ + (−h− iΓ+)P− . (6.3)

To obtain this result we used the physical assumptions that the density ma-
trix has to be hermitian and that there exists a stationary state. All integrands
satisfied the Dirichlet conditions, so we were justified in using the Laplace trans-
formation. We used Taylor expansions around the poles so that we could apply
the inverse Laplace transformation, which is justified because the subsequent
contour integration is concerned only with behaviour around the poles. The
Kondo model can find applications in, and similarly can be verified in exper-
iment through, for example, the properties of a material which has a single
impurity. Also, it has been stated that transport experiments through quantum

17



dots can be verified using the Kondo model, which means it can have applica-
tions in nanotechnology [5].

The use of integral transformations was essential to obtain our results. In
this thesis we have made clear that integral equations can be used to solve
different problems in both quantum and Newtonian mechanics. As such they
make up an invaluable instrument which cannot be absent from any physician’s
toolbox.
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Appendix

This appendix consists of proofs of the mathematical techniques used and deriva-
tions of relevant results.

A Fourier Transformations

A.1 Convolution Theorem

We will present here a proof of the convolution theorem for fourier transforma-
tions. The proof is based on [1, p. 952]. Firstly, we define the fourier transform
F and its inverse F−1 to be

F [g(t)] =
1

2π

∫ ∞
−∞

g(t)eixt dt (A.1)

F−1[f(x)] =

∫ ∞
−∞

f(x)e−ixt dx (A.2)

Now let h be a convolution, that is, we can write

h(x) =

∫ ∞
−∞

g(y)f(x− y) dy (A.3)

for some f and g. Then

h(x) =

∫ ∞
−∞

g(y)f(x− y) dy (A.4)

=

∫ ∞
−∞

g(y)

∫ ∞
−∞
F [f ](t)e−it(x−y) dt dy (A.5)

=

∫ ∞
−∞
F [f ](t)

[ ∫ ∞
−∞

g(y)eity dy

]
e−itxdt (A.6)

= 2π

∫ ∞
−∞
F [f ](t) F [g](t) dt (A.7)

Such that we have obtained the convolution theorem:∫ ∞
−∞

g(y)f(x− y) dy = 2π

∫ ∞
−∞
F [f ](t) F [g](t) dt (A.8)

A.2 Residue theorem

In this thesis we repeatedly use the residue theorem: if f is a holomorphic
(that is, locally differentiable) function on the complex plane, and if C is a curve
which encloses some poles ak of f, then∮

C

f(z)dz = 2πi
∑
k

Resf (ak) (A.9)
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The residue Resf (ak) of f at ak can be found using the following formula:

Resf (ak) =
1

(n− 1)!
lim
z→ak

dn−1

dzn−1
(z − ak)nf(z) (A.10)

where n is the order of the pole ak.

A.3 Proof of used derivations

This section contains relevant derivations that we reference to in the main part
of the thesis.

Derivation 1 The following equation holds:

F
[

1

1 + (ax)2

]
(ω) =

e−
ω
a

2a
(A.11)

Proof Let f be given by

f(x) =
1

ia

eiωx

1− iax
(A.12)

and apply Cauchy’s integral formula to obtain

F
[

1

1 + (ax)2

]
(ω) =

1

2π

∫ ∞
−∞

f(x)

x− i
a

dx = if

(
i

a

)
=
e−

ω
a

2a
(A.13)

Derivation 2 The following equation holds:∫ ∞
−∞

e−iωλ
L

4π

1

cosh(ω2 )
dω =

L

2cosh(πλ)
(A.14)

Proof We will use the residue theorem. Let C be the upper semicircle of the
complex plane with radius ρ, then we can immediately see that∣∣∣∣∣∣∣∣ ∫

C

f(z) dz

∣∣∣∣∣∣∣∣ = lim
ρ→∞

∣∣∣∣∣∣∣∣ ∫ π

0

f(ρ, θ)ρdθ

∣∣∣∣∣∣∣∣ (A.15)

≤ lim
ρ→∞

∫ π

0

∣∣∣∣∣∣∣∣ L4π ρ

1 + ρ2
dθ

∣∣∣∣∣∣∣∣ = 0 (A.16)

The poles of f are given by

ak = 2πi

(
k +

1

2

)
(A.17)

