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Abstract

We describe a practical situation in which the application of forecasting models could lead
to energy efficiency and decreased risk in water level management. The practical challenge of
forecasting water levels in the next 24 hours and the available data are provided by a dutch
regional water authority. We formalized the problem as conditional forecasting of hydrologi-
cal time series: the resulting models can be used for real-life scenario evaluation and decision
support. We propose the novel Encoder/Decoder with Exogenous Variables RNN (ED-RNN)
architecture for conditional forecasting with RNNs, and contrast its performance with various
other time series forecasting models. We show that the performance of the ED-RNN archi-
tecture is comparable to the best performing alternative model (a feedforward ANN for direct
forecasting), and more accurately captures short-term fluctuations in the water heights.
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1 Introduction

In the Netherlands, water is all around us: knowing how to manage this water is key to sustaining
our way of life. New technologies and an exponential increase in the amount of data available
generate new possibilities in the field of hydrology. Accurate forecasts of weather, water levels and
flow rates allow water boards (Waterschappen) to limit risk of flooding, drought damage and energy
waste. Water boards are regional government bodies responsible for water quality, water levels and
safety.

From this practice, the relevance of accurate conditional forecasts of time series data becomes
especially clear. Conditional forecasts are a useful means of evaluating the impact of a hypothetical
scenario. The goal is to predict the variables of interest conditioned on an assumed future path of
one or more other variables in the system. These forecasts can be used to guide the decision making
process by comparing various scenarios.

Artificial Neural Network (ANN) models have become very popular in forecasting water level
time series. They provide a good alternative to the traditional time series models (such as vector
autoregressive (VAR) models) because ANNs do not assume linear dependencies. Recurrent Neural
Networks (RNNs) were specifically designed to process sequential data, allowing for the model to
retain short-term and long-term memory of the input series, thereby improving the performance of
traditional feedforward ANNs on many machine learning tasks. Despite their great potential, the
application of RNNs to conditional time series forecasting has not been extensively studied in the
literature.

The method we propose in this thesis is to use an Encoder/Decoder RNN architecture to generate
conditional forecasts of time series data. Our approach distinguishes itself by considering the future
path of the variables we conditioned on in the decoding step. It can therefore be characterized as
an Encoder/Decoder RNN with Exogenous Variables. The resulting architecture is very flexible and
can be used to model many real-world time series. In our experiments, we compare the performance
of the ED-RNN with various other popular forecasting models in a conditional forecasting scenario.
This forecasting problem, as well as the dataset of hydrological variables that is used for training
and testing, is provided by the Waterschap Zuiderzeeland.

The rest of this thesis is structured as follows. First, we present relevant literature regarding
hydrological time series forecasting. We then provide a more in-depth description of the forecasting
problem, traditional time series analysis and RNN modelling of time series. Lastly, we detail our
methodology and the results of our experiments and discuss their implications for the field.
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2 Related Work

2.1 Hydrological Models

Traditionally, using domain experts to construct hydrological models is how most of the research
in water resource systems was performed. These models usually consist of various pre-defined
formulas describing the relations between observable variables. Available data is used to tune the
parameters of these formulas. Studies showed that levels [39] [47], flow dynamics [34] and quality
[17] of surface water could be effectively modelled with this approach. However, a comparative
study of such models for ground water levels was conducted by Konikow and Bredehoeft [29]. In
each case, they showed, it was impossible to scientifically verify and validate such models, and
argued that calibration procedures generate non-unique solutions with limited predictive accuracy.

2.2 Noordoostpolder

Extensive research into the geographical region of interest (the Noordoostpolder in Flevoland, The
Netherlands) has been conducted in 2006 [46]. In their evaluation study, hydrologists from the
FutureWater agency studied the optimal influx of water to the region. This influx was evaluated
for each of the sub-regions in the polder for typical normal, wet and dry years. Additionally, a
damage assessment was made in the case of a complete halt of influx, and an influx threshold was
determined to guarantee certain quality norms. This was done by constructing several hydrological
models that relied heavily on expert knowledge and human data analysis. The researchers showed
that there was no historical relation between rainfall and manual water influx from other regions.
This was an unexpected result, as it would indicate a waste of precipitation water. The researchers
concluded that the current influx management in the region is required only for drought protection
and water quality, as opposed to a broader selection of goals that was previously determined.

2.3 Hydrological Time Series Forecasting

In this section, we will describe a more analytic approach to modelling hydrological systems, based
on statistical methods. Hydrological data is often a sequence of measurements over time, and
can thus be characterized as a time series. Time series data is always highly correlated, as each
measurement is dependent on a single variable: time [7]. This type of data is well-studied for
several purposes, such as the prediction of the future based on knowledge of the past, and to
create an understanding of the system underlying the measurements [5]. Besides being a time
series, water system data is often multivariate, as there are many observable features which are
all potentially relevant. This results in complex relations within the measurement sequences, such
as short-term and long-term dependencies between variables, as well as seasonality. Granger [14]
describes several possible ways in which multiple time series can be related (co-integrated ) and the
serious implications this has for the choice of modelling them.

For this study we will focus on the literature concerning time series forecasting. Modelling
methods based on linear regression [35] can be used for forecasting hydrological time series. The
challenge when using these types of models is taking the strong temporal correlation into account.
This approach has been well-studied in the development of Auto Regressive (AR) models [18],
which fit a linear equation of previous measurements to predict the next value. Important for these
models is the lag parameter p, which specifies how many time steps from the past are used in the
equation, thereby restricting the complexity of the model. Extensions of the AR model involve
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adding moving averages, external regressors, analyzing differences and including trend and seasonal
components [25]. Additionally, the AR model is the special case of the Vector Auto Regressive
(VAR) model [28], which is suited for multivariate instead of univariate time series. Early studies
[49] [18] concluded that traditional VAR models are however unable to learn both short- and long-
term dependencies between variables in a single model. Still, like the AR model, VAR models can
easily be extended to include additional information, trend and seasonal components, as well as a
specific lag structure per variable, resulting in a Structured VAR (SVAR) model.

A special case of forecasting multivariate time series is conditional forecasting. Conditional
forecasts are a useful means of evaluating the impact of hypothetical scenarios. The goal is to
predict the variables of interest conditioned on an assumed path of one or more other variables in
the system [31]. For VAR models, conditional forecasts for independent variables are generated by
adding them as external regressors to the model. Conditional forecasts for dependent variables are
typically computed using the algorithm developed by Waggoner and Zha [44].

Epskamp et al. [12] have shown that the parameters of various VAR models can be used to
create a graphical representation of linear dependencies within a system very effectively. These
relations are categorized as contemporaneous, temporal and between-subject dependencies and are
presented as network structures, which can be used for exploratory analysis. In our case, the
between-subject dependencies are irrelevant, as they concern different time series for ’subjects’,
such as questionnaires filled in by different people.

A limitation that remains is that VAR models assume linear dependence over time, as well as
linear dependence between the variables. The linear temporal dependence is not guaranteed for
hydrological time series. Additionally, water systems often contain non-linear dependencies among
the variables, as shown by Heuvelmans et al. [22].

2.4 Machine Learning

In time series forecasting, an important focus is creating insight into the system underlying a series of
measurements. Studies in the last two decades have drawn attention to machine learning methods,
which are slightly different in their focus. These models can be characterized as non-parametric
and data-driven [33]. Their main goal is to improve on a prediction task. This is accomplished
by using only historical data to learn and utilize stochastic dependencies in the underlying system.
The field combines knowledge from both computing science and statistics, leading to a wide variety
of models and specifications. Common challenges in machine learning solutions include a lack of
labeled data, missing or imbalanced data [37] and limited interpretability of the model [43].

2.5 Artificial Neural Networks

Artificial Neural Network (ANN) models have become very popular in predicting water levels based
purely on historical data. The advantages of the ANN model are that it creates a nonlinear input-
output mapping, making it suitable for the estimation of complex systems, and that it derives it’s
parameters purely from historical data [38]. An important challenge in using a traditional ANN for
time series modelling is that it processes each time step separately. Therefore, the information on
the temporal correlation is not readily used by the model.

A comparative study of ANN models for groundwater level prediction was conducted by Yoon
et al. [48]. Their solution to modelling the time series was to lag the input variables, i.e. adding
additional features containing measurements from the past. The correlation of observations over
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time is therefore turned into a correlation between features within a single observation, which can
be modelled using machine learning. This method is the most straightforward, and often involves
an autocorrelation analysis to determine the time period over which measurements are delayed.

An ANN was also used by Tiwari et al. [42] to develop a model for accurate hourly flood
prediction in an Indian river basin up to 10 hours in advance. Instead of lagging the variables, the
authors decomposed every input period as a weighted combination of wavelet functions, effectively
moving the input space from the time domain to the frequency domain. This method is similar
to performing a Fourier Transform on the input space of the ANN, and was first proposed and
applied by Wang et al. [45]. This same method was successfully applied by Anctil and Tape
[1] for rainfall-runoff forecasting by decomposing into short, intermediate and long wavelet period
sub-series.

Recurrent Neural Networks (RNNs) were specifically designed to process sequential data, by
considering network output of previous time steps in later iterations [13]. The difficult task of
learning both short-term and long-term dependencies without losing efficiency is a well-studied
problem, resulting in specialized model architectures. Examples of this are Gated RNN models
such as the LSTM [24] and the GRU [9]. These allow for the incorporation of different timescales
and informative missing values into the model architecture to achieve better predictive results [8].
Various RNN architectures were compared and successfully applied by Groenen [15] for seasonality
extraction, residual learning and accurate prediction of wastewater inflow at municipal wastewater
treatment plants. However, a comparative study by Bontsema [6] on wastewater effluent quality
showed that regression trees and traditional feature construction might outperform LSTMs for
multivariate time series.

2.6 Recursive and Direct Forecasting

There are generally two approaches to forecasting multiple subsequent observations of a time series.
A recursive forecasting (sometimes also called iterative forecasting) model repeatedly generates a
prediction for a single period ahead, using a fixed window of past observations and predictions
of past observations if their actual values are unknown. A direct forecasting model generates a
prediction multiple time steps ahead that is independent of the observations in between.

Traditionally, statistical time series models such as the VAR model generate only recursive fore-
casts. They can however be modified to produce forecasts for multiple time steps ahead. McCracken
et al. [31] detail how VAR models can be used for both direct and recursive forecasting. They then
empirically compare the two methods for conditional forecasting and conclude that the recursive
method often yields better results than the direct method, especially for longer forecasting periods.

There have been many studies aimed at determining the difference in forecasting performance
when generating recursive or direct forecasts using ANNs. Hill et al. [23] compared the quality
of VAR forecasts, recursive ANN forecasts and direct ANN forecasts for the ’well-known’ 111 M-
competition data. They showed that the performance of the ANN using the recursive forecasting
methodology was superior. On the other hand, Mishra et al. [32] showed that in forecasting
drought index time series using ANNs, the direct method is superior when predicting more than 2
periods into the future. They argued that this is due to the accumulation of errors when a recursive
forecast is generated. In a comparative study by Hamzaçebi et al. [19] it was shown for 6 different
time series experiments that direct forecasting using ANNs yields significantly better results than
recursive forecasting.
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3 Problem Description

This section first describes the water management system in the Noordoostpolder. Information from
earlier studies in the region, as well as expert knowledge, is presented here. We then present the
research question and describe the problems and challenges that we expect, as well as the available
data.

3.1 Region of Interest

The Noordoostpolder is the northern section of the Dutch province Flevoland. It has a total land
surface of about 460 km2 and an average land altitude of about 5 meters below sea level (NAP).
This low altitude is a result of Flevolands history: the entire region is a result of the drainage of
the Zuiderzee between 1936 and 1942.

The water management system in the Noordoostpolder is governed by employees of the Water-
schap Zuiderzeeland. Their job is to manage the influx and efflux of water into the region, and
distribution of water to the local farmers. The influx of water is required to counteract drought dam-
age, to supply livestock and greenhouse cultivation, to ensure water quality and the management
of nature reserves [46].

Along the borders of the Noordoostpolder, there are 12 locations where water is let into the
system using syphons (’hevels’) and intakes. An important characteristic of the Noordoostpolder
is it’s low altitude (-5m NAP), resulting in continuous groundwater seepage (’kwel’) from the
higher surrounding regions. Therefore, even when all intakes are closed, the water levels in the
Noordoostpolder will rise. This water is distributed along the various ditches to accommodate the
water demand of the local farmers. Water then flows to one of the 3 major channels, from where
it is pumped out by 3 large water pumping stations (’gemalen’). These are operated manually
by employees of the Waterschap Zuiderzeeland, according to a standard procedure and various
protocols for dry and wet scenarios.

