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Abstract

With the effects of climate change becoming more and more ap-
parent in the form of drought, heavy rainfall and the melting of the
polar ice caps research into more efficient algorithms for fluid simula-
tion become more important. For cases such as heavy rainfall and the
melting of the polar ice caps it would be convenient to be able to use
real life laser scans of landscapes to predict what damage they will do
and where we need to take precautions.

The purpose of this thesis is to come up with a method to directly
use fluid simulation on point clouds. We do this to skip the expensive
reconstruction step which is normally done and simplify the collision
detection between the marker particles and object.

Our algorithm combines the MLS algorithm with a Eulerian fluid
simulation. For each grid point we compute the MLS values and use
these to determine how solid a grid cell is and keep the marker particles
from going into the point cloud.

Our experiments show that it is possible to directly perform fluid
simulation on point clouds using our method, but that the perfor-
mance of our algorithm is highly dependent on the type of scene and
the used parameters.
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List of Abbreviations

AHN Actueel Hoogtebetand Nederland
BVH Bounding Volume Hierarchy
GI Science Geographical Information Science
DEM Digital Elevation Model
SPH Smoothed Particle Hydrodynamics
MPS Moving Particle Semi-Implicit
AABB Axis-Aligned Bounding Box
MLS Moving Least Squares
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1 Introduction

With climate change causing more extreme weather conditions than ever, the
need to be prepared is becoming more prominent. This is especially true for
countries which are prone to catastrophic disasters such as floods, for which
the loss of life and property are preventable if the necessary precautions have
been made beforehand. In order to be prepared for such disasters it will be
beneficial if there exists a program that uses flood simulation to accurately
predict which parts will be flooded and where flood defenses need to be
raised, placed or, reinforced. This would especially benefit countries such as
The Netherlands and cities such as New Orleans.

While current flood simulations, such as [Ghazali and Kamsin, 2008],
manage to create realistic flood simulations, the scenes they use are sub-
optimal and limited. One of the reasons why current flood simulations are
problematic is that we need to use a geometric model for the area it covers,
mostly in the form of triangle meshes.

A reason why the usage of solid meshes is the leading method in flood
simulations is because flood simulations are derived from fluid simulations,
that are in turn developed for meshes or grids. Another reason is the amount
of research done with meshes. This makes it easier to find papers which have
already done something of value and relevance compared to other methods.

Using point clouds for flood simulations has a few advantages over meshes.
Normally the meshes used in such simulations are reconstructed from raw
point clouds, so by skipping this step we save on costly reconstruction time.
Furthermore, we avoid the artifacts created by the reconstruction that distort
the geometry. And finally, we use a simpler data structure that makes it
easier to create an efficient system for flood simulation. With real scans of a
city, it is then possible to use our simulations for real-life applications such
as flood prevention or damage estimation for a storm.

We propose a novel fast large-scale flood simulation algorithm that oper-
ates on huge point-cloud scenes. In order for our simulation to be interactive
we use fast collision detection methods for point clouds, multi-resolution
representations of point clouds, and develop methods to optimize the fluid
computations for point cloud scenes. The point clouds scenes we use are a
combination of landscapes, statues and self created objects. The landscapes
are obtained from the AHN database over at ahn.nl, the statues come from
the Stanford repository [Standford, 2014] and for the self created point clouds
we used Blender. The AHN database is a database that consists of areal scans
of The Netherlands divided into 31,25 km2 pieces. These scans have been
made by either a plane or helicopter equipped with a laser scanner. The
scans from the Stanford repository have been made in the same manner but
with a stationary and smaller laser scanner.
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To summarize, our main contributions are:

• Introducing a novel way of using point clouds as scenes for flood sim-
ulation.

• A highly parallelizable algorithm based on distance fields, for collision
checking between the liquid and the point cloud scenes.

2 Related Work

We explore the state-of-the-art research from two unrelated fields: flood sim-
ulation, and point cloud processing.

For the flood simulation part we are looking at state-of-the-art papers that
introduce methods to simulate floods. This also includes flood simulations
based on geographical data, such as height maps or sewer layouts.

For the point cloud part, we look at methods to scale down the amount
of points and methods for fast collision detection, which both contribute to
a real-time simulation.

2.1 Flood Simulation

When it comes to fluid simulations, there are two main approaches to simu-
late the fluid: Eulerian and Lagrangian. The first approach, Eulerian, tracks
the fluid flow at fixed points in a scene. You can compare this method to
standing on the ground and keeping track of the airplanes flying overhead.
This approach usually incorporates a grid to keep track of the flow. The
second approach, Lagrangian, tracks the fluid itself. This can be seen as
being in the cockpit of the aircraft and being able to see its speed and all
other variables, such as position. In order to represent the fluid this approach
usually uses particles.

These approaches work the same for flood simulation, since it is sub-
category of fluid simulations. Fluid simulation works on all kind of things
that can be modeled as a fluid, such as fire, gasses and liquid, while flood
simulations only work with liquids. This allows us to use simpler formulas,
neglecting temperature and state changes. Another difference is that fluid
simulations are usually small scale and thus have to account for viscosity.
Flood simulations don’t need a specific formula for viscosity since their im-
pact is dwarfed by errors in the simulation. Another advantage is that in
flood simulation we only perform the simulation on static scenes. This al-
lows us to drop the formulas for One-way and Two-way coupling, which are
used to model the influence of moving objects on the fluid and visa versa.
A disadvantage of flood simulation compared to fluid simulation is the scale.
For more approaches and a more detailed explanation on the basics of fluid
simulation we refer to [Bridson, 2015].
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As discussed before, both the Eulerian and the Lagrangian method can
be used in a flood simulation, but each approach has their advantages and
disadvantages when it comes to their usage in flood simulations. In the
following sections we research which approach or combination of approaches
works best for our application.

2.1.1 Particle-based simulation

There are two main approaches to particle-based flood simulation: Smoothed
Particle Hydrodynamics (SPH) [Monaghan, 1992] and Moving Particle Semi-
Implicit (MPS) [Koshizuka and Oka, 1996]. Both methods are similar, with
the main difference being that MPS is based upon a local averaging process
and SPH uses a kernel to smooth the results, which in turn gives SPH a
smoother water surface. This is usually why SPH is used more than MPS
when it comes to flood simulations, since we want a nice looking result in
the end. For a better and more in depth explanation we refer to the original
papers.

[Ghazali and Kamsin, 2008] uses SPH as a replacement for Water level
simulations. These simulations only change the height of the water for the
whole scene. By using SPH they get rid of the random puddles which form
in the water level simulation. In addition, they use a satellite photo and
a digital elevation model (DEM) created from LIDAR data to create their
model of the city Kuala Lumpur. However, they do not use the LIDAR data
(point clouds) directly, but rather have to reconstruct a mesh. This is costly
and could introduce errors in the model.

