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Abstract

Asymptotic analysis is applied to a two-dimensional depth-averaged morphodynamic model for
a tidally dominated estuary. The water motion is described by the depth-averaged shallow water
equations and driven by an externally prescribed M2-tide. The sediment transport is determined by
the tidal averages of suspended sediment and sediment as bed load transport. The linearized equations
can quantitatively denote the tidal bar length, and can be used qualitatively to clarify the physical
processes behind the instability of the sandy bed. The second- and third-order equations are used
to capture the non-linear morphodynamics of the estuary. The elongation of troughs and the shallow
cross-channel sandy bridges of sand are reproduced. A finite-amplitude equilibrium could not be found.
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1 Introduction

The topography of the sandy bottom of many shallow, tidally dominated estuaries are characterized by
the presence of periodic patterns, consisting of so-called tidal bars. Some main examples are the Exe
estuary in England, the Netarts bay in USA and the Western Scheldt in the Netherlands, see figures 1,
2 and 3. These bars have wavelengths of 1-15 km and have an height of several meters above the main
average bottom. Since tidal bars are rich feeding grounds for birds, play valuable roles in marine life
ecosystems, and can hamper marine traffic, it is important to understand the relations between main
estuary characteristics, like channel width and average depth, and the resulting bottom topography, like
tidal bar wavelength and amplitude. Furthermore, they are also an interesting scientific phenomenon, as
they are the result of the complex interactions between the water motion and the sandy network of shoals
and channels.

1.1 Overview of some past research

Some empirical studies of estuaries have been done. One in particular is Leuven et al.(2016)[9]. They
measured (parts of) 190 estuaries using Google Earth and found some interesting correlations. Especially
the correlation between channel width and tidal bar length is profound: a wider channel is correlated
with longer tidal bars.
There have also been extensive numerical simulations. For example Jeuken (2000)[7] simulated the West-
ern Scheldt using a process based model. The resulting water motion and sediment transport corresponded
quite well with the observations. However, due to the complex structure of the numerical program it is
difficult to extract any basic physical understanding about the causing processes. Therefore more simpli-
fied models are needed.
These simplified models have highly schematized geometries and are based on only a few equations for
water motion and sediment transport. Their relative simplicity allows them to be analyzed using stan-
dard mathematical techniques, like Fourier analysis. This way it is possible to formulate basic theoretical
relationships of these tidally dominated estuaries.
Using a simple three-dimensional model for narrow and frictionally dominated channels, Seminara &
Tubino (2001)[14] showed that due to inherent instability of a flat sandy bottom these tidal bars can be
formed. Schramkowski et al (2002)[12] extended the model to be applicable to wider basins that are not
necessarily frictionally dominated and proved that three-dimensional effects and quadratic bottom stress
are not necessary for the formation of these tidal bars: a two-dimensional model with depth-averaged
shallow water equations and linearized bottom stress is sufficient. This simplified model also allowed for
an extensive description of the physical processes behind this instability. Van der Wegen et al. (2008)[16]
even used a one-dimensional model, but concluded the two-dimensional model to give the best estimate.
Next, Schramkowski et al (2004)[13] showed that stable equilibria in the channel are possible for near-
critical conditions when incorporating non-linear dynamics. Finally, Hepkema et al. (2019)[5] found,
however, that linear mechanics alone are sufficient to explain the important relationship between channel
width and tidal bar length by also incorporating horizontal eddy diffusivity.

1.2 Research question

Van Veelen et al. (2018)[17] analyzed large scale bed forms in shallow shelf seas. They used asymptotic
analysis, where a truncated expansion of the important variables is made, in order to analyze the non-
linear dynamics at different orders of magnitude. That way, it is possible to get a basic understanding of
the most simple cases of the non-linear processes, without relying on complex numerical computations.
Combining the method of Van Veelen et al. (2018) with the current models of tidally dominated estuaries
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is the main goal of this thesis. Important to remember is that Van Veelen looked at shallow shelf seas with
open boundaries, whereas the estuary-models are bounded in the cross-channel direction. This leads to the
main research question: can the same methods of asymptotic analysis be applied to the two-dimensional
model of the tidally dominated estuary? More specifically, what parts of the non-linear dynamics, seen
by Schramkowski et al. (2004) can be reproduced using second and third order asymptotic expansion?
Would it for example be possible to create an equilibrium with second and third order dynamics? If this
is indeed the case, then this would be a relatively simple analytical model to explain some important
non-linear characteristics of estuaries.
Hence the main goal is to apply asymptotic analysis to a simplified model of a tidally dominated estuary
with the intend to recreate the non-linear effects observed in Schramkowski et al.(2004). This way,
asymptotic analysis may give a basic understanding of these non-linear dynamics.

Figure 1: The Western Scheldt, an exceptionally wide estuary in the Netherlands, figure from Google
Earth. Note that some form of periodicity can be observed in the tidal bars.

Figure 2: The Netars Bay, a common estuary on the west coast of the USA, figure from Google Earth. A
similar pattern can be observed here.

Figure 3: The Exe estuary, a common estuary on the south coast of England, figure from Google Earth.
Also here a periodicity in the bathymetric patterns can be seen.
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2 Model

The model is based on the model used in Hepkema et al(2018). It is a two-dimensional model: hydrody-
namics and sediment transport are described with depth-averaged variables on a two-dimensional plane
with coordinates ~x = (x, y)[m].

2.1 Model description

Observations show that the bathymetric features in tidally dominated estuaries are relatively short com-
pared to the tidal length of the estuary. Furthermore, it is assumed that the effects of channel width
variations on the behaviour of these features are negligible. Therefore, the model of the estuary is repre-
sented as an infinitely long channel with constant width B[m]. Then a section with length L[m] is taken,
with open boundaries at the end, to represent the whole channel. How length L will be determined, will
be discussed later. Also, the banks are taken to be straight and non-erodible walls. The only feature
subjected to erosion is the sandy bed itself.
The free surface level is denoted by ζ with undisturbed water depth D = H − h, where H[m] is a refer-
ence depth and h[m] the bed elevation with respect to the reference level z = −H. The along-channel
and cross-channel currents are u, v[ms−1] respectively, with ~u = (u, v). We use Cartesian coordinates
~x = (x, y) for along-channel and cross-channel directions, while z[m] is height, with z = 0 reference
surface height. Finally, time is denoted by t. The model is depicted in figure 4 .

Figure 4: (a) The along-channel section in the (x, z)-plane. (b) The cross-channel-section in the (y, z)-
plane.
H denotes the undisturbed depth, ζ the free-surface elevation, h the bed height and B the channel width.
The arrows with x, y and z denote the direction of the spatial coordinates.
Source: Hepkema et al. (2019) [5].

2.2 Model equations

2.2.1 Depth-averaged shallow water equations

The tidal hydrodynamics are governed by the depth-averaged shallow water equations, where the rigid
lid approximation is used. In the rigid-lid approximation all free surface gradients are neglected, except
for those in the pressure gradient force. Furthermore, Coriolis effects are neglected and linearized bottom
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stresses are used.
The continuity equation, based on mass conservation, is as follows:

∂

∂x
((H − h+ ζ)u) +

∂

∂y
((H − h+ ζ)v) = 0,

which is equivalent to volume conservation, since incompressibility is assumed. Then under the rigid-lid
approximation the free surface gradients drop out, to yield:

∂

∂x
((H − h)u) +

∂

∂y
((H − h)v) = 0.

This can be rewritten to the following form:

(H − h)(
∂u

∂x
+
∂v

∂y
) = u

∂h

∂x
+ v

∂h

∂y

The depth-averaged shallow water equations for along-channel and cross-channel current velocities are
respectively:

∂u

∂t
+ (~u · ∇)u+

ru

H − h
− ν∇2u = (~Fp)x

∂v

∂t
+ (~u · ∇)v +

rv

H − h
− ν∇2v = (~Fp)y.

In these equations ~Fp = −g∇ζ is the pressure-gradient force per unit mass, with g[ms−2] the gravitational

acceleration and ζ(~x, t)[m] the free surface elevation as stated earlier. Note that ∇ =
(
∂
∂x ,

∂
∂y

)
in this

two-dimensional model. Furthermore, ν∇2~u is a dissipation term to eddy viscosity, with ν[m2s−1] the
horizontal eddy viscosity coefficient. As friction force ~Fr = r~u

H−h is used, inversely proportionate to depth

D, the water depth, and with friction coefficient r[ms−1]. This is a linear parameterization for the friction
force as first proposed by Lorentz (1922)[10]. In Schramkowski et al.(2002) it is shown that the same
overall results are obtained using either linear or quadratic friction forces. A derivation of the depth-
averaged shallow water equations can be found in Hepkema (2016) [4]. A more explicit interpretation on
the rigid-lid approximation can be found in ”Geophysical Fluid Dynamics” [2].

2.2.2 Vorticity equations

Based on Van Veelen et al. (2018) the equations for current velocities are replaced by two equations for
vorticity. The first one is the definition of vorticity η [s−1]:

η =
∂v

∂x
− ∂u

∂y
.
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The second vorticity equation follows from differentiating the previously stated shallow water equation
for v with respect to x, and subtracting the differentiation of the equation for u with respect to y:

∂

∂x
(
∂v

∂t
+ (~u · ∇)v +

rv

H − h
− ν∇2v)

− ∂

∂y
(
∂u

∂t
+ (~u · ∇)u+

ru

H − h
− ν∇2u) =

∂

∂x
((~Fp)y)−

∂

∂y
((~Fp)x) =

∂

∂t
(
∂v

∂x
− ∂u

∂y
) +

∂u

∂x
(
∂v

∂x
− ∂u

∂y
) +

∂v

∂y
(
∂v

∂x
− ∂u

∂y
)

+u(
∂2v

∂x2
− ∂2u

∂x∂y
) + v(

∂2v

∂x∂y
− ∂2u

∂y2
)− ν∇2(

∂v

∂x
− ∂u

∂y
)

+
r

H − h
(
∂v

∂x
− ∂u

∂y
) +

r

(H − h)2
(v
∂h

∂x
− u∂h

∂y
) = −g ∂2ζ

∂x∂y
+ g

∂2ζ

∂x∂y
=

∂η

∂t
+ (

∂u

∂x
+
∂v

∂y
)η + u

∂η

∂x
+ v

∂η

∂y
+

r

H − h
η +

r

(H − h)2
(v
∂h

∂x
− u∂h

∂y
)− ν∇2η = 0.

