
Formalizing Extended UTxO and BitML Calculus in Agda

Laying the foundations for the formal verification of smart contracts

Orestis Melkonian

A thesis submitted for the Master of Science degree

Department of Information and Computing Sciences

Utrecht University

July 2019

Supervisors: Wouter Swierstra (Utrecht University)
Manuel M.T. Chakravarty (Input Output HK)

2nd Examiner: Gabriele Keller (Utrecht University)

To Emilia,
for her infinite love, support and devotion.

Abstract

Smart contracts – programs that run on a blockchain – allow for sophisticated transactional
schemes, but their concurrent execution makes it difficult to reason about their behaviour and
bugs in smart contracts have lead to significant monetary losses (e.g. DAO attack). For that reason,
increasingly more attention is given to formal methods, that guarantee that such fatal scenarios
are not possible.

We attempt to advance the state-of-the-art for a language-oriented, type-driven account of smart
contracts by formalizing two well-established models in Agda and mechanizing the corresponding
meta-theory.

The first concerns an abstract model for UTxO-based ledgers, such as Bitcoin, which we further
extend to cover features of the Cardano blockchain, namely more expressive scripts and built-in
support for user-issued cryptocurrencies.

The second object of study is BitML, a process calculus specifically targeting Bitcoin smart con-
tracts. We present a mechanized semantics of BitML contracts and its small-step semantics, as well
as a mechanized account of BitML’s symbolic model over participant strategies.

Finally, we sketch the way towards a certified compiler from BitML contracts to UTxO transac-
tions, where all behaviours manifesting on BitML’s symbolic model can safely be transported to
the UTxO level.

3

Acknowledgements

First, I would like thank my supervisors, Wouter and Manuel. Their constant push for excellence
motivated me throughout this thesis and the result would not have been the same without them.
Wouter’s expertise on dependently-typed models, as well as Manuel’s deep understanding of how
a blockchain operates were invaluable and significantly shaped the approach taken in this thesis.

Moreover, I would like to thank several researchers from IOHK for helpful discussion while the
thesis was still in progress, especially Philip Wadler, James Chapman and Michael Peyton Jones.

4

Contents

Contents 5
1 Introduction 7
2 Background 9
2.1 Distributed Ledger Technology: Blockchain 9
2.2 Smart Contracts 9
2.3 UTxO-based: Bitcoin 10
2.3.1 Script 10
2.3.2 The BitML Calculus 11
2.3.3 Extended UTxO 12
2.4 Account-based: Ethereum 12
3 Methodology 14
3.1 Scope 14
3.2 Proof Mechanization 14
3.3 Agda 14
3.4 The IOHK approach 15
3.5 Functional Programming Principles 15
4 Formal Model I: Extended UTxO 17
4.1 Transactions 18
4.2 Unspent Τransaction Οutputs 20
4.3 Validity of Τransactions 21
4.4 Decision Procedure 23
4.5 Weakening Lemma 24
4.6 Combining 25
4.7 Extension I: Data Scripts 26
4.8 Extension II: Multi-currency 27
4.9 Example: UTxO Ledger 29
5 Formal Model II: BitML Calculus 34
5.1 Contracts in BitML 35
5.2 Small-step Semantics 38
5.3 Reasoning Modulo Permutation 43
5.4 Example: Timed-commitment Protocol 45
5.5 Symbolic Model 46
5.5.1 Labelled Step Relation 46
5.5.2 Traces 48
5.5.3 Strategies 49
5.5.4 Meta-theoretical results 52
5.6 BitML Paper Fixes 53
6 Related Work 55
6.1 Static Analysis Tools 55
6.2 Type-driven Approaches 56

5

7 Future Work 57
7.1 Extended UTxO 57
7.1.1 Non-fungible Tokens 57
7.1.2 Plutus Integration 57
7.1.3 Multi-signature Scheme 58
7.2 BitML 58
7.2.1 Decision Procedures 58
7.2.2 Towards Completeness 58
7.3 UTxO-BitML Integration 59
7.4 BitML-Marlowe Comparison 60
7.5 Featherweight Solidity 60
7.6 Proof Automation 60
8 Conclusion 61
References 63
A Generalized Variables 65
B List Utilities 67
B.1 Indexed Operations 67
B.2 Set-like Interface 67
C Decidable Equality 70

6

SECTION 1

Introduction

Blockchain technology has opened a whole array of interesting new applications, such as multi-
party computation [Andrychowicz et al. 2014], fair protocol design fair [Bentov and Kumaresan
2014] and zero-knowledge proof systems [Goldreich et al. 1991]. Nonetheless, reasoning about the
behaviour of such systems is an exceptionally hard task, mainly due to their distributed nature.
Moreover, the fiscal nature of the majority of these applications requires a much higher degree of
rigor compared to conventional IT applications, hence the need for a more formal account of their
behaviour.

The advent of smart contracts (programs that run on the blockchain itself) gave rise to another
source of vulnerabilities. One primary example of such a vulnerability caused by the use of smart
contracts is the DAO attack1, where a security flaw on the model of Ethereum’s scripting language
led to the exploitation of a venture capital fund worth 150 million dollars at the time. The solution
was to create a hard fork of the Ethereum blockchain, clearly going against the decentralized spirit
of cryptocurrencies. Since these (possibly Turing-complete) programs often deal with transactions
of significant funds, it is of utmost importance that one can reason and ideally provide formal
proofs about their behaviour in a concurrent/distributed setting.

Research Question. The aim of this thesis is to provide a mechanized formal model of an ab-
stract distributed ledger equipped with smart contracts, in which one can begin to formally inves-
tigate the expressiveness of the extended UTxO model. Moreover, we hope to lay a foundation
for a formal comparison with account-based models used in Ethereum. Put concisely, the broader
research question posed is:

How does the UTxO model of smart contracts compare to Ethereum’s account-based one?

Overview.
• Section 2 reviews some basic definitions related to blockchain technology and introduces

important literature, which will be the main subject of study throughout the development
of our reasoning framework. Moreover, we give an overview of related work, putting an
emphasis on existing tools based on static analysis.
• Section 3 describes the technology we will use to formally reason about the problem at hand

and some key design decisions we set upfront.
• Section 4 describes the formalization of an abstract model for UTxO-based blockchain

ledgers.
1https://en.wikipedia.org/wiki/The_DAO_(organization)

7

https://en.wikipedia.org/wiki/The_DAO_(organization)

• Section 5 concerns the formalization of our second object of study, the Bitcoin Modelling
Language.
• Section 6 gives an overview of relevant previous work, ranging from static analysis tools to

type-driven verification approaches.
• Section 7 discusses possible next steps to continue the line of work stemming from this

thesis.
• Section 8 concludes with a general overview of our contributions and reflects on the chosen

methodology.

8

SECTION 2

Background

2.1 Distributed Ledger Technology: Blockchain
Cryptocurrencies rely on distributed ledgers, where there is no central authority managing the
accounts and keeping track of the history of transactions. One particular instance of distributed
ledgers are blockchain systems, where transactions are bundled together in blocks, which are lin-
early connected with hashes and distributed to all peers. The blockchain system, along with a
consensus protocol deciding on which competing fork of the chain is to be included, maintains an
immutable distributed ledger (i.e. the history of transactions).

Validity of the transactions is tightly coupledwith a consensus protocol, whichmakes sure peers
in the network only validate well-behaved and truthful transactions and are, moreover, properly
incentivized to do so.

The absence of a single central authority that has control over all assets of the participants allows
for shared control of the evolution of data (in this case transactions) and generally leads to more
robust and fair management of assets.

While cryptocurrencies are the major application of blockchain systems, one could easily use
them for any kind of valuable asset, or even as general distributed databases.

2.2 Smart Contracts
Most blockchain systems come equipped with a scripting language, where one can write smart
contracts that dictate how a transaction operates. A smart contract could, for instance, pose re-
strictions on who can redeem the output funds of a transaction.

One could view smart contracts as a replacement of legal frameworks, providing the means to
conduct contractual relationships completely algorithmically.

While previous work on writing financial contracts [Peyton Jones et al. 2000] suggests it is
fairly straightforward to write such programs embedded in a general-purpose language (in this
case Haskell) and to reason about them with equational reasoning, it is restricted in the centralized
setting and, therefore, does not suffice for our needs.

Things become much more complicated when we move to the distributed setting of a
blockchain [Buterin et al. 2014; Nakamoto 2008]. Hence, there is a growing need for methods
and tools that will enable tractable and precise reasoning about such systems.

Numerous scripting languages have appeared recently [Seijas et al. 2016], spanning a wide spec-
trum of expressiveness and complexity. While language design can impose restrictions on what a

9

language can express, most of these restrictions are inherited from the accounting model to which
the underlying system adheres.

In the next section, we will discuss the two main forms of accounting models:
(1) UTxO-based: stateless models based on unspent transaction outputs
(2) Account-based: stateful models that explicitly model interaction between user accounts

2.3 UTxO-based: Bitcoin
The primary example of a UTxO-based blockchain is Bitcoin [Nakamoto 2008]. Its blockchain is
a linear sequence of blocks of transactions, starting from the initial genesis block. Essentially, the
blockchain acts as a public log of all transactions that have taken place, where each transaction
refers to outputs of previous transactions, except for the initial coinbase transaction of each block.
Coinbase transactions have no inputs, create new currency and reward the miner of that block
with a fixed amount. Bitcoin also provides a cryptographic protocol to make sure no adversary can
tamper with the transactional history, e.g. by making the creation of new blocks computationally
hard and invalidating the “truthful” chain statistically impossible.

A crucial aspect of Bitcoin’s design is that there are no explicit addresses included in the transac-
tions. Rather, transaction outputs are actually program scripts, which allow someone to claim the
funds by giving the proper inputs to the validator script (i.e. arguments that make the script return
true)2. Thus, although there are no explicit user accounts in transactions, the effective available
funds of a user are all the unspent transaction outputs (UTxO) that he can claim (e.g. by providing
a digital signature).

2.3.1 Script

In order towrite such scripts in the outputs of a transaction, Bitcoin provides a low-level, Forth-like,
stack-based scripting language, called Script. Script is intentionally not Turing-complete (e.g. it
does not provide looping structures), in order to have more predictable behaviour. Moreover, only
a very restricted set of “template” programs are considered standard, i.e. allowed to be relayed
from node to node.

Script Notation. Programs in script are a linear sequence of either data values (e.g. numbers,
hashes) or built-in operations (distinguished by their OP_ prefix).

The stack is initially considered empty and we start reading inputs from left to right. When we
encounter a data item, we simply push it to the top of the stack. On encountering an operation, we
pop the necessary number of arguments from the stack, apply the operation and push the result
back. The evaluation function J_K executes the given program and returns the final result at the
top of the stack. For instance, adding two numbers looks like this:

J1 2 OP_ADDK = 3

P2PKH. The most frequent example of a “standard” program in Script is the pay-to-pubkey-
hash (P2PKH) type of scripts. Given a hash of a public key <pub#>, a P2PKH output carries the

2 When access to a transaction output is restricted via a validator script, we sometimes say that the output is locked by the
script.

10

following script:
OP_DUP OP_HASH <pub#> OP_EQ OP_CHECKSIG

where OP_DUP duplicates the top element of the stack, OP_HASH replaces the top element with
its hash, OP_EQ checks that the top two elements are equal, OP_CHECKSIG verifies that the top
two elements are a valid pair of a digital signature of the transaction data and a public key hash.

The full script will be run when the output is claimed (i.e. used as input in a future transaction)
and consists of the P2PKH script, preceded by the digital signature of the transaction by its owner
and a hash of his public key. Given a digital signature <sig> and a public key hash <pub>, a
transaction is valid when the execution of the script below evaluates to True.

<sig> <pub> OP_DUP OP_HASH <pub#> OP_EQ OP_CHECKSIG

To clarify, assume a scenario where Alice want to pay Bob B 10. Bob provides Alice with the
cryptographic hash of his public key <pub#> and Alice can submit a transaction of B 10 with the
following output script:

OP_DUP OP_HASH <pub#> OP_EQ OP_CHECKSIG

After that, Bob can submit another transaction that uses this output by providing the digital sig-
nature of the transaction <sig> (signed with his private key) and his public key <pub>. It is easy
to see that the resulting script evaluates to True.

P2SH. Amore complicated script type is pay-to-script-hash (P2SH), where output scripts simply
authenticate against a hash of a redeemer script <red#>:

OP_HASH <red#> OP_EQ

A redeemer script <red> resides in an input which uses the corresponding output.The following
two conditions must hold for the transaction to go through:

(1) J<red>K = True
(2) J<red> OP_HASH <red#> OP_EQK = True

Therefore, in this case the script residing in the output is simpler, but inputs can also contain
arbitrary redeemer scripts (as long as they are of a standard “template”).

In this thesis, we will model scripts in a much more general, mathematical sense, so we will
eschew from any further investigation of properties particular to Script.

2.3.2 The BitML Calculus

Although Bitcoin is the most widely used blockchain to date, many aspects of it are poorly docu-
mented. In general, there is a scarcity of formal models, most of which are either introductory or
exploratory.

Some of the most involved and mature previous work on formalizing the operation of Bitcoin
is the Bitcoin Modelling Language (BitML) [Bartoletti and Zunino 2018]. First, an idealistic process
calculus that models Bitcoin contracts is introduced, along with a detailed small-step reduction
semantics that models how contracts interact and its non-determinism accounts for the various
outcomes.

11

The semantics consist of transitions between configurations, abstracting away all the crypto-
graphic machinery and implementation details of Bitcoin. Consequently, such operational seman-
tics allow one to reason about the concurrent behaviour of the contracts in a symbolic setting.

The authors then provide a compiler from BitML contracts to “standard” Bitcoin transactions,
proven correct via a correspondence between the symbolic model and the computational model
operating on the Bitcoin blockchain. We will return for a more formal treatment of BitML in Sec-
tion 5.

2.3.3 Extended UTxO

In this work, wewill consider the version of the UTxOmodel used by IOHK’s Cardano blockchain3.
We will refer to this variant as Extended UTxO (eUTxO). In contrast to Bitcoin’s proof-of-work
consensus protocol [Nakamoto 2008], Cardano’s Ouroboros protocol [Kiayias et al. 2017] is proof-
of-stake. This, however, is of no concern at the scope of the abstract accounting model, thus we
refrain from formally modelling and comparing different consensus techniques.

The actual extension we care about is the inclusion of data scripts in transaction outputs, which
essentially provides the validation script in the corresponding input with additional information
of an arbitrary type.

This extension of the UTxO model has already been implemented4, but only informally docu-
mented5.The reason to extend the UTxOmodel with data scripts is to bringmore expressive power
to UTxO-based blockchains, hopefully bringing it on par with Ethereum’s account-based scripting
model (see Section 2.4).

However, there is no formal argument to support this claim, and it is the goal of this thesis to
provide the first formal investigation of the expressiveness introduced by this extension.

2.4 Account-based: Ethereum
On the other side of the spectrum, lies the second biggest cryptocurrency today, Ethereum [Buterin
et al. 2014]. In contrast to UTxO-based systems, Ethereum has a built-in notion of user addresses
and operates on a stateful accounting model. It goes even further to distinguish human accounts
(controlled by a public-private key pair) from contract accounts (controlled by some EVM code).

This added expressiveness is also reflected in the quasi-Turing-complete low-level stack-based
bytecode language in which contract code is written, namely the Ethereum Virtual Machine (EVM).
EVM is mostly designed as a target, to which other high-level user-friendly languages will compile.

Solidity. The most widely adopted language that targets the EVM is Solidity, whose high-level
object-oriented design makes writing common contract use-cases (e.g. crowdfunding campaigns,
auctions) rather straightforward.