[Chládek and Durikovic, 2010] presents a SPH based flood simulation that
uses the distance to an object instead of the actual intersection to handle the
collision between water and the scene. By switching to this method they
increase their FPS by about 4 times, depending on the scene and time step.
This paper suggest that it is beneficial to look at collision methods such as
distance fields to increase the FPS, which is beneficial if you want to keep the
fluid simulation interactive. We will be looking at distance fields and other
collision detection methods in 2.2.2.

2.1.2 Grid-based simulation

The basic principle behind grid-based flood simulations is using a uniform
grid encompassing the region where the simulation is performed with the
same size as the scene in which you keep track of the flow of the fluid. This
isn’t very efficient since most of these grid cells could be empty or not change
state at all, as in change from solid to a fluid, visa versa or from fluid to air
and visa versa; consider the air above the water or the water at the bottom
of the ocean.
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[Irving et al., 2006] proposes a method that solves this to some degree.
Instead of using a uniform grid with uniform cells they introduce tall grid
cells, that can be seen as multiple uniform cells with the same values stacked
on top of each other. This allows for scheduling processing power around
areas of interest such as the edge of the water, or where it is in contact with
moving objects.

[Chentanez and Müller, 2011] further improves this idea by introducing
some constraints that reduce the complexity of the method of [Irving et al.,
2006], while retaining the flexibility of the method. They do this by allowing
only one tall cell per column and making sure it is the lowest water cell in
the column. This allows them to perform all the computations on the GPU,
which in turn gives them real-time performances in their simulations, which
is something that can be of use to our application.

2.1.3 Geographical-based simulation

There are flood simulation methods on real-life scenes, but they use alterna-
tive approaches. All following papers use geographical data to perform their
flood simulation.
[Shahapure et al., 2010] uses the Finite Element Method combined with a
overland flow model created from a Digital Elevation Model (DEM) of the
area. [Leandro et al., 2009] which is more focused on surface flows combined
with sewer layout. For a better overview of surface flow methods combined
with a map of a village we refer to [Hunter et al., 2008].

2.2 Point Clouds

Point clouds are becoming increasingly more popular as geometry representa-
tions due to advanced processing methods and widespread availability. This
is largely due to the developments in scanners and computers. Scanners are
getting cheaper, while they increase in precision and decrease in size. The
size decrease allows them to be mounted on vehicles such as airplanes, he-
licopters, and even vans. The increased precision allows for more accurate
and more meaningful simulations and other applications, such as digitizing
objects and buildings.

However, increased precision comes at the cost of increased amounts of
data. While this does give us highly detailed point clouds of large sceneries,
they are not usable in fluid simulations without some form of pre-processing
that reduces the amount of points and thus the amount of computations
the fluid simulation needs to do. These computations mostly consist of the
collision checks which need to be done between the fluid and all the points
of the point cloud. So when we want to use large point clouds, like the
landscapes scanned by AHN, we first need to scale them down or perform
some sort of pre-processing in order for them to be useful in our application,
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like they do in [Goswami et al., 2013] and [Klein and Zachmann, 2004]. In
order to select the best method or combination of methods we need to look
at the following methods: scaling down the amount of points through sub-
sampling, using spatial divisions to make processing of the points clearer and
more usable when it comes to fast interactions or multi-resolution methods,
like entropy-based reduction or k-clustering, to get the desired amount of
points, like in [Eckart et al., 2016].

However, none of the methods are perfect. For example when we sample
the point cloud we get decreased accuracy which makes it impossible to run
accurate simulations on the data, and when we use trees, like they use in
[Klein and Zachmann, 2004], our computation time for simple calculations
goes up. This in turn makes it harder to achieve an interactive application.
Note that using a tree does decrease the time needed to interact with the
point cloud, but thanks to the sheer amount of points in the tree, it still
takes to long for interactive usage. That’s why in most cases a combination
of the two gets used, with on each level of a tree a sampled representation
of the point cloud. This makes it possible to stop when we are spending too
much time on one pass through the tree and also return an usable result.

In the following sections we will go more into detail on which methods
are available and which are of use to us.

2.2.1 Scalability

As previously discussed there are two distinct ways to deal with massive
amounts of data: subsampling and the use of data structures such as trees.

When it comes to subsampling there are many different methods that
can be used, but not all of them are applicable to point clouds. In [Lee
et al., 2001] two such methods get explained and tested against some other
methods:

• Uniform grids: after creating a 2D uniform grid spanning the point
cloud they pick the median point to represent all points in the grid
square.

• Non-uniform grids: same principle as with the uniform grid except that
they take into account the amount of points, in order to prevent the
loss of corners and other details.

For a more detailed explanation and test results we refer to [Lee et al., 2001].
[Klein and Zachmann, 2004] proposes a method which combines multilevel

sampling with an octree. On each layer of the octree we have a few point and
a circle representing the original surface/point cloud. The lower we traverse
the octree the more precise the representation will be. This layered system
allows them to stop at any moment and generate an usable result. This is
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very useful when we are trying to create an interactive application, since we
can stop when have spend too much time checking for collisions.

In [Goswami et al., 2013], while mostly concerned with the rendering
of point clouds, they did test some interesting methods to sample a point
cloud. The methods they tested are normal deviation clustering, an Entropy-
based reduction, and a k-clustering algorithm. They tested each sample
method in combination with a multi-way Kd-tree, which uses the same idea
as [Klein and Zachmann, 2004]. That means that each level of the Kd-
tree has a different level of detail of the point cloud with the most detailed
representation in the bottom nodes.

[Oehler et al., 2011] tries to represent parts of the point clouds as planes.
They do this by creating an octree and for each level they extract the surface
normals which they then group and use to fit a plane with RANSAC. While
it does lower the processing time during each cycle because you cut away a
lot of points, it removes details from the scene.

In [Elseberg et al., 2011] and [Elseberg et al., 2013] they propose a method
that instead of compressing the point cloud, compresses the octree. However
they didn’t look at combining it with sampling the point cloud, but this can
of course be introduced to the already memory efficient octree. This will
make the octree use even less memory, since they now keep all points inside
the nodes. [Schnabel and Klein, 2006] works similarly but uses a prediction
method based on local surface approximations to compress the point cloud.

In [Eckart et al., 2016] they do something completely different than the
papers above. Instead of using a spatial division or a sampling method to
reduce the point cloud they use multiple Gaussian mixtures models, which
can be re-sampled to recreate an approximation of the point cloud. The main
advantages of these methods are: easy to generate multiple levels of detail
and the possibility to scale the point cloud without much loss of detail.

Combining the above methods with the knowledge that we will need a
tree for both the collision detection of the simulation and for scaling down the
points even more, it is smart to combine these two to save on pre-computing
times. The smart choice will then be the method proposed by [Klein and
Zachmann, 2004] or any of the other spatial division papers. Another benefit
this type of method adds is the possibility to stop traversing anywhere in the
tree and still return a result, which is beneficial for a interactive application.

