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Introduction

When modelling a real life situation, we often want to use information from the
past to better predict future values. In some situations past events raise the
likelihood for future events to occur, so information about the past is necessary
to set up a good model. Processes that follow this pattern, are called self-exciting
processes. Self-exciting processes are widespread: an earthquake is modelled as
a self-exciting process, such are several option related models.

In this Thesis we will be looking at the Hawkes process, which is a self-
exciting process. The Thesis is divided into four parts.

Part I is about stochastic processes. A Hawkes process is an example of a
stochastic process, so before we are able to describe the Hawkes process, we
should know what stochastic processes are and what important type of stochas-
tic processes we have. Special attention will be given to the homogeneous and
nonhomogeneous Poisson processes, since Hawkes processes are related to these.

Part II is about Hawkes processes. We define what Hawkes processes are
in both the one-dimensional and multidimensional case. We will look at the
stationarity conditions and will see how the expected number of events for a
one-dimensional Hawkes process can be calculated. Besides, we will look at
how the parameters in a Hawkes process can be calculated using the maximum-
likelihood estimates.

Part III is about the simulation of Poisson and Hawkes processes. If a
sample of events have already occured, simulation studies can help us to predict
the continuation of the process based on the events already occured. Besides,
simulations can help us to verify theoretical findings in a more visual way. This
Part forms the core of the Thesis.

In Part IV of this Thesis two real life applications of Hawkes processes will
be discussed. We will look at the use of Hawkes processes in finance and in
the description of social media. The two Chapters in this Part are based on
existing papers, so no own models have been set up. These Chapters are mainly
there to give a quick look at how Hawkes processes can be used in real life
situations. Besides, in these two Chapters we will use the knowledge acquired
in the previous Chapters, so it can also be seen as a refresher of the theory dealt
with in mostly Part I and Part II of this Thesis.

3



4



Contents

I Stochastic Processes 9

1 Measure Theory of Stochastic Processes 11
1.1 Defining Stochastic Processes . . . . . . . . . . . . . . . . . . . . 11
1.2 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Stopping Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Toolbox for Stochastic Processes 15
2.1 Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Counting Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Conditional Intensity Function: Part I . . . . . . . . . . . . . . . 17
2.4 The Little o-Notation . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Regular Point Process . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Conditional Arrival Function . . . . . . . . . . . . . . . . . . . . 19
2.7 Conditional Intensity Function: Part II . . . . . . . . . . . . . . . 19
2.8 Cumulative Conditional Intensity . . . . . . . . . . . . . . . . . . 20

3 The Two Poisson Processes 21
3.1 The (homogeneous) Poisson process . . . . . . . . . . . . . . . . 21
3.2 The nonhomogeneous Poisson process . . . . . . . . . . . . . . . 24

II Hawkes Processes 27

4 The One-Dimensional Hawkes Process 29
4.1 A Self-Exciting Process . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Defining the One-Dimensional Hawkes Process . . . . . . . . . . 30

4.2.1 The background intensity . . . . . . . . . . . . . . . . . . 31
4.2.2 The excitation function . . . . . . . . . . . . . . . . . . . 31
4.2.3 Visual Representation of the One-Dimensional Hawkes

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Stationarity Conditions . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Branching Structure . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 An Example Branching Structure . . . . . . . . . . . . . . 36
4.4.2 The Branching Factor . . . . . . . . . . . . . . . . . . . . 36

5



6 CONTENTS

4.4.3 Stationarity Revised . . . . . . . . . . . . . . . . . . . . . 37
4.5 Expected Number of Events . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 α as a Variable . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.2 β as a Variable . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.3 λ0 and t as a Variable . . . . . . . . . . . . . . . . . . . . 39

4.6 Maximum-Likelihood Estimation . . . . . . . . . . . . . . . . . . 40
4.6.1 Likelihood Function of a Hawkes Process . . . . . . . . . 40
4.6.2 Log-Likelihood Function of a Hawkes Process with Expo-

nential Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 The Multidimensional Hawkes Process 45
5.1 Basics of Multivariate Point Processes . . . . . . . . . . . . . . . 45
5.2 Natural Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Defining the Multidimensional Hawkes Process . . . . . . . . . . 47
5.4 Stationarity Conditions . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Maximum-Likelihood Estimation . . . . . . . . . . . . . . . . . . 48

III Simulating (Nonhomogeous) Poisson and Hawkes
Processes 49

6 Simulating Poisson 51
6.1 The Homogeneous Poisson Process . . . . . . . . . . . . . . . . . 51

6.1.1 Recap of Poisson Processes . . . . . . . . . . . . . . . . . 51
6.1.2 The Theory Behind the Simulation . . . . . . . . . . . . . 52
6.1.3 The Algorithm for the Simulation . . . . . . . . . . . . . 52
6.1.4 Running the Simulation . . . . . . . . . . . . . . . . . . . 54
6.1.5 Checking Properties . . . . . . . . . . . . . . . . . . . . . 55

6.2 The Nonhomogeneous Poisson Process . . . . . . . . . . . . . . . 57
6.2.1 Recap of Nonhomogeneous Poisson Processes . . . . . . . 57
6.2.2 The Theory Behind the Simulation . . . . . . . . . . . . . 57
6.2.3 The Algorithm for the Simulation . . . . . . . . . . . . . 58
6.2.4 Running the Simulation . . . . . . . . . . . . . . . . . . . 59
6.2.5 Checking Properties . . . . . . . . . . . . . . . . . . . . . 61

7 Simulating Hawkes 65
7.1 Ogata’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1.1 Recap of Hawkes Processes . . . . . . . . . . . . . . . . . 65
7.1.2 The Theory Behind the Simulation . . . . . . . . . . . . . 66
7.1.3 The Algorithm for the Simulation . . . . . . . . . . . . . 66
7.1.4 Running the Simulation . . . . . . . . . . . . . . . . . . . 68
7.1.5 Complexitity . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Dassios and Zhao’s Algorithm . . . . . . . . . . . . . . . . . . . . 73
7.2.1 New Look at the Conditional Intensity Function . . . . . 73
7.2.2 The Theory Behind the Simulation . . . . . . . . . . . . . 74
7.2.3 The Algorithm for the Simulation . . . . . . . . . . . . . 74



CONTENTS 7

7.2.4 Complexity and Limitations . . . . . . . . . . . . . . . . . 76
7.3 Algorithm Based on Branching Factor . . . . . . . . . . . . . . . 76

IV Applications 79

8 Financial Application 81
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.3 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9 Social Media Application 87
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.3 The Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . 89

9.3.1 Maximum-Likelihood Estimators . . . . . . . . . . . . . . 89
9.3.2 Expected Number of Events . . . . . . . . . . . . . . . . . 89

9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendices 97

A Concepts of Measure Theory 99
A.1 Sigma-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2 Sub-Sigma-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.3 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4 Measure Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.5 Measurable Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.6 Finite and σ-Finite Measures . . . . . . . . . . . . . . . . . . . . 102
A.7 Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . 102

B Concepts of Probability Theory 103
B.1 Sample Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.2 Probability Measure . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.3 Probability Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.4 Random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C Mathematica Code For Graphs 107

D Matlab Codes Used for the Simulations 109
D.1 Simulating Poisson Process . . . . . . . . . . . . . . . . . . . . . 109
D.2 Simulating Nonhomogeneous Poisson Process . . . . . . . . . . . 111
D.3 Simulating Exponential Hawkes (Ogata) . . . . . . . . . . . . . . 113
D.4 Simulating Power Law Hawkes (Ogata) . . . . . . . . . . . . . . 117



8 CONTENTS



Part I

Stochastic Processes

9





Chapter 1

Measure Theory of Stochastic
Processes

In this Thesis we are going to look at Hawkes processes. The Hawkes process
is an example of a stochastic process, so in order to be able to describe Hawkes
process, we should first have a understanding of what a stochastic process is.

In this Chapter we will define a stochastic process from a measure theoretical
point of view. Besides given the definition we will look at two concepts of
stochastic processes that are important in the following of this Thesis.

Readers who are not familiar with the basics of measure and probability
theory are encouraged to first go to Appendix A and Appendix B to learn more
about these topics.

1.1 Defining Stochastic Processes
The core of this Chapter lies in defining what a stochastic process exactly is.
Before giving a precise definition it is good to first denote that a stochastic
process is a set of random variables, where each random variable represents the
value of the process at a specific time. To know at which times we are looking
at, we always first denote the time index set, which we will define first.

Definition 1 ([8], Definition 3.1.1.): The time index set T is the collection
of times at which we observe random outcomes.

Although we have defined T here as a time index set, we could have defined T
more generally as an index set, since a stochastic processes is not necessarily
about time processes. We could have also looked at the size of a certain popula-
tion, for different generations, so in this case we could have set T = {1, 2, 3, 4, ...},
where each t ∈ T represents the t-th generation of the population. However,
since we are looking at time processes in this Thesis, T will from now on always
represent a time index set.

11
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For the time index set T there are two options. We could be looking at
a continuous time interval T (in this case we are looking at a continuous-time
process), or T could be a set of integers (in this case we are looking at a discrete-
time process). ([8], Definition 3.1)

Now that we have defined what a time index set is, we are able to define a
stochastic process.

Definition 2 ([1], Definition 6.3.1.): A (real valued) stochastic process
with [time] index set T is a family {Xt : t ∈ T} of random variables defined
on a probability space (Ω,A,P).

A stochastic process can thus be thought of as a family of random variables
that describes the evolution through time of some (physical) process, thus all
random variables are defined on the same probability space.

If Xt is given, than we say that Xt is the state of the process at time t. ([26],
page 77) For example, Xt can be the number of cars driving on a road at time
t.

A definition linked to the state of a process, is that of a state space.

Definition 3 ([26], in text, page 78): The state space of a stochastic
process is defined as the set of all possible values that the random variables
Xt can assume.

1.2 Filtrations

In the definition of Hawkes processes, which are the main interest of this Thesis,
the history of the process up to a certain time is important. Without going into
details about the specific definition of a Hawkes process yet, we will now define
a filtration, a concept that is the same as the history in the definition of Hawkes
processes.

Definition 4 ([9], in text, page 345): Let (Ω,A,P) be a probability space.
A filtration is a sequence {Fn}∞n=0 of sub-σ-algebras of A that is increasing,
in the sence that Fn ⊆ Fn+1 holds for each n.

A filtration can be seen as the history of a process. The elements in the σ-
algebra Fn can be seen as all the events up to time n. The elements in Fn can
be seen as all the events that are determined by the random variables X0, X1,
..., Xn. The next example shows a more concrete example of the fact that a
filtration can be seen as the history of a process.
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Example 1: As in the Examples in Appendix B, we will look at the example
of tossing two fair contains. As can be seen in Example B1, the sample space
of the experiment is Ω = {HH,HT, TH, TT}. As σ-algebra on Ω we choose
A = {∅, {HH}, {HT}, {TH}, {TT}, {HH,HT}, {HH,TH}, {HH,TT},
{HT, TH}, {HT, TT}, {TH, TT}, {HH,HT, TH}, {HH,HT, TT},
{HH,TH, TT}, {HT, TH, TT}, {HH,HT, TH, TT}}, as we did in Example
B2.

Right now there are three times of interest: t = 0 (have not tossed a coin yet),
t = 1 (after having tossed one coin) and t = 2 (after having tossed both coins).

At time t = 0 we have no information about which event will occur. The only
two things we know for certain now yet is that ∅ would not occur and that Ω
will occur for sure, so F0 = {∅,Ω}.

At time t = 1 we have information about the first toss. Say we throw heads at
t = 1, so only HT and HH can occur, so F1 = {∅, {HH}, {HT}, {HH,HT},
{HH,TH}, {HH,TT}, {HT, TH}, {HT, TT}, {HH,HT, TH},
{HH,HT, TT}, {HH,TH, TT}, {HT, TH, TT}, {HH,HT, TH, TT}}.

At time t = 2, we know for certain which event has occured, so F2 = A.

We see F0 ⊆ F1 ⊆ F2, and F0, F1, and F2 are all σ-algebras, thus {F0,F1,F2}
is a filtration.

1.3 Stopping Time

Another definition that is closely connected to that of the filtration is the defi-
nition of the stopping time.

Definition 5 ([9], in text, page 345): Let {Fn} be a filtration on the
probability space (Ω,A,P). A stopping time (or an optional time) is a function
T : Ω→ N0 ∪ {∞} such that {T ≤ n} ∈ Fn.

The formal definition of the stopping time is more difficult than the interpreta-
tion.

Say we are having a stochastic process with time index set T defined on
the probability space (Ω,A,P), and a filtration on (Ω,A,P). We are observing
random variables X0, X1, ..., where Xi ∈ Fi (for i = {1, 2, ...}). At time T we
want to stop observing the random variables. It is important to say that T does
not really have to be a numerical value, but can also be a rule like “two times
heads has been thrown” in the experiment of throwing a fair dice. Say event n
occurs at time T . The decision to stop observing at the n-th event, depends
only on information from the previous events X0, ..., Xn−1 and not on future
events Xn+1, ..., thus {T ≤ n} ∈ Fn. ([9], page 345)
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Example 2: To give a more concrete example of what a stopping time is
and also what is not a stopping time, we look at playing roulette. Say we
always play on red. Playing exactly two games is a stopping time, since no
information of the future is needed. Playing until all money is lost is also a
stopping time, since no future information is relevant as soon as you are broke.
However, playing until you have maximized your profit is not a stopping time,
since future information information is needed to determine whether the profit
is maximized.



Chapter 2

Toolbox for Stochastic
Processes

Now we know what stochastic processes are, we are going to look at some of
the tools needed to work with stochastic processes. These tools form the basis
for our analysis of Hawkes processes. We will also define the point process, the
counting process and the regular point process in this Chapter.

2.1 Point Processes
Before we can look at some of the tools needed in the description of stochastic
and Hawkes processes, we have to define what a point process is, since point
processes are used in some of the Definitions, Propositions and Theorems fol-
lowing.

Definition 6 ([21], Definition 2): If a sequence of random variables T =
{T1, T2, ...}, taking values in [0,∞), has P(0 ≤ T1 ≤ T2 ≤ ...) = 1, and the
number of points in a bounded region is almost surely [(see Appendix B2)]
finite, then T is a point process.

Based on Definition 6, we see that a point process is just a sequence of sorted
random variables. We call a point process simple if and only if Ti < Ti+1 for all
values of i. ([3], Definition 1)

The set T is mostly a set with elements that corresponds to the time a
certain event has taken place. The element Ti is the event time of the i-th
event. The event time is the time of occurence of the i-th event. The event time
is sometimes called the arrival/waiting time.

2.2 Counting Process
Besides the point process, we also need to define a counting process.

15
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Definition 7 ([21], Definition 1): A counting process is a stochastic process
{N(t) : t ≥ 0} taking values in {0, 1, 2, 3, ...} that satisfies N(0) = 0, is almost
surely finite, and is a right-continuous step function with increments of size
+1.

The point process we have just defined, can be rearranged very easily into a
counting process.

Whereas a point process is a collection of times at which certain event occurs,
a counting process represents the total number of events that have occured at
a certain time.

The number of events occured at time t for the counting process {N(t), t ≥ 0}
can be calculated as

N(t) =
∑
i≥1

It≥Ti ,

where I is the indicator function defined as

It≥Ti =

{
0 if Ti > t,
1 if Ti ≤ t,

so a value of one is assigned to all the events that have occured before t and
a value of zero is assigned to all the other events. ([25], page 3) In this way
exactly all the events that have occured before time t will be counted, thus N(t)
indeed represents the number of events occured at time t.

The connection between the point process and the counting process is shown
in Figure 2.1.

Figure 2.1: In this graph a graphical representation of both a point and counting
process can be seen. Is this process seven events have occured, and their event
times are denoted on the horizontal axis by ti. A set containing {t1, ..., t7} can
be seen as a point process. On the vertical axis we see the number of events
counted, so this is the corresponding counting process N(t). (Figure taken from
[21], Figure 1)
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Based on the information of the counting process, we see a counting process
must satistfy the following four rules: ([26], page 297)

• N(t) ≥ 0,

• N(t) is integer valued,

• if s < t, then N(s) ≤ N(t),

• for s < t, N(t) − N(s) equals the number of events that occur in the
interval (s, t].

Besides the conditions listed above, a counting process is said to possess inde-
pendent increments. A process is said to possess independent increments if the
number of events that occur in disjoint time interval are independent. ([26],
page 297)

Independent increments prove to be very useful in the definition of the Pois-
son process in Chapter 3.

2.3 Conditional Intensity Function: Part I
In Section 2.1 we have defined what point processes are, but for some of the
Definitions, Propositions and Theorems following, we want to define regular
point processes. However, in order to define regular point processes we first
have to define what a conditional intensity function is. As the word conditional
suggests, the conditional intensity function depends explicitely on the past. By
Ht− we denote the σ-algebra of all the events that have occured at times up to
but not including t. ([10], page 232) We call Ht− the history of the process, and
this history is a filtration (Definition 4).

For the conditional intensity function, which is denoted by λ∗(t|Ht−), we
have λ∗(t|Ht−)dt ≈ E[N(dt)|Ht−], so the conditional intensity function can be
thought of as the expected rate of arrivals at t, given the realization of the
process before t. ([10], page 232)

In most literature the history of the process is not denoted explicitely. In-
stead, an superscript asterisk is used. (This is for example done in [10].) So we
will write λ∗(t) instead of λ∗(t|Ht−).

Definition 8 ([21], Definition 3): Let N(.) be a counting process with
associated histories H.. If a (non-negative) function λ∗(t) exists such that

λ∗(t) = lim
h↓0

E[N(t+ h)−N(t)|Ht−]

h

which only relies on information of N(.) in the past (that is, λ∗(t) is Ht−-
measurable), then it is called the conditional intensity function of N(.).

We call a process nonstationary if the conditional intensity function of the pro-
cess depends explicitely on time, otherwise we call a process stationary. ([17],
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in text, page 4) We will come back to the concept of (non)stationarity in more
detail in Section 4.3 and Subsection 4.4.3.

2.4 The Little o-Notation

The last step before we can define the regular point processes, is defining the
little o-notation.

Definition 9 ([26], Definition 5.1): A function f(.) is said to be o(h) if

lim
h→0

f(h)

h
= 0.

It may be clear that, for example, f(h) = h3 is o(h) since

lim
h→0

f(h)

h
= lim
h→0

h3

h
= lim
h→0

h2 = 0.

The reason to use the o(h) notation is mostly for making statements more
precise. Say X is a random variable with probability density function fX . In
approximation we can say P(t < X < t + h) ≈ fx(t) · h. Instead, we say
P(t < X < t+ h) = fx(t) · h+ o(h) to be more precise. ([26], page 299)

2.5 Regular Point Process

We can now define regular point processes.

Definition 10 ([17], adapted from pages 3-4): A regular point process
is defined so that the probability of an event occuring in the time interval
[t, t+ ∆t) is given by

P(N(t+ ∆t)−N(t) = m|Ht−) =

{
λ∗(t)∆t+ o(h) if m = 1,
o(h) if m > 1,

(2.1)

where Ht− is the history of the process.

We see a regular point process is a point process in which the probability of
having one event in a small time-interval ∆t is proportional to the length of
the time-interval, and in which the probability of observing two or more events
in a small time-interval is almost equal to zero. The history of the process
contains information about both the number of events and the event times that
have previously occured. The probabilities we are looking at are conditional
probabilities: they are conditional on the history of the point process. ([17],
pages 3-4)
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2.6 Conditional Arrival Function

The (regular) point processes we have just defined can be characterized in a
number of ways. One way is to look at the distribution function of the next
arrival time conditional on the past.

Definition 11 ([21], in text, page 3): Given the history up until the
last arrival u, Hu−, define the conditional cumulative distribution function
F ∗(t|Hu−) of the next arrival time Tk+1 as

F ∗(t|Hu−) =

∫ t

u

P(Tk+1 ∈ [s, s+ ds]|Hu−)ds =

∫ t

u

f∗(s|Hu−)ds,

where f∗(t|Hu−) is the conditional probability density function of the next
arrival time, also called the conditional arrival distribution.

As was the case with the conditional intensity function, also here we do not ex-
plicitely write down the history, but instead use a superscript asterisk: F ∗(t|H(u)) =
F ∗(t) and f∗(t|H(u)) = f∗(t).

2.7 Conditional Intensity Function: Part II

In Section 2.3 we have already defined the conditional intensity function, but we
have not yet made clear we this function is used. In Section 2.6 we defined the
conditional arrival distribution. This distribution can be used to characterize a
point process. However, the conditional arrival distribution is difficult to work
with, so another characterization is preferred: the conditional intensity function.
([21], page 3)

To see why the conditional intensity function is so useful, we will look at the
following Proposition, which talks about a regular point process rather than a
point process.

Propostion 1 ([10], Proposition 7.2.IV): Let N be a regular point process
on R+. Then, the conditional intensity function determines the probability
structure of the point process uniquely.

So making use of the conditional intensity function, we uniquely define a (reg-
ular) point process which makes is a very useful way to characterize a process.