Then using the continuity equation yields the final form:

∂η

∂t
+ (~u · ∇)η +

r

H − h
η − ν∇2η +

η

H − h
(u
∂h

∂x
+ v

∂h

∂y
) +

r

(H − h)2
(v
∂h

∂x
− u∂h

∂y
) = 0.

The main benefit of replacing the two equations for the currents (u, v) by the two vorticity equations is
that now only once the friction and viscosity terms have to be calculated instead of twice. A disadvantage
is that any lone uniform terms in the flow ~u just disappear in the vorticity equations, since in both
equations only the spatial gradients of the currents appear. Only the non-uniform terms in the flow can
be calculated using the vorticity equations.
The original depth-averaged shallow water equations are needed to calculate the uniform terms: suppose
ū is the uniform term of u, so ∂ū

∂x = 0 and ∂ū
∂y = 0. Plugging ū into the the shallow water equation for

along-channel velocity u gives:
∂ū

∂t
+

rū

H − h
= (~Fp)x.

Similiarly for any uniform part v̄ of cross-channel velocity v:

∂v̄

∂t
+

rv̄

H − h
= (~Fp)y.

Here, ~Fp is the uniform part of ~Fp.

2.2.3 Volumetric concentration equation

Next, for the concentration of sand in the water we use the following equation:

∂C

∂t
+∇ · (~uC)−∇ · (µ∇C + µ

ws
κv
βbC∇h) = E −D.

Here, C(~x, t)[m3m−2] is the depth-integrated volumetric sediment concentration, which indicates the
total volume of sediment in the water column above a unit surface at (x, y). The terms ∇ · (~uC) describe
advection of sediment by the water currents, while ∇ · (µ∇C) describes the diffusion of sediment in the
water, with µ[m2s−1] the horizontal eddy diffusivity coefficient. The complicated term ∇ · (µwsκv βbC∇h)
can be viewed as an ’delay’-term: it describes the settling and vertical diffusion of sediment in the water
column. Here, ws[ms−1] is the settling velocity, which depends on -for example- the size of the sand

6



particles, and a higher ws indicates that the in water suspended sand particles will drop faster to the
bottom. The settling of sand is countered by the vertical diffusion of sand, which is described by the
vertical eddy diffusivity coefficient κv[m

2s−1]. Lastly, βb is the deposition parameter, which indicates that
of the sand concentration C suspended in the water column a part βbC will be affected by these vertical
interactions. All in all, this complicated term is a delay term for the suspended sand to settle, and this
delay is caused by different vertical interactions within the water column. Note that this complicated
parametrization is needed, since a two-dimensional model is used where vertical flows and gradients are
not included. In Seminara & Tubino(2001) a three-dimensional model is used with a more intuitive
volumetric concentration equation, which -however- leads to more complicated calculations.
On the right-hand side of the volumetric concentration equation the erosion E[ms−1] and deposition
D[ms−1] of sediment is described. An amount E = α||~u||2 will become suspended sand in the water
column, while an amount D = γC will leave the water column. Here α[sm−1] is the erosion parameter,
and γ[s−1] is the deposition parameter (not to be confused with the dimensionless βb. The deposition
parameter γ will be higher for faster settling sand (higher ws) or more settling sand (higher βb), while
deposition will be slowed down if more vertical diffusion occurs (higher κv). Therefore, the deposition
parameter γ can be described by γ = w2

s
βb
κv

[5].

2.2.4 Bed evolution equation

Lastly, but most importantly, the equation to describe the bed-evolution itself. This equation is the link
between the tidal hydrodynamics and the actual sandy bed.

(1− p)∂h
∂t

+∇· < ~qs + ~qb >= 0

Here ~qs[m
2s−1] is the transport of suspended sediment via the water, where ~qs = ~uC−µ∇C−µwsκv βbC∇h.

The advection of sand via water (~uC) is countered by the horizontal diffusion of sand in water (second
term) and the delay term (third term) due to settling and vertical diffusion. Next, ~qb[m

2s−1] is the
transport of sediment as bed load. This is transport of sand ’rolling downhill’: it is a damping term on the
sandy bed causing sand from shoals to move towards lower troughs. It is described by ~qb = −ŝk∗||~u||3∇h,
where ŝ[s2m−1] is the bed load transport constant and k∗ the bed load bed slope parameter. The first
parametrizes the importance of the flow (||~u||3), while the latter parametrizes the importance of the bed
steepness (∇h).
Now, < · > is the average over one tidal cycle with period 2π

σ . Only the M2-tide -the principal lunar
semi-diurnal tide- is considered, which has a period of roughly twelve hours. So radial frequency σ =
1.4 · 10−4s−1. The tidal average is:

< · >=
σ

2π

∫ 2π
σ

0
· dt. (1)

This is essential to the flow over bed topography problem. Since the bed generally evolves on a timescale of
weeks to months, which is long compared to a tidal period, the bed pattern can be assumed to be constant
for one tidal period. During one tidal period the bed will be insensitive to instantaneous rates of erosion
and deposition. The bottom will only be described by the tidal averages of erosion and deposition.
Lastly, p < 1 is the porosity, and it indicates how well the sand on the bottom is ’packed’. If 1m3 of
sediment is deposited, then it will ’translate’ to 1

1−pm3 of sand on the bottom. For p > 0 the sand does
not align perfectly, and is porous.

2.3 Flow over topography problem

One of the key elements of the model is the flow over topography feature. The bed is constant for a tidal
period, and at the end the tidal averages of all physical interactions of the flow with the bed and the
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resulting erosions and depositions are used to update the bed. In essence there are two time scales: the
’live’ time scale, which is the physically accurate one in which ~u, η and C operate, and the tidal time
scale in which the bed h operates. To avoid confusion, the ’tidal time’ will be indicated by τ instead of
t, so the bed-evolution equation becomes:

(1− p)∂h
∂τ

= −∇· < ~qs + ~qb >,

while the bed does not change ’live’, so ∂h
∂t = 0 from now on.

Because the bed evolution is calculated with tidal averages instead of ’live’ values of erosion and deposition,
an error will occur. After all, this is a deviation from physical reality. Luckily, Schramkowski et al (2002)
found that the occurring error is negligible. The benefit of the different time scales is that it saves
calculation time: sand that is washed away during flood and cancelled by returning sand during ebb will
not be occurring in the bed update at all. More on the different time scales can be found in Van der
Wegen et al.(2008).
All in all, the model functions as follows: a bed pattern h(~x) is given, then the corresponding live velocities,
volumetric concentration and vorticity (~u(~x, t), C(~x, t) and η(~x, t)) are calculated, and lastly the sediment
transports ~qb and ~qs are determined. Finally, with the tidal averages the bed of the next tidal cycle can
be found:

h(τ) = h(τ − 2π

σ
) exp ((− 1

1− p
∇· < ~qs + ~qb >)(

2π

σ
)).

This process can be repeated until the shoals are above the water surface (h > H), at which point the
model is no longer valid. To simplify calculations further a morphological factor(MF) is added. In the
model it is assumed that the bed change calculated for one tidal cycle is exactly repeated for another MF
tidal cycles. This means that the bed changes are calculated for one cycle, then multiplied by a factor
MF, and as a result the total bed evolution update for MF tidal cycles is calculated. So in essence in the
model time-steps of MF tidal cycles are taken. Usually, MF = 730, which is equivalent to roughly one
year. A visualization of this process can be seen in figure 5. So, given the bed at step i, then the bed
changes are repeated MF times to get to step i+ 1, which is the same as a time-step of MF tidal cycles:

h|i+1 = h|i ∗ (exp ((− 1

1− p
∇· < ~qs + ~qb >)(

2π

σ
)))MF = h|i ∗ exp ((− 1

1− p
∇· < ~qs + ~qb >)(

2π

σ
∗MF)).

Figure 5: The update scheme of the sandy bed. Source: Van der Wegen & Roelvink (2008) [16].
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2.4 Summary

All in all, the model consists of the continuity equation (2), vorticity equations (definition (3) and (4))
and volumetric concentration equation (5) to calculate ~u, η and C given an initial bed topography h:

∇ · ((H − h)~u) = 0 (2)

η =
∂v

∂x
− ∂u

∂y
(3)

∂η

∂t
+ (~u · ∇)η +

r

H − h
η − ν∇2η +

η

H − h
(u
∂h

∂x
+ v

∂h

∂y
) = − r

(H − h)2
(v
∂h

∂x
− u∂h

∂y
) (4)

∂C

∂t
+∇ · (~uC)−∇ · (µ∇C + µ

ws
κv
βbC∇h) = E −D. (5)

Since the boundaries of the channel are assumed to be solid and non-erodible, there can be neither water
nor sediment transport through these. Therefore the following boundary conditions are imposed:

v = 0,
∂C

∂y
= 0,

∂h

∂y
= 0 and

∂u

∂y
= 0 at y = 0, B (6)

Furthermore, it is assumed that ~u, C and η are finite. Lastly, the bed evolution equation, which is better
known as the Exner-equation [15], with tidal time-scale τ :

(1− p)∂h
∂τ

= −∇· < ~qs + ~qb > . (7)

2.5 Parameter Values

All the parameters used in the model are summarized in table 1. Here, also the scaling of these parameters
is given. Added is the amplitude of the tidal velocity U , which is assumed to be equal to the typical current
velocity U in the channel. Also in the table are the straightforward scalings of vertical eddy diffusion
(κv) with current velocity and undisturbed channel depth, of horizontal eddy viscosity ν with current
velocity and channel width, and of horizontal eddy diffusion µ with current velocity and channel width.