One of Solidity’s most distinguishing features is the concept of a contract’s gas; a limit to the
amount of computational steps a contract can perform. When a a transaction is created, its owner
specifies a certain amount of gas the contract can consume and pays a transaction fee proportional

3www.cardano.org
4https://github.com/input-output-hk/plutus/tree/master/wallet-api/src/Ledger
5https://github.com/input-output-hk/plutus/blob/master/docs/extended-utxo/README.md

12

www.cardano.org
https://github.com/input-output-hk/plutus/tree/master/wallet-api/src/Ledger
https://github.com/input-output-hk/plutus/blob/master/docs/extended-utxo/README.md

to it. In case of complete depletion (i.e. all gas has been consumed before the contract finishes its
execution), all global state changes are reverted as if the contract had never been run. This is a
necessary ingredient for smart contract languages that provide arbitrary looping behaviour, since
non-termination of the validation phase is certainly undesirable.

13

SECTION 3

Methodology

3.1 Scope
At this point, we have to stress the fact that we are not aiming for a formalization of a fully-fledged
blockchain system with all its bells and whistles, but rather focus on the underlying accounting
model. Therefore, we will omit details concerning cryptographic operations and aspects of the
actual implementation of such a system. Instead, we will work on an abstract layer that postulates
the well-behavedness of these subcomponents, which will hopefully lend itself to more tractable
reasoning and give us a clear overview of the essence of the problem.

Restricting the scope of our attempt is also motivated from the fact that individual components
such as cryptographic protocols are orthogonal to the functionality we study here. This lack of
tight cohesion between the components of the system allows one to safely factor each one out and
formalize it independently.

It is important to note that this is not always the case for every domain. A prominent example of
this are operating systems, which consist of intricately linked subcomponents (e.g. drivers, mem-
ory modules), thus making it impossible to trivially divide the overall proof into small independent
ones. In order to overcome this complexity burden, one has to invent novel ways of modular proof
mechanization, as exemplified by CertiKOS [Chen et al. 2016], a formally verified concurrent OS.

3.2 Proof Mechanization
Fortunately, the sub-components of the system we are examining are not no interdependent, thus
lending themselves to separate treatment. Nonetheless, the complexity of the sub-system we care
about is still high and requires rigorous investigation. Therefore, we choose to conduct our formal
study in a mechanized manner, i.e. using a proof assistant along the way and formalizing all results
in a type-logical manner. Proof mechanization will allow us to discover edge cases and increase
the confidence of the model under investigation.

3.3 Agda
As our proof development vehicle, we choose Agda [Norell 2008], a dependently-typed total func-
tional language similar to Haskell [Hudak et al. 1992].

Agda embraces the Curry-Howard correspondence, which states that types are isomorphic to
statements in (intuitionistic) logic and their programs correspond to the proofs of these state-
ments [Martin-Löf and Sambin 1984].Through its unicode-basedmixfix notational system, one can

14

easily translate a mathematical theorem into a valid Agda type. Moreover, programs and proofs
share the same structure, e.g. induction in the proof manifests itself as recursion in the program.

While Agda is not ideal for large software development, its flexible notation and elegant design is
suitable for rapid prototyping of new ideas and exploratory purposes. We do not expect to hit such
problems, since we will stay on a fairly abstract level which postulates cryptographic operations
and other implementation details.

Limitation. The main limitation of Agda lies in its lack of a proper proof automation system.
While there has been work on providing Agda with such capabilities [Kokke and Swierstra 2015],
it requires moving to a meta-programming mindset which would be an additional programming
hindrance.

A reasonable alternative would be to use Coq [Barras et al. 1997], which provides a pragmatic
scripting language for programming tactics, i.e. programs that work on proof contexts and can
generate new sub-goals. This approach to proof mechanization has, however, been criticized for
widening the gap between informal proofs and programs written in a proof assistant. This clearly
goes against the aforementioned principle of proofs-as-programs.

3.4 The IOHK approach
At this point, we would like to mention the specific approach taken by IOHK6. In contrast to nu-
merous other companies currently creating cryptocurrencies, its main focus is on provably correct
protocols with a strong focus on peer-reviewing and robust implementations, rather than fast de-
livery of results. This is evidenced by the choice of programming languages (Agda, Coq, Haskell,
Scala among other) – all functional programming languages with rich type systems – and the use
of property-based testing [Claessen and Hughes 2011] for the production code.

IOHK’s distinct feature is that it advocates a more rigorous development pipeline; ideas are
initially worked on paper by pure academics, which create fertile ground for starting formal ver-
ification in a proof assistant for more confident results, which result in a prototype/reference im-
plementation in Haskell, which informs the production code-base (also written in Haskell) on the
properties that should be tested.

Since this thesis is done in close collaboration with IOHK, it is situated on the second step of
aforementioned pipeline; while there has been work on writing papers about the extended UTxO
model along with the actual implementation in Haskell, there is still no complete and mechanized
account of its properties.

3.5 Functional Programming Principles
One last important manifestation of the functional programming principles behind IOHK is the
choice of a UTxO-based cryptocurrency itself.

On the one hand, one can view a UTxO ledger as a dataflow diagram, whose nodes are the
submitted transactions and edges represent links between transaction inputs and outputs. On the
other hand, account-based ledgers rely on a global state and transaction have a much more com-
plicated specification.
6https://iohk.io/

15

https://iohk.io/

The key point here is that UTxO-based transaction are just pure mathematical functions, which
are much more straightforward to model and reason about. Coming back to the principles of func-
tional programming, one could contrast this with the difference between functional and imperative
programs. One can use equational reasoning for functional programs, due to their referential trans-
parency, while this is not possible for imperative programs that contain side-effectful commands.
Therefore, we hope that these principles will be reflected in the proof process itself; one would
reason about purely functional UTxO-based ledgers in a compositional manner.

The following sections give an overview of the progress made so far on the Agda formalization
of the two main subjects of study, namely the Extended UTxO model and the BitML calculus.
For the sake of brevity, we refrain from showing the full Agda code along with the complete
proofs, but rather provide the most important datatypes and formalized results and explain crucial
design choices we made along the way. Furthermore, we will omit notational burden imposed by
technicalities particular to Agda, such as universe polymorphism and proof irrelevance.

16

SECTION 4

Formal Model I: Extended UTxO

We now set out to model the accounting model of a UTxO-based ledger. We will provide a
inherently-typed model of transactions and ledgers; as a result of the development we can show
new meta-theoretical results, which we formalize. Moreover, we showcase the reasoning abilities
of our model by giving an example of a correct-by-construction ledger. All code is publicly avail-
able on Github7.

We start with the basic types, keeping them abstract since we do not care about details arising
from the encoding in an actual implementation. In Agda, abstract data types can be realized as
parameters to the current module:

module UTxO.Types (Value : Set) (Hash : Set) where . . .

For simplicity, we can represent both cryptocurrency values and hashes as natural numbers, but
we will later provide a more extensive datatype for values, as we shall see in Section 4.8.

There is also the notion of the state of a ledger, which will be provided to transaction scripts
and allow them to have stateful behaviour for more complicated schemes (e.g. imposing time con-
straints). The state components have not been finalized yet, but can easily be extended later when
we actually investigate examples with expressive scripts that make use of state information, such
as the current length of the ledger (height). For the simple examples we will present here, the
following model suffices:

record State : Set where
field height : N

...

Asmentioned previously, we will not dive into the verification of the cryptographic components
of the model, hence we postulate an irreversible hashing function which, given any value of any
type, gives back an address (i.e. a natural number) and is furthermore injective (i.e. it is highly
unlikely for two different values to have the same hash).

record HashFunction (A : Set) : Set where
field hashF : A→ Hash

injective : ∀ {x y } → x# ≡ y#→ x ≡ y

7https://github.com/omelkonian/formal-utxo

17

https://github.com/omelkonian/formal-utxo

postulate
_# : ∀ {A : Set } → HashFunction A

For convenience, we postulate a hash function # that works for all types and denote functional
application of the first field to an element x simply as x#.

4.1 Transactions
In order to model transactions that are part of a distributed ledger, we need to first define transac-
tion inputs and outputs.

record TxOutputRef : Set where
constructor @
field id : Hash

index : N

record TxInput : Set where
field outputRef : TxOutputRef

R D : U

redeemer : State→ el R
validator : State→ Value→ PendingTx→ el R→ el D→ Bool

Output references consist of the address that a transaction hashes to, as well as the index in this
transaction’s list of outputs. Transaction inputs refer to some previous output in the ledger, but
also contain two types of scripts. The redeemer provides evidence of authorization to spend the
output.The validator then checks whether this is so, having access to the current state of the ledger,
the bitcoin output, an overview of the current transaction (PendingTx) and data provided by the
redeemer and the data script (residing in outputs). It is also noteworthy that we immediately model
scripts by their denotational semantics, omitting unnecessary details relating to concrete syntax,
lexing and parsing.

Notice that the result types of redeemers and data scripts are not any Agda type (Set), but rather
reside in a more restricted universe 𝕌, which can only represent first-order data:

data U : Set where
UNIT BOOL NAT : U

LIST : U→ U
PRODUCT SUM : U→ U→ U

el : U→ Set
el UNIT = ⊤
el BOOL = Bool
el NAT = N

el (PRODUCT x y) = el x × el y

18

el (SUM x y) = el x ⊎ el y
el (LIST x) = List (el x)

This construction is crucial when we later need to check equality between types, since function
types would lead to undecidable equality.

Pending transactions are collections of hashes, which are involved in the current transaction.
These consist of the hash of the transaction itself, as well as the hashes for all scripts residing in
inputs or outputs:

record PendingTxInput : Set where
field

validatorHash : Hash
redeemerHash : Hash

record PendingTxOutput : Set where
field

dataHash : Hash

record PendingTx : Set where
field

txHash : Hash
inputs : List PendingTxInput
outputs : List PendingTxOutput

Transaction outputs send a bitcoin amount to a particular address, which either corresponds
to a public key hash of a blockchain participant (P2PKH) or a hash of a next transaction’s script
(P2SH). Here, we opt to embrace the inherently-typed philosophy of Agda and model the type of
addresses as an abstract data type. That is, we package the following definitions in a module with
such a parameter, hence allowing whoever imports the UTxO library to use a custom datatype, as
long as it is equipped with a hash function and decidable equality:

module UTxO (Address : Set)
(# a : Hash Address)

(
?
=a : Decidable {A = Address } ≡) where

record TxOutput : Set where
field value : Value

address : Address

Data : U

dataScript : State→ el Data

19

record Tx : Set where
field inputs : Set⟨ TxInput ⟩

outputs : List TxOutput
forge : Value
fee : Value

Ledger : Set
Ledger = List Tx

Transaction outputs consist of a bitcoin amount and the address (out of the available ones) this
amount is sent to, as well as the data script, which provides extra information to the aforemen-
tioned validator and allows for more expressive schemes. Investigating exactly the extent of this
expressiveness is one of the main goals of this thesis.

For a transaction to be submitted, one has to check that each input can actually spend the output
it refers to. At this point of interaction, one must combine all scripts, as shown below:

runValidation : PendingTx
→ (i : TxInput)
→ (o : TxOutput)
→ D i ≡ Data o
→ State
→ Bool

runValidation ptx i o refl st = validator i st (value o) ptx (redeemer i st) (dataScript o st)

Note that the intermediate types carried by the respective input and output must align, evidenced
by the equality proof that is required as an argument.

Example Transaction. AssumeAlice wants to transfer B 10 to Bob and has access to a previous
transaction output of B 11 that she can redeem. By paying a transactional fee of B 1, she can submit
a transaction that redeems the funds of the unspent output (by providing the hash of its validator,
equal to 𝔸), and propagates the remaining funds to Bob’s address B (equal to the validator hash of
t after): Figure 1 shows the relevant parts of the transactions involved. We do not display the scripts
involved here, but we will see their usage in a more extensive example in Section 4.9.

4.2 Unspent Τransaction Οutputs
With the basic modelling of a ledger and its transaction in place, it is fairly straightforward to
inductively define the calculation of a ledger’s unspent transaction outputs:

unspentOutputs : Ledger→ Set⟨ TxOutputRef ⟩
unspentOutputs [] = ∅
unspentOutputs (tx :: txs) = (unspentOutputs txs \ spentOutputsTx tx) ∪ unspentOutputsTx tx

where
spentOutputsTx , unspentOutputsTx : Tx→ Set⟨ TxOutputRef ⟩

20

spentOutputsTx = (outputRef ⟨$⟩_) ∘ inputs
unspentOutputsTx tx = (tx# @ _) ⟨$⟩ indices (outputs tx)

4.3 Validity of Τransactions
In order to submit a transaction, one has to make sure it is valid with respect to the current ledger.
We model validity as a record indexed by the transaction to be submitted and the current ledger:

The first four conditionsmake sure the transaction references and types arewell-formed, namely
that inputs refer to actual transactions (validTxRefs, validOutputIndices) which are unspent so far
(validOutputRefs), but also that intermediate types used in interacting inputs and outputs align
(validDataScriptTypes).

The last four validation conditions are more interesting, as they ascertain the validity of the sub-
mitted transaction, namely that the bitcoin values sum up properly (preservesValues), no output is
spent twice (noDoubleSpending), validation succeeds for each input-output pair (allInputsValidate)
and outputs hash to the hash of their corresponding validator script (validateValidHashes).

The definitions of lookup functions are omitted, as they are uninteresting. The only important
design choice is that, instead of modelling lookups as partial functions (i.e. returning Maybe), they
require a membership proof as an argument moving the responsibility to the caller (as evidenced
by their usage in the validity conditions).

Type-safe interface. Since we only wish to construct ledgers that are valid, i.e. submitted trans-
actions are valid with respect to the constructed ledger, we only expose a type-safe interface as a
proof-carrying variant of the standard list construction:

-- 1) Previous output redeemable by Alice
t before : Tx
t before = record { . . . , outputs = [B 11 @ A] , . . . }
-- 2) Alice sends B 10 to Bob
t : Tx
t = record { inputs = [t before# @ 0]

; outputs = [B 10 @ B]

; forge = B 0

; fee = B 1 }
-- 3) Bob spends them in a future transaction
t after : Tx
t after = record { inputs = [t# @ 0] , . . . }

Fig. 1. Example transaction: Alice sends B 10 to Bob.

21

record IsValidTx (tx : Tx) (l : Ledger) : Set where
field

validTxRefs :
∀ i→ i ∈ inputs tx→

Any (λ t→ t# ≡ id (outputRef i)) l

validOutputIndices :
∀ i→ (i ∈ : i ∈ inputs tx)→

index (outputRef i) <
length (outputs (lookupTx l (outputRef i) (validTxRefs i i ∈)))

validOutputRefs :
∀ i→ i ∈ inputs tx→

outputRef i ∈ unspentOutputs l

validDataScriptTypes :
∀ i→ (i ∈ : i ∈ inputs tx)→

D i ≡ D (lookupOutput l (outputRef i) (validTxRefs i i ∈) (validOutputIndices i i ∈))

preservesValues :
forge tx+ sum (mapWith ∈ (inputs tx) λ { i } i ∈ →

lookupValue l i (validTxRefs i i ∈) (validOutputIndices i i ∈))
≡

fee tx+ sum (value ⟨$⟩ outputs tx)

noDoubleSpending :
noDuplicates (outputRef ⟨$⟩ inputs tx)

allInputsValidate :
∀ i→ (i ∈ : i ∈ inputs tx)→

let out = lookupOutput l (outputRef i) (validTxRefs i i ∈) (validOutputIndices i i ∈)
ptx = mkPendingTx l tx validTxRefs validOutputIndices

in T (runValidation ptx i out (validDataScriptTypes i i ∈) (getState l))

validateValidHashes :
∀ i→ (i ∈ : i ∈ inputs tx)→

let out = lookupOutput l (outputRef i) (validTxRefs i i ∈) (validOutputIndices i i ∈)
in (address out)# ≡ validator i#

Fig. 2. Validity conditions of a ledger, encoded as a dependent record.

