
A Convolutional Neural Attention
Approach to the Identifier Naming

Problem in Program Code

Wout Elsinghorst

Master Thesis Computing Science
(ICA-3344819)

Supervisors:

dr. J. Hage dr. A. J. Feelders

Utrecht University
Department of Information and Computing Science

Abstract

Conditional random fields were previously used by Raychev, Vechev, and Krause, 2015 in a solution to the
VarNaming problem (Allamanis, Barr, Bird, & Sutton, 2014), which is defined as the problem of assigning
good, mutually consistent names to the various locally defined variable identifiers within a piece of source code.
The conditional random field model assigns probabilities to each possible assignment of names to the various
variable identifiers and then tries to find the assignment of maximum probability. By design, the implementation
of the conditional random field model of Raychev et al., 2015 makes some locality assumptions during inference
which might preclude it from obtaining a more global picture of the optimal names that should be assigned to
each identifier.

In recent years, convolutional neural networks have become invaluable tools in the area of computer vision
and image processing. Convolutional neural networks allow for state of the art prediction performance in
the task of image classification by aggregating local information into a hierarchy of increasingly higher level
features that eventually inform the final prediction. In this thesis, we propose (and experimentally verify)
an application of convolutional neural network architectures to the domain of inferring good identifier names
by interpreting a particular graph based representation of the source code as some sort of generalized image.
From this perspective, source code identifiers are to be seen as pixels belonging to some higher dimensional
picture, with the normal adjacency relations between pixels being replaced by various syntactic and semantic
relations that are extracted from the source code. Interpreted this way, standard convolutional architectures
become applicable to the source code domain, and the goal is to design a convolutional architecture that can
complement the conditional random field model by extracting a set of distinctive -higher order- features that
can be used to improve the initial predictions made by the conditional random field model.

Although the idea is seemingly straightforward, a concrete implementation of this idea raises many technical
and conceptual questions. Topologically, these generalized images are a lot more complicated than their ordi-
nary two dimensional counterparts, with the generalized variant possibly being as complicated as any general
multigraph. The adjacency relation between the pixels is very sparse, by which we mean that almost all ’pixels’
lie on the border, that, even in the conventional setting, makes them more difficult to handle. Typical concepts
like K-by-K receptive fields, stride, pooling, etc. need to be re-evaluated in this new environment. Another
serious difference is the fact that in our generalized setting, pixel values are now categorical instead of numeri-
cal. At first glance this prevents us from applying any numerical kernel operations, like averaging over the pixel
values in a neighborhood, but by adequately embedding the categorical labels into a finite dimensional vector
space, the use of numerical kernels can be recovered.

This thesis is written to elaborate and verify the ideas sketched above. We define the problem and survey
the most important previous works in the area. We then rigorously introduce the tools and concepts needed to
understand the proposed framework. Alongside these specifics, a general introduction to the field of machine
learning is also given, so that our work might also be understood by the uninitiated. We assume no previous
machine learning experience. Once the stage is set, we will give a high level overview of the proposed architecture,
elaborating on the individual components and on their various interactions. As a companion to the theoretical
description of the proposed architecture, we also provide a technical description of a concrete framework that
implements these ideas. Finally, the utility of this framework is demonstrated by a series of carefully crafted
experiments.

Contents

1 Introduction 1
1.1 Previous Work . 2
1.2 Convolutional Neural Networks . 3
1.3 Problem Statement . 3
1.4 Abstract Representation . 4
1.5 Conditional Random Field Foundations . 6
1.6 Research Questions . 8
1.7 Document Overview . 9

2 Preliminaries 10
2.1 What We Are Learning . 10
2.2 Performance Metrics . 12
2.3 Model Validation . 12
2.4 Significance Testing . 13
2.5 Parametric Models . 13
2.6 Parameter Estimation/Optimization . 20
2.7 Loss Functions . 22

3 Previous Work 24
3.1 Predicting Program Properties from "Big Code" . 24
3.2 A General Path-based Representation for Predicting Program Properties 25
3.3 Code2Vec: Learning Distributed Representations of Code . 25
3.4 Efficient Estimation of Word Representations in Vector Space . 26

4 Approach 27
4.1 Knowledge Representation . 27
4.2 Neighborhood Information Aggregation . 29
4.3 The Problems of Generalization . 30
4.4 Embeddings of Discrete Data . 31
4.5 Graph Neighborhood Embeddings . 32
4.6 Averaging Neighborhoods with Attention . 34
4.7 Graph Convolutions . 35
4.8 Training Objective . 35

5 Architecture 37
5.1 Discrete Data Types . 37
5.2 Continuous Data Types . 39
5.3 Implementation . 40
5.4 Configuration . 43

i

6 Experimental Verification 45
6.1 Implementation . 45
6.2 Baseline Experiments . 46
6.3 Design Space . 48
6.4 Model Fitting . 53
6.5 Dataset Preparation . 53
6.6 Layer Connectivity . 58
6.7 Combining Classifiers . 62
6.8 Evaluation / Performance . 63
6.9 Extension Experiments . 65
6.10 Standalone Experiments . 75
6.11 Pipelining Experiments . 81

7 Related Work 82
7.1 Identifier Inference . 82
7.2 Embedding Techniques . 84
7.3 Attention Mechanisms . 85

8 Conclusion 87
8.1 Research Questions . 87
8.2 Future Work . 88

Appendices 93

A Experimental Results 93
A.1 Augmented Classifiers . 93
A.2 Refinement Classifiers . 96
A.3 Standalone Classifiers . 99
A.4 Centerless Classifiers . 100

ii

Chapter 1

Introduction

Writing code is easy, but reading code is hard. Understanding unfamiliar code is aided by recognizing common
idioms and trusting identifier names in explaining intended meaning. Studies (Liblit, Begel, & Sweetser, 2006;
Lawrie, Morrell, Feild, & Binkley, 2006; Binkley et al., 2013) have shown that good identifier naming is crucial
here: the name of an identifier denotes its intended purpose, and if the names of identifiers match the structure of
the surrounding code, then an experienced programmer will immediately recognize the function of the fragment
without actively having to think about it, thus reducing mental strain on programmers unfamiliar with the
codebase.

function findNode(tree, targetKey) {
var currentNode = tree;

while (currentNode != null) {
if (targetKey == currentNode.key) {

break;
} else
if (targetKey < currentNode.key) {

currentNode = currentNode.leftChild
} else
if (targetKey > currentNode.key) {

currentNode = currentNode.rightChild
}

}

return currentNode;
}

Figure 1.1: Clear, beautiful code.

Let us take a look at the code snipped shown in figure 1.1. Even programmers unfamiliar with the JavaScript
language will most likely infer the correct meaning of this code snippet due to the recognizable code structure
combined with the informative names attached to the identifiers. More importantly, experienced programmers
will probably do so almost instantly. Having seen the common pattern before, they subconsciously verify the
correctness of the piece by recursively performing a top-down deconstruction of the fragment into its individual
components while simultaneously verifying at each level that the individual components indeed combine as was
advertised by their encompassing description. The snippet above can be contrasted to the variant shown in figure
1.2, which is semantically and operationally the same, but with undescriptive names being assigned to the various
identifiers. To understand the meaning of this version, the programmer has to mentally execute the fragment
by systematically analyzing the meaning of each atomic component and by then bottom-up reconstructing the
meaning for the whole by combining the meaning found for the parts. For larger fragments this process quickly
becomes infeasible for most programmers, resulting in them being unable to obtain a clear mental picture of

1

function a(b, c) {
var d = b;

while (d != null) {
if (c == d.e) {

break;
} else
if (c < d.e) {

d = d.x
} else
if (c > d.e) {

d = d.y
}

}

return d;
}

Figure 1.2: Unreadable, unmaintainable code

the overall operation. It is clear that to obtain understandable and maintainable code, some thought must be
given to the names assigned to the various identifiers.

Unfortunately giving good names to identifiers is not an easy task. Different languages have different naming
conventions, complex data types have complex purposes and thus a wide variety of names will usually seem to
qualify. There is no real objective way to select the best of these possible names, and picking the right name
is more of an art than a science. Nonetheless, some names are picked more often than others, and choosing a
name which matches other programmer’s expectations as best as possible is important as they can then more
easily match the code with other similar pieces of code which they might have encountered earlier, thus allowing
them to leverage previous experience in the current setting.

It now becomes clear that having good tooling which helps the programmer make these naming decisions
is paramount. With this thesis we explore the design of a deep convolutional neural architecture which helps
the programmer with assigning good, mutually consistent names to the identifiers within a piece of code. The
model will be informed by the names assigned to similar identifiers which were found in similar pieces of code,
all obtained from a large corpus of pre-existing code bases. This allows the model to make suggestions which are
in line with the names previously given by other programmers to identifiers which occurred in similar contexts.

1.1 Previous Work
We are certainly not the first researchers to tackle the problem of identifier name prediction. Previously,
Allamanis, Barr, Bird, and Sutton, 2015, Raychev et al., 2015 and later Alon, Zilberstein, Levy, and Yahav,
2018 and Alon, Zilberstein, Levy, and Yahav, 2019 have pursued this problem in one form or another. For our
work here we will take the precise problem attacked in (Raychev et al., 2015) as our problem definition, which is
the problem of assigning good names to any locally declared variables in the program (the VarNaming problem,
see section 1.3). In their paper, Raychev et al., 2015 show how conditional random fields can be used to obtain
state-of-the-art results in this specific problem domain.

For our work, we started with using this conditional random field model to explore how much room we have
for improvement. When using their model, configured with the optimal hyperparameters that were recorded in
their paper, we achieved a TOP-1 validation accuracy of around 69 percent on our dataset. When looking at
their TOP-2 and TOP-3 validation accuracies, however, we found that their model attains accuracies of around
respectively 73 and 74 percent. It seems that in around 5 percent of the cases, the conditional random field
makes a wrong prediction while the correct answer was actually within reach, with the correct answer belonging
to the three candidates which the model deemed the most likely to be correct. We’ve written down these findings
in table 1.1. Our main goal for this thesis is to construct an auxiliary model which can improve the ranking
of these TOP-3 (or actually TOP-K for any choice of K ∈ N) candidate predictions by utilizing a (convolutional)

2

neural network architecture that is able to use both local and global source code-derived information to make
improvements to the already given conditional random field predictions. We will note here that the existing
conditional random field model is explicitly not a neural network model; we hope that the utilization of a neural
network will offer a complementary view on the situation that allows for overall better informed predictions.

TOP-1 TOP-2 TOP-3
69.00 72.78 73.87

Table 1.1: Validation accuracies for the baseline model.

1.2 Convolutional Neural Networks
The main idea behind our line of research is to interpret a particular graph-based representation of the source
code as a generalized image, where the nodes in the (multi)graph are to be interpreted as pixels in a higher-
dimensional image and where the edges between the nodes correspond to generalized adjacency relations between
these pixels. The set of values from which the pixels now take their values is no longer a set of ordered pixel
intensities (e.g. red-green-blue values in either the range 0-255 or in the 0.0-1.0 range) but a discrete, unordered
set of all allowed identifier names.

Ordinary image-based convolution is based on using local averaging operators (so called kernels) which
calculate for each pixel position some quantity which represents how strongly some particular feature associated
to the respective kernel is present at that specific position. A kernel takes as input a neighborhood of pixels
centered at a specific location (typically a 3-by-3 or a 5-by-5 grid) and then calculates a weighted sum of the
values of the pixels in that neighborhood. The exact combination of weights given to the relative positions
around the center point determines how strongly the kernel responds (i.e. the magnitude of the resulting sum)
to a particular configuration of pixels, and thus how strongly the kernel thinks the corresponding feature is
present. Each kernel is evaluated at each pixel position, and by combining a broad ensemble of kernels we
obtain varied characterisations of the contents of the neighborhoods around each location. Individual kernels
can be designed to respond to the presence of sharp edges, lines, color combinations, etc., and by feeding the
output of a layer of kernels as input to a subsequent layer of (different) kernels, we can detect the presence of
features of increasingly higher complexity. If the first layer detects the presence of particularly oriented line
segments, the second layer might be able to detect whether the right combination of line segments is present to
constitute the presence a single finger, and the kernels in the third layer might try to respond strongly to the
presence of precisely five fingers to detect a complete hand. The purpose of deep convolutional networks in the
context of image processing is to detect a hierarchy of features, of increasingly higher level, which ultimately
serve as good indicators to make a confident final prediction.

In the case of image processing, the prediction made can be the assignment of a label to the picture which
classifies its contents (e.g. ’dog’, ’cat’ or ’human’), it can be a numerical value (e.g. the number of people
in the picture), or the prediction can itself even be an image (e.g. the prediction of the face of a celebrity
superimposed on a picture of yourself making funny facial expressions, with the imposed celebrity having
matching facial expressions). With the perspective of interpreting a graph-based representation of a piece of
source code as a generalized image, we would like to implement a convolutional architecture which takes as
input a graph-represented version of the source code (i.e. the picture), stripped of a subset of the identifier
names (but with all other names and relations intact), and which outputs a reconstructed version of the graph
where all missing identifier names have been given names which make sense given the context in which they
were used. The idea here is that the stacked convolutional layers will be able to obtain a higher level, global,
overview of the program, which, together with the local first-order information from the direct neighbors, will
be sufficient to make accurate predictions.

1.3 Problem Statement
In the previous sections we’ve argued that predicting good identifier names is very important. As we mentioned
before, for our purposes we will limit ourselves to tackle the more restricted VarNaming problem (Allamanis
et al., 2014; Raychev et al., 2015) for whole programs, where the objective is to assign good, semantically rich

3

names to precisely the identifiers identifying locally declared variables. Moreover, we will limit ourselves to the
local (i.e. non-global) variables. The names of globally defined variables, object properties, contants, etc. will
not be predicted, but will serve as extra information for the model to base its predictions on.

The limitation to (local) variable identifiers is mainly one of focus: in principle we could allow the prediction
of method names, class names, etc. to occur jointly with the variable names, but this would probably entail
extracting additional features specific to these situations, which is not something which we want to concern
ourselves with here. Also, holding these non-variable identifiers static while predicting names for the variable
identifiers provides context to the predictions; knowing the named methods which are invoked on some reference
to an object greatly informs the right names which can be assigned to the reference itself. Jointly predicting
both method and variable names is thus a much harder task, giving less information to the prediction engine and
having a much larger combination of names to optimize for. Nonetheless, we expect most techniques described
here to also be applicable to tasks where an extended variety of identifiers is predicted, given that the size of
the training set is sufficiently extended to compensate for the increase in problem complexity.

The limitation to only focus on identifiers which were declared in local scope is mostly just a technical one:
these identifiers can be freely renamed without having to take non-local parts of the program into consideration.
The extent to which these variables can influence the program is strictly localized, assuring that the renamings
will never change program semantics. Globally declared variables on the other hand can be shared between
modules, forcing the renaming engine to take all concerning modules into account simultaneously to obtain a
consistent renaming which preserves the original program semantics. Our framework (and those described in
previous works) will be designed to work on a per-source file basis, thus requiring it to be able to treat each
file independently. Of course, given some efforts, most real life projects can easily (and mostly mechanically)
be brought into some self-contained local scope, for example by concatenation of the individual source files and
lifting everything to occur inside some encapsulating container function.

From the previous it follows that the various identifiers within a program can be separated into two distinct
categories: those identifiers which we wish to predict (i.e. local variable names), and those identifiers which we
use as context to base the predictions on (global variable names, class names, method names, etc). To make the
roles of these identifiers more explicit, we will now introduce some notational conventions which will be respected
throughout this document. All variables introduced here are to be taken with respect to a specific program P
which should be clear from the context. The category of unknown identifiers in P will be enumerated Y1, Y2,
. . . , Yu. These variables are to be predicted and won’t have any meaningful name assigned to them at the start
of the prediction task. The category of known identifiers, which consists of all identifiers which were not in
the previous category, will be enumerated X1, X2, . . . , Xv. These identifiers are always static and only serve as
extra information to make more informed predictions. Finally, we need access to the combined category of all
identifiers, which will be enumerated Z1, Z2, . . . , Z(u+v). Individual identifiers will normally be named by a
single letter corresponding to the most specific category it belongs to, e.g. Y will indicate some identifier whose
name we wish to predict, X will indicate some contextual identifier, etc.

Using the notation just introduced, we can now state our goal as follows: we wish to obtain a method of
finding labels y1, y2, . . . , yu such that label yi is a good name for the unknown identifier Yi in the program P ,
given the context of the labels x1, x2, . . . , xv already assigned to the known identifiers X1, X2, . . . , Xv.

1.4 Abstract Representation
Following Raychev et al., 2015; Alon et al., 2018, we represent our programs in the form of undirected knowledge
(multi-)graphs. Figure 1.3 shows a possible representation constructed for the program shown in figure 1.1. This
graph is an abstracted form of the original program which only contains information relevant to our problem of
predicting names for the identifiers occurring within the program. Here ’relevant’ is subjective and determined
by the model designer; see the next paragraph for a discussion on obtaining the exact feature set. White
nodes indicate the identifiers to which we want to assign good names (i.e. the unknown identifiers), while blue
nodes indicate static context which is used to inform the predictions made for the white nodes (i.e. the known
identifiers). The labels on the edges between the different nodes indicate how the respective nodes are related
to each other within the program. For example, the hasProperty edge between the nodes named currentNode
and leftChild indicates that the leftChild property was syntactically accessed on the variable currently identified
with the name currentNode.

In general, the relations between entities can be both syntactic and non-syntactic. The relations in the
graph shown here are all syntactic, being derived directly from the abstract syntax tree without requiring

4

currentNode

tree targetKey

leftChild
key

rightChild

null

findNode

hasProperty hasProperty
hasProperty

isReturnedByisDeclaredIn

isAssignedValueOf

notEqualComparison

isParameterOf isParameterOf

isComparedWithProperty

isComparedViaReference

Figure 1.3: Abstract representation of the findNode program. Some edges have been removed or simplified for
presentation purposes.

5

any additional analysis. Non-syntactic relations (e.g. pointer aliasing) can also be derived, for example by
performing static analysis prior to the construction of the knowledge graph. Non-syntactic relations usually
convey information about the actual meaning of the program, which can make them quite useful in determining
good names for the involved identifiers.

Knowledge graphs like the one shown here can be constructed for programs written in any language, but for
our work we restrict ourselves to programs written in JavaScript. The exact information available within the
constructed knowledge graphs obviously depends on choices made during the construction of the graph. In prin-
ciple, these knowledge graphs can be made mostly language agnostic when using only syntactic features which
are common to most programming languages. In theory this allows prediction models to be used across language
boundaries, but in practice it pays off to use language specific features for better information representation.
We refer to section 4.1 for more information on knowledge graphs and about how to obtain them.

1.5 Conditional Random Field Foundations
The original inspiration for this thesis is the conditional random field model described by Raychev et al., 2015.
This model is based on using the information available in the undirected knowledge graphs described in the
previous section to derive a probabilistic model. Here the nodes in the graph are interpreted as (probabilistic)
random variables, and the graph structure is used to make explicit the dependencies (and more importantly the
independencies) between the individual variables. Each random variable takes on values from the set of labels
which are allowed for that particular node (i.e. the set of acceptable variable names for some variable), and
the goal of the model is to find an assignment of names yi to the nodes Yi such that the joint conditional
probability

Pr
(
Y1 = y1, Y2 = y2, . . . , Yu = yu | GP , X1 = x1, X2 = x2, . . . , Xv = xv

)
(1.1)

of that assignment (also conditioned on the graph structure) according to the model is maximum among all
possible label assignments. The graph structure is used to simplify the model, by requiring the probabilities
of each of the possible labels for a single random variable Y to be fixed as soon as the labels for the direct
neighbors are known. The combination of a set of random variables Zi together with a graph structure G on
these variables that respects the (in)dependencies between the variables is called a Markov random field.
A conditional random field (Lafferty, McCallum, & Pereira, 2001) is a generalization of this which allows
the graph structure itself to be dependent on the data, which is in our case the program P . We plan on using
the predictions made by this model as a baseline which is used by our model to bootstrap its own predictions.
To be able to better explain the motivations behind our own model, we will now also briefly describe how
the conditional random field model by Raychev et al., 2015 is obtained from the training data and how it can
subsequently be used to make predictions for unseen data. We refer to section 2.5.3 for a more theoretical
perspective on conditional random fields.

1.5.1 Construction
The construction of the model starts by constructing a knowledge graph GP for each of the programs P in
the training set (see the previous section). The labeled nodes in a knowledge graph GP are connected to each
other via (possibly a multitude of) labeled edges. The nodes in the training set each already have a single
known-to-be-correct reference label assigned to them. Each connection between two nodes Zi and Zj via an
edge labeled with the label r induces a triple of information (zi, r, zj) for the concrete assignments of the label
zi to node Zi and the label zj to node Zj . For each program P , we obtain a bag (multiset) of these triples,
denoted triples(P), that were induced by the edges in the graph GP . When we collect all triples induced
by the programs P in the training set D together and throw away their bag structure, we obtain a flat set of
triples, denoted features(D), that will serve as the base features of the model. Each triple f ∈ features(D)
is assigned a score ωf ∈ R+ that somehow measures the importance of the occurrence of this triple in some
program P . The bag triples(P) contains precisely the triples that were found in GP . By summing over the
scores ωf assigned to the features f ∈ triples(P) found in GP (counting with multiplicity), we obtain a total
score for the current label assignment to the nodes of GP . Of course, each concrete assignment of labels to
the unknown nodes Y of GP leads to a different bag of triples, which in turn leads to a different calculated
score. In the full conditional random field model, the total score assigned to the bag of triples triples(P) for a

6

particular assignment of labels to the nodes of GP directly translates to the probability given to this assignment
by the model; the higher the score, the higher the calculated probability. In the end, the goal of their use of the
model is to find an assignment of labels to the unknown nodes of maximum probability (equivalently: score),
while leaving the known nodes in their original state. Because higher scores directly lead to higher probabilities,
it suffices to find the label assignment which maximizes the total score; it is never necessary to calculate the
actual probability while searching for the assignment that maximizes this probability.

1.5.2 Training
Of course, the scores ωf assigned to the individual triples f ∈ features(D) still need to be determined. The
goal of the training phase is to assign these scores in such a way that the actual labelings of programs P ∈ D
induce triple bags triples(P) which are scored higher according to the model than the triple bags induced by
any of the other alternative, false, labelings (false with respect to the truth found in the training set). Of course,
adjusting the scores of some triples such that the score of one program is improved might result in the scores
of many other programs to become worse. From the probabilistic perspective, a principled approach would
be to assign the scores in such a way that the likelihood of the data is maximized. Unfortunately, calculating
the likelihood, let alone maximizing it, is not actually feasible. The implementation given by Raychev et al.,
2015 finds a good global assignment for these scores (but which probably won’t maximize the likelihood) by
performing a global optimization step through the use of Structured Support Vector Machines, which
globally minimizes the structured hinge-loss (see section 2.7.4) of the predictions made by the model with
respect to the actual assignments found in the training set. The structured hinge-loss is an upper bound on
the 0-1 classification loss, and thus minimizing the structured hinge loss on the training set also guarantees a
bounded prediction loss on the training set, which will hopefully translate to a good overall prediction accuracy,
even on unseen data.

1.5.3 Inference
The calculated probability Pr(Y1 = y1, Y2 = y2, . . . , Yu = yu | GP , X1 = x1, X2 = x2, . . . , Xv = xv) by the
model for a concrete assignment of labels Yi = yi to program points Yi in an unseen program P is then directly
related to the sum of the scores assigned to each of the triples (zi, r, zj) extracted form GP . Changing the
assigned label of a single node Y from y1 to a different label y2 thus replaces all attached triples (y1, r, zj) with
different triples (y2, r, zj), for each of the nodes Zj that are directly connected to Y . Thus, the changing of
a single label at a particular node Y replaces all triples attached to this node. These new triples have a new
set of scores assigned to them, and the total sum of these scores might be lower or higher than the sum of the
triple scores corresponding to the previous assigned label. The goal of inference now is to find the assignment
of labels y to the unknown nodes Y of GP that jointly maximizes the score obtained from the induced bag of
triples.