Besides this definition of the conditional intensity function, the conditional
intensity function can also be expressed in terms of the conditional arrival func-
tion.
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Definition 12 ([24], in text, page 148; [21], in text, page 3): Given
the conditional cumulative distribution function F ∗(t) and the conditional
probability density function f∗(t). The conditional intensity function λ∗(t),
originally called the conditional hazard function, is defined as

λ∗(t) =
f∗(t)

1− F ∗(t)
.

2.8 Cumulative Conditional Intensity
Not only the conditional intensity function is used, also the integrated con-
ditional intensity function is used. This function, which we call the cumula-
tive conditional intensity function, will be important in the calculation of the
maximum-likelihood estimator of the Hawkes process.

Definition 13 ([21], Definition 4): For a counting process N(.) the non-
decreasing function

Λ(t) =

∫ t

0

λ∗(s)ds

is called the compensator of the counting process.

Note that in [21] this function is called the compensator. However, compensator
is a term that is mostly only used when talking about martingales, and since we
are not talking about those in this Thesis, we will not use the term compensator.



Chapter 3

Homogeneous and
Nonhomogeneous Poisson
Process

Now we have defined what stochastic processes are, and what kind of tools we
need to describe these processes, we are going to look at the homogeneous and
nonhomogeneous Poisson process. We spent quite some time describing the
(nonhomogeneous) Poisson processes, since these processes form the basis of
the Hawkes processes. Without going into any detail yet (this will be done in
Chapter 4), the reason we describe the (nonhomogeneous) Poisson processes so
extensive, is because the Hawkes process is the non-Markovian counterpart of
the (nonhomogeneous) Poisson processes.

3.1 The (homogeneous) Poisson process
The homogeneous Poisson process (from now on simply Poisson process), is one
of the most import classes of stochastic processes. As the name suggests, these
processes are based on the Poisson distribution.

Definition 14 ([12], Definition, page 170): A discrete random variable
X has a Poisson distribution with parameter µ, with µ > 0 if its probability
mass function p is given by

p(k) = P(X = k) =
µk

k!
e−µ

for k = 0, 1, 2, .... We denote this distribution by Pois(µ).

To see how the Poisson process is related to the Poisson distribution we first
have to look at the definition of a Poisson process.

21
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Definition 15 ([26], Definition 5.2): The counting process {N(t), t ≥ 0}
is said to be a Poisson process with rate λ > 0 if the following axioms hold:

1. N(0) = 0,

2. {N(t), t ≥ 0} has independent increments,

3. P(N(t+ h)−N(t) = 1) = λh+ o(h),

4. P(N(t+ h)−N(t) ≥ 2) = o(h).

Comparing Definition 15 with Definition 10 of a regular point process, we see
the Poisson process is not dependent on the history, so the conditional intensity
function is here just a fixed constant. This constant is called the rate of the
process, and the rate of the process determines the rate at which event occurs.
The greater the rate, the faster a new event occurs. A Poisson process is sta-
tionary since the conditional intensity function here does not explicitely depend
on the time.

The link between the Poisson process and the Poisson distribution is made
clear from the following theorem.

Theorem 1 ([26], Theorem 5.1): If {N(t), t ≥ 0} is a Poisson process with
rate λ > 0, then for all s > 0, t > 0, N(s + t) − N(s) is a Poisson random
variable with mean λt.

Proof: See for example [26] Theorem 5.1.
Q.E.D.

So we see that in any interval of length t, the number of events is Poisson
distributed with mean λt.

In terms of probability, the result of Theorem 1 can be written as

P(N(s+ t)−N(s) = n) =
e−λt(λt)n

n!
. (3.1)

Defining the Poisson process in another way, gives us a Definition that results
in another look at the Poisson process.

Definition 16 ([25], Definition 1): Let {τi}i≥1 be a sequence of indepen-
dent and identically distributed exponential random variables with parameter
λ[, thus the probability density function of a random variable τ if given by

fτ (t) =

{
λe−λt if t ≥ 0,
0 if t < 0.

] The event times are Tn =
∑n
i=1 τi. The process {Nt, t ≥ 0} defined by

Nt :=
∑
i≥1 It≥Ti is called a Poisson process with intensity λ.
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In comparison to Definition 15, Definition 16 makes the link between the Poisson
distribution and the Poisson process more clear. The Poisson process can be
seen as a counting process, in which all the event times are made up of elements
that are exponentionally distributed.

Definition 15 gives rise to a sequence {τi}i≥1 of random variables that are
called interarrival times: the first event occurs at time τ1, the second event
occurs τ2 after the first event, etc.

The connection between Definition 15 and Definition 16 can be made clear
by calculating the expected value of τ . The expected value of τ can be calculated
using integration by parts:

E[τ ] =

∫ ∞
−∞

tfτ (t)dt = λ

∫ ∞
0

te−λtdt

= λ

[
− t
λ
e−λt

]t=∞
t=0

+

∫ ∞
0

e−λtdt

= 0 +

[
− 1

λ
e−λt

]t=∞
t=0

=
1

λ
.

Since E[τ ] = 1
λ , events are arriving at an average rate of λ per time unit, which

is exactly what Definition 15 told us.
The event times, which we have already seen in Section 2.1, are the times at

which the events itself occur, so they can be calculated if the interarrival times
are known.

The event time Tn is the time of the n-th arrival, thus Tn =
∑n
i=1 τi. Since

the τi are random variables, the sequence of event times {T1, T2, ...} form a
random configuration of points on the real line [0,∞). We know Nt is a counting
process, so Nt increments by one for each Ti; explicitely ([25], page 4)

Nt =


0 if 0 ≤ t < T1,
1 if T1 ≤ t < T2
.
n if Tn ≤ t < Tn+1

.

Maybe the most important property of the Poisson process, is the memoryless
property.

Memoryless Property ([25], in text, page 4): Being memoryless in a
point process means that the distribution of future interarrival times depends
only on relevent information about the current times, but not on information
from further in the past. So a point process is memoryless if P(τ > t+m|τ >
m) = P(τ > t).

To prove that the Poisson process is memoryless, we first calculate the cumula-
tive distribution function of τ (for t ≥ 0):

Fτ (t) =

∫ t

−∞
fτ (x)dx =

∫ t

0

λe−λxdx =
[
−e−λx

]x=t
x=0

= 1− e−λt.
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Since Fτ (t) = P(τ ≤ t), we now know P(τ > t) = 1− P(τ ≤ t) = e−λt, thus

P(τ > t+m|τ > m) =
P(τ > t+m, τ > m)

P(τ > m)
=

P(τ > t+m)

P(τ > m)

=
e−λ(t+m)

e−λt
= e−λm = P(τ > t),

so the Poisson process is memoryless. The fact that the Poisson process is
memoryless, shows that the probability of waiting an additional time t after
having already waited a time m, is equal to the probability of waiting a total
time of t.

3.2 The nonhomogeneous Poisson process
In the (homogeneous) Poisson process we have discussed so far, all events arrive
independently of each other at a fixed rate λ. For a Poisson process we assume
that the rate always stays the same. Whereas this model is good for simulating
simple processes, such as the number of customers in a store over a short period
of time, this model is insufficient to model complex situations, like modelling
the number of customers in a store just before diner time. For these situations
the rate depends explicitely on the time, so λ = λ(t). In this case λ(t) is an
intensity function. The nonhomogeneous Poisson process can now be defined.

Definition 17 ([26], Definition 5.3): The counting process {N(t), t ≥ 0}
is said to be a nonhomogeneous Poisson process with intensity function λ(t),
t ≥ 0, if the following axioms hold:

1. N(0) = 0,

2. {N(t), t ≥ 0} has independent increments,

3. P(N(t+ h)−N(t) = 1) = λ(t)h+ o(h),

4. P(N(t+ h)−N(t) ≥ 2) = o(h).

Comparing Definition 15 with Definition 17 we see that the only thing that has
changed is that the fixed rate λ has been replaced by the intensity function λ(t).

In the light of Definition 10 of a regular point process, we see the conditional
intensity function here does not depend on the history. The intensity function
can be interpreted in the same way as the rate: to each time it assesses a certain
intensity that tells us how fast we expect the next event to occur. The difference
with the Poisson process is now that the intensity is not the same for all values of
t. However, since the intensity function depends on time, the nonhomogeneous
Poisson pricess is nonstationary.

As was the case with the Poisson process, the link between the Poisson
distribution and the nonhomogeneous Poisson process is very clear. The link is
made clear in the following Theorem.
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Theorem 2 ([6], Proposition 4.1): Let the point process N be a nonho-
mogeneous Poisson process with intensity function λ(t), then N(t) follows a
Poisson distribution with parameter

∫ t
0
λ(s)ds, i.e.

P(N(t) = n) =
e−

∫ t
0
λ(s)ds

(∫ t
0
λ(s)ds

)n
n!

.

Proof: See for example [26] Proposition 4.1.
Q.E.D.

So for the nonhomogeneous Poisson process, the probability of the number of
events that have happened at time t is Poisson distributed with parameter∫ t
0
λ(s)ds. The parameter looks very similar to the cumulative conditional in-

tensity defined in Definition 13, but here we have just the cumulative intensity.
In the light of nonhomogeneous Poisson processes, this cumulative intensity is
sometimes also called the mean value function, since the expectation of a Poisson
process is equal to the value of the parameter. ([26], in text, page 322)

The result of Theorem 2 could also be written in another way.

Theorem 3 ([26], Theorem 5.3): If {N(t), t ≥ 0} is a nonstationary Poisson
process with intensity function λ(t), t ≥ 0, then N(t+ s)−N(s) is a Poisson
random variable with mean

∫ t+s
s

λ(y)dy, [i.e.

P(N(t+ s)−N(s) = n) =
e−

∫ t+s
s

λ(y)dy
(∫ t+s

s
λ(y)dy

)n
n!

.]

Proof: See for example [26] Theorem 5.3.
Q.E.D.

The last Theorem tells us that if n = 0, the probability of having no events in
[s, t+ s] is equal to

P(N(t+ s)−N(s) = 0) = e−
∫ t+s
s

λ(y)dy. (3.2)

The last formula determines the law of occurrence for the next point. For
simple point processes, the points arrive one by one, thus checking whether
the condition listed above is fulfilled, tells us whether the point process is a
nonhomogeneous Poisson process. ([6], page 7)
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Part II

Hawkes Processes
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Chapter 4

The One-Dimensional Hawkes
Process

In the first Part of this Thesis we have looked at the theory of stochastic pro-
cesses. We have also seen some classes of stochastic processes, of which the (non-
homogeneous) Poisson processes were our main interest. We were interested in
the (nonhomogeneous) Poisson processes, since they are somehow similar to the
Hawkes processes, which air the main interest in this Thesis. These Hawkes
processes will be defined in this Chapter. Besides defining these processes we
will also look at some of their properties like stationarity and stability. Since
parameter estimation is of great importance in applications, we will look at the
maximum-likelihood estimator of Hawkes processes.

4.1 A Self-Exciting Process

In Chapter 3 we have seen the (homogeneous) Poisson process and the nonhomo-
geneous Poisson process. In the Poisson process, the events arrive independently
at a constant rate. In the nonhomogeneous Poisson process, the events arrive
independently due to an intensity function.

However, in reality it is not always the case that events arrive independently
of each other. We know, for example, that seismic activity of the past can help
predicting future earthquakes. ([23]) So in the case of earthquakes we see that
the occurence of an event affects the occurence of an upcoming effect. Also in
other fields of study we find that events arrive dependently of each other. In
Chapter 9 we will look at retweet cascades in social media. There we will find
that as soon a retweet took place the intensity function increases, which is the
same as saying that the likelihood of future events increase. ([25]) It may be
clear that there are processes in which events arrive dependently of each other,
such processes are called self-exciting processes.

A self-exciting process is a point process in which the arrival of an event
causes the conditional intensity function ot increase. ([25], in text, page 6)
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For a self-exciting process, the conditional intensity function increases if
a new event arrives. Since the conditional intensity function increases, the
occurence of a new event is more probable. So a self-exciting process can be
seen as a process in which the occurence of past points makes the occurence
of future points more probable. See Figure 4.1 for an example realisation a
conditional intensity function of a self-exciting process.

Figure 4.1: A conditional intensity function for a self-exciting process is shown.
We see that as soon as an event occurs, the conditional intensity function in-
creases. This increase, decays over time until a new event occurs. (Figure taken
from [21], Figure 2)

4.2 Defining the One-Dimensional Hawkes Pro-
cess

In 1971 Hawkes proposed a new self-exciting model, that turned out be very
practical and is still used. The process is now referred to as Hawkes process. As
is stated in [14] about the process: “one may think of this as a self-exiciting shot
process in which the current intensity of events is determined by events in the
past”. So the Hawkes process is a self-exciting process that depends explicitely
on all previously occured events.

Definition 18 ([21], Definition 5; [25], Definition 3): Let {N(t) : t ≥ 0}
be a couting process, that satisfies Equation 2.1 of Definition 10. The point
process N(.) is said to be a Hawkes process if the conditional intensity function
λ∗(t) is of the form

λ∗(t) = λ0 +
∑
i:t>Ti

µ(t− Ti)

for some λ0 > 0 and µ : (0,∞)→ [0,∞), and where Ti are the event times.
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In the Hawkes process λ0 is called the background intensity and µ is an excitation
function, concepts we will define more precisely in the following subsections.

Looking at the definition of a Hawkes process, we observe that a Hawkes
process is a nonhomogeneous Poisson process as long as µ(.) 6= 0. If µ(.) = 0,
then we are having a homogeneous Poisson process, thus this trivial case will not
be considered. Besides, we notice the fact that the conditional intensity function
depends explicitely on previous events, which makes clear why a Hawkes process
is self-exciting.

A Hawkes process is in general non-Markovian. ([30]) Very simply said, a
stochastic process is a Markov process, if it has the Markovian property that,
conditional on the present, the future is independent of the past. ([25], in text,
page 11) It may be clear that the Hawkes process (mostly) is non-Markovian,
since the past is of great importance to the future as can be observed in the
conditional intensity function. The (nonhomogeneous) Poisson process is mem-
oryless, and thus Markovian. As said in the introduction of Chapter 4, the
Hawkes process can thus be seen as the non-Markovian counterpart of the (non-
homomgeneous) Poisson process.

4.2.1 The background intensity

The first term in the conditional intensity function of the self-exciting process
if the background intensity term λ0. To find out what λ0 does, set µ(.) = 0,
such that λ∗(t) = λ0. So if µ(.) = 0 we are simply having a homogeneous
Poisson process. This explanation makes clear that λ0 is simply the rate of
the process. The background intensity does not contribute to the fact that the
Hawkes process is self-exciting.

In this Thesis, we will treat λ0 as a fixed constant, but the background
intensity may also be a function λ0(t). ([25], page 6)

As we will see in Section 4.4, a Hawkes process can be seen as a process
in which there are “immigrant” and “offspring” events. The background inten-
sity term determines the arrival of the immigrant events, and their arrival is
independent of previous events occured. ([25], page 6)

In Definition 18 we have seen that λ0 should be bigger than 0. It may be
clear that the background intensity can not be smaller than zero. To see why λ0
can not be equal to zero look at the case were there have not occured any events
yet (in Figure 4.1 this is the part before t1). In this case

∑
i:t>Ti

µ(t− Ti) = 0,
such that λ∗(t) = λ0. If we would have λ0 = 0, then there will not occur any
events in the future, thus the process will not really do anything. To prevent
this case, we should have λ0 > 0.

4.2.2 The excitation function

The second term in the conditional intensity function of the Hawkes process
contains the excitation fucntion µ(.). The excitation function is also called the
memory kernel. As is clear from

∑
i:t>Ti

µ(t−Ti), the kernel µ(t−Ti) modulates
the change than an event at time Ti has on the intensity function at time t. ([25],
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page 6) It is common to choose the excitation function µ(.) to be monotonically
decreasing. This is common, since in this way it can be regulated that more
recent events have a higher influence on the conditional intensity at this time,
than events that have occured more early in time.

The excitation function can have many forms. In this Thesis we will define
both the exponential and power law kernel, but we will focus on the exponential
kernel.

The exponential kernel

For the excitation function µ(.) a function of exponential decay is mostly used.
The form µ(t) =

∑k
j=1 αje

−βjt, for t > 0, was introduced by Hawkes in 1971.
([14]) In this case the conditional intensity function becomes

λ∗(t) = λ0 +
∑
i:t>Ti

k∑
j=1

αje
−βj(t−Ti),

so the conditional intensity function is now parameterised by the two constants
αj and βj . As we will see in Section 4.3, stationarity will imply αj , βj > 0 and∑k
j=1

αj
βj
< 1.

In this Thesis we will mostly look at the case where k = 1, so in this case
the conditional intensity function becomes

λ∗(t) = λ0 +
∑
i:t>Ti

αe−β(t−Ti).

The last equation makes it possible for us to interpret the two coefficients. If a
new event arrives, the conditional intensity function increases by α. However,
this increase will decrease over time at an exponentional rate of β.

If k would not be equal to 1, then both parameters take different values for all
events. In Section 4.5, we are going to look at a marked Hawkes process with
exponential kernel, which is basically the Hawkes process with exponentional
kernel, with β fixed and αj event dependent. The mark should be seen as the
increase in the conditional intensity function due to the occurence of the event.

The power law kernel

Besides a function of exponential decay, also a power law function µ(t) = K
(c+t)p

is often used. In this case the conditional intensity function becomes

λ∗(t) = λ0 +
∑
i:t>Ti

K

(c+ (t− Ti))p
,

so the conditional intensity function is now parameterised by the three constants
k, c and p. In Chapter 9 we will be looking at an application in which this power
law kernel is used. The intepretation of the parameters will there be explained
in light of the application.
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4.2.3 Visual Representation of the One-Dimensional Hawkes
Process

To finish this section about what a Hawkes process precisly is, we will give a
visual representation of such a process. See Figure 4.2.

4.3 Stationarity Conditions

As we have seen a stochastic process is a set of random variables, all coming
from the same distribution, that are indexed to a certain set. Mostly we consider
time index sets, such that we get a list of random variables that somehow vary
over the time. The outcoming set of this stochastic process, can be seen as
a time series. A complete area of econometrics is focussed on studying and
modelling these time series. When running a regression on the time series,
often stationarity is assumed.

Definition 19 ([26], in text, page 633): A stochastic process {X(t), t ≥ 0}
is said to be a stationary process if for all n, s, t1, ..., tn the random vectors
X(t1), ..., X(tn) and X(t1 + s), ..., X(tn + s) have the same joint distribution.

So a stochastic process is stationary if the sample mean, the variance and the
autocorrelation are constant over time. ([13], in text, page 77) Very heuristically
said, the autocorrelation is the correlation between two elements of a time series.

We want time series to be stationary, since a violation of this assumption
makes the outcomes of the regression we have runned not interpretable in the
right way. ([29], page 395)

Readers who are interested in the analysis of time series are encouraged to
read [13] (Chapter 4 focusses on stationarity) and [29] (Chapter 12 is about time
series models).

However, for practical purposes, the stationary condition is often too strict.
Often the condition of weak stationarity is enough to work with.

Definition 20 ([26], in text, page 634): A stochastic process {X(t), t ≥
0} is said to be a second-order stationary or a weakly stationary process if
E[X(t)] = c for some constant c and Cov(X(t), X(t+ s)) does not depend on
t.

So put differently, a process is weakly stationary if the first two moments of
X(t) are the same for all t and the covariance between X(s) and X(t) depends
only on |t− s|. ([26], in text, page 634)

We want to see under which condition the Hawkes process is weakly station-
ary. We are only going to look at the constant mean part, since this is the most
important property of weak stationarity.
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(a)

(b)

(c)

Figure 4.2: Figure 4.2a shows an example realization of a Hawkes process:
nine events are observed, at times T1, T2, ..., T9, and their corresponding inter-
arrival times τ1, τ2, ..., τ9. Figure 4.2b shows the corresponding counting process
Nt over time, which increases by one unit for each Ti. Figure 4.2c shows the
intensity function λ∗(t) over time. Visibly, the value of the intensity function
increases immediately after the occurence of an event Ti, and diminishes as
time passes and the effect of the given event Ti decays. (Figure taken from [25],
Figure 1.2a-1.2c)
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Let us determine the expected value of the conditional intensity function of
Hawkes process:

E[λ∗(t)] = E

[
λ0 +

∑
i:t>Ti

µ(t− Ti)

]
= λ0 + E

[ ∑
i:t>Ti

µ(t− Ti)

]
.

In [14] (in text, Equation 8) the conditional intensity function of Hawkes pro-
cess is defined with a stochastic integral instead of a sum of all the event times
occured before the time we are looking at. Since talking about stochastic in-
tegrals is outside the scope of this Thesis, in Definition 18 we have only given
the definition of a Hawkes process with a sum. However, using the stochas-
tic integral definition, it is shown in [14] (page 84) that E

[∑
i:t>Ti

µ(t− Ti)
]

=∫ t
−∞ µ(t−u)E[λ∗(t)]du. The expected value of the conditional intensity function
now becomes

E[λ∗(t)] = λ0 +

∫ t

−∞
µ(t− u)E[λ∗(t)]du.