22

data ValidLedger : Ledger→ Set where

∙ : ValidLedger []

⊕ ⊣ : ValidLedger l
→ (tx : Tx)
→ IsValidTx tx l
→ ValidLedger (tx :: l)

4.4 Decision Procedure
Intrinsically-typed ledgers are correct-by-construction, but this does not come for free; we now
need to provide substantial proofs of validity alongside every submitted transaction.

To make the proof process more ergonomic for the user of the framework, we prove that all
involved propositions appearing in the IsValidTx record are decidable, thus defining a decision
procedure for closed formulas that do not contain any free variable. This process is commonly
referred to as proof-by-reflection [Bertot and Castéran 2013, Chapter 16] and has been used for
proof automation both in Coq [Gonthier et al. 2013] and Agda [Van Der Walt and Swierstra 2012].

Most operations already come with a decidable counterpart, e.g. < can be decided by <?

that exists in Agda’s standard library.Therefore, what we are essentially doing is copying the initial
propositions and replace such operators with their decision procedures. Decidability is captured
by theDec datatype, ensuring that we can answer a yes/no question over the enclosed proposition:

data Dec (P : Set) : Set where
yes : (p : P) → Dec P
no : (¬p : ¬P)→ Dec P

Having a proof of decidability means we can replace a proof of proposition P with a simple call
to toWitness {Q = P? } tt, where P? is the decidable counterpart of P.

True : Dec P→ Set
True (yes) = ⊤
True (no) = ⊥

toWitness : {Q : Dec P } → True Q→ P
toWitness {Q = yes p } = p
toWitness {Q = no } ()

For this to compute though, the decided formula needs to be closed, meaning it does not con-
tain any variables. One could even go beyond closed formulas by utilizing Agda’s recent meta-
programming facilities (macros), but this is outside of the scope of this thesis.

But what about universal quantification? We certainly know that it is not possible to decide on
an arbitrary quantified proposition. Hopefully, all our uses of the ∀ operator later constrain the

23

quantified argument to be an element of a list. Therefore, we can define a specific decidable variant
of this format:

∀? : (xs : List A)
→ {P : (x : A) (x ∈ : x ∈ xs)→ Set }
→ (∀ x→ (x ∈ : x ∈ xs)→ Dec (P x x ∈))
→ Dec (∀ x x ∈ → P x x ∈)

∀? [] P? = yes λ ()

∀? (x :: xs) P? with ∀? xs (λ x′ x ∈ → P? x′ (there x ∈))
... | no ¬p = no λ p→ ¬p (λ x′ x ∈ → p x′ (there x ∈))
... | yes p′ with P? x (here refl)
... | no ¬p = no λ p→ ¬p (p x (here refl))
... | yes p = yes λ {x′ (here refl)→ p

; x′ (there x ∈)→ p′ x′ x ∈}

Finally, we are ready to provide a decision procedure for each validity condition using the afore-
mentioned operator for quantification and the decidable counterparts for the standard operators
we use. Below we give an example for the validOutputRefs condition:

validOutputRefs? : ∀ (tx : Tx) (l : Ledger)
→ Dec (∀ i→ i ∈ inputs tx→ outputRef i ∈ unspentOutputs l)

validOutputRefs?tx l = ∀? (inputs tx) λ i → outputRef i ∈? unspentOutputs l

In Section 4.9 we give an example construction of a valid ledger and demonstrate that our deci-
sion procedure discharges all proof obligations with calls to toWitness.

4.5 Weakening Lemma
We have defined everything with respect to a fixed set of available addresses, but it would make
sense to be able to include additional addresseswithout losing the validity of the ledger constructed
thus far.

In order to do so, we introduce the notion of weakening the address space; the only necessary
ingredient is a hash-preserving injection8 from a smaller address space A to a larger address space
B:

module Weakening

(A : Set) (# a : HashFunction A) (?
=a : Decidable {A = A } ≡)

(B : Set) (# b : HashFunction B) (?
=b : Decidable {A = B } ≡)

(A ↪→ B : A , # a ↪→ B , # b)

where

8 Preserving hashes means an injection f satisfies ∀ {a } → a# a ≡ (a ⟨$⟩ f)# b, where we denote transporting via an
injection with the binary operator ⟨$⟩ and injections with the mixfix operator A , # a ↪→ B , #b.

24

import UTxO.Validity A # a ?
=a as A

open import UTxO.Validity B # b ?
=b as B

weakenTxOutput : A.TxOutput→ B.TxOutput
weakenTxOutput out = out {address = A ↪→ B ⟨$⟩ address out }

weakenTx : A.Tx→ B.Tx
weakenTx tx = tx {outputs = map weakenTxOutput (outputs tx) }

weakenLedger : A.Ledger→ B.Ledger
weakenLedger = map weakenTx

Notice also that the only place where weakening takes place are transaction outputs, since all
other components do not depend on the available address space.

With the weakening properly defined, we can finally prove the weakening lemma for the avail-
able address space:

weakening : ∀ { tx : A.Tx } { l : A.Ledger }
→ A.IsValidTx tx l

→ B.IsValidTx (weakenTx tx) (weakenLedger l)
weakening = . . .

Theweakening lemma states that the validity of a transaction with respect to a ledger is preserved
if we choose to weaken the available address space, which we estimate to be useful when we later
prove more intricate properties of the extended UTxO model.

One practical use-case for weakening is moving from a bit representation of addresses to one
withmore available bits (e.g. 32-bit to 64-bit conversion).This, of course, preserves hashes since the
numeric equivalent of the converted addresses will be the same. For instance, as we come closer
to the quantum computing age, addresses will have to transition to other encryption schemes
involving many more bits9. Since we allow the flexibility for arbitrary injective functions, our
weakening result will hopefully prove resilient to such scenarios.

4.6 Combining
Ideally, one would wish for a modular reasoning process, akin to how separation logic in concur-
rency is used for reasoning about program memory. In our case, we would be able to examine
different ledgers of unrelated (i.e. “separate”) transactions in a compositional manner. This has to
be done carefully, since we need to preserve the proof of validity when combining two ledgers l
and l′ .

9 It is believed that even 2048-bit keys will become vulnerable to rapid decryption from quantum computers.

25

First of all, the ledgers should not share any transactions with each other: Disjoint l l′ . Sec-
ondly, the resulting ledger l″ will be some interleaving of these two: Interleaving l l′ l″. These
conditions are actually sufficient to preserve all validity conditions, except allInputsValidate. The
issue arises from the dependence of validation results on the current state of the ledger, which is
given as argument to each validation script. To remedy this, we further require that the new state,
corresponding to a particular interleaving, does not break previous validation results:

PreserveValidations : (l : Ledger) (l″ : Ledger)→ Interleaving l l″→ Set
PreserveValidations l₀ inter =
∀ tx→ (p : tx ∈ l₀)→

let l =∈−tail p
l″ =∈−tail (interleave ⊆ inter p)

in ∀ {ptx i out vds } → runValidation ptx i out vds (getState l″)
≡ runValidation ptx i out vds (getState l)

Putting all conditions together, we are now ready to formulate a combining operation for valid
ledgers:

↔ ⊣ : ∀ { l l′ l″ : Ledger }
→ ValidLedger l
→ ValidLedger l′
→ Σ[i ∈ Interleaving l l′ l″]
× Disjoint l l′
× PreserveValidations l l″i
× PreserveValidations l′ l″(swap i)

→ ValidLedger l″

The proof inductively proves validity of each transaction in the interleaved ledger, essentially
reusing the validity proofs of the ledger constituents.

It is important to note what weakening and combining can be interleaved: if we wish to combine
ledgers that use different addresses, we can now just apply weakening first and then combine in a
type-safe manner.

4.7 Extension I: Data Scripts
The dataScript field in transaction outputs does not appear in the original abstract UTxO
model [Zahnentferner 2018a], but is available in the extended version of the UTxO model used
in the Cardano blockchain [IOHK 2019a]. This addition raises the expressive level of UTxO-based
transaction, since it is now possible to simulate stateful behaviour, passing around state in the data
scripts (i.e. Data = State).

This technique is successfully employed in Marlowe, a DSL for financial contracts that com-
piles down to eUTxO transactions [Seijas and Thompson 2018]. Marlowe is accompanied by a

26

simple small-step semantics, i.e. a state transition system. Using data scripts, compilation is rather
straightforward since we can pass around the state of the semantics in the data scripts.

4.8 Extension II: Multi-currency
Many major blockchain systems today support the creation of secondary cryptocurrencies, which
are independent of the main currency. In Bitcoin, for instance, colored coins allow transactions to
assign additional meaning to their outputs (e.g. each coin could correspond to a real-world asset,
such as company shares) [Rosenfeld 2012].

This approach, however, has the disadvantage of larger transactions and less efficient process-
ing. One could instead bake the multi-currency feature into the base system, mitigating the need
for larger transactions and slow processing. Building on the abstract UTxO model, there are cur-
rent research efforts on a general framework that provides mechanisms to establish and enforce
monetary policies for multiple currencies [Zahnentferner 2019].

Fortunately, the extensions proposed by the multi-currency are orthogonal to the formalization
so far. In order to accommodate built-in support for user-defined currencies, we need to generalize
the type of Value from quantities (N) to maps from currency identifiers to quantities.

Thankfully, the value operations used in our validity conditions could be lifted to any commu-
tative group10. Hence, refactoring the validity conditions consists of merely replacing numeric
addition with a point-wise addition on maps +c .

At the user-level, we define these value maps as a simple list of key-value pairs:

Value = List (Hash × N)

Note that currency identifiers are not strings, but script hashes. We will justify this decision when
we talk about the way monetary policies are enforced; each currency comes with a certain scheme
of allowing or refusing forging of new funds.

We also provide the adding operation, internally using proper maps implemented on AVL
trees11:

open import Data.AVL N-strictTotalOrder

CurrencyMap = Tree (MkValue (λ → Hash) (subst (λ → N)))

+c : Value→ Value→ Value
c+c c′ = toList (foldl go (fromList c) c′)

where
go : CurrencyMap→ (N × N)→ CurrencyMap
go cur (currency , value) = insertWith currency ((_+ value) ∘ fromMaybe 0) cur

10 Actually, we only ever add values, but inverses could be used to reduce a currency supply.
11https://github.com/agda/agda-stdlib/blob/master/src/Data/AVL.agda

27

https://github.com/agda/agda-stdlib/blob/master/src/Data/AVL.agda

sum c : List Value→ Value
sum c = foldl _+c _ []

While the multi-currency paper defines a new type of transaction CurrencyTx for creating funds,
we follow a more lightweight approach, as currently employed in the Cardano blockchain [IOHK
2019b]. This proposal mitigates the need for a new type of transaction and a global registry via a
clever use of validator scripts: monetary policies reside in the validator script of the transactional
inputs and currency identifiers are just the hashes of those scripts. When one needs to forge a par-
ticular currency, two transactions must be submitted: the first only carrying the monetary policy
in its output and the second consuming it and forging the desired quantity.

In order to ascertain that forging transactions always follow this scheme, we need to extend our
validity record with yet another condition:

record IsValidTx (tx : Tx) (l : Ledger) : Set where
. . .

forging :
∀ c→ c ∈ keys (forge tx)→
∃[i] ∃λ (i ∈ : i ∈ inputs tx)→
let out = lookupOutput l (outputRef i) (validTxRefs i i ∈) (validOutputIndices i i ∈)
in (address out)# ≡ c

The rest of the conditions are the same, modulo the replacement of + with +c and sum
with sum c.

This is actually the first and only validation condition to contain an existential quantification,
which poses some issues with our decision procedure for validity. To tackle this, we follow a similar
approach to the treatment of universal quantification in Section 4.4:

∃? : (xs : List A)
→ {P : (x : A) (x ∈ : x ∈ xs)→ Set ℓ′ }
→ (∀ x→ (x ∈ : x ∈ xs)→ Dec (P x x ∈))
→ Dec (∃[x]∃λ (x ∈ : x ∈ xs)→ P x x ∈)

∃? [] P? = no λ {(x , () , p) }
∃? (x :: xs) P? with P? x (here refl)
... | yes kp = yes (x , here refl , p)
... | no¬p with ∃? xs (λ x′ x ∈ → P? x′ (there x ∈))
... | yes (x′ , x ∈ , p) = yes (x′ , there x ∈ , p)
... | no¬pp = no λ {(x′ , here refl , p)→ ¬p p

; (x′ , there x ∈ , p)→ ¬pp (x′ , x ∈ , p) }

Now it is straightforward to give a proof of decidability for forging:

28

forging? : ∀ (tx : Tx) (l : Ledger)
→ (v₁ : ∀ i→ i ∈ inputs tx→ Any (λ t→ t# ≡ id (outputRef i)) l)
→ (v₂ : ∀ i→ (i ∈ : i ∈ inputs tx)→

index (outputRef i) < length (outputs (lookupTx l (outputRef i) (v₁ i i ∈))))
→ Dec (∀ c→ c ∈ keys (forge tx)→

∃[i] ∃λ (i ∈ : i ∈ inputs tx)→
let out = lookupOutput l (outputRef i) (v₁ i i ∈) (v₂ i i ∈)
in (address out)# ≡ c)

forging?tx l v₁ v₂ =
∀? (keys (forge tx)) λ c →
∃? (inputs tx) λ i i ∈ →
let out = lookupOutput l (outputRef i) (v₁ i i ∈) (v₂ i i ∈)
in (address out)# ?

= c

4.9 Example: UTxO Ledger
To showcase how we can use our model to construct correct-by-construction ledgers, let us revisit
the example ledger presented in the Chimeric Ledgers paper [Zahnentferner 2018b].

Any blockchain can be visually represented as a directed acyclic graph (DAG), with transactions
as nodes and input-output pairs as edges, as shown in Figure 3. The six transactions t₁ . . . t₆ are
self-explanatory, each containing a forge and fee value. The are three participants, represented by
addresses A, B and C, as well as an dedicated address B for the monetary policy of B. Notice the
special transaction c₀, which enforces the monetary policy of currency B in its outputs (colored in
green); the two forging transactions t₁ and t₄ consume these outputs as requested by the validity
condition for forging. Lastly, there is a single unspent output (coloured in red), namely the single
output of t₆: this means at the current state address C holds B 999.

First, we need to set things up by declaring the list of available addresses and opening our
module with this parameter. For brevity, we identify addresses as hashes:

Address : Set
Address = N

A , B , C : Address
A = 1 -- first address
B = 2 -- second address
C = 3 -- third address

open import UTxO Address (λ x→ x) _ ?
=_

It is also convenient to define some smart constructors up-front:

29

forge: B 1000
fee: B 0

t₁

forge: B 0
fee: B 0

t₂

forge: B 0
fee: B 7

t₅

forge: B 0
fee: B 1

t₆

forge: B 0
fee: B 0

c₀

forge: B 0
fee: B 1

t₃

forge: B 10
fee: B 2

t₄

B 1000

@A

B 200 @A

B 800
@B

B 199 @C

B 207 @B

B 500
@B
B 500

@C

B 999

@C

B-policy @B

B-policy @B

Fig. 3. Example ledger with six transactions

B-validator : State→ . . . → Bool
B-validator (record {height = h }) = (h ≡ b 1) ∨ (h ≡ b 4)

mkValidator : TxOutputRef→ (State→ Value→ PendingTx→ (N × N)→ N→ Bool)
mkValidator tin tin′ = (id tin ≡ b proj₁ tin′) ∧ (index tin ≡ b proj₂ tin′)

B : N→ Value
B v = [(B-validator# , v)]

withScripts : TxOutputRef→ TxInput
withScripts tin = record {outputRef = tin

; redeemer = λ → id tin , index tin
; validator = mkValidator tin }

withPolicy : TxOutputRef→ TxInput
withPolicy tin = record {outputRef = tin

; redeemer = λ → tt
; validator = B-validator }

@ : Value→ Address→ TxOutput
v @ addr = record {value = v; address = addr; dataScript = λ → tt }

30

B-validator models a monetary policy that allows forging only at ledger height 1 and 4;
mkValidator is a script that only validates against the given output reference; B_ creates singleton
currency maps for our currency BIT; withScripts and withPolicy wrap an output reference with the
appropriate scripts; _ @ _ creates outputs that do not utilize the data script.