2.2.2 Collision Detection

A major demand of our application is that it has to run in real-time. However,
when we have millions of points to check each frame, it will take a lot of time.
Points themselves have a fairly fast and easy method to check for collisions
which helps a bit, but we still need to take a look at collision detection
methods which are fast, parallelizable and work on point clouds.
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In [Figueiredo et al., 2010] they split the scene up in voxels and for each
object in a voxel they create an R-tree of Axis-Aligned Bounding Boxes
(AABB). This cuts down the amount of collision tests enormously. This
approach could be applied to our application since we might be able to com-
bine the AABB’s with the grid we use for the flood simulation. [Schauer and
Nüchter, 2014] instead opts to use a Kd-tree for the whole scene instead of
an R-tree for each separate voxel, which allows for parallel operations who
decrease the amount of time needed to test for collisions.

[Klein and Zachmann, 2004] combines a binary tree where each node
stores a sample of the point cloud and a sphere which represents the surface
of the object. This might work really well in our approach because it both
subsamples the point cloud and decreases the time needed for collision tests.

In [Fuhrmann et al., 2003] they propose to use distance fields as a reduc-
tion of points clouds. This comes down to each cell knowing how far away it
is from an object, to handle collision detection between deformable and rigid
objects. [Bender et al., 2014] takes this idea and applies it to point clouds
and combines it with a spatial octree to further decrease the amount of time
spent on collision tests. Using a distance field usually doesn’t make sense in
large scenes where things are moving, but because we have a static scene we
only need to create the distance field once.

3 Background

3.1 Fluid simulation

Each flood or fluid simulation, which simulates incompressible fluids, is gov-
erned by the Navier-Stokes equations. These equations are supposed to hold
all throughout the fluid and are written as followed:

∂~u

∂t
+ ~u · ∇~u+

1

ρ
∇p = ~g + v∇ · ∇~u, (1)

∇ · ~u = 0. (2)

Here the letter ~u stand for the velocity of the fluid, as in (u, v) or (u, v, w)
depending on whether the simulation is 2D or 3D. t stands for time. ρ
stands for density of the fluid, which is 1000 kg/m3 for water. p stands for
the pressure the fluid exerts per unit area. The letter ~g is the acceleration
due to outside forces. v stands for kinematic viscosity. However, as discussed
before we can drop this from the formula, giving us the Euler equations:

∂~u

∂t
+ ~u · ∇~u+

1

ρ
∇p = ~g (3)

∇ · ~u = 0. (4)
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These will be the formulas (3, 2) we are going to approximate in our flood
simulations. The Euler equation can be split in three parts:

• The material derivative (∂~u
∂t

+ ~u · ∇~u), which determines the flow as
result of the existing flow and the change in velocity at the current
location.

• The pressure gradient (1
ρ
∇p), which represents the flow as result from

the pressure in the fluid

• The external body forces (~g), which includes things such as gravity,
wind and forces coming from objects.

When we implement a fluid solver using the Eulerian equations, we split
them into three steps that are solved iteratively, and are individually easier
than the full equation:

• Advection: which calculates the movement of the fluid.

• Body Forces: which applies the external forces working on the fluid.

• Pressure: which makes sure the fluid stays incompressable and conse-
quently divergence free.

For a more detailed explanation of fluid simulations we refer to [Bridson,
2015].

3.2 Grids

In order to keep track of the values needed to solve these parts we use a
staggered grid denoted as Marker-and-Cell (MAC) grid [Bridson, 2015]. This
grid usually consist of uniform cells, which each keep track of the pressure in
the middle of a grid cell and the velocity on either mid-edges of the respective
axis (in 2D) or faces between cells (in 3D). When the scenes get too large
to initialize a grid that encapsulates the whole scene from the start we use a
sparse blocked grid, which dynamically adjusts its size to only accommodate
the current state of the fluid including a few buffer cells around it. For an
example of an 2D and 3D MAC grid cell we refer to Figures 1 and Figures 2.
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Figure 1: One cell from a 2D MAC grid

Figure 2: One cell from a 3D MAC grid

The tall cells from [Irving et al., 2006] and [Chentanez and Müller, 2011]
are fairly similar to the standard MAC grid cell, as you can see in Figure 3.
They store the velocities in the respective axis (in 2D) or faces between cells
(in 3D) and keep track of the pressure. The main difference is that a tall
cell is multiple uniform MAC cells tall and that the velocities and pressure
values get stored for two locations, namely at the top and bottom uniform
cells that the tall cell replaces. Interpolation can then be used to calculate
the values for the rest of the tall cell.
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Figure 3: Tall grid cell example from [Irving et al., 2006]

3.3 Point clouds

A point cloud is a collection of unordered points in 3D Euclidean space,
meaning each point has a x, y, and z coordinate relative to an origin. To-
gether these points can represent the surface of an object. Point clouds can
be created using laser scanners. Such a laser scanner takes measurements
at a constant interval, which can be adjusted for the scale of the object.
For example with small objects such as coins we want precise measurement
and thus have multiple measurements per cm2, but for surfaces such as ma-
rina’s, we only need capture the outline and thus capture with only a few
measurement per m2.

In order to interact with the point cloud we need a spatial division to cut
down the amount of points we need to check for operations such as collision
detection. A spatial division splits the points based on their location and
stores which point is on which side of the split in so called nodes. The
structure keeps splitting the points, while maintaining the previous nodes.
These subsequent splits get added to the structure as child nodes, to the
nodes above them in the structure. This gets done iteratively until some
criteria is met, this usually is the amount of points left in the node. When
it comes to spatial divisions for point clouds there are two data structures
which are the most common. They are the octree and the Kd-tree. These
structures both are recursive subdivisions of space, with the difference being
the amount of children each node has and how the subdivision of the point
cloud is done. An octree subdivides around the center point of the current
node to create eight child nodes, while a Kd-tree splits around an axis and
creates two child nodes.
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A distance field is a grid where each cell in the grid knows the shortest
distance from its location to the nearest cell with another property, which
in our case is a cell with a point from the point cloud in it. Normally each
time an object moves this grid needs to be recalculated. Because we use
the point cloud as a static scene we only need to calculate this grid once.
A distance field can be calculated using different distance measures, some
typical approaches are the Manhattan Distance and the Euclidean Distance.

4 Methology

Our method can be split up into two distinct parts, in one we do the pre-
computations needed for the fluid simulation, and in the other the fluid
simulation itself.

During our pre-computation part we take a point cloud with normals and
transform it into something on which we can do fluid simulation. For this
we want something which can simply tell us if we are inside or outside of
the point cloud, for this we use the MLS algorithm. The MLS is a function
which gives us values depending on how far from the point cloud or how far
inside the point cloud we are. The zero set of the MLS thus means that we
are on the edge of the point cloud. Furthermore we have chosen to think of
negative values as being inside the point cloud and positive values as outside.
More on this later in Section 4.1.