In their work, Raychev et al., 2015 use the Markov structure for a local greedy maximization algorithm,
which starts with a random label assignment to the unknown nodes Y and then iteratively tries to improve each
the label assignment to a single node while keeping the direct neighbors constant, until no more improvements are
possible. With the neighbors held constant, each particular label assignment y to Y results in a concrete scored
bag of triples. Finding the best label for Y under this constant neighbors assumption can be done very quickly,
and each improvement made to Y directly results in an overall increase in the score calculated for the whole
program P . Thus, randomly making improvements to random nodes in the graph results in a monotonically
increasing score for the overall label assignment. This random improvement of nodes can be continued until
either no more improvements can be found or until a limit on the number of steps is reached.

Unfortunately, although is procedure can find a good assignment relatively quickly, this assignment is found
in a greedy way and as such it is by no means guaranteed to be optimal, with the optimization procedure running
the risk of getting stuck in local maxima which are not globally optimal. We will illustrate this situation by
means of a simple example. Figure 1.2 shows a simple scoring table for the label assignment to two nodes Y1

and Y2. Obviously, without knowing anything about any other nodes that may or may not be connected to
either of these nodes, the optimal assignment in this situation would be Y1 = c and Y2 = c with given score
97. However, starting from the assignments Y1 = a and Y2 = a, this solution will never be found. This initial
assignment is given the score 13. When we start by fixing Y2 and looking for the best assignment to Y1, we
immediately arrive at the assignment Y1 = b, which would result in a score of 19 for the new situation. When we

7

now hold Y1 constant and vary Y2, we now find that the assignment Y2 = b is optimal with a score of 23. We’ve
now reached an equilibrium. When we again swap the roles of Y1 and Y2, the best assignment for Y1 is still its
current assignment of Y1 = b. The jump to the global optimum will not be made, because setting Y1 = c will
first significantly lower the score of this assignment to 11. Thus, the inference algorithm is stuck at a solution
which is locally optimal but not globally so. Of course, in this simple situation without any other relevant
nodes, the optimal solution could be read directly from the table, but when multiple nodes are connected to
the same node, it’s much harder to see the overall effect of a simple change.

label Y1 relation label Y2 score
a r a 13
a r b 19
a r c 17
b r a 19
b r b 23
b r c 11
c r a 17
c r b 11
c r c 97

Table 1.2: Scoring table for two nodes Y1 and Y2.

1.6 Research Questions
The discussion in the previous sections lead us to the following three concrete research questions that we would
like to answer with this thesis.

Can we (significantly) improve upon the conditional random field model by developing a comple-
mentary convolutional neural network for increased information utilization?

In the previous section we gave a short introduction to the conditional random fields used by Raychev et al.,
2015 in their solution to the VarNaming problem. Our goal in this thesis is to develop an auxiliary model to
this baseline conditional random field that uses a convolutional architecture to refine and improve upon the
predictions made by the initial model. In the first section we saw that there is quite a large gap of around 4
percent between the TOP-1 and the TOP-2 and TOP-3 accuracies of the baseline model. This gap means that
in a about 4 percent of the cases, the conditional random field model makes an incorrect prediction while it
already had the actual correct answer within eye sight. We hope that our complementary convolutional neural
network can offer a different perspective on the situation that can help move some of these 4 percent wrongly
predicted labels to the TOP-1 position.

Can we get our model to synergize with the original model, i.e. can the combination of two
models overcome each other’s weaknesses for a better overall result?

In the previous section we also explained the inference algorithm used by the conditional random field model.
This inference algorithm is greedy and as such it is known to get stuck in local optima which are not globally
optimal. Our hypothesis is that at least some of these wrongly predicted labels are caused by the inference
algorithm getting stuck in a local optimum that precluded it from making the jump the correct label, and as
such it would be interesting to see how the conditional random field values (in calculated score) the new label
assignment predicted by our own convolutional model. When the score assigned to our refined prediction by the
conditional random field is higher than the score assigned to its own initial prediction, we know we’ve found a
new situation that is better than the previous local optimum. When we allow the conditional random field to
continue its inference algorithm starting from this new situation, it will arrive at a new, better local optimum
(that is probably still not globally optimal). When iterate this, we might get a synergistic effect were each
model can help the other break through its current local optimum.

8

Can we do all this while maintaining the real-time inference property of the original conditional
random field framework?

For some practical purposes (e.g. name inference in an Integrated Development Environment) it is very impor-
tant that the predictions made by the fully trained (combination of) our models on unseen data can be done
approximately in real time, i.e. the final labeling of all identifiers within a given piece of code is done within a
few seconds at most.

1.7 Document Overview
The rest of this document is structured as follows. We will start the next chapter (’Preliminaries’) by first giving
some general background information on the various general techniques, methodologies and terminologies which
we will be using during the rest of the document. In chapter 3 (’Previous Work’) we will review the papers which
most directly influenced our current research direction. Chapter 4 (’Approach’) then gives a detailed exposition
of the various ideas and technologies that together constitute our architecture. The subsequent chapter, chapter
5 (’Architecture’) formalizes our proposed architecture in terms of an abstract implementation that fixes the
general flow of information within the model. We continue in chapter 6 (’Experimental Verification’) with the
main course: we discuss the execution and interpretation of a number of experiments that we created with our
own concrete, fully fleshed out Python/Tensorflow implementation of this previously still abstract architecture.
Chapter 8 (’Conclusion’) finally returns to the research questions that were posed in the previous section. Here
we give a short summary of the things that we’ve achieved in this thesis, and we also discus some possibilities
for future research. We end this document with a short discussion on some related work in chapter 7 (’Related
Work’).

9

Chapter 2

Preliminaries

This chapter provides some context to some of the principles behind machine learning and general experimental
(computer) science.

2.1 What We Are Learning

2.1.1 Supervised vs. Unsupervised Learning
In supervised learning we work with labeled data. The goal of the learning process is to create a model from a
pre-labeled training set that can be used to accurately predict the labels for data where the correct labels are
not yet known. For unsupervised learning we don’t have any information on what is right or wrong, but we are
interested in organizing and modeling our data, such that we can understand it better or such that it is more
easily digestible by machinery further down the pipeline. Some examples of unsupervised learning are data
clustering where we need to learn how to group data into clusters for which the points within each cluster share
some characteristics, or learning a probabilistic model over the data from which we might sample new data. For
our project we’ll be performing supervised learning, where the task is to learn a model that can predict labels
(identifier names) for program points from a dataset where the expected output is already supplied.

2.1.2 Discriminative vs. Generative Models
Similar to the distinction between supervised and unsupervised learning, with generative modeling we create
a model for the complete data set, both the dependent and the independent variables. With discriminative
learning we only create a model for dependent variables, which is conditioned and can depend on the independent
variables. When we are only interested in making predictions given some observations, it’s usually wasteful to
also model the direct observations, so discriminative learning is usually preferred in this case.

For us the learning task is discriminative: both the existing conditional random field model as well as our own
model gives us a probability distribution of the labels conditioned on the structure of the surrounding program
context. We explicitly do not model and are not interested in the distribution of this contextual information;
we are not interested in generating programs, only in generating names for specific locations within otherwise
static programs.

2.1.3 Overfitting vs. Underfitting
We want to make good predictions for unseen data. When overfitting, we have mostly memorized the training set
and are only able to make good predictions for data which was already seen while training. When underfitting,
we haven’t found the true patterns underlying the data, thus making poor predictions. Finding the right
balance in model complexity so that the resulting model both generalizes to unseen data and also doesn’t do so
oversimplistically is crucial.

10

2.1.4 Parameteric vs. non-Parametric Models
In the specific sense, parametric models are families of probability distributions indexed by some finite number
of real parameters. The model consists of the entire family of distributions, and for each parameter configuration
we obtain a specific distribution within the model. For example, for a fixed dimensional n, the family of normal
distributions on Rn is a parametric model that is indexed by a vector ~µ of n means and a covariance matrix Σ
with 1

2 ·n(n+1) (co-)variances. For each value of n there exists a different model of normal distributions on Rn,
and each specific configuration of ~µ and Σ corresponds to precisely one distribution. More generally, parametric
models are hypothesis classes that are parameterized by a finite number of real parameters. Each hypothesis
within such a class is a concrete relation between the relevant dependent and the independent variables. For
example, the set of polynomials of a given degree k over R in n variables forms a model in this broader sense,
with each polynomial (hypothesis) within this model being parameterized by

(
k+n
k

)
coefficients. Each concrete

choice of coefficients results in a specific hypothesis on the relation between the independent variables ~x ∈ Rn the
dependent variable y ∈ R. We will usually refer to the precise hypothesis obtained by optimizing the parameters
within a specific model as the fitted model.

The goal of parametric learning is both selecting the right model family out of the various possible sensible
families and of finding the specific set of parameters that results in a concrete hypothesis that best reflects the
actual data. Having a fixed number of parameters ensures that the hypotheses within a specific model cannot
become arbitrarily well adjusted to the training set. For non-parametric models, there is no such limitation on
the nature of the parameterization of the model; models can become arbitrarily complex, and without adequate
regularization they are very prone to overfit. Examples of non-parameteric models are decision trees, random
forests and the k-nearest-neighbors classifiers. In principle, these models can just memorize the complete training
set, allowing their decision procedures to be as complex as the data on which is was trained.

All models considered by us will be parametric. The construction of a conditional random field extracts
a finite set of features from the training set, and these features together with their assigned scalar weights
fully determine the model, which thus has a finite, fixed set of parameters. Similarly, each graph structure
underlying a neural network (up to choice of transfer functions, etc.) fully determines a model that is completely
parameterized by the neural network weights, each of which are in direct correspondence with the neurons in
the network.

2.1.5 Parameters vs. Hyperparameters
Hyperparameters determine the actual model (for example the degree k of a family of polynomials, or the
dimension n of the normal distribution) while parameters determine the specific configuration of the model (for
example the precise coefficients of some polynomial of fixed degree k, or the means and covariances for the
normal distribution on Rn). More generally, hyperparameters can also be parameters of the fitting process,
which indirectly, through the precise execution of the fitting algorithm, determine the final output hypothesis.
For each configuration of hyperparameters we usually fit the corresponding model to the data as best as we
can. Then we test the performance of the various models corresponding to the various hyperparameters on
some fresh set of data which was not used for fitting, and then select the hyperparameter combination whose
resulting fitted model performs best on this fresh set.

2.1.6 Distributions vs. Classifiers
The prediction results of the models discussed in this paper (both conditional random fields and our neural
network) all come in the form of probability distributions on the total set of identifier names that was found in
the training set. For each identifier name prediction, the generated probability distribution indicates for each
of the possible labels the confidence that the model has in that particular label being the correct one. When we
use this probability distribution to order the candidate labels with respect to the confidences given to them by
the model, we obtain a ranking of labels, with the top ranked label seen to be the most probable choice by the
model. When we return this top candidate as the final prediction result by throwing away the other candidates,
we obtain a classifier which just assigns a label class to each point of prediction without remembering anything
on how it got there. In general, we will not only be interested in this top candidate, but also in the candidates
that were ranked on the second and third positions.

11

2.2 Performance Metrics
During the training phase we adjust the parameters of our models as to make predictions that match our
expectations as well as possible. Our training set contains lots of source code data together with the expected
labels (names) for the various unknown identifiers, and our goal is to find and tune a model that can accurately
predict those labels given only the raw source code where the labels are still missing. We use the training set
to find and tune the model, but the goal is to perform well on new, unseen, fresh data. That is, we want to
generalize. There are various ways in which we can directly and objectively measure how our model performs.
We compare the identifier name predictions made by our model to the reference names assigned to the same
identifiers on the gold standard data set obtained from real world source code (see section 6.5). How useful
these objective measurements are, is however, a subjective matter; different requirements on the quality of the
predictions leads to different ways of assessing performance. Whether a measured difference in any of the
following performance measures between two models is actually significant, is also something which needs to be
verified separately; see section 2.4.

2.2.1 TOP-K Accuracy
The TOP-K prediction accuracy of a classifier is defined as the proportion of cases where the actual true label
that was found on the gold standard is among the K highest ranked candidates by the classifier. For each
of these accuracy classes, either the actual truth label is within the TOP-K, or it is not. In the first case, the
prediction is scored 1 point, and in the other case it is scored 0 points. The total sum of these scores is taken
over all data points in the dataset, and is subsequently divided by the total number of data points to obtain
the final TOP-K accuracy.

2.2.2 Precision, Recall and F1

Precision measures the proportion of true positives in the set of all positively matched results. Recall measures
the proportion of true positives in the set of all actual positives. The F1 score is the harmonic mean of precision
and recall, which assures that there is a good balance between precision and recall when both are valued equally.

With our prediction problem we are dealing with complicated predictions (descriptive variable names) which
are themselves composed of smaller subpredictions (subtokens). For each unknown identifier Y within some
labeled program P within the training set, we have a set Yexpected of subtokens that occur in the given gold
standard label. We also have a set Ypredicted of subtokens of the final output predicted by the model. We can
measure precision and recall with respect to these two sets: precision is calculated as the proportion of subtokens
predicted that also occur in the expected set, while recall is the proportion of expected subtokens that were
actually predicted.

For example, when the expected name is getEmployee and the predicted name is getCustomerName, we
obtain the sets Yexpected = {get , employee} and Ypredicted = {get , customer ,name}. From the predicted set, only
the token get is correctly predicted, which is a third of the whole set, so the precision is 0.33. From the expected
set, we’ve predicted the token get correctly, which is half of that set, so our recall is 0.50. Calculating the
harmonic mean of these two gives us a F1 score of 0.41. It would seem here that the F1 measure gives a better
picture of this situation than the plain accuracy score discussed above, which would have rated this prediction
with a score of 0.

Each program point contributes values for these measures that lie between 1 (completely correct) and 0 (at
least partially incorrect), which are then averaged over all prediction points. The average precision, recall and
F1 scores are thus all upper bounds on the overall accuracy, coinciding only in the case of a perfect prediction
of the whole test set.

2.3 Model Validation
Usually the model optimalization process depends on some hyperparameters, with each hyperparameter resulting
in a different model. From all possible parameters of the model corresponding to a single hyperparameter
configuration, we select the optimal configuration (see section 2.6) for that model. Each set of hyperparameters
will result in a different tuned model, and we somehow need to evaluate the fitted models and see how they
compare.

12

2.3.1 Evaluation
We reserve part of our data set for a final evaluation of our model. The reserved part is explicitly not used in
any way while fitting the models or while determining the optimal values for their respective hyperparameters.
The final score reported for our work will be based on the performance of our model on this evaluation set.

2.3.2 Training
The rest of the data (i.e. the data outside the evaluation set) is used to fit and compare various models
corresponding to the different hyperparameters. From these hyperparameters, we would like to select the
hyperparameters that result in the best fitted model. Because models have the tendency to overfit (which
means they are too much adjusted to the training set while performing poorly on unseen data), we cannot, in
good conscience, evaluate a fitted model (i.e. the quality of the hyperparameters) on the same data we used to
train the model; we need some additional unseen data. We further divide the non-evaluation data into a training
set and a validation set on which the models corresponding to particular hyperparameter configurations are
respectively fitted and compared on performance. Reserving a part of the training set for validation is wasteful
because the information in this set cannot be used to inform the model. Normally, when working with datasets
that are not too unwieldy, we would use cross validation to estimate the optimal hyperparameters in a way
that would still allow us to use the whole training set for model fitting. Unfortunately, this technique requires
too many extra auxiliary models to be fitted to be feasible with our available computing capabilities.

2.4 Significance Testing
By interpreting our problem as a binomial classification problem where the predictions for each program point
can be either correct or incorrect, we can compare our model M to a different model N by considering the set
of all program points in our evaluation set (taken over all source files) where either M or N , but not both,
make a correct prediction. This is the set of data points where the predictions made by both classifiers differ
in correctness, and our goal here is to find out whether this set is significantly skewed in favor or against our
own modelM . Under the (false) assumption that all predictions were made independently (we actually perform
structured prediction, so the predictions done within a certain source file are most certainly not independent),
we can model this question of significance by a sequence of Bernoulli trials, with the ’success’ event meaning
our modelM was correct and the other model N was incorrect (and with the ’failure’ event being the opposite).
Under the null hypothesis that both events are equally likely (i.e. both models perform equally well), we can
calculate the probability of having obtained our Bernoulli sequence, or any more extreme sequence, using a
binomial distribution, and if this probability is sufficiently small (< 0.005) we deem our results to be significant.

2.5 Parametric Models
A parametric model was previously defined as a family of hypotheses indexed by some fixed dimensional vector of
parameters. This section describes a few concrete models within this class that are relevant for our architecture.

2.5.1 Logistic Regression
The logistic model is a discriminative probabilistic model used to relate a binary dependent variable Y ∈ {y1, y2}
to a vector of independent continuous variables ~X ∈ Rn. The model starts from the assumption that the space of
measurements Rm where the independent variables take their values can be linearly separated into two disjoint
parts by a hyperplane. The two parts are respectively labeled y1 and y2, and measurements ~X are assigned
labels by the model corresponding the side of the hyperplane where they are located (measurements that lie on
the hyperplane itself are assigned the label y2 by convention). The hyperplane itself is determined by a vector
~ω = (ω1, ω2, . . . , ωn) that is normal to the plane. When the normal vector is normalized, ||~ω||2 = 1, the signed
distance from the plane to the location of the measurement can be calculated by taking the dot product between
the normal vector ~ω and the vector of measurements ~X:

H =
〈
~X, ~ω

〉
(2.1)

13

When this value is positive the measurement is location on one side of the hyperplane, when it is negative it is
located on the other side, and when this value is 0 the measurement actually lies on the hyperplane. We obtain
the following decision procedure to decide which label to assign to ~X:

Y =

{
y1 if H > 0

y2 otherwise
(2.2)

Of course, in practice, we can never completely measure all factors that determine the right label to assign to
a situation; there are always small influences that add some unpredictability to the final label assignment. In
logistic regression, this unpredictability is modeled by adding an unobserved error term ε that randomly changes
the distance from the measurement ~X to the hyperplane:

H =
〈
~X, ~ω

〉
+ ε (2.3)

The decision procedure from equation 2.2 is still used in the background to decide which label to assign to the
measurements ~X, but because the error term ε is not directly observed, we can now no longer directly observe
H itself, and thus we cannot directly obtain the sign of H to determine the right label. The distance H to the
hyperplane has become a random variable, whose probability distribution directly depends on the probability
distribution of ε. If we could somehow estimate this probability distribution, then we could use this distribution
to decide on the result label by just choosing the label that has the highest probability:

Y =

{
y1 if Pr(Y = y1 | ~X = ~x) > Pr(Y = y2 | ~X = ~x)

y2 otherwise
(2.4)

Of course, this distribution would still need to be estimated, which is not feasible without making any additional
assumptions on the random error term ε. The assumption made by logistic regression on this error term is that
it is distributed according to the logistic distribution (hence its name) with scale parameter s = 1 with center
µ = b: ε ∼ Logistic(b, 1). Under this assumption, we can now directly calculate the probability of assigning
label Y = y1 using the logistic function:

Pr(Y = y1 | ~X = ~x, µ = b, s = 1) = Pr(H + ε > 0 | ~X, µ = b, s = 1) (definition) (2.5)

= Pr(ε > −H | ~X, µ = b, s = 1) (moving term to the right) (2.6)

= Pr(ε′ > −H − b | ~X, µ = 0, s = 1) (shifting distribution to zero) (2.7)

= Pr(ε′ < H + b | ~X, µ = 0, s = 1) (symmetric around zero) (2.8)

=

∫ H+b

−∞
f(t)dt

(cumulative
distribution function

)
(2.9)

=
1

1 + e−(H+b)
(logistic function) (2.10)

=
1

1 + exp
(
−(〈~ω, ~x〉+ b)

) (definition) (2.11)

Thus, by making the assumption that the error term ε is logistically distributed, we can directly calculate the
probability of the unobserved signed distance H being positive or negative, and with these two probabilities we

14

can use the decision procedure of equation 2.4 to directly decide the label:

Y =

{
y1 if Pr(Y = y1 | ~X = ~x) > Pr(Y = y2 | ~X = ~x)

y2 otherwise
(2.12)

=

y1 if
Pr(Y = y1 | ~X = ~x)

Pr(Y = y2 | ~X = ~x)
> 1

y2 otherwise
(2.13)

=

{
y1 if exp

(
〈~ω, ~x〉+ b

)
> 1

y2 otherwise
(2.14)

=

{
y1 if 〈~ω, ~x〉+ b > 0

y2 otherwise
(2.15)

(2.16)

We again end up with a linear decision boundary, which is a direct result of assuming the error term ε to be
logistically distributed. When we make other assumptions on the distribution of ε, the cumulative distribution
function of equation 2.9 changes accordingly, but then we’re not performing logistic regression anymore, and
the decision boundaries will accordingly not necessarily be linear anymore. For example, when we assume a
normally distributed error term, we obtain probit regression.

Figure 2.1 graphically depicts how the measurements Xi are combined with the coordinates ωi of the normal
vector ~ω to first obtain the signed distance H from ~X to the hyperplane, and then to obtain the probability
that the sign of this distance is positive when the random error term ε is added. The graph depicted here is on
of the the simplest examples of a neural network. In a general neural network, the function σ(·) is not restricted
to be a cumulative distribution function, but it is allowed to be any transformation from R to R. Of course
the probabilistic interpretation we gave in this section will be lost then. In section 2.5.4 we will discuss how
the simple type of neural network shown here can be used as a basic building block to construct a much more
general class of prediction devices.

X3

X1

X2

X4

X5

H Pr(Y = y1)

1

ω1

ω2

ω3

ω4

ω5

σ(·)

b

Figure 2.1: Graph-based representation of a general hyperplane + error term classifier. The function σ(·) depicts
the cumulative distribution function that corresponds to the distributional assumptions on the error term.

Thus far we’ve discussed the assumptions made by logistic regression about the existence of a separating
hyperplane in the space of measurements and on the random error term that gives the decision procedure a
non-deterministic dependency on this hyperplane. Of course, the positioning of this hyperplane is still not
specified. In practice, maximum likelihood estimation or maximum a posterori estimation are usually performed
to estimate the coordinates of the vector ~ω that determines the model. We will discuss these estimation methods
respectively in sections 2.6.1 and 2.6.2.

15

2.5.2 Multinomial Logistic Regression
In the previous subsection we discussed the binary classification model called logistic regression that relates a
binary dependent variable Y ∈ {y1, y2} to a vector of continuous measurements ~X ∈ Rn. Multinomial logistic
regression is a generalization of this binary classifier to the case of categorical dependent variables with more
than two categories. The independent variables Xi are still assumed to be continuous, but the dependent
variable Y is now allowed to take values from any finite discrete set of K values: Y ∈ {y1, y2, . . . , yK}.

The main assumption of the binary logistic regression model was the logistic distribution of the error term ε,
which was equivalent to the logarithmic odds, log

(
Pr(Y=y1| ~X=~x)

Pr(Y=y2| ~X=~x)

)
, being a linear combination of the continuous

measurementsXi. This last property generalizes easily to the categorical setting, were we require the logarithmic
odds log

(
Pr(Y=yi| ~X=~x)

Pr(Y=yj | ~X=~x)

)
between any two labels yi and yj to be linear combinations of the measurements Xi.