Assuming stationarity, we can take E[λ∗(t)] out of the integral and rewrite the
equation above to

E[λ∗(t)] =
λ0

1−
∫ t
−∞ µ(t− u)du

=
λ0

1−
∫∞
0
µ(u)du

. (4.1)

Now Equation 4.1 again shows us that λ0 should be greater than zero, since a
negative expected value for a positive function does not make sense. Besides,
Equation 4.1 tells us that in order to have stationarity, it should be the case
that ∫ ∞

0

µ(u)du < 1.

In the case of the exponentional kernel µ(u) = αe−βu, we observe that station-
arity is fulfilled if∫ ∞

0

µ(u)du =

∫ ∞
0

αe−βudu = α

[
−e−βu

β

]∞
0

=
α

β
< 1.

In Section 4.4.3 we will have a more complete look at the stationarity of a
Hawkes process.

4.4 Branching Structure

The Hawkes process can also be viewed as a Poisson cluster process represen-
tation. ([15]) In this view, the events in the Hawkes process are seen as either
“immigrants” or “offspring”. As the names suggests, an immigrant event is an
event that arrives independently of other events, while an offspring event is trig-
gered by a previous event in the process. In a cluster all the offspring associated
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with a certain immigrant are structured. This view of a Hawkes process is called
the branching structure. ([25], page 8)

In the scope of this Thesis there are three justifications for explaining this
alternative view. Firstly, this new view makes it more easy to prove certain
properties of the Hawkes process: we will again talk about the stationarity of
the process, but then based on this branching structure. Secondly, based on the
branching structure an Algorithm for simulating a Hawkes process can be set
up, as we will see in Section 7.3. Thirdly, the branching structure can make the
modelling of certain real life situations possible, as we will see in Chapter 9.

4.4.1 An Example Branching Structure
Imagine that we our counting the population in a country. The country consists
of immigrants and their offspring. The immigrant events follow a homogeneous
Poisson process with rate λ0. The offspring events are then a result of the
immigrant events: an immigrant produces zero or more children all independent
of the other immigrants. So the offspring events follow a self-exciting process.

In Figure 4.3 the branching structure of the example Hawkes process in
Figure 4.2a is shown. However, it is good to note that based on the points in
a point process, the branching strucure can not be observed: an event alone
does not tell us if it is an immigrant or an offspring event. All the events are
denoted by circles. The circle where the arrow points at is the offspring of the
circle from where the arrow starts. The random variables Zij are introduced,
where Zi0 = 1 if event i is an immigrant and Zij = 1 if event j is an offspring
of i. The generation of the event, which is denoted in the circle, denotes the
generation to which an event belongs. The immigrants are labeled as Gen0,
where the offspring are denoted by Genk, with k > 0. ([25], pages 8-9)

In the cluster representation all the offspring associated with a certain immi-
grant are structured. In this cluster representation, the events that are directly
or indirectly connected to a specific immigrant form the cluster of offspring with
that immigrant. For example T2, T3, T4, T5 and T6 form the cluster of offspring
of T1. The offspring events that are associated with a certain immigrant event,
are arriving according to a nonhomogeneous Poisson process with an intensity
function λ(.). Looking at Figure 4.3, we observe that the third event, with cor-
responding event time T3, is coming from a nonhomogeneous Poisson process
endowed with intensity λ(t− T2) for t > T2. ([25], page 9)

4.4.2 The Branching Factor
A quantity that can be used to describe the Hawkes process is the branching
factor/ratio. The branching factor is defined as the expected number of direct
offspring spawned by a single event. ([25], in text, page 9)

The branching factor n∗ can be computed by integrating the conditional
intensity function over all time values ([21], page 7):

n∗ =

∫ ∞
0

µ(s)ds. (4.2)
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Figure 4.3: An example branching strucute of the Hawkes process in Figure
4.2a is shown. All circles represent an event that has occured at time Ti. The
arrows between the circles tell us the relation between the different events, so
connected circles are in the same cluster. The generation of a certain event is
denoted by Geni, with i = 0 for immigrant events and i > 0 for the offspring.
The random variables Zij tell us which events are related: Zi0 = 1 if event i
is an immigrant and Zij = 1 if event j is an offspring of i. (Figure taken from
[25], Figure 1.2d)

So the branching factor is the value of the cumulative conditional intensity
(Definition 13) at infinity.

In the case of an exponentional kernel, µ(s) = αe−βs, the branching factor
becomes

n∗ =

∫ ∞
0

αe−βsds = α

[
− e−βs

β

]s=∞
s=0

=
α

β
.

4.4.3 Stationarity Revised
In Section 4.3 we have defined stationarity and we have seen that the Hawkes
process is weakly stationary if α

β < 1. Since n∗ = α
β , we can express the

stationarity requirement as n∗ < 1.
However, depending on the values of α and β, n∗ can also take values bigger

than or equal to 1 (in Section 4.2.2 we have seen that α, β > 0, so n∗ can not
become negative or zero).

Before discussing the stationarity, we are first going to calculate the expected
number of offspring for one immigrant. Let us first define Ai as the expected
number of events in Geni. Based on how the branching factor is defined, we
notice that each event in the previous generation has on average n∗ offspring
events, thus Ai = n∗Ai−1 = ... = (n∗)i, for i ≥ 1. ([25], Equation 1.16) The
expected number of offspring for one individual now becomes

E

[ ∞∑
i=1

Ai

]
=

∞∑
i=1

E[Ai] =

∞∑
i=1

(n∗)i =

{
n∗

1−n∗ if n∗ < 1,

∞ if n∗ ≥ 1.

If n∗ ∈ (0, 1) we have that

E[
∑∞
i=1Ai]

1 + E[
∑∞
i=1Ai]

=
n∗

1−n∗

1 + n∗

1−n∗

= n∗,
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so the branching ratio can be seen as the ratio between the number of events in a
cluster to the total number of the entire family (the cluster plus the immigrant).
([21], page 8)

Let us now get back to looking at the stationarity. Corresponding to the
three possible “states” of n∗, the process can be in three different phases ([2]:
both the phases, and there explanation are taken from here):

1. If n∗ < 1 we are in the sub-critical phase. As seen before, n∗ < 1 corre-
sponds to a stationary process. In this sub-critial phase each immigrant
event generates on average less than one offspring event. In this phase the
total progeny of each event is almost surely (see Appendix B2) finite, as
is the average number of generations before extinction. This is also some-
thing that can be seen at looking at Equation 4.3: if n∗ < 1 the expected
number of events in a cluster is bounded.

2. If n∗ = 1 we are in the critical phase. In this phase, the process is quasi-
stationary. The fact that the process is quasi-stationary means that al-
though the average conditional intensity of the process grows exponen-
tionally (for the exponential kernel) in time, the process may still possess
a finite expected number of events. ([2]). In this phase the total progeny
is almost surely finite, but there are large fluctuations in the size of the
progeny. These large fluctuations result in a diverging average number of
generations before extinction.

3. If n∗ > 1 we are in the super-critical phase. In this phase, the process is
nonstationary. In the super-critical phase each immigrant event generates
on average more than one offspring event. This results in a progeny of
an immigrant event that might be infinite. This is also something that
can be seen at looking at Equation 4.3: if n∗ > 1 the expected number of
events in a cluster is unbounded.

4.5 Expected Number of Events

In Chapter 3, we have seen the distribution of the number of events for both the
homogeneous and nonhomogeneous Poisson process at a certain point in time.

For Hawkes processes we will not look at a certain distribution for the number
of events occured, but we will look at the expected number of events at a certain
point in time. We will only look at the case with the exponential kernel.

However, we slightly change our definition of the exponential kernel. In
Section 4.2.2 we have already mentioned the marked Hawkes process. The
marked Hawkes process is simply a Hawkes process with exponential kernel in
which α is not a constant, but is different for each event: µ(t) =

∑k
j=1 αje

−βt.
So the increase in the conditional intensity is not the same for every event
occured. In this way, we can make the occurence of one event more important
than the occurence of another event. The value of each mark is nonnegative
and its value is independent of all events previously occured. ([26], page 335)
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Theorem 4 now gives us an expression for the expected number of events.

Theorem 4 ([26], Proposition 5.5): If α is the expected value of a mark
in a Hawkes process, then for this process

E[N(t)] = λ0t+
λ0α

(α− β)2

(
e(α−β)t − 1− (α− β)t

)
. (4.3)

Proof: See for example [26] Proposition 5.5.
Q.E.D.

In Theorem 4 we have said the expected value of the mark to be equal to α:
this α corresponds to the α in Definition 19.

We can now look more carefully at Equation 4.3 by looking at all the variables
separately. The code for making the graphs in the following subsections can be
found back in Appendix C.

4.5.1 α as a Variable

In Figure 4.4 the expected number of events has been drawn as a function of
α. We observe that the number of events increases slowly, but explodes rapidly
after a certain value. This value is the value after which the process is not
stationary anymore. We know the process is stationary if α/β < 1. So if α is
smaller than β then the process is stationary and the expected number of events
only increases slowly. However, when α is bigger than β than the process is not
stationary anymore and the expected number of events rapidly increases.

4.5.2 β as a Variable

In Figure 4.5 the expected number of events has been drawn as a function of β.
We observe exactly the converse of what we have seen in Figure 4.4. For values
of β smaller than α the process is not stationary, thus the expected number
of events, as β gets smaller, increases rapidly. If β is bigger than α, than the
process is stationary, thus the expected number of events does not change much
anymore.

4.5.3 λ0 and t as a Variable

In Figure 4.6 we have drawn the expected number of events: in the graph on
the left as a function of λ0 and in the graph on the right as a function of t.
As was to be expected from Equation 4.3, the expected number of events is a
linearly dependent on λ0. The expected number of events is also almost linearly
dependent on t; there is just a very light curve.
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Figure 4.4: The expected number of events has been drawn as a function of α.
The other variables are all equal to 2, thus β = λ0 = t = 2. The red line denotes
the value after which the Hawkes process is not stationary anymore.

Figure 4.6: In the graphs the expected number of events has been drawn: left
as a function of λ0 and right as a function of t. We have set α = 1 and β = 2
to assure a stationary process. The other variable has been set equal to 2.

4.6 Maximum-Likelihood Estimation

Now that we have seen what a Hawkes process is, we would like to apply the
Hawkes process to real life data. The difficult step in finding a good Hawkes pro-
cess for a certain data set is the estimation of the parameters in the model. One
way to find values for these parameters is by finding the maximum-likelihood
estimators.

4.6.1 Likelihood Function of a Hawkes Process

In order to find the maximum-likelihood estimators for our data, we first have to
find the likelihood function that is associated by the process. In the following,
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Figure 4.5: The expected number of events has been drawn as a function of β.
The other variables are all equal to 2, thus α = λ0 = t = 2. The red line denotes
the value after which the Hawkes process is not stationary anymore.

let θ be the set of parameters of the Hawkes process for which values want to
be found.

Theorem 5 ([10], Proposition 7.2.III.): Let N be a regular point process
on [0, T ] for some finite positive T and let {T1, T2, ..., Tn} [be the corresponding
list of event times]. Then, the likelihood L(θ) of such N is expressible in the
form

L(θ) =

[
n∏
i=1

λ∗(Ti)

]
· exp

(
−
∫ T

0

λ∗(u)du

)
. (4.4)

Let us prove Theorem 5. (This proof follows [21], Theorem 3, and [25], in text,
page 13).

Proof We start with looking at the realization {T1, T2, ..., Tn} of the point
process. The conditional arrival distribution at event time Ti is f∗(Ti). Since
all event times are independent, the joint probability function, and thus the
likelihood function, becomes

L(θ) = f∗(T1, T2, ..., Tn) =

n∏
i=1

f∗(Ti).

Using Definition 12 we can write

λ∗(t) =
f∗(t)

1− F ∗(t)
=

d
dt [F

∗(t)]

1− F ∗(t)
= − d

dt
[ln(1− F ∗(t))].

Integrating both sides from Tn to t we get∫ t

Tn

λ∗(t)dt =

∫ t

Tn

(
− d

dt
[ln(1− F ∗(t))]

)
dt = ln(1− F ∗(Tn))− ln(1− F ∗(t)).
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Since Tn+1 > Tn, we have F ∗(Tn) = 0, so∫ t

Tn

λ∗(t)dt = −ln(1− F ∗(t)),

and thus

1− F ∗(t) = exp
(
−
∫ t

Tn

λ∗(t)dt

)
.

Rewritting Definition 12 and plugging in the result found, we get

f∗(t) = λ∗(t) · exp
(
−
∫ t

Tn

λ∗(t)dt

)
.

Plugging the last result into the likelihood function we find

L(θ) =

n∏
i=1

f∗(Ti) =

n∏
i=1

λ∗(Ti) · exp

(
−
∫ Ti

Tn

λ∗(Ti)

)

=

[
n∏
i=1

λ∗(Ti)

]
· exp

(
−
∫ T

0

λ∗(u)du

)
.

Q.E.D.

4.6.2 Log-Likelihood Function of a Hawkes Process with
Exponential Kernel

Using Theorem 4 and the Definition of the cumulative conditional intensity
(Definition 13), we see that the log-likelihood function of a Hawkes process over
the interval [0, Tn] is

l(θ) = ln(L(θ)) = ln

([
n∏
i=1

λ∗(Ti)

]
· exp

(
−
∫ Tn

0

λ∗(u)du

))

=

n∑
i=1

ln(λ∗(Ti))−
∫ Tn

0

λ∗(u)du =

n∑
i=1

ln(λ∗(Ti))− Λ(Tn).

Let’s look at Λ(Tn). Using the definition of cumulative conditional intensity we
can write

Λ(Tn) =

∫ Tn

0

λ∗(u)du

=

∫ T1

0

λ∗(u)du+

∫ T2

T1

λ∗(u)du+ ...+

∫ Tn

Tn−1

λ∗(u)du

=

∫ T1

0

λ∗(u)du+

n−1∑
i=1

∫ Ti+1

Ti

λ∗(u)du.
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In the case of an exponential kernel with k = 1, so λ∗(t) = λ0+
∑
i:t>Ti

αe−β(t−Ti),
we get

Λ(Tn) =

∫ T1

0

λ0 +
∑

j:u>Tj

αe−β(u−Tj)

 du+

n−1∑
i=1

∫ Ti+1

Ti

λ0 +
∑

j:u>Tj

αe−β(u−Tj)

 du

=

∫ T1

0

λ0du+

∫ T2

T1

λ0du+ ...+

∫ Tn

Tn−1

λ0du+

∫ T1

0

 ∑
j:u>Tj

αe−β(u−Tj)

 du

+

∫ T2

T1

 ∑
j:u>Tj

αe−β(u−Tj)

 du+ ...+

∫ Tn

Tn−1

 ∑
j:u>Tj

αe−β(u−Tj)

 du

=

∫ Tn

0

λ0du+ α

n−1∑
i=1

∫ Ti+1

Ti

 i∑
j=1

e−β(u−Tj)

 du

= λ0Tn + α

n−1∑
i=1

i∑
j=1

∫ Ti+1

Ti

e−β(u−Tj)du

= λ0Tn + α

n−1∑
i=1

i∑
j=1

[
− 1

β
e−β(u−Tj)

]u=Ti+1

u=Ti

= λ0Tn −
α

β

n−1∑
i=1

i∑
j=1

[
e−β(Ti+1−Tj) − e−β(Ti−Tj)

]
.

In [21] (page 16) it is said
∑n−1
i=1

∑i
j=1

[
e−β(Ti+1−Tj) − e−β(Ti−Tj)

]
=∑n−1

i=1

[
e−β(Tn−Ti)−e

−β(Ti−Ti)
]
, thus we finally find

Λ(Tn) = λ0Tn −
α

β

n−1∑
i=1

[
e−β(Tn−Ti)−e

−β(Ti−Ti)
]

= λ0Tn −
α

β

n∑
i=1

[
e−β(Tn−Ti)−1

]
.

So the log-likelihood function now becomes

l(θ) =

n∑
i=1

ln(λ∗(Ti))− Λ(Tn)

=

n∑
i=1

ln(λ0 + α
∑

j:Ti>Tj

e−β(Ti−Tj))− λ0Tn +
α

β

n∑
i=1

[
e−β(Tn−Ti)−1

]

=

n∑
i=1

ln(λ0 + α

i−1∑
j=1

e−β(Ti−Tj))− λ0Tn +
α

β

n∑
i=1

[
e−β(Tn−Ti)−1

]
.
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We now get a log-likelihood function which contains a double summation. Com-
putationally wise, this double sum is very unattractive, since it results in O(n2)
complexity. However, it is possible to lower the complexity to O(n). ([21], page
17) To do this, we define a recursive formula, which has been first suggested in
[23]:

B(i) =

i−1∑
j=1

e−β(Ti−Tj).

The recursive formula can be rewritten as

B(i) =

i−1∑
j=1

e−β(Ti−Tj) =

i−1∑
j=1

e−β(Ti−Ti−1+Ti−1−Tj)

= e−β(Ti−Ti−1)
i−1∑
j=1

e−β(Ti−1−Tj)

= e−β(Ti−Ti−1)

i−2∑
j=1

e−β(Ti−1−Tj) + e−β(Ti−1−Ti−1)


= e−β(Ti−Ti−1) (B(i− 1) + 1) .

In terms of the recursive formula, the log-likelihood function of a Hawkes process
with exponential kernel now becomes

l(θ) =

n∑
i=1

ln(λ0 + αB(i))− λ0Tn +
α

β

n∑
i=1

[
e−β(Tn−Ti)−1

]
,

where θ = {λ0, α, β}. The computation of the maximum-likelihood estimator
now entails a complexity of O(n). ([21], page 17)



Chapter 5

The Multidimensional
Hawkes Process

In Chapter 4 we have looked in depth to the one-dimensional Hawkes process.
The Hawkes process can also be defined in a multidimensional way. We will
not discuss the multidimensional Hawkes processes as extensively as the one-
dimensional Hawkes process, since the theory, computation and simulation is
way more complex for the multidimensional case, and this is beyond the scope
of this Thesis. However, to give a complete overview of the Hawkes processes
we will give the definition and the maximum-likelihood estimator of the multi-
dimensional Hawkes process in this Chapter, but all calculations and details are
omitted. Besides, we define multivariate point processes and natural fitrations,
since these concepts are used to define the multidimensional Hawkes process.
We will only consider the case with the exponential kernel. Readers who are
interested in these processes are encouraged to look at [6] or [31].

5.1 Basics of Multivariate Point Processes

In Section 4.2.2 we have already looked at the mark of a Hawkes process, which
we used in Section 4.5 to determine the expected number of events for a Hawkes
process. The mark was defined as the immediate increase in the conditional
intensity function due to the occurence of a new event.

We can define the mark also in a more general way. Say we are having a
point process consisting of the points {T1, T2, ...}. Besides these points Ti, we
now also observed another bit of information for each event i, denoted by mi.
We call this additional bit of information a mark. So we are now observing the
process {(T1,m1), (T2,m2), ...}. Such a process is called a marked point process.
([27], in text, page 9)

This marked point process, can be seen as an example of a multivariate point
process.

45
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Definition 21 ([3], Definition 2): Let {Ti}i∈{1,2,...} be a simple point
process on [0,∞), defined on (Ω,F ,P), and let {Zi}i∈{1,2,...} be a sequence
of {1, 2, ...,M}- values random variables (also defined on (Ω,F ,P), with
1 ≤ M ≤ ∞). Then the double sequence {Ti, Zi}i∈{1,2,...} is called a M -
variate point process on [0,∞).

Associated with this M -variate, or more generally multivariate, point process,
we can define the M -variate counting process.

Definition 22 ([3], Definition 2): Let {Ti, Zi}i∈{1,2,...} be aM -variate point
process on [0,∞). Define for all m, 1 ≤ m ≤M , and all t ≥ 0

Nm(t) =
∑
i≥1

ITi≤tIZi=m.

Then the M -vector process N(t) = (N1(t), ..., NM (t)) is the M -variate count-
ing process associated with {Ti, Zi}.

5.2 Natural Filtrations

In Section 1.2 we have defined a filtration (Definition 4). Let {Ht−}t≥0 be a
filtration. To recall: with t we denote the time, and the σ-algebra Ht− consists
of all the events that have occured up to, but not including, time t. The filtration
{Ht−} can thus be seen as the evolution of the information of the process over
time.

Definition 22 ([7], Definition 2): A stochastic process {Xt}t≥0 on (Ω,H,P)
is adapted to the filtration {Ht−}t≥0 if, for each t ≥ 0,Xt is {Ht−}-measurable.

Based on Definition 22, we see that if {Xt}t≥0 is an adapted process, then the
value of X at time t, denoted by Xt only depends on the evolution of the process
up to, but not including time t. ([7], page 1)

Definition 23 ([7], in text, page 1): Let {Xt}t≥0 be a stochastic pro-
cess. Denote the natural filtration by {HXt−}t≥0. The natural filtration is
the smallest σ-algebra with respect to which all the variables Xs (s ≤ t) are
measurable.

Based on Definition 23 we can see that {HXt−}t≥0 is the smallest filtration to
which X is adapted. A stochastic process {Xt}t≥0 is always adapted to its
natural filtration. ([7], in text, page 1)
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5.3 Defining the Multidimensional Hawkes Pro-
cess

As we have seen in Section 4.2, a Hawkes process is self-exciting in the sense
that events in the past increase the occurence of an event in the future. Mul-
tidimensional Hawkes processes are also self-exciting in this way, but besides,
they also have cross-exciting between different dimensions. ([5])

Definition 24 ([5], Definition 1.1): Let N(t) = (N1(t), N2(t), ..., NM (t))
be a simple multivariate point process, with associated history {HXt−}t≥0, that
satisfies

P(Nm(t+ h)−Nm(t) = k|HXt−) =

λ
m(t)h+ o(h) if k = 1,
o(h) if k > 1,
1− λm(t)h+ o(h) if k = 0.