From these MLS values it is also possible to derive how solid each grid
cell is. We use this to more accurately simulate the fluid flow. How solid a
grid cell is will from now on will be referred to as the solid fraction of a grid
cell. A more detailed explanation follows in Section 4.2.

Now during the fluid simulation itself we will be using both the MLS
values and the solid fractions that we computed. First up, the solid fractions
get used in the pressure projection to determine the correct amount of fluid
flow through a grid cell and they get used to correctly determine how much
influence each neighbouring cell’s fluid values have on a grid cell. This will
be explained in more detail in Section 4.3.

The MLS values get used each frame to check if all marker particles ended
up in a correct location, meaning not inside of the point cloud. If a marker
particle did end up in the point cloud we use the MLS gain to determine its
last correct position. For more details we refer to Section 4.4.

All above sections combined give us a fluid simulation algorithm which
can use point clouds to represent the scene. Our method works for both 2D
and 3D, but we omit the explanation of the 2D part since this comes down
to dropping the z coordinate from the 3D simulation.
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We implemented our method in C++ using Visual Studio 2015 and used
the following libraries:

• Eigen: used for matrix calculations

• laszip: used for loading point cloud with *.las or *.laz extension

• opengl32: used for basic visualizing the fluid and the point clouds

• PolyVox: used for better looking visualization of the fluid

• SDL2: used for window and keyboard input handling

4.1 MLS computation

We compute the MLS using a version closely related to ”Interpolating and
Approximating Implicit Surfaces from Polygon Soup” [Shen et al., 2004].
Meaning for each grid point we try and fit a polynomial of degree N. The
mathematical notation for this polynomial can be found in Equation 5. Note
that we compute a separate polynomial for each grid point (q) and not one
for all the grid points.

f(x, y, z) =
∑

i,j,k≥0,i+j+k≤N

aijkx
iyjzk (5)

For 3D, the polynomial simplifies:

f(x, y, z) = a000+a100x+a010y+a001z+a110xy+a011yz+a200x
2+a020y

2+a002z
2

Before we start the calculation we need to know the following: For each
q we have a subset of points from the point cloud which are in range {pi}
and their corresponding normals {ni}. We also have a scalar parameter ε
which we set to the width of a grid cell. For each point in pi we create three
points, one which is the original point, one where we add the normal of that
point times ε to the original point and one where we substract the normal
time ε, we will call this collection {ci} from now on. These points will later
be used to fill in some matrices.

Now in order to solve this: we first create a vector a which holds our
unknown coefficients a000 to a002.

Secondly we create a vector d, which holds the ε for each of the point in
{ci}. So for the first three entries in the vector we will have the values 0, +ε
and -ε. This vector has the length of {pi} times three.

Next up we create the a matrix called C. For each point in {ci} we add
a row in which the values correspond to the x, y, z values in the polynomial,
so for point (2,3,4) we will have a row of (1, 2, 3, 4, 6, 12, 4, 9, 16).

Finally we create a diagonal matrix W with on the diagonal θ(|q − i|)
where θ is a weight function for which we took the Wendland weights function
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(Equation 6). For h we picked the value of (sr∗cs)2∗3, where sr is the search
radius for the MLS and cs is the cell size of a grid cell.

θ(r) = (1− r

h
)4(4

r

h
+ 1) (6)

We need to know all this, because what we are actually trying to do is
compute a polynomial line which best represents {pi}. This means finding
the parameters aijk which minimize the differences |f(cm) − dm|2. For this
we use the following system:

a = argmin(|
√

W(Ca− b)|2)

,
where:

a =


a000
a100
. . .
a002



d =


d0
d1
. . .
dm−1



C =


(x0)

0(y0)
0(z0)

0 (x0)
1(y0)

0(z0)
0 . . . (x0)

0(y0)
0(z0)

2

(x1)
0(y1)

0(z1)
0 (x1)

1(y1)
0(z1)

0 . . . (x1)
0(y1)

0(z1)
2

. . . . . . . . . . . .
(xm−1)

0(ym−1)
0(zm−1)

0 (xm−1)
1(ym−1)

0(zm−1)
0 . . . (xm−1)

0(ym−1)
0(zm−1)

2


W = diag[θ(|q− c0|), θ(|q− c1|), . . . , θ(|q− cm|)]

In order to solve this equation for a we turn it into Equation 7 which can
be solved using standard techniques which are used to solve Ax = b.

CTWCa = CTWd (7)

After we solved Equation 7 we then use the found coefficients of a to fill
in Equation 5. We then fill in this equation with the coordinates of the point
for which we calculated the polynomial to find the corresponding MLS value.
We repeat this until we went over all grid points. At the end we fill in the
MLS values for the outer walls, to prevent fluids from going in. We don’t
need to do any calculation since we make the outer walls one grid cell wide.
This gives us minus one grid cell width as MLS value for the outer most grid
points, zero for the second layer of grid points and plus one grid cell width
for the third layer of grid points.
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4.2 Solid fraction computation

To get more detail in our fluid simulation we use fractions to tell the fluid
simulation how solid a grid cell is, in this we differ from normal Eulerian
fluid simulations, which normally only deal in absolutes so either fully solid
or fully fluid.

We compute the solid fraction for each grid cell face, this way it can be
used to determine the flow in and out of a grid cell face. The solid fraction can
be calculated using the four MLS values of a grid cell face and a combination
of triangle occupancy (Equation 8) and trapezoid occupancy (Equation 9).

0.5 ∗ in ∗ in/((out1 − in) ∗ (out2 − in)) (8)

0.5 ∗ (−in1/(out1 − in1)− in2/(out2 − in2)) (9)

There are five scenarios when it comes to computing the solid fractions:

• All MLS values are positive, all corners are outside the object. This
gives us a solid fraction of 0.

• 3 MLS values are positive, one corner is inside the object. We calculate
this using triangle occupancy

• 2 MLS values adjacent are positive, two corners next to each other are
inside the object. Here we use trapezoid occupancy

• 2 MLS values opposed are positive, two corners opposite of each other
are inside the object. Here we use: triangle occupancy for one side and
triangle occupancy for the other side.

• 1 MLS value is positive, three corners are inside the object. This can
be calculated the opposite of before, so: 1 - triangle occupancy

• 0 MLS values are positive, meaning the whole grid cell is inside the
object. This gives us a solid fraction of 1.

So in the case of Figure 4, the trapezoid occupancy for Figure 4a becomes:

0.5 ∗ (−d11/(d21 − d11)− d12/(d22 − d12)),

and the triangle occupancy for Figure 4b becomes:

0.5 ∗ d11 ∗ d11/((d12 − d11) ∗ (d21 − d11)).
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Figure 4: Occupancy examples

4.3 Fluid simulation

For the fluid simulation part we made some changes to the original imple-
mentation which can be found in [Bridson, 2015]. We will be explaining the
whole fluid simulation algorithm, so both the parts which we left untouched
and the parts in which we made changes to make it work for point clouds.