The intuition behind the formula for γ is already discussed, while the intuition behind βb = (1−e
−ws
κv

H)−1

is similar: a higher settling velocity (ws), lower vertical diffusion (κv) or a larger water column (H), will
increase the amount of deposition, and hence will increase βb, see also Hepkema et al.(2019). Lastly,
the derivation for the linearized friction coefficient r = 8

3π cdU , which scales with current velocity, can be
found in Lorentz(1922), see [10] or [3].
The only characteristics which are different for each estuary, are the undisturbed depth, the channel width
and the tidal velocity. In this study only four different estuaries are considered: the Western Scheldt, the
Netarts Bay, and Exe estuary. Their characteristics are listed in table 2.
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Table 1: Parameters and their value (range) after Hepkema et al.(2019)[5]

Parameter value(s) units name

H 1.2-10 m undisturbed water depth
B 800-7000 m channel width
U 0.6-1 ms−1 amplitude velocity of tide

r = 8
3π cdU ms−1 friction coefficient

κv = cvUH m2s−1 vertical eddy diffusion coefficient
ν = cuhUB m2s−1 horizontal eddy viscosity coefficient
µ = cchUB ms−1 horizontal eddy diffusion coefficient
U = U m2s−1 typical current velocity

γ = w2
s
κv
βb s−1 deposition parameter

βb = (1− e
−ws
κv

H)−1 deposition parameter
g 9.81 ms−2 gravitational acceleration
σ 1.4·10−4 s−1 frequency M2-tide
ws 0.013 ms−1 settling velocity
α 5·10−6 s m−1 erosion parameter
ŝ 3·10−4 s2m−1 bed load transport constant
p 0.4 porosity
cd 0.0025 drag coefficient
p 2 bed load bed slope parameter
p 0.001 vertical diffusivity constant
p 0.001 horizontal diffusivity constant
cuh 0.001 horizontal viscosity constant

Table 2: Parameters and their value (range) after Hepkema et al.(2019)[5]

B[km] H[m] U[ms−1]

Western Scheldt 7.0 10.0 1.0
Exe estuary 1.0 2.6 0.6
Netarts Bay 0.8 1.2 0.6
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3 Methods

3.1 Asymptotic analysis

Asymptotic analysis is a method to find approximate solutions to systems of differential equations. In
this case, an equilibrium solution (~u0, η0, C0, h0) is found for the channel system (equations (2) to (7)).
Then a small disturbance is made to the bed: h = h0 + εh1. Here ε is a positive dimensionless variable.
The disturbance is only of the first order in ε (O(ε)), while h1 and h0 have the same order of magnitude
(h0 ∼ h1). Just as in Van Veelen et al. (2018), ε is calculated via:

ε =

max(h1)
(x,y)∈L×B

H
(8)

It is imposed that ε < 1, such that the shoals never grow above the water surface. Furthermore, the
approximate solutions following asymptotic analysis are more reliable the smaller the disturbance param-
eter ε is, so ε is taken to be very small (ε� 1).
The main idea of asymptotic analysis is to look at the effects the small disturbance (O(ε)) has on the
other solutions ~u0, η0 and C0. These effects on the equilibrium solutions are studied at different orders
of magnitude of ε: we look at the changes to ~u0, η0 and C0 in the linear regime (O(ε)), the second order
regime (O(ε2)) and the third order regime (O(ε3)). This is done by expanding these relevant variables
into powers of ε:

~u = ~u0 + ε~u1 + ε2~u2 + ε3~u3

η = η0 + εη1 + ε2η2 + ε3η3 (9)

C = C0 + εC1 + ε2C2 + ε3C3,

where ~u0 ∼ ~u1 ∼ ~u2 ∼ ~u3, η0 ∼ η1 ∼ η2 ∼ η3 and C0 ∼ C1 ∼ C2 ∼ C3. Note that higher order terms
(fourth order and higher) are not incorporated, simply to avoid too much calculations. These higher order
terms are negligible as long as ε is very small. The analysis becomes more inaccurate for a larger ε.
Then these expansions, together with h = h0 + εh1, are plugged into the system (2) to (5). This will yield
three different systems of differential equations, each for every order of ε. Given an initial bed h0 with
disturbance h1, three solutions (~ui, ηi, Ci) (i ∈ {1, 2, 3}) can be found, and hence via equations (8) and
(9) the approximate solutions (~u, η, C) follow.
Finally, plugging the approximate expanded solutions together with h = h0 + εh1 into the bed evolution
equation (7) yields the bed update for h1. All in all, via asymptotic analysis the effects of the disturbance
h1 on the bed itself can be approximately found.
A more elaborate take on asymptotic analysis can be found in Intro to Perturbation Methods [6].

3.1.1 Equilibrium solution

As an equilibrium solution (h0, ~u0, η0, C0) to equations (2)-(7) a uniform flat bed is taken: h0 = 0.
Furthermore, the only current flow is the tidal current: u0 = U cosσt, v0 = 0, which the periodic flow in
the along-channel direction with frequency σ. Both ~u0 and h0 are spatially uniform, hence equation (2)
is satisfied. From equation (3) follows η0 = 0, which also satisfies equation (4).
Only the equilibrium volumetric concentration C0 remains to be solved. Since the bed and current are
spatially uniform the concentration C0 also has to be spatially uniform: C0(~x, t) = C0(t). Plugging this,
together with ~u0 and h0 into (5) yields:

dC0

dt
= E −D = α(U cosσt)2 − γC0.

11



Solving this differential equation yields:

C0(t) =
αU2

2γ

(
1 +

γ2 cos 2σt+ 2γσ sin 2σt

γ2 + 4σ2

)
+Ke−γt

with K an integration constant. Then demanding that the equilibrium solution is the same for every new
tidal cycle (C0(t) = C0(t+ 2π

σ ) yields K = 0. So:

C0(t) =
αU2

2γ

(
1 +

γ2 cos 2σt+ 2γσ sin 2σt

γ2 + 4σ2

)
. (10)

With a solution to the channel system the asymptotic analysis can now be continued.

3.1.2 Linearized system

To get to the first-order (linear) system of differential equations the expansions (9) and h = h0 + εh1

are plugged into the continuity equation (2), the vorticity equations ((3) and (4)) and the concentration
equation (5). The solutions h0 = 0 and v0 = 0 are also plugged in to simplify the formulas. Next, all
first-order terms (O(ε)) are collected. The first-order terms on the left-hand side of the equations must
be equal to the first-order terms on the right-hand side, since ε is a dimensionless number that can take
on any value in (0, 1). The resulting system:

H∇ · ~u1 − u0
∂h1

∂x
= 0 (11)

η1 =
∂v1

∂x
− ∂u1

∂y
(12)

∂η1

∂t
+ u0

∂η1

∂x
+

r

H
η1 − ν∇2η1 =

ru0

H2

∂h1

∂y
(13)

∂C1

∂t
+ u0

∂C1

∂x
+ C0(∇ · ~u1)− µ∇2C1 − µ

ws
κv
βbC0∇2h1 = E1 −D1 (14)

with {
E1 = 2αu0u1

D1 = γC1.

Note that given the initial bed disturbance h1 the first-order variables ~u1, η1 and C1 can be determined.
The derivation of the system is relatively straightforward by simply plugging in the expansions. Only the
expansion of the friction term has to be dealt with via a Taylor-expansion. Under the assumption that
h� H follows:

ru

H − h
=
ru

H

1

1− h
H

=
ru

H
(1 +

h

H
+ (

h

H
)2 + (

h

H
)3 + ..)

=
r

H
(u0 + εu1 + ε2u2 + ε3u3)(1 + ε

h1

H
+ ε2(

h1

H
)2 + ε3(

h1

H
)3 + ..)

and similar for the friction in the cross-channel direction.
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3.1.3 Second-order system

A similar procedure holds for the second-order system. The expansions are plugged into the differential
system and all second-order terms (O(ε2)) are collected:

H∇ · ~u2 = h1∇ · ~u1 + ~u1 · ∇h1 (15)

η2 =
∂v2

∂x
− ∂u2

∂y
(16)

∂η2

∂t
+ u0

∂η2

∂x
+

r

H
η2 − ν∇2η2 = −~u1 · ∇η1 + 2

ru0h1

H3

∂h1

∂y
(17)

− r

H2
(h1η1 + v1

∂h1

∂x
− u1

∂h1

∂y
)− u0η1

H

∂h1

∂x

∂C2

∂t
+ u0

∂C2

∂x
+ ~u1 · ∇C1 + C0(∇ · ~u2) + C1(∇ · ~u1) (18)

−µ∇2C2 − µ
ws
κv
βbC1∇2h1 − µ

ws
κv
βb∇C1 · ∇h1 = E2 −D2

with {
E2 = 2αu0u2 + α||~u1||2

D2 = γC2.

Now, given the initial bed disturbance h1 and the first-order variables ~u1, η1 and C1 from the linear
system, the second-order variables ~u2, η2 and C2 can be determined.

3.1.4 Third-order system

Lastly the third-order system: the expansions are plugged into the differential system and all third-order
terms (O(ε3)) are collected.

H∇ · ~u3 = h1∇ · ~u2 + ~u2 · ∇h1 (19)

η3 =
∂v3

∂x
− ∂u3

∂y
(20)

∂η3

∂t
+ u0

∂η3

∂x
+

r

H
η3 − ν∇2η3 = −~u1 · ∇η2 + 3

ru0h1

H4

∂h1

∂y
(21)

− r

H3
(h2

1η1 + 2v1h1
∂h1

∂x
− 2u1h1

∂h1

∂y
)

− r

H2
(h1η2 + v2

∂h1

∂x
− u2

∂h1

∂y
)− u0η2

H

∂h1

∂x

− η1

H
(~u1 · ∇h1 + h1∇ · ~u1)

∂C3

∂t
+ u0

∂C3

∂x
+ ~u1 · ∇C2 + ~u2 · ∇C1 (22)

+C0(∇ · ~u3) + C1(∇ · ~u2) + C2(∇ · ~u1)

−µ∇2C3 − µ
ws
κv
βbC2∇2h1 − µ

ws
κv
βb∇C2 · ∇h1 = E3 −D3

with {
E3 = 2αu0u3 + 2α(u1u2 + v1v2)

D3 = γC3.

At last the third-order variables ~u3, η3 and C3 can be calculated given the initial bed disturbance h1 and
the first-order variables ~u1, η1 and C1 from the linear system and the second-order variables ~u2, η2 and
C2 from the second-order system.