The point process N(.) is said to be a M -variate Hawkes process [with expo-
nential kernel] if the conditional intensity function λm∗(t) is of the form

λm∗(t) = λm0 +

M∑
n=1

∑
k:t>Tnk

αmne
−βmn(t−Tnk ), (5.1)

where λm0 > 0, αmn > 0 and βmn > 0 for m,n = 1, 2, ...,M .

5.4 Stationarity Conditions
As we did for the one-dimensional Hawkes process with exponential kernel, we
will determine the condition for which the multivariate Hawkes process with
exponential kernel is stationary.

The thing is in [5] and [31] the multidimensional Hawkes process with expo-
nential kernel is defined using stochastic integrals. As said in Section 4.3 we will
not explain these integrals in this Thesis. Instead, we just give the condition
under which the multidimensional Hawkes process with exponential kernel is
stationary.

The condition for the multidimensional Hawkes process with exponential to
be stationary is that the spectral radius of the matrix

Γ =

∫ ∞
0

G(u)du =

(
αmn
βmn

)
m,n=1,...,M

,

where
G(u) =

(
αmne

−βmnu
)
m,n=1,2,...,M

,

is strictly smaller than 1. ([5], Remark 1.1)
The spectral radius of the matrix Γ is defined as

ρ(Γ) = max
a∈S(Γ)

|a|,
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where S(Γ) denotes the set of all eigenvalues of Γ. ([31])

5.5 Maximum-Likelihood Estimation
We just give the final result from [31]. The final expression of the log-likelihood
for a multidimensional Hawkes process is

ln (lm({Ti})) = T −
N∑
i=1

M∑
n=1

αmn
βmn

(
1− e−βmn(T−Ti)

)
+
∑
Tml

ln

[
λm0 (Tml ) +

M∑
n=1

αmnRmn(l)

]
,

where Rmn(l) =
∑
Tnk <T

m
l
e−βmn(T

m
l −T

n
k ) and Rmn(0) = 0.



Part III

Simulating (Nonhomogeous)
Poisson and Hawkes Processes
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Chapter 6

Simulation of
(Nonhomogeneous) Poisson
Processes

In Chapter 3 we have looked at the (nonhomogeneous) Poisson processes. These
processes formed the basis for defining the Hawkes processes we investigate in
this Thesis. The theoretical properties we have examined in Section 3.3 can be
visualised by making use of a simulation study. Besides, simulation studies can
help us to give more insight in how a process works. So in this Chapter we
will take a look at the simulation of both homogeneous and nonhomogeneous
Poisson processes. By running simulations in Matlab, some of the findings of
Section 3.3 will be checked.

6.1 The Homogeneous Poisson Process

6.1.1 Recap of Poisson Processes

The first process we will be simulating is the (homogeneous) Poisson process.
Suppose we want to simulate a Poisson process with rate λ over the interval
[0, T ]. The simulation should then give us a list of event times {T1, ..., Tn} of all
the n events that took place between 0 and T .

Instead of simulating the event times {T1, ..., Tn}, we will simulate the in-
terarrival times {τ1, ..., τn}, since the distribution of the interarrival times is
known. The n-th event time of the process is then simply the sum of the first
n interarrival times.

As we have seen in Section 3.3, the interarrival times τi of a Poisson pro-
cess with rate λ are independent and identically distributed according to an
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exponential distribution with parameter λ, so

fτ (t) =

{
λe−λt if t ≥ 0,
0 if t < 0.

The cumulative distribution function corresponding to the probability density
function of the interarrival times of the Poisson process, then is

Fτ = 1− e−λt,

if t > 0,

6.1.2 The Theory Behind the Simulation
To simulate a certain variable, many methods can be used. The method used in
this Thesis is called the inverse transformation method. This method in based
on Proposition 2.

Proposition 2 ([26], proposition 11.1) Let U be a uniform (0, 1) random
variable. For any continuous distribution function F if we define the random
variable X by X = F−1(U), then the random variable X has distribution
function F .

Let us prove Proposition 2. (This proof follows [26], Proposition 11.1)

Proof: F is the continuous distribution function corresponding to X, thus
FX(a) = P(X ≤ a). Since X = F−1(U), we can write FX(a) = P(F−1(U) ≤ a).
In [26] (page 650) it is stated that F (a) is a monotone function, from which
it follows that F−1(U) ≤ a if and only if U ≤ F (a). Combining FX(a) =
P(F−1(U) ≤ a) and F−1(U) ≤ a if and only if U ≤ F (a), gives us FX(a) =
P(F−1(U) ≤ a) = P(U ≤ F (a)) = FU (a).

Q.E.D.

As is clear from Proposition 2, this method is very simple and that is also the
reason why this method is chosen in this Thesis. A disadvantage of the inverse
transformation method is that a closed form of the cumulative distribution
function is needed, but this is not a concern here, since we have already found
the cumulative distribution function corresponding to the interarrival times.

6.1.3 The Algorithm for the Simulation
To simulate the interarrival times τ we make use of the Proposition 2. We can
sample τ by sampling τ∗ = Fτ

−1(U), where U ∼ Uni(0, 1).
However, before we can sample an interarrival time of the Poisson process,

we first need to find Fτ−1. To find a closed form expression for Fτ−1 we first
replace Fτ by t and t by Fτ−1 in the expression for Fτ : so Fτ = 1−e−λt becomes
t = 1− e−λFτ−1

. Rewritting the last expression, we find Fτ−1 = −ln(1−t)
λ .
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Now we have found the expression to sample the interarrival times, we can
set up an algorithm that can be used to simulate the Poisson process. The algo-
rithm to simulate the Poisson process can be found below as Algorithm 1. The
algorithm, although slightly changed in notation, is taken from [6] (Algorithm
1). The set up of the algorithm will now be explained.

When making an algorithm, it is always important to first clearly state what
result is wanted, such that it is clear what the outcome of the algorithm will be.
In this case the result will be a set of event times corresponding to a Poisson
process.

After we have denoted what outcome we expect, we denote what input should
be given. In this case the rate λ of the process and the end time T of the interval
over which we simulate should be listed.

To have a good working algorithm, we need a variable n that keeps track of
how many elements there are in the Poisson process and we need to state that
no events occured at t = 0, thus T0 = 0 (line 1 of Algorithm 1).

Now we are able to generate the event times of the process. Based on
Proposition 2, we first generate u ∼ Uni(0, 1) (line 3), after which we can
simulate the new interarrival time τ as τ = − ln(u)

λ0
(line 4). Note that in the

above we found Fτ−1 = −ln(1−t)
λ , however since u ∼ Uni(0, 1), it does not matter

if we replace 1− u by u, since both are uniform random variables between zero
and one. The new event time is now equal to the old event time plus the
new interarrival time (line 5). We will repeat these steps of generating a new
interarrival time and then adding it to the old event time, as long as Tn+1 ≤ T ,
since then the event time is not bigger than the interval over which we simulate
our process. So if Tn+1 > T we stop the simulation and we need to get back
the values of the event times (steps 6 and 7). If Tn+1 ≤ T , we raise our counter
by one and repeat the simulation (steps 8 and 9).

Algorithm 1: Simulation of a homogeneous Poisson process with rate
λ on [0, T ].
Result: Set of event times {T1, ..., Tn}.
Input : λ, T .

1 Initialize n = 0, T0 = 0;
2 while True do
3 Generate u ∼ Uni(0, 1);
4 Let τ = − ln(u)

λ ;
5 Set Tn+1 = Tn + τ ;
6 if Tn+1 > T then
7 return {T1, ..., Tn} ;
8 else
9 Set n = n+ 1;

10 end
11 end
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6.1.4 Running the Simulation

Based on Algorith 1 a Matlab code has been written to simulate a Poisson
process. The code that has been used to produce the graphs in this Subsection
can be found in Appendix D1.

In Figure 6.1 a simulation of a homogeneous Poisson process with rate λ = 2
can be seen. From the graph we observe that there occured 29 events in the
simulation interval.

Figure 6.1: A simulation of a homogeneous Poisson process with rate λ = 2 on
the interval [0, 10].

In Figure 6.2 a simulation of a homogeneous Poisson process with rate λ = 4
can be seen. From the graph we observe that there occured 39 events in the
simulation interval.

Comparing Figure 6.1 with Fig 6.2 shows us graphically some things we
noticed theoretically in Section 3.3. It can be seen that the interarrival times
of the process with the rate of λ = 4 are shorter than the interarrival times of
the process with rate λ = 2. Since the interarrival times of the process with
rate λ = 4 are shorter, there occur more events in the same time for the process
with the higher rate. These were two things to be expected, since a larger rate
implies more events, thus smaller interarrival times.
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Figure 6.2: A simulation of a homogeneous Poisson process with rate λ = 4 on
the interval [0, 10].

6.1.5 Checking Properties

Properties of a Poisson process can be checked by making use of a simulation
study.

The most interesting property to check, is Theorem 1. This Theorem states
that N(s+ t)−N(s) follows a Poisson random variable with mean λt. Although
the Theorem states s > 0, we look at the case where s = 0, since then we can
look of the distribution of the number of events taken place at time t starting
from 0. The Theorem says

P(N(t) = n) =
e−λt(λt)n

n!
.

To test the Theorem, we simulate a Poisson process with rate 4 10000 times
(Matlab code listed in Appendix C). For every simulation we save the number
of events that have occured at the end of the simulation. The histogram of this
simulation is seen in Figure 6.3.

According to the Theorem, we should fine that N(T ) follows a Poisson dis-
tribution with parameter 40.

If we fit a Poisson distribution to our data, the parameter found by Matlab
is 40.1253. The 95% confidence interval of the parameter is [40.0011, 40.2495].
Although the value of the parameter and the confidence interval are in very
good approximation equal to 40, the found parameter is slightly above the true
value. This can be due to some simulation error.
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Figure 6.3: A Poisson process with rate λ = 4 has been simulated 10000 times
over the interval [0, 10]. A histogram in which the number of events that have
occured at the end of each simulation is shown.

In Figure 6.4 the fitted and actual distribution are shown in the histogram.
Also here we observe that the fitted distribution is in very good approximation
equal to the actual distribution: the red line of the fitted distribution is almost
completely below the orange line from the actual distribution.

Figure 6.4: The fitted and actual Poisson distributions are plotted together with
the histogram.



6.2. THE NONHOMOGENEOUS POISSON PROCESS 57

6.2 The Nonhomogeneous Poisson Process

6.2.1 Recap of Nonhomogeneous Poisson Processes
Now we want to simulate a nonhomogeneous Poisson process. Suppose we want
to simulate a nonhomogeneous Poisson process with intensity function λ(t) over
the interval [0, T ]. The simulation should then give us a list of event times
{T1, ..., Tn} of all the n events that took place between 0 and T .

As was the case with the homogeneous Poisson process, we can not simulate
the event times directly: we will simulate the interarrival times, after which we
calculate the event times.

The difficulty with the nonhomogeneous Poisson process, compared to the
homogeneous Poisson process, is that the interarrival times of a nonhomogeneous
Poisson process do not follow a specific distribution, whereas the interarrival
times of a homogeneous Poisson process do.

In order to simulate a nonhomogeneous Poisson process, we make use of the
fact that we can simulate a nonhomogeneous Poisson process by first simulating
a homogeneous Poisson process, which is something we can do.

To simulate a nonhomogeneous Poisson process based on a homogeneous
Poisson process, we make use of the thinning property of Poisson processes.

Thinning Property ([25], in text, page 10): Consider a Poisson process
with rate λ. This single process can now be split into two independent Poisson
processes with rate λ1 and λ2 respectively, as long as λ = λ1 + λ2.

The thinning property shows us, we can sample a nonhomogeneous Poisson
process by first simulating a homogeneous Poisson process with rate λ̄ ≥ λ(t),
for all the values of t in the interval over which we make the simulation. After we
have simulated the homogeneous Poisson process, we can thin the process to a
nonhomogeneous Poisson process, by selecting certain points based on Theorem
6. ([25], in text, page 10)

6.2.2 The Theory Behind the Simulation
In the previous subsection we have already seen that we simulate the nonho-
mogeneous Poisson process by thinning a homogeneous Poisson process. The
Theorem on which this method is based, is given below.

Theorem 6 ([6], slightly adapted, Theorem 4.2) Consider a homogeneous
Poisson process N̄(t) with intensity function λ̄. Let T̄1, T̄2, ..., T̄n be the [event
times of the homogeneous Poisson process, which are] in the interval (0, T ].
Suppose that for 0 ≤ t ≤ T , 0 ≤ λ(t) ≤ λ̄. For k = 1, 2, ..., n, delete the
point T̄k with probability 1−λ(T̄k)/λ̄; then the remaining points form a point
process N(t) satisfying

P(N(t+ s)−N(s) = 0) = e−
∫ t+s
s

λ(y)dy.
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Proof: See for example [6] Theorem 4.2.
Q.E.D.

As we have seen in Section 3.3, point processes satisfying P(N(t+s)−N(s) =

0) = e−
∫ t+s
s

λ(y)dy form a nonhomogeneous Poisson process, so applying a
method based on Theorem 6 indeed gives us a nonhomogeneous Poisson process.

6.2.3 The Algorithm for the Simulation

As seen in the previous subsections we can simulate a nonhomogeneous Poisson
process by first simulating a homogeneous Poisson process and then deleting
points according to a certain probability. The algorithm to simulate the nonho-
mogeneous Poisson process can be found below as Algorithm 2. The algorithm,
although slightly changed, is taken from [6] (Algorithm 2). The set up of the
algorithm will now be explained.

As was the case with the simulation of a homogeneous Poisson process,
the result of the simulation should be a list of event times corresponding to a
nonhomogeneous Poisson process.

To simulate a nonhomogeneous Poisson process, we need to give as input
the intensity function λ(t) and the end time T of the interval over which we
simulate the process.

For the initialization, we now have to look at three different things: counters
for the number of events, the event times, and the values of λ̄, which is the
rate of the homogeneous Poisson process. For the number of events and the
event time we need specific variables for both the homogeneous (n and S0)
and nonhomogeneous (m and T0) Poisson process. Both counters start at 0.
Also S0 = T0 = 0, since no events occured at time t = 0. The rate of the
homogeneous Poisson process, depends on the intensity function. According to
Theorem 6 we should have λ̄ ≥ λ(t) over all values t over which we simulate, so
we choose λ̄ = sup0≤t≤Tλ(t). These steps are all in line 1.

We are now able to simulate the nonhomogeneous Poisson process. We keep
on generating new points, as long as Sm < T , so as long as the m-th event
time of the homogeneous Poisson process is not bigger than the end point of
our simulation interval (line 2). Based on the Proposition 2, we know we can
simulate a new interarrival time σ of the homogeneous Poisson process, by first
generating a random variable u ∼ Uni(0, 1) (lines 3 and 4). The new event time
Sm+1 of the homogeneous Poisson process is then equal to the old event time
Sm plus the generated interarrival time σ (line 5). We can now use Theorem
6 to check whether the event time of the homogeneous Poisson process also
corresponds to an event time in the nonhomogeneous Poisson process. To do
this, we first generate a random variable D ∼ Uni(0, 1) (line 6), after which
we check if D ≤ λ(Sm+1)/λ̄ is true (line 7). If the last condition is true, the
new generated event also belongs to the nonhomogeneous Poisson process, thus
Tn+1 = Sm+1 (line 8), so we also have to update our counter (line 9). If
D > λ(Sm+1)/λ̄, we just simply raise our counter of the homogeneous Poisson
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Algorithm 2: Simulation of a nonhomogeneous Poisson process with
bounded intensity function λ(t), on [0, T ].
Result: Set of event times {T1, ..., Tn}.
Input : λ(t), T .

1 Initialize n = m = 0, T0 = S0 = 0, λ̄ = sup0≤t≤Tλ(t);
2 while Sm < T do
3 Generate u ∼ Uni(0, 1);
4 Let σ = −ln(u)/λ̄;
5 Set Sm+1 = Sm + σ ;
6 Generate D ∼ Uni(0, 1) ;
7 if D ≤ λ(Sm+1)/λ̄ then
8 Tn+1 = Sm+1 ;
9 n = n+ 1 ;

10 end
11 m = m+ 1;
12 end
13 if Tn ≤ T then
14 return {T1, ..., Tn};
15 else
16 return {T1, ..., Tn−1};
17 end

process (line 11) and start the steps over again. However, if now Sm ≥ T the
simulation is finished. The only thing we have to do is to check whether the last
found event time of the nonhomogeneous Poisson process Tn is bigger than T
(line 13). If Tn ≤ T , we just return {T1, ..., Tn} (line 14). If Tn > T , we return
{T1, ..., Tn−1} (line 16).

6.2.4 Running the Simulation
Based on Algorithm 2 a Matlab code has been written to simulate a nonhomo-
geneous Poisson process. The code that has been used to produce the graphs
in this subsection can be found in Appendix D2.

In Figure 6.5 a simulation of a nonhomogeneous Poisson process over the
interval [0, 10] is shown. The solid blue line is the intensity function of the
nonhomogeneous Poisson process. The intensity function is λ(t) = 1 + sin(t).
The rate of the homogeneous Poisson process equals λ̄ = 2.

The dashed line is the supremum of the intensity function over the simulation
interval, so λ̄ = 2, which is also the rate of the homogeneous Poisson process.
All the points on the x-axis, thus the green and red points together are the
points that are in the homogeneous Poisson process. The green points are the
points that end up in the nonhomogeneous Poisson process and the red points
are the points that are in the homogeneous Poisson process but that are declined
based on Theorem 6. The higher points show the value of λ̄ times the value of
a random variable D ∼ Uni(0, 1). The points that have a value higher than the
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value of the intensity function are not added to the nonhomogeneous Poisson
process.

Looking at Figure 6.5, we count that there have occured 15 events at the
end of the simulation interval for the nonhomogeneous Poisson process.

The number of events that have occured at the end of the simulation interval,
depends mainly on the value of λ̄. Theorem 6 states that we should use a λ̄
such that λ̄ ≥ λ(t) for all t ∈ [0, T ]. However, in our algorithm we choose
λ̄ = sup0≤t≤Tλ(t). Theorem 6 is not really restrictive on the value of λ̄: as long
as λ̄ is bigger than λ(t) on all values of t ∈ [0, T ], it is fine. However, a very large
value of λ̄ is not preferred. We know λ̄ to be the rate of the homogeneous Poisson
process, so if its rate is larger there are more points simulated. At the same time
λ̄ determines which points in the homogeneous Poisson process will be added
to the nonhomogeneous Poisson process. A bigger value of λ̄ will result in more
points declined, so less points will be added to the nonhomogeneous Poisson
process. A bigger value of λ̄ will result in more points declined, so less points
will end up in the nonhomogeneous Poisson process. These two effects show us a
“small” value of λ̄ is preferred, so in the algorithm we choose λ̄ = sup0≤t≤Tλ(t).
To check this fact, we runned our simulation again, but now with a value of
λ̄ = 3. The result of this simulation can be seen in Figure 6.6. Although also
in this case 15 events end up in the nonhomogeneous Poisson process, it is clear
that more points of the homogeneous Poisson process are declined.

Figure 6.5: A simulation of a nonhomogeneous Poisson process. The value of the
green points on the x-axis, represent the event times of the points that end up
in the nonhomogeneous Poisson process. The rate of the homogeneous Poisson
process is λ̄ = 2. The intensity function of the nonhomogeneous Poisson process
is λ(t) = 1 + sin(t).
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Figure 6.6: A simulation of a nonhomogeneous Poisson process. The value of the
green points on the x-axis, represent the event times of the points that end up
in the nonhomogeneous Poisson process. Now λ̄ is not equal to the supremum of
the intensity function. The rate of the homogeneous Poisson process is λ̄ = 3.
The intensity function of the nonhomogeneous Poisson process is λ(t) = 1 +
sin(t).

6.2.5 Checking Properties
Like we did in the case of the homogeneous Poisson process, we now check a
property of the nonhomogeneous Poisson process using a simulation.

Theorem 3 states that N(t + s) − N(s) follows a Poisson random variable
with mean

∫ t+s
s

λ(y)dy, thus

P(N(t+ s)−N(s) = n) =
e−

∫ t+s
s

λ(y)dy
(∫ t+s

s
λ(y)dy

)n
n!

.

Theorem 3 shows us that we expect the distribution of the number of events n
occured at time T starting from 0, is equal to

P(N(T ) = n) =
e−

∫ T
0
λ(y)dy

(∫ T
0
λ(y)dy

)n
n!

.

To check Theorem 3, we simulate a nonhomogeneous Poisson process with in-
tensity function λ(t) = 1 + sin(t) over the interval [0, 10] 10000 times. For every
simulation we save the number of events that have occured at the end of the
simulation. The histogram of this simulation is seen in Figure 6.7.
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According to the Theorem, we should find that N(T ) follows a Poisson dis-
tribution with parameter

∫ T
0
λ(y)dy. So in this case we expect a parameter

of ∫ 10

0

(1 + sin(y)) dy = [y − cos(y)]y=10
y=0 = 11− cos(10) ≈ 11.8391.