Under this assumption, there exist parameter vectors ~ωj for each label yj such that the probability calculated
by the multinomial model for label yj can be obtained as:

Pr(Y = yj | ~X = ~x) =
exp

(
〈~ωj , ~x〉

)∑
k exp

(
〈~ωk, ~x〉

)
=

1

Z(~x)
· exp

(
〈~ωj , ~x〉

) (2.17)

Here the normalizing sum
∑
k exp(〈~ωk, ~x〉) in the denominator of the first equation is factored out as Z(x) to

make the resemblance between multinomial regression and conditional random fields (discussed below) more
explicit. In the binomial case of two labels where K = 2, setting ~ω1 = ~0 recovers ordinary logistic regression
(compare with equation 2.11). In general, we always have that one of the K parameter vectors is superfluous;
subtracting any vector φ (for example φ = ω1) from all parameter vectors ωj does not change the calculated
probabilities; the model is not identifiable.

For our own model, we would like to predict a name for each unknown identifier Y from the information
that we obtained from the neighborhood surrounding Y . Initially this information will be discrete, but after
we’ve embedded the neighborhood (see section 4.5), we’re left with a number of continuous measurements Xi

from the neighborhood that we’d like to use to predict the correct name for Y . For our model we’ll restrict
ourselves to the task of generating identifier names from a pre-defined finite vocabulary of identifier names that
was constructed at training time from the identifiers that were found in the training set. Thus, we would like to
relate the categorical dependent variable Y ∈ {identifier names that were found in the training set}
to the independently obtained neighborhood measurementsXi, and this is precisely what multinomial regresssion
allows us to do.

Just like with logistic regression, parameter estimation is usually done via maximum likelihood estimation
or via maximum a posteriori estimation. For our own model, however, we will incorporate the multinomial
classifier as the final layer to our (deep) neural network, and here a combined parameter estimation of all
network parameters by maximum likelihood or maximum a posteriori estimation is generally infeasible. In
this setting, we jointly optimize the multinomial prediction layer with the rest of the parameters of the neural
network using stochastic gradient descent (see section 2.6.3).

2.5.3 Conditional Random Fields
Conditional random fields are discriminative probabilistic models that can be used for structured classification.
With multinomial logistic regression, the set of target labels {y1, y2, . . . , yK} is discrete, and the labels yj
themselves have no internal structure that relates any two of them together. Two distinct labels yi and yj are
only related to each other through their respective parameter vectors ωi ∈ Rn and ωj ∈ Rn that were found
during the model fitting phase. The algebraic relations between these parameter vectors reflect the semantic
relations that were found between these labels in the training set; when the labels yi and yj are usually used
in similar contexts, the coordinates of these two labels will also tend to be similar, with the vectors pointing
in similar directions in Rn. However, these are the only relations between the labels yi and yj . Any prior
information between two distinct labels yi and yj is discarded by the multinomial model. Conditional random
fields allow us to solve this problem by allowing parameters to be shared between the different labels.

For our purposes, conditional random fields are probabilistic models whose probability distributions are

16

given by the following formula:

Pr(Y = yj | X = x) =
exp

(
〈~ω, ~fj(x)〉

)∑
k exp

(
〈~ω, ~fk(x)〉

)
=

1

Z(x)
· exp

(
〈~ω, ~fj(x)〉

) (2.18)

The functional form of this formula is very similar to that of multinomial logistic regression. Just like with
multinomial regression, the model assigns probabilities to a categorical variable with K categories: Y ∈
{y1, y2, . . . , yK}. Both models invoke a linear response from the labels yj and the measurement x with respect
to the parameters of the model, which is subsequently exponentiated and normalized to yield a probability
distribution. The only difference between the two models is how the parameters, the labels yj and the mea-
surements x are precisely aligned. In multinomial regression, each label yj has its dedicated parameter vector
~ωj ∈ Rn which is compared to a measurement vector ~x ∈ Rn that is shared between the labels. Conditional
random fields, on the other hand, have a single parameter vector ~ω ∈ Rn that is shared between the labels
yj , but each label yj has a dedicated measurement vector ~fj(x) ∈ Rn that is a label-specific refinement of the
shared conditional x. The functions ~fj that implement the label-specific measurements allow the model designer
to incorporate prior knowledge of relations between different labels by making explicit the way parameters are
shared between them. Shared parameters correspond to shared structure, and the more parameters two labels
have in common the more they are structurally the same. The multinomial model can be recovered from the
conditional random field model by declaring there to be zero structural overlap between the labels. Zero struc-
tural overlap corresponds to the parameters that are used when calculating the probabilities to be orthogonal
between the labels yj , and this is achieved by requiring the measurement vectors ~fj(~x) to be mutually orthog-
onal. Then the individual parameters vectors ~ωj of the multinomial model combine into a single parameter
vector ~ω := ~ω1 ⊕ ~ω2 ⊕ . . . ⊕ ~ωK ∈ (Rn)

K when the corresponding measurement vectors ~fj(~x) are defined as
orthogonal embeddings of ~x into the j-th orthogonal subspace of (Rn)

K : ~fj(~x) := (~0,~0, . . . , ~x, . . .~0,~0).
Conditional random fields were originally introduced in (Lafferty et al., 2001), where they are defined as

consisting of a collection of categorical random variables Y together with a graph structure G = (V,E) on these
variables such that the nodes a ∈ V index the random variables, Va ∈ Y, and such that the random variables
obey the Markov properties with respect to the graph G. The Markov properties dictate that the probability
distribution of a single random variable Va ∈ Y is completely determined when conditioned on the random
variables Vb that are direct neighbors of Va in the graph G. Under some mild assumptions on the random
variables, this approach can be seen to be equivalent to the approach we gave in this section.

The conditional random field model that we use as a baseline for our own experiments is a slightly generalized
version of the conditional random fields described here. In the version we use, the restriction that the set of
target labels should be finite is lifted. Instead of specifying the measurement functions ~fj(x) corresponding to
the labels yj upfront, we now have a single measurement function ~f(Y, x) that is allowed to directly inspect any
concrete label y:

Pr(Y = y | X = x) =
1

Z(x)
· exp

(
〈~ω, ~f(y, x)〉

)
(2.19)

For our baseline experiment, the label set is now roughly defined as the set of all labeled directed knowledge
graphs, and the measurement function ~f(G̃, P) measures for each labeling G̃ of the knowledge graph G =
(V P , EP) that was extracted from P how many times each unique triple (see introduction section 1.5) occurs
in G̃.

2.5.4 Feed Forward Neural Networks
Feed-forward neural networks employ a hierarchical structure of basic building blocks similar to the logistic
regression prediction layer to make complex predictions. In section 2.5.1 we discussed how logistic regression
separates the space of measurements ~x ∈ Rn into two labeled halves by a hyperplane, and how it then makes
assumptions on the random error term to calculate the probabilities that a concrete measurement ~x should
actually lie in either half space. Of course, the assumption that the measurement space consists of only two
parts that precisely determine the label is very simplistic.

17

The first step to allow for labeling more realistic scenarios is by allowing a number of k independent hy-
perplanes that each separate the total measurement space into their own respective pair of half spaces. Each
hyperplane measures its own binary property, and by taking the intersection of half spaces we obtain a conjunc-
tion of binary properties. The individual probabilities multiply to obtain the probability of the conjunction. The
main idea behind neural networks now is that the calculated probabilities for each of these k binary properties
together also constitute a vector of measurements M(~x) ∈ Rk. Again, we can divide this space into two labeled
half spaces by a hyperplane, and again we can make some assumptions on the random error term that makes the
actual label assigned to the measurementM(~x) be different to the label on the half space whereM(~x) is actually
located. The main power of neural networks now comes from the fact that the linear decision boundary in this
latter feature space Rk corresponds to a non-linear decision boundary in the original feature space Rn, due to
the fact that the calculated probabilities calculated form the original measurements all depend non-linearly on
~x.

Thus, adding an array of k logistic regression predictors that each take as input some measurement ~x ∈ Rn,
we obtain a vector of derived probability measures M(~x) ∈ Rk, and linear decisions on the derived quantity
M(~x) translate to non-linear decisions on the original measurements ~x. Of course, the last logistic regression
layer also outputs the probability of its decision being correct, and this again can be seen as some derived
measurement. By combining the first array with an additional array of t logistic regression predictors that
each take the derived measurement M(~x) ∈ Rk, we obtain another vector of measurements N(M(~x)) ∈ Rt that
are twice-derived from the original input vector ~x. The linear decisions made in this space now correspond to
non-linear decisions in the previous space Rk, which then correspond to an even more sophisticated decision
boundary in the original space Rn.

In general, this pattern can be repeated over any number of predictor arrays, with each array containing any
number of predictors. The general setup is shown in figure 2.2. Due to the increased complexity of the network,
some pieces of information that were explicitly depicted in the graphical depiction of the logistic regression
neural network in figure 2.1 are left out to avoid cluttering the picture.

X3

X1

X2

X4

X5

H2

H1

H3

Y1

Y2

Figure 2.2: Graph-based representation of a small neural network.

Activation Functions

In the previous we’ve explained neural networks in terms of a layered stack of simple logistic networks in which
each layer delivers a number of probability measurements which are used as inputs to the subsequent layer. Like
we discussed previously in section 2.5.1, the final probability calculated by the logistic regression network by an
application of the activation function σ(·) = < logistic function > to the linear response H was based
on the assumption of the presence of a logistically distributed error term ε. For general neural networks, the
output of the network need not be a probability, and even when it is, the distribution of the error term need not
be assumed to be logistic. When a different assumption is made on the distribution of ε, the current activation

18

function gets replaced by the cumulative distribution function corresponding to these new assumptions. In
practice, when neural networks are configured to output probabilities, these probabilities will almost always be
given by setting σ(·) to the logistic function, which is due to the convenient algebraic properties of this function
in combination with a lack of evidence that any other distribution should be assumed.

Hyperbolic Tangent A frequently occurring alternative to the logistic activation function that does not
arise from any probabilistic assumptions is the hyperbolic tangent activation function tanh. This function maps
the real line to the open interval (−1, 1), instead of to the unit interval (0, 1). The activation of the linear
response H can be interpreted as measuring the extent to which some input is correlated (+1), uncorrelated
(0) or anti-correlated (-1) with some feature. The hyperbolic tangent function preserves the vector space
negation operation, tanh(−t) = − tanh(t), which causes it to treat the positive and negative directions on equal
footing when the activated responses are used in a multiplicative way further down the pipeline: the result of
multiplying something with tanh(−t) has the same norm as when performing the multiplication with tanh(t),
while the logistic function exchanges preservation and absorption properties of the norm. Figure 2.3 shows a
graph of the hyperbolic tangent function.

Figure 2.3: Graph showing the hyperbolic tangent function.

Rectified Linear Unit Another commonly used activation function is the rectified linear unit, relu, which
is defined as:

relu(t) := max(0, t) (2.20)

The function is linear on the positive real line and identically zero on the negative real line. Even though
this activation function is very simple, by the universal approximation theorem for neural networks (Sonoda
& Murata, 2015), it is still sufficiently strong to allow neural networks to approximate any function (meeting
some mild conditions) to any desired accuracy by constructing sufficiently wide neural networks using only relu
activations. Compared to the previously discussed sigmoidal activation functions, the relu function has the
desirable property that its derivative is almost everywhere constant, which solves some of the problems that
sigmoidally activated neural networks sometimes suffer from. This, together with its implementation simplicity,
makes the relu activation function a popular choice of activation function in neural networks.

Soft-Max Layer

The soft-max layer is a special layer used in neural networks to normalize the outputs of a previous layer
to be positive (even when the inputs were not) and have a total mass of 1. These two properties together
allow the outputs of the soft-max layer to be interpreted as a probability distribution on the individual output
positions. The main property of soft-max normalization is that the mass of the resulting probability distribution
is mostly located at the single position that had the largest input value, while all smaller inputs values will

19

have exponentially less mass after normalization. As a result, and as its name suggests, soft-max can be used
as a smooth substitute for the usual max-function by calculating a weighted average of the input values using
their respective calculated weights. The final result will then lie most closely to the input which had the highest
value.

The outputs of the soft-max layer for a number of inputs Lk are calculated as follows. For each input Lj ,
the corresponding soft-max weight is calculated as:

pj :=
exp(Lj)∑
k exp(Lk)

(2.21)

The soft-max layer is used in multinomial logistic regression to calculate the label probability distribution from
the dot products between the measurement vector ~x ∈ Rn and the parameter vectors ~ωj ∈ Rn for each label yj .

2.6 Parameter Estimation/Optimization
The previous section gave an overview of a number of (probabilistic) parametric models that are parameterized
by finite dimensional parameter vector. The goal of the training phase is to instantiate these parameters in such
a way that the fitted model becomes good at making predictions. There are various methods and principles
available to guide this search for optimal parameters, and some of them will be discussed in this section.

2.6.1 Maximum Likelihood Estimation
When fitting parametric probabilistic models on a given set of training data D, the principle of maximum
likelihood states that we should instantiate the parameters in such a way that the probability of obtaining
the actual training data, according to the parameterized model, is maximized over all possible parameter
instantiations. Let us assume the data points in (y, x) ∈ D are all obtained independently. The probability
of obtaining the training set D under this assumption then factorizes over the probabilities of the individual
data points. The goal of parameter estimation via likelihood maximization is then to estimate the optimal
parameters ~̂ω as:

~̂ω = arg max
~ω

Pr(D | ~ω)

= arg max
~ω

∏
(y,x)∈D

Pr(Y = y | X = x, ~ω)

= arg min
~ω

∑
(y,x)∈D

− log Pr(Y = y | X = x, ~ω)

(2.22)

Unfortunately, a closed-form solution that minimizes this quantity is usually not available. Numerical opti-
mization procedures are then employed to try to minimize this objective, but unfortunately this minimization
objective is usually not convex and thus a globally optimal solution will usually be out of reach.

2.6.2 Maximum A Posteriori Estimation
A different estimation principle called maximum a posteriori estimation states that we should directly try to
calculate the probability of the parameter vector ~ω when conditioned on the training data D. We again assume
that all data points in (y, x) ∈ D are obtained independently. By using Bayes’ theorem, we can write this
objective as:

~̂ω = arg max
~ω

Pr(~ω | D)

= arg max
~ω

Pr(D | ~ω) · Pr(~ω)

= arg max
~ω

(∏
(y,x)∈D

Pr(Y = y | X = x, ~ω)
)
· Pr(~ω)

= arg min
~ω

(∑
(y,x)∈D

− log Pr(Y = y | X = x, ~ω)
)
− log Pr(~ω)

(2.23)

20

The prior probability of the data Pr(D) in Bayes’ theorem is independent of the parameters and thus a constant
that can be removed from optimization. The distribution on the parameter space Pr(~ω) is called the prior distri-
bution. The choice of prior distribution on the parameter space is something that needs to be specified explicitly
in this method, and each choice corresponds to a specific regularization method. Choosing the coordinates of
the parameter vector to be either normally distributed or Laplace distributed results in the term − log Pr(~ω)
being proportional to respectively the L1-norm or the square of the L2-norm of the parameter vector ~ω. In the
case of linear regression, calculating this maximum a posteriori estimate using these two priors would be called
respective lasso regression and ridge regression.

2.6.3 (Stochastic) Gradient Descent
As we mentioned earlier, finding closed form solutions that maximizes the likelihood of the model parameters
with respect to the training data is not feasible in general. The alternative is to employ numerical optimization
algorithms that explore the parameter landscape until a solution of a sufficiently high quality is found. The
optimization algorithm that we employ for our model is a variant of stochastic gradient descent, which itself is
an instance of the general family of gradient descent optimization algorithms.

Gradient descent algorithms are used in supervised learning, where there is some loss function L that
quantifies the differences between the expected answer and the solution that was currently returned by the
model. We can write Lyx(~ω) that signifies the dependency of this scalar loss on the model parameters with
respect to a single data point (y, x) ∈ D that is held constant. If the dependency of the loss on the model
parameters ~ω is continuous and differentiable, we can use the derivative of this function to find the direction
in the parameter space in which the function is decreasing the strongest. The (total) derivative of a function
L : Rn → R at a point p ∈ Rn is given by the gradient vector whose components are the partial derivatives of
the function L with respect to each of the coordinate dimensions. The gradient vector ∇pL of L at the point p
is known to point in the direction in which L is increasing the fastest. If the function L is well-behaved, then
adjusting the parameters p by a small step in the direction ∇pL would have the strongest effect on the value
of L(p). Of course our goal is to minimize the loss function Lyx, so taking the negative of the gradient ∇~ωLyx
would indicate the direction in which Lyx is currently the quickest decreasing at its current parameter location
~ω. If Lyx is well-behaved, then nudging ~ω slightly in the direction ∇~ωLyx would usually decrease the loss of the
data point (y, x). If we then re-evaluate the gradient at the nudged location, we again see in which direction
it is decreasing the strongest, and again we can nudge this vector a bit in the direction of this gradient to
(hopefully) lower it even further. Using the gradient of the loss function to nudge the parameters in a direction
which decreases the loss calculated by the loss function is the main idea behind the family of gradient descent
algorithm, where we descent the parameter space on a path that has increasingly smaller calculated loss. We
can continue the descent until we’ve reached a local optimum where the gradient vanishes, or we can stop if
following the gradient has no more positive (or even negative) effect.

Stochastic gradient descent is a variant of this basic gradient descent algorithm where the gradients are taken
with respect to a small, randomly sampled batch of N data points at the same time. The negative gradient
vectors for each of the N data points are averaged to obtain a single vector that represents the direction which
would overall be the most beneficial for the batch. The parameter update step can be written as:

~ωk+1 = ~ωk −
α

N
·
N∑
i

∇~ωk
Lyixi

(2.24)

Here the hyperparameter α is the learning rate which controls the size of the jumps we make. When α is too
large, we jump over the landscape too quickly and we never reach a valley. When α is set too low, we don’t
learn anything.

The actual optimization algorithm we will be using for our experiments is a variant of stochastic gradient
descent called Adam. The precise details of Adam are beyond the scope of this document, but the main idea is
that it keeps track of individual learning rates for each parameter. Section 2.7 below discusses a few common
ways to quantify loss. Some of these are differentiable and thus allow gradient descent to be used to optimize
them.

21

2.7 Loss Functions
When doing supervised learning, there are various ways in which the predictions made by the model can be
compared to the reference values in the training set. The goal of supervised learning is to use the known-to-
be-correct values in the training set to inform the construction of a model that can make predictions for new,
unseen data as well as possible. Loss functions are a way to quantify the difference between the correct value
in the training set and the value predicted by the model. Various such functions exist, each one suited for a
specific domain and each having different operational characteristics.

In the following, let M~ω be a model parameterized by a parameter vector ~ω and let M~ω(x) be the label
predicted by M~ω for the data point x.

2.7.1 0-1 Loss

L~ω(y | x) :=

{
0 when M~ω(x) is equal to y
1 when M~ω(x) is not equal to y

(2.25)

Discrete. Counts one error for each specimen in the training set that is predicted incorrectly. Usually this
is what we actually want to minimize (i.e. minimize the total number of errors made), but unfortunately this
isn’t actually feasible in practice. The number of prediction errors made is not a continuous function of the
model parameters; changing the parameters slightly can totally and unpredictably change the predictions made
over the complete training set. There is no way to systematically search the parameter landscape to find a
parameter configuration which is at least somewhat good, let alone to find the global optimum. In practice
most applications use more tractable loss functions, which either upper bound the 0-1 loss (which thus makes
it good objective functions to minimize instead), or which are based on some other principle that make it likely
that the 0-1 loss function will also be somewhat minimized with it (e.g. negative log likelihood minimization).

2.7.2 Hinge Loss
L~ω(y | x) := max

(
0, 1− y ∗ f~ω(x)

)
y ∈ {+1,−1} (2.26)

Calculates a direct upper bound to the 0-1 loss. Used in Support Vector Machines where the goal is to find a
hyperplane (which is determined by f~ω(x)) in some d dimensional space that separates the positive samples from
the negative samples as well as possible. There is a margin on both sides of the hyperplane, and for each labeled
point the signed distance between the point and the margin of the side where it should be located is calculated,
with the distance being positive when the point is located on the wrong side. The hinge loss is defined as this
distance when the distance is positive and zero otherwise. This way, points that are on the correct side of the
hyperplane and that are separated from it by at least the margin will contribute zero loss, while points which
are on the correct side but within the margin will contribute a loss between zero and one. Points which are on
the wrong side of the margin will contribute a loss of more than one. It is easy to see that this loss is equal to
the 0-1 loss when the hyperplane perfectly classifies all data points with no points within the margin, and it is
strictly greater otherwise. Minimizing this loss thus bounds the 0-1 loss, and thus this loss function can serve
as a good replacement loss function to minimize when minimizing the actual 0-1 loss is unfeasible.

2.7.3 Hamming Loss
L~ω(y | x) := dHamming

(
y,M~ω(x)

)
(2.27)

Structured version of 0-1 loss. When predicting structured output, count the number of subcomponents
which were predicted wrongly. Equals the Hamming distance when the output can be interpreted as a sequence
of symbols. Just like the 0-1 loss, minimizing the hamming loss directly usually isn’t feasible because the
predictions don’t continuously depend on the parameters.

2.7.4 Structured Hinge Loss
L~ω(y | x) := max

y′∈Ωx

∆(y, y′) + [score~ω(y′, x)− score~ω(y, x)] (2.28)

Calculates a direct upper bound to the Hamming loss. Used in Structured Support Vector Machines where the
goal is to find the parameters to a (linear) score function score~ω(y, x)), such that the score score~ω(y, x) assigned

22

to the actual labeling y of a data point x is higher than the score score~ω(y′, x) assigned to an alternative y′ by
a margin of at least ∆(y, y′), for as many data points as possible. This forces the score function to convincingly
assign the highest score to the correct labeling, with a data point only contributing zero loss when all alternative
labelings have scores that are at least as much worse as the number of errors they make compared to the actual
labeling. The loss functions measures how much a single data point violates this margin, and the whole training
process minimizes the average violation over all data points. The total loss function is globally convex and thus
has a unique minimum that can easily be found by stochastic sub-gradient descent. This loss function is used
for fitting conditional random fields in (Raychev et al., 2015).

2.7.5 Negative Log Likelihood Loss
L~ω(y | x) := − log Pr~ω(Y = y | X = x) (2.29)

This is the loss function that corresponds to maximum likelihood maximization that was discussed in section
2.6.1.

23

Chapter 3

Previous Work

The research described in this document is based primarily on the contributions made by papers listed in the
sections below. We outline the relevant parts of the individual papers and we describe to what extent we adapted
their machinery to suit our own needs.

3.1 Predicting Program Properties from "Big Code"
Raychev et al., 2015 used an undirected knowledge graph to represent the program. In this representation, the
vertices of the graph correspond to the program points of interest and the edges between the vertices correspond
to various relations between the program points that were extracted from the program. The main idea of their
approach is that the predictions made for the various program points should be made in a mutually consistent
way. The relations were chosen in such a way that the presence or absence of a relation between two program
points would (hopefully) give a good indication of the compatibility of various possible assignment of names to
those variables.

For example, in the expression x = (a + b)/2, a consistent naming for the variables x, a and b would
be something like midPoint, beginPoint and endPoint while an inconsistent naming would be iter, speed and
isActivated: averaging a scalar and a boolean and calling the result iter usually doesn’t make sense (even
though JavaScript would probably allow it). In this example the variables a and b are related by the averaging
relation r = [_ = (? + ?)/2], which indicates that there is some other program point (denoted by the wildcard
underscore) such that the average of the two endpoints (denoted by the two question marks) is assigned to the
other program point. This relation is purely syntactic, but in general non-syntactic relations are also possible
(e.g. if by static analysis it can be determined that two pointers p and q always point to the same object, we
might add an aliasing relation between their nodes in the graph).