Hydrologist at Waterschap Zuiderzeeland made an assessment of vital locations in the region
based on connectivity, distance, flow directions and the way the water system is managed. These
are shown in Figure 1. Points A, B and C are the large water pumping stations. Blue lines are
the major water channels leading to them. Points 2 (Marknessebrug), 4 (Marknessersluis) and 6
are locations of low altitude at the center of the water management system. These locations are
therefore indicative of the general water height of the Noordoostpolder. They are also positioned
in large channels, which results in less extreme water level fluctuations and trends. Locations 1, 3
and 5 are positioned upstream: measurements at these points are indicative of impoundment and
may predict fluctuations at downstream locations ahead of time.
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Figure 1: Vital measurement locations in the water management system of the Noordoostpolder

3.2 Research Question

The aim of the Waterschap Zuiderzeeland is to reduce the amount of water that is wasted in the
Noordoostpolder. Water is pumped out of the system as a precautionary measure when rainfall
is expected, to prevent flooding. However, pumping out more water than is required in a given
scenario is problematic: if the water levels are too low, the water demand as described in Section
3.1 can not be met. In such cases, an influx of water from nearby regions is required, and the efflux
of water is considered waste.

The goal of this study is to provide the water managers at the Waterschap Zuiderzeeland more
insight into the possible effects of expected rainfall and drainage given the current state of the
Noordoostpolder. Our expectation is that an accurate prediction of how the water management
system in the Noordoostpolder will behave in certain situations will lead to a more efficient use of
the water resources. The research question of this study is as follows:

How can we use machine learning to predict the fluctuations in surface water levels in the
Noordoostpolder under the influence of precipitation and water management actions?

For further specificity, we have divided the research question into two sub questions:

1. How can we use statistical methods for time series forecasting, such as vector autoregression
(VAR) models, to generate a conditional forecast of the surface water levels?

2. How can we generate a more accurate conditional forecast using machine learning models,
specifically, using (recurrent) neural networks?

In answering these questions, we restrict ourselves to predicting the surface water level fluctuations
at locations 2, 3 and 5 in Figure 1. Location 2 is chosen because it is very indicative of the central
water height in the Noordoostpolder, and therefore a prediction of it’s value is very useful. Locations
3 and 5 are more difficult to predict due to their higher variability, while still providing relevant
information about water height trends in the polder. The following section describes the available
data of the water management system in the Noordoostpolder, and concludes with our research
hypothesis based on this data.
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3.3 Conditional Forecasting

The Waterschap Zuiderzeeland is not merely interested in a prediction of waterheight fluctuations
in the next x hours. Rather, they wish to use this prediction to guide their management decision
making process. Therefore, it is required that they are able to contrast certain scenario’s and
compare forecasts, to be able to take better action. That is why the focus in our research question
is partially on the influence of precipitation and water management actions. The predictions we
generate can be characterized as conditional forecasts, which are well-studied in the literature. For
each of our modelling choices, we will describe in detail how these conditional forecasts can be
generated.

3.4 Data Assessment

A significant amount of data is being recorded at locations in the Noordoostpolder describing the
local characteristics of the water management system. We distinguish the following types of mea-
surements: height of surface water or ground water, volumetric flow rate, evaporation, and weather
data. Weather data is recorded at a KNMI weather station [26] in Marknesse, and includes mea-
surements of wind speed and wind direction, precipitation and sun exposure. For this study, we
are only interested in values of sensors that are currently still operative: locations without mea-
surements in 2018 were filtered out. For each type, the number of distinct measurement locations
in the Noordoostpolder, as well as the sampling frequency, is indicated below.

• Surface water height: 189 locations, 15 minute measurements

• Ground water height: 58 locations, hourly measurements

• Flow rate: 38 locations, 15 minute measurements

• Evaporation: 104 locations, daily measurements

• Weather: 1 location, hourly measurements

Surface water level measurements, as well as flow rates for the large pumping stations, are available
for each of the vital points described in Figure 1. Additionally, ground water level measurements
are available for locations near the center of the Noordoostpolder. Evaporation data was extracted
from satellite images, which were aggregated over various geographical regions to provide meaningful
minimal, maximal and average data per subregion. Almost all of these measurement series contain
continuous data from at least 2015 until 2018.

We introduce our own shorthand notation to be able to efficiently reference measurement lo-
cations in our dataset. Table 1 below contains the names for some of the most relevant and most
often used locations, together with the official identifier used by the Waterschap Zuiderzeeland and
an indication of it’s location in Figure 1.
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Name Identifier Type Location
WH2 NOP.PM4810.LT1 Surface water 2
WH3 MP6002 Surface water 3
WH5 NOP.ST4775.LT3 Surface water 5
GW1 21BN.093.01 Ground water near C
GW2 15HN.018.01 Ground water between 1 and A
FR2000 NOP.2000 TOT Flow rate A
FR2100 NOP.2100 TOT Flow rate C
FR2200 NOP.2200 TOT Flow rate B
MWSP KNMI Marknesse Precipitation near 4

Table 1: Shorthand names introduced to reference important locations in this work, along with
their official identifier defined by Waterschap Zuiderzeeland, type of measurement recorded at the
location, and an indication of it’s position in the Noordoostpolder in Figure 1

We test the level data (ground and surface water) for stationarity and cointegration, since these
are relevant properties for the time series modelling approach that we intend to use. Stationarity
implies that statistical properties of the data do not vary over time. Many hypothesis tests for
stationarity have been developed in the past, and we evaluate them on the most important surface
and ground water level series. We report here first of all the results of the augmented Dickey-Fuller
(ADF) and Phillips-Perron (PP) tests [7]. Their null-hypothesis is that the time series has a unit
root, which is equivalent to non-stationarity. It is believed that these tests have a bias towards
stationarity when the data contains structural breaks (i.e., changes in trend). Additionally, it is
possible for a series to have no unit root while also being non-stationary. We also report the results
of the Kwiatkowski-Philips-Schmidt-Shin (KPSS) [7] and the Priestley-Subba Rao (PSR) tests [36].
Their null-hypothesis is that the time series is (trend-)stationary. This is tested by checking if in
the presence of a shock, the process converges back to some (growing) mean.

ADF PP KPSS PSR
WH2 0.01 0.01 0.01 0
WH3 0.01 0.01 0.01 0
WH5 0.01 0.01 0.01 0
GW1 0.01 0.01 0.01 0
GW2 0.01 0.015 0.01 0

Table 2: Statistical p-values for Dickey-Fuller (ADF), Kwiatkowski-Philips-Schmidt-Shin (KPSS),
Phillips-Perron (PP) and Priestley-Subba Rao (PSR) tests for (non-)stationarity of water height
time series. In bold: test statistics implying stationarity.

The test results are inconclusive: some tests imply stationarity, while the other tests imply non-
stationarity. However, the tests implying stationarity are the ones believed to be biased towards this
result under certain conditions. Visual inspection of the various water height series indicates that
the series are most likely not stationary. Most importantly, because the water levels occasionally
move to a significantly different level for several weeks or months, as a result of specific water
management actions. These fluctuations can be seen as the structural breaks leading to the mixed
results. Since we can not draw inference about the trend changes in water height from the time
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series alone, the safest assumption would be to treat the data as non-stationary.
Using various Johansen tests [3] we are unable to determine a good quality cointegration rela-

tionship. The tests examine the common stochastic trends in the multiple time series {WH2, WH3,
WH5, GW1, GW2}. While the statistical tests imply that there should be one, the cointegration
relationships suggested by the Johansen tests appear to be just as non-stationary as the original
series. We can argue why this is the case: the trends that are present in the original data are not
due to a stochastic process, but are the result of specific, local water management actions. It is
unlikely that the resulting trends are present in each of the water height series, and therefore do not
cancel out when we take a linear combination of each of these series. Information about the water
management actions is present in the flow rates data, which is probably suitable for explaining the
trends in the water levels data.

In conclusion, a significant amount of good quality data is available to generate a prediction
of the desired water levels using a supervised learning approach. While it is difficult to determine
properties of some stochastic process underlying the data, we have reason to believe that the
individual time series are strongly related. Thus, our research hypothesis is that we can predict
fluctuations in the surface water levels at the target locations using this data very well. ’Very well’
in this context means: no more than 5 cm error between the predicted water levels and the actual
historical water levels in our test set, for rainfall scenarios that happen at least once every year on
average.
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4 Time Series Analysis

This section expands upon the literature review on Time Series Analysis in Section 2. Below, we
provide a more in-depth summary of the research conducted in this field. Our focus is on the
research that is potentially relevant for the hydrological problem we are considering. If possible,
we try to describe how the subjects in this chapter can be linked to our own data analysis and
prediction task.

4.1 Time Series Modelling

A time series is a set of observations xt, each one being recorded at a specific time t. [7] A discrete
time series is one where observations are made at instances from a discrete set of times, i.e., at
fixed intervals. Each of the time series used for this work (water height, precipitation, evaporation,
etc..) are all discrete time series.

The goal of time series analysis is drawing inference from them. Generally, this is done by
first choosing a hypothetical probability model to represent the data and then to estimate and
validate it’s parameters using the observations. The model can then be used to provide a compact
representation of the data, extract seasonal patterns, or for noise filtering, forecasting, hypothesis
testing and simulation studies [7].

Formally, forecasting of discrete time series using past and present data can be defined as follows.
Let yt denote the value of some variable in period t. Then, a forecast ŷ of it’s value for the next
period, made at time t, may have the form: [30]

ŷt+1 = f(yt, yt−1, ...)

where f denotes some function of the past and present observations. To arrive at such a function,
we start by defining the probability model underlying our data. An example of this is the AR(1)
model [7], an autoregressive model of order 1. It can be written as:

yt = c+ φ1yt−1 + εt (1)

where c and φ1 are constant and εt is a noise term. Specifically, εt is white noise, defined as a
series of random variables with mean 0 and variance σ2. The parameters of this equation can be
estimated from data, by performing a least squares regression on each of the observations.

Forecasting one period ahead, at some period t called the forecast origin, can be done most
easily by calculating:

ŷt+1 = c+ φ1yt

effectively replacing the noise εt+1 with it’s expected value, i.e. it’s mean, 0. Additionally, we can
do this recursively to obtain a forecast ŷt+h for any h > 0 if we assume yt+i = ŷt+i for 0 < i < h.
That means we treat the forecasts generated for an earlier interval as the actual values when we
need them for a new forecast. The number of periods h into the future for which we generate a
forecast is called the forecast horizon. Increasing h also increases the number of noise terms we
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assume to be 0, meaning that the uncertainty we have about the value of ŷt+h increases when h
becomes larger. [7].

It is not difficult to see that the AR(1) model from (1) can easily be extended to also include
earlier values of yt. If p earlier values are used in the model equation, this is called an AR model
with lag order p, or an AR(p) model. Each of these lagged variables is assigned it’s own parameter
φ in the equation.

Instead of using past values of yt to produce a forecast, a moving average model uses the forecast
residuals (errors) in a regression model [25]. These errors are similar to the noise term εt we have
seen earlier, so we write the moving average model with lag order 1, the MA(1) model, as follows:

yt = c+ θ1εt−1 + εt (2)

where c and θ1 are constant and εt is white noise. Similarly to the AR model, the moving average
model can be extended to include any number q of previous variables εt in the equation, to create
an MA(q) model. Since the past residuals are known at time t, generating a forecast ŷt+1 at time
t is analogous to the AR model case, again assuming that εt+1 = 0.

Note that this model is very different from the AR model, since the value of yt in the MA(1)
model is only dependent on the outcome of two random variables. Note however that yt and yt−1
both depend on the variable εt−1, and are therefore strongly correlated. The time series resulting
from a moving average process will thus be strongly autocorrelated. More specifically, with respect
to certain conditions, an AR(p) model can be written as an MA(∞) model, and an MA(q) model
can be written as an AR(∞) model [7].

Combining the two models above creates a new hypothetical probability model from which data
could be generated, namely, the ARMA model. It has both parameters p and q as above, such that
the ARMA(p,q) model can be written as follows:

yt = c+ φ1yt−1 + ...+ φpyt−p + θ1εt−1 + ...+ θqεt−q + εt (3)

where c, φi and θi are constant and εt is white noise.
More specifically, the model above is a special instance of the ARIMA(p,d,q) model, having

d = 0. This parameter d defines the degree of differencing that is done (using y′t = yt−yt−1) before
modelling the time series. Differencing helps to ensure stationarity of the time series y′t, which is
an important condition for modelling a linear time series, and intuitively means that it’s statistical
properties are independent of time [25]. ARIMA models are widely studied and used in time series
analysis, providing a general and flexible framework for studying complex univariate processes [7].

Before estimating the parameters of these models using a least-squares regression, we must
determine the lag orders p and q of the model that best fits the data. Very often, these can not
be theoretically determined from the domain beforehand. In such cases, we can use plots of the
autocorrelations (ACF) and the partial autocorrelations (PACF) in the data for this. Significant
values in these plots for certain lag orders can be used to argue about what the values of p and q
in the data might be [25]. Specifically, we look for certain patterns in the ACF and PACF plots
that are often observed for AR(p) or MA(q) models. Additionally, we can evaluate and compare
estimated models with different p, q values using an Information Criterion (IC). The idea is to assign
a score to a model using it’s forecasting performance and/or the model complexity, and choosing
the best scoring model to represent the data. Examples of such criteria are the Akaike IC (AIC)
and the Bayesian IC (BIC) [7].