If we fit a Poisson distribution to our data, the parameter found by Matlab
is 11.8266. The 95% confidence interval of the parameter is [11.7592, 11.894].
We see the “true” value of the parameter is in the 95% confidence interval of
the found parameter, thus the simulation is in good approximation equal to the
true parameter. So Theorem 3 and the simulation study are supportive of each
other.

In Figure 6.7 the fitted and actual distribution are shown in the histogram.
Also here we observe that the fitted distribution is in very good approximation
equal to the actual distribution: the orange line of the actual distribution is
almost completely above the red line of the fitted distribution.

Figure 6.7: A Poisson process with intensity λ(t) = 1+sin(t) has been simulated
10000 times over the interval [0, 10]. A histogram in which the number of events
that have occured at the end of each simulation is shown. Also the fitted and
actual distribution are plotted.

One thing which is also good to check, is the fact that the distribution of the
number of events n occured at time T starting from 0, does not depend on λ̄. We
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have already seen that a value of λ̄ which is higher than sup0≤t≤Tλ(t), results
in more points of the homogeneous Poisson process being rejected. However,
this does not affect the distribution of the nonhomogeneous Poisson process, as
can be seen in Theorem 3: P(N(T )) does not depend on λ̄.

In Figure 6.8 the histogram with the actual and fitted distribution can be
seen. The parameter found is 11.7903, with a 95% confidence interval of [11.723,
11.8576]. The true value of the parameter lies within the 95% confidence interval
and the graphs are almost completely overlapping, thus we see that λ̄ indeed
does not affect the distribution of P(N(T )).

Figure 6.8: A Poisson process with intensity λ(t) = 1+sin(t) has been simulated
10000 times over the interval [0, 10]. A histogram in which the number of events
that have occured at the end of each simulation is shown. Compared to Figure
6.7, now λ̄ is not equal to sup0≤t≤Tλ(t): now λ̄ = 3 > sup0≤t≤Tλ(t). Also the
fitted and actual distribution are plotted.
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Chapter 7

Simulation of Hawkes
Processes

In Chapter 6 we have simulated (nonhomogeneous) Poisson processes. Now we
will take a look at simulating Hawkes processes. There are a lot of different ways
a Hawkes process can be simulated. In this Chapter we will look at three differ-
ent ways to simulate such a process. First we will look at Ogata’s Algorithm:
this is a algorithm that is based on the thinning property, but then applied to a
Hawkes process. Then we will look at Dassios and Zhao’s Algorithm, which is
an algorithm that is more efficient than Ogata’s Algorithm when a Hawkes pro-
cess with exponential kernel is simulated. Finally we will look at an algorithm
that is based on the branching factor.

7.1 Ogata’s Algorithm

7.1.1 Recap of Hawkes Processes
As we have seen in Chapter 4 a Hawkes process is a specific kind of nonhomoge-
neous Poisson process. Compared to the nonhomogeneous Poisson process, the
Hawkes process has a conditional intensity function instead of an intensity func-
tion. The conditional intensity function is explicitly dependent on the history
of the process:

λ∗(t) = λ0 +
∑
i:t>Ti

µ(t− Ti). (7.1)

The conditional intensity function consists of a background term λ0 and a kernel
function µ(.). For the kernel lots of functions can be chosen. The choice for a
specific kernel depends on what has to be modelled.

Now we want to simulate such a Hawkes process. Suppose we want to simu-
late a Hawkes process with conditional intensity function λ∗(t) over the interval
[0, T ]. The simulation should then give us a list of event times {T1, ..., Tn} of all
the n events that took place between 0 and T .

65
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As we have seen when we simulated the (nonhomogeneous) Poisson process,
the event times can not be simulated directly. Instead, we first simulate the
interarrival times and then calculate the event times.

7.1.2 The Theory Behind the Simulation
Given Equation 7.1 the conditional intensity function of the Hawkes process can
be written in the following way:

λ∗(t) =


λ0 if 0 ≤ t < T1,
λ0 + µ(t− T1) if T1 ≤ t < T2,
λ0 + µ(t− T1) + µ(t− T2) if T2 ≤ t < T3,
...

(7.2)

Let us imagine our Hawkes process already consists of k points: {T1, ..., Tk}.
Given Equation 7.2 we see that on the interval [Tk, Tk+1) the conditional inten-
sity function is completely known, given we know all the previous event times:

λ∗(t) = λ0 +

k∑
i=1

µ(t− Ti), (7.3)

where t ∈ [Tk, Tk+1). As a result, we see that if our Hawkes process already
consists of the event times {T1, ..., Tk}, the generation of the next point in the
Hawkes process can be seen as the generation of a point in a nonhomogeneous
Poisson process with the known intensity function given by Equation 7.3. ([6])

As we have seen in Section 6.2, a nonhomogeneous Poisson process can be
simulated by thinning. A Hawkes process can also be simulated by thinning.
However, the value λ̄ should be chosen in a different way, since this value is
now also dependent on the history. Since we choose our kernel function to be
monotonically decreasing, the value of λ∗(t) on [Tk, Tk+1) is maximum for Tk,
thus we chose λ̄ = λ∗(Tk). However, now we also have to update the value of λ̄,
since after a new point is added to the Hawkes process, the value of λ̄ should
be calculated for the new set of event times.

7.1.3 The Algorithm for the Simulation
The Hawkes process can be simulated in a way very similar to simulating a non-
homogeneous Poisson process. The algorithm to simulate the Hawkes process
can be found below as Algorithm 3. This Algorithm is known as Ogata’s Algo-
rithm. The algorithm, although slightly changed in notation and steps, is taken
from [6] (Algorithm 3). The set up of the algorithm will now be explained.

In the explanation of the algorithm we will be talking about the nonhomo-
geneous Poisson process, but it is good to note that we are not simulating a
real nonhomogeneous Poisson process over here. What we are doing is only
generating the first point of a nonhomogeneous Poisson process corresponding
to a specific value of λ̄. If a point is added to the Hawkes process, we choose a
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new value of λ̄, so the new nonhomogeneous Poisson point, does not come from
the same nonhomogeneous Poisson process as the first.

As a result of our simulation we want to have a list of event times coore-
sponding to a Hawkes process.

To simulate a Hawkes process, we need to give as input the background
parameter α, the kernel µ(.) and the end time T of the interval over which we
simulate the process.

For the initialization, we now have to look at three different things: counters
for the number of events, the event time of a nonhomogeneous Poisson process,
and a set with the event times of our Hawkes process. For the number of events
we set a counter for the Hawkes process (n) and a counter for the nonhomo-
geneous Poisson process (m). Both counters start at 0. The event time of the
nonhomogeneous Poisson process S0 is initialy 0, since no events occured at
time t = 0. The set in which the events of the Hawkes process are stored (T ) is
empty at the beginning, since there have not occured any events at the start of
the simulation. These steps are all in line 1.

We are now able to simulate the Hawkes process. We keep on generating
new points, as long as Sm < T , so as long as the m-th event time of the nonho-
mogeneous Poisson process is not bigger than the end point of our simulation
interval (line 2). First we need to choose the current value of λ̄. We have seen
that we choose λ̄ = λ∗(Sm), so the intensity for the possible new Hawkes point
(line 3). Based on Proposition 2, we know we can simulate a new interarrival

Algorithm 3: Simulation of a univariate Hawkes process, on [0, T ].
Result: Set of event times {T1, ..., Tn}.
Input : λ0, µ(.), T .

1 Initialize n = m = 0, S0 = 0, T = ∅;
2 while Sm < T do
3 Set λ̄ = λ0 +

∑
α∈T µ(Sm − α);

4 Generate u ∼ Uni(0, 1);
5 Let w = −ln(u)/λ̄;
6 Set Sm+1 = Sm + w ;
7 Generate D ∼ Uni(0, 1) ;
8 if D ≤ λ(Sm+1)/λ̄ then
9 Tn+1 = Sm+1 ;

10 T = T ∪ {Tn+1};
11 n = n+ 1 ;
12 end
13 m = m+ 1;
14 end
15 if Tn ≤ T then
16 return {T1, ..., Tn}
17 else
18 return {T1, ..., Tn−1}
19 end



68 CHAPTER 7. SIMULATING HAWKES

time of the homogeneous Poisson process, that forms the basis of the nonho-
mogeneous Poisson process, by first generating a random variable u ∼ Uni(0, 1)
and then calculating −ln(u)/λ̄ (line 4 and 5). The new event time of the ho-
mogeneous Poisson process is then equal to the old value plus the generated
interarrival time (line 6). We can now use Theorem 6 to check whether the
event time of the homogeneous Poisson process also corresponds to an event
time in the nonhomogeneous Poisson process. To do this, we first generate a
random variable D ∼ Uni(0, 1) (line 7), after which we check if D ≤ λ(Sm+1)/λ̄
is true (line 8). If the last condition is true, the new generated event belongs
to the nonhomogeneous Poisson process, so also to the Hawkes process, thus
Tn+1 = Sm+1. We now also have to add Tn+1 to the set of event times of
the Hawkes process (line 10) and we have to raise the counter for the Hawkes
process (line 11). If D < λ(Sm+1)/λ̄ we just simply raise the counter of the
nonhomogeneous Poisson process (line 13) and start the steps over again. How-
ever, if now Sm ≥ T the simulation is finished. The only thing we have to do is
to check whether the last found event time of the Hawkes process Tn is bigger
than T (line 15). If Tn ≤ T , we just return {T1, ..., Tn} (line 16). If Tn > T , we
return {T1, ..., Tn−1} (line 18).

7.1.4 Running the Simulation

We are going to run the simulation for both a Hawkes process with exponential
kernel and a Hawkes process with power law kernel.

Exponential Kernel

To recall, the exponential kernel looks like

µ(t− Ti) = αe−β(t−Ti),

where α, β > 0.
Based on Algorithm 3 a Matlab code has been written to simulate a Hawkes

process with exponential kernel. The code that has been used to produce the
graphs in this Subsubsection can be found in Appendix D3.

In Figure 7.1 a simulation of a Hawkes process with exponential kernel with
parameters α = 0.6 and β = 0.8 can be seen. The background intensity parame-
ters λ0 equals 1.2. For these parameter values, the Hawkes process is stationary,
since α/β = 0.6/0.8 = 0.75 < 1.

The effect of the background intensity term can be seen clearly: until the
first event takes place, the intensity equals 1.2, so the value of the background
intensity parameter.

Although not completely clear, we can observe that as soon as an event oc-
curs, the intensity raises by 0.6, which is the value of α, so α indeed corresponds
to the increase the intensity immediately makes as soon as an event occurs.

The effect of β can be better seen by comparing Figure 7.1 with Figure 7.2
which shows a Hawkes process with parameters λ0 = 1.2, α = 0.6 and β = 1.6.
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Figure 7.1: A Hawkes process with exponential kernel with parameters λ0 = 1.2,
α = 0.6 and β = 0.8 has been simulated over the interval [0, 2].

In Figure 7.2 the β parameter is twice as big as the β parameter in Figure 7.1;
the rest is all the same, so also the Hawkes process in Figure 7.2 is stationary.
We observe that the intensity for the higher value of β declines much faster than
the intensity for the lower value of β, which makes sense since β determines the
rate at which the intensity declines as soon as an event took place.

Figure 7.2: A Hawkes process with exponential kernel with parameters λ0 = 1.2,
α = 0.6 and β = 1.2 has been simulated over the interval [0, 2].
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Comparing Figure 7.1 with Figure 7.2 we notice that both show Hawkes pro-
cesses consisting of five elements. This is not we would have expected based on
Equation 4.3; the expected number of events of a Hawkes process with expo-
nential kernel can be calculated as

E[N(t)] = λ0t+
λ0α

(α− β)2

(
e(α−β)t − 1− (α− β)t

)
.

So for the Hawkes process in Figure 7.1 we expect

E[N(2)] = 1.2 · 2 +
1.2 · 0.6

(0.6− 0.8)2

(
e(0.6−0.8)·2 − 1− (0.6− 0.8) · 2

)
≈ 4 (7.4)

events on average.

For the Hawkes process in Figure 7.2 we expect

E[N(2)] = 1.2 · 2 +
1.2 · 0.6

(0.6− 1.6)2

(
e(0.6−1.6)·2 − 1− (0.6− 1.8) · 2

)
≈ 3 (7.5)

events on average.

The reason the Hawkes processes in both Figure 7.1 and Figure 7.2 show
five events, is because we have chosen to show this number of events. We
have simulated both processes as long as one with five events showed up. This
generalizations has than been graphed. The reason processes with five event
times have been drawn is just basically because in this way more of the properties
of the Hawkes process can be seen.

We have runned both simulations 10000 times and made histogram to check
the distribution of the number of events occured at the end of the simulation
interval. Both histograms are shown in Figure 7.3. The histogram of the Hawkes
process with β = 0.8 shows that on average simulations with 3 and 4 events
occur, which is in line with the result of Equation 7.4. The histogram of the
Hawkes process with β = 1.6 shows that on average simulations with 3 events
occur, which is in line with the result of Equation 7.5.
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Figure 7.3: A Hawkes process with exponential kernel with parameters λ0 = 1.2,
α = 0.6 and β = 0.8 (above) and λ0 = 1.2, α = 0.6 and β = 1.6 has been
simulated 10000 times over the interval [0, 2]. Histograms are shown in which
the number of evens that have occured at the end of each simulation is shown.
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Power law kernel

To recall, the power law kernel looks like

µ(t− Ti) =
K

(c+ (t− Ti))p
,

where K, c and p are three constants.
Based on Algorithm 3 a Matlab code has been written to simulate a Hawkes

process with power law kernel. The code that has been used to produce the
graphs in this Subsubsection can be found in Appendix D4.

In Figure 7.4 a simulation of a Hawkes process with power law kernel with
parameters λ0 = K = c = 1 and p = 2 can be seen.

Figure 7.4: A Hawkes process with power law kernel with parameters λ0 = K =
c = 1 and p = 2 has been simulated over the interval [0, 2].

We have not looked very extensive to the power law kernel yet, since the power
law kernel is not our main research interest. In Chapter 9, we will look at this
power law kernel in more detail when we are talking about a specific application
of the Hawkes process.

However, something which is interesting to look at is the histogram we get of
the number of events that have occured in the simulation interval when we run
the simulation 10000 times. The histogram can be seen in Figure 7.5. We notice
that at the end of the simulation, in most cases no events have taken place in
our Hawkes process. Simulating a Hawkes process with power law kernel over
the interval [0, 2] is thus not a good idea, when we are using the parameters
λ0 = K = c = 1 and p = 2, since then it is very likely that no events have
occured at the end of the simulation.
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Figure 7.5: A Hawkes process with power law kernel with parameters λ0 = K =
c = 1 and p = 2 has been simulated 10000 times over the interval [0, 2]. A
histogram is shown in which the number of evens that have occured at the end
of each simulation is shown.

7.1.5 Complexitity

Although this algorithm is fairly simply, it is computationally not really fast. If
we want to simulate a sample with N events, the complexity to compute just
the event intensity according to

λ∗(t) = λ0 +
∑
t>Ti

µ(t− Ti)

is O(N). So to sample N events, the complexity becomes O(N2). ([25], page
11)

7.2 Dassios and Zhao’s Algorithm

7.2.1 New Look at the Conditional Intensity Function

In 2013 Dassios and Zhao proposed a new algorithm for simulating Hawkes
processes with exponential kernels. ([11]) In Subsection 7.2.4 we will explain
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why this new algorithm has been proposed and is in some cases more appropriate
for simulating a Hawkes process than Ogata’s algorithm.

To explain this algorithm, we have to define the conditional intensity function
in a more general way than we did before in Section 4.2. The conditional
intensity function of our Hawkes process with exponential kernel is now defined
as

λ∗(t) = a+ (λ0 − a)e−δt +
∑
Tk<t

Y e−δ(t−Tk),

where a ≥ 0 is the constant reversion level (the average value of the intensity
over time), λ0 > 0 is the background intensity, δ > 0 is the constant rate of
the exponential decay and Y are the sizes of the self-excited jumps, previously
referred to as marks. ([11], Definition 2.1) More generally, we could have defined
Y to be event dependent, so Yk, and assign a distribution to Yk but this is beyond
the scope of this Thesis.

The conditional intensity function just described belongs to a Hawkes pro-
cess with exponential immigrant rate and exponentional memory kernel. The
exponential immigrant rate is described by a nonhomogeneous Poisson process
following the exponential function a + (λ0 − a)e−δt. The exponential memory
kernel is

∑
Tk<t

Y e−δ(t−Tk). ([25], page 11)

7.2.2 The Theory Behind the Simulation

This algorithm is based on the Markov property. Very simply said, a stochastic
process is a Markov process, if it has the property that, conditional on the
present, the future is independent of the past. ([25], in text, page 11)

In [22] it is showed that a process with an intensity function, is a Markov
process if the kernel is exponential. So the Markov property can be applied to
the conditional intensity function defined in Section 7.2.1.

7.2.3 The Algorithm for the Simulation

There is a small difference between the three algorithms we described before, and
the new algorithm we will describe now. Algorithms 1 till 3 describe how we can
simulate a certain process over the interval [0, T ]. However, in the algorithm
we will describe below, we will give an algorithm of how we can simulate N
event times of a Hawkes process with exponential kernel. So we do not want to
simulate our process over a certain time interval, instead we want to simulate
N points in our process.

The algorithm to simulate the Hawkes process with exponential kernel can
be found below as Algorithm 4. The algorithm, although slightly changed in
notation, is taken from [11] (Algorithm 3.1) and [25] (Algorithm 2). The set up
of the algorithm will now be explained.

To simulate the Hawkes process with exponential kernel, we need to give as
input the parameters of our process (the constant reversion level a, the back-
ground parameter λ0, the constant rate of the exponential decay δ and the size
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of the self-excited jumps Y ) and the number of events we would like to have at
the end of our simulation N (line 1).

For the initialization, we need to initialize the event time T0 and the initial
event rate λ∗(T0). The event time is initialy 0, since there have not occured any
events at the start of the simulation: T0 = 0. At the start of the simulation,
the conditional intensity equals the background intensity, since there have not
occured any events yet: λ∗(T0) = λ0. This is all listed in line 2.

To simulate the interarrival times we make use of the Markov property. Using
this Markov property we can decompose the interarrival times into two inde-
pendent random variables. ([25], page 11) We will have two random variables:
s0 and s1. The random variable s0 represents the interarrival time of the next
event, if it were to come from a homogeneous Poisson process with rate a. Based
on Proposition 2, we know we can simulate such a random variable by first gen-
erating a random variable u ∼ Uni(0, 1) and then calculating s0 = −ln(u0)

a (line
3a). The random variable s1 represents the interarrival time of the next event if
it were to come from either the exponentional immigrant rate a+ (λ0 − a)e−δt

or the exponential memory kernel
∑
Tk<t

Y e−δ(t−Tk). In [11] it is shown that
s1 can be generated by first calculating a certain value d (line 3b). If d > 0,
then we can calculate the second interarrival time s1 according to Proposition
2. The “overall” interarrival time τi now becomes the minimum of s0 and s1.
If d < 0, then the interarrival time τi equals s0, so in this case the interarrival
time results from the constant rate. (line 3c) The new event time can now be
calculated as the sum of the old event time Ti−1 plus the simulated interarrival
time τi (line 3d). Afterwards we need to update our conditional intensity (line
3e), and repeat the algorithm until we have simulated N events.

Algorithm 4: Simulation of a Hawkes process with exponential kernel
according to Dassios and Zhao.

1. Input: a, λ0, δ, Y and N .

2. Set T0 = 0, initial event rate λ∗(T0) = µ0.

3. For i = 1, 2, ..., N .

(a) Draw u0 ∼ Uni(0, 1) and set s0 = −ln(u0)
a .

(b) Draw u1 ∼ Uni(0, 1) and set d = 1 + δln(u1)
λ∗(Ti−1)−a .

(c) If d > 0, set s1 = −ln(d)
δ and τi = min{s0, s1}. Otherwise, set

τi = s0.

(d) Record the ith event time Ti = Ti−1 + τi.

(e) Update the event intensity: λ∗(Ti) = (λ∗(Ti−1)− a)e−δτi + a+ Y .
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7.2.4 Complexity and Limitations

Compared to Ogata’s algorithm, the main benefit from this new algorithm is
complexity wise. Since the algorithm by Dassios and Zhao does not rely on
rejection sampling, the complexity of sampling N events is O(N). It is also
more efficient since the intensity function can be updated in constant time, as
can be seen in line 3e in Algorithm 4. Besides, this new Algorithm does not
require stationarity conditions. ([11], page 5; [25], page 12)

The main drawback from this algorithm is that it can not be used to simulate
Hawkes processes with power law kernels, since these kernels do not have the
Markov property. ([25], page 12)

7.3 Algorithm Based on Branching Factor

The last algorithm we are going to give for simulating a Hawkes process, is
based on the branching structure as defined in Section 4.4. The reason to also
discuss this algorithm in this Thesis, is to show how the branching factor can be
used to simulate a Hawkes process. Also the fact that the simulation algorithm
is rather simple is a reason to include the algorithm in this Thesis. Besides, we
have not yet seen a clear example of a branching structure yet, since they can
not be observed for real life situations, thus this gives us a chance to simulate
such a process to see what happens. However, since this algorithm is not of that
great importance, we will not discuss it in great detail.