To keep track of the variables in the fluid simulation, such as velocity and
pressure we use the following variables:

• array u, the fluid velocity for each face in the x-axis

• array v, the fluid velocity for each face in the y-axis

• array w, the fluid velocity for each face in the z-axis

• array p, the pressure in each grid cell

We start the simulation with a divergence free velocity field, meaning
there is no difference between flow in and flow out. So each previously men-
tioned array will start with all zero values.

Then for each step of the fluid simulation we first start with picking a
time-step. This can be done according to the velocities in the simulation
or by simply picking a constant time-step, which we did in our case. The
Constant time-step depends on the size of the scene and the point cloud used,
but in general we used a time-step of 0.01s.

After we picked a time-step we check if we have not yet reached the
maximum amount of marker particles, this is a limit we set ourselves. If
we have not reached the limit we spawn marker particles for each of the
sources we set at the start. Setting sources simply comes down to specifying
a location and velocity for each source. The velocity specifies at what speed
the fluid flows from that source.
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After we spawned the marker particles, we set each grid cell to one of
the following types: solid, fluid or air. The solids can be determined from
the solid fractions, as in when each face of a grid cell is completely solid the
whole cell is completely solid. The water cells get determined by the marker
particles, as in loop over all the marker particles and mark the grid cell they
are in as fluid. This leaves us with determining the air cells, which are all
the leftover grid cells.

4.3.1 Advection

The next step in the fluid simulation is advecting the velocity fields. We do
this using “forward” Euler going backward in time. The equation for this is
as follows:

~xP = ~xG −∆t~u(~xG),

where ~xG is the location where we start, ~u(~xG) the velocity at that location,
∆t the time-step of the current frame and ~xP the new location. In our
case ~xG corresponds to the center of a grid cell face, for which we know the
velocity by looking at either u, v or w depending on which velocity field we
are advecting. This however, is only the first part of the advection algorithm,
since we now only have a location in the grid.

The next step is to check if we did not end up inside a solid. For this
we use the MLS values. For ~xP we calculate its MLS value by interpolating
from the MLS grid. For this value we then check if it is positive or if it is
negative. If this value is positive we don’t have to do anything, but if it is
negative we need to find the last viable position along its trajectory during
this time step. We do this as following:

• First we determine the MLS value the particle had before we moved it.

• Then we use that value with the MLS value after moving to determine
how much of the distance we moved this time-step was inside of the
point cloud.

• We then multiply the distance we moved with this percentage to de-
termine how much we need to move the particle back in order for it to
be on the edge of the point cloud. This will then be its correct posi-
tion. To prevent it from getting stuck in the wall, we move the marker
particle a slightly more back than is necessary.

In Formula form this comes down Equation 10.

#     »new =
#              »
current+1.01∗displacement∗(MLS(

#              »
current)/MLS(

#            »

before)) (10)
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4.3.2 External forces

Now in order to get the fluid flowing we need to add the external forces which
work on the fluid. In our case this comes down to the forces of the sources
and gravity.

For the source forces this comes down to adding the velocity of the source
times the time-step to the faces of the grid cell in which the source resides.
For gravity it is simply adding the gravitational velocity (-9.81) times the
time-step to the y-faces of a grid cell, which is marked as fluid.

4.3.3 Pressure projection

The next step in the fluid simulation is the pressure projection, this part is
for making sure that after the advection and adding the external forces we
will have a divergence free velocity field again. In order to do this we will
need to create a system of Ax = b, the same method we used to compute the
MLS earlier. But before that we need to make sure that all the velocities in
the walls are set to zero. This comes down to looping over all solid grid cells
and setting the velocity of each face to zero.

Now that we have set the wall velocities, we can start making the A-
matrix and the b vector, which we call rhs (right-hand side)) from now on.
For the A-matrix each row represents a grid cell, but the row will only have
values in it if the grid cell is marked as fluid. The same goes for the rhs,
which will be as long as the total amount of grid cells.

The A-matrix gives us the influence our neighbours have on the current
cell and in the rhs we put the flow through a grid cell. These get computed
as follows:

The A-matrix is a large matrix which in both dimensions is the size of the
amount of grid cells. Now in order to fill in the values for one grid cell, we
check each of its direct neighbours. These values are than later mapped to
one row of the A-matrix. Note that we only fill in values for rows which are
marked as fluid, so we skip the grid cells which are air and solid. At max we
will have 7 different values for each grid cell in a row, 6 for its neighbours and
one for itself. The values for the neighbours depend on whether or not their
are solid, and if they are not solid if they are air or fluid. If they are solid
we leave their value at zero, if they are air or fluid we add scale ∗FF (index)
to our own value, where scale = ∆t/(ρ ∗ cellSize2) and FF is the fluid
fraction of the face between the grid cell and the neighbour for which we are
currently checking. If the neighbour is fluid we set its value in the current
row to -scale ∗ FF (index).
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The values for the rhs can be computed using the following equation:

-scale ∗ ((uFF (i+ 1, j, k) ∗ u(i+ 1, j, k))− uFF (i, j, k) ∗ u(i, j, k))+

(vFF (i, j + 1, k) ∗ v(i, j + 1, k)− vFF (i, j, k) ∗ v(i, j, k))+

(wFF (i, j, k + 1) ∗ w(i, j, k + 1)− wFF (i, j, k) ∗ w(i, j, k)))),

where scale = 1/cellSize and uFF stands for the fluid fraction in the x
direction. This is simply 1 − uSF where uSF is the solid fraction in the x
direction. Now that we have the A-matrix and the rhs we use the Conjugate
Gradient Solver from the Eigen library to get us the correct pressures. Even
though we now know what the pressure should be we still need to set the
velocities accordingly.

We do this by looping over each grid cell and setting each face according
to the following rules, note that for each grid cell we need to check each grid
cell face to set the correct velocity:

• First, we check if either of the grid cells bordering the current grid cell
face is marked as fluid. If none are marked as fluid we mark the velocity
for this face as unknown and we will compute its velocity later when
we extrapolate the known values.

• Second, if one is marked as fluid we check if the other one is marked as
a solid, if this is the case we set the face velocity to zero.

• And last, if the other is not marked as a solid we compute the velocity
of the face as follows (formula is for x-axis faces):

u(i, j, k) = u(i, j, k)− scale ∗ (p(i, j, k)− p(i− 1, j, k)),

where u is the velocity field in the x-axis, scale = ∆t/(ρ∗cellSize) and
p is the new pressure we got from the Conjugate Gradient solver.

Now that we have filled in the known velocity values we need to extrap-
olate these values in order to have correct values everywhere in the grid. We
did this in a simple breadth first manner, where we set the unknown velocity
to the known velocity. If the velocity could still not be set because it was for
example surrounded by solids we left its velocity at zero.

