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Abstract

We present three ways to identify the mode functions and frequencies of standing
waves in a Bose-Einstein Condensate (BEC). Firstly, we treat an easier system in prolate
spheroidal coordinates, which has already been solved, and we use this knowledge to
implement our boundary conditions, which can be done in a rather satisfying way.
Secondly, we assume a cylindrical-shaped BEC in order to get exact solutions of a more
complicated (but still incomplete) system. This results in the same mode functions as
used before in literature as a variational Ansatz, and therefore supports this Ansatz.
Finally, we will use perturbation theory on the entire system to determine the first-order
corrections on the frequencies.

When we compare our results with simulation data, we find that the frequencies (up
to first order) are in the right regime, but in order to improve the accuracy, a different
strategy will be needed, since the determination of the first-order mode functions (and
hence the higher-order frequencies) seems to require degenerate perturbation theory.
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1 Introduction

In 1924-1925, Einstein used the work of Bose to predict a ‘condensed substance’, where ‘as
you increase the overall density, an ever increasing number of molecules drop into the ground
state’ [1]. This substance, now known as a Bose-Einstein condensate (abbreviated BEC),
has experimentally been realised since 1995 [2]. The difficulty here is to achieve the very low
temperatures needed to produce a BEC (typically in the order of 10−7 K). A BEC really is
a different state of matter, just like for example a solid and a liquid, but because it has such
an extremely low critical temperature, we do not encounter it in our daily lives.

A BEC has some interesting properties. For example, superfluidity can arise here [3].
Furthermore, BEC can be viewed as making quantum mechanics macroscopic, because the
occupation of the ground state is macroscopically high. These and many other properties
make BEC a phenomenon studied intensively.

Figure 1: The shape of a
BEC in Utrecht: a rugby
ball or prolate spheroid. In
the experiment, the larger
axis is approximately 1 mm.

In Utrecht, sodium atoms are cooled to a temperature
T = 300 nK, where a BEC is formed [4]. The BEC is shaped
as a tiny rugby ball or, more scientifically spoken, as a prolate
spheroid1. The theoretical description of such a BEC includes
the variational model for a space-time crystal observed in this
superfluid, as described in Ref. [5]. Here, a variational Ansatz
is used for the density and phase of the mode functions, re-
stricted to axial variations of the mode functions. Overall,
this Ansatz led to accurate results. Only some small devi-
ations appeared near the boundary of the condensate. The
energy spectrum (frequencies) seems to have a slightly differ-
ent slope as well. The goal of this thesis is to (further) improve
the theoretical description of the physics in a BEC, in partic-
ular concerning these mode functions and frequencies. Not only will we permit variations in
the axial direction, but also in the radial direction, because it is known that there is some
(small) radial dependence, and this might explain the discrepancies. We will do this in three
ways, namely (i) by using prolate spheroidal coordinates and applying our knowledge of a
solvable, but drastically simplified system, (ii) by using cylindrical coordinates to treat a
more complicated, but still completely solvable system, while changing the boundary of the
BEC into a cylinder and (iii) by using nondegenerate perturbation theory on the entire sys-
tem (with the proper boundaries). This last method will result in zeroth order functions and
frequencies, and first-order corrections on these frequencies.

After a description of the theoretical background of a BEC in Sec. 2, we present the three
approaches mentioned in Sec. 3 - 5. In Sec. 6, we compare our results with the experimental
(simulation) data2 and the results of the variational model.

1Interestingly, prolate spheroids are also used to describe several objects in astrophysics, such as moons
and nebulae.

2Thanks to J. Smits for making the data available to me.
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2 Theoretical background

In this section, the main objective is to explain the theoretical settings of the experiment,
and deriving Eq. (5) which is the most important expression for the rest of this thesis. Most
experimental parameters can be found at p.2 of Ref. [5].