13



3.1.5 Expanded bed evolution equation

Once ~uj and Cj (j ∈ {1, 2, 3}) are known, current and volumetric concentration can be calculated. These,
together with h = h0 + εh1, are plugged into the Exner equation (7) gives the bed-evolution equation up
to third-order:

(1− p)∂h
∂τ

= −∇· < ~qs + ~qb >= − < ∇ · ~qs +∇ · ~qb >

= − < ∇ · (~uC − µ∇C − µws
κv
βbC∇h)−∇ · ŝk∗||~u||3∇h >

= − < ε(C0∇ · ~u1 + u0
∂C1

∂x
− µ∇2C1 − µ

ws
κv
βbC0∇2h1)

+ ε2(C0∇ · ~u2 + C1∇ · ~u1 + u0
∂C2

∂x
+ ~u1 · ∇C1 − µ∇2C2 − µ

ws
κv
βb∇C1 · ∇h1 − µ

ws
κv
βbC1∇2h1)

+ ε3(C0∇ · ~u3 + C1∇ · ~u2 + C2∇ · ~u1 + u0
∂C3

∂x
+ ~u1 · ∇C2 + ~u2 · ∇C1

− µ∇2C3 − µ
ws
κv
βb∇C2 · ∇h1 − µ

ws
κv
βbC2∇2h1)

+ ε(|u0|3) + ε2(3|u0|u1) + ε3(3|u0|u2
1 + 3u0|u0|u2 +

3

2
|u0|v2

1) >

= (1− p)ε∂h1

∂τ

Finally, dividing both sides by ε gives the desired result.

3.2 Fourier analysis

To solve these three systems of differential equations Fourier analysis is used. First, the relevant variables
are decomposed into spatial components.

uj =
m=M∑
m=−M

N∑
n=−N

ûjmn cos(lny)eikmx

Cj =

m=M∑
m=−M

N∑
n=−N

Ĉjmn cos(lny)eikmx

h1 =

m=M∑
m=−M

N∑
n=−N

ĥmn cos(lny)eikmx

vj =

m=M∑
m=−M

N∑
n=−N

v̂jmn sin(lny)eikmx

ηj =

m=M∑
m=−M

N∑
n=−N

η̂jmn sin(lny)eikmx.

As wave-number in the cross-channel direction ln = πn
B [m−1] is used, while the along-channel wave-number

is km = 2πm
L [m−1]. Note that there are 2M + 1 modes in the along-channel direction and 2N + 1 modes

in the cross-channel direction. To get an exact solution one needs M,N −→ ∞. In this thesis usually
M,N ≤ 10 is used, so -again- the Fourier analysis will be an approximation. In Schramkowski et al.(2004)
a validation is given for expanding the bed into spatial modes.
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The expansion in either cosines or sines is used as a convenience: the solutions now automatically satisfy
the boundary conditions (6). The components -for example ûjmn- refer to the (m,n) spatial mode and
may be complex. The solutions themselves however must be real. Therefore, for uj ∈ R it is needed that
û∗j,m,n = ûj,−m,n, and similar for the others.
Next, the spatial components are also expanded into temporal Fourier coefficients, where multiples of
frequency σ are used for convenience:

(ûjmn, v̂jmn, η̂jmn, Ĉjmn, ĥmn) =
P∑

p=−P
(Ujmnp, Vjmnp, Ejmnp, Cjmnp, H1mnp)e

ipσt.

As a note regarding the Fourier-expansion: the temporal expansion ends at P = 2. This means that
effects with the tidal frequency (frequency σ, M2-tide) and subtidal effects (frequency 2σ, M4-effects) are
included, but no effects with higher frequencies. This is based on Olabarrieta el al.(2017)[11]. In this
paper funnel-shaped estuaries are studied using a non-linear three-dimensional model. It was found that
tidal and subtidal currents are relevant and sufficient in the morphological evolution of the tidal bars.
Furthermore, since the bed and its disturbance h1 are constant on the live timescale t: H1mnp = 0 for

p 6= 0 and H1mn0 = ĥmn. Also, sand has to be conserved in the system, since no sand can escape through
the boundaries. Hence:

0 =
d

dτ

∫
B×L

h1(x, y)dxdy =
d

dτ
(ĥ00BL).

So ĥ00 has to be constant: the whole bed cannot rise (or fall) everywhere. For convenience ĥ00 = 0 is
taken. Lastly, since the bed is expressed as a cosine-series the amplitude ĥm,−n results in the same bed

topography as ĥm,n. All in all, when plotting amplitudes the results for ĥm,−n are added to ĥm,n.

3.2.1 Convolutions

In this section some convolution functions are defined. When one Fourier series is multiplied by another
the convolution function defines the components of the new resulting Fourier series. There are three cases.

Since cosα sinβ = 1
2(sinα+ β + sinβ − α) it follows that:

cos(β) sin(n− β) =
1

2
sin(n) +

1

2
sin(n− 2β)

cos(β) sin(n+ β) =
1

2
sin(n) +

1

2
sin(n+ 2β).

Furthermore, it is straightforward that eβem−β = em. So:(∑
m

∑
n

∑
p

Amnp cos(lny)ei(kmx+pσt)

)(∑
m

∑
n

∑
p

Bmnp sin(lny)ei(kmx+pσt)

)
=
∑
m

∑
n

∑
p

(A ? B)csmnp sin(lny)ei(kmx+pσt)

where

(A ? B)csmnp =
∑
a

∑
b

∑
c

1

2
Aabc(Bm−a,n−b,p−c +Bm−a,n+b,p−c)

This means that the spatial mode (a, b) (from the cosine) and the modes (m − a, n ± b) (from the sine)
interact to form a (m,n)-mode. Note that it matters which contribution came from the sine-series and
which from the cosine-series: their order matters, since cosα sinβ 6= cosβ sinα.
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Next, with cosα cosβ = 1
2(cosα+ β + cosα− β) follows that:

cos(β) cos(n− β) =
1

2
cos(n) +

1

2
cos(n− 2β)

cos(β) cos(n+ β) =
1

2
cos(n) +

1

2
cos(n+ 2β).

So likewise, (∑
m

∑
n

∑
p

Amnp cos(lny)ei(kmx+pσt)

)(∑
m

∑
n

∑
p

Bmnp cos(lny)ei(kmx+pσt)

)
=
∑
m

∑
n

∑
p

(A ? B)ccmnp cos(lny)ei(kmx+pσt)

where

(A ? B)ccmnp =
∑
a

∑
b

∑
c

1

2
Aabc(Bm−a,n−b,p−c +Bm−a,n+b,p−c) for n ≥ 0

and (A ? B)ccmnp = 0 for n < 0

Again spatial mode (a, b) interacts with spatial modes (m−a, n± b) to form (m,n). All the contributions
are projected onto the non-negative modes (n ≥ 0). Physically it does not matter, since cos l−ny = cos lny.
Note, that the order of A,B does not matter, since cosα cosβ = cosβ cosα then (A ? B)cc = (B ? A)cc.

Lastly, for the sine-sine interaction the product formula sinα sinβ = 1
2(− cosα+ β + cosα− β) is used:

sin(β) sin(n− β) = −1

2
cos(n) +

1

2
cos(n− 2β)

sin(β) sin(n+ β) =
1

2
cos(n)− 1

2
cos(n+ 2β).

So likewise, (∑
m

∑
n

∑
p

Amnp sin(lny)ei(kmx+pσt)

)(∑
m

∑
n

∑
p

Bmnp sin(lny)ei(kmx+pσt)

)
=
∑
m

∑
n

∑
p

(A ? B)ssmnp cos(lny)ei(kmx+pσt)

where

(A ? B)ssmnp =
∑
a

∑
b

∑
c

1

2
Aabc(−Bm−a,n−b,p−c +Bm−a,n+b,p−c) for n ≥ 0

and (A ? B)ssmnp = 0 for n < 0

Like before modes (a, b) and (m−, n±b) interact to form (m,n). All contributions are projected onto non-
negative n ≥ 0, since the result is a cosine-series with cos l−ny = cos lny. And similar to the cosine-cosine
interaction: the order of A,B does not matter.

A final note, when writing - for example- (kA ? lB)csmnp then it is defined as∑
a

∑
b

∑
c

1
2kaAabc(ln−bBm−a,n−b,p−c + ln+bBm−a,n+b,p−c).

16



3.2.2 Fourier-expansion linear system

Applying Fourier analysis to the linear system yields:

ikmHU1mnp +HlnV1mnp = i
U

2
(H1,m,n,p−1 +H1,m,n,p+1)

E1mnp = ikmV1mnp + lnU1mnp

(iσp+
r

H
+ ν(k2

m + l2n))E1mnp + i
Ukm

2
(E1,m,n,p−1 + E1,m,n,p+1) =

−Ur
2H2

ln(H1,m,n,p−1 +H1,m,n,p+1)

(iσp+ µ(k2
m + l2n) + γ)C1mnp + i

Ukm
2

(C1,m,n,p−1 + C1,m,n,p+1) = −µws
κv
βb(k

2
m + l2n)C0p

ˆh1mn

−αU(U1,m,n,p−1 + U1,m,n,p+1) + ikm(C0 ? U1mn)p + ln(C0 ? V1mn)p

where C0p is the pth temporal Fourier component of C0 =
∑P

p=−P C0pe
ipσt and the convolution is defined

as (C0 ? U1mn)p =
∑

cC0cU1,m,n,p−c. Note that this system is undetermined for (m,n) = (0, 0).
For the uniform solution ((0, 0)-mode) the Fourier-analysis of the original shallow-water equations are
needed:

(iσp+
r

H
)U100p +

rU

2H2
= 0

V100p = 0

E100p = 0

(iσp+ γ)C100p − αU(C1,0,0,p−1 + C1,0,0,p+1) = 0.