We can then proceed to define the individual transactions defined in Figure 3; the first sub-index
of each variable refers to the order the transaction are submitted, while the second sub-index refers
to which output of the given transaction we select:

c₀ , t₁ , t₂ , t₃ , t₄ , t₅ , t₆ : Tx
c₀ = record { inputs = []

; outputs = B 0 @ (B-validator#) :: B 0 @ (B-validator#) :: []
; forge = B 0

; fee = B 0 }
t₁ = record { inputs = [withPolicy c₀₀]

; outputs = [B 1000 @ A]

; forge = B 1000

; fee = B 0 }
...

t₆ = record { inputs = withScripts t₅₀ :: withScripts t₅₁ :: []
; outputs = [B 999 @ C]

; forge = B 0

; fee = B 1 }

In order for terms involving the postulated hash function _# to compute, we use Agda’s experi-
mental feature for user-supplied rewrite rules:

{−# OPTIONS –rewriting #−}
postulate

eq₁₀ : (mkValidator t₁₀)# ≡ A
...

eq₆₀ : (mkValidator t₆₀)# ≡ C

{−# BUILTIN REWRITE ≡ #−}
{−# REWRITE eq₀ , eq₁₀ , . . . , eq₆₀ #−}

Below we give a correct-by-construction ledger containing all transactions:

ex-ledger : ValidLedger (t₆ :: t₅ :: t₄ :: t₃ :: t₂ :: t₁ :: c₀ :: [])
ex-ledger =

∙ c₀ ⊣ record { . . . }

31

⊕ t₁ ⊣ record {validTxRefs = toWitness {Q = validTxRefs?t₁ l₀ } tt
; validOutputIndices = toWitness {Q = validOutputIndices? . . . } tt
; validOutputRefs = toWitness {Q = validOutputRef? . . . } tt
; validDataScriptTypes = toWitness {Q = validDataScriptTypes? . . . } tt
; preservesValues = toWitness {Q = preservesValues? . . . } tt
; noDoubleSpending = toWitness {Q = noDoubleSpending? . . . } tt
; allInputsValidate = toWitness {Q = allInputsValidate? . . . } tt
; validateValidHashes = toWitness {Q = validateValidHashes? . . . } tt
; forging = toWitness {Q = forging? . . . } tt }

⊕ t₂ ⊣ record { . . . }
...

⊕ t₆ ⊣ record { . . . }

First, it is trivial to verify that the only unspent transaction output of our ledger is the output of
the last transaction t6, as demonstrated below:

utxo : list (unspentOutputs ex-ledger) ≡ [t₆₀]
utxo = refl

Most importantly, notice that no manual proving is necessary, since our decision procedure
discharges all validity proofs. In the next release of Agda, it will be possible to even omit the
manual calls to the decision procedure (via toWitness), by declaring the proof of validity as an
implicit tactic argument12.

This machinery allows us to define a compile-time macro for each validity condition that works
on the corresponding goal type, and statically calls the decision procedure of this condition to
extract a proof and fill the required implicit argument. As an example, we give a sketch of the
macro for the validTxRefs condition below:

pattern vtx i i ∈ tx t l =
‘λ i∶‘TxInput⇒

‘λ i ∈∶#0 ‘ ∈ (‘inputs t)⇒
‘Any (‘λ tx⇒ #0 ‘# ‘ ≡ ‘id ‘outputRef #2) l

macro
validTxRefsM : Term→ TC ⊤
validTxRefsM hole = do

goal←inferType hole
case goal of λ
{(vtx t l)→

t′ ←unquoteTC t

12https://agda.readthedocs.io/en/latest/language/implicit-arguments.html#tactic-arguments

32

https://agda.readthedocs.io/en/latest/language/implicit-arguments.html#tactic-arguments

l′ ←unquoteTC l
case validTxRefs?t′ l′ of λ
{(yes p)→ quoteTC p >>= unify hole
; (no) → typeError [strErr ‘‘validity condition does not hold”]
}

; t→ typeError [strErr ‘‘wronд type o f дoal”]
}

We first define a pattern to capture the validity condition in AST form; Agda provides a reflection
mechanism13, that defines Agda’s language constructs as regular Agda datatypes. Note the use
of quoted expressions in the definition of the vtx pattern, which also uses De Bruijn indices for
variables bound in λ-abstractions.

Then, we define the macro as a metaprogram running in the type-checking monad TC. After
pattern matching on the goal type and making sure it has the expected form, we run the decision
procedure, in this case validTxRefs?. If the computation reached a positive answer, we automat-
ically fill the required term with the proof of validity carried by the yes constructor. In case the
transaction is not valid, we report a compile-time error.

We can now replace the operator for appending (valid) transactions to a ledger, with one that
uses implicit tactic arguments instead:

⊕ : ValidLedger l
→ (tx : Tx)
→ {@(tactic validTxRefsM) : ∀ i→ i ∈ inputs tx→ Any (λ t→ t# ≡ id (outputRef i)) l
→ . . .
→ ValidLedger (tx :: l)

(l ⊕ tx) {vtx } . . . = l ⊕ tx ⊣ record {validTxRefs = vtx , . . . }

13https://github.com/agda/agda/blob/master/src/data/lib/prim/Agda/Builtin/Reflection.agda

33

https://github.com/agda/agda/blob/master/src/data/lib/prim/Agda/Builtin/Reflection.agda

SECTION 5

Formal Model II: BitML Calculus

Now let us shift our focus to our second subject of study, the BitML calculus for modelling smart
contracts. In this subsection we sketch the formalized part of BitMLwe have covered so far, namely
the syntax and small-step semantics of BitML contracts, its game-theoretic symbolic model, as
well as an example execution of a contract under these semantics. All code is publicly available on
Github14.

First, we begin with some basic definitions that will be used throughout this section. Instead of
giving a fixed datatype of participants, we parametrise our module with a given abstract data type
of participants that we can check for equality, as well as non-empty list of honest participants:

module BitML (Participant : Set) (?
=p : Decidable {A = Participant } ≡)

(Honest : List+ Participant)
where

Time : Set
Time = N

Value : Set
Value = N

Secret : Set
Secret = String

record Deposit : Set where
constructor _has_
field participant : Participant

value : Value

14https://github.com/omelkonian/formal-bitml

34

https://github.com/omelkonian/formal-bitml

Representation of time andmonetary values is again simplistic, both modelled as natural numbers.
while we model participant secrets as simple strings15. A deposit consists of the participant that
owns it and the number of bitcoins it carries.

We, furthermore, introduce a simplistic language of logical predicates and arithmetic expres-
sions with the usual constructs (e.g. numerical addition, logical conjunction) and give the usual
semantics (predicates on booleans and arithmetic on naturals). A more unusual feature of these
expressions is the ability to calculate length of secrets (within arithmetic expressions) and, in order
to ensure more type safety later on, all expressions are indexed by the secrets they internally use.

data Arith : List Secret→ Set where

‘ : N→ Arith []

‘len : (s : Secret)→ Arith [s]

‘+ : Arith s l → Arith s r → Arith (s l ++ s r)

‘- : Arith s l → Arith s r → Arith (s l ++ s r)

N⟦ ⟧ :∀ { s } → Arith s→ N
N⟦ ⟧= . . .

data Predicate : List Secret→ Set where

‘True : Predicate []

‘ ∧ : Predicate s l → Predicate s r → Predicate (s l ++ s r)

‘¬ : ∀ { s } → Predicate s→ Predicate s

‘ ≡ : Arith s l → Arith s r → Predicate (s l ++ s r)

‘ < : Arith s l → Arith s r → Predicate (s l ++ s r)

B⟦ ⟧ :∀ { s } → Predicate s→ Bool
B⟦ ⟧= . . .

5.1 Contracts in BitML
A contract advertisement consists of a set of preconditions, which require some resources from the
involved participants prior to the contract’s execution, and a contract, which specifies the rules
according to which bitcoins are transferred between participants.

Preconditions either require participants to have a deposit of a certain value on their name
(volatile or not) or commit to a certain secret. A persistent deposit has to be provided before the
contract is stipulated, while a volatile deposit may be needed dynamically during the execution of

15 Of course, one could provide more realistic types (e.g. support for multiple currencies or words of specific length) to be
closer to the implementation, as shown for the UTxO model in Section 4.

35

the contract. Both volatile and persistent deposits required by a precondition are captured in its
two type-level indices, respectively:

data Precondition : List Value→ List Value→ Set where

-- volatile deposit
? : Participant→ (v : Value)→ Precondition [v] []

-- persistent deposit
! : Participant→ (v : Value)→ Precondition [] [v]

-- committed secret
: Participant→ Secret→ Precondition [] []

-- conjunction
∧ : Precondition vs v vsp → Precondition vs v′ vsp′
→ Precondition (vs v ++ vs v′) (vsp ++ vsp′)

Moving on to actual contracts, we define them by means of a collection of five types of com-
mands; put injects participant deposits and revealed secrets in the remaining contract, withdraw
transfers the current funds to a participant, split distributes the current funds across different in-
dividual contracts, : requires the authorization from a participant to proceed and after :

allows further execution of the contract only after some time has passed.

data Contract : Value -- the monetary value it carries
→ List Value -- the volatile deposits it presumes
→ Set where

-- collect deposits and secrets
put reveal i f ⇒ ⊣ : ∀ { s′ : List Secret } {
→ (vs : List Value)→ (s : List Secret)→ Predicate s′ → Contract (v+ sum vs) vs′
→ s′ ⊆ s
→ Contract v (vs′ ++ vs)

-- transfer the remaining balance to a participant
withdraw : ∀ {v vs } → Participant→ Contract v vs

-- split the balance across different branches
split : ∀ {vs }
→ (cs : List (∃[v] Contract v vs))
→ Contract (sum (proj₁ ⟨$⟩ cs)) vs

-- wait for participant’s authorization
: : Participant→ Contract v vs→ Contract v vs

-- wait until some time passes
after : : Time→ Contract v vs→ Contract v vs

36

There is a lot of type-level manipulation across all constructors, since we need to make sure that
indices are calculated properly. For instance, the total value in a contract constructed by the split
command is the sum of the values carried by each branch.The put command16 additionally requires
an explicit proof that the predicate of the i f part only uses secrets revealed by the same command.

We also introduce an intuitive syntax for declaring the different branches of a split command,
emphasizing the linear nature of the contract’s total monetary value:

⊸ : ∀ {vs } → (v : Value)→ Contract v vs→ ∃[v] Contract v vs
v ⊸ c = v , c

Having defined both preconditions and contracts, we arrive at the definition of a contract ad-
vertisement:

record Advertisement (v : Value) (vs c vs v vsp : List Value) : Set where
constructor ⟨ ⟩ ⊣
field G : Precondition vs v vsp

C : Contracts v vs c

valid : length vs c ⩽ length vs v

× participants g G++ participants c C ⊆ (participant ⟨$⟩ persistentDeposits G)
× v ≡ sum vsp

Notice that in order to construct an advertisement, one has to also provide proof of the contract’s
validity with respect to the given preconditions, namely that all deposit references in the contract
are declared in the precondition and each involved participant is required to have a persistent
deposit.

To clarify things so far, let us see a simple example of a contract advertisement. We first open
the BitML module with a trivial datatype for participants, consisting of A and B:

data Participant : Set where
A B : Participant

?
= : Decidable {A = Participant } ≡
...

Honest : Σ[ps ∈ List Participant] (length ps > 0)

Honest = [A] , ≤ − refl

open BitML Participant ?
= [A]+

16 put comprises of several components and we will omit those that do not contain any helpful information, e.g. write
put ⇒ _ when there are no revealed secrets and the predicate trivially holds.

37

We then define an advertisement, whose type already says a lot about what is going on; it carries
B 5, presumes the existence of at least one deposit of B 200, and requires both participants to pay
a persistent deposit beforehand.

ex-ad : Advertisement 5 [200] [200] [3 , 2]

ex-ad = ⟨ B ? 200 ∧ B ! 3 ∧ A ! 2 ⟩
split (2 ⊸ withdraw B

⊕ 2 ⊸ after 42∶withdraw A
⊕ 1 ⊸ put [200]⇒ B∶withdraw {201 } A ⊣ . . .
)

⊣ . . .

Looking at the precondition itself, we see that the required deposit will be provided by A. The
contract first splits the bitcoins across three branches: the first one gives B 2 to B, the second one
gives B 2 to A after some time period, while the third one retrieves B’s deposit of B 200 and allows
B to authorize the withdrawal of the remaining funds (currently B 201) from A.

We have omitted the proofs that ascertain the well-formedness of the put command and the
advertisement, as they are straightforward and do not provide any more intuition17.

5.2 Small-step Semantics
BitML is a process calculus, which is geared specifically towards smart contracts. Contrary to most
process calculi that provide primitive operators for inter-process communication via message-
passing [Hoare 1978], the BitML calculus does not provide such built-in features.

It, instead, provides domain-specific synchronization mechanisms through its small-step reduc-
tion semantics. These essentially define a labelled transition system between configurations, where
action labels are emitted on every transition and represent the required actions of the participants.
This symbolic model consists of two layers; the bottom one transitioning between untimed config-
urations and the top one that works on timed configurations.

We start with the datatype of actions, which showcases the principal actions required to satisfy
an advertisement’s preconditions and an action to pick one branch of a collection of contracts
(introduced by the choice operator ⊕). We have omitted uninteresting actions concerning the ma-
nipulation of deposits, such as dividing, joining, donating and destroying them. Since we will often
need versions of the types of advertisements/contracts with their indices existentially quantified,
we first provide aliases for them. For convenience in notation, we will sometimes write ∃A to mean
this existential packing of the indices of A:

AdvertisedContracts : Set
AdvertisedContracts = List (∃[v] ∃[vs c] ∃[vs v] ∃[vsp] Advertisement v vs c vs v vsp)

ActiveContracts : Set
ActiveContracts = List (∃[v] ∃[vs] List (Contract v vs))

17 In fact, we have defined decidable procedures for all such proofs using the proof-by-reflection pattern [Van Der Walt and
Swierstra 2012]. These automatically discharge all proof obligations, when there are no variables involved.

38

data Action (p : Participant) -- the participant that authorizes this action
: AdvertisedContracts -- the contract advertisements it requires
→ ActiveContracts -- the active contracts it requires
→ List Value -- the deposits it requires from this participant
→ List Deposit -- the deposits it produces
→ Set where

-- join two deposits deposits
↔ : ∀ {vs }

→ (i : Index vs)
→ (j : Index vs)
→ Action p [] [] vs ((p has_) ⟨$⟩ updateAt ((i , vs !! i+ vs !! j) :: (j , 0) :: []) vs)

-- commit secrets to stipulate an advertisement
♯▷ _ : (ad : Advertisement v vs c vs v vsp)

→ Action p [v , vs c , vs v , vsp , ad] [] [] []

-- spend x to stipulate an advertisement
▷s _ : (ad : Advertisement v vs c vs v vsp)

→ (i : Index vsp)
→ Action p [v , vs c , vs v , vsp , ad] [] [vsp !! i] []

-- pick a branch
▷b _ : (c : List (Contract v vs))

→ (i : Index c)
→ Action p [] [v , vs , c] [] []

...