14



4.2 Vector Autoregressive Models

Section 4.1 describes the foundation of univariate time series analysis. In many applications, sig-
nificant forecasting improvements can be made when external variables are included. In addition,
the relationships between different variables over time can be modelled and analyzed, for example
to draw conclusions regarding causality or structure. In the case of the Waterschap Zuiderzeeland,
many different data sources are indeed available, and we thus turn to multiple time series analysis.

When dealing with multiple time series, one should beware of discovering spurious correlations.
This problem of wrongly drawing inference from data arises when a regression model is fitted to
two time series that are non-stationary [30]. In the previous section, it was briefly mentioned that
differencing the time series is one solution, but this goes at the cost of possibly ignoring long-run
relationships between the levels of multiple time series.

Therefore, the concept of co-integration is very important and well-studied in multiple time
series analysis. First described by Granger [14], co-integration describes in mathematical terms if
two time series are related. The two-step Engle-Granger procedure [11] can be used to test this
relationship: the underlying intuition is that stochastic trends in two non-stationary series can
cancel out if they are co-integrated. Existence of co-integration thus has serious implications for
modelling the time series, since we do not have to worry about spurious correlations then.

So, if either stationarity or co-integration are guaranteed, we can safely model the relationship of
multiple time series using a regression model. The most often-used model for stationary series is the
Vector Autoregressive (VAR) model, which is the multivariate generalization of the AR(p) model
we have seen earlier. The main uses of VAR models are forecasting and structural analysis.[30].

Let yt = {y1,t, ..., yk,t} be a multiple time series. We define this as a vector of k different
time series yi,t, each related to a different variable i ∈ [1, k], with measurements at identical time
intervals t. Then the VAR model of lag order 1, or VAR(1), is defined as follows:

yt = c + φ1yt−1 + εt (4)

where c is a k × 1 vector containing constants, φ is a k× k matrix containing constants and εt is a
k × 1 vector containing iid white noise. Note that the × symbol denotes the general matrix-vector
product.

Alternatively, we can write the above definition without the vector notation. Assuming k = 2,
we write the VAR(1) model as follows:

y1,t = c1 + φ1,1,1y1,t−1 + φ1,1,2y2,t−1 + εt,1

y2,t = c2 + φ1,2,1y1,t−1 + φ1,2,2y2,t−1 + εt,2 (5)

where ci and φi,j,k are constants and εt,i is white noise. Notice how this notation introduces a
multitude of subscript symbols, identifying the elements within the vectors and matrices. We use
the following subscript ordering: the first subscript variable defines the time-related information of
the element, the consecutive subscripts determine the row and column in the element, respectively.
Increasing the lag order, thereby defining the general VAR(p) model, is analogous to the univariate
case. This extension increases the number of matrices φi that we use in the computation, but not
their dimensions.

Selection of a sensible value for the lag order p of the VAR model is quite different from the
univariate case. While some authors have proposed to use multivariate correlograms similar to the
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ACF and PACF plots, this approach often does not work well in selecting a good quality VAR(p)
model. In his book, Lütkepohl [30] describes several testing principles, such as the likelihood-ratio
(LR) test, Lagrange Multiplier (LM) and Walt tests that can be used instead. These tests can be
applied to the data using the hypothesis that a certain lag is irrelevant for the model, and therefore
provide a good indication of the desired lag order for the VAR model. Another method that is
often used is evaluation and comparison of estimated models using the AIC or BIC, as described
for the univariate case.

Parameters of the VAR(p) model can be estimated in exactly the same way as with the AR(p)
model, namely by simply performing a least-squares regression. This also theoretically minimizes
the MSE of the forecast generated by the model, which is often used as a performance metric.
The definition of the VAR model provides formulae for the expected MSE and the forecast values
that minimize this expected error. From these, it is derived that the optimal long-term forecast
is the process mean c, indicating that the past of the VAR process contains no information about
developments in the distant future [30]. Additionally, the VAR(p) definition can be used to derive
bounds for confidence intervals of the forecast value.

Once the parameters of the VAR model have been tuned, they can be analyzed to derive certain
properties of the VAR process. Specifically, we could look at the roots of the characteristic poly-
nomial [30] and make sure that they are all larger than 1 in absolute value. If this is ensured, the
VAR process is called stable. Stability implies the absence of trend and seasonality, constant vari-
ance, and stationarity of the individual time series. While these are all desirable properties when
modelling multiple time series, many real-world series are unstable and therefore do not satisfy this
constraint.

Secondly, the VAR(p) model can be analyzed for causality, for which several definitions exist.
Assume we have two time series, xt and zt. Granger causality is often used, intuitively defined as
an improvement in prediction accuracy of zt+h if some xt−s is included in the model for h, s > 0.
Instantaneous causality is defined as an improvement in prediction accuracy of zt+1 if xt+1 is
included in the model. Each of these causality relationships can be easily checked by looking at the
coefficient matrices φi. Both definitions assume that all other relevant information of the process,
past and present, is included in the model.

4.3 Vector Error Correction Model

Cointegrated processes have quite different properties from stationary ones and this has to be taken
into account in the statistical analysis and modelling [30]. Vector Error Correction model (VECM)
are specifically designed and often used to model these types of data. The model is based on a
VAR(p) model of a differenced multiple time series.

Rather than modelling yt, the VECM provides a model for ∆yt = yt − yt−1, in which the
coefficients are functions of the original VAR parameters. The VECM incorporates one (or more)
additional feature in the regression functions: the long-run equilibrium of the time series. This
equilibrium is defined as the cointegration relationship that was mentioned earlier [30]. Again, let
yt = {y1,t, ..., yk,t} be a multiple time series. The cointegration relationship is defined as a linear
combination of all variables, and thus has the following form:

Ct = β0 + β1y1,t + ...+ βkyk,t (6)

in which βi are constant. The definition of the cointegration relationship states that this linear
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combination must be stationary, while the individual time series are not stationary. For now, let us
assume that there is only one cointegration relationship present in the data. The VECM(1) model
is then defined as follows:

∆yt = c + θ1∆yt−1 + αCt−1 + εt (7)

where c is a k × 1 vector containing constants, θ is a k × k matrix containing constants and εt is a
k×1 vector containing iid white noise. Ct−1 is a scalar and α is a k×1 vector containing constants.

Notice how similar the definitions of the VAR(1) model and VECM(1) model are. Increasing
the lag order p of the VECM, defining the VECM(p), is similar to the VAR model. Additional
parameters θi are added to include variables ∆xt−i into the regression function, but no earlier
values of the cointegration term Ct are used.

The cointegration term thus encodes information about the long-run behavior (equilibrium) of
the variables. From the definition of the VECM model, it follows that ∆yt is modelled such that
the system moves back to this equilibrium. Multiple time series with a common stochastic trend
are assumed to occur very frequently in real-world applications. VECMs offer a convenient way to
parametrize and specify such cointegrated processes, and can be extended just as easily and in a
similar fashion as VAR models.

4.4 Exogenous Variables

So far, we have assumed that all variables of the multiple time series are determined within the
system. These types of variables are called endogenous. In practice, the generation process may
be affected by other observable variables which are not affected by the system of interest [7]. Such
variables are called exogenous variables. For example, rainfall is often considered exogenous in
modelling farming and crop output.

Suppose we extend the definition of the VAR(1) model, as in equation 4, with some l× 1 vector
xt containing l exogenous variables, we would then get the following:

yt = c + φ1yt−1 + β0xt + εt (8)

where the target variable yt is a vector of size k× 1 and β0 is an k× l matrix containing constants.
The above definition can be extended similarly as before, by including additional lags of the variable
xt and thereby introducing new coefficient matrices βi.

Note however, that the definition dictates that the value of x at time t is known when forecasting
y at time t. In other words, the exogenous variables at the forecast horizon T +h must be observed
beforehand, namely, at the time of the forecast origin T . Since VAR models were often aimed at
modelling low-frequency data, for example economic variables, this was no problem: the value of
xt could simply be determined in between T and T + h, and the forecast would still be generated
early enough to be informative. In practice however, it is possible that observations of exogenous
variables are not available beforehand, and in that case, the term xt is simply omitted from the
model definition. Another solution is to not use the observed values of xt, but to first forecast the
series x and then use the predicted values of xt.

In summary, treating variables as exogenous is important, since it can make time series modelling
easier and more efficient. While in practice, the distinction between endogenous and exogenous
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variables may not always be clear, it is useful to think of the time series model as a function with
input and output: the endogenous variable at time t serves as the output of the function and it’s
past values serve as input, but the exogenous variable serves purely as input.

4.5 Conditional forecasting

With a VAR model, we could forecast all variables in our multiple time series over some period h, all
at once. This would give us a general idea of how the system’s variables will simultaneously behave
after some time t. We call this an unconditional forecast, as each of the multiple time series is
unrestricted between periods t and t+h. Alternatively, we can also generate a conditional forecast,
which depends on some predefined future path of one or more variables. Many applications for
these types of forecasts exist, especially when one of the variables can be controlled or managed:
in such cases, several conditional forecasts can be compared to aid the decision making process.

The easiest way of generating conditional forecasts is by treating the conditioning variables as
exogenous. In that case, we can define the future paths beforehand, since the exogenous variables are
not affected by other variables. We can then forecast the endogenous variables under the influence
of the future exogenous variables, using the original time series model. However, when we wish to
make assumptions regarding a future path of an endogenous variable, things get more complicated.

One way of defining a future path for endogenous variables is by placing restrictions on some
of the variables between time t and t + h. We distinguish hard restrictions, which completely fix
the future path, and soft restrictions that place bounds on the future values. For VAR models,
the conditional forecasts are then typically computed using the algorithm developed by Waggoner
and Zha [44]. Their methodology involves sampling techniques to draw future paths satisfying the
conditions, and from these, a set of conditional forecasts are generated. In their paper, they show
that monthly macroeconomic variables can be forecasted over a 4 year period under influence of a
restricted federal funds rate. Stock and Watson [40] evaluate this method and show how it can be
used effectively for policy analysis and scenario comparison. However, the algorithm by Waggoner
and Zha can become unfeasible for higher dimensional time series and long forecast horizons due
to the sampling procedure [2].

In response, Banbura et al. [2] proposed a recursive conditional forecasting algorithm that re-
duces the computational burden. Their approach is based on Kalman filtering techniques: variables
for which no future path is assumed are treated as time series with missing data, which are then esti-
mated using the fitted VAR model. The authors show that sizeable improvements in computational
performance can be achieved by using this procedure, especially when the number of conditioning
variables is large (> 15) or the forecast horizon is long (h ≥ 20). The algorithms in their comparison
were evaluated on a dataset with 68 observations of 26 macroeconomic variables, and conditions
involved a relative increase of world GDP as well as fixed future paths for 3 variables.

4.6 Application

In conclusion, the literature on time series analysis provides us with many tools to model the time
series data of the water management system in the Noordoostpolder. Specifically, the methods
involving VAR models and conditional forecasting seem perfectly suited for the goals of this project,
namely, modelling the relationships between water height measurements, environmental variables
and flow rates, and comparing rainfall and flow rate scenarios.

However, one potential problem arises when we compare the data used in most time series
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literature with the data from the Waterschap Zuiderzeeland. While the water management data
we wish to study contains more than 1 million observations of more than 50 features, the typical
macroeconomic sample involves a limited number of data points, generally, 200 - 250 data points
[2]. The implications of this are unsure, but Hyndman mentions in his book [25]:

Most time series models do not work well for very long time series. The problem is that real
data do not come from the models we use. When the number of observations is not large (say up to
about 200) the models often work well as an approximation to whatever process generated the data.
But eventually we will have enough data that the difference between the true process and the model
starts to become more obvious.

Therefore, we suspect that time series modelling in the traditional sense is not the preferred
approach for the data that we have.
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5 Recurrent Neural Networks

Traditional machine learning models, such as the ANN, were developed to determine and exploit
stochastic dependencies within individual samples of data. Recurrent Neural Networks (RNNs) are
an extension to this approach: they are designed to model sequences of data. Sequential data has
become very common: a video is a sequence of images, a sentence is a sequence of words. The ability
to derive information from the sequence context instead of from a single sample has therefore become
very important. This sections details the definition of the RNN, various specialized architectures
such as the LSTM, and describes the application of RNNs to time series data.

5.1 Feedforward ANN

Before we detail the recurrent neural networks, we first consider the traditional feedforward Ar-
tificial Neural Network (ANN) [21], also called Multilayer Perceptron (MLP). This generic model
architecture is used to learn a non-linear mapping from some input vector I to output O, and is a
generalization of the linear VAR/VECM models. It consists of k layers Li, with i = 1, . . . , k, having
li neurons in each layer, and each neuron produces a single real-valued activation [38]. Neurons in
the input layer are activated using input data, simply using L1 = I. Neurons in consecutive layers
are activated through weighted connections with the previous layer, as follows:

Li+1 = α(WiLi + bi) for i = 1, . . . , k − 1 (9)

where Li and Li+1 are vectors of size li × 1 and li+1 × 1 respectively, Wi is an li+1 × li matrix
containing coefficients (weights) and bi is a vector of size li+1 × 1 containing coefficients. The
function α : R → R is some non-linear activation function that is applied element-wise. Layers
L2, . . . , Lk−1 are called hidden layers. The procedure described above is called the feedforward step,
producing the output Lk: using a learning algorithm such as gradient descent backpropagation [21],
the error between Lk and the desired output O is iteratively decreased. For this, a loss function
must be defined to quantify the difference between the network output and the desired output:
weight updates are then calculated based on the gradient of the loss function.