3.2.3 Fourier-expansion second-order system

For the second-order system the Fourier analysis gives:

ikmHU2mnp +HlnV2mnp = Fmnp

E2mnp = ikmV2mnp + lnU2mnp

(iσp+
r

H
+ ν(k2

m + l2n))E2mnp + i
Ukm

2
(E2,m,n,p−1 + E2,m,n,p+1) = Bmnp

(iσp+ µ(k2
m + l2n) + γ)C2mnp + i

Ukm
2

(C2,m,n,p−1 + C2,m,n,p+1) = Dmnp

−αU(U2,m,n,p−1 + U2,m,n,p+1) + ikm(C0 ? U2mn)p + ln(C0 ? V2mn)p

where

Fmnp = i(H1 ? kU1)ccmnp + (H1 ? lV1)ccmnp + i(kH1 ? U1)ccmnp − (lH1 ? V1)ssmnp

Bmnp = −i(U1 ? kE1)csmnp − (lE1 ? V1)csmnp −
r

H3
U((H1 ? lH1)csm,n,p−1) + (H1 ? lH1)csm,n,p+1))

− r

H2
((H1 ? E1)csmnp) + i(kH1 ? V1)csmnp) + (U1 ? lH1)csmnp))

− iU

2H
((kH1 ? E1)csm,n,p−1) + (kH1 ? E1)csm,n,p+1))

Dmnp = −i(U1 ? kC1)ccmnp + (V1 ? lC1)ssmnp − i(C1 ? kU1)ccmnp − (C1 ? lV1)ccmnp

− µws
κv
βb(C1 ? (k2 + l2)H1)ccmnp − µ

ws
κv
βb((kC1 ? kH1)ccmnp − (lC1 ? lH1)ssmnp)

+ α((U1 ? U1)ccmnp) + (V1 ? V1)ssmnp).
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The uniform parts are the solution of:

(iσp+
r

H
)U200p + i(U1 ? kU1)cc00p − (V1 ? lU1)ss00p +

rU

2H3
((H1 ? H1)cc0,0,p−1 + (H1 ? H1)cc0,0,p+1)

+
r

H2
(U1 ? H1)cc0,0,p = 0

(iσp+
r

H
)V200p + i(U1 ? kV1)cs00p + (lV1 ? V1)cs00p +

r

H2
(H1 ? V1)cs0,0,p = 0

E200p = 0

(iσp+ γ)C200p − αU(C2,0,0,p−1 + C2,0,0,p+1) = D00p.

3.2.4 Fourier-expansion third-order system

And finally for the third-order system:

ikmHU3mnp +HlnV3mnp = Gmnp

E3mnp = ikmV3mnp + lnU3mnp

(iσp+
r

H
+ ν(k2

m + l2n))E3mnp + i
Ukm

2
(E3,m,n,p−1 + E3,m,n,p+1) = Pmnp

(iσp+ µ(k2
m + l2n) + γ)C3mnp + i

Ukm
2

(C3,m,n,p−1 + C3,m,n,p+1) = Qmnp

−αU(U3,m,n,p−1 + U3,m,n,p+1) + ikm(C0 ? U3mn)p + ln(C0 ? V3mn)p

where

Gmnp = i(H1 ? kU2)ccmnp + (H1 ? lV2)ccmnp + i(kH1 ? U2)ccmnp − (lH1 ? V2)ssmnp

Pmnp = −i(U1 ? kE2)csmnp − (lE2 ? V1)csmnp − i(U2 ? kE1)csmnp − (lE1 ? V2)csmnp

− 3rU

2H4
((H1 ? (H1 ? lH1)cs)csm,n,p−1) + (H1 ? (H1 ? lH1)cs)csm,n,p+1))

− r

H3
((H1 ? (H1 ? E1)cs)csmnp) + 2i(H1 ? (kH1 ? V1)cs)csmnp) + 2(H1 ? (U1 ? lH1)cs)csmnp))

− r

H2
((H1 ? E2)csmnp) + i(kH1 ? V2)csmnp) + (U2 ? lH1)csmnp))

− 1

H
(i((U1 ? kH1)cc ? E1)csmnp)− ((V1 ? lH1)ss ? E1)csmnp)

+ i((H1 ? kU1)cc ? E1)csmnp) + ((H1 ? lV1)cc ? E1)csmnp))

Qmnp = −i(U1 ? kC2)ccmnp + (V1 ? lC2)ssmnp − i(U2 ? kC1)ccmnp + (V2 ? lC1)ssmnp

− i(C1 ? kU2)ccmnp − (C1 ? lV2)ccmnp − i(C2 ? kU1)ccmnp − (C2 ? lV1)ccmnp

− µws
κv
βb(C2 ? (k2 + l2)H1)ccmnp − µ

ws
κv
βb((kC2 ? kH1)ccmnp − (lC2 ? lH1)ssmnp)

+ 2α((U1 ? U2)ccmnp) + (V1 ? V2)ssmnp).
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The uniform parts are the solution of:

(iσp+
r

H
)U300p + i(U1 ? kU2)cc00p − (V1 ? lU2)ss00p + i(U2 ? kU1)cc00p − (V2 ? lU1)ss00p

+
rU

2H4
(((H1 ? H1)cc ? H1)cc0,0,p−1 + ((H1 ? H1)cc ? H1)cc0,0,p+1)

+
r

H3
((U1 ? H1)cc ? H1)cc0,0,p +

r

H2
(U2 ? H1)cc0,0,p = 0

+(iσp+
r

H
)V300p + i(U1 ? kV2)cs00p − (lV2 ? lU2)cs00p + i(U2 ? kV1)cs00p + (lV1 ? V2)cs00p

+
r

H3
((H1 ? H1)cc ? V1)cs0,0,p +

r

H2
(H1 ? V2)cs0,0,p = 0

E300p = 0

(iσp+ γ)C300p − αU(C3,0,0,p−1 + C3,0,0,p+1) = Q00p.

3.2.5 Fourier-expansion bed evolution equation

Lastly, the Fourier-series are plugged into the bed-evolution equation for h1. Important here is that the
tidal-average is taken, which only causes the zeroth temporal Fourier coefficient to remain:

<
∑
p

Ape
ipσt >=

∑
p

σ

2π
Ap

∫ 2π
σ

0
eipσtdt = A0.

The resulting evolution equation for every ĥmn-amplitude:

(1− p)dĥmn
dτ

= ikm(C0 ? U1mn)0 + ln(C0 ? V1mn)0 +
ikmU

2
(C1,m,n,−1 + C1,m,n,1)

+ µ(k2
m + l2n)C1mn0 + µ

ws
κv
βbC0,0(k2

m + l2n)ĥmn

ε(ikm(C0 ? U2mn)0 + ln(C0 ? V2mn) + i(C1 ? kU1)ccmn0 + (C1 ? lV1)ccmn0 + i(U1 ? kC1)ccmn0

− (V1 ? lC1)ssmn0 +
iUkm

2
(C2,m,n,−1 + C2,m,n,1) + µ(k2

m + l2n)C2mn0

+ µ
ws
κv
βb((kC1 ? kH1)ccmn0 − (lC1 ? lH1)ssmn0 + (C1 ? (k2 + l2)H1)ccmn0))

+ ε2(ikm(C0 ? U3mn)0 + ln(C0 ? V3mn) + i(C1 ? kU2)ccmn0 + (C1 ? lV2)ccmn0

+ i(C2 ? kU1)ccmn0 + (C2 ? lV1)ccmn0 + i(U2 ? kC1)ccmn0 − (V2 ? lC1)ssmn0

+
iUkm

2
(C3,m,n,−1 + C3,m,n,1) + µ(k2

m + l2n)C3mn0

+ µ
ws
κv
βb((kC2 ? kH1)ccmn0 − (lC2 ? lH1)ssmn0 + (C2 ? (k2 + l2)H1)ccmn0))

+ ŝk∗
4U3

3π
(k2
m + l2n)ĥmn

+ εŝk∗((kΦ ? kH1)ccmn + (Φ ? k2H1)ccmn − (lΦ ? lH1)ssmn + (Φ ? l2H1)ccmn)

+ ε2ŝk∗((kΞ ? kH1)ccmn + (Ξ ? k2H1)ccmn − (lΞ ? lH1)ssmn + (Ξ ? l2H1)ccmn).

Where is defined:

< ||~u||3 > =< |u0|3 > +ε < 3|u0|u1 > +ε2 < 3|u0|u2
1 + 3u0|u0|u2 +

3

2
|u0|v2

1 >

=
4U3

3π
+ ε
∑
m,n

Φm,n cos(lny)eikmx + ε2
∑
m,n

Ξm,n cos(lny)eikmx,
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where

Φmn =
3U2

2π

∑
j

(
(

1

4j + 1
− 2

4j + 3
+

1

4j + 5
)U1,m,n,4j+3 − (

1

4j − 1
− 2

4j + 1
+

1

4j + 3
)U1,m,n,4j+1

)
Ξmn =

3U

2

∑
j

((
1

4j + 1
− 2

4j + 3
+

1

4j + 5
)(U1 ? U1)ccm,n,4j+3 − (

1

4j − 1
− 2

4j + 1
+

1

4j + 3
)(U1 ? U1)ccm,n,4j+1

+
3U

2π

∑
j

((
1

4j + 1
− 2

4j + 3
+

1

4j + 5
)(V1 ? V1)ssm,n,4j+3 − (

1

4j − 1
− 2

4j + 1
+

1

4j + 3
)(V1 ? V1)ssm,n,4j+1

+
3U2

2π

∑
j

(
1

4j + 1
− 2

4j + 3
+

1

4j + 5
)U2,m,n,4j+3 − (

1

4j − 1
− 2

4j + 1
+

1

4j + 3
)U2,m,n,4j+1.

Finally, these systems are put into Python-code to calculate the (approximate) current and concentration
in the channel. Then, together with equation (8) the differential equation for the bed evolution is solved.
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4 Linear system results & discussion

When only using the linear system to simulate the bed evolution some striking features are already
observed. Each amplitude |ĥmn| experiences either exponential growth or decay, as can be seen in figure
6 of the amplitude-evolutions. Note that modes with m < 0 are excluded here: they are just the complex
conjugate of modes with m < 0. Furthermore, the amplitudes do not interact at all: they continue their
exponential path from the start without ever changing course and regardless of the initial starting value
of the amplitude.
In figure 7 the different exponential growth rates ωmn(s−1) belonging to the amplitudes of the Western
Scheldt are plotted. This figure is in accordance with the results from Hepkema et al.(2019), so this
confirms the linear system calculations are functioning properly. Note that modes (m,n) with ωmn > 0
are unstable, so in figure 6 these are the modes (2, 2), (1, 1), (1, 2). This also confirms the findings by
Seminara & Tubino (2001) that even in a nearly flat bed instability occurs, which eventually grows to
form the tidal bars. Other modes have ωmn < 0, and they decay to zero. Note that on the horizontal
axis of figure wave-number km is plotted as a continuous variable k: the rate ω is calculated for different
wave-numbers km by varying the section length L. This level of freedom is not available at the second- or
third-order system. The length L that is chosen in these higher-order systems is such that the dominant
(largest) wave-mode can fit an integer-times lengthwise in the channel. This way the dominant wave-
number is certain to be present in the simulated channel section.
The dominant wave-mode (m,n) is the mode with the largest growth rate ωmn: in figure 7 this would be
the mode corresponding to km = 0.45km−1 and n = 2. Since this wave-mode grows the fastest, after 50
years the bed has already the associated (m,n)-pattern. This dominant, or preferential mode will hence
be expected to be the main pattern in real-life estuary, and one would expect the Western Scheldt to have
tidal bars with km = 0.45km−1 and n = 2. For the Western Scheldt a section with L = 25km is taken, so
that that the dominant longitudinal wave fits exactly twice into the section: 25km0.45km−1