In the experiment, sodium atoms are trapped using a potential

V (ρ, z) =
1

2
mω2

ρ(ρ
2 + λ2z2), (1)

with m the mass of the atoms, ωρ the trap frequency in the radial direction ρ and ωz = λωρ
the trap frequency in the axial direction z. In the experiment with trap frequencies (ωρ, ωz) =
2π ∗ (52.7, 1.43) Hz the aspect ratio λ is small (λ ≈ 0.027) [5].
Let furthermore µ be the chemical potential, N the number of particles and V0 the strength
of the constant3 interaction potential. Notice that ρ and z are the ‘regular’ or ‘unscaled’
cylindrical coordinates, bounded by [0, Rρ] and [−Rz, Rz] respectively, in such a way that
ρ2

R2
ρ

+ z2

R2
z
≤ 1. Here Ri are the Thomas-Fermi radii: Ri =

√
2µ
mω2

i
, for i = ρ, z. This defines a

prolate spheroid, because in our case Rρ < Rz
4.

Using these definitions, we can transform the well-known Schrödinger equation into

i~
∂ψmacro(ρ, z, t)

∂t
= {− ~2

2m
~∇2 + V (ρ, z) + V0 n(ρ, z, t)}ψmacro(ρ, z, t), (2)

where ~ is the Dirac constant (Planck’s constant divided by 2π), ψmacro(ρ, z, t) the ‘macro-
scopical wave function’ and n(ρ, z, t) the particle density, both defined such that n(ρ, z, t) =
|ψmacro(ρ, z, t)|2 = N |ψ(ρ, z, t)|2, with ψ(ρ, z, t) the ‘normal’ wave function, which is a prob-
ability amplitude and normalized as

∫
dρ

∫
dz 2πρ |ψ(ρ, z, t)|2 = 1.

By definition, ψmacro(ρ, z, t) =
√
n(ρ, z, t)eiφ(ρ,z,t), where φ(ρ, z, t) is the phase. Substituting

this into Eq. (2) and separating into an imaginary and a real equation in the end leads to:

• the continuity equation
∂n(ρ, z, t)

∂t
+ ~∇ · j(ρ, z, t) = 0, (3)

where j(ρ, z, t) = n(ρ, z, t)v(ρ, z, t) the current density and v(ρ, z, t) = ~2
m
~∇φ(ρ, z, t) the

velocity (equivalent to the definitions at p. 2 of Ref. [5]) and

• the Josephson equation

~
∂φ(ρ, z, t)

∂t
+(

1

2
m|v(ρ, z, t)|2+V (ρ, z)+V0 n(ρ, z, t)− ~2

2m
√
n(ρ, z, t)

~∇2
√
n(ρ, z, t)) = 0.

(4)

3This interaction is proportional to δ(x−x′), because the De Broglie wavelength is huge compared to the
interaction.

4If Rρ > Rz, we would have an oblate spheroid.
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In the Thomas-Fermi limit or Thomas-Fermi approximation5, we neglect the last term in
Eq. (4). Linearizing Eq. (3) and Eq. (4) around n0(ρ, z) = µ−V

V0
and φ0 = 0 makes it possible

to separate the problem into one equation for δn and one equation for δφ. When the Ansatz
δn(ρ, z, t) = δn(ρ, z)e−iωt and equivalent δφ(ρ, z, t) = δφ(ρ, z)e−iωt is made, we can rewrite
our equations to be:

• −ω2δn(ρ, z) = V0
m
n0(ρ, z)~∇ · ~∇δn(ρ, z) and

• −ω2δφ(ρ, z) = V0
m
n0(ρ, z)~∇ · ~∇δφ(ρ, z).

Since these equations are completely analogous, we will in the remainder of this thesis
focus on the first equation, which reads in a slightly different form:

− ω2δn(ρ, z) =
µ

m
(1− ρ2

R2
ρ

− z2

R2
z

)~∇2δn(ρ, z), (5)

using the definition of n0. From now on, δn without argument refers to this time-independent
δn(ρ, z).