We apply the generic feedforward ANN to time series forecasting in two ways. Recursive fore-
casting can be done using I = {yt−p, . . . ,yt,xt−p, . . . ,xt+1} as input, and O = {ŷt+1}. We thus
have l1 = (p+ 1)(n+m) +m and lk = n. This network can now be used recursively, using previous
predictions as input, to generate forecasts for time steps t+ 1, . . . , t+ h− 1. Alternatively, we can
implement an ANN for direct forecasting by choosing I = {yt−p, . . . ,yt,xt−p, . . . ,xt+h} as input,
and O = {ŷt+1, . . . , ŷt+h}. In this case, we have l1 = (p + 1)(n + m) + hm and lk = hn. This
network is not used recursively, but instead generates predictions for all desired time steps using a
single feedforward operation.

5.2 RNN Definition

Recurrent Neural Networks (RNNs) provide an extension to feedforward ANNs, in that they are
specifically designed to process sequences of observations. Let us assume a sequence has a fixed
length P . Instead of concatenating many observations into a single input vector like the ANN, the
RNN takes a multivariate time series It ∈ Rm for 1 ≤ t ≤ P as input, mapping it to the output
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series Ot ∈ Rn by processing each time step t individually. What also distinguishes the RNN
architecture is that a layer of RNN neurons uses the layer’s activations at the previous time step
as additional input. A single RNN layer Li+1 thus computes:

Li+1,t = α(W1σ(Li+1,t−1) + W2Li,t + b) for t = 1, . . . , P (10)

where the function σ : R → R is an element-wise function and the other terms are similar to the
feedforward ANN case. The term σ(Li,t) is called the hidden state of the i’th network layer: its
initial state σ(Li,0) can be specified by the user, set to 0 or be learned.

Learning weights of an RNN can be done by using a modified version of the backpropagation
algorithm. The idea is that the RNN layer is unrolled to create a feedforward ANN with P identical
layers, and calculating the gradients of the loss functions for each output [13]. Several problems
may arise: exploding gradients refers to a large increase in the norm of gradients for long-term
components, whereas vanishing gradients refers to a sharp decline in these gradients [4]. Both of
these events make it very difficult for the model to correctly learn correlations over longer periods
of time.

5.3 Gated RNNs

To counteract the vanishing or exploding gradient problems, specific RNN architectures were de-
veloped. Gated RNNs are among the most effective resulting model types, introducing a change in
the structure of neurons, allowing the models to consider long-term information more effectively.
The intuition behind these architectures is that it might be required that the hidden states in the
model are reset to 0 frequently.

The Long Short-Term Memory (LSTM) [13] model was among the first architectures to introduce
self-loops in recurrent neurons. These self-loops produce pathways through which information flows:
in addition to the hidden state, which serves as the neuron’s output, each LSTM neuron has a cell
state that is used as memory. Information in these pathways is controlled by various gates. Many
variants of the LSTM neuron architecture exist, but we present here the most common one. The
forget gate uses the current input and previous hidden state to determine if information from the
cell state can be discarded. The input gate used the same terms to determine if information can
be added to the cell state. The output gate uses this new cell state, the current input and previous
hidden state to generate a new hidden state. Each of these gates is essentially a neuron from a
feedforward ANN: they take a vector of input values, multiply with a specific weight matrix that
can be tuned during training, and then apply some activation function.

The Gated Recurrent Unit (GRU) [10] is another architecture for gated neurons in recurrent
neural networks. Similar to the LSTM neuron, the GRU neuron has gates that control the flow
of information, however, without the need for a specific cell state as memory. The GRU has only
two gates: the reset gate and the update gate, which both use the current layer input and previous
hidden state for computation. The output of these gates is combined in a specific way to generate
the new hidden state. Intuitively, the reset gate defines how to combine the previous hidden state
and the current input, whereas the update gate defines the portion of the previous hidden state
that is retained. The GRU neuron is simpler compared to the LSTM neuron: it has fewer gates
and thus fewer parameters, and also applies one less activation function.
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5.4 Conditional Forecasting using RNNs

The most common solution is to define an RNN that generates 1-ahead predictions, as seen in
[16]. For this model, we choose It = {yt−1, xt} and Ot = {yt}. However, for multi-step ahead
forecasting, this recursive approach is counter intuitive. The RNN uses as input both its previous
prediction and its previous hidden state: this could distort the memory management of the RNN
and lead to extreme accumulation of errors for large h.

The second approach is to use It = {yt−h, xt} and Ot = {yt}. This way, the RNN is not
applied recursively and its memory is efficiently used. However, the input series is now composed
of variables with substantial time shifts, which could lead to problems. To prevent the extraction
of misleading patterns, we are required to use a moving average series of yt instead of the actual
measurements, resulting in a loss of information. Additionally, this approach forces us to use input
sequences of y and x of the same length and we can not use xt for t < T .

5.5 Encoder/Decoder RNN with Exogenous Variables

The above shows that conditional forecasting using RNNs does not work very well, so we propose
a novel architecture for this problem. Requirements are that it allows us to use input sequences of
y and x of varying length without time shifts, and that the memory management of the RNN is
used efficiently during forecasting.

Our proposed approach to conditional forecasting with RNNs can be described as an en-
coder/decoder approach with exogenous variables. It consist of two steps: first, given origin T ,
horizon h and lag p, we encode the observations in x and y at times T − p ≤ t < T using an RNN
layer of size l1. This can simply be done using I1t = {yt, xt}, since all these observations are known.
We only keep the last output of this RNN layer, instead of the entire series. This resulting output,
which we call the encoding E, is a vector of values of size l1 × 1.

The second step is to turn the output of the first RNN layer, E, into predictions for yT+1, . . . ,yT+h.
We do this by concatenating copies of the encoding to each time step in xT+1, . . . ,xT+h: the re-
sult is a new time series zT+1, . . . , zT+h, with zt = {xt, E}. We use this combined time series
as input to the second RNN layer, thus we write I2t = {xt, E}. This second RNN layer produces
the predictions for yT+1, . . . ,yT+h, thus we write Ot = {yt}. While the architecture appears to
consist of two separate models, the encoder can not be trained without a decoder. In summary, our
architecture generates predictions OT , . . . ,OT+h−1 using an encoding of I1T−p, . . . , I

1
T−1 and using

I2T , . . . , I
2
T+h−1 as additional information during decoding. Figure 2 contains a simplified, schematic

representation of this RNN architecture.
The procedure of encoding and decoding a time series using RNNs is also called sequence to

sequence (seq2seq) modelling, as proposed by Sutskever et al. [41]. In that work, it was not applied
to measurement time series, but to words: translating sentences from one language to another,
with good results. The most important difference with our application, and therefore the novelty
of our approach, is that the initial seq2seq modelling was not conditional: there was no notion of
exogenous values xT+1, . . . ,xT+h, but instead, only the copies of the encoding E were used as input
to the second RNN layer.

22



Figure 2: Schematic representation of the Encoder/Decoder with Exogenous Variables RNN struc-
ture, with input data before the forecast horizon (5), first RNN layer (4), concatenation of exogenous
variables after the forecast horizon and the copies of the encoding (3), second RNN layer (2) and
the generated forecasts (1).
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6 Methodology

This section details our approach in modelling the water management system of the Noordoost-
polder. We will describe the data handling process and specifications of the various models that
we use, as well as the way we evaluate our results. Additionally, we provide some argumentation
about choices that are made in the modelling process.

We begin by selecting a small subset of all variables to incorporate in the models. This is done
to allow faster convergence of the models and to prevent spurious regressions. The variables we use
are the measurement series shown in Table 1.

6.1 Exogenous Variables

The water levels are treated as endogenous variables, the flow rates and precipitation as exogenous
variables. The reasoning for this is simple: we are interested in the behavior and dynamics of water
levels in the Noordoostpolder. Precipitation is the source of water that enters the Noordoostpolder
from the outside. Similarly, the flow rates measure the amount of water that is pumped out of
the Noordoostpolder by the pumping stations. Therefore, using domain knowledge, we derive that
these two types of measurements can be considered as exogenous, whereas the other time series
are dependent upon each other and upon the exogenous variables and should thus be modelled as
endogenous variables. Thus, using the notations introduced in earlier sections, we write y = {WH2,
WH3, WH5, GW1, GW2} and x = {FR2000, FR2100, FR2200, MWSP}.

To be able to generate conditional forecasts, we must include observations of the exogenous
variables between the forecasting origin T and the forecast horizon T+h, as described in Section 4.4.
For both the precipitation and the flow rates, we assume that at time T the observations between
T and T + h are indeed available for forecast generation. From a forecasting perspective, this can
be argued by observing that the future values of these exogenous variables are also not affected by
the past water levels directly, but instead, purely by the weather or the water management actions.

In a practical, realistic forecasting scenario however, we do not have access to the observations of
flow rates and precipitation in the next 24 hours. But we can resort to using their predicted values,
quite easily, as follows. First of all, meteorological institutes generate accurate predictions of rainfall
multiple days ahead, that are freely available. Secondly, after consultation with hydrologists at the
Waterschap Zuiderzeeland, the following is assumed about the flow rates. Flow rate time series are
completely dependent on water management actions of the Waterschap Zuiderzeeland. Each pump
in the pumping stations can be turned off or on, which is done manually. Pumps create a constant
efflux of water when turned on, that equals 0 only when all pumps are switched off. In addition,
there is a clear protocol for when pumps should be on or off, as well as centralized coordination in
case of an extreme scenario. In conclusion, very clear agreements can be made beforehand about
when the pumping stations will be functioning, and from these agreements, the flow rate time series
can be immediately and accurately determined.

These assumptions will allow us to generate the desired conditional forecasts based on future
paths of the exogenous variables. Once the weather forecast is available and the flow rates series
are determined, we can forecast the water levels. This is exactly what we are interested in: the
behavior of the water management system under the influence of precipitation and management
actions. This forecast could aid the decision making process, for example by contrasting the results
of various future paths for either flow rates, precipitation, or both.
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6.2 Feature Construction

We use lags of the endogenous features up to p = 192, which is equivalent to using the past two
days of measurements. This was determined using domain knowledge of the hydrologists at the
Waterschap Zuiderzeeland: they estimated that fluctuations generally persist for about 24 hours in
the Noordoostpolder, and that the maximal time over which some fluctuation is still noticeable is
48 hours, equivalent to p = 192.

Additionally, we construct a set of features with lags and rolling means of the exogenous vari-
ables. These are used as input to all models except the Recurrent Neural Networks, since those
models have their own approach to utilizing past exogenous variables. An extensive cross-correlation
analysis was carried out to determine the most relevant lag order and rolling mean sizes. Flow rate
features were constructed by lagging the variable over 4, 8, 12, 16, 23 and 32 time steps and taking
the average of the last 4, 8, 20, 48, 56 and 68 observations. Precipitation features were constructed
by lagging the variable over 4, 8, 12, 14, 16, 28, 31, 42 and 61 time steps and taking the average of
the last 4, 12, 36, 48 and 96 observations.

6.3 Forecast Generation

We have seen in the data assessment of section 3.4 that it is difficult to derive properties of the
stochastic process underlying the data. Specifically, we can not draw a single conclusion about
stationarity and the cointegration relationship. We also argued that this is most likely caused by
the way the data is generated: trends in the data are not stochastic by nature, but are the result
of specific water management actions. From the domain experts, we know that the individual time
series are strongly related nonetheless. The risk of discovering spurious correlations is therefore
not high. Because of this, we will not evaluate the models and their predictions by analyzing their
statistical properties, as is common practice in traditional time series analysis. Rather, we will
rely heavily on out-of-sample forecasting performance, as is common practice in machine learning
methods. Doing so will provide insight into model overfitting and forecast reliability, which is
ultimately the goal of this project.

Therefore, we propose and use the following modelling and forecasting approach. We divide
the data into two sets: a training set, consisting of all observations in 2015, 2016 and 2017, and
the test set, consisting of all observations in 2018. The data in the training set is used to tune the
model parameters: in the case of VAR models, for example, by simply performing a least-squares
regression of 1-step ahead forecasts using all observations. The test set is then used to estimate the
out-of-sample forecasting performance, or in other words, forecasting performance on unseen data.

To simulate a realistic forecasting scenario, we use a maximum forecasting horizon h = 96,
equivalent to a 24-hour period. We also choose a forecast origin Ti = 12 : 00 : 00 (midday) for
each day i in out test set, 2018. Given an origin Ti, we generate forecasts for all time steps in
the following 24-hour period, which means we use forecasting horizons h′ = 1, . . . , 96. For this, we
assume that all past observations of endogenous variables yt, for all t < Ti are known. Similarly,
we assume that the values of the exogenous variables xt, for all t < Ti + h are known, as described
in Section 4.4 and Section 6.1.