2π ≈ 2. Therefore,
the dominant mode in the Western Scheldt is (2, 2), see the channel section in figure 8.
Although non-linear effects or realistic erodible walls are not present, the preferential wave-mode predicted
by the crude approximation has reasonable agreement with the observed tidal bar lengths and widths
in estuaries, see Hepkema et al. (2019). Hence, the dominant wave-mode is the most important: it
determines the main pattern of estuaries.
Another key features observed by Hepkema et al.(2019), but reproduced here, is the effect of different
channel widths and depths. When increasing the depth, or narrowing the channel causes the preferential
mode to have lower mode-numbers: the tidal bar wavelengths in cross- and along-channel direction
become larger. This has also been observed empirically by Leuven et al.(2016). Moreover, in a narrow,
deep channel fewer modes are unstable. For example, one can see in figure 10 that for the narrower Exe
estuary (1, 1) is the dominant mode instead of (2, 2) from the Western-Scheldt, also see the associated
ω-curves of the Exe estuary in figure 9. Narrowing and deepening can be done such that only very few
modes are actually unstable. This is a near-critical situation, see for example the ω-curves in figure 24.
Where the linear system fails, is that the unstable modes keep growing exponentially: they eventually
grow above the water surface, and at this point the model is no longer valid.

4.1 Mathematical interpretation

Looking at the Fourier-analyzed linear system in section 3.2.2 one can see an important mathematical
characteristic: every term is linearly dependent on a Fourier-component of either the current, vorticity,
concentration or the bed-disturbance. This means that the (m,n)-components of the current, vorticity,
concentration and bed are all linearly dependent on each other. This implies that different spatial modes
do not interact with each other: there are no convolutions. This explains why all amplitudes just ’run
their course’ without being influenced by the others.
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Figure 6: Amplitude evolution in Western Scheldt for linear system. Unstable modes (2, 2)(pink), (1, 1)
(gray) and (1, 2)(green), where L = 25km is used.

Figure 7: The ω-curves for the Western Scheldt.

Figure 8: The associated bed pattern for the Western
Scheldt with the linear system: dominated by the
(2, 2)-mode.

This also implies that the (m,n)-components of the current, vorticity and concentration are linearly
dependent on the bed-disturbance amplitude ĥmn, so one can write:

(û1mn, v̂1mn, η̂1mn, Ĉ1mn) = ĥmn

P∑
p=−P

(U1mnp, V1mnp, E1mnp, C1mnp)e
ipσt.

Plugging this into the linear part of the bed-evolution equation in section 3.1.5, yields (see also Hepkema
et al.(2019)):

(1− p)dĥmn
dτ

= (ikm(C0 ? U1mn)0 + ln(C0 ? V1mn)0)ĥmn +
ikmU

2
(C1,m,n,−1 + C1,m,n,1)ĥmn

+ µ(k2
m + l2n)C1mn0ĥmn + µ

ws
κv
βbC0,0(k2

m + l2n)ĥmn

+ ŝk∗
4U3

3π
(k2
m + l2n)ĥmn.

Now, since C0,p = 0 for p 6∈ {0,±2} (see expression (10)), and using the continuity equation from the
linear system (see section 3.2.2) one gets ikm(C0 ? U1mn)0 + ln(C0 ? V1mn)0 = 0, and hence:

dĥmn
dτ

= ωmnĥmn (23)
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Figure 9: The ω-curves for the Exe estuary.

Figure 10: The associated bed pattern for the Exe
estuary with the linear system: dominated by the
(1, 1)-mode. Troughs in blue and crests in yellow.

with

ωmn =
1

1− p

( ikmU
2

(C1,m,n,1 +C1,m,n,−1) + µ(k2
m + l2n)C1mn0 + µ

ws
κv
βbC0,0(k2

m + l2n) + ŝk∗
4U3

3π
(k2
m + l2n)

)
.

(24)
This explains the exponential behaviour of the amplitude: the ω-curves in figure 7 can be reproduced by
only using expression (24).

4.2 Physical interpretation

More importantly, the exact expression in equation (24) helps with interpreting the physical concepts
behind the sediment transport processes. The expression consists of four different terms. The initial
1/(1 − p) is simply due to porosity of the sand. The four terms, which are described in the next two
subsections, are plotted in figure 11 for the Western Scheldt.
A detailed description of the physics behind the unstable modes can be found in Schramkowski et al.(2002)
and Hepkema et al.(2019).

Figure 11: The four terms in expression (24): advection, depth integrated diffusion, bed slope diffusion
and bed load transport due to slope plotted for Western Scheldt. Source: Hepkema et al.(2019)[5].
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4.2.1 Advection

The first term is the advective term ωadv = ikmU
2 (C1,m,n,1 + C1,m,n,−1): it is the result of advective

sediment transport. It relates to the advective terms in the linear part of the bed-evolution equation in
section 3.1.5: C0∇~u1 + u0

∂C1
∂x . Sediment C1 is transported by equilibrium current u0, and equilibrium

concentration C0 is transported by current ~u1. However, as previously stated, due to C0 only having
constant on second temporal Fourier-coefficient, the latter transport becomes net zero over a tidal period,
and so it disappears in expression (24). Therefore the only net advective transport in the linear system
is the ebb and flood currents u0 transporting sand C1.
Analysis (see figure 11) shows that wadv is the main driving force behind growing, unstable modes.
Essentially in these modes advection causes crests to rise and troughs to deepen. The physical process
behind this mechanism can be seen when plotting the residual current ~ures =< ~u >: it shows the average
current behaviour during a tidal cycle, see figure 12. Residual vorticity cells can be clearly seen. The
cross-channel depth variations cause different frictional forces on the ebb and flood current (see red arrows
in figure 13): crests causes an higher friction force, while the friction force is lower over troughs. This
causes a lateral difference in velocity, which in turn generates a tidal vorticity (see the red circles). Now,
this vorticity is subsequently transported by the ebb and flood currents (u0). As a result, during ebb and
flood there is a net influx of vorticity of the same sign into the regions between crests and troughs. All in
all, residual vorticity builds up in these areas (black circles in the figure 13).
Then lastly remains to see why this vorticity build-up causes the growth of bars and deepening of troughs.
Roughly speaking, the velocity in the vortex is high above the troughs, and here sand is ’picked up’ due
to erosion, while above the crests with low velocity erosion is low and here there will be a net deposition
of sand. Since this effect will increase by a larger height difference, height differences amplify themselves,
and thus one can intuitively expect exponential growth.
The main effect of the channel depth H can be seen by looking at the vorticity equation(see section 3.2.2):

iσpE1mnp+ν(k2
m+l2n)E1mnp+i

Ukm
2

(E1,m,n,p−1+E1,m,n,p+1)+
r

H
E1mnp =

−Ur
2H2

ln(H1,m,n,p−1+H1,m,n,p+1).

The first term is inertia, the second is dissipation of vorticity due to viscosity and the third is advection
of vorticity. However, the most important are the fourth, which is dissipation of vorticity due to friction,
and which goes like ∼ H−1, and the fifth, on the right-hand side, which is the creation of vorticity due
to the friction-effects that were just described and which goes like ∼ H−2. So creation of vorticity decays
faster with increasing H than the dissipation of vorticity: so an increase in H causes a decrease in the
advection-effect, and so -as observed- an higher H will cause lower growth rates. Provided of course that
other characteristics, like the channel width, are unchanged.

Figure 12: The bed pattern of the Western Scheldt (dominated by (2, 2)-mode) in the linear system with
the residual current. Troughs in blue and crests in yellow.

4.2.2 Other processes

The second term in (24) is ωdiffdepth−int. = µ(k2
m + l2n)C1mn0 the depth-integrated diffusion term. When

at one location the depth-integrated concentration C is larger than a another, a diffusive transport occurs
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Figure 13: The generation of residual vorticity cells for bottom patterns with mode n = 1, although
similar cells are also present in higher modes. The situation (a)During flood (u0 > 0) and (b)During ebb
(u0 < 0). Friction forces (thin red arrows) is larger on crests and lower on troughs. This causes vorticity
cells (red circles). Both during ebb and flood a net positive vorticity is transported into the dashed box.
This results in the build-up of positive residual vorticity (black circle). Source: Hepkema et al.(2019)[5].

from high to low C. Generally ωdiffdepth−int. is close to zero.
Then the third term is ωdiffbedslope = µwsκv βbC0,0(k2

m + l2n) the diffusive bed-slope term. It relates to
diffusive transport due to differences in bed height. If one has uniform depth-integrated concentration C
on a sloping bottom, then the actual concentration of suspended sand is larger in shallower water columns
than in deeper water columns. As a result, diffusive transport will occur from shallow to deep regions,
although depth-integrated concentration is equal, see figure 14. Since sand is transported from shallow
to deep: it dampens the bed amplitude. This effect increases with the slope of the bed, hence it increases
with higher mode-numbers and will decrease the exponential growth rate of the height amplitude.
The last term is the bed slope term ωbottombedslope = ŝk∗

4U3

3π (k2
m + l2n). This relates to the bed load

transport: sand is transported downward from crests to troughs. It has a damping effect and increases
with height difference. Therefore it has a decreasing addition on the exponential growth rate, and the
effect increases with higher wave modes. The importance of damping of the higher modes via bed load
transport has been emphasized in Schramkowski et al.(2002): it prevents the higher modes causing an
infinite ’braiding pattern’.