In order to make sure that the walls can still not be penetrated by water
we again set the velocities of grid cells in the wall to zero. Now that we have
the correct velocities everywhere we can move the marker particles, more on
this in the next Section 4.4.
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4.4 Solid collisions

The last part of our method where we differ from normal Eulerian fluid
simulation is how we handle collisions between marker particles and the point
cloud. This happens after we have done all the calculations for the fluid itself,
so after the advect and the pressure projection. Our method is as followed:

For each marker particle we calculate their velocity by interpolating from
u, v and w according to their position. We then add this velocity times the
time-step to its current position. Now in order to check if this is a correct
location, we use Equation 10 from Section 4.3.1.

5 Experiments and Results

The following experiments were performed on an i7 870 with 16 GB DDR3
RAM and a GTX 1060 6GB. For each experiment we use the following default
variable values, unless otherwise specified:

• Least amount of points needed to compute the MLS: 10

• Degree of MLS function: quadratic

• time-step for each step in the fluid simulation: 0.001s

5.1 Moving Least Squares search radius

5.1.1 Description

The purpose of this experiment is to show what impact the search radius for
the Moving Least Squares algorithm has on load times and errors. Errors
in this experiment are grid points which are wrongfully classified as either
inside or outside and will be pointed out through the usage of images. The
search radius is defined as follows: the radius of cubes around a given grid
vertex, from which we use the points to compute the MLS value. The base
case already searches with a radius of 1, because otherwise we won’t have
any grid cells from which we can take points to compute the MLS value.
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Figure 5: Dragon model

We perform this experiment on the dragon point-cloud from the Standford
3d scanning repository [Standford, 2014], consisting of 99869 points. The
model used to compute the point cloud can be seen in Figure 5. We have
chosen this model, because it has a lot of extruding parts, such as the spikes
on it’s head and tail. These are relevant because they could introduces errors,
when large search radii clip a small part of them.

As for the settings we gave the program a minimal grid resolution of 400
on the x-axis, which turned into a grid of 406 in the x-axis, 288 in the y-axis
and 185 in the z-axis. For the MLS algorithm we set the minimum required
points to 10, which is the least amount needed to compute a correct solution
according to the algorithm itself.

5.1.2 Results

In Table 1 we can see the final timings for the computation of the MLS. In
the search radius column we find in what range we looked for points. The
search radius scales from 0 being the base case of the 8 (2x2x2) grid cells
surrounding a grid point, to 4 looking in the surrounding 1000 (10x10x10)
grid cells. The computation part is how long it took for the algorithm to
compute all the MLS values, and the missing part of the total seconds comes
from our method to set the values where we could not compute them due to
no points or not enough points being in range.

In Figures6 through 10 we see 2 example slices of the MLS. Green means
that the MLS thinks it is outside the object, Black means we are near an
edge of and object and red means inside the object.
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Search Radius Total seconds (s) Computation part (s)
0 6.90 2.89
1 28.95 24.97
2 79.57 75.69
3 177.80 173.98
4 334.95 331.15

Table 1: Time measurements for the Search Radius experiment

Figure 6: Slices 50 and 65 from the MLS when we set a search radius 0

Figure 7: Slices 50 and 65 from the MLS when we set a search radius 1
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Figure 8: Slices 50 and 65 from the MLS when we set a search radius 2

Figure 9: Slices 50 and 65 from the MLS when we set a search radius 3
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Figure 10: Slices 50 and 65 from the MLS when we set a search radius 4

5.1.3 Conclusion

Concluding from the load times of the MLS in Table 1, we can clearly see
that the search radius has a big impact on it. The reason for this is because
the algorithm finds more points to use in the calculation of the MLS value,
which adds even more rows to the matrix which is used to compute the MLS
value.

While the algorithm takes longer, the reason why we do this is to increase
the band of known MLS values around the point cloud. This allows us to
take bigger time steps in the fluid simulation without the risk of marker
particles going through the point cloud. So taking a larger search radius has
the most benefits if you have a lot of thin or small point clouds, which could
get ignored by the marker particles if you also take a large time step. But in
general you also want to take a larger search radius if you want be able to
take larger time steps in the fluid simulation.

Note that the larger your search radius is the more chance you have to get
wrong values during your MLS computation. One wrong value on its own is
not that worrying, but combined with how we handle the missing values this
introduces larger errors. This happens if the MLS finds just enough points on
opposites of its search radius. These points could then contradict each other,
which creates a wrong MLS value. These wrong values in turn add wrong
behavior to the fluid simulation, because the marker particles are trying to
evade solids which do not exist.

Taking all this into account we decide on using a search radius of 2 for
the rest of our experiments, because this gives us the added benefit of having
a larger band of known MLS values around the points, without the errors we
get for a search radius of 3 and up. Your results might vary depending on
the method you use to deal with unknown MLS values.
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5.2 Effect of grid resolution on fluid simulation

5.2.1 Description

In this experiment we look at the impact of the grid resolution on the time
it takes to compute a frame and what impact the grid resolution has on the
result of the total fluid simulation.

For this scene we use a sphere (Figure 11) which consists of 1.2 million
points. We have placed this sphere at the center of the bottom plane, such
that no water could go underneath it. After the cell size is computed using
the grid resolution and the point cloud, we double the dimensions and move
the point cloud to the center of the floor of the new grid. We do this to have
room for fluid to spawn unhindered.

We spawn the fluid from the left and right side, and give it a small velocity
of 2.0 towards the center. As for the amount of fluid we continuously spawn
fluid from the left and right wall for the first 25 frames.

Figure 11: Sphere model
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In this experiment we measure the following timings:

1) MLS computation time (cMLS)

2) Average total time used for one frame (frameT)

3) Average time the draw functions took (drawT)

4) Average total time of the simulation computation (fluidCStep)

5) Average time the advection took (advect)

6) Average total time the pressure projection took (peTotal)

7) Average time the pressure solve took (peSolve)

8) Average time the pressure application took (peApply)

9) Average time the extrapolation of the velocities took (velEP)

10) Average time it took for all particles to get moved (movePa)

We do this for the grid resolutions (gridRes) 10, 25, 50, 75 and 100. In
order to keep all the simulations at the same scale we scale the amount of
grid cells which spawn fluid with the grid resolution. This makes it so that
we have the same amount of visual fluid at each grid resolution.

5.2.2 Results

In Table 2 we can see the timings of our grid resolution experiment. The
words in the top row of the table correspond to the list below the table. In
Figure 12 we can see the visual impact of the grid resolution on the fluid.

gridRes cMLS frameT drawT fluidCStep advect peTotal peSolve peApply velEP movePa
10 202.143 107 16 105 3 61 52 0 7 40
25 174.270 1.521 16 1.499 56 1.230 1.140 13 73 230
50 149.838 25.428 18 25.269 364 24.106 23.854 85 145 1.345
75 96.393 104.349 20 103.813 781 101.058 100.387 137 468 4.394

100 86.504 238.038 16 238.031 1.563 231.519 229.990 315 1.078 10.518

Table 2: Grid Resolution timings in ms
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(a) 10 (b) 25

(c) 50 (d) 75 (e) 100

Figure 12: The 50th frame for each tested grid resolution

5.2.3 Conclusion

When we look at the first column in Table 2, which corresponds to the
computation or load time of the MLS we can see that increasing the grid
resolution does the opposite with load time compared to increasing the search
radius. This happens because when we increase the grid resolution we also
decrease the raw range of the MLS search radius, which makes it so that the
MLS uses less points per computation the higher the grid resolution is.