We explicitly wish to generate a conditional forecast of y, conditioned on the observations in
x at times t > Ti. We use these known observations as input to the forecasting model, but we do
not update the model parameters during forecasting. There are two ways in which we can generate
such a conditional forecast for all time steps between Ti and Ti + 96. We will describe these in the
subsections below.
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6.3.1 Recursive forecasting

For the recursive forecasting, we estimate the model that generates a prediction of the endogenous
values one time step ahead. Using the trained model (with some lag order p), the observations
yT−p, . . . ,yT , the exogenous features as in 6.2, and exogenous variables xT+1, we generate the
conditional forecast ŷT+1. Then, using yT−p+1, . . . ,yT , ŷT+1, and exogenous variables xT+2, we
generate a forecast ŷT+2. Note that in forecasting multiple time steps ahead, the model is applied
recursively: we use the previous forecasts and use them as input for the subsequent forecasts. In
other words: we treat them as observations. We keep doing this until we have a forecast of yT+96.
We then repeat the above procedure for a new Ti′ = Ti+1, since we have arrived at the next midday
in our data. This procedure results in a time series ŷ containing forecasts of every endogenous
variable in the test set.

6.3.2 Direct Forecasting

Given an origin T , a direct forecasting model generates a forecast ŷT+j for a future time step
T + j, without considering or predicting yT+k for 1 ≤ k < j. This can be done, for example, by
training a separate model for each forecasting horizon. Thus, using a trained model (with some lag
order p), the observations yT−p, . . . ,yT , the exogenous features as in 6.2, and exogenous variables
xT+1, . . . ,xT+j , we generate a forecast ŷT+j . This means that in our scenario, a multi-step forecast
for all time steps T + 1 to T + 96 requires 96 separate models.

Alternatively, we can approximate the set of direct forecasts by training a larger single model
with multiple outputs. The goal is to get a forecast for all time steps between T and T +h with only
one propagation of our model. In that case, the input to the trained model are the observations
yT−p, . . . ,yT , the exogenous features as in 6.2, and exogenous variables xT+1, . . . ,xT+h. The model
has h different outputs, and each output Oj , for 1 ≤ j ≤ h, provides one of the predictions ŷT+j .

For our experiments, we decide to implement the latter approach. Firstly, because training and
maintaining 96 different models is not feasible in real-life applications. Secondly, the water levels
in a 24-hour period are heavily autocorrelated and can therefore probably be estimated using the
same set of features in a single model.

One problem arises when we compare the recursive and direct forecasting methodology, which
relates to the data that is used when producing a forecast ŷT+j for some 1 ≤ j < 96. The recursive
models use exogenous variables at times t ≤ T + j for this; the direct models use all the exogenous
variables at once, thus at times t ≤ T + 96. This not only means that the direct models have access
to additional information, it also means that these models can produce forecasts using exogenous
variables xT+j+k for k > 0. In other words, this direct forecasting methodology uses exogenous
variables at time steps after the time step for which we are generating a forecast. Note that this
procedure does not violate the restrictions of our conditional forecasting problem: we assume that
all exogenous variables for the next 24 hours are made available for forecast generation in a practical
scenario, and that thus, we should train and evaluate the models using this data. However, we do
worry that this approach provides an advantage for the direct forecasting models. To assess the
significance of this, we compare the forecasting performances at times Ti + 96, since for that time
step, the direct and recursive models utilize exactly the same information. If the direct forecasting
methodology does indeed provide an unfair advantage, this advantage disappears at times Ti + 96,
resulting in a relatively worse performance of the direct models.
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6.4 Performance

We choose to evaluate the predicted target variables in ŷ and their actual values in y by determining
the squared correlation coefficient (R2) and Root Mean Squared Error (RMSE). Note that we are
evaluating forecasts of y conditioned on x. While conditional forecasts can be used to compare the
predictions for different hypothetical future paths of x, this initial evaluation uses the true values
for the observations x. Also, note that we generate forecasts of all endogenous variables, thus for
WH2, WH3, WH5, GW1 and GW2, but we evaluate only the predictions of the target variables
WH2, WH3 and WH5, since these predictions provide the relevant insight for the Waterschap
Zuiderzeeland.

Given the forecasting methodologies detailed in Section 6.3, we evaluate a series of forecasts
for times Ti + 1, . . . , Ti + 96 for every day i in our test set. By reporting the average metrics over
all Ti + x, for 1 ≤ x ≤ 96, we provide an indication of the expected error when forecasting some
randomly chosen time step in the next 24 hours. Additionally, we present and visually analyze
plots of the actual and predicted values over time for certain days in the test set.

To conclude, we will use the Diebold-Mariano test [20] to determine if a model performs signifi-
cantly better than another model. This significance test is applied to prediction errors of forecasts
generated over a specific horizon, since a larger forecast horizon leads to more uncertainty. We must
therefore filter the predictions and evaluate the test on predictions only for times Ti +H for fixed
values of H. The null hypothesis of the one-sided Diebold-Mariano test is that the two forecasts
have the same accuracy at the specified horizon H, the alternative hypothesis is that either of the
two models has a better performance. We use two one-sided significance tests to be able to draw
a conclusion about which model performs better, since the two-sided version only states that the
model performance is different without telling us which one is better. We use the significance level
α = 0.05, which is often used in forecasting literature.

6.5 VAR and VECM modelling

We decide to fit both VAR and VECM models to the data to be able to compare their performance
and choose the best model. An iterative binary search procedure was used to evaluate and determine
the best lag order p for the model, up to the previously determined maximal value p = 192. Least
squares regression is used to tune the parameters. By definition, the VAR and VECM models
generate only recursive forecasts. Methods for estimating these models, as well as generating their
predictions on new data, are provided in the R package ’tsDyn’.

6.6 Feedforward Neural Networks

We construct various neural network models to generate a conditional forecast of the water levels.
Each input node corresponds to a specific variable at a specific point in time, relative to the
forecasting origin T . For endogenous variables, these are times T − i for 0 ≤ i ≤ 192. For
exogenous variables, these correspond to one of the exogenous features as in 6.2, as well as the
values at times T + j for 1 ≤ j ≤ h.

The neural network models can be trained for both recursive forecasting (h = 1) and direct
forecasting (h = 96). In the case of recursive forecasting, the network has only 5 output nodes: 1
for each target variable in ŷt+1. In the case of direct forecasting, the network has 5 × 96 output
nodes: each set of 5 output nodes corresponds to some ŷt+j for 1 ≤ j ≤ 96.
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The time series data that is used must be transformed accordingly. As each node (input or
output) uses the values in a specific column of a data matrix, we copy and shift the time series
many times such that each column corresponds to a specific lag or lead of one of the variables.

We experiment with neural networks containing one or two hidden layers. For recursive fore-
casting, the maximum size for a hidden layer is 48 nodes, as we suspect that more complex networks
are not required to model the 1-step ahead forecasts and might be prone to overfitting. For direct
forecasting, the maximum size is 700 nodes per hidden layer. Additionally, we use the rectified
linear unit (ReLU) activation function for hidden nodes, and no activation function for output
nodes, since these are used most often for predicting continuous values. All methods for defining
and training these neural networks are implemented in the ’Keras’ python package, which can be
controlled from the R environment using the R package ’Keras’ [27].

Keras splits the training data by default: the last 20% of observations is used as validation set,
the rest is used as actual training set. During training, the model performance is evaluated on the
validation set after each iteration. This validation loss is used to define an early stopping criterion.
Model parameters are saved during training when a minimal validation loss is determined: if, for a
fixed number of iterations, this validation loss does not reach a new minimum, the previously saved
model is returned. This procedure prevents overfitting on the training data. As a result, however,
the NN model parameters are tuned using a smaller dataset compared to the VAR/VECM models.
Nonetheless, comparing the forecasts generated by the different models is fair: while the validation
set is not used to tune the model parameters, the prevention of overfitting is an equally useful
utilization of the data. Therefore, each model architectures utilizes all observations in the training
set for fitting the most optimal model, albeit in a different manner.

To be able to efficiently reference the NN model types, we introduce the following notation. 1-
NNi,j(p) is used to describe a neural network generating 1-step ahead predictions, with two hidden
layers of sizes i and j, and lag order p for the endogenous variables. Neural networks with only
1 hidden layer have no parameter j. D-NNi,j(p) is used to describe a neural network generating
predictions for all time steps T + 1, . . . , T + 96, that can thus be used for direct forecasting, with
the same parameters.

Some hyperparameters for the ANNs were chosen using a trial-and-error procedure. The batch
size was determined beforehand to be 32, which is a standard value for many ANN applications.
We concluded from early plots of the validation loss that a suitable value for the maximum number
of iterations is 200, and that a patience parameter of 30 iterations is an effective choice for the early
stopping criterion.

6.7 Recurrent Neural Networks

We implement and evaluate each of the 3 methodologies described in Section 5.4. We reference
these RNN architectures as follows. Firstly, models are referenced by the types of neurons in
the layers, namely, ”LSTM” or ”GRU”. 1-LSTMi,j indicates an LSTM model that is trained for
1-ahead predictions with two layers of size i and j. XY-LSTMi,j is used to reference an LSTM
model that implements the second approach described: predicting y using mainly x and some extra
information on past values of y to initialize memory. If either of the two models above has only
one layer, the variable j is omitted. Lastly, ED-LSTMi,j is used to reference an LSTM model that
implements the encoder/decoder architecture with exogenous variables, which always requires two
RNN layers.

All methods for defining and training these RNNs are implemented in the ’Keras’ python pack-
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age, which can be controlled from the R environment using the R package with the same name [27].
The input and output data must be transformed accordingly: instead of filling columns with lags
and leads of exogenous variables, we now transform our dataframes into 3D arrays that can be used
with keras. The first dimension references an input sequence, the second dimension references the
time step in the sequence, and the third dimension references the variable column. The number of
time steps per sample, and the columns selected for input and output vary per model architecture.

Similar to the feedforward ANNs, besides the batch size of 32, we have parameters for the
maximum number of iterations and the patience (early stopping). We use the same procedure as
before: per architecture, we try different values, we evaluate and choose based on the performance
on the test set. By looking at the plots of the loss per iteration on the validation set, we decide
that the correct parameter values are 40 maximum iterations with a patience parameter of 20 for
the early stopping criterion.

Ot = f(It,Ht−1)

6.8 Conditional Forecasting

As we have seen above, we explicitly wish to generate conditional forecasts of the water heights in
y. This forecast is conditioned on the flow rates and precipitation in x at time steps between the
forecasting origin and forecasting horizon. Once the quality of the generated forecasts has been
determined by using the true values for the observations x, as described in 6.4, we wish to get an
idea of how well the models can be used to compare different scenario’s. For this, we select two
exemplary dates from the testing data set. On these dates, we compare the forecast conditioned on
the actual values of x with a forecast conditioned on an alternative, hypothetical future path of x.

We choose these dates and future paths such that the difference between the two predictions can
be explained using domain knowledge and experience. The first scenario is a very common day, for
which we use an alternative path of x that has decreased flow rates compared to the actual data.
The second scenario contains an alternative path of x that has a substantial increase in the amount
of precipitation. We can not compare the alternative forecasts with some true value, but instead,
we plot the original and alternative forecasts in the same figure to get an idea of the difference and
the possibility to use these models to guide the decision making process.
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7 Results

This section contains the results for the various model architectures, that were tuned using the
training set and evaluated on the test set. We report the performance only for the target variables,
and not for the other forecasted endogenous variables. To be able to place the reported performance
metrics in perspective, we first generated a baseline performance. This naive forecast is defined as
follows: for each forecasting horizon Ti = 12:00:00 (midday) for every day i, we predict that the
water levels in the next 24 hours are equal to the average water level of the past 24 hours. In Table
3, we show this baseline performance, expressed as RMSE and R2.

Model WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

Baseline 4.94 0.45 5.17 0.78 5.45 0.37

Table 3: Forecasting accuracy expressed as RMSE and R2 for the baseline predictor evaluated on
the test set.

7.1 VAR Models

Table 4 contains the RMSE and R2 of various VAR(p) and VECM(p) models. We observe that
increasing the lag order p, and thereby increasing the model complexity, leads to a better perfor-
mance. We also observe that even with the simplest VAR model, we are able to greatly improve
the naive baseline performance. The fact that the stationarity analysis in Section 3.4 was incon-
clusive does not appear to be a problem: the performance of the VAR models, which are in theory
only applicable to stationary data, and the performance of the VECM models, which are especially
designed for non-stationary data, is comparable.

We performed the Diebold-Mariano test on the baseline predictions and the predictions of
the VECM(192) model. The results are in Table 5. We conclude that the VECM(192) model
predictions for every target series are significantly better at horizons up to h = 48, and comparable
for h = 96. Therefore, the VAR/VECM model performance proves to be a reasonable baseline for
model comparison.

Additionally, we visually inspect the predicitions generated by the linear models. In Figure 3 we
show 4 graphs containing water levels in the 2018 test set, along with the predictions generated by
the VECM(192) model. The accumulation of errors for larger forecasting horizons can be clearly
identified, especially in situations with moderate or heavy rainfall.