The action datatype is parametrised18 over the participant who performs it and includes several
indices representing the prerequisites the current configuration has to satisfy, in order for the
action to be considered valid (e.g. one cannot spend a deposit to stipulate an advertisement that
does not exist).

The first index refers to advertisements that appear in the current configuration, the second to
contracts that have already been stipulated, the third to deposits owned by the participant cur-
rently performing the action and the fourth declares new deposits that will be created by the
action. For instance, the join operation ↔ requires a non-empty list of deposits and produces
a modification, where the two values at indices i and j are merged in position i.

Although our indexing scheme might seem a bit heavyweight now, it makes many little details
and assumptions explicit, which would bite us later on when we will need to reason about them.

18 In Agda, datatype parameters are similar to indices, but are not allowed to vary across constructors.

39

Continuing from our previous example advertisement, let’s see an example action where A
spends the required B 100 to stipulate the example contract19:

ex-spend : Action A [5 , [200] , [200] , [100] , ex-ad] [] [100] []
ex-spend = ex-ad ▷s 0 SF

The 0 SF is not a mere natural number, but inhibits Fin (length vs p), which ensures we can only
construct actions that spend valid persistent deposits.

BitML’s small-step semantics is a state transition system, whose states we call configurations.
These are built from advertisements, active contracts, deposits, action authorizations and commit-
ted/revealed secrets:

data Configuration′ : -- current × required
AdvertisedContracts × AdvertisedContracts

→ ActiveContracts × ActiveContracts
→ List Deposit × List Deposit
→ Set where

-- empty configuration
∅ : Configuration′ ([] , []) ([] , []) ([] , [])

-- contract advertisement
‘ : (ad : Advertisement v vs c vs v vsp)
→ Configuration′ ([v , vs c , vs v , vsp , ad] , []) ([] , []) ([] , [])

-- active contract
⟨ , ⟩c : (c : List (Contract v vs))→ Value

→ Configuration′ ([] , []) ([v , vs , c] , []) ([] , [])

-- deposit redeemable by a participant
⟨ , ⟩d : (p : Participant)→ (v : Value)

→ Configuration′ ([] , []) ([] , []) ([p has v] , [])

-- authorization to perform an action
[] : (p : Participant)→ Action p ads cs vs ds
→ Configuration′ ([] , ads) ([] , cs) (ds , ((p has) ⟨$⟩ vs))

-- committed secret
⟨ ∶ # ⟩ : Participant→ Secret→ Maybe N

→ Configuration′ ([] , []) ([] , []) ([] , [])
-- revealed secret
∶ # : Participant→ Secret→ N

→ Configuration′ ([] , []) ([] , []) ([] , [])

-- parallel composition
| : Configuration′ (ads l , rads l) (cs l , rcs l) (ds l , rds l)

19 Notice that we have to make all indices of the advertisement explicit in the second index in the action’s type signature.

40

→ Configuration′ (ads r , rads r) (cs r , rcs r) (ds r , rds r)
→ Configuration′ (ads l ++ ads r , rads l ++ (rads r \ ads l))

(cs l ++ cs r , rcs l ++ (rcs r \ cs l))
((ds l \ rds r) ++ ds r , rds l ++ (rds r \ ds l))

The indices are quite involved, since we need to record both the current advertisements, stipulated
contracts and deposits and the required ones for the configuration to become valid. The most
interesting case is the parallel composition operator, where the resources provided by the left
operand might satisfy some requirements of the right operand. Moreover, consumed deposits have
to be eliminated as there can be no double spending, while the number of advertisements and
contracts always grows.

By composing configurations, we will eventually end up in a closed configuration, where all
required indices are empty (i.e. the configuration is self-contained):

Configuration : AdvertisedContracts→ ActiveContracts→ List Deposit→ Set
Configuration ads cs ds = Configuration′ (ads , []) (cs , []) (ds , [])

We are now ready to declare the inference rules of the bottom layer of our small-step semantics,
by defining an inductive datatype modelling the binary step relation between untimed configura-
tions:

data −→ : Configuration ads cs ds→ Configuration ads′ cs′ ds′ → Set where
DEP-AuthJoin :

⟨ A , v ⟩d | ⟨ A , v′ ⟩d | Γ −→ ⟨ A , v ⟩d | ⟨ A , v′ ⟩d | A [0 ↔ 1] | Γ

DEP-Join :

⟨ A , v ⟩d | ⟨ A , v′ ⟩d | A [0 ↔ 1] | Γ −→ ⟨ A , v+ v′ ⟩d | Γ

C-Advertise : ∀ {Γ ad }
→ ∃[p ∈ participants g (G ad)] p ∈ Hon

→ Γ −→ ‘ad | Γ

C-AuthCommit : ∀ {A ad Γ }
→ secrets (G ad) ≡ a₀ . . . aₙ
→ (A ∈ Hon→ ∀ [i ∈ 0 . . . n] a i . ⊥)

→ ‘ad | Γ −→ ‘ad | Γ | . . . ⟨ A : a i#N i ⟩ . . . |A [♯▷ ad]

C-Control : ∀ {Γ C i D }
→ C !! i ≡ A₁ : A₂ : . . . : Aₙ : D

41

→ ⟨ C , v ⟩c | . . . A i [C ▷b i] . . . | Γ −→ ⟨ D , v ⟩c | Γ
...

There is a total of 18 rules we need to define, but we choose to depict only a representative
subset of them. For a detailed overview of all the rules, we refer the reader to the original BitML
paper [Bartoletti and Zunino 2018], as well as to the source code of the BitML compiler 20.

The first pair of rules initially appends the authorization to merge two deposits to the current
configuration (rule DEP-AuthJoin) and then performs the actual join (rule DEP-Join). This is a com-
mon pattern across all rules, where we first collect authorizations for an action by all involved
participants, and then we fire a subsequent rule to perform this action. C-Advertise advertises
a new contract, mandating that at least one of the participants involved in the pre-condition is
honest and requiring that all deposits needed for stipulation are available in the surrounding con-
text. C-AuthCommit allows participants to commit to the secrets required by the contract’s pre-
condition, but only dishonest ones can commit to the invalid length ⊥. Lastly, C-Control allows
participants to give their authorization required by a particular branch out of the current choices
present in the contract, discarding any time constraints along the way.

It is noteworthy to mention that during the transcriptions of the complete set of rules from
the paper [Bartoletti and Zunino 2018] to our dependently-typed setting, we discovered some
discrepancies or over-complications, which we document extensively in Section 5.6.

The inference rules above have elided any treatment of time constraints; this is handled by the
top layer, whose states are now timed configurations. The only interesting inference rule is the
one that handles time decorations of the form after : _, since all other cases are dispatched to the
bottom layer (which just ignores timing aspects).

record Configuration t (ads : AdvertisedContracts)
(cs : ActiveContracts)
(ds : Deposits) : Set where

constructor @
field cfg : Configuration ads cs ds

time : Time

data −→ t : Configuration t ads cs ds→ Configuration t ads′ cs′ ds′ → Set where

Action : ∀ {Γ Γ′ t }
→ Γ −→ Γ′

→ Γ @ t −→ t Γ′ @ t

Delay : ∀ {Γ t δ }

20https://github.com/bitml-lang/bitml-compiler

42

https://github.com/bitml-lang/bitml-compiler

→ Γ @ t −→ t Γ @ (t+ δ)

Timeout : ∀ {Γ Γ′ t i contract }
→ All (_ ⩽ t) (timeDecorations (contract !! i)) -- all time constraints are satisfied
→ ⟨ [contract !! i] , v ⟩c | Γ −→ Γ′ -- resulting state if we pick this branch

→ (⟨ contract , v ⟩c | Γ) @ t −→ t Γ′ @ t

5.3 Reasoning Modulo Permutation
In the definitions above, we have assumed that (_ | _ , ∅) forms a commutative monoid, which
allowed us to always present the required sub-configuration individually on the far left of a com-
posite configuration. While such definitions enjoy a striking similarity to the ones appearing in
the original paper [Bartoletti and Zunino 2018] (and should always be preferred in an informal
textual setting), this approach does not suffice for a mechanized account of the model. After all,
this explicit treatment of all intuitive assumptions/details is what makes our approach robust and
will lead to a deeper understanding of how these systems behave. To overcome this intricacy, we
introduce an equivalence relation on configurations, which holds when they are just permutations
of one another:

_ ≈ : Configuration ads cs ds→ Configuration ads cs ds→ Set
c ≈ c′ = cfgToList c ↭ cfgToList c′

where
open import Data.List.Permutation using (_ ↭ _)

cfgToList : Configuration′ p₁ p₂ p₃→ List (∃[p₁] ∃[p₂] ∃[p₃] Configuration′ p₁ p₂ p₃)
cfgToList ∅ = []

cfgToList (l | r) = cfgToList l++ cfgToList r
cfgToList {p₁ } {p₂ } {p₃ } c = [p₁ , p₂ , p₃ , c]

Given this reordering mechanism, we now need to generalize all our inference rules to implicitly
reorder the current and next configuration of the step relation. We achieve this by introducing a
new variable for each of the operands of the resulting step relations, replacing the operands with
these variables and requiring that they are re-orderings of the previous configurations, as shown
in the following generalization of the DEP-AuthJoin rule21:

DEP-AuthJoin :

Γ′ ≈ ⟨ A , v ⟩d | ⟨ A , v′ ⟩d | Γ
∈ Configuration ads cs (A has v :: A has v′ :: ds)

→ Γ″ ≈ ⟨ A , v ⟩d | ⟨ A , v′ ⟩d | A [0 ↔ 1] | Γ
∈ Configuration ads cs (A has (v+ v′) :: ds)

21 In fact, it is not necessary to reorder both ends for the step relation; at least one would be adequate.

43

→ Γ′ −→ Γ″

Unfortunately, we now have more proof obligations of the re-ordering relation lying around,
which makes reasoning about our semantics rather tedious. We are currently investigating differ-
ent techniques to model such reasoning up to equivalence:
• Quotient types [Altenkirch et al. 2011] allow equipping a type with an equivalence relation.

If we assume the axiom that two elements of the underlying type are propositionally equal
when they are equivalent, we could discharge our current proof burden trivially by reflexiv-
ity. Unfortunately, while one can easily define setoids in Agda, there is not enough support
from the underlying type system to make reasoning about such an equivalence as easy as
with built-in equality.
• Going a step further into more advanced notions of equality, we arrive at homotopy type the-

ory [Univalent Foundations Program 2013], which tries to bridge the gap between reasoning
about isomorphic objects in informal pen-paper proofs and the way we achieve this in mech-
anized formal methods. Again, realizing practical systems with such an enriched theory is
a topic of current research [Cohen et al. 2016] and no mature implementation exists yet, so
we cannot integrate it with our current development in any pragmatic way.
• The crucial problems we have encountered so far are attributed to the non-deterministic

nature of BitML, which is actually inherent in any process calculus. Building upon this idea,
we plan to take a step back and investigate different reasoning techniques for a minimal
process calculus. Once we have an approach that is more suitable, we will incorporate it in
our full-blown BitML calculus. Current efforts are available on Github22.

For the time being, the complexity that arises from having the permutation proofs in the
premises of each and every one of the 18 rules, poses a significant burden to our development. As
a quick workaround, we can factor out the permutation relation in the reflexive transitive closure
of the step relation, which will eventually constitute our custom syntax for proving derivations,
inspired by equational reasoning:

data −→∗ : Configuration ads cs ds→ Configuration ads′ cs′ ds′ → Set where

□ :

(M : Configuration ads cs ds)

→ M −→∗ M

−→⟨ ⟩ : ∀ {L′ M M′ N }
→ (L : Configuration ads cs ds)
→ L′ −→ M′

22https://github.com/omelkonian/formal-process-calculus

44

https://github.com/omelkonian/formal-process-calculus

→ M −→∗ N
→ { : L ≈ L′ × M ≈ M′ }

→ L −→∗ N

begin : ∀ {M N }
→ M −→∗ N

→ M −→∗ N
begin x = x

The permutation relation is actually decidable, so we can always discharge the implicitly required
proof, similarly to the techniques described in Section 4.9.

5.4 Example: Timed-commitment Protocol
We are finally ready to see a more intuitive example of the timed-commitment protocol, where a
participant commits to revealing a valid secret a (e.g. ”qwerty”) to another participant, but loses
her deposit of B 1 if she does not meet a certain deadline t :

tc : Advertisement 1 [] [] (1 :: 0 :: [])

tc = ⟨ A ! 1 ∧ A # a ∧ B ! 0 ⟩ reveal [a]⇒ withdraw A ⊣ . . . ⊕ after t∶withdraw B

Below is one possible reduction in the bottom layer of our small-step semantics, demonstrating
the case where the participant actually meets the deadline:

tc-semantics : ⟨ A , 1 ⟩d −→∗ ⟨ A , 1 ⟩d | A∶a # 6

tc-semantics =
begin
⟨ A , 1 ⟩d

−→⟨ C-Advertise . . . ⟩
‘tc | ⟨ A , 1 ⟩d

−→⟨ C-AuthCommit . . . ⟩
‘tc | ⟨ A , 1 ⟩d | ⟨ A∶a # 6 ⟩ | A [♯▷ tc]
−→⟨ C-AuthInit . . . ⟩
‘tc | ⟨ A , 1 ⟩d | ⟨ A∶a # 6 ⟩ | A [♯▷ tc] | A [tc ▷s 0]

−→⟨ C-Init . . . ⟩
⟨ tc , 1 ⟩c | ⟨ A∶a # inj₁ 6 ⟩
−→⟨ C-AuthRev . . . ⟩
⟨ tc , 1 ⟩c | A∶a # 6
−→⟨ C-Control . . . ⟩
⟨ [reveal [a]⇒ withdraw A ⊣ . . .] , 1 ⟩c | A∶a # 6

45

−→⟨ C-PutRev . . . ⟩
⟨ [withdraw A] , 1 ⟩c | A∶a # 6
−→⟨ C-Withdraw . . . ⟩
⟨ A , 1 ⟩d | A∶a # 6

□

At first, A holds a deposit of B 1, as required by the contract’s precondition. Then, the contract
is advertised and the participants slowly provide the corresponding prerequisites (i.e. A commits
to a secret via C-AuthCommit and spends the required deposit via C-AuthInit, while B does not
do anything). After all pre-conditions have been satisfied, the contract is stipulated (rule C-Init)
and the secret is successfully revealed (rule C-AuthRev). Finally, the first branch is picked (rule
C-Control) and A retrieves her deposit back (rules C-PutRev and C-Withdraw).

We chose to omit the proofs required at the application of each inference rules (replaced with . . .
above), since these are tedious and mostly uninteresting. Moreover, we plan to develop decision
procedures for these proofs23 to automate this part of the proof development process.

5.5 Symbolic Model
The approach taken by BitML defines two models that describe participant interaction; the sym-
bolicmodel works on the abstract level of BitML contracts, while the computationalmodel is defined
at the level of concrete Bitcoin transactions.

In order to formalize the BitML’s symbolic model, we first notice that a constructed deriva-
tion witnesses one of many possible contract executions. In other words, derivations of our small-
step semantics model traces of the contract execution. Our symbolic model will provide a game-
theoretic view over those traces, where each participant has a certain strategy that selects moves
depending on the current trace of previous moves. Moves here should be understood just as emis-
sions of a label, i.e. application of a certain inference rule.

5.5.1 Labelled Step Relation

To that end, we associate a label to each inference rule and extend the original step relation to
additionally emit labels, hence defining a labelled transition system.