It is good to note that the algorithm we are given will again simulate a
Hawkes process over the interval [0, T ], so the number of events occured is again
a random variable.

The algorithm to simulate the Hawkes process as a branching structure can
be found below as Algorithm 5. The algorithm, although slightly changed in
notation, is taken from [21] (Algorithm 3). The set up of the algorithm will now
be explained. We will only discuss the case with an exponential kernel.

To simulate the Hawkes process with exponential kernel, we need to give as
input the parameters of our process: λ0, α and β. Besides, we need to specify
the end value of the interval over which we would like to simulate our process
T .

For the initiliazation, we only need to initiliaze the set P in which the points
in our Hawkes process are stored. At the start of the simulation P is an empty
set (line 1).

To simulate the branching structure, we simulate first all immigrant events.
In the branching structure, all immigrants arrive according to a homogeneous
Poisson process with the background intensity as parameter, thus λ = λ0. Ac-
cording to Theorem 1, we see that over the interval [0, T ] the number of events
k is Poisson distributed with mean λ0T , so k ∼ Pois(λ0T ) (line 3). According
to [21] (in text, page 23), we can simulate the event times of the immigrants Ci,
conditional on knowing there are k immigrants, by simulating uniform random
variables over the interval [0, T ] (line 4). After we have simulated the
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Algorithm 5: Simulation of exponential Hawkes process by clusters.
Input : λ0, α, β, T .

1 P → {}.
2 Immigrants:
3 k → Pois(λ0T )
4 C1, ..., Ck → Uni(0, T )
5 Offspring:
6 D1, ..., Dk → Pois(α/β)
7 for i→ 1 to k do
8 if Di > 0 then
9 E1, ..., EDi → Exp(β).

10 P → P ∪ {Ci + E1, ..., Ci + EDi}.
11 end
12 end
13 Remove offspring outside [0, T ]:
14 P → {Pi : Pi ∈ P, Pi ≤ T}.
15 Add in immigrants and sort:
16 P → Sort(P ∪ {C1, ..., Ck}).
17 return P

immigrant events, we are going to simulate their offspring. In the branching
structure all offspring events form a nonhomogeneous Poisson process. We know
the i-th immigrant his offspring to arrive with a conditional intensity of µ(t −
Ci) = αe−β(t−Ci) for t > Ci. Denote by Di the number of offspring associated
with the i-th immigrant. We know the branching factor to be defined as the
expected number of direct offspring spawned by a single event, thus E[Di] =
n∗ = α

β . According to [21] (in text, page 23), the expected number of offspring
are now Poisson distributed with mean n∗ = α

β , thus we can simulate our Di

as Di ∼ Pois(αβ ) (line 6). Now we have simulated the number of offspring
for each immigrant, we would like to simulate the offspring events. For each
immigrant we simulate the offspring events (line 7). First we check whether Di

is bigger than zero, since no offspring should be generated if there is no offspring
(line 8). Say all the offspring events of the i-th immigrant arrive at the times
(Ci+E1, ..., Ci+EDi). According to [21] (in text, page 23), the Ej , conditional
on knowing Di, are random variables distributed with the probability density
function µ(.)

n∗ . In the case of the exponentional kernel, this becomes Ej ∼ Exp(β)
(line 9). The set of events in the Hawkes process should now be the old set of
events plus all the offspring events just generated (line 10). We now have to
check whether some of the offspring events fall outside the interval [0, T ]. If this
is the case these events will be removed from P (lines 13 and 14). Lastly we
should add all the immigrant events to our set of events in the Hawkes process
(lines 15 and 16).

In Figure 7.6 an example of a simulation following Algorithm 4 is shown.
The simulation has not been performed by ourselves, but is instead taken from
[21].
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Figure 7.6: The branching structure of a Hawkes process with exponential kernel
has been simulated. The parameters of the process are λ0 = 1, α = 2 and
β = 1.2. In the plot above we see all the points that are in our branching
structure. The immigrant events are plotted as squares. The offspring of an
immigrant event are plotted as circles with the same color and height as the
immigrant event. The intensity function is plotted below. All events that are in
the Hawkes process, are drawn as crosses on the x-axis, both in the plot above
and below. (Figure taken from [21], Figure 10)
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Chapter 8

Application in Finance: A
Model for Sell and Buy
Intensities

The use of Hawkes processes in financial mathematics and econometrics is
widespread. The possibility to use self-exciting processes makes it possible to
capture the effect of past events, something which is really important in a branch
of study that mainly looks at the estimation of future events as a consequence
of past events.

In this Chapter we will look a model that can be used to predict future
imbalance of buy and sell trades in the FX market, conditional on the history
of recent trade activities.

This Chapter is based on Patrick Hewlett his 2006 paper Clustering of order
arrivals, price impact and trade optimisation ([16]). We would like to stress
that all results and figures are taken from this paper, so no own estimations or
figures are made. This Chapter is mainly here to give a brief introduction to
how Hawkes processes can be used to model real life situations. Besides only a
small part of the paper is discussed. Readers who wish to read more about this
subject are encouraged to read the whole paper.

8.1 Introduction

In Hewlett his paper a model for the FX market is presented. The FX market is
an abbreviation for the foreign exchange market. In [28] we read that all claims
on foreign currency payable abroad, are foreign exchange. These claims may
consist of funds in foreign currency held with banks abroad, or bills or cheques,
again in foreign currency and payable abroad. The market in which all these
foreign exchanges are regulated is called the foreign exchange market. In the FX
market the exchange rates for global currencies are determined. The exchange
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rate is the rate of one currency in terms of another currency.
The FX market is arranged as a so called electronic limit order book. ([16])

In [18] we read a limit order to be an order to buy or sell a given quantity of
stock at a specified limit price or better. So say, for example, a trader is looking
to buy stocks from Apple, but he has a limit order of $50. This means our
trader will only buy the stock when the price of the stock is $50 or lower. The
electronic limit order book is the electronic collection of all outstanding limit
orders for a certain stock. In an electronic limit order book, there is no specific
liquidity provider. ([16]) A liquidity provider, which we will refer to as “market-
maker”, can be seen as the person who maintains the order book. In the model
presented by Hewlett, it is assumed that there is only a single market-maker
who sets competitive prices. Prices can be set, among others, competitively or
consumer-oriented. If prices are set competitively, then prices are set based on
the competition, rather than at the behaviour of consumers, which is what is
looked at in consumer-oriented pricing.

For the FX market, several features are well known ([16]):

• trading activity tends to cluster in time,

• trades of the same sign tend to cluster together in the sequence of buys
and sells.

The fact that in the FX market certain clusters are formed, explains why we are
going to fit a Hawkes process to the data. In the Hawkes process certain clusters
of events are expected, due to the self-exciting nature of these processes. If an
event occurs, the likelihood of having a new event increases, so the forming of
clusters is a characteristic of a Hawkes process.

If we would have had the data that has been used in [16], we would have
been able to make a graph in which all the events occured were shown. In this
graph the clustering effect should be noticable.

Using multivariate point processes the clustering of these buy and sell inten-
sities can be modelled.

8.2 The Model

We will now consider how market-makers would set prices if order arrivals were
governed by a Hawkes process. We denote the counting process for arrival of
buy and sell orders by Nbuy

t and N sell
t respectively. We suppose that the order

arrival process (Nbuy
t , N sell

t ) is a bivariate Hawkes process.
In his paper, Hewlett shows that in our model of the FX market, market-

makers set the prices at time t based on the observed flow till time t. This
makes clear why we fit a Hawkes process to the data.

We fit a bivariate Hawkes process with exponential kernel to our data. The
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intensity functions take the form

λ
∗(i)
t = µ(i) +

I∑
j=1

∑
k:t>T

(j)
k

αije
−βij(t−T (j)

k ).

In [16] a form of the intensity function with stochastic integral is shown, but
this has been rewritten to an intensity function with a sum for our purposes.

In our model j ∈ {buy, sell}, thus we have a bivariate Hawkes process with
the following two conditional intensity functions

λ
∗(buy)
t = µ(buy) + αbuybuy

∑
k:t>T

(buy)
k

e−βbuybuy(t−T (buy)
k )

+ αbuysell
∑

l:t>T
(sell)
l

e−βbuysell(t−T (sell)
l ),

λ
∗(sell)
t = µ(sell) + αsellsell

∑
l:t>T

(sell)
l

e−βsellsell(t−T (sell)
l )

+ αsellbuy
∑

k:t>T
(buy)
k

e−βsellbuy(t−T (buy)
k ).

We see that there are ten parameters to be estimated. However, we can impose
some symmetry constraints in order to reduce the number of parameters to be
estimated and thus the complexity of the estimation. To reduce the number of
parameters to be estimated, we say the mutual excitation and the self-excitation
should be the same for both processes, as should be the background intensity
([31]):

• µ(buy) = µ(sell) = µ,

• αbuybuy = αsellsell = αsame,

• αsellbuy = αbuysell = αcross,

• βbuybuy = βsellsell = βsame,

• βsellbuy = βbuysell = βcross.

The conditional intensity functions now simplify to

λ
∗(buy)
t = µ+ αsame

∑
k:t>T

(buy)
k

e−βsame(t−T (buy)
k )

+ αcross
∑

l:t>T
(sell)
l

e−βcross(t−T (sell)
l ),
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λ
∗(sell)
t = µ+ αsame

∑
l:t>T

(sell)
l

e−βsame(t−T (sell)
l )

+ αcross
∑

k:t>T
(buy)
k

e−βcross(t−T (buy)
k ).

There are now only five parameters to be estimated.

8.3 The Results

In Hawkes paper, the model we have set up in the previous Section, is fitted
on a real life dataset. The dataset used, are the market orders recorded on
EBS (Electronic Broking Services is a wholesale electronic trading platform
used to trade foreign exchange with market making banks) over two months for
EUR/PLN.

As said in Section 8.2, we want to estimate values for the parameters (µ, αsame,
αcross, βsame, βcross). We fit our model to the data to trades in the week com-
mencing 7th May 2005, aggregating simultaneous trades.

Estimating the parameters using maximum likelihood, subject to a non-
negativity constraint, Hewlett finds the following values:

• µ̂ = 0.0033,

• α̂same = 0.0169,

• α̂cross = 0,

• β̂same = 0.0286,

• β̂cross is not identified.

The reason β̂cross is not identified, is because α̂cross = 0, thus looking at the
conditional intensity function we see that in this case the term with βcross is
dropped, so its value can not be estimated.

The zero value of the αcross seem to indicate that there is no influence of
buy orders on sell orders, and conversely. ([31])

In Figure 8.1 a plot is shown in which both the estimated sell and buy
intensities are shown. As said in Section 8.1, a feature of the FX market is
the forming of clusters, which is something we observe in Figure 8.1. This was
something to be expected, since the shown intensities follow a Hawkes process,
and clusters are characteristic for Hawkes processes.

In Section 8.1 we explained why a Hawkes process is fitted to the data.
However, we would like to also perform a reference fit, so we can check if the
Hawkes process really gives us a better fit than another model. As a reference fit,
Hewlett estimated a homogeneous Poisson process, so the conditional intensity
functions described above reduces to λ∗(buy)

t = λ
∗(sell)
t = µ. Using maximum

likelihood, Hewlett found µ̂ = 0.0080.
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Figure 8.1: The sell and buy intensities corresponding to our fitted Hawkes
process are shown in this graph. They are plotted over a period of about a day.
On the x- axis the time per secondes is denoted and on the y-axis the itensity
per second is denoted. In blue the buy intensities are shown and in red the
sell intensities. The sell itensities are shown as negative only for the ease of
interpretation. (Figure taken from [16], Figure 3)

We want to know if the Hawkes process provides a better fit compared to the
Poisson process. To check this we are going to make a QQ plot for both esti-
mated processes. In a quantile-quantile (QQ) plot we can check whether the
data found corresponds to a given distribution. ([4]) In our case we have found
a specific form of the Hawkes and homogeneous Poisson process based on our
data. For intensity based point process models in general, the intensity-weighted
waiting times

∫ Tn
Tn−1

(
λ
∗(buy)
t + λ

∗(sell)
t

)
dt between arrival times Tn of consecu-

tive events have a standard exponential distribution. ([16]) What we can do in
the QQ plot is plot the observed quantiles of our found Hawkes and homoge-
neous Poisson process, against the quantiles corresponding to the exponential
distribution of the intensity-weighted waiting times. The better all points are
on the y = x-line, the better the distributions are in comparison to each other.
The QQ plot is shown in Figure 8.2.

We see that the Hawkes process follows the y = x-line very closely. For the
homogeneous Poisson process, the points follow the y = x-line very badly, except
perhaps in the upper tail. A possible reason why the point of the homogeneous
Poisson process in the upper tail follow the y = x-line acceptable, is that larger
waiting times tend to occur at times when the process is unexcited; at these
times the behaviour of a self-exciting process is more Poissonian. ([16])

To conclude, we see that the Hawkes process is more suitable for describiding
this model than the homogeneous Poisson process.
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Figure 8.2: In both QQ plots the observed quantiles of the integrated intensities
are plotted against the quantiles of the theoretical, exponential distribution.
The QQ plot on the left shows the Hawkes process, whereas the QQ plot on the
right shows the homogeneous Poisson process. (Figure taken from [16], Figure
2)



Chapter 9

Application in Social Media:
Retweet Cascades

The coming of social media, has set up a whole new area to study. One may want
to set up a model to determine the expected number of likes on an Instagram
post or a model that can be used to determine the effect of ones post. In the
setting up of this models, Hawkes processes proves to be very useful, since the
self-exciting part makes it possible to use the information of the past, to better
predict the future outcomes.

In this Chapter we will look at a model that can be used to predict the
retweet cascade of a certain tweet.

This Chapter is based on Rizoiu, Lee, Mishra en Xie theirs 2017 paper A
Tutorial on Hawkes Processes for Events in Social Media ([25]). We would
like to stres that all results and figures are taken from this paper, so no own
estimations are figures are made. This Chapter is mainly here to give a brief
introduction to how Hawkes processes can be used to model real life situations.

9.1 Introduction

In Rizoiu et al. their paper, the word of mouth diffusion of online information
on Twitter is modelled: one user posts a tweet to which other users can respond
by either reacting or reposting, such that the tweet is broadcasted to even more
users. In the model we will set up, we will only look at the number of retweets,
which is the number of times a person his tweet is reshared by another person.
So the reactions to ones tweet are not taken into account in our model. The
retweets will be considered as events in a point process.

The information diffussion will be modeled as a self-exciting process. Three
key intuitions of Twitter should be reflected in our model ([25]):

1. the magnitude of influence: tweets by users with many followers tend to
get retweeted more;
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2. memory over time: most retweeting occurs in fast response to the post;

3. content quality: the better/more influential/controversial the content of
the tweet, the more retweets are to be expected.

The reason we model this information diffusion as a Hawkes process is because
of a combination of the three key intuitions of Twitter. If a tweet is posted, other
users get the new tweet in their timeline. The newer the tweet, the more likely
people are to retweet the tweet (key intuition 2). By the retweeting even more
people see the tweet, so more retweeting will occur. In this way certain “retweet
clusters” are formed. These clusters are characteristic for Hawkes processes,
which is why we expect that we can model the information diffusion as a Hawkes
process. In Figure 9.1(a) we indeed observe the forming of certain clusters for
the example we will look at in more detail in the following Sections.

9.2 The Model
The model proposed by Rizoiu et al. should be able to describe a retweet
cascade, which is the set of retweets of an initial tweet, including the original
tweet. This application, shows us the usefulness of the branching structure,
which we have defined in Section 4.4, since a retweet cascade is something that
can be easily seen in terms of the branching structure: the initial tweet is the
immigrant event and all the retweets are its offspring. Since we are looking at the
retweet cascade of a certain tweet, our model will consist of only one immigrant
event, such that the background intensity equals zero: λ0 = 0. Because we want
to incorporate the magnitude of influence (key intuition 1), we use a marked
Hawkes process, which we have seen before in Section 4.2.2 and Section 5.1: not
all reposters have the same influence, so not all marks should be equal to each
other. The conditional intensity function now looks like

λ∗(t) =
∑
t>Ti

µmi(t− Ti).

For this application, we will construct a power law kernel:

µm(t) =
Kmβ

(c+ t)p
.

Let us look at the meaning of the different parameters ([25]):

• K describes the virality (or quality) of the tweet content, so it addreses
key intuition 3;

• β affects the mark of a user, so it adresses key intuition 1, since it affects
the magnitude of influence;

• p is the power law exponent (so p > 1), which addreses key intuition 2, by
describing how fast an event is forgotten;
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• c is just a temporal shift to keep µm(t) bounded when t ≈ 0.

Overall, we see that Kmβ describes the magnitude of influence and the content
quality, whereas (c+ t)p models the memory over time.

We could also have constructed the exponentional kernel µm(t) = Kmβpe−pt,
but this kernel turns out to describes the model in a less precise way, as we will
see in Section 9.4.

9.3 The Estimation Methods

9.3.1 Maximum-Likelihood Estimators
To model the retweet cascade, we need to obtain estimates for θ = {K,β, c, p}.
These estimates can be obtain by finding the maximum-likelihood estimators.
Using Theorem 5, we can find that the log-likelihood function over the observa-
tion window [0, T ] is in this case given by

l(θ) =

n∑
i=2

ln(K) +

n∑
i=2

ln

∑
tj<ti

(mj)
β

(ti − tj + c)p


−K

n∑
i=1

(mi)
β

(
1

(p− 1)c(p−1)
− (T + c− ti)−(p−1)

p− 1

)
.

The log-likelihood function found is clearly non-linear and should be maximized.
For the model parameters there are some natural constraints: p > 1, K > 0,
c > 0, and β > 0. For the branching factor, we are not interested in the case
where n∗ > 1. Although, n∗ > 1 is mathematically valid, the super-critical
phase (see Subection 4.4.3) is not realistic is terms of interpretation, since an
infinite retweet cascade will not occur. Also the critical phase (see Subection
4.4.3) n∗ = 1 is not realistic, since a large fluctuation in the expected number of
retweets is not realistic. So instead, we will be looking at the sub-critical phase
(see Subection 4.4.3), and we incorporate n∗ < 1 as a non-linear constraint for
the maximum-likelihood estimation.

9.3.2 Expected Number of Events
When a certain retweet cascade is observed until time T , we can simulate the
continuation of the cascade by using the algorithms described in Chapter 7.
Since, we are assuming we are in the sub-critical phase n∗ < 1, our retweet
cascade will die out after some time.

Instead of simulating some possible continuations, there is in this case a
closed form solution for the expected number of events in a retweet cascade.
([25])

To compute the expected number of events in a retweet cascade, we have to
look at three steps. First, we compute the expected size of a direct offspring to
an event at time Ti after T . Then, we have to calculate the expected number
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of all offspring events. Finally, we put these two ideas together, to calculate the
expected number of events in a retweet cascade. ([25])

We know that in the marked Hawkes process, each event i = 1, ..., n that
happened at Ti < T adds µmi(t − Ti) to the overall event intensity. So to find
the expectation of Ai, which is the total number of events triggered by event
i = 1, ..., n, we just have to integrate over the memory kernels of each event:

Ai =

∫ ∞
T

λ∗(t)dt =

∫ ∞
T

∑
t>Ti

µmi(t− Ti)dt

=
∑
t>Ti

∫ ∞
T

µmi(t− Ti)dt = K

n∑
i=1

mβ
i

(1− p)(T + c− Ti)(1−p)
.

Rizoiu et al. state that the branching factor of the marked Hawkes process has
the closed form

n∗ = K · α− 1

α− β − 1
· 1

(1− p)c(1−p)
,

for β < α− 1, p > 1 and where the event marks mi are identically and indepen-
dently distributed according to P(m) = (α− 1)m−α. ([25])

The total number of events in a retweet cascade can now be obtained by
combining what we found. Each expected event in A1 is expected to generate
n∗ direct offspring events, n∗2 “grand-offspring” events, ..., n∗k kth generation
offspring events, thus for the expected number of events in a retweet cascade
N∞ we find

N∞ = n+A1(1 +n∗+n∗2 + ...) = n+
K

1− n∗

(
n∑
i=1

mβ
i

(1− p)(T + c− Ti)(1−p)

)
,

where n∗ < 1. ([25])

9.4 Results

The descriptive methods above will be tested to some real life example. The
retweet cascade of a New York Times article about the dead of Leonard Nimoy
is shown in Figure 9.1(a). This retweet cascade will be analysed.

Before we are able to predict the expected number of events in the retweet
cascade, we first have to find estimates for our parameters in the Hawkes process
with power law kernel. We are observing the retweet cascade over the interval
[0, 10], where the time is in minutes. The parameters are estimated as the
maximum-likelihood estimates, which we have looked at in Subsection 9.3.1.
Riziou et al. reports the following values for the estimates: θ̂ = {K̂ = 1.00, β̂ =
1.01, ĉ = 250.65, p̂ = 2.33}. In Figure 9.1(b) the fitted Hawkes intensity function
is shown. Figures 9.1(a) and 9.1(b) are temporally aligned in the way that each
occured event causes the conditional intensity function to increase. The big
value of K tells us this article has high content virality, and the big value of c
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tells us this article has a large waiting time. These two effects lead to a slow
diffusion of the article.