Figure 14: Given a uniform depth-integrated concentration C over a sloping bottom. On the left the
water column is shallower than on the right, so the concentration of sand is larger on the left than on
the right. Simply because the same amount of sand is present in a smaller water column. This results in
diffusive transport of sand from left to right. Source: Hepkema et al.(2019)[5].
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4.3 Summary

Firstly, the exponential growth of the amplitudes and the absence of interaction follows directly from the
linear system. This system is valid as long as the disturbance h1 is small, so that only first order ε terms
are significant. The modes have different growth rates, some are positive, some negative. The dominant
wave-mode has the largest growth rate and is the dominant pattern of the sandy bed. Its wave-numbers
are not too high, since high wave numbers have a large damping effect due to bed load slope effects,
neither too low, since advection is low at low wave numbers. This last effect is due to a lack of erosion
and deposition at low wave numbers: the bed is namely near flat. Lastly, for increasing H or decreasing
B less modes become unstable and the dominant wave-modes have lower numbers. This is mainly due to
a large H causes more dissipation of vorticity, which causes a decrease in growth rates. A small B causes
the same wave modes to have steeper slopes, and hence increases damping due to bed load, hence the
dominant mode shifts to lower wave numbers.
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5 Second-order results & discussion

When incorporating the second-order or even the third-order system into the calculation of the sediment
transport, non-linear interactions become relevant. Looking at the equations in sections 3.2.3 and 3.2.4
one can see convolutions: this means that different (m,n)- modes interact with each other and can to-
gether amplify or dampen other modes. Due to this interaction modes that were stable in the linear
system can suddenly be amplified, will the unstable modes in the linear system can now be dampened
due to these non-linear interactions. These modes no longer grow exponentially. Hopefully, incorporating
the non-linearity up to second- or even third-order will cause the modes to no longer grow above the water
surface, and to form a finite-amplitude equilibrium in the estuary.

In figure 15 the amplitude evolution of the Western Scheldt is shown for interactions up to O(ε2), with
random initial values for the amplitudes. This figure is representative for the results from the second-order
system. From the linear results followed that (2, 2) is the dominant mode for this channel, and indeed
this is still the main mode. Initially the system exhibits linear behaviour: the dominant mode (2, 2) grows
exponentially, while the other modes are left behind. After some 45000 tidal cycles (60 years) the second-
order behaviour can be seen: modes (4, 4) and (4, 0) rise fast. However, the second-order behaviour does
not significantly influence dominant mode (2, 2) and eventually the crests rise above the water surface:
no equilibrium is reached. With this amplitude evolution an elongation of the troughs can be seen, see
figures 16 and 17 for the bed patterns associated with figure 15.

Figure 15: Amplitude |ĥmn| evolution for second-order system, Western Scheldt. Modes (2, 2)(green),
(4, 4) (purple) and (4, 0)(blue). Used truncation parameters M = 4 and N = 4.

5.1 Interpretation

As stated before, initially the amplitudes behave linearly, since ε is still small. Once the bed has grown
substantially, ε is no longer small, and second-order (O(ε2)) become significant. Looking at the second-
order equations (see section 3.2.3) and the second-order part of the bed evolution equation (section 3.2.5)
one can see that the second-order amplitudes of current and concentration are linearly dependent on the
convolutions of pairs of coefficients of first order variables ~u1, C1, η1 and h1. Since these first three all
dependent linearly on h1: the second-order variables are quadratic in h1, via the convolutions of pairs of
ĥmn-amplitudes. Now, as explained before, the convolutions cause modes (a, b) and (m−a, n± b) to form
a contribution to the (m,n)-mode. So, heuristically, the differential equation for the bed evolution in the
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second-order system:

dĥm,n
dτ

= ωm,nĥm,n + ε

M,N∑
a=−M,b=−N

(
(αm,n,a,b)ĥa,bĥm−a,n−b + (βm,n,a,b)ĥa,bĥm−a,n+b

)
(25)

with coefficients α and β[m−1s−1]. Now, no significant damping of modes due to second-order effects has
been observed, so it is assumed that the coefficients αmn and βmn for second-order interactions are in
general non-negative.
This specific case in figure 15 can be clarified by equation (25). Initially in the linear regime the dominant
mode (2, 2) dominates the channel, and all other amplitudes seem insignificant. Once second-order inter-
actions become relevant, interactions between pairs of amplitude occur. The only significant interactions
is of mode (2, 2) with itself: all other amplitudes are small compared to (2, 2) and hence have no powerful
contributions. The interaction of (2, 2) with itself affects the evolution of modes (4, 4) and (4, 0) (see equa-
tion (25)). Hence, the modes (4, 4) and (4, 0) rise (via the second-order interactions only, since ω4,4 < 0
and ω4,0 < 0). This is the elongation of the troughs. There is no new mode due to interactions with then
now significant modes (4, 4) and (4, 0): the truncation of spatial Fourier-analysis stops at M = 4, N = 4,
and the crests have already reached the surface.
There are no new physical processes occurring at second order: the same processes in the linear regime
(advection, diffusion and bed slope) occur in the second-order system with magnitude O(ε2). The main
driver of the growing modes, (2, 2), (4, 0) and (4, 4) will be advection, just as in the linear case. In figure
18 the bed with elongation is plotted with the residual velocity. The vortexes associated with (2, 2)-mode
are present and cause advection, just as in the linear case. However, due to the extra ∇(~u1C1) in the
advection in equation (18) there is a convolution in the advection terms. Hereby the vortexes caused by
the (2, 2)-mode generate advective sediment transport to the (4, 4) and (4, 0)-mode.
The elongation of the troughs is due to the geometry of the channel. The along-channel dominant mode
m = 2 interacts with itself and doubles to m = 4: it is free to do so since there are no closed boundaries
at the channel’s end. However, for the cross-channel mode: n = 2 interacts with itself and creates n = 4,
but also n = 0. This last mode is also created due to the closed boundaries at the channel’s sides: the
(co)sines needed to fulfill the cross-channel boundary conditions cause this extra mode. Next to (4, 4)
also (4, 0) is created: this is the elongation.

5.2 Summary

In the second-order system the dominant mode from the linear regime continues to determine the pattern
of the bed. Eventually the second-order results start to show with mainly the dominant mode interacting
with itself. This causes elongation of the troughs, which is the along-channel direction due to the geometry
of the channel.
The elongation was also found by Olabarrieta et al.(2017) in the tidally dominated (parts of the) estuaries.
Also, in the equilibria found by Schramkowski et al.(2004) elongation of the troughs was observed.
Unfortunately, the second-order interactions are too slow to dampen the dominant mode. So can (2, 2)
’excite’ mode (4, 4), but for -for example- mode (4, 4) to interact with (−2,−2) to in turn dampen (2, 2)
is not enough time: usually the crests have already surfaced.
It could be expected that no equilibrium would occur. Blondeaux & Vittori (2008)[1] used a second-order
system to analyze a three-dimensional model for tidal sand waves in open seas, and also in their case the
modes eventually grew out of the water. Furthermore, their paper also found that the non-linearity of
second-order interactions caused some elongation in their bathymetric patterns.
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Figure 16: Western Scheldt is still in linear regime
after 30 years (21900 tidal cycles): pattern
is in dominant mode (2, 2).

Figure 17: After 70 years (51100 tidal cycles): the
second-order effects are visible and the troughs in
the Western Scheldt are elongated.

Figure 18: Western Scheldt in second-order system: elongated channels with residual velocity.
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6 Third-order results & discussion

In figure 19 the amplitude evolution of the Western Scheldt is shown for interactions up to O(ε3), with
the same initial values for the amplitudes as in figure 15. This figure is representative for the results from
the third-order system. Again, initially the system behaves linearly with dominant mode (2, 2). After
roughly 40000 tidal cycles (60 years), like before, the second-order effect is shown with the rise of the
(4, 0)-mode. Also the (4, 4)-mode rises,, but is not a prominent. The important feature of the third-order
system is visible after 70000 tidal cycles (100 years): the dominant (2, 2)-mode damps! At the end, the
(4, 0)-mode keeps growing and causes the crests to surface. Associated with the final dominance of the
(4, 0)-mode is the crests making cross-channel contact with each other. The bed patterns associated with
figure 19 can be seen in figures 20 and 21.

Figure 19: Amplitude evolution for third-order system, Western Scheldt. Modes (2, 2) (green) and (4, 0)
(blue). Truncation with M = N = 4.

6.1 Interpretation

The rise of the (4, 0)-mode is caused by the second-order interactions, as explained before. Now due
to the damping of the (2, 2)-mode, the (4, 0)-mode fully determines the bed topography. Also due to
this damping the shoals breach the surface later, and gives the (4, 0) more time to grow. The pattern
associated has not only elongated channels, but also the across-channel crests.
The most important characteristic of the third-order system is the damping of the dominant mode. This
can be clarified by analyzing the third-order system in section 3.2.4 and the third-order part of the bed
evolution equation in section 3.2.5. From the third-order system equations follows that the third-order
variables (~u3, C3, η3) are linearly dependent on the convolution of three h1-coefficients. This follows from
the fact that the first-order are linearly in h1 and the second-order variables are quadratic in h1. Now,
three different height amplitudes can, via two convolutions, influence the evolution of another amplitude.
Heuristically, one could expect the differential equation in the third-order system to be something similar
to:

dĥm,n
dτ

= ωm,nĥm,n + ε

M,N∑
a=−M,b=−N

(
(αm,n,a,b)ĥa,bĥm−a,n−b + (βm,n,a,b)ĥa,bĥm−a,n+b

)
+ε2

i,j,k=M∑
i,j,k=−M
i+j+k=m

a,b,c=N∑
a,b,c=−N
a±b±c=n

δijk
abc
ĥi,aĥj,bĥk,c (26)

where δ [m−2s−1] is some coefficient.
The relevant implication of equation (26) is that the dominant wave mode can now directly affect itself
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via the third-order interaction. As an example is again referred to the situation in figure 19. The largest
wave mode is (2, 2) and -until right before the end- it is also the only significant one. Now (2, 2) cannot
directly affect itself via the second-order interaction: it can only do so directly to modes (4, 0) and (4, 4).
However, via the third-order it is possible:

dĥ2,2

dτ
= ω2,2ĥ2,2 + ε2δĥ2,2ĥ2,2ĥ

∗
2,2

= ω2,2ĥ2,2 + ε2δĥ2,2|ĥ2,2|2.

Note that the complex conjugate is ĥ∗2,2 = ĥ−2,2, so that the conditions in equation (26) are fulfilled.