We first define the set of labels, which basically distinguish which rule was used, along with all
(non-proof) arguments that are required by the rule:

data Label : Set where

auth-join [, ↔] : Participant→ DepositIndex→ DepositIndex→ Label
join [↔] : DepositIndex→ DepositIndex→ Label

advertise [] : ∃Advertisement→ Label

auth-commit [, ,] : Participant→ ∃Advertisement→ List CommittedSecret→ Label

23 Most proofs of decidability are in the Agda standard library already, but there is still a lot of “plumbing” to be done.

46

auth-init [, ,] : Participant→ ∃Advertisement→ DepositIndex→ Label
init [] : ∃Advertisement→ Label

auth-control [, ▷b] : Participant→ (c : ∃Contracts)→ Index (proj₂ (proj₂ c))→ Label
control : Label
...

delay [] : Time→ Label

Notice how we existentially pack indexed types, so that Label remains simply-typed. This is es-
sential, as it would be tedious to manipulate indices when there is no need for them. Moreover,
some indices are now just N instead of Fin, losing the guarantee to remain well-scoped.

The step relationwill now emit the corresponding label for each rule. Below, we give the updated
kind signature and an example for the DEP-AuthJoin rule:

data −→⟦ ⟧ : Configuration ads cs ds
→ Label
→ Configuration ads′ cs′ ds′
→ Set where

...

DEP-AuthJoin :

⟨ A , v ⟩d | ⟨ A , v′ ⟩d | Γ
−→⟦ auth-join [A , 0 ↔ 1] ⟧
⟨ A , v ⟩d | ⟨ A , v′ ⟩d | A [0 ↔ 1] | Γ
...

Naturally, the reflexive transitive closure of the augmented step relation will now hold a se-
quence of labels as well:

data −→∗⟦ ⟧ : Configuration ads cs ds
→ List Label
→ Configuration ads′ cs′ ds′
→ Set where

□ :

(M : Configuration ads cs ds)

→ M −→∗⟦ [] ⟧ M

−→⟨ ⟩ : ∀ {L′ M M′ N }

47

→ (L : Configuration ads cs ds)
→ L′ −→⟦ a ⟧ M′
→ M −→∗⟦ as ⟧ N
→ { : L ≈ L′ × M ≈ M′ }

→ L −→∗⟦ a :: as ⟧ N

begin : ∀ {M N }
→ M −→∗⟦ as ⟧ N

→ M −→∗⟦ as ⟧ N

begin x = x

The timed variants of the step relation follow exactly the same procedure, so we do not repeat the
definitions here.

5.5.2 Traces

Values of type −→∗⟦ ⟧ model execution traces. Since the complex type indices of the step-
relation datatype is not as useful here, we define a simpler datatype of execution traces that is a
list of labelled transitions between (existentially-packed) timed configurations:

data Trace : Set where
∙ : ∃TimedConfiguration→ Trace

::⟦ ⟧ : ∃TimedConfiguration→ Label→ Trace→ Trace

Stripping. Strategies will make moves based on these traces, so we need a stripping operation
that traverses a configuration with its emitted labels and removes any sensitive information (i.e.
committed secrets):

stripCfg : Configuration′ p₁ p₂ p₃→ Configuration′ p₁ p₂ p₃
stripCfg⟨ p∶a # ⟩ = ⟨ p∶a # nothing ⟩
stripCfg (l | r ⊣ p) = stripCfg l | stripCfg r ⊣ p
stripCfg c = c

stripLabel : Label→ Label
stripLabel auth-commit [p , ad ,] = auth-commit [p , ad , []]
stripLabel a = a

∗ :Trace→ Trace
(. . . , Γ @ t) ∗ = (. . . , stripCfg Γ @ t)
(. . . , Γ @ t) ::⟦ α ⟧ ts = (. . . , stripCfg Γ @ t) ::⟦ stripLabel α ⟧ (ts ∗)

48

5.5.3 Strategies

Participant strategies are functions which, given the (stripped) trace so far, pick a set of possible
nextmoves for its participant.Thesemoves cannot be arbitrary; they have to satisfy several validity
conditions which we require as proof in the datatype definition itself.

Strategies are expected to be PPTIME algorithms, so as to have a certain computational bound
that guarantees secrets are sufficiently hard to guess by adversaries, etc. While recent research sug-
gests that it is possible to track complexity bounds in the type system [Danielsson 2008], working
on a resource-aware logic would make this much more difficult in search of tooling and infrastruc-
ture, thus we ignore this requirement and simply model strategies as regular functions.

Before we define the types of strategies, we give a convenient notation to extend a trace with
another (timed) transition, which essentially projects the last timed configuration out of a trace
and relates it to the second operand:

↣⟦ ⟧ : Trace→ Label→ ∃TimedConfiguration→ Set
R ↣⟦ α ⟧ (, , , tc′)

= proj₂ (proj₂ (proj₂ (lastCfg R))) −→⟦ α ⟧ tc′

Honest strategies. Each honest participant is modelled by a symbolic strategy that outputs a
set of possible next moves with respect to the current trace. These moves have to be valid, thus we
define honest strategies as a dependent record:

record HonestStrategy (A : Participant) : Set where
field

strategy : Trace→ List Label

valid : A ∈ Hon (1)
× (∀ R α→ α ∈ strategy (R ∗)→ (2)
∃[R′] (R ↣⟦ α ⟧ R′))

× (∀ R α→ α ∈ strategy (R ∗)→ (3)
Allₘ (≡ A) (authDecoration α))

× (∀ R ∆ ∆′ ad→ (4)
auth-commit [A , ad ,∆] ∈ strategy (R ∗)→
auth-commit [A , ad ,∆′] ∈ strategy (R ∗)→

∆ ≡ ∆′)
× (∀ R T′ α→ α ∈ strategy (R ∗)→ (5)
∃[α′] (R ↣⟦ α′ ⟧ T′)→
∃[R″] (T′ ::⟦ α ⟧ R ↣⟦ α ⟧ R″)→

α ∈ strategy ((T′ ::⟦ α ⟧ R) ∗))

49

Condition (1) restricts our participants to the honest subset24 and condition (2) requires that
chosenmoves are in accordance to the small-step semantics of BitML. Condition (3) states that one
cannot authorizemoves for other participants, condition (4) requires that the lengths of committed
secrets are coherent (i.e. no different lengths for the same secrets across moves) and condition (5)

dictates that decisions are consistent, such that moves that are not chosen will still be selected by
the strategy in a future run (if they remain valid).

All honest participants should be accompanied by such a strategy, so we pack all honest strate-
gies in one single datatype:

HonestStrategies : Set
HonestStrategies = ∀ {A } → A ∈ Hon→ HonestStrategy A

Adversary strategies. All dishonest participant will be modelled by a single adversary Adv,
whose strategy now additionally takes the moves chosen by the honest participants and makes
the final decision.

Naturally, the chosen move is subject to certain conditions and is again a dependent record:

record AdversarialStrategy (Adv : Participant) : Set where
field

strategy : Trace→ List (Participant × List Label)→ Label

valid : Adv < Hon (1)
× (∀ {B ad ∆ } → B < Hon→ α ≡ auth-commit [B , ad ,∆]→ (2)

α ≡ strategy (R ∗) [])
× ∀ {R : Trace } {moves : List (Participant × List Label) } → (3)

let α = strategy (R ∗) moves in
(∃[A]

(A ∈ Hon
× authDecoration α ≡ just A
× α ∈ concatMap proj₂ moves)

⊎ (authDecoration α ≡ nothing
× (∀ δ→ α . delay [δ])
× ∃[R′] (R ↣⟦ α ⟧ R′))

⊎ (∃[B]
((authDecoration α ≡ just B)
× (B < Hon)
× (∀ s→ α . auth-rev [B , s])
× ∃[R′] (R ↣⟦ α ⟧ R′)))

⊎ ∃[δ]
((α ≡ delay [δ])

24 Recall that Hon is non-empty, i.e. there is always at least one honest participant.

50

× All (λ {(, Λ)→ (Λ ≡ [])

⊎ Any (λ {delay [δ′]→ δ′ ≥δ; → ⊥}) Λ }) moves)
⊎ ∃[B]∃[s]

(α ≡ auth-rev [B , s]
× B < Hon
× ⟨ B∶s#nothing ⟩ ∈ (R ∗)
× ∃[R∗′]∃[∆]∃[ad]

(R∗′ ∈ prefixTraces (R ∗)
× strategy R∗′[] ≡ auth-commit [B , ad ,∆]

× (s , nothing) ∈ ∆)))

The first two conditions state that the adversary is not one of the honest participants and that
committing cannot depend on the honest moves, respectively. Condition (3) constraints the move
that is chosen by the adversary, such that one of the following conditions hold:

(1) The move was chosen out of the available honest moves.
(2) It is not a delay, nor does it require any authorization.
(3) It is authorized by a dishonest participant, but is not a secret-revealing move.
(4) It is a delay, but one that does not influence the time constraints of the honest participants.
(5) It reveals a secret from a dishonest participant, in which case there is valid commit (i.e. with

non-⊥ length) somewhere in the previous trace.

A complete set of strategies includes a strategy for each honest participant and a single adver-
sarial strategy:

Strategies : Set
Strategies = AdversarialStrategy × HonestStrategies

We can now describe how to proceed execution on the current trace, namely by retrieving
possible moves from all honest participants and giving control to the adversary to make the final
choice for a label:

runAdversary : Strategies→ Trace→ Label
runAdversary (S† , S) R = strategy S† (R ∗) (runHonestAll (R ∗) S)

where
runHonestAll : Trace→ List (Participant × List Label)→ HonestMoves
runHonestAll R S = mapWith ∈ Hon (λ {A } A ∈→ A , strategy (S A ∈) (R ∗))

Symbolic Conformance. Given a trace, we can formulate a notion of conformance of a trace
with respect to a set of strategies, namely when we transitioned from an initial configuration to
the current trace using only moves obtained by those strategies:

51

data -conforms-to- : Trace→ Strategies→ Set where

base : ∀ {Γ : Configuration ads cs ds } {SS : Strategies }
→ Initial Γ

→ (ads , cs , ds , Γ @ 0)∙ -conforms-to- SS

step : ∀ {R : Trace } {T′ : ∃TimedConfiguration } {SS : Strategies }
→ R-conforms-to-SS
→ R ↣⟦ runAdversary SS R ⟧ T′

→ (T′ ::⟦ runAdversary SS R ⟧ R) -conforms-to- SS

5.5.4 Meta-theoretical results

To increase confidence in our symbolic model, we proceed with the mechanization of two meta-
theoretical lemmas.

Stripping preserves semantics. The first one concerns the operation of stripping sensitive val-
ues out of a trace. If we exclude moves that reveal or commit secrets (i.e. rules AuthRefv and
AuthCommit), we can formally prove that stripping preserves the small-step semantics:

∗ − preserves-semantics :
(∀ A s → α . auth-rev [A , s])→
(∀ A ad ∆→ α . auth-commit [A , ad ,∆])

→ (∀ T′ → R ↣⟦ α ⟧ T′

→ R ∗↣⟦ α ⟧ T′ ∗)
× (∀ T′ → R ∗↣⟦ α ⟧ T′

→ ∃[T″] (R ↣⟦ α ⟧ T″) × (T′ ∗ ≡ T″ ∗)

The second part of the conclusion states that if we have a transition from a stripped state, then
there is an equivalent target state (modulo additional sensitive information) to which the un-
stripped state can transition.

Adversarial moves are always semantic. Lastly, it holds that all moves that can be chosen by
the adversary are admitted by the small-step semantics:

adversarial-move-is-semantic :
∃[T′] (R ↣⟦ runAdversary (S† , S) R ⟧ T′)

52

Theproofs have not been completely formalized yet, since there are a lot of cases to cover and our
“over-indexing” approach has proven difficult to work with. More specifically, as our type indices
get increasingly complicated, we get a lot of proof obligations at the usage sites of the indexed
datatypes, where the Agda compiler will encounter complicated equalities during normalization
(e.g. ys \ ([] \ ys) ≡ ys), which cannot be automatically solved. In these cases, we need to always
rewrite the goal manually until it reaches a point where statements become trivial.

A possible way of tackling this issue is factoring complex index dependencies out of datatype
constructors and requiring them as additional explicit proof arguments. For example, instead of
accumulating secrets in pre-condition expressions, we could do the following:

-- before
‘+ : Arith s l → Arith s r → Arith (s l ++ s r)

-- after
‘+ ⊣ : Arith s l → Arith s r → s ≡ s l ++ s r → Arith s

That way, we can get a hold of these proof requirements explicitly, instead of implicitly guiding
the Agda compiler through rewriting.

In retrospect, it might be worthwhile to take a step back and simplify indices across the whole
development. One such simplification would be to remove secrets as indices of expressions in
contract pre-conditions, but this would mean type-safety has to be sacrificed in the typing of put
commands. Another approach would be to follow the original BitML formulation and identify
resources with string identifiers, instead of the DeBruijn encoding we followed throughout our
work (via the use of Fin numbers). However, we do not recommend totally abandoning type-safety,
but rather move to a string-based representation where you extrinsically ensure that deposits in
configurations are well-scoped.

5.6 BitML Paper Fixes
It is expected in any mechanization of a substantial amount of theoretical work to encounter in-
consistencies in the pen-and-paper version, ranging from simple typographical mistakes and omis-
sions to fundamental design problems.This is certainly one of the primary selling points for formal
verification; corner cases that are difficult to find by testing or similar methods, can instead be dis-
covered with rigorous formal methods.

Our formal developmentwas no exception, sincewe encountered several issueswith the original
presentation, which led to the modifications presented below.

Inference Rules. Rule DEP-Join requires two symmetric invocations of the DEP-AuthJoin rule,
but it is unclear if this gives us anything meaningful. Instead, we choose to simplify the rule by
requiring just one authorization.

When rule C-AuthRev is presented in the original BitML paper, it seems to act on an atomic
configuration ⟨ A∶α#N ⟩. This renders the rule useless in any practical scenario, so we extend the
rule to include a surrounding context:

⟨ A∶s # just n ⟩ | Γ −→⟦ auth-rev [A , s] ⟧ A∶s # n | Γ

53

Small-step Derivations as Equational Reasoning. In Section 5.4, we saw an example deriva-
tion of our small-step semantics, given in an equational-reasoning style. This is possible, because
the involved rules follow a certain format.

Alas, rule C-Control includes another transition in its premises which results in the same state
Γ′ as the transition in the conclusion, resulting in a tree-like proof structure. which is arguably
inconvenient for textual presentation. This is problematic when we try to reason in an equational-
reasoning style using our multi-step relation −→∗ , since this branching will break our sequen-
tial way of presenting the proof step by step.

To avoid this issue, notice how we can “linearize” the proof structure by removing the premise
and replacing the target configuration of the conclusion with the source configuration of the re-
moved premise. Our version of C-Control in Section 5.2 reflects this important refactoring.

Conditions for Adversarial Strategies. Moves chosen by an adversarial strategy come in two
forms: labels and pairs (A , j) of an honest participant A with an index into his/her current moves.
However, this is unnecessary, since we can both cases uniformly using our Label type.

Semantics-preserving Stripping. The meta-theoretical lemma concerning stripping in the
original paper (Lemma 3) requires that the transition considered is not an application of the
Auth-Rev rule. It turns out this is not a strong enough guarantee, since the AuthCommit rule also
contains sensitive information, thus would not be preserved after stripping. We, therefore, fix the
statement in Lemma 3 to additionally require that α . A∶⟨ G ⟩C ,∆.

54

SECTION 6

Related Work

6.1 Static Analysis Tools
Bugs in smart contracts have led to significant financial losses (c.f. DAO attack), thus it is cru-
cial we can automatically detect them. Moreover, we must detect them statically, since contracts
become immutable once deployed. This is exceptionally hard though, due to the concurrent exe-
cution inherent in smart contracts, which is why most efforts so far have been on static analysis
techniques for particular classes of bugs.