However the opposite can be said about the time it takes to compute one
frame. As can be seen in column 2 from Table 2 none of the grid resolutions
manages 30 frames per seconds, since in order for this to happen we need
frame times of around 33.3 ms. The highest frame rate we got is around 9
fps in this experiment.

The largest amount of time for each frame is spend in computing the next
step for the fluid simulation, as can be seen in column 4. If we then look
at what takes the most time in this computation, we arrive at the pressure
projection (column 6). We can then further split this timing until we finally
arrive in column 7, the pressure solve itself. The main reason why this step
takes so long is, because it is trying to solve a enormous matrix multiplication.
This matrix is 7 times the amount of fluid cells big, because we need to know
the new pressure for each fluid cell.

These huge frame times are largely due to the pressure projection needing
to do a lot of processing, as seen in column 7. The second biggest bottle neck
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is our method to check if each particle is still in a correct place according
to the MLS. This also isn’t that unusual because of the increased amount of
fluid we also have an increased amount of marker particles.

So far increasing the grid resolution has mostly led to negative effects on
the fluid simulation, but the main reason why one would increase the grid
resolution is to create a more detailed fluid simulation, as can be seen in Fig-
ure 12. There we see that increasing the grid resolution gives us more detail
in the fluid, especially in the areas around the object. While lower resolutions
do look more smoother in the general areas, this is due to the marching cube
algorithm we used for the visualization. The detail is more noticeable in the
way the water wraps around the sphere in the higher resolution images.

5.3 Point Cloud Density

5.3.1 Description

In this experiment we look at the impact of the density of a point cloud on
the accuracy of MLS and thus the whole simulation. For this experiment we
use the Stanford bunny (Figure 13) from the Standford 3D scanning repos-
itory [Standford, 2014] sampled for different densities. These are computed
using Cloud Compare’s ([Girardeau-Montaut, 2019]) density sampling, which
means given a density value, Cloud Compare will sample the object in or-
der to give us a point cloud of x amount of points, which correspond to the
specified density.

We used this function with values ranging between 10000 and 100000000.
We chose these values, because the used bunny object is very small and Cloud
Compare takes X amount of points from the surface of the object depend-
ing on the size of the object and the density sample value. The resulting
amount of points for each sample value can be found in Table 3. For the
Grid resolution we use 25, because this turned out to be the best combina-
tion from the Grid Resolution experiment (Section 5.2) for detail combined
with performance.
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Figure 13: Stanford Bunny model

Density value Actual amount of points
10000 572
100000 5706
1000000 56937
10000000 571297
100000000 5712910

Table 3: Density values used and their resulting amount of points in the
point cloud

For this experiment we are interested in the time the MLS takes to com-
pute and how consistent, meaning no holes and following the shape of the
object, the MLS is. We test the former using a timing and the lather through
looking at slices of the MLS.

5.3.2 Results

In Table 4 and Graph 14 we can see how long the MLS took to compute.
In Figure 15 we can see the solid marked grid cells for their corresponding
densities. We have chosen the back side because here we could clearly see the
holes which exist when the density of a point cloud is too low. Furthermore
there are videos in which we can see fluid flowing towards the bunny and
sometimes penetrate the point cloud due to the holes.
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Amount of points MLS computation time (ms)
572 196

5706 605
56937 5291

571297 86576
5712910 948862

Table 4: time to compute the MLS
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Figure 14: amount of points versus MLS computation time
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(a) 572 points (b) 5706 points

(c) 56937 points (d) 571297 points

(e) 5712910 points

Figure 15: Solid grid cells according to the MLS for different density values

5.3.3 Conclusion

For Table 4 we see the same trend as the previous two experiments, the
higher the amount of points we have in range of grid vertex the longer the
MLS takes to compute. But since the previous experiments did already go
into this, we will mostly focus on the resulting MLS and the behavior of the
fluid in this experiment.

In Figure 15 we see the grid cells, which are fully solid according the MLS.
What quickly becomes clear is that especially the lower density bunnies show
signs of holes in their structure. This is best visible Figure 15a, where we
can quite easily look through the model. We see the results of these holes in
the videos which rotate the scenes to show the underside and thus the water
which seeped through the holes.

Another thing which happened specifically in Figure 15a is that the fluid
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went flying out of the scene, and thus not allowing us to capture that specific
simulation. For the other density values we did capture the first 50 frames
of the fluid simulation. From these video’s we can conclude the same as
with the grid resolution experiment: the higher the density the higher the
detail we can achieve. This is not only because we have more points, but
also because we can increase the grid resolution without creating holes.

5.4 Random Noise

5.4.1 Description

In order to test how noise resilient the MLS is, we create a UV sphere in
Blender with 100 segments and 100 rings. To this object we add noise using
Blenders randomize option in the tools tab. We did this for: 0.005, 0.01,
0.015 and 0.02, these objects can be seen in Figure 16. We then used Cloud
Compare to create points clouds of around 1000000 points from these object.

For this experiment we use a grid resolution of 200, because we want to
see what kind of impact noise has on the MLS grid and this can only be
visualized with a high grid size. The results for this experiment will consist
of images of the MLS and videos showing the fluid simulation.

(a) 0.00 (b) 0.005

(c) 0.01 (d) 0.015 (e) 0.02

Figure 16: Models of the spheres which are used in this experiment. The
values underneath the sub-figures are the values used in the randomize option
of Blender
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5.4.2 Results

In Figure 17 we can see the MLS values of the middle slice of the MLS grid
(index 200), where green is what the grid knows is outside the grid and red
is what the grid knows is inside the grid. The green inside the sphere is
because the MLS values don’t get extrapolated. This is to prevent large
errors from forming from the small rounding errors, which can be seen in all
noise experiments excluding the zero noise case.

(a) 0.00 (b) 0.005

(c) 0.01 (d) 0.015

(e) 0.02

Figure 17: The middle MLS slices for each noise value
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5.4.3 Conclusion

As can be seen from Figure 16 we can see that MLS is not 100% noise proof.
In Figure 17b, the one with the lowest noise value, we can see some errors
forming at the top of the sphere. But despite this, we can still see that it is
the section of a sphere. Another reason why noise is not a big problem in our
case is because of their low quantity. Most high resolution, and thus preferred
point clouds have thousands or millions of points, so a few points created by
noise wont have that much of an impact on the total fluid simulation. And
if the point cloud does not have a lot of points we probably don’t want to
use them anyway as we explained in the previous experiment.