For each program in our training set we can construct such a knowledge graph, and when a specific relation
(edge) with a specific assignment of labels (variable names) to the connecting program points occurs a lot in
the training set then this triple (zi, r, zj) of a relation r and two labels zi and zj will get assigned a high score.
The goal of the framework is to first determine good scores for all triples (zi, r, zj) that occur in the training set
(this is the training phase) and then to find an assignment of labels to all the vertices in the knowledge graph
constructed for an unseen program such that the total sum of scores for the induced triples (zi, r, zj) for that
assignment is greater than or equal to the induced total score of all other possible assignments (the inference
phase).

The authors formulate this problem in the language of conditional random fields, which are probabilistic
models akin to Markov random fields where the vertices of a graph correspond to random variables and the
edges correspond to dependencies between these random variables. More precisely, the random variables obey the
local (and also the global) Markov property with respect to the graph: when conditioned on its direct neighbors
in the graph, a random variable Y becomes independent of all other variables in the graph. Conditional random
fields differ from Markov random fields in that the probability distributions on the random variables can depend
(be conditioned) on contextual information which is specific to the program under consideration. In our situation
this means that for each program P we get a distinct set of random variables Y1, Y2, .., Yn corresponding to the
various program points within our program, each of them taking values in the space of possible variable names,
Yi ∈ VarNames (seen in the training set), where the distribution of each of these variables is dependent on

24

the specifics of the program structure. The knowledge graph constructed for P specifies the (in)dependencies
between the variables.

Given the distribution for each of these variables, we can ask which combined assignment of labels to each
of these variables is most likely, i.e. which assignment (y1, y2, .., yn) of labels to the program points (labeled 1
through n) maximizes the probability P (Y1 = y1 ∧ Y2 = y2 ∧ ..∧ Yn = yn | P). This directly corresponds to the
maximization of the total score over all triples (yi, R, yj) in the previous paragraph. Fitting the distributions
P (Y2 ∧ Y2 ∧ .. ∧ Yn | P) to best match the distribution found in the training set corresponds to finding optimal
scores for each of the possible triples (yi, r, yj) that occur in the training set.

Trying all possible combinations of assignments yi of variable names to each individual program point Yi
is combinatorically infeasable. Using the Markov property of the conditional random field, Raychev et al.,
2015 have implemented a greedy inference algorithm which does local optimizations which iteratively finds
the optimal value for one single program point assuming all neighbors already have their optimal values set.
Because of the local Markov property, the score contributed by a specific assignment to a program point Yi is
only dependent on the values assigned to its direct (radius-1) neighbors Yj ∈ N(Yi) in the knowledge graph, so
only scores corresponding to the triples (yi, R, yj) directly attached to Yi have to be taken into consideration.
The whole algorithm then consists of first randomly assigning labels to all program points and then iteratively
visiting all nodes Yi (possibly in random order), updating Yi to the label yi which attains the maximum score
with the direct neighbors held constant. This process can go on until either an iteration limit has been reached
or when convergence has occurred.

The framework developed by Raychev et al., 2015 consists of a language-agnostic backend called Nice2Predict
which consumes a training set of labeled undirected knowledge graphs and outputs a trained conditional random
field model which can be used to make identifier name predictions for partially unlabeled knowledge graphs.
The knowledge graphs are constructed by a language-specific frontend, which in their JavaScript demonstration
implementation is called UnuglifyJS .

3.2 A General Path-based Representation for Predicting Program
Properties

Alon et al., 2018 demonstrated that syntactic paths between identifiers in the program’s abstract syntax tree
can usefully serve as features in predicting names for identifiers. They showed this by adapting the conditional
random field framework that was described in the previous section with relational edges derived purely from
syntactic paths between identifiers, and their results show that these path-based features substantially increase
the prediction accuracy.

The adapted UnuglifyJS JavaScript frontend to Nice2Predict which outputs these path-based features is
dubbed PidgeonJS. Originally we had hoped to use this improved feature set in our own experiments instead of
the original feature set extracted by UnuglifyJS, but unfortunately this resulted in a data set which was too
large for us to efficiently experiment on.

3.3 Code2Vec: Learning Distributed Representations of Code
Alon et al., 2019 subsequently showed how the path representations that were described in the previous section
can be used to continuously embed discrete code fragments into a finite dimensional real vector space using a
novel attention mechanism which allows these fragments to serve as input features for a deep neural network.
Their embedding technique is heavily inspired the word2vec (Mikolov, Chen, Corrado, & Dean, 2013) embedding
mechanism was was used previously to embed discrete textual fragments into some real vector space. Their
main addition to the existing word2vec method is the addition of an attention mechanism which allows the
model to learn which parts of the context are important and which are not.

The authors showed that their code embeddings are good at preserving semantic relationships between
related code fragments and that the obtained features allow accurate predictions of method names given the
embedding of the method body. Our thesis starts by adapting their code fragment embeddings technique to
instead embed the local graph neighborhoods surrounding the various identifiers in a knowledge graph, with the
goal of using these embedded neighborhoods as features to base our own predictions on.

25

3.4 Efficient Estimation of Word Representations in Vector Space
The embedding technique used in the code2vec paper was itself heavily inspired by the Continuous-Bag-of-
Words (CBOW) design that was first introduced in (Mikolov, Chen, et al., 2013; Mikolov, Sutskever, Chen,
Corrado, & Dean, 2013). The CBOW model (dubbed word2vec in this document) obtains vector representa-
tions for natural language words by training a shallow neural network to predict center words from the vector
representations of their respective context words. These so-called center words are obtained from large training
corpus of semantically rich text (for example Wikipedia). The individual words in the training text are extracted
together with a context of words that surround them in the text, and this derived dataset is used by the neural
network to optimize the coordinates of the vector representations of the individual words in the dictionary such
that they become good predictors for the center word. This optimization forces the context words and the center
words to occupy similar locations in the embedding vector space, thus obtaining a distributed representation
where the meaning of a single word is represented as the superpositioning of some basic concepts. Since its
introduction, word2vec and related techniques have revolutionized the field of natural language processing.

26

Chapter 4

Approach

As mentioned in the introduction, our main idea is to generalize the convolutional architectures used in image
processing to operate on general graphs. We abstractly represent our source code as multigraphs where the nodes
represent the source code identifiers and the labeled edges represent various syntactic and semantic relations
between them. Some of the nodes (i.e. identifiers) are already named while other nodes need to have have their
names predicted for them. Nodes in the first category will be refered to as the known nodes, while nodes in
the latter category will be referred to as the unknown nodes. The overall task of our convolutional neural
architecture is to accumulate enough local and non-local information at each of the graph nodes such that the
names for the unknown nodes can be accurately predicted from the available information.

The purpose of this chapter is to give a detailed overview of the various ideas and technologies that to-
gether constitute our proposed architecture. A subsequent chapter will subsequently verify the viability of this
architecture via a number of carefully designed experiments.

Throughout this chapter we assume a basic familiarity with ordinary feed-forward neural networks. We refer
the reader to section 2.5.4 for a gentle introduction to this subject.

4.1 Knowledge Representation
Knowledge graphs are a general way to represent information between various entities. A knowledge graph
can either be directed or undirected and consists of a regular (un)directed multi-graph structure G = (V,E)
together with two mappings nodeName : V → String and edgeName : E → String that each assign a unique
name to respectively the nodes and the edges of the graph. Multiple edges between a single pair of nodes are
allowed.

The entities are the various objects of interest and the edges between them record the various ways they are
known to be related. For our purposes we will model the relevant information known for a program P by the
construction of a knowledge graph GP = (V P , EP) where the nodes Z ∈ V P correspond to various identifiers
within the program P and the labeled edges (Zi, Zj)

labelk ∈ E correspond to the various ways the identifiers
Zi and Zj are related to each other. Figure 4.1 shows the sample program from the introduction, side-by-side
with its corresponding knowledge graph representation. We see here that the nodes are labeled with the various
identifier names that were found in the program, and that the named (multi)edges record the syntactic relations
between objects attached to these identifiers. The knowledge graph constructed for a specific program is by
design an abstraction of the original program; it only contains that part of the program that we deem relevant
to the task at hand. We specifically do not include any of the program’s concrete syntax, and in fact, we also
don’t fully necessarily include all information that was in the original abstract syntax tree.

The exact information contained in a knowledge graph is something that needs to be explicitly specified.
The knowledge graphs constructed in (Raychev et al., 2015) used a set of manually engineered relations, some
of which were explicitly identified within the abstract syntax tree, and others were found using static analysis.
In (Alon et al., 2018), the authors replaced the explicitly derived syntactic features by a general set of path
features found by considering general paths within the abstract syntax tree connecting various identifiers. No
manual considerations were given to these paths, only that they should connect two identifiers and be limited to
be of some pre-specified length. Whether the graphs used are directed or undirected depends on the application.
The graphs shown thus far naturally seem to be of the directed kind. In (Raychev et al., 2015), however, the

27

function findNode(tree, targetKey) {
var currentNode = tree;

while (currentNode != null) {
if (targetKey == currentNode.key) {

break;
} else
if (targetKey < currentNode.key) {

currentNode = currentNode.leftChild
} else
if (targetKey > currentNode.key) {

currentNode = currentNode.rightChild
}

}

return currentNode;
}

currentNode

tree targetKey

leftChild
key

rightChild

null

findNode

hasProperty hasProperty
hasProperty

isReturnedByisDeclaredIn

isAssignedValueOf

notEqualComparison

isParameterOf isParameterOf

isComparedWithProperty

isComparedViaReference

Figure 4.1: The findNode program together with its knowledge graph representation.

conditional random field framework uses the knowledge graph structure to model the independencies between
random variables, and in this setting it is more natural to consider knowledge graphs of the undirected kind.
For our architecture we adopt their choice of using directed knowledge graphs. The concrete knowledge graphs
we plan to use for our experiments will be extracted from the source code by the program UnuglifyJS (Raychev
et al., 2015) that was also used to test the conditional random field model of the same authors.

function findNode(b, c) {
var d = b;

while (d != null) {
if (c == d.key) {

break;
} else
if (c < d.key) {

d = d.leftChild
} else
if (c > d.key) {

d = d.rightChild
}

}

return d;
}

?

? ?

leftChild
key

rightChild

null

findNode

hasPropertyhasProperty hasProperty

isReturnedByisDeclaredIn

isAssignedValueOf

notEqualComparison

isParameterOf isParameterOf

isComparedWithProperty

isComparedViaReference

Figure 4.2: The findNode program and knowledge graph with local variable names erased.

In figure 4.2 we’ve shown a version of the findNode program where only the local variable identifiers have
had their names removed. When programs are presented in this form, the prediction task is easy to state: fill
in the question marks in such a way that the various relations between the instantiated nodes make the most
sense.

28

4.2 Neighborhood Information Aggregation
In computer vision, convolutional neural architectures are used to summarize neighborhood information for
various locations on a two dimensional grid by applying a simple single-layer neural network (the kernel) to the
information contained in small neighborhoods surrounding the location where the neural network is currently
being evaluated. The input grid has fixed finite dimensions w and h, and each grid location (x, y) contains some
finite amount of information represented by a number of real numbers. In computer vision applications, the
input grid typically represents an image, and the information stored at each grid location (x, y) correspond to
RGB color intensities.

When used in one of its simplest forms, the neural network is evaluated for each grid location (x, y) and
takes (for example) the information from a 3-by-3 block of grid positions centered at (x, y) as input and then
outputs a number of activated responses. The individual responses each detect the presence or absence of some
features in the input neighborhood, and by evaluating this network for all grid position we obtain information
on where precisely these features are most strongly present and where they are mostly absent. We can store the
output of the neural network evaluated at the various positions in a fresh grid of the same dimensions to obtain
an abstracted version of the original input where the information present at each position is now limited to the
information from a neighborhood around the same position in the original grid that was deemed relevant by the
neural network. Figure 4.3 shows how the linear (unactivated) response for such 3-by-3 kernel calculated from
the neighborhood surrounding some location, and how the result is subsequently stored in a fresh grid.

Figure 4.3: Single 3x3 feature map evaluated at a specific position. Source:
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

The information in the transformed grid is of a higher level than the information in the original grid, with
the resulting features corresponding to concepts that are expressed in terms of multiple more basic concepts
in small neighborhood in the original grid. When we apply this process to images where the information in
the input grid corresponds to RGB color intensities, the output features on the various grid positions are no
longer plain pixel intensities, but measurements of concepts expressed in terms of pixel intensities. Some of
these higher features might be interpreted as measuring the presence or absence of some specifically oriented
line segments in the area surrounding the location, whereas others might specialize in detecting the homogeneity
of the image at that location.

The application of such a single small neural network to the each of (the neighborhoods of) the various
positions on the grid is called convolution, and the gadget that transforms a grid of measured features into a
grid of higher level features is called a convolutional layer. By iterating the application of these convolutional
layers (with each layer described by a different kernel), we obtain an hierarchy of higher level concepts for each
grid position that in the end together hopefully describe the original input in a way such that it can easily
be reasoned about, for example for the purpose of classifying the input as containing either a cat or a dog in
the case of RGB images. Each of these layers produces features at each position that are expressed in terms
of a neighborhood of features from the previous layer, and these are themselves obtained from their respective
neighborhoods in their own previous layer. When we apply a 3-by-3 kernel to the positions in the first layer,
and when we then also apply (a different) 3-by-3 kernel in the second layer, the output features of this second
layer at each position contain information that was spread out over a 5-by5 grid in the original input. Adding a

29

third 3-by-3 layer would correspond to obtaining features that are derived from information originally located
in a 7-by-7 grid around the initial source locations. Adding more convolution layers thus increases the receptive
field of the network, which means that the information that becomes available for each grid location at each
layer is of an increasingly more global nature.

In practice, the original resolution of the input grid is usually lowered substantially in between the layers (for
example by pooling techniques that combine multiple source locations into a single target location). This is done
to reduce the total number of parameters within the combined network, to create an information bottleneck that
forces the network to distill only the relevant information, or just so that the final number of output features
becomes more manageable.

For our own architecture, we want to instantiate this basic idea of iterated local neighborhood information
aggregation to the source code domain. As we mentioned in the previous section, we’ve adopted a graph based
representation for our programs. The main idea here that an image is just very specific type of graph, and
by expressing the previously described grid-based convolutional architecture in terms of general (multi-)graphs
we might obtain an architecture that can obtain a global view of the whole (graph-representated) program by
iterating a number of convolutional layers that each individually just summarize the ways the information at
each node is related to the information available at each of the directly connected nodes. At the final layer, we
hope that enough local and non-local information has accumulated at the unknown nodes such that the labels
(i.e. identifier names) for these nodes can be accurately predicted.

In the original grid-based convolutional architecture, we can interpret an information grid as a (directed)
graph, where the nodes in the graph are obtained from the grid positions and the edges between the nodes are
obtained from the various adjacency relations between the nodes. Each grid location (x, y) induces a node Zxy,
and two nodes are connected by a labeled directed edge precisely when they are directly adjacent in the grid
in one of the 8 cardinal and intercardinal directions. The labels on the edges record these relative orientations,
so that the applied kernels can still differentiate between the various spatial configurations. A 3-by-3 kernel
can now easily be lifted to apply to these grid-induced graphs. The kernel applied to the neighborhood around
some node Zxy would then use the information on the connecting edges to consistently align its input from the
adjacent nodes so that it always uses the same input neurons for digesting neighbors of the same adjacency
type.

4.3 The Problems of Generalization
The graphs we use to represent our programs are a bit less structured than those induced by the rectangular
grids of the original setting. Instead of having precisely 8 different possible orientations, we now have as many
’orientations’ as the number of possible relations between identifiers in the original source code. Although we
have a great number of possible relations (a subsequent chapter will show that the training set contains around
90 thousand of them), we still have that most nodes are actually connected to only a few others. Thus the
adjacency relation is very sparse, and this means we can’t just allocate input neurons for each possible adjacency
type like we did in the original grid-based architecture, because then almost all kernel input positions would
not receive any input for most neighborhoods. Another difference of course is that we are now working with
multi-graphs, so neighboring nodes can actually be adjacent in multiple distinct ways.

Although these differences in graph topology are certainly non-trivial, there is a more immediate problem
that prevents us from directly applying the convolutional setup to our graph-represented source code. In the
original grid-based setting, the available information is always represented by a number of real numbers at
each grid position. When we’re working with input that consists of RGB images, each grid location contains
real-valued pixel intensities for the red, green and blue color channels. When applying a convolutional layer to
this input, the output of the layer is an array of real numbers, with each real number representing the degree in
which some specific measured feature is present at that location. The convolutional D-by-D kernels discussed in
the previous paragraph are implemented via a small neural network that initially just takes a (signed) weighted
average of the measured features in a neighborhood. Because both the input RGB intensities and the output
features are all represented in the same way by an array of real numbers, there is never an impedance mismatch
between the representation of the available information at a certain layer and the representation of information
that is expected by a subsequent consuming layer. Also, the averaging of various real number features in a
neighborhood is meaningful precisely because each real number represents the degree in which some measured
feature is present or absent. Measuring a rescaling of these measured features by some factor λ > 1 has the
interpretation that the presence of this feature has increased, while a rescaling by a factor λ < 1 has the

30

interpretation the the presence of this feature has decreased. The weighted averaging of a number of individual
measurements can be interpreted as measuring to what degree a specific combination of these factors co-occur
within the original input.

For our source code-derived knowledge graphs, however, none of the available information is directly repre-
sented by an array of real numbers. Each node is labeled by an identifier name, which to the neural network is
nothing more than a structure-less string of characters. Of course, we could encode each character by some real
number, and then we would indeed obtain an array of real numbers for each character string, but this encoding
would be totally arbitrary, and the resulting ’features’ would most definitely not have the interpretation of being
measurements of the degree of presence of some (relevant) property. Rescaling the presence of the character
d has no semantic meaning that the network can use to adjust its prediction. The similarities between the
spellings of the words danger and ranger are (as far as we can tell) purely accidental, and we would not want
our network to see the latter word as a more intense (on the first position) version of the former word; the
arbitrary encoding of the labels introduces superfluous patterns in the resulting feature encodings that have no
physical meaning.

A more meaningful way to feed the identifier names to the neural network would be to encode each unique
label as an array of real numbers using a one-hot encoding mechanism that assigns a feature vector to each
label without introducing any arbitrary structure or patterns in the process. The one-hot encoding reserves a
dedicated coordinate axis for each unique label. Each discrete label is then represented by a coordinate vector
that is 1 on its own allotted axis while it is 0 on every other coordinate axis. This encoding makes no further
assumptions on any possible relations between the different labels, and as such it is completely safe; rescaling
the encoding of a specific label by some factor only signals that this precise label is now more or less present,
without it making any unwarranted claims on the presence of any of the other labels.

Unfortunately, this encoding requires each label to live in a vector space of total dimensionality that is equal
to the total amount of labels that are taken under consideration, which will be about 70 thousand for our
training set. With this representation, each node within a neighborhood would contribute around 70 thousand
features, all of them being zero except for one. Assigning a dedicated coordinate axis to each label seems a
bit wasteful. What we actually want is an encoding of our labels as vectors in some relatively low dimensional
vector space in a way such that each coordinate offers a maximal amount of information on the semantics of
the label while the overall encoding induces a minimal amount of additional structure between the labels that
was not already there to begin with. Of course, using significantly fewer dimensions than there are labels in the
vocabulary forces most labels to share some of their representation (which is a good thing when these labels are
actually semantically related to each other), but we want the labels to be void of any mutual relations that are
induced by our own design choices as much as possible. The only relations that should exist between the various
labels are the semantic relationships obtained directly from the data. In the next section we will build towards
a method that lets us use our training set to dictate the most efficient label encoding under the constraint that
the vector space that houses these labels has a fixed dimension d.

4.4 Embeddings of Discrete Data
The encoding of a set of discrete labels as vectors that live in a fixed finite dimensional real vector space is
called an embedding. As we mentioned in the previous section, there are many such encodings possible, but
not all of them are equally desirable. One has to be careful to not let the chosen encoding induce relationships
between the embedded labels that are purely artifacts of this specific encoding, because otherwise the prediction
architecture has to go through hoops to workaround these non-existing connections. For our architecture we’ve
chosen to adapt the word2vec (Mikolov, Chen, et al., 2013) embedding mechanism that has recently become
very popular in the area of natural language processing. This mechanism was recently also used in the code2vec
framework (Alon et al., 2019) for predicting method names in source code from syntactic constructs extracted
from the abstract syntax trees of their respective method bodies. In this section we will first introduce the main
word2vec embedding mechanism. Our own adaptation of this mechanism re-uses some key contributions of the
code2vec paper that will be described in the next section.

As we mentioned, the goal of the general word2vec mechanism is to obtain a high quality encoding of discrete
labels as vectors in some finite dimensional vector space. In the original paper (Mikolov, Chen, et al., 2013),
word2vec was used to obtain embeddings of dictionary words of some natural language, with the goal of the
embedded words being used as features in text related prediction tasks. The main idea behind obtaining the
encoding is that the meaning of words is mostly related to how they are typically used in combination with

31

other words. When removing a single word from a non-trivial sentence, humans can usually reconstruct the
missing word with pretty high accuracy. Figure 4.4 gives a small illustration of this phenomenon. Apparently
the meaning of the missing words is somehow shared with the meaning of the words surrounding it, and this
would make it not seem unreasonable that the encoding of the missing word shares some representation with
the encodings of its surrounding words. Going back to the idea of letting the data dictate the encoding, the
idea implemented by word2vec is to obtain a maximally shared representation between a word and all of its
context words over all words in the whole dataset. When the representations (i.e. real vectors) of the context
words are known, the best word to place at the center position is the word with the representation closest to
the overall representation of the context. Of course, we still need to specify how we quantify the degree in
which representations are shared, but once this is done, we can simply formulate the embedding problem as
finding the assignment of coordinates to each word such that the average representation sharing between each
word and its context words is maximized when considering all words in the dataset. Neither the measure that
decides the agreement between representations, nor the choice of the number of context words to use, nor the
size of the embedding vector space are uniquely determined, but overall, the idea of letting the data determine
the (necessary) overlap between word representations, by forcing similar words (according to the contexts in
which they are used) to have similar representations, seems much more principled than any manual encoding
one could come up with.

wearing

The cyclists are helmets for safety

Figure 4.4: The word ’wearing’ is semantically related to the words before and after it. A neural network is
trained to optimize the coordinates of the words by making it use the coordinates of the words in the context
to predict the word at the center. By using a large dataset of semantically rich sentences, the coordinates are
organized such that related words are positioned close together.

The way word2vec actually quantifies how much representation is shared between (the encodings of) the
context and the center word is via an application of a joint soft-max operation to the dot product between
the averaged context encoding and the encodings of each of the words in the dictionary. This results in a
probability distribution over the dictionary, and the probabilities assigned to the words are to be interpreted as
measuring the degree in which the representations of each of these words overlap with the surrounding context.
The goal is then to optimize the coordinates assigned by this dictionary to each word in such a way that the
probabilities calculated in this way for the actual center words are generally as large as possible. Word2vec
employs a neural network in an attempt to perform this optimization. The network is configured to minimize
the negative log-likelihood of the calculated probability distributions with respect to the center labels in the
dataset.