When the variational method mentioned above (which neglects the radial dependence) is
used to determine the functions δn and the frequencies ω, the result becomes (Ref. [5], p.3
and Ref. [4], p.7)

δnj = Kj · (P4j+2(
z

Rz

)− P4j(
z

Rz

)) (6)

and

ωj = ωz

√
(4j + 1)(4j + 2)

2
, (7)

where j = 0, 1, 2, ... is the quantum number, Kj is the normalization constant and Pk(x) is
the k-th Legendre polynomial6. These expressions and the simulation data will be used to
compare our results with.

We will now analyze Eq. (5) in three different ways, resulting in approximations of the
frequencies ω and the density fluctuations δn.

5A clear discussion of the Thomas-Fermi approximation can e.g. be found at p. 43-44 of Ref. [6]. As
stated in Ref. [7] (p. 6), this approximation is valid when ~ωx,y,z � nV0. This is the case, except for
V (ρ, z)→ µ, which corresponds to approaching the boundaries of the condensate.

6Legendre polynomials are defined as the solutions of d
dx [(1−x2)du(x)dx ]+mu(x) = 0, for which m = n(n+1),

n = 0, 1, 2, ... [8]
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3 Prolate spheroidal approach

A good way to start studying Eq. (5) is by using the so-called prolate spheroidal coordinates
in order to get the desired frequencies and wave functions. These coordinates are useful for
our condensate, because they will give an easy way to implement the boundary conditions
(which is, in our case, specified on a prolate spheroid).

It is known that the Helmholtz equation, which would in our case be

~∇2δn = −m
µ
ω2δn, (8)

can be solved with these coordinates by separation of variables, which has already been done
(see e.g. Ref. [9], p. 40 and Ref. [10], chapter 30.13). In this section, we will use the results
of these calculations for our situation. Since we are neglecting any position dependence of
n0 (which is only a good approximation when ρ2

R2
ρ

+ z2

R2
z
� 1, i.e. close to the origin), this is

just a rough estimate at first, which we will improve later.
The goal is to introduce these coordinates, and to show how the boundary conditions can

be introduced in a very elegant way, but we will not find any useful approximations for our
more complicated system. Therefore, the detailed information such as the mode functions
will not be presented here, although they are completely known. Since this approach might
be very useful for further research, we wanted to implement it in this discussion.

3.1 Separation of variables

Let’s introduce (ξ, η, φ), such that

• x = c
√

(ξ2 − 1)(1− η2) cos(φ)

• y = c
√

(ξ2 − 1)(1− η2) sin(φ)

• z = cξη,

where c is half the interfocal distance: c =
√
R2
z −R2

ρ = Rz

√
1− λ2. Furthermore, ξ ∈ [1,∞),

η ∈ [−1, 1] and φ ∈ [0, 2π].
When this coordinate system is used, one can find solutions of Eq. (8) using separation

of variables (Ref. [9] and Ref. [10]) In our setup, we can use the rotational symmetry around
the z-axis7. This simplifies the separated equations, because one quantum number becomes
zero (this quantum number is denoted as m in Ref. [9] and µ in Ref. [10]). The mode
functions can be expressed in terms of the so-called prolate spheroidal wave functions.

7The mode functions are independent of φ in our case. Note that η is also related to an angle. Indeed,
another convention uses ν and µ with η = cos(ν) and ξ = cosh(µ). This convention shows that for ξ → ∞,
the prolate spheroidal coordinates will ‘converge’ to the regular spherical coordinates, where ξ is directly
related to the radial coordinate r. This fact can also be deduced from Fig. 2.
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(a) Prolate spheroid for ξ = 1. (b) Prolate spheroid for ξ = ξ0. (c) Prolate spheroid for ξ =
1.01.

(d) Prolate spheroid for ξ =
1.05.

(e) Prolate spheroid for ξ = 1.2. (f) Prolate spheroid for ξ = 2.

Figure 2: Plots of prolate spheroids for different values of ξ, with c = 1 (so unscaled). Fig.
2b illustrates the situation where the ratio between the axes agrees with our experimental
setup, using Eq. (10).

3.2 Solutions using boundary conditions

The advantage of prolate spheroidal coordinates is the fact that the boundary conditions can
be implemented much easier, because we want our mode functions δn to be zero8 at a prolate
spheroid.