We are also interested in feature importance of both endogenous and exogenous variables. In
Table 6, we evaluate this for the VECM(192) model, and for each of the 3 target variables. Rows
are indexed by a variable name in the first column: that variable is excluded from the model
during training and testing to study the effect on the forecasting performance. This performance
is expressed as the ratio of RMSE to the RMSE of the original VECM(192) model.
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Model WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

VAR(8) 3.36 0.84 3.65 0.9 3.5 0.77

VECM(8) 3.23 0.83 3.51 0.91 3.35 0.78

VECM(24) 3.15 0.84 3.35 0.92 3.33 0.78

VECM(48) 2.85 0.86 3.26 0.92 3.33 0.79

VECM(96) 2.66 0.86 3.28 0.91 3.3 0.78

VAR(192) 2.50 0.87 3.22 0.92 3.13 0.78

VECM(192) 2.6 0.87 3.18 0.92 3.15 0.80

Table 4: Forecasting accuracy expressed as RMSE and R2 for various VAR(p) and VECM(p)
models evaluated on the test set. In bold: for each target variable, its highest quality prediction
with respect to RMSE or R2.

Diebold-Mariano

Models H WH2 WH3 WH5

Baseline VECM(192)

1 0.0000 0.0000 0.0000

8 0.0000 0.0006 0.0024

24 0.0000 0.0023 0.0069

48 0.0000 0.0068 0.0132

96 0.3417 0.1183 0.3880

VECM(192) Baseline

1 1.0000 1.0000 1.0000

8 1.0000 0.9994 0.9976

24 1.0000 0.9977 0.9931

48 1.0000 0.9932 0.9868

96 0.6583 0.8817 0.6120

Table 5: P-values of the Diebold-Mariano test applied to predictions at specific horizons H of the
naive baseline model and the VECM(192) model. The null hypothesis is that the performance is
the same, the alternative hypothesis is that the second (rightmost) model has a better performance.
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Dry weather Moderate rainfall

Dry, after rainfall Heavy rainfall

Figure 3: Exemplary selection of WH2, WH3 and WH5 water levels, and it’s predictions generated
by VECM(192). Captions indicate the weather conditions on the day for which the forecast was
generated.

Excluded Variables WH2 WH3 WH5

∅ 1 1 1

WH2 . 1.040 1.099

WH3 0.988 . 0.990

WH5 1.068 1.041 .

GW1 0.963 0.995 1.006

GW2 1.001 1.010 1.047

FR2000 1.383 1.129 1.247

FR2200 1.465 1.100 1.269

FR2100 1.018 0.999 1.010

MWSP 1.083 1.095 1.016

Table 6: Ratio of VECM(192) forecast RMSE to original RMSE when the variable indicated in the
first column is excluded from the model. In bold: forecast RMSE ratio lower than 1, indicating
forecast quality improved when removing the indicated variable.
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7.2 Feedforward Neural Networks

Next, we evaluate the feedforward ANN architectures for recursive forecasting. These ANN models
are non-linear and contain many more parameters than the VAR models: the model complexity is
therefore much higher. We begin by determining the out-of-sample forecasting RMSE and R2 again,
to get an indication of the performance of the models. The first experiment we conduct relates to
neural network size. We trained networks of various sizes with lag order p = 96 to generate 1-ahead
predictions. We then generated recursive forecasts for the entire testing data set. The results are
shown in Table 7.

We are also interested in overfitting of the neural network models. For this, the training and
validation loss is determined after every iteration of training. We show these in Figure 4 for the
1-ahead models. In 3 out of 4 plots, we clearly see that the validation loss often approaches the
training loss, and is sometimes even lower. Thus except for the incredibly simple 1-NN4(96) model,
we conclude that the recursive forecasting ANNs do not suffer substantially from overfitting.

The effect of the lag order p on the neural networks performance was also examined. We trained
networks of size [48, 16] with varying lag orders p, to generate 1-ahead predictions. We then
generated recursive forecasts for the entire testing data set. The results are shown in Table 8.

We observe that generating the recursive forecasts using ANNs yields bad results: it hardly im-
proves the baseline model and appears worse than the linear models. To test the latter statement, we
performed the Diebold-Mariano on the predictions of the VECM(192) model and the 1-NN48,16(96)
model. The results are in Table 9. We conclude that the VECM(192) model predictions are signifi-
cantly better at every horizon for WH3 and WH5, and either comparable or significantly better for
WH2. This can likely be attributed to the accumulation of errors when forecasting multiple time
steps ahead: for NN models, these negative effects are more extreme compared to the VAR/VECM
models, due to the increased model complexity.

Finally, we visually inspect the predictions generated by the recursive forecasting neural net-
works. Figure 5 contains 4 graphics, for the same dates and target variables as before, showing he
actual data and the predictions generated by the NN48,16(96) model.

Model WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

1-NN4(96) 6.51 0.00 11.03 0.00 7.41 0.00

1-NN8(96) 16.29 0.01 24.19 0.03 16.44 0.01

1-NN24(96) 7.22 0.36 16.17 0.49 8.77 0.24

1-NN48(96) 4.23 0.71 6.10 0.78 5.86 0.58

1-NN48,8(96) 16.71 0.09 19.21 0.32 19.50 0.09

1-NN48,16(96) 3.28 0.78 4.73 0.87 4.59 0.70

1-NN48,48(96) 4.18 0.64 5.41 0.82 5.20 0.57

Table 7: Forecasting performance expressed as RMSE and R2 for various 1-ahead neural network
models with lag order p = 96. Performance was evaluated by generating recursive forecasts on the
test set. In bold: for each target variable, it’s highest quality prediction with respect to either
RMSE or R2.
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1-NN4(96) 1-NN48(96)

1-NN48,16(96) 1-NN48,48(96)

Figure 4: MSE measured after every training iteration for the training set and validation set, for
various neural network architectures that generate 1-ahead predictions.

Model WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

1-NN48,16(8) 6.24 0.72 7.13 0.69 7.61 0.60

1-NN48,16(24) 6.74 0.50 11.50 0.78 6.68 0.47

1-NN48,16(48) 3.73 0.74 11.36 0.78 3.60 0.71

1-NN48,16(96) 3.28 0.78 4.73 0.87 4.59 0.70

1-NN48,16(192) 4.61 0.65 7.55 0.71 6.91 0.58

Table 8: Forecasting performance expressed as RMSE and R2 for 1-ahead neural network models of
size [48, 16] with varying lag orders p. Performance was evaluated by generating recursive forecasts
on the test set. In bold: for each target variable, it’s highest quality prediction with respect to
either RMSE or R2.
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Diebold-Mariano

Models H WH2 WH3 WH5

VECM(192) 1-NN48,16(96)

1 1.0000 0.9984 1.0000

8 0.9399 0.9972 1.0000

24 0.8470 0.9995 0.9999

48 1.0000 1.0000 1.0000

96 0.9957 1.0000 0.9950

1-NN48,16(96) VECM(192)

1 0.0000 0.0016 0.0000

8 0.0601 0.0028 0.0000

24 0.1530 0.0005 0.0001

48 0.0000 0.0000 0.0000

96 0.0043 0.0000 0.0050

Table 9: P-values of the Diebold-Mariano test applied to predictions at specific horizons H of the
VECM(192) model and the 1-NN48,16(96) model. The null hypothesis is that the performance is
the same, the alternative hypothesis is that the second (rightmost) model has a better performance.
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Dry weather Moderate rainfall

Dry, after rainfall Heavy rainfall

Figure 5: Exemplary selection of WH2, WH3 and WH5 water levels, and the recursive forecasts
generated by the 1NN48,16(96) model. Captions indicate the weather conditions on the day for
which the forecast was generated.

Let us then consider the ANN for direct forecasting. Again, we first determine the out-of-sample
forecasting RMSE and R2 for different model sizes, to get an indication of their performance. We
trained networks of various sizes with lag order p = 96 using all observations of endogenous variables
in the next 24 hours as target variables. Thus, we can generate direct forecasts using these networks,
as described in Section 6.3.2. The results of these direct forecasts on the test set are shown in Table
10.

We are interested in the effect of lag order p on the direct forecasting performance. We trained
neural networks with 1 hidden layer of size 96 with varying lag order p and evaluated it’s perfor-
mance. The results are shown in Table 11.

To be able to assess overfitting of the direct forecasting models, in Figure 6 we show the history
of training and validation loss for various networks. Overfitting occurs for every direct forecasting
model, observed as a persistent higher validation loss than training loss. We see that the more
complex the model, the more prone it is to overfitting. Early stopping is therefore beneficial,
especially for the more complex models.

Additionally, we show in Figure 7 the visualization of the direct forecasts generated by the
D-NN96(96) model. We observe that the minimal and maximal water levels are properly predicted
by the model, but the timing and steepness of the fluctuations is not very accurate. The perfor-
mance metrics and visualizations for the D-NN model were presented to hydrologists at Waterschap
Zuiderzeeland: they indicated that the forecasts are accurate enough to be used for decision support
if they are generated for up to 24 hours ahead.
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The Diebold-Mariano test was performed on the predictions of the VECM(192) model and the
D-NN96(96) model. The results are in Table 12. We conclude that the D-NN96(96) forecasts are
significantly worse for short horizons (h = 1, 8, 24) and comparable to the VECM(192) forecasts
for longer horizons (h = 24, 48, 96). We observe that the D-NN96(96) model has a slightly better
performance for WH3 and WH5 at longer horizons, but this improvement is not significant at the
chosen level.

In an attempt to reduce overfitting of the models on the training data, we conducted an exper-
iment with a regularization technique. We are interested in the effect of applying dropout on the
forecasting performance of the larger networks. We trained neural networks of two sizes: [480] and
[480, 300], in which all hidden layers were subjected to the dropout technique. We then evaluated
their direct forecasting performance on the test set, and visualized the validation loss of the models:
the results are in Table 13, and the history plots are in Figure 8. We conclude that the application
of the dropout technique does not yield better results.

Model WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

D-NN8(96) 3.81 0.68 4.35 0.85 4.39 0.66

D-NN24(96) 2.37 0.89 3.20 0.92 2.76 0.84

D-NN48(96) 2.35 0.89 3.15 0.92 2.85 0.84

D-NN96(96) 2.68 0.89 3.11 0.92 2.49 0.86

D-NN200(96) 3.05 0.84 3.45 0.91 3.64 0.81

D-NN300(96) 4.20 0.83 4.22 0.89 3.72 0.80

D-NN480(96) 3.45 0.85 4.97 0.80 4.06 0.77

D-NN48,16(96) 2.63 0.86 4.23 0.91 2.76 0.85

D-NN48,48(96) 3.03 0.85 3.94 0.92 3.35 0.82

D-NN96,16(96) 2.46 0.88 4.16 0.90 2.57 0.85

D-NN96,48(96) 2.98 0.82 3.46 0.91 3.39 0.80

D-NN96,96(96) 3.75 0.80 4.46 0.89 3.20 0.81

D-NN200,96(96) 3.56 0.82 3.72 0.90 3.65 0.79

D-NN200,200(96) 3.72 0.81 4.18 0.87 3.48 0.79

D-NN300,200(96) 3.23 0.77 4.10 0.88 3.61 0.78

D-NN300,300(96) 3.47 0.82 4.34 0.88 3.47 0.77

D-NN480,300(96) 3.57 0.80 4.09 0.87 3.58 0.76

D-NN480,480(96) 4.26 0.80 4.39 0.88 4.15 0.76

Table 10: Forecasting performance expressed as RMSE and R2 for neural network models with lag
order p = 96. Performance was evaluated by generating direct forecasts on the test set. In bold:
for each target variable, it’s highest quality prediction with respect to either RMSE or R2.
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Model WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

D-NN96(8) 3.12 0.84 3.25 0.91 3.34 0.81

D-NN96(24) 3.06 0.85 3.61 0.89 2.99 0.82

D-NN96(48) 3.39 0.85 4.49 0.85 3.87 0.81

D-NN96(96) 2.68 0.89 3.11 0.92 2.49 0.86

D-NN96(192) 2.24 0.88 4.36 0.91 3.45 0.85

Table 11: Forecasting performance expressed as RMSE and R2 for neural network models with
varying lag orders p. Performance was evaluated by generating direct forecasts on the test set. In
bold: for each target variable, it’s highest quality prediction with respect to either RMSE or R2.

D-NN96(96) D-NN480(96)

D-NN96,16(96) D-NN480,300(96)

Figure 6: MSE measured on the training set and validation set after every training iteration, for
various neural network architectures.
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Dry weather Moderate rainfall

Dry, after rainfall Heavy rainfall

Figure 7: Exemplary selection of WH2, WH3 and WH5 water levels, and the direct forecasts
generated by the D-NN96(96) model. Captions indicate the weather conditions on the day for
which the forecast was generated.