4.5 Graph Neighborhood Embeddings
In the previous section we’ve discussed a way of encoding discrete atomic words as real vectors such that the
algebraic relations between the vectors correspond as closely as possible to the semantic relations between the
usages of the words in the dataset. Initially, the words were mere symbols that did not have any internal
structure, and as such there was no way any of the words could be mutually compared. Either two words
are exactly the same or they are completely different. By training a neural network to assign vectors of real
numbers to these symbols such that vectors assigned to contextual words become good predictors for their
respective center words, we obtained a continuous representation for these words that actually has meaningful
internal structure. Perhaps more importantly, the structure induced on these representations was controlled to
be precisely the internal structure needed for the contextual words to be good predictors for their centers on
the dataset, without implicitly imposing any additional assumptions on the representation except for a fixed
context size and the very general hypothesis that angle measurements are all that is needed to differentiate
between various degrees of dissimilarity between the labels.

32

For our architecture, we’d like to adapt this basic idea to the knowledge graph setting. In this setting, we’re
now dealing with labeled nodes that are surrounded by a context of directly connected labeled nodes. The
connected nodes are connected via an edge that is itself also labeled, and our goal now is to find an encoding of
the edge and node labels as real vectors in such a way that the averaged encodings of the labels on the connected
edges and nodes become good predictors for the node label at their center.

In the previous section, the context of a center word Z was obtained by looking at the R words directly to
the left of the center word and by looking at the R words directly to the right of the center word. For example,
in figure 4.4, R was chosen to be 3, and the three words the cyclists are together with the three words
helmets for safety, together seem to make wearing likely to be sandwiched inbetween. In our graph setting,
we can let the various connected edges take over the roles of left and right. Instead of knowing to look at a static
total of two sides, we now have as many ’sides’ as there are edges connected to a center node Z. We can even
generalize further and let the number of outgoing non-cyclic paths of length R determine the number of sides to
Z, where each such path of length R contains precisely R labeled edges and R labeled nodes, in addition to the
center node Z. When we remove the start node Z from these paths, we obtain strict chunks of context related
to Z. In this rest of this document, these chunks of context will be referred to as the context rays of radius-R
originating at Z. Figure 4.5 shows a fragment containing a center node together with three radius-2 rays. Each
ray consists of R = 2 blocks at distances r = 1 and r = 2 from the center node Z. Each block contains precisely
one edge and one node. The block containing the X node and edge is shared between two rays.

Z
edge
A

node
A

edge
B

node
B

edge
X

node
X

edgeP

nodeP

ed
ge

Q

no
de

Q

Figure 4.5: Center node Z shown with three connected radius-2 rays. The left blue block is shared between two
distinct rays.

The context rays originating at Z, together with their center node Z will constitute the neighborhoods
surrounding Z, and these neighborhoods will be the graph equivalents of the 3-by-3 and 5-by-5 grids that were
used as neighborhoods around a center position in the original grid setting.

In principle, we can now directly apply the word2vec setup to this setting. The only differences we need to
accomodate for is that we now have a variable number of context rays that we need to average over, and that
we have two different kinds of ’words’ instead of just one, namely the edge labels (source code features) and
node labels (identifier names). Because we have these two semantic categories, we will keep track of two disjoint
dictionaries; the encodings obtained for either category will live in different vector spaces that need not share
their dimensionality. Figure 4.6 illustrates the prediction problem using a center-context combination obtained
from the example used in the introduction chapter. Here the context size R was chosen to be 1 (we only look
at the directly connected edge/node pair) and the number of context rays used for this particular center node
is 6.

33

null notEqualCmp

leftChild hasProperty

key hasProperty

rightChild hasProperty

findNode isDeclaredIn

findNode isReturnedBy

currentNode

Figure 4.6: The label in the single node in the right column is predicted using the labels on the nodes and
edges in its direct neighborhood which are shown in respectively the left and middle columns. Again the neural
network is forced to assign good coordinates to these labels such that the coordinates of the labels in the context
become good predictors for the coordinates of label in the center.

4.6 Averaging Neighborhoods with Attention
The original word2vec implementation used a uniform averaging of the various context pieces. Given that each
word always has precisely two sides, we always have a total of 2 · R different embedded labels that constitute
a context (in this chapter we will keep on ignoring the details of dealing with contexts that have fewer than R
words available to them). When we average the embedded context labels, we just add together their respective
embeddings and divide the total by 2 · R. This is a fair normalization that makes sure that each of the 2 · R
labels makes an equal contribution to the overall context. Unfortunately, as the total number of labels R used
at each size increases, the actual difference a single piece makes becomes negligible in the grand sum. In our
application, the number of context rays is at least as large as the number of edges connected to the respective
center node. Because the node degree is not bounded, the total number of labels from the context rays averaged
over is also not bounded. So even if we keep our number of context rays R relatively small, the varying and
unbounded node degrees in the graph might still cause an overwhelming amount of information to enter the
pool. When there is a lot going on in a particularly large neighborhood, all these different kinds of information
might result in a very uninformative average.

In their code2vec (Alon et al., 2019) implementation, the authors adopted word2vec for predicting class
method names from syntactic elements obtained from the abstract syntax tree of the method body. Just like
in our application, these syntactic elements are all treated symbolically (i.e. they have no internal structure),
and their use of word2vec allows them to construct vector representations for these context elements such that
the algebraic relations between these vectors represent the semantics of these elements as they are seen in the
source code. Similar to our situation, the number of context elements extracted from their method bodies is
not bounded, and so they also have the problem that the naive uniform averaging of the individual context
elements might destroy valuable information.

In their paper, Alon et al., 2019 instead employ an attention mechanism to calculate the usefulness of each
of the context elements to the final prediction. The attention mechanism calculates for each context element
a weight that determines the importance of that particular element of context. The calculated weights are all
positive and their total sum is normalized to be 1. Instead of taking a uniform average over the embedded
context elements, the calculated weights are now used to take a convex combination of the individual embedded

34

elements, with each element only contributing to the final result in accordance to the weight that was calculated
for it. The weights themselves are calculated via a so-called attention vector ~α that lives in the same
vector space as each of the embedded context elements ~ci. The weight calculated for a context element ~ci is
directly related to the angle the vector ~ci makes with the reference attention vector ~α. The coordinates of the
attention vector are learned parameters of the model, and the optimization mechanism is encouraged to jointly
organize the embeddings of the context elements and the attention vector in such a way that the differences
between the calculated angles of the individual context elements with the attention vector is indicative of the
relative importance of those elements. The attention mechanism allows the neural network to learn which of
the context elements make important contributions to the final prediction and which context elements are just
noise that should be canceled out. Thus, even though the number of context elements in a neighborhood might
be arbitrarily large, the attention mechanism can learn to fade all unimportant, irrelevant or contradictory
elements such that only the remaining relevant elements contribute significantly to the end result.

4.7 Graph Convolutions
In the previous sections we saw how a neural network can be used to encode discrete labels as vectors in some real
vector space by forcing it to efficiently organize the coordinates in such a way that the coordinates of the context
labels become good predictors for the coordinates of the center label. Once we’ve obtained these embeddings,
our goal is to employ small neural network kernel that uses the (now continuously represented) information in
the neighborhoods to extract a number of quality features that efficiently summarize what is going on in these
neighborhoods. The neural network is evaluated at, for example, the radius-1 neighborhoods surrounding each
graph node Z, and the features generated by this network when evaluated around Z are subsequenly stored
in Z itself. Thus originally each node Z only contains the (embeddings of) the labels that were assigned to
it, but after the first convolutional layer it will also contain the features generated by the first layer from the
information in the the neighborhood surrounding Z. If we would add an additional layer on top of this first
layer, this second layer would be able to generate features for a node Z using a neighborhood of nodes that
now each have both the original label embeddings as well as the generated features from the previous layer
available to them. Thus, indirectly, the features obtained from this last layer would contain information about
the radius-2 neighborhoods of the original input graph. We see here again that the receptive field of the network
increases by adding additional layers. Stacking L radius-1 layers results in nodes containing information from
radius-L neighborhoods. The goal of this architecture of course is to accumulate enough information at each of
the unknown nodes Y such that this information useful in predicting the right identifier name to assign to the
identifier represented by the node Y .

4.8 Training Objective
Of course, the parameters of the layered architecture described in the previous section still need to be tuned so
that the features generated by the evaluations of the neural network kernels at the various neighborhoods at
the various layers eventually lead to quality features that serve as good predictors for the labels of the unknown
nodes Y that we are actually interested in. We’ve already described how we obtain the coordinates for the label
embeddings by training a shallow neural network to optimize the dictionaries such that the coordinates of the
labels in the contexts are good features for predicting the labels in the respective center positions.

Ideally, all layers in the proposed architecture would be trained at the same time, such that the impact of
changing a parameter in the lower layers is directly measurable in the output of the higher layers. This is done
in the original grid-based setting, where the direct connections between the different layers allows the gradient
of the final loss function to flow back all the way into the lower layers. Here, the stochastic gradient descent
optimization algorithm can tune all layers at the same time, which allows it to make tweaks to the outputs of
the lower layers if it can measure a beneficial response at the higher layers. Unfortunately, the irregular graph
structure of our data prevents us from optimizing all layers at the same time. In contrast to the grid-based
setting, we don’t have a constant number of nodes in our input graphs, and each of these nodes also doesn’t
have a (non-trivial) bound on the number of adjacent nodes that it is connected to. Thus, the evaluation of
the kernel neural network on a neighborhood requires a variable number of inputs, and each of these inputs
themselves might also be generated by the application of a kernel neural network in the layers before. The
total number of evaluations of the individual kernels is thus totally dynamic, and unrolling the layers such that

35

the outputs and inputs are all aligned in a single network would result in an enormous neural network whose
topology would need to be re-instantiated for each concrete program.

So unfortunately, training all layers at once is not an option. For our architecture we’ve decided on a layer-
by-layer approach where we mimic the way our semantic embedding layer was trained. Looking back at this
first layer, we already see that this layer delivers a number of features in the form of the attention-averaged
context rays from which it is trained to accurately predict the center label. These features, together with the
embeddings of the context ray labels from which they originate, are already optimized to efficiently represent
the neighborhood information that is relevant for predicting the label. For the higher layers, we repeat this
training objective. The neural network kernel used at each layer is trained to use (a configurable subset of) the
features generated by the lower layers to generate features that are useful in predicting the center labels of the
neighborhoods on which the kernel is evaluated. The kernel itself is now (at the higher layers) not restricted to
be a shallow single-layer neural network, but it can be as deep as is required to adequately refine the features
gathered from the lower layers in the neighborhood to make the final prediction. Thus the lower layers are
evaluated layer-by-layer until all features obtained from previous are available for all nodes Z, and then the
kernel of the current layer is trained to predict the center label for each node Z using the selected subset of
features from these previous layers. The kernel is itself a fully connected feed forward neural network with
possibly many layers, and we use the responses it generated at its final layer, just before making its center label
prediction, as the designated output features of this layer.

In the end, all our convolutional layers are individually trained as classifiers that assign labels to the various
nodes in the input graphs using information that was generated by any previous layers. We can compare the
prediction accuracies between the internal layers to find the optimal balance between the extra time needed to
train and evaluate each of the layers and the increase in prediction accuracy that (hopefully) comes with it.

36

Chapter 5

Architecture

In the previous chapter we’ve explained the various ideas that constitute the foundations of our architecture.
In this chapter we will flesh out these ideas into a fully fledged architecture. The architecture presented here
consists of a number of interconnected components and of the various sorts of data that flows through them. In
the first section (’Discrete Data Types’), we will give a typed specification of the initial neighborhood data that
we need to extract from the knowledge graphs to serve as input to the convolutional kernel. This discrete data is
pulled through the initial embedding layer to be transformed into a continuous representation that will be used
throughout the rest of the kernel. The second section (’Continuous Data Types’) will describe the continuously
represented variants of these discrete data types that are obtained from this embedding layer. We follow in the
next section (’Implementation’) with giving a typed abstract implementation of our framework that describes
the complete data flow starting at the initial discrete knowledge graphs and which ends at the final prediction
layer. The last section of this chapter (’Configuration’) finally discusses the gaps that still need to be filled to
turn this abstract implementation into something that something concrete.

Our prediction framework consists of a number of convolutional layers. Each convolutional layer uses a
single kernel that is evaluated on the neighborhoods surrounding the graph nodes Z. Each kernel is a neural
network that itself also consists of a number of internal layers. To prevent confusion between the convolutional
layers we’ve used thus far in this thesis, and the internal layers used inside the kernel of a specific layer, we now
introduce the concept of stage to refer to layers in the sense of layers internal to a kernel, while we keep using
the word layer to refer to convolutional layers. Each convolutional layer uses a specific kernel that is evaluated
on neighborhoods, and each kernel is built out of a number of stages.

5.1 Discrete Data Types
We begin with defining the two label sets used to supply our graphs with meaning. The first set we’ll define
is the set of node labels that contains all unique identifier names that were found in the training set, together
with two special labels UNKNOWN and MISSING that are used to respectively indicate out-of-vocabulary labels and
placeholders for nodes that don’t currently have a label assigned:

NodeLabel := {identifier names found in the training set} ∪ {MISSING, UNKNOWN} (5.1)

The final prediction made by the neural network kernel for a single neighborhood is a probability distribution
over this label set that indicates for each label in the node label set how confident the network is in that label
being the correct label. The current design of our neural kernel only attempts to predict labels from this set,
and it can only take input labels from this set, so our model is very much dependent on the diversity of the
labels that were found in the training set.

Similar to the node label set, we also have a specific set containing all labels that were assigned to the edges
in the training set. Again, our model can only deal with edge labels that are in this set; any labels that are found
on knowledge graphs that are not in this set are replaced by the UNKNOWN placeholder. Edge labels correspond
to various syntactic and semantic relations that were found in the JavaScript source code by the knowledge
graph feature extraction program UnuglifyJS. The set of edge labels is defined as follows:

EdgeLabel := {edge features found in the training set} ∪ {MISSING, UNKNOWN} (5.2)

37

The actual architecture will be given in terms of a number of high level functions that together express the
relationships between the original neighborhood input and final predicted output. The type of data consumed
by each layer or stage will differ from layer to layer and from stage to stage, depending on the exact configuration
of the framework. We’ve chosen to adopt an informal but mostly precise type system to make this dependency
of the concrete types of the various components and pieces of data on the user configuration explicit.

We now begin by defining the type of information that is available at the center position when evaluating
the kernel of layer l on a neighborhood centered around a node Z at stage s:

CenterFeatures(l, s) := NodeLabelK(l,s,0) × CenterPool(l, s) (5.3)

Each stage s in a layer l can choose to add a user-definable number of K(l, s, r) different candidate labels to its
information pool at the nodes at distance r ≥ 0 from the center:

K(l, s, r) :: N
K(l, s, r) = < user-defined number of candidates >

(5.4)

The value for r = 0 corresponds to the center node itself. For distances r > 0 from the center, we don’t support
a separate configuration for the number of candidates, so we can only configure for s = 0 here; we currently
don’t support a separately configured candidate configuration for the situation that both r > 0 and s > 0. The
candidates are picked from the TOP-K predictions of either the baseline model or any of the preceding layers
(this also configurable per layer). The CenterPool(l, s) type contains a user-configurable selection of feature
maps generated by any of the previous layers or stages:

CenterPool(l, s) := < user-defined information pool > (5.5)

This type can be configured to house any combination of feature maps obtained from any of the preceding
stages, either in the current layers or in any of the previous layers. By default, each stage after the initial stage
is configured to only source from the feature maps obtained from the directly preceding stage, which results in a
simple linear neural network structure for the kernel, but in principle much more complex information flows are
possible. Usually the feature maps generated by the final stage of a particular layer are used as extra features
in the first stage of the following layer, but need not be the case in general.

In section 4.5 we informally introduced the notion of radius-R context rays. In figure 4.5 we saw that these
rays could be visualized as a chain of R blocks, with each block containing precisely one node and one edge.
Our kernels will eventually use the attention mechanism to average over (the embeddings of) the information in
these rays, but before we come to this we first have to make explicit the exact information contained on them.
Each layer l can be individually configured precisely as to what information is read from the neighborhood at
various distances from the center node. We first start by defining the raw context type that contains all context
rays that are available for a particular node Z:

ContextFeatures(l, Z) := {ci ∈ Ray(l) | ci originates from Z} (5.6)

The type Ray(l) contains rays that are directly extracted from the knowledge graphs, before any embedding has
taken place. Rays are just the Cartesian product of the type of the individual blocks from which the rays are
built:

Ray(l) :=
∏

1≤r≤R(l)

Block(l, r) (5.7)

The product is taken over all blocks that lie at distances r ∈ {1, 2, . . . , R(l)} from a center node. The radius
R(l) used for layer l is a layer specific configuration option:

R(l) :: N
R(l) = < user-defined context radius >

(5.8)

The blocks Block(l, r) at each distance r from the center node can all be individually configured, and their type
thus depends on both the layer l and the distance r from the block to the center. This block type is defined as:

Block(l, r) := NodeLabelK(l,0,r) × EdgeLabel× ContextPool(l, r) (5.9)

38

Each block always contains precisely one edge label, one node label, and possibly any combination of feature
maps that were delivered by any of the previous layers. This last part is user-configurable, and the exact type
ContextPool(l, r) depends on precisely what information the user wishes to make available to the kernel for
layer l at the node located at distance r from a center node:

ContextPool(l, r) := < user-defined information pool > (5.10)

Usually, each context node will be configured to use the final stage feature maps generated from only the layer
directly preceding it, but some of our experiments also make available the feature maps from all preceding
layers.

We’ve now defined the types CenterFeatures(l, s) and ContextFeatures(l, Z) that together describe all
information that can be available in a neighborhood surrounding a center node Z. Together they combine into
a type that specifies precisely what input a kernel is expected to consume when evaluated around Z:

NeighborhoodFeatures(l, s, Z) :=

{
CenterFeatures(l, s)× ContextFeatures(l, Z) if context is used at s
CenterFeatures(l, s) otherwise

(5.11)

Not every stage will want to make use of the information available in the context, and the branching shown
here makes explicit this decision for a particular stage. As we can see, this type still depends on the specific
center node Z under consideration. Each kernel expects a (possibly padded) fixed amount of input data, and
the variable number of rays attached to each center node poses a problem. Also, most of the data described by
these types is still discrete, with the neighborhood data consisting mostly of node and edge labels. In the next
section we will describe how the discrete values of these types can be ’lifted’ to their embedded equivalents, and
here we will also get rid of the dependency of the neighborhood features type on the center node Z by forcing
an upper bound on the number of context rays that participate in a single evaluation of the kernel.

5.2 Continuous Data Types
The previous section described the neighborhood data available to the neural network kernel when evaluated
at a neighborhood around a specific center node Z. These data types are (at least partially) discrete and the
values that live inside them are not directly amenable to be consumed by the kernel. In this section we will
describe corresponding fully continuous data types that will house the embedded vector representations of there
respective discrete originals. The continuous variants or their respective discrete counterparts are denoted by a
superscript F. Usually the continuous variant of a discrete datatype is obtained by a recursive application of
the (·)F operator on the individual component types.

We first define the type in which the node labels are embedded:

NodeLabelF := Rp (5.12)

This is just the ordinary p-dimensional real vector space, where p is user-configurable and is constant over all
layers:

p :: N
p = < user-defined node vector space embedding dimension >

(5.13)

We have a similar type for edge labels:

EdgeLabelF := Rq (5.14)

Again, the vector space dimension q is a global configuration option:

q :: N
q = < user-defined edge vector space embedding dimension >

(5.15)

The type of embedded center features are obtained by the embedding of the individual discrete candidates:

CenterFeaturesF(l, s) :=
(
NodeLabelF

)K(l,s,0) × CenterPool(l, s) (5.16)

39

The user configurable CenterPool(l, s) type was already continuous and as such it is left untouched from the
original in the previous section.

For the type of context features we break the pattern of simply applying the (·)F operator to the individual
components. The final representation of the context is obtained from attention-averaging the embeddings of the
individual context rays. The continuous vector space where this averaging happens and where the final result
lives is defined as follows:

ContextFeaturesF(l, s) := Rd(l,s) (5.17)

As opposed to the original, discrete, type of context features, this continuous type has lost its dependence on
the center node Z. The dimension of this vector space again is user-configurable:

d(l, s) :: N
d(l, s) = < user-defined dimenson of vector space that embeds the context >

(5.18)

The attention-averaging is performed separately for each stage s that wishes to source from the context, and
each individual stage can specify how many features it wants to extract from the context presented at layer l.
This is done through an intermediate stage-specific neural layer that summarized the features on a single ray
into a d(l, s)-dimensional vector.

The final continuous pool of information available at stage s when evaluating the kernel belonging to layer
l on the neighborhood surround a node Z is now typed as follows:

NeighborhoodFeaturesF(l, s) := CenterFeaturesF(l, s)⊕ ContextFeaturesF(l, s) (5.19)

Again, notice that this type has no dependence on the actual center node Z.
What remains now is to describe the types of the individual embedded context rays before they are combined

in the context summary type ContextFeaturesF(l, s). Rays are embedding by embedding their individual
blocks:

RayF(l) :=
∏

1≤r≤R(l)

BlockF(l, r) (5.20)

Each block is itself embedded by embedding the corresponding edge and node labels:

BlockF(l, r) := NodeLabelF
K(l,0,r) × EdgeLabelF × ContextPool(l, r) (5.21)

The type ContextPool(l, r) corresponding to the user-configurable extra information is already continuous, and
as such it remains the same as in the previous section.