5.5 Use Cases

5.5.1 Description

In this experiment we try out our method for different kind of models, to
show that it can handle all types of point clouds, such as landscapes, cities
and statues. Especially the landscapes and cities are interesting because if
it produces accurate results, that means it could be used in practical cases
such as floods. We also do a simple comparison scene in which we compare
a cube point cloud with a cube object. This cube object is recreated from
the point cloud by setting each grid cell which has a point in it to solid.

In Figure 18 we can see the aerial photo of the landscape, the statue
model and the cube model.

• The landscape scene is created from data of AHN [AHN, 2018], which
we cut up into pieces to be more manageable. Amount of points:
8067295.

• The Lucy statue comes from the Standford 3D scanning repository
[Standford, 2014], which is the same place we took the bunny and
dragon model from. Amount of points: 999454.

• The cube model is just a basic 2 by 2 by 2 cube made with blender.
We recreate the normal method by setting each grid cell with a point
to solid. Amount of points: 1000000.

For each scene we set the MLS search radius to two so we can safely set a
time-step of 0.01s. This gives us more movement in each frame, without the
particles ending up in the solids. The fluid in the scenes are configured as
follows: in the landscape scene the water comes from the left, in the statue
scene from above and in both cube scenes from left and right.

For this experiment we will report the grid resolution, which depends on
the scene and how much detail we want to preserve. We also report the same
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timings from Section 2 for each scene so we can show how feasible to run
these scenes are.

(a) aerial photo

(b) Lucy statue

(c) cube

Figure 18: Models used as examples for the different use cases

5.5.2 Results

In Table 5 we can see the timings for each scene, the column headers corre-
spond to the list in Figure 19. The reason why the last value in the cMLS
column is missing is because we did not do any MLS computation for the
reconstructed object. In Figure 20 and Figure 21 we can see the fluid flow
from the landscape and statue scene. Figure 22 shows the results from the
comparison between our method and the method which uses the recreated
object.

scene cMLS frameT drawT fluidCStep advect peTotal peSolve peApply velEP movePa
Landscape 725.301 5.572 14 5.549 175 5.196 5.052 29 108 260

Statue 176.769 427 16 416 8 306 268 3 33 106
Cube 214.152 4.196 18 4.110 114 3.549 3.420 25 96 508

Cube Obj - 5.160 17 5.078 140 4.602 4.470 28 98 431

Table 5: The timings in ms for each of the experiments
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• cMLS: MLS computation time

• frameT: average total time used for one frame

• drawT: average time the draw functions took

• fluidCStep: average total time of the simulation computation

• advect: average time the advection took

• peTotal: average total time the pressure projection took

• peSolve: average time the pressure solve took

• peApply: average time the pressure application took

• velEP: average time the extrapolation of the velocities took

• movePa: average time it took to move all particles

Figure 19: Table 5 column explanation

scene x y z
Landscape 134 20 164
Statue 40 70 27
Cube 70 70 71
Reconstructed object 70 70 71

Table 6: Grid dimensions for each scene

(a) frame 50 (b) frame 124 (c) frame 225

Figure 20: Fluid flow on the landscape scene
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(a) frame 50 (b) frame 128 (c) frame 225

Figure 21: Fluid flow around the Lucy statue

(a) MLS (b) Recreated object

Figure 22: Comparison between the fluid flow on the MLS and on the recre-
ated object.
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5.5.3 Conclusion

When we look at the flow of water over the landscape scene in Figure 20,
we see that the fluid does interact quite realistic with it. This shows by how
far the fluid is in each frame, the more towards the start the fluid is the
more building it met on its way. Of course it is not 100% detailed, but for
predicting what will flood first it is already quite usable. As for frame rate
it is not really interactive (30 fps), with a average fps of 0.18.

The Statue scene has a better fps of 2.3, which is mostly due to it’s lower
grid dimensions, as can be seen in Table 6. It does however also show the
downside of having better fps, mainly the lack of details, which makes fluid
get stuck behind some of the extruding parts of the statue.

In the comparison scene we see some small differences, but the most
noticeable is that the scene with the recreated cube has a higher fluid level
on the sides. This is linked to the water not being able to stick to the object
on some locations, which happens because this scene only uses fully solid
or fully empty cells. The MLS scene solves this by using partial cells for
increased accuracy and detail.

6 Discussion

First we are going to summarize the conclusions of this thesis, after which
we will explain the points on which to improve in the Future Work section.

6.1 Conclusion

The motivation behind this thesis is that there are no known methods of
directly dealing with points clouds in fluid simulations. The reason why we
would want to directly interact with point clouds in fluid simulations is so
we skip the expensive step of recreating an object from a point cloud and the
added benefit of having a simpler data structure since we are only dealing
with points and not al kinds of shapes and objects. Therefore we created our
own method.

Our method combines the MLS algorithm with Eulerian fluid simulations.
We do this by calculating the MLS for each grid point of the fluid grid. We
then use these values to determine how solid each face of a grid cell is using
triangle and trapezoidal occupancy. We then use these values in the pressure
projection to determine the flow of the fluid. We also used the MLS values
to determine if the marker particles ended up inside the point cloud after
the got moved and if the ended up inside the point cloud we used a linear
interpolation between their start MLS value and end MLS value to place
them at the edge of the point cloud.
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While our method does become very robust if the density of the point
cloud is high enough and we do have a lot of noise resistance the more points
we use, we did notice during our experiments that our method has no general
optimal setting for each type of scene. For example when we looked at the
detail aspect of our method, it becomes very slow if we need a lot of detail,
which is due to our MLS grid being the same resolution as the fluid grid
and vice versa. Luckily our MLS grid does not always has to have a large
resolution, because thanks to the usage of solids fractions it will preserve
most of the shape of the points cloud at lower resolutions. This is mostly
useful for when we want a fast fluid simulation.

So in summary, it is possible to create real time fluid simulations on point
clouds, but it needs a lot of fine tuning for each scene to make it perfect and
there are some mayor points on which we could improve our method.

6.2 Future Work

The first mayor improvement would be to port the algorithm to the GPU and
have better multi-threading, but this holds for fluid simulation algorithms in
general. Future research continuing or attempting something in the direction
of this research should first and foremost look how the MLS is present in the
scene and how to optimize the MLS computation.

As for the way the MLS is present in the scene we could have looked at
disconnecting the MLS grid from the fluid grid. This way we could have a
higher resolution for the MLS while maintaining the larger cells for the fluid
simulation, so it can run in real-time. Another benefit to this method is that
you can have multiple resolution for the MLS at the same time, so you can
combine the precision of the MLS with faster lookup for the MLS values in
areas where detail does not matter. A good example would be the open sea
in front of a light house with rocks. Near the rocks and the lighthouse we
want the details, but in the open ocean we don’t need that precision. The
final benefit from this method will be that it is trivial to add moving point
clouds to the scene, since we only need to move the MLS values. This is
easier to do in this method compared to our method, because the MLS is not
tightly coupled to the fluid grid. The same goes for adding multiple point
clouds to the scene.
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