Now, by the residue theorem,∮
f(z)dz =

∫ ∞
−∞

f(ω)dω +

∮
C

f(z) dz = 2πi

∞∑
k=0

Resf (ak) (A.18)
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Observe that

Resf (ak) = lim
z→ak

(z − ak)f(z) (A.19)

=
L

4π
lim
z→ak

(z − ak)eizλ

cosh( z2 )
(A.20)

=
L

4π
lim
y→0

yeiλ(y+ak)

(−1)k i sinh(y2 )
(A.21)

=
(−1)kL

4πi
eiakλ lim

y→0

y
y
2 +O(y3)

=
(−1)kL

2πi
eiakλ (A.22)

such that

2πi

∞∑
k=0

Resf (ak) = Le−πλ
∞∑
k=0

e−2πkλ(−1)k (A.23)

= Le−πλ
∞∑
k=0

(
− e−2πλ

)k
(A.24)

=
Le−πλ

1 + e−2πλ
=

L

2cosh(πλ)
(A.25)

Derivation 3 The following equation holds:∫ ∞
−∞

1

1 + 4λ2

1

cosh(πλ)
dλ = log(2) (A.26)

Proof Denote the integrand by f, let C be the upper semicircle of the complex
plane with radius ρ, and begin by noting that∣∣∣∣∣∣∣∣ ∫

C

f(z) dz

∣∣∣∣∣∣∣∣ = lim
ρ→∞

∣∣∣∣∣∣∣∣ ∫ π

0

f(ρ, θ)ρdθ

∣∣∣∣∣∣∣∣ (A.27)

≤ lim
ρ→∞

∫ π

0

∣∣∣∣∣∣∣∣ 1

1 + 4ρ2

ρ

1 + ρ2
dθ

∣∣∣∣∣∣∣∣ = 0 (A.28)

note that the poles of f are given by

ak = i

(
k +

1

2

)
(A.29)

where the poles a0 and a−1 are second order poles, and all the other poles are
of the first order. So from the residue theorem,∮

f(z)dz =

∫ ∞
−∞

f(λ)dλ+

∫
C

f(z) dz = 2πi

∞∑
k=0

Resf (ak) (A.30)

First we calculate the residue of the second order pole a0 = i
2 , using the sub-

stitution y = z − i
2 , before using the taylorseries of tanh and sinh to obtain the
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result.

Resf (a0) = lim
z→ i

2

[
d

dz
(z − i

2
)2f(z)

]
(A.31)

= lim
z→ i

2

[
i− π(z2 + 1

4 ) tanh(πz)

4(z + i
2 )2 cosh(πz)

]
(A.32)

= lim
y→0

[
i− πy(y + i) (tanh(πy))−1

4i(y + i)2 sinh(πy)

]
(A.33)

= lim
y→0

[
i− πy(y + i) 1+O(y2)

πy+O(y3)

4i(y + i)2[πy +O(y3)]

]
(A.34)

= lim
y→0

−y + i− i lim
y→0

πy+O(y3)
πy+O(y3)

4i(y + i)2πy
=

1

4πi
(A.35)

Then we calculate the residue of any other pole ak>0 = i(k + 1
2 ). Because the

pole is of the first order, it follows, again substituting y = z − ak, that

Resf (ak) = lim
z→ak

(z − ak)f(z) (A.36)

= lim
z→ak

1

1 + 4z2

z − i(k + 1
2 )

cosh(πz)
(A.37)

=
−1

4k(k + 1)
lim
y→0

y

(−1)k i sinh(πy)
(A.38)

=
i(−1)k

4k(k + 1)
lim
y→0

y

πy +O(y3)
=

1

4πi

(−1)(k+1)

k(k + 1)
(A.39)

We obtain the result if we sum over all residues:

1

2πi

∮
f(z) dz =

∞∑
k=0

Resf (ak) (A.40)

=
1

4πi

(
1 +

∞∑
k=1

(−1)(k+1)

k(k + 1)

)
(A.41)

=
1

2πi
log(2) (A.42)

Which proves our result.
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Appendix B - Simulation Code

Figure 6: Mathematica code used to simulate the 1D Heisenberg model. The
resulting plot can be seen in Figure 4
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