We also want to find the parameters we would have in the case of an ex-
ponential kernel, so we can compare both kernels. Using maximum-likelihood
estimates, Rizoiu et al. reports the following parameters for the exponential
kernel: θ̂ = {K̂ = 0.0003, β̂ = 1.0156, p̂ = 1.0054}. In Figure 9.1(c) the fitted
Hawkes intensity function is shown. Figures 9.1(a) and 9.1(c) are temporally
aligned in the way that each occured event causes the conditional intensity
function to increase.

Based on the found estimates of the parameters we find a branching factor
of n∗ = 0.92 for the power law kernel and a branching factor of n∗ = 0.997
for the exponentional kernel. Using the result of Subection 9.3.2 we find for
the power law kernel an expected number of 216 events in the retweet cascade,
whereas we find an expected number of 1603 events in the retweet cascade of
the exponential kernel. The real number of retweets observed was 216, so it
may be clear that using the power law kernel is indeed more appropriate for
this situation than using an exponential kernel.
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Figure 9.1: An example retweet cascade on a news article by The New York
Times. (a) The number of retweets for the first 10 minutes is shown. Each
retweet corresponds to a new event. The height of the event, corresponds to the
influence of the user who retweeted the article. (b) The conditional intensity
function for the fitted Hawkes process with power law kernel is shown. (c) The
conditional intensity function for the fitted Hawkes process with exponential
kernel is shown. (Figure taken from [25], Figure 1.3)
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Appendix A

Concepts of Measure Theory

Stochastic processes can be defined in many different ways. In this Thesis the
definitions are rather concrete: many technical difficulties are not specified.
However, stochastic processes can be defined in a very theoretical and precise
way. To define stochastic processes very precisely measure theory is needed. In
this Appendix we give a short introduction to the measure theoretical concepts
which are important for the theory of stochastic processes. This Appendix fol-
lows Chapter 1 and Chapter 2 from [9]. For a more detailed measure theoretical
overview the reader is encouraged to look at [9].

A.1 Sigma-Algebras
The first thing we have to define are sigma-algebras. The reason we need sigma-
algebras is because they are used in the definition of measures, which we’ll deal
with in Section A.2, and these measures are important in probability theory,
which we’ll deal with in Appendix B.

Defintion A1 ([9], in text, page 1): Let X be an arbitrary set. A collection
A of subsets of X is a σ-algebra (or σ-field) on X if

1. X ∈ A,

2. for each set A that belongs to A, the set AC belongs to A,

3. for each infinite sequence {Ai} of sets that belong to A, the set ∪∞i=1Ai
belongs to A,

4. for each infinite sequence {Ai} of sets that belong to A, the set ∩∞i=1Ai
belongs to A,

Because the definition of a sigma-algebra is rather abstract, we give an example
of a specific sigma-algeba.
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Example A1: Let X = {1, 2, 3} and A = {∅, {1, 2, 3}}. Obviously {1, 2, 3} ∈
A, thus the first condition is fulfilled. We have ∅C = {1, 2, 3} ∈ A and
{1, 2, 3}C = ∅ ∈ A, thus the second condition is fulfilled. Also ∅ ∪ {1, 2, 3} =
{1, 2, 3} ∈ A and ∅∩{1, 2, 3} = ∅ ∈ A, thus both the third and fourth condition
are also fulfilled. So we see that A is a σ-algebra on X.

Although the Definition of the sigma-algebra as given in Deinition A1 is abso-
lutely correct, it can be rewritten in a shorter form. ([9])

Let us first note that a σ-algebra on A can be seen as a family of subsets of
X that contains X (condition 1), is closed under complementation (condition
2), is closed under the formation of countable unions (condition 3), and is closed
under the formation of countable intersections (condition 4).

The thing about Definition A1 is that the fourth condition of the definition
is fulfilled as soon as the third condition is fulfilled (and the other way around).
From set theory we know that ∩ni=1Ai =

(
∪ni=1Ai

C
)C

. Let us now assume that
the first three conditions are true, so we know that for each infinite sequence
{Ai} ∈ A it is true that ∪∞i=1Ai ∈ A. Since condition two is true as well, we also
have {Ai}C ∈ A, thus ∪∞i=1Ai

C ∈ A. Making use of condition two again we now
also have

(
∪∞i=1Ai

C
)C

= ∩ni=1Ai ∈ A, thus the first three condition imply the
fourth condition. Thus the fourth condition in Definition A1 is not necessary
to check as soon as the second and third condition are fulfilled.

If condition one and two are both fulfilled, we know that XC = ∅ ∈ A, thus
condition one can also be written as ∅ ∈ A.

There is even another way to rewrite condition one. If A is a family of
subsets of X that is nonempty, closed under complementation, and closed under
the formation of finite or countable unions, then A must contain X: if A ∈ A,
then X, which is the union of A and AC , must also belong to A. So we can also
replace condition one by the condition that A is nonempty.

A.2 Sub-Sigma-Algebras

Like we have a subset of a set, we also can have a sub-σ-algebra of a σ-algebra.

Defintion A2: A sub-σ-algebra of a σ-algebra is a subset of a σ-algebra such
that the sub-σ-algebra still fulfills all the conditions of the σ-algebra.

A.3 Measures

Now that we have defined sigma-algebras we are able to define measures.
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Defintion A3 ([9], in text, page 7): Let X be an arbitrary set and let
A be a σ-algebra on X. A measure on A is a function µ : A → [0,∞) that
satisfies

1. µ(∅) = 0,

2. for each infinite sequence {Ai} of disjoint sets that belong to A we have
µ(∪∞i=1Ai) =

∑∞
i=1 µ(Ai).

As was the case with the definition of the sigma-algebra, also the definition of
a measure is rather abstract, so we’ll give a concrete example of a measure.

Example A3: Let X = {1, 2, 3} and A = {∅, {1, 2, 3}}. As we have seen in
Example A1, A is a σ-algebra on X. Let us now define the function µ : A →
[0,∞) as

µ(A) =

{
0 if A = ∅,
1 if A = {1, 2, 3},

We clearly see µ(∅) = 0, thus the first condition for being a measure is fulfilled.
Since 1 = µ({1, 2, 3}) = µ(∅ ∪ {1, 2, 3}) = µ(∅) + µ({1, 2, 3}) = 0 + 1 = 1 also
the second condition of being a measure is fulfilled. So µ is a measure on A.

To be more precise we could call the measure as defined in Definition A3 a
countably additive measure, based on the fact that condition two says that
the function must be countably additive. Compared to countably additive, a
function could also be finitely additive. A function is finitely additive if

µ(∪ni=1Ai) =

n∑
i=1

µ(Ai)

for each infinite sequence {Ai} of disjoint sets that belong to A. ([9])

A.4 Measure Space
Now that we have defined the concepts of a sigma-algebra A on an arbitrary set
X and a measure µ on A, we can define a measure space.

Defintion A4 ([9], in text, page 8): If X is a set, if A is a σ-algebra on
X, and if µ is a measure on A, then the triplet (X,A, µ) is called a measure
space.

Based on Definition A4 a measure space is nothing more than a triplet that
contains certain information. The X tells us at which set we are looking, the A
tells us which subsets of X form a σ-algebra and are thus suitable for measuring,
and the µ tells us which measure we will use.
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A.5 Measurable Space
Related to the concept of a measure space, is the concept of a measurable space.

Defintion A5 ([9], in text, page 8): If X is a set and if A is a σ-algebra
on X, then the pair (X,A) is called a measurable space.

As the name suggests, a measurable space is a space that contains information
about what sets will be measured.

If we know that (X,A, µ) is a measure space, then we can say that µ is a
measure on the measurable space (X,A). ([9])

A.6 Finite and σ-Finite Measures
Now we have defined the basic concepts of measures, we’ll look at two different
kind of measures: finite measures and σ-finite measures.

Defintion A5 ([9], in text, page 9): Let µ be a measure on a measurable
space (X,A). Then µ is a finite measure if µ(X) <∞.

A finite measure is thus simply a measure that always takes on finite values. An
example of a finite measure, is the measure we have defined in Example A3.

Defintion A6 ([9], in text, page 9): Let µ be a measure on a measurable
space (X,A). Then µ is a σ-finite measure if X is the union of a sequence
A1, A2, ... of sets that belong to A and satisfy µ(Ai) <∞ for each i.

We call a measure space (X,A, µ) finite or σ-finite if the µ is finite or respectively
σ-finite. ([9])

A.7 Measurable Functions
Now that we know what measure spaces are, we can look at a function between
two measure spaces.

Defintion A7 ([9], in text, page 73): Let (X,A) and (Y,B) be measurable
spaces. A function f : X → Y is measurable with respect to A and B if for
each B in B the set f−1(B) belongs to B.



Appendix B

Concepts of Probability
Theory

Appendix B builds upon the knowledge of Appendix A to give an overwiew
of the probability theory needed to fully understand stochastic processes. This
Appendix follows Chapter 2 from [12], Chapter 10 from [9] and Chapters 10 and
11 from [19], but also builds upon the knowledge of introductory probability
theory courses, so the Definitions sometimes use different words/symbols.

B.1 Sample Space

One of the first concepts that’s defined in every introductory probability theory
course, is the concept of a sample space. So let us also start by defining a sample
space.

Defintion B1 ([12], in text, page 13): The set of all possible outcomes of
an experiment is known as the sample space of an experiment.

In this Thesis, the sample space will be denoted by Ω.
Besides the concept of a sample space, also the concept of an event is im-

portant in probability theory.

Defintion B2 ([12], in text, page 14): An event E is a subset of the sample
space.

Although the concept of a sample space and an event is almost certainly known
to the reader, we will give an Example of the sample space and an event for
a certain experiment. This Example is more a build-up to the more difficult
concepts defined in the following sections.
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Example B1: A fair coin is tossed twice. The fact that the coin is fair, means
that the probability of tossing heads is equal to the probability of tossing
tails (both have a probability of 50% of occuring). The sample space of the
experiment is obviously Ω = {HH,HT, TH, TT}, where H denotes heads and
T denotes tails. The subset E = {HH,HT, TH} of the sample space Ω is
an event; this event denotes all the tosses in which at least one of the tosses
results in heads.

B.2 Probability Measure

A probability measure is, as the name suggests, a measure with some additional
conditions.

Defintion B3 ([19], in text, page 269): Let X be an arbitrary set and let
A be a σ-algebra on X. A probability measure on A is a function P : A → [0, 1]
that satisfies

1. P(∅) = 0,

2. P(X) = 1,

3. for each infinite sequence {Ai} of disjoint sets that belong to A we have
P(∪∞i=1Ai) =

∑∞
i=1 P(Ai).

It may be clear that the first two conditions satisfy that every probability mea-
sure is finite.

In the scope of probability theory the set X is mostly seen as the sample
space Ω of an experiment. We know that A is a collection of subsets of X (thus
now Ω), so A consists of events of the experiment. So the probability measure
assigns a certain probability to every event of the experiment.

Looking at a probability measure in the light of probability theory makes all
the new conditions as described in Definition B3 rather logical:

• a probability is always between zero and one, so the probability measure
is a function that always results in a value between zero and one,

• an experiment always has an outcome, so the probability measure assigns
a value of zero to the empty set, since always something occurs,

• one of the elements in the sample space always occurs, so the probability
measure assigns a value of one to the whole sample space.

Also the additive condition is rather logical in the light of probability theory.
To understand this we extend our example from the previous section.
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Example B2: Let us first define a σ-algebra A on the sample space Ω. Since a
σ-algebra is a collection of subsets of Ω, a natural choice for A is the power set
P(Ω); the power set of Ω is the set that contains all the subsets of Ω. So we’ll
choose A = P(Ω) = {∅, {HH}, {HT}, {TH}, {TT}, {HH,HT}, {HH,TH},
{HH,TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH,HT, TH},
{HH,HT, TT}, {HH,TH, TT}, {HT, TH, TT}, {HH,HT, TH, TT}}. Since
we are throwing a fair dice all the elements in the sample space have a equal
probability to occur, so we know that P(HH) = P(HT ) = P(TH) = P(TT ) =
1
4 . If we, for example, want to know P(HH,HT ), it’s best to look at what
P(HH,HT ) means: it is the probability of throwing heads first regardless
of what’s thrown after. Since we are having a fair dice, the probability of
throwing heads the first round is 1

2 , thus P(HH,HT ) = 1
2 . We now see

P(HH,HT ) = P(HH) + P(HT ), which is condition three of a probability
measure. It may now be clear to the reader that P : A → [0, 1], where

P(A) =



0 if A = ∅,
1/4 if A = {HH}, {HT}, {TH}, {TT},
1/2 if A = {HH,HT}, {HH,TH}, {HH,TT}, {HT, TH},

{HT, TT}, {TH, TT}
3/4 if A = {HH,HT, TH}, {HH,HT, TT}, {HH,TH, TT},

{HT, TH, TT},
1 if A = {HH,HT, TH, TT},

is a probability measure on A.

A word of caution is given to the special case P(E) = 1, where E ∈ A. An event
E for which it’s the case that P(E) = 1 is said to occur almost surely or almost
certainly. The word ‘almost’ is a reminder of the fact that P(E) = 1, but this
does not have to imply that E = Ω. (Iy may be clear that in Example B2 there
isn’t an event, besides the whole sample space, which occurs almost surely.)

B.3 Probability Space

As was the case for a measure space, the definition of a probability space is
fairly obvious.

Defintion B4 ([9], in text, page 307): If Ω is a set, if A is a σ-algebra on
Ω, and if P is a measure on A, then the triplet (Ω,A,P) is called a probability
space.

So a probability space just tells us what sample space our experiment has, what
events we are considering, and how we can assign a certain probability to a
particular event.
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B.4 Random variable
Instead of looking at the probability that a certain event, say E = {HH,HT},
occurs, we can also look at the number of times heads is thrown. Define X
to be the number of times heads is thrown. Throwing a fair dice twice, shows
X ∈ {0, 1, 2}. The quantity X is what we’ll call a random variable.

Defintion B5 ([19], in text, page 285): A random variable X is a measur-
able function from a probability space (Ω,A,P) to a measurable space (S,B).

The definition of a random variable X can be heuristically ‘determined’ when
looking at a concrete example.

Example B3: Again, we look at the case of throwing a fair dice twice.
Let (Ω,A,P) be a probability space as defined in Example B1. Let X be
a random variable that represents the number of times heads is thrown, thus
X ∈ {0, 1, 2}, so X is a function from Ω to {0, 1, 2} defined in the following
way:

X(A) =

0 if A = TT,
1 if A = TH,HT,
2 if A = HH

Generally, X cannot be any function, since in the end we want to talk about
such things a ‘the probability that X lies in the interval (a, b), or P(A|a ≤
X(A) ≤ b). As an example: P(A|0 ≤ X(A) ≤ 1) = 3

4 , since X is between
0 and 1 for the cases {TT, TH,HT} and P({TT, TH,HT}) = 3

4 as seen in
Example B2. So we demand that the sets of the form {A : a ≤ X(A) ≤ b}
should belong to B, which is exactly the same as saying that X is a measurable
function from (Ω,A,P) to ({0, 1, 2},B).



Appendix C

Mathematica Code For
Graphs

The Mathematica codes that have been used to produce the graphs in Chapter
4 are shown in this Appendix.

1 (* First we define the function for the expected number of ...
events *)

2 EXP[\[Alpha]_, \[Beta]_, \[Lambda]_,
3 T_] := \[Lambda]*
4 T + (\[Lambda]*\[Alpha])/(\[Alpha] - \[Beta])^2*(Exp[(\[Alpha] - \
5 \[Beta])*T] - 1 - (\[Alpha] - \[Beta])*T)
6

7 (* We make a graph of the case where \[Alpha] is variable *)
8 Plot[
9 EXP[\[Alpha], 2, 2, 2], {\[Alpha], 0, 4},

10 GridLines -> {{{2, Directive[Red, Thick]}}, None},
11 ImageSize -> Large, PlotRange -> {{0, 4}, {0, 120}},
12 PlotStyle -> {Thickness[0.005]}, AxesStyle -> Directive[Black, 14],
13 AxesLabel -> {"\[Alpha]", "E[N(2)]"},
14 PlotLabel ->
15 Style["Expected number of events as a function of \[Alpha]",
16 FontSize -> 23, Directive[Black, Bold]]]
17

18 (* We make a graph of the case where \[Beta] is variable *)
19 Plot[
20 EXP[2, \[Beta], 2, 2], {\[Beta], 0, 4},
21 GridLines -> {{{2, Directive[Red, Thick]}}, None},
22 ImageSize -> Large, PlotRange -> {{0, 4}, {0, 120}},
23 PlotStyle -> {Thickness[0.005]}, AxesStyle -> Directive[Black, 14],
24 AxesLabel -> {"\[Beta]", "E[N(2)]"},
25 PlotLabel ->
26 Style["Expected number of events as a function of \[Beta]",
27 FontSize -> 23, Directive[Black, Bold]]]
28

29 (* We make a graph of the case where Subscript[\[Lambda], 0] is \
30 variable *)
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31 Plot[EXP[1, 2, \[Lambda], 2], {\[Lambda], 0, 4},
32 ImageSize -> Large, PlotStyle -> {Thickness[0.005]},
33 AxesStyle -> Directive[Black, 14],
34 AxesLabel -> {"\!\(\*SubscriptBox[\(\[Lambda]\), \(0\)]\)",
35 "E[N(2)]"},
36 PlotLabel ->
37 Style["Expected number of events as a function of \
38 \!\(\*SubscriptBox[\(\[Lambda]\), \(0\)]\)", FontSize -> 23,
39 Directive[Black, Bold]]]
40

41 (* We make a graph of the case where t is variable *)
42 Plot[
43 EXP[1, 2, 1, t], {t, 0, 4}, ImageSize -> Large,
44 PlotStyle -> {Thickness[0.005]}, AxesStyle -> Directive[Black, 14],
45 AxesLabel -> {"t", "E[N(t)]"},
46 PlotLabel ->
47 Style["Expected number of events as a function of t",
48 FontSize -> 23, Directive[Black, Bold]]]



Appendix D

Matlab Codes Used for the
Simulations

The Matlab codes that have been used to produce the graphs of the simulations
are shown in this Appendix.

D.1 Code to Simulate the Homogeneous Poisson
Process

1 e = 1; % We start the counter to run the simulation 10000 times
2 while e < 10001 % As long as there haven't been 10000 ...

simulations, a new simulation will take place
3

4 % The input variables:
5 T = 10; % We simulate over [0,T]
6 lambda = 4; % The arrival rate
7

8 % Initialization
9 n = 1; % Counter for the Poisson process (Matlab can't start at 0)

10 setT(1) = - log(rand)/lambda; % First event time
11

12 % The while-loop to simulate the process
13 while setT(n) < T % As long as the last event time is smaller ...

than T, we generate new points
14 setT(n+1) = setT(n) - log(rand)/lambda; % We calculate the new ...

event time
15 n = n + 1; % The counter, i.e. the number of events occured, is ...

raised by one
16 end
17

18 % Check if the last point in the process occured after T: if ...
this happened, the point is removed and one is subtracted ...
from the counter

19 if setT(n) > T
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20 setT(n)=[];
21 n=n-1;
22 end
23

24 % Create a set in which a zero is added before and a T is added ...
after the event times

25 newsetT=[0 setT T];
26

27 % Code for the repeated simulation:
28 M(e) = n; % For every round of the simulation, the number of ...

events in the Poisson process will be saved
29 e = e + 1; % The counter for the number of simulations will be ...

raised
30 end
31

32 % Make a graph
33 for i = 0 : 1 : size(newsetT,2)-2 % So many lines will be drawn
34 hold on % All lines should be seen in one graph
35 plot([newsetT(i+1) newsetT(i+2)], [i i],'-b'); % Line lies ...

between consecutive points in newsetT and has the same y value
36 end
37 scatter(setT, 1:n, 80, '.b'); % Show all the events in the graph
38 xlim([0 T]) % Axis value for the x axis
39 ylim([0 n+1]) % Axis value for the y axis
40 xlabel('Time t','FontSize',12)
41 ylabel('Number of events','FontSize',12)
42 title('Simulation of a Poisson process with rate 4', 'FontSize', 16)
43

44 % Code to make the histogram
45 histogram(M,'Normalization','probability', 'DisplayName', ...

'Number of events at T')
46 xlabel('Number of events','FontSize',12)
47 ylabel('Probability density','FontSize',12)
48 title('Number of event times for \lambda = 4','FontSize',16)
49

50 % Code to obtain parameters for histogram plot with pdf
51 parameters = fitdist(M.', 'poisson') % Fit data according to a ...