For a fixed ξ0, we find

∀η :
x2 + y2

c2(ξ2
0 − 1)

+
z2

c2ξ2
0

= (1− η2) + η2 = 1, (9)

which is the defining equation of a prolate spheroid. This fact is shown in Fig. 2, where we
also find that for larger ξ, the prolate spheroid becomes more ‘spherical’. Notice furthermore

8The mode functions have to go to zero, because this is what happens near the edge, and what has been
observed. It’s not physical to have a discontinuity in the density at the boundaries. Notice that for the same
reason, the variational model (Eq. (6)) has the difference between two Legendre polynomials, instead of just
a single one.
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that the longer axis of the prolate spheroid depends linearly on ξ (since z = cξη).
So, fixed values of ξ give a surface with the shape of a prolate spheroid. We thus want to

specify our boundary condition for the specific ξ0 that satisfies R2
ρ = c2(ξ2

0−1) and R2
z = c2ξ2

0 .
We find

ξ0 =
1√

1− λ2
≈ 1.00036. (10)

The prolate spheroid for this ξ0 is shown in Fig. 2b. We can even show the line determined
by ξ = ξ0 in the ρz-plane9, resulting in Fig. 3. We conclude that the mode functions have to
be zero on this ellipse in the ρz-plane (with focal points on the z-axis).

-0.00002 -0.00001 0.00001 0.00002
ρ

-0.0005

0.0005

z

Figure 3: Plot of the line ξ = ξ0 in the ρz-plane, now using the correct value c = Rz

√
1− λ2.

Notice that the z-axis is the longer axis here.

As described by equation 30.13.15 in Ref. [10], the eigenvalues can be found by solving
the equation

S0
n(ξ0, γ) = 0, (11)

where this function S
k(1)
n is the radial spheroidal function (of the first kind), while k = 0 due

to the angular symmetry. The parameter γ is defined via γ2 = m
µ
c2ω2 and ξ0 is given by Eq.

(10). These eigenvalues can numerically be found for an arbitrary n, but they are of no use
for this study.

9Our system is rotationally symmetric around the z-axis. Rotating Fig. 3 around the z-axis results in the
scaled version of Fig. 2b.
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4 Cylindrical approach

As a second approximation, we can look for solutions of Eq. (5) with the simplification that
the condensate is no prolate spheroid, but a cylinder with radius Rρ and length 2Rz. This is

a valid approximation when Rρ � Rz, because in this situation, the term ρ2

R2
ρ

in the defining

equation of a prolate spheroid can safely be neglected close to the z-axis. In our case, where
Rρ = λRz (and λ ≈ 0.027), this seems a reasonable approximation. Close to the z-axis, we
can therefore reduce Eq. (5) in this cylindrical approach to

µ

m
(1− z2

R2
z

)~∇2δn = −ω2δn. (12)

We can solve this Eq. (12) using separation of variables. This approach is ‘better’ than
our first method in the sense that the term z2

R2
z

will be treated as well. As we will see, the
mode functions δn achieved via this method agree very well with the variational Ansatz, Eq.
(6).

4.1 Separation of variables

As before, we try separation of variables10: δn = R(ρ̄)Z(z̄)Φ(φ), where we make use of the
substitutions z̄ ≡ z

Rz
and ρ̄ ≡ ρ

Rρ
, which are now dimensionless variables. Using the identities

ωz = λωρ and µ
mR2

ρ
= 1

2
ω2
ρ, we find11:

−ω2

1− z̄2
=

1

2
ω2
ρ · {λ2 1

Z

d2Z

dz̄2
+

1

ρ̄

1

R

d

dρ̄
[ρ̄
dR

dρ̄
] +

1

ρ̄2

1

Φ

d2Φ

dφ2
}. (13)

Introducing the separation constants k and m, we are able to find three separate equations:
one for Z, one for R and one for Φ.

4.1.1 Equations for R and Φ

The equations for R and Φ can be solved in general, although this will not be of great
importance for our study.
For Φ, we find d2

dφ2
Φ = −m2Φ, which simply implies that Φ(φ) = Φ0e

±imφ.