MadMax. In Ethereum smart contracts, programs written or compiled to EVM bytecode, hold a
valuable resource called gas (c.f. Section 2.4). This amount puts a threshold on the number of com-
putational steps a contract can execute until it completes. Out-of-gas errors can lead to undefined
behaviour, that can be exploited by a malicious attacker.

MadMax is a scalable program analysis tool, that aims to statically detect such gas-related vulner-
abilities with very high precision [Grech et al. 2018].The techniques employed include control-flow
analysis and declarative logic programs that form queries about the program structure.

Effectively Callback Free (ECF) Analysis. A lot of security issues in Ethereum arise from the
use of callback functions in smart contracts. This abstraction poses a great deal of complexity on
understanding contract behaviour, since they break modular reasoning.

In Grossman et al. [2017], a class of effectively callback-free (ECF) programs is defined, where
such issues are not possible. Then, a program analysis tool is provided to verify such a property,
which can additionally be realized either statically or dynamically.

Verifying Liquidity in BitML Contracts. The BitML compiler that accompanies the original
paper [Bartoletti and Zunino 2018], written in Racket25, also provides a model checker to verify
liquidity of contracts written in its DSL; liquid contracts never freeze funds, i.e. making them
irredeemable by any participant26.

The crucial observation that makes verification possible, is that liquidity is a decidable property.
Model-checking is possible in a finite state space, derived from a finite variant of BitML’s infinite
semantics.

25https://github.com/bitml-lang/bitml-compiler
26 An example vulnerability occurred in the Ethereum Parity Wallet, which froze ~160M USD.

55

https://github.com/bitml-lang/bitml-compiler

6.2 Type-driven Approaches
Recently there has been increased demand for more rigid formal methods in the blockchain do-
main [Miller et al. 2018] and we believe the field would greatly benefit from a language-based,
type-driven approach [Sheard et al. 2010] alongside a mechanized meta-theory.

Scilla. One such example is Scilla, an intermediate language for smart contracts, with a for-
mal semantics based on communicating automata [Sergey et al. 2018]. Scilla, however, follows
an extrinsic approach to software verification: contracts are written in a simply-typed DSL embed-
ded in Coq [Barras et al. 1997] and dependent types are used to verify their safety and temporal
properties.

On the other hand, our work explores a new point in the design space, exploiting the dependent
type system of Agda [Norell 2008] to encode intrinsically-typed contracts, whose behaviour is
more predictable and easier to reason about. Nonetheless, this comes with the price of tedious type-
level manipulation, as witnessed throughout our formal development. Intricate datatype indices,
in particular, are notoriously difficult to get right and refactor in an iterative fashion.

Setzer’s Bitcoin Model. A formal model, which is very similar to our own formal model of
UTxO-based ledgers, is Setzer’s effort to model Bitcoin in Agda [Setzer 2018].

There, Setzer utilizes an extended form of Agda’s unique feature of induction-recursion; the types
of transactions and ledgers are mutually, inductively defined and, at the same time, the set of
unspent transaction outputs is recursively computed. This mitigates the need to carry proofs that
ascertain all lookups succeed and references have valid targets.

Alas, these advanced techniques create a significant gap between the pen-and-paper mathemat-
ical formulation and the corresponding mechanized model. This is the primary reason we chose
to have a simpler treatment of the basic types, treating the well-scopedness of lookups extrinsi-
cally (i.e. within the IsValidTx dependent record). Another reason for being skeptical to such a
statically-defined model is the difficulty to later extend it with dynamic operations, such as con-
tinuous change of the participant set.

56

SECTION 7

Future Work

In this section, we describe possible next steps for both our formalizations, namely the (extended)
UTxO model and the BitML calculus.

The majority of the suggestions are straightforward or completely orthogonal to our current
system, therefore we believe they can be incorporated in a relatively short-term period.

Most importantly, we give the ambitious vision of integrating our two objects of study, giving
rise to a certified compiler from BitML contracts to UTxO transactions; this will constitute a major
part of the author’s upcoming PhD studies.

7.1 Extended UTxO
7.1.1 Non-fungible Tokens

Although we have implemented and formalized support for user-issued cryptocurrencies, the
multi-currency infrastacture in the current development of Cardano also supports non-fungible
tokens (NFTs) [IOHK 2019a]. These tokens represent unique assets that are not interchangable (i.e.
fungible) and have already be used in crypto-gaming, where in-game assets are controlled by the
player instead of the game developer.

In order to accommodate NFTs, a very similar extension to the one employed for the initial
support for multiple currencies is needed. Specifically, again we have to generalize the Value type
from single-level maps from currency identifiers to quantities, to two-level maps that introduce an
intermediate level of tokens. In other words, a currency can hold items of a distinct identity (token),
which can in turn have a certain amount of supply (quantity).

As expected, the necessary refactoring is simple:

• Generalize from Map Hash N to Map Hash (Map Token N).
• Lift algebraic operations to the new representation point-wise, just like we did to initially

support multiple currencies.

An interesting side-effect of this way of implementing NFTs is the ability to investigate a whole
spectrum between fungible and non-fungible token currencies, e.g. when having more than one
distinct tokens.

7.1.2 Plutus Integration

In our current formalization of the extended UTxO model, scripts are immediately modelled by
their denotations (i.e. pure mathematical functions). This is not accurate, however, since scripts

57

are actually pieces of program text. However, there is current development by James Chapman of
IOHK to formalize the meta-theory of Plutus, Cardano’s scripting language27.

Since we mostly care about Plutus as a scripting language, it would be possible to replace the
denotations with actual Plutus Core source code and utilize the formalized meta-theory to acquire
the denotational semantics when needed. Arguably, this has certain benefits, such as providing
decidable equality for our scripts28 and, consequently, decidable equality for whole transactions
and ledgers.

7.1.3 Multi-signature Scheme

Another extension we deem worthy of being included in our eUTxO formalization, is the recent
proposal to support multi-signature transactions [Corduan and Güdemann 2019]. This extension
introduces a new validation scheme for transactions, where an unspent output can only be con-
sumed if a pre-defined set of digital signatures from different participants is provided.

The main changes involve adding a new witness type to the transactions, namely the set of
required signatures. Then, the validation mechanism enforces a check between the pre-defined set
of signatures and the required ones. A slight increase in the complexity of our formal framework is
necessary, but we, nevertheless, expect this extension to be more-or-less orthogonal to the existing
features.

7.2 BitML
7.2.1 Decision Procedures

The current proof development process of our BitML formal model is far from user-friendly; the
user has to supply inline proofs in copious amounts while using our dependently-typed definitions.
Thankfully, most of these can be proven decidable once and for all, and then a simple call to the
decision procedure would do the work.

As shown in Section 4.9, we could use Agda’s latest feature for tactic arguments to mitigate the
need for the user to provide any proofs, e.g. when writing contracts or small-step derivations.

7.2.2 Towards Completeness

Continuing our work on the formalization of the BitML paper [Bartoletti and Zunino 2018], there
is still a lot of theoretical ground to be covered:

• While we currently have the symbolic model and its meta-theory in place, there are still
various holes in the proofs; nothing major, but it is always a good idea to cover all corner
cases. Most of these holes correspond to insignificant proof obligations stemming from our
heavy indexing scheme, such as the list equalities arising from the uses of the composition
operator | for BitML configurations. However, a few remaining holes are not as trivial
and should be investigated for further confidence in the model, such as covering all possible
cases in the meta-theoretical proofs of BitML’s symbolic model in Section 5.5.4.

27https://github.com/input-output-hk/plutus-metatheory
28 Of course, two arbitrary Agda functions cannot be checked for equality.

58

https://github.com/input-output-hk/plutus-metatheory

• Another import task is to define the computational model; a counterpart of the symbolic
model augmented with pragmatic computational properties to more closely resemble the
low-level details of Bitcoin.
• When both symbolic and computational strategies have been formalized, we will be able to

finally prove the correctness of the BitML compiler, which translates high-level BitML con-
tracts to low-level standard Bitcoin transactions. The symbolic model concerns the input of
the compiler, while the computational one concerns the output. This endeavour will involve
implementing the actual translation and proving coherence between the symbolic and the
computational model. Proving coherence essentially requires providing a (weak) simulation
between the two models; each step in the symbolic part is matched by (multiple) steps in the
computational one.

7.3 UTxO-BitML Integration
So far we have investigated the two models under study separately, but it would be interesting to
see whether these can be intertwined in some way.

First, note that it is entirely possible to simulate the compilation scheme given in [Bartoletti and
Zunino 2018] with our eUTxO model, but now compiling to a more abstract notion of UTxO trans-
actions, rather than standard Bitcoin transactions. Nonetheless, we believe this would be overly
complicated for our purposes, since the extensions our eUTxO model supports can make things
much simpler. For instance, data scripts make it possible to simulate stateful, on-chain computation.
This is ideal for implementing a small-step interpreter, since our reduction semantics is defined as
a (labelled) transition system itself. In fact, this has already been successfully employed by Mar-
lowe, whose implementation of the small-step semantics of its financial contracts follows exactly
this stateful scheme via data scripts29.

One could argue that the original BitML-to-Bitcoin compiler is less useful than a compiler to
our eUTxO formal model, due to the latter being more abstract without consideration for ad-hoc
features of Bitcoin, thusmore amendable to easier reasoning and generallymore flexible.Therefore,
it might be worthwhile to skip the formalization of BitML’s computational model all together, and
instead focus on a BitML-to-eUTxO compiler instead.

A significant benefit of compiling down to our intrinsically-typed ledgers, is the guarantee that
we only ever get valid transactions. Alas, we need to have a similar operational semantics for
our eUTxO model to state a compilation correctness theorem. Fortunately, IOHK’s internal formal
methods team already has an up-to-date mathematical specification of small-step semantics for
Cardano ledgers [IOHK 2019c], upon which we can rely for a mechanical reduction semantics and
eventually a certified compiler.

Lastly, and it would be beneficial to review the different modelling techniques used across both
models, identifying their key strengths and witnesses. With this in mind, we could refactor crucial
parts of each model for the sake of elegance, clarity and ease of reasoning.

29https://github.com/input-output-hk/marlowe/blob/master/docs/tutorial-v2.0/marlowe-plutus.md

59

https://github.com/input-output-hk/marlowe/blob/master/docs/tutorial-v2.0/marlowe-plutus.md

7.4 BitML-Marlowe Comparison
Another possible research endeavour is a formal comparison between the BitML calculus and the
Marlowe DSL. In fact, this is already under investigation by the Marlowe team, as recent commits
on Github suggest30.

They both provide a high-level description of smart contracts and they both lend themselves to
an operational reduction semantics. Looking at the mere size of BitML’s inference rules, Marlowe’s
small-step semantics seems a lot simpler. Therefore, we believe it would be interesting to investi-
gate whether BitML’s formulation can be simplified, possibly taking inspiration by the language
constructs of Marlowe.

To this end, a formalization of Marlowe in Agda should be prototyped, followed by a mecha-
nization of its meta-theory. Then, a compilation correctness results would guarantee that any step
taken by Marlowe can be simulated by one or more steps in BitML’s semantics, essentially leading
to a full abstraction result; Marlowe exhibits the same behavioural properties as BitML, and we can
safely reason in its more abstract framework. If that is indeed the case, effort should be probably
better spent on the eUTxO-Marlowe integration, rather than eUTxO-BitML.

7.5 Featherweight Solidity
One of the posed research questions concerns the expressiveness of the extended UTxO model
with respect to Ethereum-like account-based ledgers.

Since Solidity is a fully-fledged programming language with lots of features (e.g. static typing,
inheritance, libraries, user-defined types), it makes sense to restrict our formal study to a compact
subset of Solidity that is easy to reason about. This is the approach also taken in Featherweight
Java [Igarashi et al. 2001]; a subset of Java that omits complex features such as reflection, in favour
of easier behavioural reasoning and a more formal investigation of its semantics. In a similar vein,
we will attempt to formalize a lightweight version of Solidity, which we will refer to as Feath-
erweight Solidity. Fortunately, there have already been recent efforts in F∗ to analyze and verify
Ethereum smart contracts, which already describe a simplified model of Solidity [Bhargavan et al.
2016].

As an initial step, one should try out different example contracts in Solidity and check whether
they can be transcribed to contracts appropriate for an extended UTxO ledger.

7.6 Proof Automation
Last but not least, our current dependently-typed approach to formalizing our models has led to
a significant proof burden, as evidenced by the complicated type signatures presented through-
out our formal development. This certainly makes the reasoning process quite tedious and time
consuming, so a reasonable task would be to implement automatic proof-search procedures using
Agdameta-programming [Kokke and Swierstra 2015].We have already done so for the validity con-
dition of UTxO ledgers (Section 4.4), but wish to also provide decision procedures for the ledgers
weakening and combining, as well as for significant proof obligations in the BitML model.

30https://github.com/input-output-hk/marlowe/blob/master/semantics-3.0/BItSem.hs

60

https://github.com/input-output-hk/marlowe/blob/master/semantics-3.0/BItSem.hs

SECTION 8

Conclusion

Our main contributions are the formalization of two existing mathematical models, namely the
abstract model for UTxO-based ledgers and the BitML calculus.

We start with an intrinsically-typed model of UTxO ledgers, as presented in the mathematical
formulation in [Zahnentferner 2018a]. Moreover, we further account for two extensions currently
used in the Cardano blockchain: data scripts to make more expressive transactional schemes pos-
sible and multi-currency support to allow multiple cryptocurrencies to coexist in the same ledger.
Having a formal framework at hand allows us to proceed with a more algebraic treatment of UTxO
ledgers, which we demonstrate with the introduction of two operations: weakening injects the ab-
stract type of the available address space to a larger type, while combining allows merging two
disjoint ledgers, automatically extracting a proof of validity for the resulting ledger from the ex-
isting proofs of the sub-ledgers. Finally, an example construction of a correct-by-definition ledger
is given, where no manual proof is necessary, since all proofs can be discharged with the decision
procedure for the validity conditions.

Our BitML formalization closely follows the original BitML paper [Bartoletti and Zunino 2018],
but we also impose a lot of type-level invariants, in order to have a more clear view of what consti-
tutes a well-formed contract. We carry this type-driven mentality over to the small-step semantics
of BitML contracts, where the type system keeps our inference rules in check. To showcase that
the proposed modelling of the semantics can accommodate ordinary proof methods, we give an
example derivation for the standard contract implementing the timed-commitment protocol. We
do not go as far as mechanizing the proposed translation from BitML contracts to Bitcoin trans-
actions, but rather restrain our formalization efforts to BitML’s symbolic model: a game-theoretic
reasoning framework for participant strategies, accompanied by mechanized meta-theoretical re-
sults that gives us more confidence for the model.

Apart from the individual formalization of our two objects of study, we also deem it worthy to
investigate on how to combine these two, envisioning a certified compiler from BitML contracts
to UTxO-based transactions with (extended) scripts. There, any attack scenario that we would
discover in BitML’s symbolic model, could be safely determined tomanifest in the UTxO semantics
as well.

While the original BitML paper gives a compiler from BitML contracts to standard Bitcoin trans-
actions, along with a compilation correctness proof, we believe that the abstract UTxO model
would be a more suitable target. Not only will the translation be more useful, since we abstract
away technicalities specific to Bitcoin and can accommodate other UTxO-based blockchains, but

61

also easier to implement and reason about, since the added expressivity arising from the extensions
will make the translation more straightforward.

Moving to a dependently-typed settings gives us a muchmore in-depth view on how everything
works, but there are also a lot of design decisions involved in the choice of datatypes andmodelling
approaches. Throughout the thesis, we have described and justified our own decisions, possibly
driven by the particular advantages and disadvantages of Agda. Nonetheless, there has also been
discussion on alternative ways to approach the modelling process, as well as thoughts for future
directions.