5.3 Implementation

5.3.1 Assumptions
In the previous sections we’ve described the various kinds of data our implementation as to deal with. In this
section we will use these types to give a high level pseudo-implementation of our architecture. We start by
assuming the existence of functions that can be used retrieve the original discrete labels from the various nodes
in the current neighborhood. The k-th candidate label available at the current node Z is retrievable via the
candidate_node_label function:

candidate_node_label(l, s, Z, k) :: NodeLabel (5.22)

When the k-th candidate is unavailable the MISSING stand-in label is returned. We assume all context rays in
a neighborhood are indexed by an index i ∈ N. Similarly, the k-th candidate labels on context positions at
distance r from the center node Z on ray i are retrieved by the context_node_label function:

context_node_label(l, Z, i, r, k) :: NodeLabel (5.23)

40

The context_edge_label function returns the edge label of ray i at distance r from Z:

context_edge_label(l, Z, i, r) :: EdgeLabel (5.24)

We also assume the existence of functions that retrieve the user-configured selection of input features that were
generated by any of the previous layers or stages. The features available at the center position of the context
surrounding a node Z (i.e. on Z itself) are retrieved by the previous_center_features function that is specific
to configuration specifed for the current layer-stage combination:

previous_center_features(l, s, Z) :: CenterPool(l, s) (5.25)

The features on the context positions at distance r from the center node Z on the ray i are retrieved by the
previous_context_features function:

previous_context_features(l, Z, i, r) :: ContextPool(l, r) (5.26)

Finally, we assume efficient mappings between the discrete and continuous label types that are compatible
with the coordinate optimizations performed by the neural network. In our actual implementation, these are
primitives supplied by the Tensorflow framework. We first assume a dictionary mapping between the discrete
node labels and their continuous encodings:

node_dict :: NodeLabel NodeLabelF (5.27)

Edge labels have their own dictionary:

edge_dict :: EdgeLabel EdgeLabelF (5.28)

Finally we need a way to lookup labels in their respective dictionaries:

dictionary_lookup :: ∀` .
(
` `F

)
→
(
`→ `F

)
(5.29)

5.3.2 Plumbing
In the previous subsection we’ve listed all the primitives needed to describe our architecture. We now continue
with the actual implementation. First, the embedded k-th candidate label for node Z is retrieved via a simple
dictionary lookup of the label:

candidate_node_labelF(l, s, Z, k) :: NodeLabelF

candidate_node_labelF(l, s, Z, k) = dictionary_lookup
(
node_dict, candidate_node_label(l, s, Z, k)

)
(5.30)

The k-th node candidate labels on ray i at distance r from Z are retrieved similarly via a dictionary lookup:

context_node_labelF(l, Z, i, r, k) :: NodeLabelF

context_node_labelF(l, Z, i, r, k) = dictionary_lookup
(
node_dict, context_node_label(l, Z, i, r, k)

)
(5.31)

The final type of dictionary lookup is performed to retrieve the similarly located edge labels:

context_edge_labelF(l, Z, i, r) :: NodeLabelF

context_edge_labelF(l, Z, i, r) = dictionary_lookup
(
edge_dict, context_edge_label(l, Z, i, r)

) (5.32)

We can now directly obtain our final embedded center features by embedding the desired number of candidate
labels:

center_featuresF(l, s, Z) :: CenterFeaturesF(l, s)

center_featuresF(l, s, Z) =
(⊕

1≤k≤K(l,s,0)

candidate_node_labelF(l, s, Z, k)
)

⊕ previous_center_features(l, s, Z)

(5.33)

41

Here the ’⊕’ symbol indicates the direct sum of the vectors on either side, i.e. the concatenation of the
coordinates. Context embeddings are obtained via the attention-averaging of their embedded rays, and the
embedding of a single ray is realized via the embedding of the individual blocks that constitute the ray:

embedded_block(l, Z, i, r) :: BlockF(l, r)

embedded_block(l, Z, i, r) =
(⊕

1≤k≤K(l,0,r)

context_node_labelF(l, Z, i, r, k)
)

⊕ context_edge_labelF(l, Z, i, r)

⊕ previous_context_features(l, Z, i, r)

(5.34)

The embedded ray is now just the concatenation of the blocks:

embedded_ray(l, Z, i) :: RayF(R(l))

embedded_ray(l, Z, i) =
⊕

1≤r≤R(l)

embedded_block(l, Z, i, r) (5.35)

The original context rays contained labels originating from two distinct semantic categories, namely the category
of edge labels and the category of node labels; their respective embedding were realized in two disjoint vector
spaces that did not have any direct relations. To obtain a single representation of the context rays that combines
these two different kinds of information, we now employ a single transformation that combines the information
from the different spaces into a single vector space by the application of a single hidden layer:

summarized_ray(l, Z, i) :: ContextFeaturesF(l, s)

summarized_ray(l, Z, i) = tanh

((
summary_layer

(
l, embedded_ray(l, Z, i)

))) (5.36)

Besides combining the edge and node label categories, this transformation also allows the information at dif-
ferently distanced blocks to be incorporated differently in the final representation. The hidden layer is tanh-
activated, and the linear part is implemented via a matrix that transforms from the space where the ray
embeddings live to the space where the final embedded context will live:

summary_layer
(
l) :: RayF(l)→ ContextFeaturesF(l, s)

summary_layer
(
l) = (w†l)ij

(5.37)

The parameters of this matrix are found as part of the neural network training process. Each stage that decides
to use features from the context gets its own dedicated summary_layer matrix. The final context embedding is
now obtained via a weighted sum over the individual context rays:

context_featuresF(l, s, Z) :: ContextFeaturesF(l, s)

context_featuresF(l, s, Z) =
∑
i

λ(l, s, Z, i) · summarized_ray(l, Z, i) (5.38)

The weights used in this summation are obtained by comparing the summarized rays with the reference attention
vector via a dot product. The calculated dot products are jointly soft-maxed to obtain weights for each of the
context rays such that the rays that are the best aligned with the attention vector get the highest weights:

λ(l, s, Z, i) :: R

λ(l, s, Z, i) =
exp

(〈
summarized_ray(l, Z, i), attention_vector

〉)
∑
j exp

(〈
summarized_ray(l, Z, j), attention_vector

〉) (5.39)

The attention vector is itself an array of learned parameters. Again, each stage that decides to use features
from the context gets its own dedicated attention vector:

attention_vector :: ContextFeaturesF(l, s) (5.40)

42

Now, the total feature vector available to the kernel of layer l at stage s for a given node Z is given by combining
the center and context feature vectors of the respective layers at the respective stages:

source_features(l, s, Z) :: NeighborhoodFeaturesF(l, s)

source_features(l, s, Z) = center_featuresF(l, s, Z)⊕ context_featuresF(l, s, Z)
(5.41)

The output feature vector of the application of this same kernel at stage s is obtained by pulling these
source_features through a σsl -activated hidden layer:

result_features(l, s, Z) :: NodeFeatures(l, s)

result_features(l, s, Z) = σsl

(
linear_layer

(
l, s, source_features(l, s, Z)

)) (5.42)

The activation function σsl used here is in principle configurable per layer per stage, but for our experiments we
will always set σsl = tanh. The linear part of this last hidden layer is again given by a matrix that differs from
layer to layer and from stage to stage:

linear_layer(l, s) :: NeighborhoodFeatures(l, s)→ NodeFeatures(l, s)

linear_layer(l, s) = (wsl)ij
(5.43)

The output of a specific layer-stage combination is contained in a dedicated vector space:

NodeFeatures(l, s) := Rf(l,s) (5.44)

The dimension of this vector space can again be configured on a per-stage basis:

f(l, s) :: N
f(l, s) = < user-defined dimenson of vector space that houses the feature maps >

(5.45)

Finally, we obtain our predictions for the node Z at layer l by using the features obtained from the final stage
of l to calculate a probability distribution over the node label space:

predictions(l, Z) :: NodeLabel [0, 1]

predictions(l, Z) = predict_probabilities
(
l, result_features(l, last_stage(l), Z)

) (5.46)

The final predict_probabilities function is implemented by an additional linear layer from NodeFeatures
(
l,

last_stage(l)
)
into the space NodeLabelF of embedded node labels, followed by a joint soft-max over the dot

products between the predicted vector ψ ∈ NodeLabelF and the embeddings c̃t ∈ NodeLabelF of each the node
labels ct ∈ NodeLabel:

predict_probabilities(l) :: NodeFeatures
(
l, last_stage(l)

)
→
(
NodeLabel [0, 1]

)
predict_probabilities(l) = λ ψ .

(
ct 7→

exp
(〈
c̃t, prediction_layer(l, ψ)

〉)
∑
j exp

(〈
c̃j , prediction_layer(l, ψ)

〉)
)

(5.47)

The linear layer is as usual implemented via a simple matrix whose parameters need to be learned:

prediction_layer(l) :: NodeFeatures
(
l, last_stage(l)

)
→ NodeLabelF

prediction_layer(l) = (w�l)
ij

(5.48)

5.4 Configuration
Each stage s of the kernel corresponding to layer l delivers a number of features for the various nodes in the
input graph that are captured by the type NodeFeatures(l, s). Any subsequent stage s′ > s at some layer l′ ≥ l
for some context position r′ ≥ 0 can make use of these features by an adequate instantiation of its configuration
types CenterPool(l′, s′) and ContextPool(l′, r′). Besides these choices in information availability, there are
a number of other hyperparameters that need to be determined before we can actually use this framework.
Assuming a complete implementation of the primitives that were left open in the previous section, we are left
with the freely choosable hyperparameters shown in table 5.1. The next chapter will discuss the experiments we
performed to verify the usability of our architecture. Each of these experiments will have been given a specific
concrete instantiation for these hyperparameters.

43

hyper parameter meaning
p :: N node embedding dimension
q :: N edge embedding dimension
R(l) :: N context rays size
K(l, s, r) :: N number of candidates used
d(l, s) :: N context embedding dimension
f(l, s) :: N number of feature maps
σsl :: R→ R activation function
CenterPool(l, s) :: Type configuration of center source features
ContextPool(l, r) :: Type configuration of context source features

Table 5.1: Hyperparameters for the convolutional prediction architecture.

44

Chapter 6

Experimental Verification

In the previous chapter we’ve given a detailed description of a general architecture that can be used to perform
attention-based graph convolution experiments on general knowledge graphs. To verify the utility of this archi-
tecture, we’ve created a general framework which can be used to construct a variety of experiments to test the
architecture by simple acts of configuration. Using this framework, we subsequently designed and executed a
number of experiments that try to probe the strengths and weaknesses of the architecture when it is used for
the purpose of identifier name inference. These experiments fall into two distinct categories. The main research
question of this thesis asks whether we can improve upon the existing conditional random field model by the
use of a convolutional neural network architecture, and the first category consists of experiments that take the
predictions made by the conditional random field as a given and then try to refine these predictions by using the
convolutional architecture to get an improved sense of which of the original conditional random field predictions
should actually be the top prediction. These experiments are discussed in section 6.9 (’Extension Experiments’).
The second category consists of experiments that are designed to find out how our architecture performs when
used as a self-sufficient model that doesn’t have any candidate suggestions delivered by a pre-existing model.
These experiments are discussed in section 6.10 (’Standalone Experiments’).

Before we can discuss these experiments in full detail, however, we will first need to discuss the capabilities
and configuration options that are available when designing experiments using this framework. This is done in
section 6.3 (’Design Space’), which lists and motivates the available settings and which also gives default values
for these settings when they are the same for all performed experiments.

6.1 Implementation
The framework implemented by us to verify the utility of our architecture has been made available online to
aid future research in this area. Our framework is based on the Tensorflow-based implementation of code2vec
(Alon et al., 2019) that was generously provided by the authors.

Besides the construction of our own framework, we’ve also made some small enhancements to two existing
tools, Nice2Predict and UnuglifyJS, that are used by our framework. These enhancements were only made
to streamline the integration of the respective tools in our own specific framework and as such they don’t
change the existing tools in any non-trivial way. Any possible future reimplementation of this architecture will
probably want to revisit these adaptations, and as such we would recommend this implementation to abandon
our changes and to directly checkout the original source code. Links to both our enhancement versions and the
original versions of these programs are given in table 6.1.

software ours original
conditional attention field https://bitbucket.org/wlelsing/conditionalneurology https://github.com/tech-srl/code2vec
adapted Nice2Predict https://bitbucket.org/wlelsing/nice2predict https://github.com/eth-sri/Nice2Predict
adapted UnuglifyJS https://bitbucket.org/wlelsing/unuglifyjs https://github.com/eth-sri/UnuglifyJS

Table 6.1: Framework implementation.

45

6.2 Baseline Experiments
Before we can start with our own experiments, we first need to properly setup the baseline experiment to which
all of our results can be compared. Besides providing these baseline accuracy results, the baseline model also
serves to provide candidate predictions which will bootstrap our own model. Before we explain our candidate
generation procedure, we will now first explain the configuration settings that are used by all our versions of
the conditional random field classifier.

6.2.1 Configuration
The baseline conditional random field model (’Nice2Predict’1) was optimized on our training set using the de-
fault hyperparameter settings of the main training program (n2p/training/train_json). The most important
hyperparameters are described in (Raychev et al., 2015), and we’ll summarize their description here. The results
in their paper were also obtained by using these precise settings. The rest of the available (hyper)parameters are
unfortunately too technical to discuss here. We refer the reader to the linked source code for more information.

The main training procedure of the conditional random field model by Raychev et al., 2015 is based on
projected stochastic gradient descent. This algorithm is in broad strokes exactly the same as the stochastic
gradient descent algorithm used when training neural networks (see section 2.6.3). Just as is the case with
neural networks, the gradient of some error function with respect to the model parameters and a minibatch
of data points is calculated, and the (negative) direction of this gradient is used to slightly adjust the model
parameters in the direction which would lower the calculated loss of this model with respect to these data
points and this error function. The error function used by Raychev et al., 2015 in their the conditional random
field model is the Structured Hinge Loss (see section 2.7.4)2, and just as with any gradient descent algorithm
there is a learning rate parameter α that controls how much of the gradient is actually used in the parameter
adjustment.

The authors use the following learning rate regime on which they obtained their best results. The learning
rate α is initially set to 0.1, and is halved at the end of each pass in which there was no observed improvement
in accuracy on the training set. The training of the model is ended when either the learning rate drops below
0.0001 or when the limit of 24 epochs is reached.

The training of the conditional random field model also employs a regularization mechanism in an attempt
to prevent the model from becoming overly adjusted to the peculiarities of the training set. They employ a
regularization hyperparameter λ that individually bounds each weight w to lie in the interval [0, 1

λ]. The larger
λ is set, the lower the allowed values for the parameters w and the less power the model has to focus on any
particular feature. They found the optimal value of λ for their name inference experiments to be 2.0 in their
paper, and we will stick to this value for our experiments.

The last hyperparameter we discuss here is the number of threads used by the model during training. The
model is designed to compute the gradients over a number of data points in parallel, and then to combine the
results by averaging these gradients at the end of each pass. Adding more threads increases the number of data
points that can be handled in parallel, but it also prevents the training contributions of these data points to
influence each other. Thus the final result of the training phase is influenced by the number of threads used,
so the number of threads becomes an additional hyperparameter. For our experiments we were limited to a 16
core system which made us decide to allocate 16 threads to this model, but the experiments by Raychev et al.,
2015 actually performed with 32 allocated threads. It is unclear to us to what extent this influences the final
model accuracies. Our choice of hyperparameters for the conditional random field model have been recorded in
table 6.2.

6.2.2 Candidate Extraction
The main purpose of our framework is to improve upon the existing candidate suggestions provided by an
existing baseline classifier. We’ve chosen to implement this idea by allowing the neighborhood consuming
convolutional kernels to have access to (the embeddings of) the full TOP-K (for some choice of K) candidates,
in addition to information obtained from the averaged context rays in the neighborhood and any feature maps
generated at the lower layers (if any). We preprocess our datasets by using an adequately trained baseline

1https://github.com/eth-sri/Nice2Predict/tree/9086fb6f8b318bd3ab0b7df434547da85165d475
2This is different from the negative log likelihood loss usually used to fit probabilistic models.

46

hyper parameter value
training method ssvm
start learning rate 0.1
stop learning rate 0.0001
regularization const 2.0
cpu_count 16
epoch limit 24

Table 6.2: Conditional Random Field hyperparameters.

model (see the subsection below) to generate candidates for each point of prediction. Unfortunately, whilst the
conditional random field implementation of Raychev et al., 2015 keeps an internal list of scored candidates for
each prediction point, the external interfaces only support the retrieval of the combined label assignment that
maximizes the joint probability of the combination of all predictions over a complete program. This means that
we only get a single (best) candidate per prediction point, instead of the complete list of (internally available)
candidates for that point.

To obtain the actual internal candidate lists, we’ve extended the main loop of the batch evaluation program
(n2p/training/eval) to store the internal candidate list of each program as soon as it is done with inference.
The score obtained for a single candidate label c at a specific unknown node Y is equal to the maximum possible
score the radius-1 neighborhood centered at Y can contribute to the overall program score when all of the direct
neighbors Y ′ of Y get assigned labels which are maximized in mutual consistency with respect only to the
assignment of c to Y (by ignoring any other possible neighbors Y ′′ of the Y ′). Thus each label candidate c for
a node Y gets assigned a score that indicates its maximum potential contribution to the overall score when all
direct neighbors of Y are perfectly aligned with this assignment of c to Y . The label assignments obtained from
choosing the TOP-1 candidate from each candidate list are thus all locally optimal, but they still might not be
globally optimal with respect to the probability given to this joint assignment by the full conditional random
field model. To obtain our final candidate lists, we find the globally optimal candidate (as given by the external
interface discussed in the previous paragraph) in each of the candidate lists ranked on local optimality, and we
then move all these to the TOP-1 position. At this point we can make no further improvements to the rankings
of all remaining (locally ranked) candidates; this is something we leave for our own convolutional neural model
to figure out. A performance comparison between the locally and the globally optimized baseline classifiers is
given in table 6.3. The definitions of the performance measures displayed in this table are discussed in section
2.2 of the preliminaries chapter.

layer epochs precision recall F1 TOP-1 TOP-2 TOP-3
baseline-local 22 58.67 58.60 58.58 57.81 60.76 62.08

baseline-global 22 68.89 68.82 68.82 68.38 71.91 72.98

Table 6.3: Accuracy results for the Baseline Classifiers on the evaluation set (around 2 million predictions total).

6.2.3 Obtaining Representative Candidates
To obtain a representative list of candidates for our model to train on, we’d like to use the baseline model
to generate these candidates for the unknown nodes in the training set. Unfortunately, we can’t just use the
baseline model trained on the training set to generate candidates for the training set, because the trained model
has the tendency to somewhat memorize the correct answers on the set it was trained on, which causes it
to perform much better on this set than it would on unseen data. Teaching our own neural model to refine
candidates predicted in this way would be problematic because the skewed distribution of candidates could
encourage the model to make unwarranted shortcuts, like for example placing too much trust in the first ranked
candidate. Ideally, we’d have a second training set on which we can train a separate model that we can use to
generate candidates for the actual training set, which would then have the right distribution, but unfortunately
we don’t have the data available to do this.

To still be able to obtain candidates with approximately the right distribution, we first note that we observed
during our initial experiments that most of the accuracy of the conditional random field model can be obtained

47

from a relatively small amount of data. Training a model on a dataset of 5000 programs already gives us a
classifier which attains prediction accuracy of around 55%, while training the model using the same settings
on the full training set of 100.000 programs only increases this accuracy to around 70%. This observation
led us to conclude that using half of the training dataset might actually result in a model that can attain a
generalization accuracy close to the generalization accuracy of the model trained on the full dataset, but which
isn’t over-adapted to the data in the other half of the training set. We’ve divided the training set into two folds,
A and B, that each contain complementary halves of the training set. On each of the folds A and B we train
the conditional random field model using the hyperparameters mentioned in the previous subsection, and then
we use this model to generate candidates for the complementary fold. We’ve recorded our validation results on
these folds in table 6.4.

training set validation set validation accuracy

fold A fold B 70.32%
fold A 84.68%

fold B fold A 70.31%
fold B 84.11%

fold A ∪ fold B fold A ∪ fold B 84.39%
actual validation set 68.38%

Table 6.4: Validation accuracies on parts of the training set with models trained on a complementary set.

We can see that, indeed, the validation accuracies of the models trained on fold A (respectively B) and
evaluated on the complementary fold B (respectively A) results in candidates which are distributed much closer
to the candidates generated by the full model on the validation set. We use the union of the candidate-augmented
training folds A and B as our complete training set, whose overall candidate distribution is the average of the
candidate distributions over the individual folds. The candidates on the validation and evaluation sets are
obtained from the full baseline model trained on the complete training set.

6.3 Design Space
In this section we discuss the different pieces of configuration that are needed to fully describe a single experiment.
Many of the configuration options mentioned here are shared between all of our experiments, and for these
options the shared settings are recorded directly after the respective option is introduced.

6.3.1 Embedding Vector Space
The first part of our framework tries to assign good continuous coordinates to each unique discrete label so
that these coordinates can adequately represent the label further down the pipeline. To do this, the framework
needs to know how many coordinates to assign to each label, i.e. it needs to know the dimensions of the real
vector spaces in which the labels will live. In the chosen knowledge graph representation, there are in principle
two different kinds of labels which convey semantic information: the labels on the nodes, that correspond to
assignments of names to the identifier represented by the nodes, and the labels on the edges, that correspond to
specific relations between the nodes which were extracted from the original source code by the feature extraction
program. These two types of labels have no direct connections and will normally live in different vector spaces,
whose dimensions can be chosen independently. These dimensions are hyperparameters for our framework.

Besides these two options, there is a third type of vector space which can be used. Node labels (i.e. identifier
names) serve two distinct purposes: they are both used as features found in a neighborhood that serve as input
to the neural network, and as target labels which need to be correctly predicted by the neural network. In (Alon
et al., 2019), the source and target labels live in two different semantic categories, the former being assigned to
locally declared variables and the latter being the names of class methods. Here the authors create two separate
embeddings for each node label: one embedding for when a label is used in the input position and one embedding
for the case when the label is used in the target position. This distinction adds another possible hyperparameter
which can be chosen freely. For our framework, however, we’ve chosen to use a shared embedding between
usages of labels in the input and target positions. A shared representation reduces the number of parameters

48

of the final model, thus reducing training time and chance of overfitting. Semantically this is justified because
for us the input and target labels do indeed belong to the same category.

All our experiments use the same choice of vector space dimensions. We’ve listed these choices in table 6.5.

hyperparameter value
edge dimension 150
node dimension 150
target dimension shared

Table 6.5: Embedding Dimension hyperparameters used in all experiments.

These dimensions are a bit higher than those used in code2vec, where both edge labels and node input
labels were given vector spaces of dimension 128 to live in. On the other hand, node labels used in the target
position were given 3 · 128 dimensions in the code2vec paper, which is much higher than our uniform choice
of 150 for both the input and the target roles. Our reasons for choosing 150 dimensions are mostly accidental.
Later offline experiments have not shown any noticeable difference in final validation accuracy, so we stuck to
our initial choices.

6.3.2 Context Span
Each convolutional layer extracts for each node Z in the knowledge graph a number of features from the
neighborhood surrounding Z via an attention-based averaging mechanism over the radius-R rays originating at
Z. The rays originating at Z of radius R ∈ Z (R ≥ 1) are precisely the non-cyclic paths in the graph from Z
to some other node T containing precisely R edges, with Z itself removed from the path to obtain the ray. In
other words, they are sequences of R consecutive edge-node pairs, with each edge within a pair connecting the
paired node with the node from the previous pair in the sequence. The edge in the first pair connects the pair
to Z itself. Figure 6.1 shows a node Z with two connected radius-1 rays. The blue blocks constitute a single
edge-node pair. Figure 6.2 shows a node with three connected radius-2 rays. Note the overlap between the two
left rays originating at Z.

Z edge nodeedgenode

Figure 6.1: Center node Z shown with two connected radius-1 rays.

For our experiments we need to decide on the values for R to use at each layer. To obtain quality embeddings,
it is necessary for the neural network to have as much contextual information available as possible, as the neural
network tries to jointly optimize the embeddings of the context rays to become good predictors for the center
label, and the more information it has, the better it should be able to decide which pieces of information are
related and which are not. On the other hand, too much available information can also be problematic, as it
might pollute the information pool and increase processing time.

In the previous subsection we’ve decided to set the embedding dimensions of both the nodes and the edges to
150. Concatenating the embedded node and edge labels in a radius-R ray gives us that each ray is represented
by (150 + 150) · R features when each ray contains just the information available in the original knowledge
graph. This means that, in this case, each radius-2 ray supplies d = 600 reals of information while radius-1
rays each supply d = 300 reals of information. However, at higher layers we have more information available to
us than just the information initially obtained from the knowledge graph: each ray can also contain any of the
feature maps obtained from the previous layers for each node on the ray. To keep the amount of information
available in check, we’ve chosen to only use radius-2 neighborhoods during the initial embedding phase, and use
radius-1 neighborhoods in all subsequent layers. This choice keeps the amount of information supplied by each
ray always between 450 and 750 reals for all of our experiments.

(Our use of) TensorFlow also requires us to choose up front the exact number of context rays K which we
take into consideration. When the number of rays k in a neighborhood is larger than K, the excessive (k −K)
rays are thrown away and can’t be used. On the other hand, when the number of rays k in a neighborhood
is smaller than K, the difference (K − k) of missing rays need to be padded by dummy placeholder labels.

49

Z edge node edge nodeedgenode

edge

node

ed
ge

no
de

Figure 6.2: Center node Z shown with three connected radius-2 rays. The left blue block is shared between two
distinct rays.

Eventually these dummy labels are masked out to ensure that they do not add any unwanted information to the
context, but for most of the pipeline they are still present which means that the total number of rays processed
per context is always precisely K. Thus, choosing K too small makes us lose valuable information while choosing
K too large makes us perform unnecessary calculations. A quick calculation over the training set has shown us
that the average number of originating radius-1 rays is around 13 rays per node3, while the average number of
originating radius-2 rays is around 150 rays per node4. Of course, we use the attention mechanism to take a
weighted average over all embedded rays in a neighborhood, so in the end the whole neighborhood is represented
by a single vector of d real numbers, independently of how many rays were extracted from the neighborhood.