The equation for R becomes ρ̄2 d2

dρ̄2
R+ ρ̄ d

dρ̄
R+(k2ρ̄2−m2)R = 0. This is nothing than Bessel’s

differential equation for kρ̄, so the solution becomes R(ρ̄) = Jm(kρ̄), where Jm is the m-th
Bessel function.

4.1.2 Imposing the boundary conditions

A logical and physical12 boundary condition is the requirement that the flux in the ρ̄-direction
is zero at the boundary, which is to say ∂Jm(kρ̄)

∂ρ̄
|ρ̄=1 = 0. This will result in discretized values

10As Griffiths states it: ”separation of variables is the physicist’s first line of attack on any partial differential
equation.” (see Ref. [11], p. 24)

11Notice we can use total derivatives here.
12At first instance, a condition like ‘Jm(kρ̄) = 0 for ρ̄ = 1’ may be another guess, similar to the prolate

spheroidal case, but this conditions implies that δn = 0 (i.e. no fluctuations at all) in this case, since the
ρ̄-dependence is (almost) constant.
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of k, since k is now restricted to be a zero of the first derivative of the m-th Bessel function.
A lot of work has been done to find the numerical values of these zeros, see for example Ref.
[12].

In our case, we are most interested in the case k = 0 and m = 0, because for those values,
the φ-dependence is zero or equivalently Φ(φ) = Φ0e

0 = Φ0 (which has to be the case for our
angular symmetric system) and the ρ̄-dependence is small, so R(ρ̄) is best approximated by
a constant R0.

4.1.3 Equation for Z

Since the mode functions are known to be strongly z̄-dependent, the equation for Z is the
most interesting part. Note that this is the only equation involving ω.

The equation for Z becomes

(1− z̄2)
d2

dz̄2
Z + 2(

ω

ωz
)2Z = 2(

k

ωz
)2(1− z̄2)Z. (14)

Although this equation does not seem solvable for an arbitrary k, we are actually most
interested in the case k = 0, since we know that the mode functions δn has te be almost ρ̄-
and φ-independent ([4] and [5]). Fortunately, we cán solve Eq. (14) for k = 0. Notice that

Z(z̄) = Cj (1− z̄2)
d

dz̄
Pj(z̄) (15)

is an eigenfunction of the operator (1 − z̄2) ∂2

∂z̄2
, by definition of the Legendre functions.

Simultaneously, we find

ω = ωz

√
j(j + 1)

2
. (16)

Similarity with variational model Eq. (15) can be rewritten in a recognizable way. We
can prove the following relation:

(1− z̄2)
d

dz̄
Pj(z̄) =

j(j + 1)

2j + 1
(Pj−1(z̄)− Pj+1(z̄), (17)

which is of the exact same form as the variational Ansatz (Eq. (6))! We will now derive this
equation.

We need the following properties of Legendre polynomials (Eq. 18 of Ref. [13]):

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0 (18)

and

(x2 − 1)
d

dx
Pn(x) = n[xPn(x)− Pn−1(x)]. (19)

We can rewrite Eq. (18) as

xPn(x) =
n+ 1

2n+ 1
Pn+1(x) +

n

2n+ 1
Pn−1(x). (18*)

This allows us to write (1−x2) d
dx
Pn(x) = n[Pn−1(x)−xPn(x)] = n[Pn−1(x)− ( n+1

2n+1
Pn+1(x)+

n
2n+1

Pn−1(x))] = n(n+1)
2n+1

(Pn−1(x) − Pn+1(x)), where the first equality follows from Eq. (19))
and the second from Eq. (18*). Using z̄ as x and j as n, we have now proven Eq. (17).
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4.2 Solving the system

As stated and explained above (Sec. 4.1.2), we are most interested in the case k = 0 and
m = 0. We therefore find

δnj(ρ̄, z̄, φ) = Kj (1− z̄2)
d

dz̄
Pj(z̄), (20)

where Kj has to be determined by normalization13, which is the last step remaining in this
cylindrical approach.