Diebold-Mariano

Models H WH2 WH3 WH5

VECM(192) D-NN96(96)

1 1.0000 1.0000 1.0000

8 0.9999 1.0000 1.0000

24 0.9987 0.9942 0.4341

48 0.4596 0.0875 0.0826

96 0.4484 0.1384 0.0582

D-NN96(96) VECM(192)

1 0.0000 0.0000 0.0000

8 0.0001 0.0000 0.0000

24 0.0013 0.0058 0.5659

48 0.5404 0.9125 0.9174

96 0.5516 0.8616 0.9418

Table 12: P-values of the Diebold-Mariano test applied to predictions at specific horizons H of the
VECM(192) model and the D-NN96(96) model. The null hypothesis is that the performance is the
same, the alternative hypothesis is that the second (rightmost) model has a better performance.
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Model Dropout % WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

D-NN480(96) None 3.45 0.85 4.97 0.80 4.06 0.77

D-NN480(96) 30% 3.37 0.84 3.61 0.90 3.47 0.83

D-NN480(96) 50% 4.17 0.78 5.86 0.72 4.05 0.74

D-NN480(96) 60% 3.19 0.86 3.56 0.90 3.12 0.83

D-NN480(96) 70% 3.34 0.85 9.06 0.41 3.35 0.81

D-NN480(96) 80% 2.81 0.84 3.79 0.90 3.80 0.82

D-NN480(96) 90% 3.37 0.82 6.38 0.67 3.38 0.81

D-NN480,300(96) None 3.57 0.80 4.09 0.87 3.58 0.76

D-NN480,300(96) 30% 3.76 0.76 3.69 0.89 3.64 0.75

D-NN480,300(96) 50% 3.93 0.72 3.94 0.88 3.45 0.73

D-NN480,300(96) 60% 3.58 0.79 3.90 0.88 3.31 0.78

D-NN480,300(96) 70% 3.46 0.78 4.21 0.87 3.58 0.76

D-NN480,300(96) 80% 4.00 0.80 4.70 0.88 3.67 0.76

D-NN480,300(96) 90% 4.00 0.75 4.05 0.87 3.68 0.74

Table 13: Forecasting performance for neural networks subjected to the dropout technique. Per-
formance was evaluated by generating direct forecasts for the test set.
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D-NN480(96), 30% Dropout D-NN480(96), 80% Dropout

D-NN480,300(96), 30% Dropout D-NN480,300(96), 80% Dropout

Figure 8: MSE measured on the training set and validation set after every training iteration, for
the two neural network architectures subjected to the dropout technique.

7.3 Recurrent Neural Networks

We begin by measuring RMSE and R2 of the forecasts generated by each of the 3 RNN architectures.
For each architecture, we generated models with various sizes. We also experimented with LSTM
neurons and GRU neurons in models of the first architecture with the same size. Conditional
forecasts were generated for the data in the test set using the different methods described in Section
5.4. The results are in Tables 14, 15 and 22.

We observe that recursive forecasting using RNNs (the 1-RNN models) yield even worse results
than the recursive ANN models. A possible reason for this is that the error accumulation occurs
both in the hidden states and in the input data for recursive forecasting RNNs. It also becomes
clear that models with GRU neurons consistently yield better results than LSTM neurons.

Additionally, we see that the results of the XY-RNN are slightly worse than the D-NN results on
average. Moreover, the XY-RNN models are unable to yield better results than the VAR/VECM
models. The results of the Diebold-Mariano test applied the to predictions of the VECM(192) model
and the XY-GRU25 model are shown in Table 16. We see that for h = 1, 8, 24 the VECM(192) is
significantly better, for h = 48 the performance is comparable, and only for the very long horizon
h = 96 the XY-GRU25 is able to improve the performance. This can probably be explained by
looking at the forecasting methods use by the models: the VECM(192) can use the most recent
observations as input for short horizons, whereas the performance of the XY-RNN suffers from
the large time-shifts in the input data. On the other hand, the XY-RNN does not suffer from an
accumulation of error in the input data, resulting in a better performance as h increases.

We also investigate the difference in performance between the ED-RNN architecture and the
VAR/VECM models, as well as the D-NN models. The corresponding Diebold-Mariano tests are
shown in Table 18. The ED-RNN does not significantly outperform the VECM(192) and D-NN
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models. If we compare its performance with the VECM(192), we see that the ED-RNN performs
significantly worse for short forecasting horizons but improves the performance at longer forecasting
horizons. We also see that the ED-RNN is significantly better than the D-NN model at short
forecasting horizons for some target series, and comparable for almost all other horizons. We thus
conclude that, similar to all other alternatives considered, the ED-RNN architecture is unable to
improve the performance of the VECM(192) model at very short horizons, and that for longer
forecasting horizons, the performance is comparable to the D-NN.

To determine if the RNN models overfit during training, we studied the RMSE on the training
set and validation set after each iteration. A selection of visualizations of these series are shown in
Figure 9. We conclude that the models trained for forecasting multiple time steps into the future
suffer from overfitting, and that therefore early stopping of training is beneficial.

Lastly, we are again interested in the shape of the prediction series when compared with the
actual series. Figure 10 contains visualizations of the same dates and target series as before, with
each plot showing both the actual values and the forecasts generated by the model. From this,
we conclude that the timing and steepness of fluctuations are more accurately predicted by the
ED-RNN model compared to the D-NN, except for situations with heavy rainfall.

Model WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

1-LSTM25 7.00 0.48 20.84 0.55 6.65 0.48

1-GRU25 6.47 0.57 7.32 0.72 5.01 0.64

1-LSTM50 12.66 0.00 24.83 0.35 17.21 0.00

1-GRU50 4.04 0.70 9.90 0.41 3.97 0.69

1-GRU100 5.83 0.40 11.09 0.64 7.22 0.35

1-GRU50,16 6.83 0.61 8.71 0.54 6.87 0.50

1-GRU50,50 5.49 0.60 8.79 0.56 5.75 0.39

1-GRU100,50 5.15 0.69 8.96 0.67 6.20 0.52

Table 14: Forecasting performance expressed as RMSE and R2 of RNN models for 1-ahead predic-
tions. Performance was evaluated by generating recursive forecasts on the test set. In bold: for
each target variable, it’s highest quality prediction with respect to either RMSE or R2.
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Model WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

XY-GRU16 3.40 0.81 3.79 0.89 3.56 0.71

XY-GRU25 3.35 0.81 3.47 0.91 2.83 0.81

XY-GRU50 4.07 0.78 4.43 0.86 3.71 0.76

XY-GRU100 3.81 0.78 3.97 0.87 3.32 0.77

XY-GRU200 4.18 0.71 4.68 0.83 3.76 0.71

XY-GRU16,16 3.20 0.80 3.58 0.89 3.65 0.73

XY-GRU25,25 3.83 0.78 4.03 0.87 3.47 0.74

XY-GRU50,16 3.68 0.81 3.83 0.90 3.21 0.77

XY-GRU50,50 4.45 0.74 4.17 0.87 4.04 0.70

XY-GRU100,50 3.01 0.81 3.94 0.90 3.27 0.78

XY-GRU100,100 3.73 0.80 3.89 0.88 3.40 0.74

Table 15: Forecasting performance expressed as RMSE and R2 of RNN models with time-shifted
input series. Performance was evaluated by generating forecasts on the test set. In bold: for each
target variable, it’s highest quality prediction with respect to either RMSE or R2.
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Diebold-Mariano

Models H WH2 WH3 WH5

VECM(192) XY-GRU25

1 1.0000 1.0000 1.0000

8 1.0000 1.0000 1.0000

24 0.9998 0.9987 0.9999

48 0.8676 0.5484 0.6229

96 0.1271 0.0006 0.0000

XY-GRU25 VECM(192)

1 0.0000 0.0000 0.0000

8 0.0000 0.0000 0.0000

24 0.0002 0.0013 0.0001

48 0.1324 0.4516 0.3771

96 0.8729 0.9994 1.0000

Table 16: P-values of the Diebold-Mariano test applied to predictions at specific horizons H of the
VECM(192) model and the XY-GRU25 model. The null hypothesis is that the performance is the
same, the alternative hypothesis is that the second (rightmost) model has a better performance.

Model WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

ED-GRU8,8 2.98 0.84 5.39 0.78 3.01 0.80

ED-GRU8,12 2.51 0.87 3.31 0.92 2.74 0.83

ED-GRU12,12 2.37 0.87 3.24 0.92 2.79 0.83

ED-GRU25,25 2.85 0.85 3.23 0.92 3.00 0.79

ED-GRU25,50 2.95 0.86 3.04 0.93 2.85 0.84

ED-GRU50,25 3.28 0.85 3.31 0.92 2.84 0.83

ED-GRU50,50 3.04 0.84 3.49 0.91 2.87 0.82

Table 17: Forecasting performance expressed as RMSE and R2 of Encoder/Decoder RNN models
with exogenous variables. Performance was evaluated by generating forecasts on the test set. In
bold: for each target variable, it’s highest quality prediction with respect to either RMSE or R2.
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Diebold-Mariano

Models H WH2 WH3 WH5

VECM(192) ED-GRU25,50

1 1.0000 1.0000 1.0000

8 0.9997 0.9946 0.9943

24 0.9980 0.9641 0.9764

48 0.7205 0.1336 0.5091

96 0.1522 0.2375 0.0104

ED-GRU25,50 VECM(192)

1 0.0000 0.0000 0.0000

8 0.0003 0.0054 0.0057

24 0.0020 0.0359 0.0236

48 0.2795 0.8664 0.4909

96 0.8478 0.7625 0.9896

D-NN96(96) ED-GRU25,50

1 0.4721 0.0000 0.1162

8 0.9083 0.0001 0.0393

24 0.4827 0.0388 0.8380

48 0.7659 0.4619 1.0000

96 0.4266 0.5855 0.5920

ED-GRU25,50 D-NN96(96)

1 0.5279 1.0000 0.8838

8 0.0917 0.9999 0.9607

24 0.5173 0.9612 0.1620

48 0.2341 0.5381 0.0000

96 0.5734 0.4145 0.4080

Table 18: P-values of the Diebold-Mariano test applied to predictions at specific horizons H of the
VECM(192) model, the D-NN96(96) model and the ED-GRU25,50 model. The null hypothesis is
that the performance is the same, the alternative hypothesis is that the second (rightmost) model
has a better performance.
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1-GRU50 XY-GRU25

ED-GRU12,12 ED-GRU25,50

Figure 9: MSE measured on the training set and validation set after every training iteration, for
various RNN architectures.

Dry weather Moderate rainfall

Dry, after rainfall Heavy rainfall

Figure 10: Exemplary selection of WH2, WH3 and WH5 water levels, and the forecasts generated
by the ED-GRU25,50 model. Captions indicate the weather conditions on the day for which the
forecast was generated.
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7.4 Model Comparison

Since we generate forecasts for multiple time steps into the future, the error is expected to increase
as we are further away from the forecast origin. To illustrate this, we report the average RMSE
for the WH2 forecasts, conditioned on the hour of the day. Note that Hour = 12 corresponds
to forecasts T + 1, . . . , T + 4 and Hour = 11 corresponds to T + 93, . . . , T + 96. We report in
Table 19 the metrics for the VECM(192) time series model, the recursive- and direct forecasting
ANNs, and the ED-RNN model. Our first conclusion is that the two recursive forecasting models
have a much better performance for the very short horizons, which we had already concluded from
Tables 12 & 18 for the VECM(192) model. Then, for the two recursive forecasting models, we
observe a monotonous increase in the error per hour, which can be attributed to the accumulation
of errors over multiple time steps into the future. For the D-NN and ED-RNN models however, we
occasionally observe a decrease in the error per hour. This could be due to the fact that certain
horizons, such as exactly 12 hours into the future, are easier to forecast due to the strong daily
pattern in the data. Lastly, we observe that the accumulation of errors leads to a strictly worse
performance for the recursive forecasting models for forecasting horizons greater than 19 hours.

Additionally, we are interested in the forecasting performance only at times Ti+96, as described
in Section 6.3.2. At that forecasting horizon, the direct forecasting methodology does not utilize
information that is not used by the recursive methodology. The results are shown in Table 20.
We observe that the performance of the 1-NN48,16(96) is very bad at this long forecasting horizon.
We also observe that the performance of the others forecasting models is much worse compared to
their performance at times Ti + 1, . . . , Ti + 96, but relative to each other they remain nearly equal.
Comparing the VECM, D-NN and ED-RNN model predictions, it becomes clear that there is no
substantial shift in relative model performances when evaluating only Ti + 96 or when evaluating
Ti+1, . . . , Ti+96. This becomes especially clear when we look at the results of the Diebold-Mariano
tests for H = 96 in Tables 12 & 18. The performance of these models remains comparable, whereas
we were worried that the D-NN would perform significantly worse at times Ti + 96. Thus, we see
no clear indication that the direct forecasting methodology provides a big advantage when it comes
to the utilization of exogenous features in this conditional forecasting problem.
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Hour VECM(192) 1-NN48,16(96) D-NN96(96) ED-GRU25,50

12 0.47 0.70 1.25 1.28

13 0.73 0.91 1.16 1.39

14 1.01 1.15 1.33 1.88

15 1.22 1.36 1.67 2.17

16 1.47 1.53 1.94 2.24

17 1.71 1.88 2.06 2.23

18 1.81 2.16 2.45 2.32

19 1.89 2.26 2.7 2.30

20 1.95 2.31 2.87 2.24

21 2.05 2.46 2.65 2.22

22 2.18 2.66 2.36 2.33

23 2.45 2.89 2.36 2.50

0 2.64 3.17 2.48 2.70

1 2.79 3.42 2.6 2.96

2 2.98 3.65 2.95 3.39

3 3.16 3.9 3.41 3.74

4 3.33 4.11 3.52 3.97

5 3.47 4.24 3.39 3.93

6 3.55 4.32 2.93 3.79

7 3.58 4.4 2.78 3.68

8 3.71 4.49 2.94 3.65

9 3.82 4.56 3.11 3.66

10 3.96 4.68 3.35 3.68

11 4.09 4.8 3.81 3.75

Table 19: Forecasting RMSE for the WH2 water levels conditioned on the hour of the day. Forecasts
are generated by the VECM(192) model, neural networks for recursive forecasting (1-NN48,16(96))
and direct forecasting (D-NN96(96)), as well as the ED-GRU25,50 RNN.
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Model WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

Baseline 4.58 0.46 5.64 0.76 5.52 0.32

VECM(192) 4.08 0.68 4.46 0.85 4.68 0.56

1-NN48,16(96) 6.50 0.38 6.26 0.76 10.69 0.27

D-NN25(96) 3.97 0.71 4.13 0.87 3.50 0.67

ED-GRU25,50 3.77 0.74 4.27 0.86 3.80 0.69

Table 20: Forecasting performance expressed as RMSE and R2 of the predictions at times Ti + 96.
Forecasts are generated by the naive baseline model, the VECM(192) model, neural networks
for recursive forecasting (1-NN48,16(96)) and direct forecasting (D-NN96(96)), as well as the ED-
GRU25,50 RNN.