The previous observations led us to choose a bound of K = 50 on the number of radius-1 rays and a bound
of K = 200 on the number of radius-2 rays. With this choice, we have more than enough room allocated for all
radius-R rays in a neighborhood to be used in the average case, and there is also quite some room to spare to
fully accommodate neighborhoods which are a bit larger. The choices made in this discussion are summarized
in 6.6.

layer radius ray count K
0 2 200
≥ 1 1 50

Table 6.6: Neighborhood sizes used in all experiments.

Ideally we would also have performed some experiments with radius-1 neighborhoods during the initial
layer-0 embedding, but unfortunately, we didn’t have time any time for this.

6.3.3 Activation Functions
Activation functions are put in between the different layers in the neural network to allow the layers to learn
non-linear effects. Without any non-linear activation functions, each neural network would effectively collapse
into a single linear layer, because in that case the connections between the layers can be seen as direct matrix
compositions, and the composition of two matrices can itself also be written as a matrix by simple linear algebra.
Thus, to be able to learn interesting, non-linear patterns, we need to choose activation functions (see section
2.5.4) for each of our layers.

3When ignoring rare nodes of extremely large degrees which disproportionately skew this number.
4Again ignoring nodes with extremely large degrees.

50

There are many choices of activation functions available to us, but for all our experiments we’ve chosen to
activate our layers with the hyperbolic tangent function, tanh (see section 2.5.4). The main benefit of using
the hyperbolic tangent function for activation is its intuitive interpretation of the activated linear response as
measuring whether some feature is somewhere between fully correlated (+1), absent (0) or fully anti-correlated
(-1) with the input data. ReLU activations (see section 2.5.4) are known to be much faster to evaluate than
the (transcedental) hyperbolic tangent functions, but in our initial (offline) experiments (on CPUs, as opposed
to GPUs), there didn’t seem to be much of a difference in overall running time between the two activation
functions; it would seem that the bottleneck in training lies somewhere else. Hyperbolic tangent functions were
also the type of activation functions used for the hidden layer in code2vec (Alon et al., 2019). Due to the
elegant interpretation, the negligible performance downsides, and the consistency with the code2vec paper,
we’ve chosen to use the hyperbolic tangent function as activation function in all hidden layers in all of our
experiments.

hyper parameter value
activation function tanh

Table 6.7: Activation function hyperparameter used for all hidden layers in all of our experiments.

6.3.4 Regularization
Dropout randomly disables some selection of responses in a particular layer (with the selection being different
for each batch), which forces the network to create redundant features and which prevents it from being too
reliant on any single feature. For all of our experiments we’ve dropped 25 percent of the nodes in the first
hidden layer directly following the context embeddings. All subsequent hidden layers have had 20 percent of
their nodes dropped. The main reason to go for a 25 percent drop rate in the first hidden layer was due to the
existing embedding framework described in (Alon et al., 2019) also setting dropout to this same value. In our
initial experiments, none of the other layers besides the first one had any dropout applied. The reason we later
went for 20 percent dropout in these layers (as opposed to also setting it to 25 percent) was mainly due to it
seeming to be a safer option. Unfortunately we were unable to measure any noticeable differences in validation
accuracy between the situations where dropout was respectively disabled or enabled in the non-initial layers.
The exact effects of dropout on our final validation accuracy are still unknown.

Batch normalization separates the learning of the magnitudes and variances of the linear response in each
layer from the learning of the relative effects of each of the responses. For each batch normalized layer, all
outputs of the layer are renormalized on a per batch basis to have means of zero and variances of one over the
whole batch. An intermediate layer is subsequently added to re-scale and re-center these normalized outputs
(using learned center and scale variables ~β and ~γ) so that any desired response might still be learned by the
layer. Batch normalization is mainly used to improve the flow of the gradient (which improves learning), but it
also has a small regularization effect due to randomness arising from normalizing on a per-batch basis. When
the same data point is seen again in a different epoch, the actual absolute responses within the network will be
different because the responses are normalized with respect to the corresponding responses of the rest of the
data in the batch, and when the contents of the batches is random (which for us it usually is), the normalizations
will also be random. This randomness over the responses of data which is seen multiple times over multiple
epochs prevents the network from becoming too reliant on the exact values of the responses, and it encourages
it to focus on just the relative differences between the responses.

hyper parameter value
dropout rate embedding hidden layer 0.25
dropout rate other hidden layers 0.20
batch normalization Yes

Table 6.8: Regularization hyperparameters used for all hidden layers in all of our experiments.

51

6.3.5 Weight Initialization
Hidden Layers

The initial choice of network parameters is very important for the efficiency of training and for the final network
performance. When the initial weights are too large we suffer from the exploding gradient problem, while if
the initial weights are too small the network might exhibit vanishing gradients. Given our choice of activation
functions to always being the (positive-negative symmetric) hyperbolic tangent function, a natural choice for us
is to initialize all weights in tanh-activated layers by the Xavier (Glorot) initialization procedure that samples
the weights from the Norm(0, 1) distribution but rescales the sampled weights in accordance to the number of
inputs and outputs to the layer such that the output of the layer initially is expected to have approximately the
same variance as the input. Empirically, this seems to work very well (see (Glorot & Bengio, 2010) for further
details).

Embedding Vocabulary

Dictionary weights (i.e. the coordinates of the embedded labels) are initialized by sampling from the uniform
distribution on the interval [−3.0

d , 3.0
d], where d ∈ N is the dimension of the embedding vector space. This is the

initialization procedure used by code2vec, which we maintained in our adaptation of their embedding strategy.
Unfortunately we’ve not been able to find a convincing theoretical motivation in the literature for this exact
choice.

parameter initial values
hidden layer weights Wij Xavier initialization procedure

Table 6.9: Hidden layer initial parameter initialization.

Batch Normalization

The batch normalization layers adjust the linear responses of each layer to have a mean value of 0 and a variance
of 1 over each training mini batch. To maintain the expressive power of the network, each batch normalized
(linear) layer is directly connected to a simple layer that performs a pointwise affine transformation on each
of the individual normalized outputs by re-scaling the ith component of the linear response ~r by a learned
scale factor γi and subsequently re-centering the output by adding a translation of βi. Setting βi and γi to
respectively the mean and the standard deviations of the output ri over the mini batch recovers their original
non-normalized responses over said batch. The parameter vectors ~β and ~γ are learned during training and as
such they need to be properly initialized. For all our experiments we initially set to the values shown in table
6.10.

parameters initial values
batch normalization ~β ~0

batch normalization ~γ ~1

Table 6.10: Batch Normalization initial parameter initialization.

Layer Bias

None of the layers in any of our experiments have an explicit bias term added to their linear responses, although
all hidden layers except for the initial embedding layer have batch normalization enabled, which implicitly adds
a bias term to those layers in the form of the ~β parameter vector.

hyper parameter value
explicit bias term No

Table 6.11: Bias hyperparameter.

52

6.4 Model Fitting
Given the features extracted from our training set, a specific combination of hyperparameters fixes a parametric
family of hypotheses (called the model) that is parameterized by some parameter vector ~ω. In our case the
hyperparameters determine, among others, the embedding vector spaces, the choice of labels in the edge and
node feature sets, and the precise topology of the neural network. With all these variables fixed, we obtain
a model that is parameterized by the total of all the weights used at each of the internal layers in the neural
network and by the coordinates assigned to each of the labels in their embedding vector spaces. All these
parameters together are then jointly referred to by the vector ~ω. The goal of the training procedure is then
to find an estimation ~̂ω of ~ω such that the model instantiated with ~̂ω has the best prediction performance on
unseen data as possible.

To find this parameter estimation ~̂ω, we employ the Adam (Kingma & Ba, 2014) optimization procedure to
systematically explore the parameter landscape. Adam is a variant of stochastic gradient descent that uses the
gradient (derivative) of the loss function (see section 2.7) with respect to a small batch of data to see in which
direction (in the total parameter space) the current value of ~ω needs to be moved to reduce the loss of the model
with respect to this mini batch. The parameters are slightly nudged for each mini batch in the training set,
for a number of iterations over the training set, and the hope is that all these slight adjustments move ~ω to a
new position that also reduces the loss (and thus prediction error) for unseen data. Adam differs from normal
stochastic gradient descent in that it maintains per-weight learning rates instead of using a single learning rate
for all weights at the same time. Adam employs a number of hyperparameters that determine its behavior while
optimizing. Our choice for these values are shown in table 6.12. These values are the same as the defaults given
by TensorFlow. We refer to (Kingma & Ba, 2014) and the TensorFlow manual for a more detailed discussion
on the meaning of these hyperparameters.

hyper parameter value
step size α 0.001
first moment decay rate β1 0.9
second moment decay rate β2 0.999
safety constant ε 1.0 · 10−8

Table 6.12: Adam hyperparameters.

6.5 Dataset Preparation
For our experiments we’ve chosen to use a dataset of 150 thousand JavaScript programs which was first used
in (Raychev, Bielik, Vechev, & Krause, 2016) on learning how to generate programs from noisy datasets. This
dataset consists of precisely 150 thousand JavaScript source files which were systematically ripped from online
code repositories like GitHub and Bitbucket. The authors of the cited paper took care of sanitizing the dataset
by eliminating code overlap (possibly resulting from source files that are shared between multiple repositories)
and by making sure that there are no pre-obfuscated/minified files present. We should note here that our chosen
dataset is different from the dataset originally used by the authors of the jsNice paper. In fact, our dataset is
only half as big as the dataset used by Raychev et al., 2015 in their original experiments. When we repeated
their experiments on our own dataset, our final (baseline) model evaluation accuracy was around 5% higher than
the evaluation accuracy reported in their paper. It would seem that there is some quality difference between
the two datasets that results in a discrepancy between the respective measurements, but we don’t think this
difference will matter much in the assessment of the final quality of our own models. In the end we are mostly
interested in improving the baseline performance by refining its TOP-K candidates, and as we’ve shown in the
introduction (section 1.1, table 1.1), there is still plenty of opportunity to improve upon the existing results by
rearranging within the TOP-3 alone.

53

6.5.1 Knowledge Graph Extraction
We use the JavaScript knowledge graph extraction program UnuglifyJS5 to transform the raw JavaScript source
files P into their respective knowledge graph representations G(P) that contain precisely the information we
care about for our predictions. The nodes in the graph G(P) correspond directly to the various identifiers in P ,
and the labels attached to them are the names given to the corresponding identifiers within the original source
code. Some of these labeled nodes are static and serve as information to inform the predictions while others
correspond to the locally declared identifiers whose names we’d like to predict. The labeled edges connecting the
nodes represent certain syntactic and semantic relations derived in the original source code. The exact nature
of the information represented by the labeled edges is irrelevant for our current experiments; the only thing we
care about here is that they were carefully engineered by the authors of (Raychev et al., 2015) and that they
contain enough information for the conditional random field to make useful predictions.

We invoked the main extraction program to generate the graph for a single program using the following
commandline:

> node bin/unuglifyjs --extract_features --skip_minified $PATH_TO_PROGRAM

This outputs a JSON representation of the generated graph to the standard output that we subsequently capture
and store. The output generated by UnuglifyJS is adapted to Nice2Predict and can thus directly be used
to train or evaluate the conditional random field model. For our own framework we use a different graph
representation for which it is easier to generate neighborhoods. Besides the labeled edges between nodes, the
original graph structure also contains inequality annotations that indicate whether two identifiers were declared
in the same scope, which means that they should not be given equal names if the goal is to preserve the original
program semantics. Unfortunately, for our model we currently make no efforts of preventing these name clashes,
and as such these constraints are not preserved by our graph conversion. The conditional random field model
does indeed use them, which means that in contrast to our models, their model can be safely used for example
for automatic variable renaming purposes. Their model does not use these inequality constraints for determining
the initial label scores, so it seemed safe for us to also ignore them as potential features.

6.5.2 Splitting for Training, Validation and Evaluation
To obtain an accurate estimation of the performance of both our model and of the existing baseline model,
we’ve divided the dataset into three parts that are respectively used for training, validation and evaluation (see
section 2.3). The training set is used for tuning the parameters of the model obtained from each particular
hyperparameter configuration while the validation set is used to mutually compare the performances of the
models obtained from each of these hyperparameter configurations. The best performing configuration for this
set is chosen as our final model. This selection procedure results in a model that is optimally tuned for the
validation set, having been chosen precisely because of its high performance on this dataset. Unfortunately, it
may be the case that the hyperparameters of our optimal model are too well adjusted to the particularities of
the validation set; to obtain a fair estimation of this model’s performance on general unseen data, we make a
final accuracy measurement on the evaluation set.

To obtain these respective datasets, we’ve initially allocated two-thirds of the dataset for training purposes.
The remaining third part is divided into two parts by a proportion of 5 : 7 which are then assigned to become
respectively the validation and the evaluation sets. The evaluation set was chosen to be slightly bigger due
to its greater importance, but in hindsight this choice seems not to matter that much. The dataset was pre-
randomized by Raychev et al., 2016 and the two-third part that was selected to become the training set was
also already allocated for this purpose by the same authors. Unfortunately, validation on the full validation set
was too expensive to probe the model performance at certain intervals while training. The validation accuracy
graphs shown below were obtained from periodic measurements at four evenly spread points per epoch on a
smaller validation set that only contains the initial 5000 usable programs of the full validation set.

Unfortunately, not all programs in the dataset were usable for our experiments. The feature extraction
program (UnuglifyJS) that constructs knowledge graphs from the raw source files was not able to generate
non-trivial knowledge graphs from all source files in the dataset. For the training set (100.000 files total) we’ve
recorded some observations concerning this failure to generate usable graphs. In most cases the reason was that
the source files were just too simple to have any features extracted from them (18748 cases). In other cases the

5https://github.com/eth-sri/UnuglifyJS/tree/0b657a3ecff0d3ce24fe10b91d7d7152c5ac80ac

54

extraction program was unable to parse the source files (3674 cases) or the extraction program took too long
(224 cases, timeout set at 10 seconds). The remaining failures (4912 cases total) were due to unknown reasons.
In total, out of the 100.000 source files originally assigned to the training set, around one fourth (27558 cases)
were not usable for training purposes. Table 6.13 summarizes the discussion concerning these three datasets.

dataset source file split usable files unknown identifiers
training 100000 72442 6896091
validation 20834 15005 1367930
evaluation 29166 21244 1906061

Table 6.13: Dataset characteristics.

6.5.3 Pruning Rare Labels
Patterns concerning labels which occur in very low frequencies in the training set (e.g. only in a single source file,
or only a few times over all source files) might not be likely to be learned correctly, given that there is not much
information to generalize over. Trusting that usages of these labels within the training set are representative for
their usages in general data might be dangerous if too much weight is given to these patterns. We’ve opted to
prune any labels which are mentioned in fewer than 10 source files within the training set (around 100.000 files
total). Unfortunately this number is quite arbitrary, and, in hindsight, the pruning itself might be unwarranted.
It is not clear to us at this moment whether this pruning was beneficial or harmful to our experimental results.
We made this choice in the earliest phases of our experimentation and we are now stuck with it; we don’t
have any data on how many unique labels we’ve thrown away because of this choice. All pruned labels within
the training, validation or evaluation sets are identified and replaced by the generic UNKNOWN label placeholder,
indicating that the label was originally something not found in our vocabulary. Conflating all these pruned labels
into a single UNKNOWN label removes all information from the original label and replaces it with the information
that something rare used to be there.

Another way of reducing the number of labels used by the model is to just set a hard limit F on the number
of (edge or node) labels used, by only keeping the F most frequently occuring labels in either of the node and
the edge label sets. Labels that don’t belong to the F most frequently occurring labels will then be replaced
by the generic UNKNOWN label (again both in the training set as well as in the validation and evaluation sets).
We’ve chosen not to limit the number of labels in this way, because we had no prior information on deciding
how to set the thresholds. Our choices for these pruning hyperparameters have been recorded in table 6.14.
The number of remaining labels of each type after pruning is shown in table 6.15.

hyperparameter value
pruning threshold 10
node feature limit none
edge feature limit none

Table 6.14: Pruning hyperparameters.

unique labels count
nodes 72654
edges 89253

Table 6.15: Number of unique labels remaining of each type after pruning.

6.5.4 Indexing Labels
Neither the baseline model nor our own model directly inspects the contents of any (edge or node) label. Labels
are treated as atomic entities which only support the operation of being mutually compared for equality. All
predictions are basically made by advanced bookkeeping procedures which in the end only need to check the

55

presence or absence of each label in a specific context, which can all be expressed in terms of basic equality
queries. Because the labels themselves are never inspected, there is no need to keep their exact contents available
to the framework; we only need to store enough information for the equality check to be able to be performed.
Assigning to each uniquely occurring label in the training set a unique integer index keeps precisely enough
information for this equality comparison to be performed while greatly reducing the amount of space needed to
store each label.

Our label assignment is implemented via the construction of a histogram which counts the number of
occurences of each label in the training set. The sets of node and edge labels are treated separately, creating
two separate histograms for respectively the node and the edge labels. The calculated histograms are then used
to assign an increasing sequence of consecutive integers to each label of the respective type that was found in
the training set, giving the most frequently occurring labels the lowest indices6.

6.5.5 Reserved Indices
We’ve reserved two special indices in this encoding for special situations. As mentioned previously, we use the
UNKNOWN label as a stand-in for any label which was not in the initial training vocabulary. Our indexed label
representation uses the index 0 to represent such out-of-vocabulary labels. In addition to the special UNKNOWN
label, we’ve also reserved a special index for the situation when the name of an identifier is used while there is
no such name available. This situation occurs for example when a node whose name still needs to be predicted
is used as a feature in the context of another node when no candidates are available (in the zeroth layer for
example), or when a radius-1 ray cannot be extended to a radius-2 ray, even though a radius-2 ray is requested.
In this case, instead of throwing away such a partial radius-2 ray, the second edge and the second node of the ray
are padded by a special label indicating that the second half of the ray does not contain any actual information.
The use of this special label for padding locations with missing information allows the neural network to use
these partial contexts without any further special treatment while still explicitly recording that some part of the
context is missing. This can be compared with filling such positions with the generic UNKNOWN label, which would
instead indicate that the position initially actually contained something, but which was too rare to preserve
any further. Our indexed label representation uses the index 1 to represent this special MISSING label. The
exact choice of representing index for these special labels facilitates efficient pruning of empty neighborhoods
(see section 6.5.7), but otherwise it is immaterial to our use of labels within the framework. Our choice of label
represention for these special labels is shown in table 6.16.

label index
UNKNOWN 0
MISSING 1

Table 6.16: Indices assigned to special labels.

6.5.6 Neighborhood Extraction
In section 6.3.2 we saw that we need to limit the number of context rays we extract from a neighborhood to
some predefined number K. Neighborhoods having more than K rays will have to be reduced to have at most
K rays before they can be processed by the neural network, and this means a choice will have to be made on
which of the k > K rays will actually be representing the neighborhood. For our framework we’ve chosen to use
a randomized depth-first approach for making this selection in which each edge list is first randomly shuffled
before exploration is continued. The algorithm we use can be described by the snippets shown in figures 6.3
and 6.4 that respectively show the pseudo-code for generating radius-1 and radius-2 neighborhoods.

For training we use both the unknown and the static nodes to serve as neighborhood centers, while for
validation and evaluation purposes we only test the accuracy of the framework in predicting labels for the
unknown nodes. The rays are extracted on-the-fly when the neighborhood data is needed; when the same data
point is encountered for a second time in a different epoch, the generation algorithm is run again and a (slightly
different) neighborhood will be generated.

6The associated indices thus also encode a frequency partial order, which for example might be used as a tie-breaker when two
labels are otherwise indistinguishable.

56

input: node Z, context size K
output: iterator yielding precisely K context rays of the form (edge_1, node_1)

count = 0
E = edges(Z)
for connections (e, P) in random_shuffle(E):

yield (e, P)
count += 1; if count == K: return;

while count < K:
yield (MISSING, MISSING)
count += 1

Figure 6.3: Pseudo-code for extracting K radius-1 neighborhoods for a center node Z.

input: node Z, context size K
output: iterator yielding precisely K context rays of the form (edge_1, node_1, edge_2, node_2)

count = 0
E = edges(Z)
for connections (e, P) in random_shuffle(E):

F = edges(P)

if length(F) == 0:
yield (e, P, MISSING, MISSING)
count += 1; if count == K: return;
continue

for connections (f, Q) in random_shuffle(F) s.t. (Q != Y):
yield (e, P, f, Q)
count += 1; if count == K: return;

while count < K:
yield (MISSING, MISSING, MISSING, MISSING)
count += 1

Figure 6.4: Pseudo-code for extracting K radius-2 neighborhoods for a center node Z.

57

In the code shown in figures 6.3 and 6.3, the references to the nodes P and Q which lie on a returned ray are
returned, which allows code that consumes these extracted neighborhoods to extract precisely the information
from the nodes that it requires. Our framework keeps track of the data generated for each node at each layer,
and via some bookkeeping all generated data from any of the previous layers can in principle be accessed from
these returned references to the returned nodes. This includes the TOP-K predictions made at the end of each
layer as well as the neural network activations from any of the intermediate neural network layers (these will be
called stages later on in this text, see section 6.6).

6.5.7 Neighborhood Pruning
Neighborhoods that either have zero context rays or neighborhoods where all context rays contain only UNKNOWN
or MISSING labels contain no inherent predictive information that can be used to predict the center label from its
context at the initial layer. In this case there is no actual pattern to relate the center label to its context, and to
prevent the network from adapting to non-patterns, the empty neighborhood should be pruned from the training
set. At higher layers, more information might become available at some of the nodes in these (initially) empty
neighborhoods, so that an actual pattern might still be discovered, but due to an implementation deficiency
these empty neighborhoods will still be pruned during training.

On the other hand, empty neighborhoods are always preserved during the validation and evaluation phases
as to allow the framework to make at least a random guess in these situations. At the zeroth layer these
predictions will be totally uninformed, but at higher layers they might still be pretty accurate when there is
enough accumulated information available from the previous layers.

6.6 Layer Connectivity
In the previous sections we’ve given an overview of a number of generally applicable configuration options
and design decisions that are shared between all our experiments. The remaining configuration options are all
concerned with describing the precise topologies of the neural networks that are used within our overarching
prediction architecture, and of the data flow between them. In this section we will explain two general con-
figuration table formats for these remaining configuration options, so that each of our actual experiments can
be described almost completely by simply filling out these tables. An illustration of the main configuration
format that globally governs the inputs and outputs of the prediction layers is given by table 6.17. Table 6.18
contains an illustration of the context configuration format that precisely specifies the nature of the information
extracted from the contexts and the dimensionalities in which it is made available to the rest of the pipeline.

layer stage
center

candidate
labels

center
features

total
center
input

summarized
context
input

output
labels

output
features

inherited
layer

parameters
B - n/a n/a n/a n/a 150 n/a n/a

0 0 - - - 300 n/a 300 source
classifier1 - 300 300 - 150 150

1

0 150 (source)1 · · · 150 (source)K 150 600 270 n/a 425

-
...

...
...

...
...

...
...

S(1)− 2 - 400 400 230 n/a 300
S(1)− 1 - 300 300 - 150 150

...
...

...
...

...
...

...
...

...

L

0 150 (source)1 · · · 150 (source)K 150 600 250 n/a 500

-
...

...
...

...
...

...
...

S(L)− 2 - 475 475 210 n/a 350
S(L)− 1 - 350 350 - 150 150

Table 6.17: Configuration example for layer connectivity.