4.2.1 Normalization

When it comes to normalization of the mode functions (20), the question arises: which
inner product are we going to use? Since the operator (1 − z̄2) ∂2

∂z̄2
is not symmetric, we

have to symmetrize it in order to find the ‘natural’ inner product. This can be done by
substituting δnj =

√
1− z̄2fj. In this convention, the problem becomes Ôfj = Ejfj, where Ô

=
√

1− z̄2 ∂2

∂z̄2

√
1− z̄2 is a symmetric (and therefore Hermitian) operator. The inner product

becomes

〈fj|fj′〉 =

∫ 2π

0

∫ 1

0

∫ 1

−1

dz̄ dρ̄ dφ ρ̄RzR
2
ρ fjfj′ , (21)

where δj,j′ is the Kronecker delta14. Translating to δn gives the normalization as

δj,j′ =

∫ 2π

0

∫ 1

0

∫ 1

−1

dz̄ dρ̄ dφ
ρ̄

1− z̄2
RzR

2
ρ δnjδnj′ . (22)

Plugging in the result of Eq. (20), we obtain

Kj =

√
1

πRzR2
ρ

2j − 1

2j(j + 1)
. (23)

To achieve this, we used Eq. (17), as well as an expression for the derivative of Legendre
polynomials (Eq. 20 in Ref. [13]) and the orthogonality relation of these functions (Eq. C.8
in Ref. [8]).

Eq. (20) and Eq. (23) determine the solutions within this cylindrical approach. Some
comments on the link between these functions and the variational Ansatz can be found in
Sec. 6.

13This Kj contains Cj and the constants R0 and Φ0.
14Note that the functions are real: taking the complex conjugate changes nothing.
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5 Perturbation theory

At this point, we have only dealt with simplifications of Eq. (5). Does this imply that we
cannot say anything about the entire system? The answer is ‘no’, and in this section, we will
discover what can be achieved with perturbation theory.

The mode functions obtained using the cylindrical approach are already of the same form
as the result of the variational Ansatz, which described the system very well, but was still
ρ̄-independent. We conclude that the ∂2

∂z̄2
-term in ~∇2 is the dominant term. Therefore, we

are most interested in the impact of ρ̄2 ∂2

∂z̄2
on the mode functions and frequencies15.

Notice the analogy between our wave functions and the ‘normal’ ones (as described in
Sec. 2). We use this to perform the analogy of perturbation theory on our system. Let us
therefore define H = H0 + εH1, where H0 = (1 − z̄2) ∂2

∂z̄2
and H1 = −ρ̄2 ∂2

∂z̄2
. We use ε as

perturbation constant. The time-independent Schrödinger equation (in this analogy) reads
Hδnj = Ej δnj, where in our case Ej = −2(

ωj
ωz

)2. As always, we write:

• δn = δn0 + ε δn1 + ε2 δn2 + ...

• Ej = E0
j + εE1

j + ε2E2
j + ...,

which leads to specified equations in every order of ε.

5.1 Zeroth order

In zeroth order, we look for the ρ̄-independent solutions of

H0 δn0 = −2(
ω0

ωz
)2δn0, (24)

since the ρ̄-dependence is known to be small and thus taken as the perturbation. We have
already seen this equation, it is Eq. (14) for k = 0. We thus have the solutions, namely
Eq. (15) and Eq. (16). The difference here lies in the inner product used for the prolate
spheroid, but at the end, the ρ̄-independent solutions cannot be different! Therefore, we have
to ‘change’ our inner product, which was defined via Eq. (21), into

〈δnj|δnj′〉 =

∫ 2π

0

∫ 1

−1

∫ √1−z̄2

0

dρ̄ dz̄ dφ
ρ̄

(1− z̄2)2
RzR

2
ρ δnjδnj′ , (25)

since this gives the exact same (natural) inner product for ρ̄-independent mode functions δnj
as one would have in the cylindrical case16. The Cj’s thus have to satisfy

δj,j′ = Rz R
2
ρCj Cj′

∫ 2π

0

∫ 1

−1

∫ √1−z̄2

0

dρ̄ dz̄ dφ ρ̄
d

dz̄
Pj

d

dz̄
Pj′ . (26)