As stated before, the testing and training set are imbalanced when it comes to total precipitation
per day. It is interesting to see how this influences the performance of the models. Therefore, we
wish to know what the forecast quality is on those days where rainfall was recorded. This is done by
taking samples of y and ŷ, for days on which a certain amount of rain has fallen, and determining
the forecasting quality for that sample. Table 21 shows the forecasting performance, expressed in
RMSE, for days conditioned on this minimal daily precipitation sum.

From Table 21, we conclude that the data is severely imbalanced: only a small portion of 35%
of the days has a total precipitation of more than 1 mm, which is not much. The negative impact
on the model performance becomes clear: for each of the models, we observe an almost monotonous
increase in error as the precipitation sum goes up. We also conclude that the D-NN and ED-RNN
models appear to be the most robust to the imbalance in the dataset, and that the recursive models
perform much worse in situations with moderate to heavy rainfall.
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Precipitation VECM(192) 1-NN48,16(96) D-NN96(96) ED-GRU25,50 % of days

≥ 0 mm 2.6 3.28 2.68 2.95 100%

≥ 0.5 mm 3.5 4.07 2.98 3.00 42%

≥ 1 mm 3.72 4.34 3.13 3.07 35%

≥ 2 mm 3.65 4.05 3.18 3.22 27%

≥ 4 mm 3.98 4.1 3.32 3.24 18%

≥ 6 mm 4.48 3.82 3.32 3.38 11%

≥ 8 mm 4.69 3.75 3.39 3.46 8%

≥ 10 mm 5.68 4.13 3.77 3.81 6%

≥ 15 mm 3.41 4.58 4.02 4.12 2%

≥ 20 mm 4.12 5.05 5.08 4.01 1%

Table 21: Forecasting RMSE for the WH2 water levels conditioned on days with a minimal total
precipitation. Forecasts are generated by the VECM(192) model, neural networks for recursive
forecasting (1-NN48,16(96)) and direct forecasting (D-NN96(96)), as well as the ED-GRU25,50 RNN.
Last column shows the fraction of days in 2018 that belong to the sample which we evaluated.

Besides contrasting the predictions generated by each of the model architectures, it might also be
useful to see how they could complement each other. For this, we evaluated the forecast performance
when the predictions of 2 or more different models are averaged at each time step. The results of
this approach are the predictions of an ensemble model. The intuition behind an ensemble model
is that by combining the predictions of individual models, overfitting is reduced and random errors
due to misspecification are to some extent cancelled out, while the predictive power is retained.
The ensemble models show that there is still room for improvement.
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Ensemble WH2 WH3 WH5

RMSE R2 RMSE R2 RMSE R2

ED-GRU12,12, ED-GRU25,50 2.47 0.88 3.00 0.93 2.63 0.85

D-NN48, D-NN96 2.38 0.90 2.94 0.93 2.47 0.86

ED-GRU12,12, D-NN96 2.28 0.90 2.88 0.94 2.29 0.88

ED-GRU25,50, D-NN96 2.65 0.90 2.79 0.94 2.34 0.88

ED-GRU12,12, D-NN48 2.19 0.90 2.82 0.93 2.45 0.87

ED-GRU12,12, ED-GRU25,50,

D-NN96

2.39 0.90 2.81 0.94 2.32 0.88

D-NN24, D-NN48, D-NN96 2.26 0.91 2.93 0.93 2.43 0.87

ED-GRU12,12, ED-GRU25,25,

ED-GRU25,50, ED-GRU50,25

2.66 0.88 2.96 0.93 2.57 0.85

ED-GRU12,12, ED-GRU25,50,

D-NN48, D-NN96

2.29 0.91 2.71 0.94 2.25 0.89

ED-GRU12,12, ED-GRU25,25,

ED-GRU25,50, ED-GRU50,25,

D-NN24, D-NN48, D-NN96

2.37 0.90 2.74 0.94 2.21 0.89

Table 22: Forecasting performance expressed as RMSE and R2 of ensemble models containing
one or more Encoder/Decoder RNN models and/or ANN for direct forecasting with lag p = 96.
Performance was evaluated by generating forecasts on the test set using each of the models in the
ensemble, and then taking the average of the predictions at each time step. In bold: for each target
variable, it’s highest quality prediction with respect to either RMSE or R2.

7.5 Conditional Forecasting

Let us now use the time series models to generate conditional forecasts for hypothetical scenario’s.
We do this by explicitly defining the future paths for one or more of the exogenous variables. The
first scenario we decide to evaluate is a decrease in flow rates. The alternative exogenous future
path has flow rates that are lower (less pumping) and with different timing (FR2000 is activated
later, FR2200 is de-activated earlier) In a real-life scenario, this would correspond to taking less
extreme water management actions, in order to save energy. In Figure 11, we visualize the data
subset that was selected from the test set, and the alternative scenario for which we generate a
conditional forecast.
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Original Flow Rates Original Precipitation

Alternative Flow Rates

Figure 11: Visualization of the exogenous variables used to generate the original prediction and the
alternative prediction for February 2, 2018.

In Figures 12, 13, 14 and 15 we show the result of this conditional forecasting scenario for each
of the modelling architectures. The original water level is plotted to provide an indication of the
quality of the original prediction. Hydrologists at Waterschap Zuiderzeeland indicated that, based
on their domain experience, this alternative pumping scenario should result in higher water levels
with a delayed peak. The alternative D-NN forecasts did not contain the expected delayed peaks,
and for WH3 it has mostly lower water levels, which is unrealistic. The alternative VECM and ED-
RNN forecasts did contain the expected changes compared to the original scenario. The same holds
for the 1-NN model, but we observe that the original forecast was of terrible quality. According
to the knowledge and experience of the hydrologists at Waterschap Zuiderzeeland, the alternative
forecasts of the VECM and ED-RNN model are therefore realistic and could be used for real-life
scenario evaluation.

Figure 12: Actual water height, original forecast and conditional forecast on February 2, for target
series WH2 and WH3. Predictions are generated by the VECM(192) model.
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Figure 13: Actual water height, original forecast and conditional forecast on February 2, for target
series WH2 and WH3. Predictions are generated by the 1-NN48,16(96) model.

Figure 14: Actual water height, original forecast and conditional forecast on February 2, for target
series WH2 and WH3. Predictions are generated by the D-NN96(96) model.

Figure 15: Actual water height, original forecast and conditional forecast on February 2, for target
series WH2 and WH3. Predictions are generated by the ED-RNN25,50 model.

Let us then consider another scenario. This time, we wish to look at a day without significant
rainfall and with a generic sequence of flow rates. We are then interested in the effect of alternative,
heavy rainfall on such a common day. In a real-life scenario, this would provide the water managers
with an indication of the impact of rain on the water levels if they do not take precautionary action.
A visualization of the data subset for this scenario is shown in Figure 16.
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Original Precipitation Original Flow Rates

Alternative Precipitation

Figure 16: Visualization of the exogenous variables used to generate the original (old) conditional
forecast and the alternative (new) prediction for August 17, 2018.

In Figures 17, 18, 19 and 20 we show the result of this second conditional forecasting scenario.
The original water level is plotted to provide an indication of the quality of the original prediction.
Hydrologists at Waterschap Zuiderzeeland indicated that, based on their domain experience, this
alternative pumping scenario should result in slightly higher water levels. The increase in water
levels as predicted by the VECM and 1-NN models is highly unrealistic: this is likely related to
the bad performance of these models in situations with moderate to heavy rainfall, as observed
in Table 21. The alternative D-NN forecasts does contain the expected increased water height,
however, not during the first few hours of the WH3 forecasts, which is unrealistic: this could be
caused by the use of exogenous variables at time steps after the forecasting horizon. The alternative
ED-RNN forecasts did contain the expected changes compared to the original scenario, however, the
forecasts occasionally contains peeks that appear to be too extreme. According to the knowledge
and experience of the hydrologists at Waterschap Zuiderzeeland, the alternative forecasts of the
ED-RNN model are realistic and could be used for real-life scenario evaluation.
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Figure 17: Actual water height, original forecast and conditional forecast on August 17, for target
series WH3 and WH5. Predictions are generated by the VECM(192) model.

Figure 18: Actual water height, original forecast and conditional forecast on August 17, for target
series WH3 and WH5. Predictions are generated by the 1-NN48,16(96) model.

Figure 19: Actual water height, original forecast and conditional forecast on August 17, for target
series WH3 and WH5. Predictions are generated by the D-NN96(96) model.
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Figure 20: Actual water height, original forecast and conditional forecast on August 17, for target
series WH3 and WH5. Predictions are generated by the ED-RNN25,50 model.
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8 Conclusion

This work describes a practical situation in which the application of forecasting models could
lead to energy efficiency and decreased risk in water level management. In consultation with the
Waterschap Zuiderzeeland, the problem was formalized as conditional forecasting of time series
measurements of hydrological variables. Our modelling choices, e.g. the forecasting horizon and
the inclusion of future paths of exogenous variables, ensure that the resulting forecasting problem
imitates a real-life forecasting task.

We have proposed a novel architecture for conditional forecasting with RNNs. Our approach,
described as an Encoder/Decoder with Exogenous Variables RNN (ED-RNN) model, is intuitive in
its memory management, can be easily extended and is flexible with regard to the inclusion of past
observations and future paths of exogenous variables. It combines the ideas of sequence-to-sequence
(Seq2Seq) RNN models with the conditional forecasting literature, resulting in a model architecture
that can be used for modelling in all sorts of time series problems.

The performance on the conditional forecasting problem was evaluated by fitting various models
of the ED-RNN architecture and other time series models in our experiments. We show that
on this specific forecasting problem, for the longer forecasting horizons, the results of the ED-
RNN are comparable to the best performing time series model (the D-NN) and better than the
other alternatives considered. We also show that the predictions generated by the ED-RNN more
accurately capture short-term fluctuations in the water heights than the predictions of the D-NN.
Additionally, the ED-RNN consistently generates realistic alternative conditional forecasts, unlike
the other alternative models considered. Therefore, the model is applicable for real-life scenario
evaluation and decision support by the Waterschap Zuiderzeeland.

Balancing the dataset was not investigated. A balanced dataset is important for machine learn-
ing models such as the ANN and RNN: if certain patterns (such as wet weather conditions) occur
rarely in the data, the models tend to perform poorly in such situations. We showed that this is the
case for daily precipitation sum in our data, and concluded that the ED-RNN architecture appears
to be among the most robust models under such circumstances.

Our search for good hyperparameter values, such as the model size, lag parameter, number
of iterations and stopping criterion, was not exhaustive. Inclusion of more features was also not
investigated: this could improve the performance at the cost of longer training times. Hence, there
is still room for improvement of the models presented in this thesis. We conclude that our ED-
RNN model architecture is a very interesting option for conditional forecasting with RNNs and that
more empirical evaluation is needed to compare its performance with that of alternative modelling
techniques.
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9 Future Work

As mentioned before, more empirical evaluation could be done to determine the best forecasting
model for practical use by the Waterschap Zuiderzeeland. This search should not only include the
hyperparameters of the model, but also the timeframe of the data, its granularity and the number
of variables used as either exogenous or endogenous. In addition, a pilot project in which the
forecasting models are used in real-life situations could point out the true applicability and create
additional opportunities for improvement.

The novel Encoder/Decoder with Exogenous Variables RNN architecture can be further exam-
ined in the context of time series analysis and conditional forecasting. For example, the implications
of including certain variables in either the encoding or decoding step are an interesting subject for
further study. Testing the performance of the ED-RNN model on benchmark conditional forecast-
ing tasks could also provide insight in how the model compares to other architectures. Lastly,
the flexibility of the model allows it to model sequence data from different domains: the inclusion
of exogenous variable during decoding could potentially also lead to improvements in modelling
accuracy in other contexts.
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