Indeed, ĥ2,2 not only affects its own evolution via the linear system, which causes exponential growth
with ω2,2 > 0, but via the third-order interactions is direct feedback also possible.
Why this evolution equation causes the dominant mode to decay, can be seen by looking at the famous
Stuart-Landau equation:

dA

dt
= ωA− φA|A|2 (27)

where A ∈ C, and ω and φ are complex coefficients. This equation generally occurs in weakly non-linear
systems, such as this system where the most dominant mode is still determined by the initial linear in-
teractions. The amplitude |A| converges eventually following equation (27) to (2<(ω)

<(φ) )
1
2 for t −→∞. This

equation occurs in a lot of different non-linear systems, and more can be found in Chemical oscillations,
waves, and turbulence[8].
Following the similarity between the Stuart-Landau equation and the ĥ2,2-equation it can be expected

that the dominant (2, 2) decays to a stable level as long as ε2δ2 has a real part and (
2ω2,2

ε2<(δ)
)
1
2 � H. This

seems to be indeed the case in figure 19. Also in other third-order simulations decays the dominant mode
eventually, so the Stuart-Landau equation seems to be also present in these cases.
To verify that the dominant mode follows the Stuart-Landau equation a simulation is done for the Netarts-
estuary where the dominant mode is (1, 1). All other modes are only subjected to linear equations, so
dĥmn
dτ = ωmnĥmn for |m| > 1∨|n| > 1, while (1, 1), (1, 0), (0, 1) are the only modes subjected to third-order

interactions. So all other modes are either small or decay to zero, and (1, 1) is ’free’ to follow Stuart-
Landau without interference from rising higher modes like (4, 0). The result is shown in figure 22: indeed
(1, 1) decays to a stable level. It shows that a mode on its own can stabilize itself.
In the third-order system there are no new physical processes that are responsible for the decay. The
decay is not due to a new sand transport to other modes but is the purely mathematical consequence
of adding higher order interactions. Hence, the decay can be viewed as a correction of the unrealistic
unrestricted exponential growth of the linear results: a mode eventually ’corrects’ itself.

6.2 Summary

In the third-order system the dominant mode from the linear regime eventually decays. The decay can be
explained through the Stuart-Landau equation. The occurrence of Stuart-Landau was in the third-order
evolution equation was expected. In the hope of finding the convergences of the solutions of the Stuart-
Landau, and hence some equilibrium in the estuary, the variables in (9) are expanded till third-order
O(ε3).
The bed topography is mainly determined by modes that are excited by the dominant mode via second-
order interactions. These cause elongation of the channels and widening of the crests. This is also observed
in the equilibria of Schramkowski et al.(2004): ”the shoals appear to be connected by shallow ’bridges’
that divide the bathymetry into deep but separated ’pools’”.
However, the system does not reach an equilibrium since the higher modes breach the surface. These
modes apparently do not damp in the same way as and as fast as the dominant mode.
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Figure 20: Western Scheldt is still in second-order
regime
after 90 years (67890 tidal cycles): pattern
has elongated channels.

Figure 21: After 100 years (72270 tidal cycles): the
third-order effects are quickly visible. The damping
of (2, 2) and rise of (4, 0) causes the crest to touch
each other across the Western Scheldt.

Figure 22: Amplitude evolution for dominant mode subjected solely to third-order system, Netarts Bay.
Mode (1, 1) (orange) with truncation M = N = 4.
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7 General Discussion

Looking at the second- and third-order results there are no equilibria reached. The root causes for this
are inherent to the methods used.

7.1 Truncation of spatial modes

The simulations in the second- and third-order regime all end rather abruptly due to the rising higher
modes. These modes are excited by the original dominant mode: sand eroded from the dominant mode
is disposed in the pattern of the higher modes. Potential energy from small modes is cascaded towards
the higher modes. The key problem is that these higher modes cannot lose this energy to other modes via
the second- and third-order interactions. Due to the truncation the highest modes are limited to M,N ,
and, as seen in figures 15 and 19, these highest possible modes keep on rising.
Of course a possible solution is to include more modes. This way the energy can cascade further down,
and spread via the second- and third-order interactions over more modes. Simulations have been done for
as high as M = N = 10. However, even here, be it after some centuries, the highest modes eventually rise
and the crests breach the water surface. The hope was that the energy would be spread over a lot of high
modes, and that damping due to bed slope (which increases quadraticly with mode numbers) would be
enough to dampen these modes. It seems that the high spatial modes in the estuaries are not as effective
in dissipating energy as the high spatial modes in the shallow shelf seas of Van Veelen et al.(2018).
This difference is due to the geometry of the estuary. Look for example at figure 23: the rising modes
which cause the surface breach are (6, 3) and (6, 4). The energy cascade in the longitudinal direction
seems very effective: mode m = 6 is quickly reached. However, the cascade in the cross-channel direction
is slower: rising modes at the end include n = 4 and n = 3. In the longitudinal direction the channel is
infinite and acts similar to the open seas of Van Veelen et al.(2018): modes m1 and m2 form m1 + m2.
But in the cross-channel direction there are closed boundaries. This causes modes n1 and n2 not only to
form higher mode n1 +n2 but also to contribute downward to mode n1−n2 (see section 3.2.1). Therefore
the energy cascade in the lateral direction is not as fast as in the longitudinal direction. Hence, the energy
is already ’stuck’ in the end at m = M , while the lateral modes n are still relatively small. This makes
the dissipation of energy via damping less effective compared to a completely open sea.
As a last resort one could dramatically increase M,N , hoping that the longer cascade in the along-channel
direction will buy enough time for the energy to be distributed and dissipate in the lateral direction.
However, then a practical problem needs to be faced. The convolution functions consist of number of
terms of magnitude O((2M + 1)2(2N + 1)2(2P + 1)2). Where a simulation with M = N = 4 and P = 2
costs a couple of hours of computer-time, one with M = N = 8 and P = 2 costs nearly two days! So
M,N have to be reasonable in order to keep the CPU-time manageable. Another way to approach this
’ineffective energy cascade-problem’ could be to initially start of with low potential energy. Starting off
with only one unstable mode in a deep, narrow channel. This is the near-critical condition: the channel
is just on the verge of being a completely flat bed, see figures 24 and 25 . That especially this case could
result in an equilibrium, based on the findings of Schramkowski et al.(2004). But figure 25 shows that
this just delays the inevitable rise of the higher modes.

7.2 Higher order interactions

Instead of adding more spatial modes in attempt to deal with the problem of fast rising higher modes, one
could also expand the current and concentration variables in higher powers of ε. Adding third-order in-
teractions gave a whole new range of possibilities for some amplitudes to directly affect other amplitudes,
one of these possibilities was (2, 2) to directly weaken itself. Maybe adding fourth- or even fifth-order
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Figure 23: Amplitude evolution for third-order system, Netarts Bay. Mode (1, 1) (pinks) eventually
decays, with fast rising modes (6, 3) (green solid), (6, 4) (blue) and (6, 6) (green dashed) with truncation
M = N = 6.

interactions gives the possibility for the higher spatial modes to have other large high modes to directly
affect via the extended bed evolution equation. This could in turn solve the problem of the ineffective
damping of these high modes. For example, Van Veelen et al.(2018) used interactions up to tenth-order
of ε.
However, adding higher orders into the equation would cost a lot more CPU-time to calculate the final
sediment transport. Also, adding higher orders would defeat the original purpose of the asymptotic anal-
ysis of this model: using relatively simple mathematical methods to eventually get an equilibrium in the
estuary. Making the asymptotic analysis more complex prevents the goal of attaining some fundamental
physical insight in the processes involved in an equilibrium.

7.3 Surface Breaching

A more fundamental problem may be with the used model. In the model crest may not rise above the
surface. If h > H then the friction force ~Fr would pass through a singularity and suddenly become
positive and directed along the current. But, looking at figures 1 and 2 one could ask if it is realistic to
demand that the tidal bars have to be subsurface. In Van der Wegen & Roelvink(2008) a model is used
where drying and flooding is incorporated: if area cells in the model fall dry, they are removed from the
hydrodynamic calculations and if they get wet again, they are included into the hydrodynamica.
However, this makes the model more complicated, which defeats the purpose of using simplified systems:
to get insight in the physical processes. Moreover, Schramkowski et al.(2004) shows that the subsurface
model is sufficient for creating equilibria. Lastly, allowing crests to rise above the surface would lead to
ε ≈ 1, which makes the asymptotic expansion invalid.
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Figure 24: The ω-curves for near-critical
situation, with B=1km, U=1m/s and H=10m.

Figure 25: The amplitude evolution for the near-
critical situation with third-order interaction: dom-
inant mode (1, 1) (pink dashed) initially, then (2, 2)
(green dashed), (3, 1)(pink speckled) and (4, 0) (blue)
rise at the end. Section length L = 8km used.
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8 Summary & Conclusion

Asymptotic analysis is applied to an idealized model of tidally dominated estuaries in order to find out
what bathymetric features could be reproduced, with emphasis on the creation of a finite-amplitude
equilibrium. The idea was inspired by Van Veelen et al.(2018) who applied the same methods to analyze
tidal formations in open seas.
The linear results were a near-exact reproduction of Hepkema et al.(2019). The linear results clarified the
main patterns observed in estuary. The increased tidal bar length with wider channels, and the stabilizing
effect of depth can be clarified with the first-order equations. Moreover, the linearized system reproduced
the instability of seemingly flat bed, as found by Seminara & Tubino (2001).
The second- and third-order results showed some expected features. The elongation of troughs and
cross-channel shallow bridges of sand were observed, which were direct consequences of added interaction
terms between spatial modes. These features were also observed in the equilibria from Schramkowski et
al.(2004).
However, the finite-amplitude equilibria from Schramkowski et al.(2004) could not be reproduced. Even
when using near-critical initial conditions the higher spatial modes still breached the surface. These high
modes were not damped fast enough. The root causes were inherent to the model and method. That
the energy dissipation in the estuary was not as fast as in Van Veelen et al.(2018) was mainly due to
geometry: a semi-closed estuary did not allow a fast energy cascade to and eventual damping of the high
modes compared to an open sea. Moreover, the number of modes in the model had to be limited to keep
CPU-time manageable. Therefore, simply using a lot of modes in order to have more dissipation for a
finite-amplitude equilibrium was not an option.
All in all, asymptotic analysis could not create the desired finite-amplitude equilibrium, which is the
most important consequence of the non-linear dynamics. Therefore is asymptotic analysis not suitable to
clarify the non-linear effects in estuaries.
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