It happens to be the same problem of finding the total normalization constant in the cylin-
drical case, so we find (compare with Eq. (23))

Cj =

√
1

πRzR2
ρ

2j − 1

2j(j + 1)
. (27)

15Note that we didn’t do anything with this term until now.
16To check this: just perform the ρ̄ integral here together with the one used in Eq. (22).
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As a reminder, we give the expression for ω0:

ω0 = ωz

√
j(j + 1)

2
. (28)

5.2 First order

In first order, we can use the well-known result for the first-order correction terms on the
frequencies (Ref. [11], p. 251, Eq. 6.9):

E1
j = 〈δn0

j |H1|δn0
j〉, (29)

or in words: the first-order corrections can be found by calculating the expectation value of
the perturbation in the zeroth (or unperturbed) state. In our case, we find

E1
j = −(Cj)

2Rz R
2
ρ

∫ 2π

0

∫ 1

−1

∫ √1−z̄2

0

dρ̄ dz̄ dφ
ρ̄3

1− z̄2

d

dz̄
Pj

d2

dz̄2
{(1− z̄2)

d

dz̄
Pj}, (30)

using the inner product of Eq. (25). The elegant result is

E1
j =

j(j + 1)

2
. (31)

This can be used to determine ω1, because E1
j = −4ω

0ω1

ω2
z

. This leads to our first-order result:

ω1 = −1

4
ω0. (32)

It would now be nice (and logical) to go further and calculate the first-order mode func-
tions, the second-order frequencies, etc. However, things start to go wrong from this point.
Notice that we cannot express the first-order mode functions as a linear combination of
zeroth-order mode functions, since the last are ρ̄-independent, while the first are not! In
other words: we haven’t used a complete basis in zeroth order. It wás a valid approach, since
we know (experimentally) that the ρ̄-dependence is very small, and therefore we can view it
as a ‘perturbation’. But in order to proceed in this way (and improve the accuracy of the
frequencies), we need a different strategy.

Of course we can solve this problem by allowing ρ̄-dependent solutions in zeroth order,
but this results in an infinite degeneracy, as can easily be seen from Eq. (24). We will come
back to this point later, in Sec. 7. First, let’s answer the following question: How good are
our results until now, compared to the experimental data?
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6 Comparison with experiment

In this section, we want to formulate an answer to the question stated above. Summarizing
the result of our approach using perturbation theory, we state that

ωj =
3ωz

4

√
j(j + 1)

2
, (33)

where this is the frequency up to first order (so ω = ω0 + ω1), using Eq. (28) and Eq. (32).
For the mode functions, we had

δnj =

√
1

πRzR2
ρ

2j − 1

2j(j + 1)
(1− z̄2)

d

dz̄
Pj(z̄), (34)

using Eq. (27) and Eq. (15). In the experiment, only the mode functions with an index of
the form 4j+1 will be excited, for symmetry reasons.

Concerning the mode functions, we can say that these are in good agreement with the
experimental results. As stated before, our mode functions are of the same form as the ones
taken as variational Ansatz in literature. For a comparison between these and the experiment,
we refer to Ref. [5].

Recall that in this variational Ansatz, the frequency is determined to be

ωvarj = ωz

√
(4j + 1)(4j + 2)

2
. (35)

When these frequencies are compared, we find a slight difference in the slopes when the
quantum number j becomes large (i.e. the j(j+ 1) can be approximated by j2). Notice that,
for j → 4j + 1, ωj has a slope of 3ωz√

2
≈ 2.12 · ωz, whereas ωvarj has a slope of 2 · ωz.