In addition to the mechanization of existing formulations, we sketch a research plan to ulti-
mately get our hands on a certified compiler from BitML contracts to UTxO transactions, where
we can reason in the BitML level and safely transfer the results to the actual behaviour in a UTxO-
based ledger.

Through our current mechanized results, we hope to have further motivated the use of language-
oriented, type-driven solutions to blockchain semantics in general, and the semantics of smart
contract behaviour in particular.

62

References

Thorsten Altenkirch, Thomas Anberrée, and Nuo Li. 2011. Definable quotients in type theory. Draft paper (2011), 48–49.
Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. 2014. Secure multiparty computa-

tions on bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium on. IEEE, 443–458.
Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre, Eduardo Gimenez, Hugo Herbe-

lin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. 1997. The Coq proof assistant reference manual: Version 6.1. Ph.D.
Dissertation. Inria.

Massimo Bartoletti and Roberto Zunino. 2018. BitML: a calculus for Bitcoin smart contracts. Technical Report. Cryptology
ePrint Archive, Report 2018/122.

Iddo Bentov and Ranjit Kumaresan. 2014. How to use bitcoin to design fair protocols. In International Cryptology Conference.
Springer, 421–439.

Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program development: Coq’Art: the calculus of induc-
tive constructions. Springer Science & Business Media.

Karthikeyan Bhargavan, AntoineDelignat-Lavaud, Cedric Fournet, AGollamudi, GGonthier, NKobeissi, A Rastogi, T Sibut-
Pinote, N Swamy, and S Zanella-Béguelin. 2016. Short paper: Formal verification of smart contracts. In Proceedings of the
11th ACM Workshop on Programming Languages and Analysis for Security (PLAS), in conjunction with ACM CCS. 91–96.

Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized application platform. white paper (2014).
Hao Chen, Xiongnan Newman Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu. 2016. Toward compositional verifi-

cation of interruptible OS kernels and device drivers. In ACM SIGPLAN Notices, Vol. 51. ACM, 431–447.
Koen Claessen and John Hughes. 2011. QuickCheck: a lightweight tool for random testing of Haskell programs. Acm

sigplan notices 46, 4 (2011), 53–64.
Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2016. Cubical Type Theory: a constructive interpreta-

tion of the univalence axiom. CoRR abs/1611.02108 (2016). arXiv:1611.02108 http://arxiv.org/abs/1611.02108
Jared Corduan andMatthias Güdemann. 2019. A Formal Specification of aMulti-Signature Scheme using Scripts. Retrieved

7/2019 from https://hydra.iohk.io/build/835279/download/2/multi-sig.pdf
Nils Anders Danielsson. 2008. Lightweight semiformal time complexity analysis for purely functional data structures. In

ACM SIGPLAN Notices, Vol. 43. ACM, 133–144.
Oded Goldreich, Silvio Micali, and Avi Wigderson. 1991. Proofs that yield nothing but their validity or all languages in NP

have zero-knowledge proof systems. Journal of the ACM (JACM) 38, 3 (1991), 690–728.
Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2013. A small scale reflection extension for the Coq system. Ph.D.

Dissertation. Inria Saclay Ile de France.
Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. Madmax:

Surviving out-of-gas conditions in ethereum smart contracts. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 116.

Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. 2017.
Online detection of effectively callback free objects with applications to smart contracts. Proceedings of the ACM on
Programming Languages 2, POPL (2017), 48.

Charles Antony Richard Hoare. 1978. Communicating sequential processes. In The origin of concurrent programming.
Springer, 413–443.

Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph Fasel, María M Guzmán, Kevin Ham-
mond, John Hughes, Thomas Johnsson, et al. 1992. Report on the programming language Haskell: a non-strict, purely
functional language version 1.2. ACM SigPlan notices 27, 5 (1992), 1–164.

63

http://arxiv.org/abs/1611.02108
http://arxiv.org/abs/1611.02108
https://hydra.iohk.io/build/835279/download/2/multi-sig.pdf

Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. 2001. Featherweight Java: a minimal core calculus for Java and GJ.
ACM Transactions on Programming Languages and Systems (TOPLAS) 23, 3 (2001), 396–450.

IOHK. 2019a. The Extended UTxOModel. Retrieved 2/2019 from https://github.com/input-output-hk/plutus/blob/master/
docs/extended-utxo/README.md

IOHK. 2019b. Multi-Currency. Retrieved 5/2019 from https://github.com/input-output-hk/plutus/blob/master/docs/multi-
currency/multi-currency.md

IOHK. 2019c. Small Step Semantics for Cardano. Retrieved 7/2019 from https://hydra.iohk.io/build/902242/download/1/
small-step-semantics.pdf

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A provably secure proof-of-
stake blockchain protocol. In Annual International Cryptology Conference. Springer, 357–388.

Wen Kokke and Wouter Swierstra. 2015. Auto in agda. In International Conference on Mathematics of Program Construction.
Springer, 276–301.

Per Martin-Löf and Giovanni Sambin. 1984. Intuitionistic type theory. Vol. 9. Bibliopolis Naples.
AndrewMiller, Zhicheng Cai, and Somesh Jha. 2018. Smart contracts and opportunities for formal methods. In International

Symposium on Leveraging Applications of Formal Methods. Springer, 280–299.
Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
Ulf Norell. 2008. Dependently typed programming in Agda. In International School on Advanced Functional Programming.

Springer, 230–266.
Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. 2000. Composing contracts: an adventure in financial engineering.

ACM SIG-PLAN Notices 35, 9 (2000), 280–292.
Meni Rosenfeld. 2012. Overview of colored coins. White paper, bitcoil. co. il 41 (2012).
Pablo Lamela Seijas and Simon Thompson. 2018. Marlowe: Financial contracts on blockchain. In International Symposium

on Leveraging Applications of Formal Methods. Springer, 356–375.
Pablo Lamela Seijas, Simon J Thompson, and Darryl McAdams. 2016. Scripting smart contracts for distributed ledger

technology. IACR Cryptology ePrint Archive 2016 (2016), 1156.
Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Scilla: a smart contract intermediate-level language. arXiv preprint

arXiv:1801.00687 (2018).
Anton Setzer. 2018. Modelling Bitcoin in Agda. arXiv preprint arXiv:1804.06398 (2018).
Tim Sheard, Aaron Stump, and Stephanie Weirich. 2010. Language-based verification will change the world. (2010).
Univalent Foundations Program. 2013. Homotopy type theory: Univalent foundations of mathematics. Univalent Founda-

tions.
Paul Van Der Walt and Wouter Swierstra. 2012. Engineering proof by reflection in Agda. In Symposium on Implementation

and Application of Functional Languages. Springer, 157–173.
Joachim Zahnentferner. 2018a. An Abstract Model of UTxO-based Cryptocurrencies with Scripts. IACR Cryptology ePrint

Archive 2018 (2018), 469.
Joachim Zahnentferner. 2018b. Chimeric Ledgers: Translating and Unifying UTXO-based and Account-based Cryptocur-

rencies. IACR Cryptology ePrint Archive 2018 (2018), 262.
Joachim Zahnentferner. 2019. Multi-Currency Ledgers. (2019), To Appear.

64

https://github.com/input-output-hk/plutus/blob/master/docs/extended-utxo/README.md
https://github.com/input-output-hk/plutus/blob/master/docs/extended-utxo/README.md
https://github.com/input-output-hk/plutus/blob/master/docs/multi-currency/multi-currency.md
https://github.com/input-output-hk/plutus/blob/master/docs/multi-currency/multi-currency.md
https://hydra.iohk.io/build/902242/download/1/small-step-semantics.pdf
https://hydra.iohk.io/build/902242/download/1/small-step-semantics.pdf

For the sake of brevity and clarity, we have omitted various technical details throughout the pre-
sentation of our formal development. We present those which we deem relevant in this Appendix.

SECTIONA

Generalized Variables

We use Agda’s recent capabilities for generalized variables, which allow one to declare variable
names of a certain type at the top-level and then omit their binding at the usage sites in type
definitions for clarity.

Below we give a complete set of all variables used throughout this thesis:

variable
-- General
ℓ : Level
A B C D : Set ℓ

-- UTxO
l l′ l″ : Ledger
tx : Tx
i : TxInput
i ∈ :i ∈ inputs tx

-- BitML
p A B : Participant
A₁ . . . AN : Participant
a₁ . . . aN : Secret
N₁ . . . NN : N ⊎ ⊥
v v′ : Value
vs vs c vs v vsp : List Value
ad : Advertisement v vs c vs v vsp

contract C D : List (Contract v vs)
i : Index C

ads ads′ ads″rads ads r rads r ads l rads l : AdvertisedContracts

65

cs cs′ cs″rcs cs r rcs r cs l rcs l : ActiveContracts
ds ds′ ds″rds ds r rds r ds l rds l : Deposits
Γ Γ₀ L M N : Configuration ads cs ds
Γ′ : Configuration ads′ cs′ ds′
Γ″ : Configuration ads″cs″ds″
t δ : Time

α : Label
αs : List Label
R R′ R″ : Trace
T T′ T″ : ∃TimedConfigurations
S : HonestStrategies
S† : AdversarialStrategy
SS : Strategies

66

SECTION B

List Utilities

B.1 Indexed Operations
When we lookup elements in a list, we use indices that are finite numbers less than the length of
the list:

open import Fin using (Fin , zero , suc)

Index : List A→ Set
Index = Fin ∘ length

indices : List A→ List N
indices = upTo ∘ length

!! : (vs : List A)→ Index vs→ A
(x ::) !! zero = x
(:: xs) !! (suc i) = xs !! i

delete : (vs : List A)→ Index vs→ List A
delete [] ()

delete (:: xs) zero = xs
delete (x :: vs) (suc f) = x :: delete vs f

!! := : (vs : List A)→ Index vs→ A→ List A
[] !! () :=

(:: xs) !! zero := y = y :: xs
(x :: xs) !! suc i := y = x :: (xs !! i⟨ y ⟩)

Also note the type-safe operations of lookup (!!), deletion (delete) and update (!! :=).

B.2 Set-like Interface
When calculating the set of unspent transaction outputs of a ledger in theUTxOmodel (Section 4.2),
we used set-theoretic operations, namely empty set ∅; set difference \ ; set union ∪ ; set
membership ∈ ; set cardinality| |. First, note that these require that we can decide (i.e. compute)

67

equality between elements of a set. We model this by encapsulating all set-related definitions in a
module parametrised by an abstract data type, which is however equipped with decidable equality:

module Data.Set’ {A : Set } (?
= : Decidable (≡ {A = A })) where

open import Data.List.Membership.DecPropositional ?
=

using (∈?)

renaming (∈ to ∈′)

?
=l : Decidable {A = List A } ≡

[]
?
=l [] = yes refl

[]
?
=l :: = no λ ()

::
?
=l [] = no λ ()

x :: xs ?
=l y :: ys with x ?

= y
... | no¬p = no λ { refl→ ¬p refl }
... | yes refl with xs ?

=l ys
... | no¬pp = no λ { refl→ ¬pp refl }
... | yes refl = yes refl

We now define a set as a list coupled with a proof that it does not contain duplicate elements:

open import Data.List.Relation ◦ Unary.Unique.Propositional {A } using (Unique)

record Set’ : Set where
constructor⟨ ⟩ ⊣
field list : List A

◦ uniq : Unique list

The implementation of the set-theoretic operations now has to preserve the proofs of unique-
ness:

∅ : Set’
∅ = ⟨ [] ⟩ ⊣ . . .

∈ : A→ Set’→ Set
o ∈ ⟨ os ⟩ ⊣ = o∈′os

∣ ∣ : Set’→ N
∣ ∣ = length ∘ list

68

\ : Set’→ Set’→ Set’
⟨ xs ⟩ ⊣ . . . \ ⟨ ys ⟩ ⊣ . . . = ⟨ filter (λ x→ ¬?(x ∈? ys)) xs ⟩ ⊣ . . .

∪ : Set’→ Set’→ Set’
x@(⟨ xs ⟩ ⊣ . . .) ∪ y@(⟨ ys ⟩ ⊣ . . .) = ⟨ xs++ list (y \ x) ⟩ ⊣ . . .

69

SECTION C

Decidable Equality

Our decision procedures always rely on the fact that we have decidable equality for the types
involved in the propositions under question (see Section 4.4). Here, we demonstrate how to decide
equality of the type of actions in the semantics of BitML, but a very similar procedure applies for
all other cases:

?
= : Decidable {A = Action p ads cs vs ds } ≡

(♯▷ ad) ?
= (♯▷ ◦ad) = yes refl

(♯▷ ad) ?
= (◦ad ▷s i) = no λ ()

(ad ▷s i) ?
= (♯▷ ◦ad) = no λ ()

(ad ▷s i) ?
= (◦ad TRIˢ i′) with i SET-fin. ?

= i′
... | no¬p = no λ { refl→ ¬p refl }
... | yes refl = yes refl

(c ▷b i) ?
= (◦c ▷b i′) with i SET-fin. ?

= i′
... | no¬p = no λ { refl→ ¬p refl }
... | yes refl = yes refl
...

∃ ?
= : Decidable {A = ∃Action } ≡

(p , ads , cs , vs , ds , a) ∃ ?
= (p′ , ads′ , cs′ , vs′ , ds′ , a′)

with p SET-participant. ?
= p′

... | no ¬p = no λ { refl→ ¬p refl }

... | yes refl

with ads SET-advert. ?
= ads′

... | no ¬p = no λ { refl→ ¬p refl }

... | yes refl

with cs SET-contract. ?
= cs′

... | no ¬p = no λ { refl→ ¬p refl }

70

... | yes refl

with vs SET-N. ?
= vs′

... | no ¬p = no λ { refl→ ¬p refl }

... | yes refl

with ds SET-deposit. ?
= ds′

... | no ¬p = no λ { refl→ ¬p refl }

... | yes refl

with a ?
= a′

... | no ¬p = no λ { refl→ ¬p refl }

... | yes refl = yes refl

We can then rightfully use the set-like operations, as described in Appendix B.2:

import Data.Set’ as SET

module SET-action = SET ∃ ?
=

Set⟨ Action ⟩ : Set
Set⟨ Action ⟩ = Set’

where open SET-action

71

	Contents
	1 Introduction
	2 Background
	2.1 Distributed Ledger Technology: Blockchain
	2.2 Smart Contracts
	2.3 UTxO-based: Bitcoin
	2.4 Account-based: Ethereum

	3 Methodology
	3.1 Scope
	3.2 Proof Mechanization
	3.3 Agda
	3.4 The IOHK approach
	3.5 Functional Programming Principles

	4 Formal Model I: Extended UTxO
	4.1 Transactions
	4.2 Unspent Τransaction Οutputs
	4.3 Validity of Τransactions
	4.4 Decision Procedure
	4.5 Weakening Lemma
	4.6 Combining
	4.7 Extension I: Data Scripts
	4.8 Extension II: Multi-currency
	4.9 Example: UTxO Ledger

	5 Formal Model II: BitML Calculus
	5.1 Contracts in BitML
	5.2 Small-step Semantics
	5.3 Reasoning Modulo Permutation
	5.4 Example: Timed-commitment Protocol
	5.5 Symbolic Model
	5.6 BitML Paper Fixes

	6 Related Work
	6.1 Static Analysis Tools
	6.2 Type-driven Approaches

	7 Future Work
	7.1 Extended UTxO
	7.2 BitML
	7.3 UTxO-BitML Integration
	7.4 BitML-Marlowe Comparison
	7.5 Featherweight Solidity
	7.6 Proof Automation

	8 Conclusion
	References
	A Generalized Variables
	B List Utilities
	B.1 Indexed Operations
	B.2 Set-like Interface

	C Decidable Equality