Poisson distribution
52

53 % Code to plot histogram, fitted distribution and actual ...
distribution in one graph

54 hold on % Make sure everything ends up in one graph
55 x = min(M)-2 : 1 : max(M)+2; % Specify part over which we plot ...

the distributions
56 fitpois = pdf(parameters, x); % Calculate density for our ...

distribution for the right values
57 plot(x, fitpois, 'DisplayName','Fitted ...

distribution','LineWidth',2) % Plot fitted distribution in ...
histogram

58 actualpois = pdf('poisson', x, lambda*T); % Calculate density ...
for the true distribution for the right values

59 plot(x, actualpois, 'DisplayName','Actual ...
distribution','LineWidth',2) % Plot actual distribution in ...
histogram

60 legend % Create a legend
61 hold off
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D.2 Code to Simulate the Nonhomogeneous Pois-
son Process

1 e = 1; % We start the counter to run the simulation 10000 times
2 while e < 10001 % As long as there haven't been 10000 ...

simulations, a new simulation will take place
3

4 % The input variable:
5 T = 10; % We simulate over [0,T]
6

7 % Determine the sup for the intensity function over [0,T]:
8 xmin = 0; xmax = T; % Interval on which we would like to know sup
9 stepsize = 0.01; % Step size: we can't evaluate all points, so ...

stepsize must be small enough to be precise, but not too ...
small to make the simulation run too slow

10 x = xmin : stepsize : xmax; % Create array: for these points we ...
calculate the intensity function

11 y = 1 + sin(x); % The intensity function
12 [val, idx] = max(y); % Determine the maximum/supremum
13 lambda = y(idx); % Set our lambda equal to the found supremum
14

15 % Initialization:
16 n = 1; % Counter for the nonhomogeneous Poisson process (Matlab ...

can't start at 0)
17 m = 1; % Counter for the homogeneous Poisson process (Matlab ...

can't start at 0)
18 s = 0; % First "event" time for the homogeneous Poisson process
19 t = 0; % First "event" time for the nonhomogeneous Poisson process
20

21 % Define the intensity function
22 intensity = @(a) 1 + sin(a); % make sure it's equal to the ...

intensity function above
23

24 % The while-loop:
25 while s(m) < T % As long as the last event time of the ...

homogeneous Poisson is smaller than T, we generate new points
26 s(m+1) = s(m) - log(rand)/lambda; % Generate the new event time
27 D(m+1) = rand; % Generate a random variable
28 if D(m+1) ≤ intensity(s(m+1))/lambda % Determine if homogeneous ...

point will end up in the nonhomogeneous Poisson process
29 t(n+1) = s(m+1); % The homogeneous point will be in the ...

nonhomogeneous process
30 n = n + 1; % Counter of the nonhomogeneous process will be raised
31 end
32 m = m + 1; % Counter of the homogeneous process will be raised
33 end
34

35 % ?Remove first points from s, t and D, since nothing occured at ...
T = 0, but Matlab made us start at 0. The counters are also ...
lowered, since points are removed:

36 s(1) = [];
37 m = m - 1;
38 t(1)=[];
39 n = n - 1;
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40 D(1) = [];
41

42 % ?Check if the last point in the processes occured after T: if ...
this happened,?the point is removed and one is subtracted ...
from the counter

43 if s(m) > T
44 s(m) = [];
45 D(m) = []; % ?In this case the last value of D isn't used
46 m = m - 1;
47 end
48 if t(n) > T
49 t(n) = [];
50 n = n - 1;
51 end
52

53 % Code for the repeated simulation:
54 M(e) = n; % For every round of the simulation, the number of ...

events in the nonhomogeneous Poisson process will be saved
55 e = e + 1; % The counter for the number of simulations will be ...

raised
56 end
57

58 % Make an array of the points which are in the homogeneous ...
Poisson process but not in the nonhomogeneous Poisson process

59 srem = setdiff(s,t);
60

61 % Make the right values of D correspond to the right values of t ...
and srem

62 o = 1; % Start a counter for the Dt list
63 p = 1; % Start a counter for the Dsrem list
64 for l = 1 : 1 : size(s, 2) % We check it for all the elements in s
65 if ismember(s(l),t) % If an element in s also belongs to t
66 Dt(o)=D(l); % we add the value of D on place l to Dt
67 o = o + 1; % we raise the counter to make sure t corresponds to ...

the right Dt value
68 end
69 end
70 for q = 1 : 1 : size(s, 2) % We check it for all the elements in s
71 if ismember(s(q),srem) % If an element in s also belongs to srem
72 Dsrem(p)=D(q); % we add the value of D on place q to Dsrem
73 p = p + 1; % we raise the counter to make sure srem corresponds ...

to the right Dsrem value
74 end
75 end
76

77 % Make a graph
78 b = 0 : 0.01 : T; % Interval over which we plot
79 f = 1 + sin(b); % Intensity function
80 g = lambda; % Sup of intensity
81 plot(b,f,'-b',[0 T],[1 1]*g,'--k'); % Plot both graphs in one figure
82 xlim([0 T]) % x values for the plot
83 ylim([0 2.1]) % y values for the plot
84 hold on
85 for i = 1 : 1 : size(srem,2) % Plot all the points in ...

homogeneous Poisson process as red
86 plot(srem(i),0,'r.','MarkerSize',30) % Plot event times on axis
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87 plot(srem(i),Dsrem(i)*lambda,'r.','MarkerSize',30) % Plot ...
probability density

88 plot([srem(i) srem(i)], [0 Dsrem(i)*lambda], ...
':r','LineWidth',2); % Connect event times and probability ...
densities

89 end
90

91 for j = 1 : 1 : size(t,2) % Plot all the point in the ...
nonhomogeneous Poisson process as green

92 plot(t(j),0,'g.','MarkerSize',30) % Plot event times on axis
93 plot(t(j),Dt(j)*lambda,'g.','MarkerSize',30) % Plot probability ...

density
94 plot([t(j) t(j)], [0 Dt(j)*lambda], ':g','LineWidth',2); % ...

Connect event times and probability densities
95 end
96

97 xlabel('Time t','FontSize',12)
98 ylabel('Intensity','FontSize',12)
99 title('Simulation of a nonhomogeneous Poisson process', ...

'FontSize', 16)
100

101 % Code to make the histogram
102 histogram(M,'Normalization','probability', 'DisplayName', ...

'Number of events at T')
103 xlabel('Number of events','FontSize',12)
104 ylabel('Probability density','FontSize',12)
105 title('Number of event times for \lambda(t) = 1 + ...

sin(t)','FontSize',16)
106

107 % Code to obtain parameters for histogram plot with pdf
108 parameters = fitdist(M.', 'poisson') % Fit data according to a ...

Poisson distribution
109

110 % Code to plot histogram, fitted distribution and actual ...
distribution in one graph

111 hold on % Make sure everything ends up in one graph
112 x = min(M)-2 : 1 : max(M)+2; % Specify part over which we plot ...

the distributions
113 fitpois = pdf(parameters, x); % Calculate density for our ...

distribution for the right values
114 plot(x, fitpois, 'DisplayName','Fitted ...

distribution','LineWidth',2) % Plot fitted distribution in ...
histogram

115 actualpois = pdf('poisson', x, 11 - cos(10)); % Calculate ...
density for the true distribution for the right values

116 plot(x, actualpois, 'DisplayName','Actual ...
distribution','LineWidth',2) % Plot actual distribution in ...
histogram

117 legend % Create a legend
118 hold off

D.3 Code to Simulate the Hawkes Process with
Exponential Kernel According to Ogata
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1 % While-loop to create the histogram
2

3 e=1; % We start the counter to run the simulation 10000 times
4 while e < 10001 % As long as there haven't been 10000 ...

simulations, a new simulation will take place
5

6 % Code to simulate one Hawkes process
7

8 % The input variable:
9 T = 2; % we simulate over [0,T]

10 lambda0 = 1.2; % background intensity term
11 alpha = 0.6; % first parameter exponential kernel
12 beta = 0.8; % second parameter exponential kernel
13

14 % Initialization:
15 n = 1; % counter for the process (Matlab can't start at 0)
16 m = 1; % counter for the candidate points (Matlab can't start at 0)
17 s(1) = 0; % first candidate point of Hawkes process
18 setT = []; % array of event times
19

20 % The while-loop:
21 while s(m) < T % as long as the candidate points are smaller ...

than the interval of the simulation we generate new points
22 % Determine the value of lambda bar
23 if n > 1 % Check if there are already point in the Hawkes ...

process, if so calculate the right value of lambda bar
24 sum = 0;
25 for i = 1 : 1 : size(setT, 2)
26 sum = sum + alpha * exp(-beta*(s(m) - setT(i))); % If setT isn't ...

empty, lambabar is the sum of the intensity of the ...
individual points

27 end
28 lambdabar(m) = lambda0 + sum(end) + alpha; % However we have to ...

add the background intensity and alpha since the new points ...
increases the intensity with alpha

29 else % When there aren't any points in the Hawkes process yet, ...
the intensity is the background intensity

30 lambdabar(m) = lambda0;
31 end
32

33 % Update the candidate point
34 s(m+1) = s(m) - log(rand)/lambdabar(m); % generate the new ...

candidate point
35

36 % Determine the value of the intensity for the new candidate point
37 if n > 1 % Check if there are already point in the Hawkes ...

process, if so calculate the right value of lambda
38 sumnew = 0;
39 for i = 1 : 1 : size(setT, 2)
40 sumnew = sumnew + alpha * exp(-beta*(s(m+1) - setT(i))); % If ...

setT isn't empty, lambabar is the sum of the intensity of ...
the individual points

41 end
42 lambdanew(m) = lambda0 + sumnew(end) + alpha; % However we have ...

to add the background intensity and alpha since the new ...
points increases the intensity with alpha

43 else
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44 lambdanew(m) = lambda0; % When there aren't any points in the ...
Hawkes process yet, the intensity is the background intensity

45 end
46

47 % Check the new point
48 D(m+1) = rand; % Generate a random variable
49 if D(m+1) * lambdabar(m) ≤ lambdanew(m) % Determine if point ...

needs to be rejected
50 setT(n) = s(m+1); % If not rejected the point is added to the ...

Hawkes process
51 n = n + 1; % So the counter is raised by one
52 end
53

54 m = m +1; % Otherwise, we go on to the next candidate point
55 end
56

57 % Remove first points from s and D, since nothing occured at T = 0
58 s(1) = []; % remove starting point homogeneous Process
59 m = m - 1; % one element of array is removed thus lower the ...

arraylength
60 D(1) = []; % remove first point from D
61 n = n - 1; % had to start at 1
62

63 % Remove points that happened after T
64 if s(m) > T % check for the homogeneous Poisson process
65 s(m) = []; % if the last value is bigger than T we remove it ...

from the array
66 D(m) = []; % in this case the last value of D isn't used anymore
67 m = m - 1; % in this case the arraysize decreases by one since ...

one point is removed
68 end
69 if setT(n) > T % check for the nonhomogeneous Poisson process
70 setT(n) = []; % if the last value is bigger than T we remove it ...

from the array
71 n = n - 1; % in this case the arraysize decreases by one since ...

one point is removed
72 end
73

74 % Code for the repeated simulation
75 M(e)=n; % For every round of the simulation, the number of ...

events in the Hawkes process will be saved
76 e = e + 1; % The counter for the number of simulations will be ...

raised
77

78 end
79

80 % Code to make the histogram
81 histogram(M,'Normalization','probability')
82 xlabel('Counter','FontSize',16)
83 ylabel('Probability density','FontSize',16)
84 title('Number of event times for \lambda_0 = 1.2, \alpha = 0.6 ...

and \beta = 0.8','FontSize',16)
85

86 %Code to make the graph if there are five event times
87 hold on
88
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89 g = lambda0; % Plot the background intensity before the first ...
event occurs

90 plot([0 setT(1)],[1 1]*g,'-b')
91

92 x = setT(1) : 0.001 : setT(2); % Plot the intensity between the ...
first and second event time

93 intensity = @(e) lambda0 + alpha*exp(-beta*(e-setT(1))); % Just ...
sum over one product

94 scatter(setT(1), intensity(setT(1)),80,'.b')
95 plot(x, intensity(x), '-b')
96

97 y = setT(2)+0.000001 : 0.001 : setT(3); % Plot the intensity ...
between the second and third event time

98 intensity2 = @(e) lambda0 + alpha*exp(-beta*(e-setT(1))) + ...
alpha*exp(-beta*(e-setT(2))); % Sum over two products

99 scatter(setT(2), intensity2(setT(2)),80,'.b')
100 plot(y, intensity2(y),'-b')
101

102 z = setT(3)+0.000001 : 0.001 : setT(4); % Plot the intensity ...
between the third and fourth event time

103 intensity3 = @(e) lambda0 + alpha*exp(-beta*(e-setT(1))) + ...
alpha*exp(-beta*(e-setT(2))) + alpha*exp(-beta*(e-setT(3))); ...
% Sum over three products

104 scatter(setT(3), intensity3(setT(3)),80,'.b')
105 plot(z, intensity3(z),'-b')
106

107 xx = setT(4)+0.000001 : 0.001 : setT(5); % Plot the intensity ...
between the fourth and fifth event time

108 intensity4 = @(e) lambda0 + alpha*exp(-beta*(e-setT(1))) + ...
alpha*exp(-beta*(e-setT(2))) + alpha*exp(-beta*(e-setT(3))) ...
+ alpha*exp(-beta*(e-setT(4))); % Sum over four products

109 scatter(setT(4), intensity4(setT(4)),80,'.b')
110 plot(xx, intensity4(xx),'-b')
111

112 yy = setT(5)+0.000001 : 0.001 : T; % Plot the intensity between ...
the fifth event time and T

113 intensity5 = @(e) lambda0 + alpha*exp(-beta*(e-setT(1))) + ...
alpha*exp(-beta*(e-setT(2))) + alpha*exp(-beta*(e-setT(3))) ...
+ alpha*exp(-beta*(e-setT(4)))+ ...
alpha*exp(-beta*(e-setT(5))); % Sum over five products

114 scatter(setT(5), intensity5(setT(5)),80,'.b')
115 plot(yy, intensity5(yy),'-b')
116

117 xlim([0 T]) % x values for the plot
118 ylim([0 3.5]) % y values for the plot
119 xlabel('Time t','FontSize',16)
120 ylabel('Intensity','FontSize',16)
121 title('Simulation of a Hawkes process with parameters \lambda_0 ...

= 1.2, \alpha = 0.6 and \beta = 1.6','FontSize',18)
122

123 hold off
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D.4 Code to Simulate the Hawkes Process with
Power Law Kernel According to Ogata

1 % While-loop to create the histogram
2

3 e=1; % We start the counter to run the simulation 10000 times
4 while e < 10001 % As long as there haven't been 10000 ...

simulations, a new simulation will take place
5

6 % Code to simulate one Hawkes process
7

8 % The input variable:
9 T = 2; % we simulate over [0,T]

10 lambda0 = 1; % background intensity term
11 K = 3; % first parameter power law kernel
12 c = 1; % second parameter power law kernel
13 p = 1; % third parameter power law kernel
14

15 % Initialization:
16 n = 1; % counter for the process (Matlab can't start at 0)
17 m = 1; % counter for the candidate points (Matlab can't start at 0)
18 s(1) = 0; % first candidate point of Hawkes process
19 setT = []; % array of event times
20

21 % The while-loop:
22 while s(m) < T % as long as the candidate points are smaller ...

than the interval of the simulation we generate new points
23 % Determine the value of lambda bar
24 if n > 1 % Check if there are already point in the Hawkes ...

process, if so calculate the right value of lambda bar
25 sum = 0;
26 for i = 1 : 1 : size(setT, 2)
27 sum = sum + K./((c+(s(m) - setT(i))).^p); % If setT isn't empty, ...

lambabar is the sum of the intensity of the individual points
28 end
29 lambdabar(m) = lambda0 + sum(end) + K./(c.^p); % However we have ...

to add the background intensity and alpha since the new ...
points increases the intensity with alpha

30 else % When there aren't any points in the Hawkes process yet, ...
the intensity is the background intensity

31 lambdabar(m) = lambda0;
32 end
33

34 % Update the candidate point
35 s(m+1) = s(m) - log(rand)/lambdabar(m); % generate the new ...

candidate point
36

37 % Determine the value of the intensity for the new candidate point
38 if n > 1 % Check if there are already point in the Hawkes ...

process, if so calculate the right value of lambda
39 sumnew = 0;
40 for i = 1 : 1 : size(setT, 2)
41 sumnew = sumnew + K./((c+(s(m+1) - setT(i))).^p); % If setT ...

isn't empty, lambabar is the sum of the intensity of the ...
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individual points
42 end
43 lambdanew(m) = lambda0 + sumnew(end) + K./(c.^p); % However we ...

have to add the background intensity and alpha since the new ...
points increases the intensity with alpha

44 else
45 lambdanew(m) = lambda0; % When there aren't any points in the ...

Hawkes process yet, the intensity is the background intensity
46 end
47

48 % Check the new point
49 D(m+1) = rand; % Generate a random variable
50 if D(m+1) * lambdabar(m) ≤ lambdanew(m) % Determine if point ...

needs to be rejected
51 setT(n) = s(m+1); % If not rejected the point is added to the ...

Hawkes process
52 n = n + 1; % So the counter is raised by one
53 end
54

55 m = m +1; % Otherwise, we go on to the next candidate point
56 end
57

58 % Remove first points from s and D, since nothing occured at T = 0
59 s(1) = []; % remove starting point homogeneous Process
60 m = m - 1; % one element of array is removed thus lower the ...

arraylength
61 D(1) = []; % remove first point from D
62 n = n - 1; % had to start at 1
63

64 % Remove points that happened after T
65 if s(m) > T % check for the homogeneous Poisson process
66 s(m) = []; % if the last value is bigger than T we remove it ...

from the array
67 D(m) = []; % in this case the last value of D isn't used anymore
68 m = m - 1; % in this case the arraysize decreases by one since ...

one point is removed
69 end
70 if setT(n) > T % check for the nonhomogeneous Poisson process
71 setT(n) = []; % if the last value is bigger than T we remove it ...

from the array
72 n = n - 1; % in this case the arraysize decreases by one since ...

one point is removed
73 end
74

75 % Code for the repeated simulation
76 M(e)=n; % For every round of the simulation, the number of ...

events in the Hawkes process will be saved
77 e = e + 1; % The counter for the number of simulations will be ...

raised
78

79 end
80

81 % Code to make the histogram
82 histogram(M,'Normalization','probability')
83 xlabel('Counter','FontSize',16)
84 ylabel('Probability density','FontSize',16)
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85 title('Number of event times for \lambda_0 = 1, K = 3, c = 1 and ...
p = 1','FontSize',18)

86

87 % Code to make the graph if there are five event times
88 hold on
89

90 g = lambda0; % Plot the background intensity before the first ...
event occurs

91 plot([0 setT(1)],[1 1]*g,'-b')
92

93 x = setT(1) : 0.001 : setT(2); % Plot the intensity between the ...
first and second event time

94 intensity = @(e) lambda0 + K./((c+(e-setT(1))).^p); % Just sum ...
over one product

95 scatter(setT(1), intensity(setT(1)),80,'.b')
96 plot(x, intensity(x), '-b')
97

98 y = setT(2)+0.000001 : 0.001 : setT(3); % Plot the intensity ...
between the second and third event time

99 intensity2 = @(e) lambda0 + K./((c+(e-setT(2))).^p) + ...
K./((c+(e-setT(1))).^p); % Sum over two products

100 scatter(setT(2), intensity2(setT(2)),80,'.b')
101 plot(y, intensity2(y),'-b')
102

103 z = setT(3)+0.000001 : 0.001 : setT(4); % Plot the intensity ...
between the third and fourth event time

104 intensity3 = @(e) lambda0 + K./((c+(e-setT(3))).^p) + ...
K./((c+(e-setT(2))).^p) + K./((c+(e-setT(1))).^p); % Sum ...
over three products

105 scatter(setT(3), intensity3(setT(3)),80,'.b')
106 plot(z, intensity3(z),'-b')
107

108 xx = setT(4)+0.000001 : 0.001 : setT(5); % Plot the intensity ...
between the fourth and fifth event time

109 intensity4 = @(e) lambda0 + K./((c+(e-setT(4))).^p) + ...
K./((c+(e-setT(3))).^p) + K./((c+(e-setT(2))).^p) + ...
K./((c+(e-setT(1))).^p); % Sum over four products

110 scatter(setT(4), intensity4(setT(4)),80,'.b')
111 plot(xx, intensity4(xx),'-b')
112

113 yy = setT(5)+0.000001 : 0.001 : T; % Plot the intensity between ...
the fifth event time and T

114 intensity5 = @(e) lambda0 + K./((c+(e-setT(4))).^p) + ...
K./((c+(e-setT(4))).^p) + K./((c+(e-setT(3))).^p) + ...
K./((c+(e-setT(2))).^p) + K./((c+(e-setT(1))).^p); % Sum ...
over five products

115 scatter(setT(5), intensity5(setT(5)),80,'.b')
116 plot(yy, intensity5(yy),'-b')
117

118 xlim([0 T]) % x values for the plot
119 ylim([0 4.5]) % y values for the plot
120 xlabel('Time t','FontSize',16)
121 ylabel('Intensity','FontSize',16)
122 title('Simulation of a Hawkes process with parameters \lambda_0 ...

= 1, K = 1, c = 1 and p = 2','FontSize',18)
123

124 hold off