In Fig. 4, our result is shown, including the data of the experiment, and the theoretical
prediction of the variational model. Here, the difference in these slopes can just be observed,
and we can see that our result is, unfortunately, further away from the data than the frequency
obtained via the variational model. Our result seems to be not accurate enough. This can
be interpreted as follows: when we look at the zeroth-order frequency, which is given by
Eq. (28), then this is hardly visible in Fig. 4, since the lowest point (at j = 16) will be at
ωj/ωρ ≈ 1.23 (i.e. this (magenta) line cuts off a tiny piece of the top left corner of Fig. 4).
This indicates that our first-order correction term did the good thing: it changed our total
frequency in a beneficial way (fortunately!), but in this case, we need more than only the
first order. We therefore conclude that our perturbation approach cannot be used to get the
desired accuracy.

6.1 Conjecture for the slope of the frequencies

Although we are unable to work out the perturbation approach for higher orders, there is
something more to say here17. Notice that the first-order correction term of the frequencies

17We do not prove any of the statements in this subsection: it is meant to be an invitation and motivation
for further research.
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Figure 4: Plot of the frequencies ωj, scaled at ωρ = ωz/λ is shown as a function of j. The
orange dashed line shows our result up to first order (Eq. (33)), whereas the magenta dashed
line gives an impression of the zeroth-order result. The black line refers to the frequency
obtained via the variational Ansatz (Eq. (35)). As has been explained in Ref. [5] (Fig. 4),
the red dots are the frequencies for the simulation data by phase-imprinting and the blue
dots are the frequencies obtained by the integration of the mode function found from the
simulation data. More details about this data can be found in both Ref. [4] and Ref. [5].

only caused the total slope to change, but it didn’t affect the starting point at j = 0 (which
is still zero). This is stated in the fact that ω1 is just a constant (namely −1

4
) multiplied by

ω0 (Eq. (32)). Having this in mind, it seems reasonable to expect the same behavior for ω2.
Let us state the following conjecture:

ω2 = − 1

16
ω0. (36)

This seems reasonable, because it has the same structure as ω1, but the constant − 1
16

is
quadratically smaller than −1

4
(i.e. the slope of ω will be further fine tuned). Although

this is just a conjecture at this point, we can look at the consequences of this second-order
correction, illustrated in Fig. 5. Notice that the total frequency up to second order becomes

ωconj =
11

16
ω0. (37)

As we can see, this conjecture makes the total frequency to be absolutely spot on (espe-
cially for the blue dots)! This observation makes the conjecture of Eq. (36) a very interesting
one, although we did not prove it at this point and it might still be incorrect.
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Figure 5: Plot of the frequencies ωconjj (up to second order), scaled at ωρ = ωz/λ is shown
as a function of j as a green dashed line, together with the zeroth-order (magenta) and the
first-order result (orange). As before (Fig. 4), the blue and red dots correspond to the
(simulation) data, determined in two different ways and the black line shows the result of
the variational model.

7 Conclusions, discussion and outlook

In conclusion, we have worked out three different ways to explore the physics in an atomic
Bose-Einstein condensate, with the main focus on the mode functions and the frequencies.

The prolate spheroidal approach was very rough, but nevertheless, it was a good starting
point to investigate our system, especially when it comes to the boundary conditions. Further
research can focus on (different methods18 of) solving Eq. (5) with extra term(s) in n0 (e.g.
position-dependence), which might give useful approximations for the mode functions and
frequencies, because those were not found in our situation.

In the cylindrical approach, we solved the entire system, within our experimental limits,
i.e. angular symmetry. This approach is valid close to the z-axis, and when Rρ� Rz, which
is satisfied due to the small parameter λ. Moreover, we found a good explanation for the
variational Ansatz used before in literature19, via Eq. (17).

Finally, when we made use of perturbation theory on the full system, we arrived at
expressions for the mode functions in zeroth order and the frequencies up to first order,
which were given by Eqs. (15), (27) and (33). When we compare this expression for the
frequencies with the experimental values, we conclude that the slope matches quite well, but
there is still some deviation. In order to make the theoretical description more accurate, a
different approach seems to be required, e.g. degenerate perturbation theory. Hopefully, this
will lead to a second-order correction of the frequency, which might very well be the one we
stated as a conjecture.

18It looks like separation of variables cannot be used when these extra term(s) are added, although more
research is needed here.

19Remember this Ansatz: δnj ∝ P4j+1 − P4j−1.
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