58

layer stage context
pieces

edge 1
labels

node 1
labels

node 1
features

edge 2
labels

node 2
labels

node 2
features

raw
context
input

summarized
context
input

0 0 200 150 150 (source)1 - 150 150 (source)1 - 600 300
1 0 - - - - - - - -

1

0 50 150 150 (source)1 150 - - - 450 270
...

...
...

...
...

...
...

...
...

...
S(1)− 2 50 150 150 (source)1 150 - - - 450 230
S(1)− 1 0 - - - - - - - -

...
...

...
...

...
...

...
...

...
...

...

L

0 50 150 150 (source)1 150 - - - 450 250
...

...
...

...
...

...
...

...
...

...
S(L)− 2 50 150 150 (source)1 150 - - - 450 210
S(L)− 1 0 - - - - - - - -

Table 6.18: Configuration example for context information specification.

6.6.1 Layers and Stages
For the description of our architecture we will now introduce a few concepts which deviate a bit from the
nomenclature normally used to describe neural networks. Our architecture consists of a layered stack of pre-
diction engines, each of which takes a graph representation of the program under prediction as input, possibly
augmented with some extra features and candidate predictions for any of the nodes, and which then outputs for
each node within this graph a number of scored predictions, together with any of the intermediately generated
features that were used to come to this prediction. Layers within this stack are connected to each other by
feeding the information generated by one layer as input to the following layer. The first layer of this stack can
optionally be chosen to be the conditional random field model, but any of the higher layers will always be of
the convolutional kind that were introduced in this thesis. Each of these convolutional layers internally invokes
a neural network for each of the nodes Z within its input graph. The neural network consumes the available
information within the neighborhood surrounding Z, and uses this information to generate the scored list of
predictions for the label that should be assigned to Z. The neural network internally of course also consists of
a number of (fully connected) layers. Thus we now have two different notions of layer : 1) a single input-out
engine in a layered stack of prediction engines and 2) a single neural network layer consisting of a number of
neurons that measure the presence or absence of features in the output of the previous layer. To be able to
easily differentiate between these two notions of layer, we now define a stage to be a layer in the latter (neural)
sense, while we reserve the word layer to refer to the one in the former (stack) sense. These conventions will
hold until the end of this document.

Thus, our architecture consists of a number of layers that each augment their input graphs with additional
candidate predictions and features for each graph node Z. These candidate predictions and features for Z are
generated by evaluating a neural network on a neighborhood surrounding Z, and this neural network itself is
composed of a number stages that generate higher level features from the outputs of the layers below. Table 6.17
shows the general form of a table describing the layer and stage configurations for a particular experiment. The
experiment shown there consists of a total of L layers, and each layer itself utilizes a neural network consisting of
S(L) stages. The first two columns together index a specific layer-stage combination, and the remaining columns
specify the precise origins of the inputs and outputs for the neural network when evaluated on a neighborhood
surrounding a particular point of prediction Z. The exact numbers used here are shown only for demonstration
purposes; for our actual experiments they will be different between the experiments.

6.6.2 Input Features
Let Z be the node under consideration when making a prediction using the internal neural network. There are
two distinct categories of information that can be used to inform this prediction: the category of information

59

currently available at the node Z, and the category of information available in the attention-averaged radius-R
context rays originating from Z. Each category supplies a number of real numbers that directly serve as input
to the neural network, and the number of real numbers supplied by each of these categories is shown respectively
in the column total center input and in the column summarized context input. These two categories are
explained in more detail in the subsections below.

6.6.3 Center Input
The category of information shown in the total center input columns can be divided further into two sub-
categories: the subcategory of information obtained from the concatenation of the embeddings of the TOP-K
candidate labels from one of the previous layers (when available) and the subcategory of information obtained
from the feature maps generated by any of the previous stages in any of the previous layers. The configuration
of the first of these subcategories is shown in column center candidate labels while the second subcategory
is specified in the column center features. Each stage can be independently configured whether and how it
sources from the candidate labels obtained from some previous layer. When a stage uses candidate labels from
a previous layer, the enumeration of the candidate ranks is shown in the column center candidate labels for that
particular stage. Each candidate rank specifies the number of reals contributed by the embedding of the label
at that rank, together with a single character indicating the layer that originally generated these candidates
(shown between brackets). Table 6.19 shows the mapping between the layers and these characters.

Our prediction problem consists of filling in the missing information on labeled graphs, were some nodes
already have labels assigned to them and other nodes need to have their labels assigned to them by our frame-
work. The nodes that already have labels assigned to them are referred to as the known nodes while the other
nodes whose labels we need to predict are referred to as the unknown nodes. When the source of a label at
a specific rank is M, we don’t have any candidate labels available for that rank. When the label of the node is
known (i.e. it doesn’t need to be predicted) and when the requested rank is 1, we return the static label of that
node as the TOP-1 candidate. For all other ranks K > 1 and for the any of the ranks for nodes that are not
statically known, we always return the MISSING label (see section 6.5.5). When the source of the label is either
B or a layer l ∈ N, we have a number of candidates for the unknown nodes that need to be predicted, while
again we have just a single static label for the nodes that are known. In the case of a known node, we again
return its static label for a TOP-1 request while we return MISSING at the higher ranks for these nodes. For the
unknown nodes, we return the candidate of the requested rank when a candidate of this rank is available at that
position, or otherwise we also return MISSING (the baseline model does not always return the same number of
candidates; sometimes there might be fewer candidates available for the node than are needed for the requested
rank).

All labels are embedded in an 150 dimensional vector space (see section 6.3.1), so this will be the number of
reals contributed by each label for all our experiments.

character description
M missing: position only contains statically known labels; no actual candidates
B baseline: position contains candidate labels generated by the baseline model

l ∈ N layer: position contains the candidate labels generated by layer l

Table 6.19: Shortened indicators for the possible sources of candidate labels.

The subcategory of center features specifies the origin of the features used by the current stage that were
generated by some previous stage. In principle each stage can be configured to source from any combination
of previous stages in any of the current or previous layers, but for our experiments we’ve restricted the stages
to only source from the stage listed directly before it in the table. We’ve used a color coding to highlight the
correspondence between the features used at the center and the output stage that previously generated them.

6.6.4 Context Input
The summarized context input column of table 6.17 specifies the number of real numbers obtained by averaging
over the information in the radius-R context rays originating at the center of prediction. Each stage can
independently specify whether or not it sources from this context, and if so, in how many real numbers it wishes
to summarize the information contained therein. Each stage utilizes its own attention vector to determine the

60

weights given to each ray, so each stage can decide for itself on precisely what kind of information it focuses
when summarizing the neighborhood.

The attention mechanism averages over the information contained in the radius-R rays originating at the
center location, and each ray is itself composed of R edges and R nodes. The edges are static and remain the
same over all layers and stages, but the nodes acquire additional features for each additional stage added to the
pipeline. Always utilizing the total amount of information available on the nodes on the ray quickly becomes
unwieldy at the higher layers, so we need to be able to specify the precise information that we’re interested in
averaging over. Table 6.18 shows the general form of a table describing the information chosen to be extracted
from the nodes and edges on a single radius-1 or radius-2 ray.

The first two columns index a specific layer-stage combination and the third column specifies how many rays
are extracted from the neighborhood (see section 6.5.6). The remaining columns now specify for each of the
possible edge or node positions on a radius-1 (or radius-2, for the zeroth layer) ray how many reals are used and
where they come from. The edge r labels columns (r ≤ R) specify the number of reals contributed by the edge
position at distance r from the center. All edges contain precisely one label that is always embedded in a 150
dimensional vector space, so these positions always contribute precisely 150 reals when present on the ray. The
node r labels columns (r ≤ R) specify the candidates used at the node lying at distance r from the center.
In principle this could be any number of K candidates, but for our experiments we’ve limited these candidates
to only the candidate at the TOP-1 position. Again we use a single character (see table 6.19) between brackets
to indicate the layer where these candidates originated. The node r features column (r ≤ R) specifies which
of the feature maps generated by any of the previous layers and stages are used for the node lying at distance
r from the center. Due to the context rays being dynamically generated from the results of the previous layer,
the node r features are limited to be taken from stages in layers previous to the current layer. Again we use
color codes to highlight the correspondence between the choice of node features made here and the output of
the stages that previously generated them. In this particular example the stage only sources from a single stage
in a previous layer, but in general there may be more than a single source.

The number of features resulting from the concatenation of all these edge and node features on a single ray
is shown in the column raw context features. These features are transformed and summarized via a single
(tanh-activated) hidden layer to a vector of condensed features living in a vector space of dimensionality shown
in the column summarized context input. Finally, the averaging attention mechanism is used to obtain a
weighted average over all of these summarized context rays, which results in a single vector, again of this same
dimensionality, that represents a summarized version of the information in the complete neighborhood. This is
the vector that is used as input the stages shown in table 6.17.

6.6.5 Output Features
Now consider table 6.17. A single stage is itself (by our definition) a single hidden layer within the neural network
that makes predictions for a specific node Z by using the neighborhood surrounding Z. The stage concatenates
the features obtained from the total center input with the features obtained from the summarized context input
that were described in the previous subsections, and then it outputs a number of features obtained by performing
a single linear (or affine) transformation of the concatenated input followed by a point-wise application of the
non-linear activation function tanh. These activations are to be interpreted as higher order features that can be
used by any subsequent layer to make high level predictions. The number of features (i.e. activated responses)
delivered by a particular stage are shown in column output features. Here we again use color coding to
indicate the relationships between the features generated by a particular stage and the features consumed at a
different stage.

6.6.6 Training Objective
All experiments we perform in this chapter are configured to output precisely 150 features per node at the last
stage of each layer. These features are considered to be the main deliverable of the layer and they are usually
consumed as input by some successor layer.

To be able to train the layers so that the generated features are actually useful, we decided to optimize
the neural network for creating features that are directly useful at predicting the center label. The last 150
tanh-activated responses that constitute the deliverable of the final layer are transformed via a single additional
linear transformation to the same vector space that embeds the node labels, and it is here that the output of

61

the layer is compared with the labels in the embedding dictionary. The precise comparison is made via the
measurement of the dot product between the output vector predicted by this neural network and each of the
embedded labels from the node label dictionary. The calculated dot products are subsequently jointly pulled
through a soft-max layer (see section 2.5.4) that results in a probability distribution over these labels that
assigns higher probabilities to labels that have greater dot products (i.e. smaller angles or greater magnitudes)
with the predicted vector. When predicting, we order our predictions by the probabilities thus obtained, and
when training we try to optimize the parameters of the network so that the negative log likelihood of these
parameters is minimized with respect to the training data (see section 2.7.5)

6.6.7 Inheriting Parameters
Each of the various layers in a single experiment are themselves autonomous classifiers that take a (feature and
candidate augmented) graph as input and then give a list of scored predictions as output. Even though the
various classifiers (layers) within a single experiment all make independent predictions, it is wasteful to train
them completely independently. For our experiments, we always start the training of a higher layer l > 0 with
the respective embedding vocabularies initialized to the same values as they had at the end of training the
last layer (l − 1). Thus each higher layer in any experiment always starts with label embeddings that are at
least as good at those in the previous layer. Besides inheriting the parameters for the label embeddings, some
layers also (partially) inherit the weights used in the stages from the corresponding stages in the previous layer,
or sometimes even from the corresponding stages in the same layer in a previous experiment. A note of this
fact will have been made in the column inherited layer parameters in the respective configuration table
when this is the case for some specific layer. The main idea here is that we can inherit parameters whenever
there is some overlap between the domains of the matrices that implement the linear transformation part of
the hidden layer by selecting the corresponding rectangular blocks of submatrices that correspond to the linear
transformation restricted to this intersecting of domains. The precise choices made for what to do when the
dimensions mismatch (i.e. the choice of projection or injection into a smaller or respectively larger space) are
not very interesting. We refer the reader to the actual implementation (see section 6.1) for more details.

6.7 Combining Classifiers
Sometimes different classifiers have different perspectives on what the correct answers should be for a certain
prediction. When most classifiers agree on the TOP-1 label, one can return this label as the final answer with high
confidence. When many of the classifiers each propose their own, different, TOP-1 label, a further inspection
of the confidences of each of these disagreeing classifiers might offer some insight, and some clever strategy
might still allow a quality label to be returned with high confidence. Combining the predictions of a number of
classifiers might result in a super classifier that performs better than each of the individual classifiers that were
used to construct it. The layers in our framework are all individually trained as classifiers, and as such they
each have their own view on the desired labeling of a program. Below we discuss two mechanisms that we used
to combine our own layer classifiers with the baseline classifier.

6.7.1 Averaging of Classifiers (Soft Voting)
Each of the layers used in our experiment assigns a probability distribution to the set of all possible node labels
for each unknown graph node Y . The collection of node labels is ranked according to their probabilities, and
the ordered list of the K most likely labels is returned as the final prediction for the node Y for that layer. By
a point-wise averaging of the probability distributions obtained from each layer, we obtain a new probability
distribution where most of the mass is located on labels where most original layers already had most of their
respective mass located, while labels that were only thought to be very probable by a few layers now take a
relatively small chunk of the total mass. We can now rank our labels according to this averaged distribution,
and the soft-voted ranking thus obtained has the good property that it preserves the pair-wise rankings of any
two labels when all other layers already agreed on this.

Not all layers are equally accurate in their predictions, and to give more power to the more accurate classifiers,
we calculate a weighted average over the distributions, with the weights for each probability distribution being
normalized with respect to validation accuracies of the respective classifiers that generated them. The scores
returned by the baseline model are not normalized and can’t directly be interpreted as probabilities, but we can

62

forcefully normalize them via a soft-max operation. Since the scores returned by the baseline model are always
positive, we could also have normalized these scores by dividing each of them by their total mass, but this would
have resulted in a distribution that has its mass more spread out compared to the distributions generated by
our own layers, given that our own layers also perform a soft-max on their respective final scores.

6.7.2 Heuristic Combination with Baseline
Besides the soft-voting combination of classifiers, we also tried a different strategy where we compare the
confidences of our own classifiers with those of the baseline classifier to decide how we can slightly nudge the
baseline candidate predictions into a hopefully better ranking. For this combination we employ two heuristics.
For our first heuristic, we’d like to de-prioritize baseline candidates that are seen to be unimportant to our
own model. To do this, we employ some proximity constant p, and when the baseline classifier has a candidate
prediction ck at rank k but our own classifier has the same prediction at some rank d that is not within proximity,
d > p + k, we move this candidate to the end of the baseline candidate list. We start with the higher ranked
candidates when we iterate the candidate list so that we preserve the relative rankings of all candidates that
are pushed to the back. The optimal value for this proximity parameter on the validation set using our best
classifier was found to be p = 3 or p = 4, depending on whether you value TOP-1 or TOP-2 accuracy more. For
all our experiments we went with p = 3.

For the second heuristic, we reorder any pair of candidates within the TOP-3 where the baseline does not
think very strongly about this particular relative ranking, but where our own classifier is strongly opinionated
that the ranking should actually be reversed. The first of these two criteria was checked by measuring the scores
assigned by the baseline model to the two labels: when these scores lie within distance δ from each other, we
think that their relative rankings are somewhat accidental, and so we would be willing to swap them around
whenever our own model thinks they actually should be reversed. The second of the two criteria is checked by
checking the scores assigned to the two labels by our own model: whenever our model assigns a higher score to
the lower baseline-ranked label than to the other label, and this higher score is at least ε higher, we’d think our
own model feels very strongly about the incorrectness of the current ranking. When both criteria are met, we
make the swap.

The values for the thresholds δ and ε are hyperparameters for this combination classifier, and thus their
optimal values need to be determined from the validation set. To obtain initial estimates, we measured the
mean scores of the respective classifiers for our best performing classifier over the cases in the validation set where
this swap would actually have improved the situation. The validation means column in table 6.20 contains
the results of these measurements. Unfortunately we did not have enough time for a thorough investigation
on the optimal values for the corresponding hyperparameters. The same table also shows our final choice for
these hyperparameters that we used for all our experiments, and these were obtained mainly by a conservative
instantiation of about three hyperparameter combinations around these means.

hyperparameter validation means (stds) value
proximity - 3
closeness δ 0.0243 (0.0431) 0.0150
separation ε 0.1534 (0.0760) 0.1640

Table 6.20: Hyperparameters measurements for the heuristic combination classifier.

6.8 Evaluation / Performance
The various layers of our framework are trained as classifiers to predict the node labels for all knowledge graph
nodes, i.e. we use the respective surrounding contexts to predict the labels for both the statically known nodes,
and the unknown nodes whose labels actually need to be determined. As far as the framework is concerned,
there is no actual difference between the two types of nodes, besides the possible presence of a candidate list at
nodes of the unknown variety. The predictions made for the statically known nodes are not actually interesting
to us, but training the network to be able to make these predictions forces it to also learn the semantic relations
between these nodes and their respective neighborhoods. Also, the feature maps generated to make these
predictions serve as neighborhood summaries, and these are as valuable features for the higher layers. So even

63

when validating or evaluating, we allow the framework to make predictions and generate feature maps for all
nodes within the graph, irrespective of whether the node is known or unknown. However, when measuring
the validation or evaluation performances of the framework, we don’t care about mispredicted statically known
nodes. In this case we only care about the performance of the framework on the unknown nodes, and so all our
performance measures are restricted to the class of unknown nodes.

For each of the classifiers used in our experiments we measure both TOP-1, TOP-2 and TOP-3 accuracies
and precision, recall and F1 scores over the evaluation set. We define the TOP-K accuracy for a classifier as the
fraction of cases where the correct answer was within the K highest valued predictions according to the classifier.
The precision, recall and F1 scores are initially calculated on a per-prediction basis, and the summary scores
calculated for each experiment are obtained by averaging over the respective per-prediction calculated scores.
For a single point of prediction, we divide both the predicted and the expected label in a number of lower-case
subtokens, obtained from splitting the respective labels first by underscores and then by camel case. From these
two subtoken lists, the precision is calculated as the fraction of subtokens predicted that were also expected
to be present, while the recall is calculated as the fraction of subtokens from the expected label were actually
predicted. The point-wise F1 score is then calculated as the harmonic mean of these point-wise precision and
recall scores. The averaged F1 score is an upper bound on the TOP-1 accuracy, but it is more nuanced in that it
can also give points to partially correct answers. We refer to section 2.2 for more information on these calculated
performance measurements. In table 6.3 of section 6.2 we already showed the performance measurements for
the locally and globally optimized baseline classifiers. The results obtained from the globally optimized baseline
classifier are repeated in all main performance tables for all performed experiments to serve as reference values
to contrast our own results against. The showed performance metrics for this baseline classifier will be exactly
the same over all experiments due to the fact that these baseline predictions were generated for the evaluation
set just once as a pre-processing step.

Each of the convolutional layers within an experiment is trained as a classifier, and as such, each layer
will have a different opinion on what the correct labeling should be. For our experiments we’ve compared the
mutual performances of each pair of classifiers within a single experiment. When two classifiers have similar
accuracies, it is interesting to find out how these accuracies relate to each other. If both classifiers tend to make
exactly the same mistakes, then both classifiers are mostly indistinguishable, and keeping both of them around
is now redundant because each of them just repeats what the other had already said. Things become more
interesting when two classifiers with similar accuracy scores disagree on a large portion of the dataset, because
then the fact that they disagree on this large part can be used as additional information to further refine the
predictions. Each classifier might be seen as an expert on the portion of the dataset where it performs better,
and by identifying each classifier’s area of expertise, a combination classifier might be obtained that delegates
each prediction to the classifier that is most skilled at answering the specific question (see section 6.7).

To gain some insight in the agreements and disagreements between the various classifiers, we’ve compiled a
number of tables (shown in appendix chapter A) for each experiment that show for each pair of classifiers how
many times one classifier in the pair dominated the prediction made by the other classifier in the same pair.
When both classifiers are performing equally well, we would expect these domination events to be well balanced,
so that in about half of the cases one classifier would dominate while in the other half the other classifier would
dominate.

Under the null hypothesis that these two events indeed each occur with probability p = 0.5(and the assump-
tion that all predictions are made independently) we’ve also calculated the probability of having obtained this
set, or any more extreme set, of disagreements between the two classifiers, by performing a simple binomial
test. This probability is the p-value value for this pair of classifiers, and we interpret the difference in accuracy
between them as statistically significant whenever this probability would indicate that obtaining these results
was very rare (p-value < 0.005).

Each of the main experiments performed in the sections below will have the pair-wise performances of each
of the used classifiers compared on TOP-1, TOP-2 and TOP-3 accuracies. The pair-wise performances for these
three performance categories will be shown in three corresponding tables. The domination events shown in
these tables are defined as follows. Classifier A dominates classifier B for some prediction in the TOP-K category
whenever the actual known-to-be-correct label is found within the K highest valued answers returned by A, and
the rank given to this label by A is strictly better than the rank given to the same label by B. It is important
to note here that under this definition, the correct label can still lie within the TOP-K for B for this event to
take place, it just needs to be worse than the rank of this label according to A. Thus the difference between the
TOP-K accuracies of two classifiers (as measured for the main performance tables) does not need to be the same

64

as the difference in the number of domination events of the two classifiers; the pair-wise TOP-K performance
differences and the main TOP-K performance differences do not record the same information.

6.9 Extension Experiments
The main research question that we’d like to answer with this thesis is whether we can construct a convolutional
neural architecture that can use and improve upon the predictions made by the conditional random field model.
In this section we describe three different experiments that were designed to test to what extent our proposed
architecture is capable of this improvement.

The first experiment (’Initial Semantic Embedding Classifier’) trains a single layer convolutional neural net-
work with the intent of obtaining good label embeddings by making the network optimize the label coordinates
so that the attention-averaged radius-2 context rays containing these embedded labels become good predictors
for the labels at the respective center points. The label predictions made by this single layer are not good
enough to be useful on their own, but the feature maps used in making these predictions provide for excellent
first-order summaries of their respective surrounding neighborhoods. The other two experiments in this section
build upon this first layer by utilizing the generated feature maps as additional neighborhood information. They
also re-use the label embeddings generated by the first layer to initialize their own label embeddings.

The second experiment (’Augmented Classifier’) extends the single prediction layer obtained from the first
experiment by a number of additional layers, where each additional layer also has access to some of the feature
maps generated by the previous layer to better inform its own final predictions. The feature maps extracted
from nodes in context positions themselves contain information that is a summarized version of the information
in the contexts centered around these respective context nodes, so the higher layers in this experiment aggregate
information that originated far beyond the first order neighborhoods where they explicitly read their information.

The first two experiments only use the baseline candidates to fill in context positions when making predictions
for any particular node, without taking into consideration the predictions made by the baseline model for the
center node itself. The third experiment (’Refinement Classifier’) is designed to see what happens when we
also allow the neural network to peek at the TOP-3 candidate predictions made by the baseline model when
making a prediction. The idea here is that the network learns which of the three candidates is most consistent
with the available context and that this candidate is then eventually placed at the TOP-1 output position. This
experiment also re-uses the first layer that was obtained in the first experiment; only the higher layers above
the first layer have access any of the candidate labels at the center position.

Omniscient Neighborhood Knowledge

All experiments described in this section are trained with omniscient neighborhood knowledge, by which
we mean that the TOP-1 candidates returned for nodes on context rays are taken to be the true labels that were
extracted from the training set for the respective nodes. This means that the network is trained on extracting
the true center label from an idealized neighborhood instead of the false neighborhoods that were guessed by
one of the models. When validating and evaluating, we of course don’t have any knowledge of the true labels
for these context nodes, so here we use the baseline candidates as best-effort substitutes.

The main reason for training on idealized neighborhoods is that we’d like the label and neighborhood
embeddings to learn the true semantic relationships between the labels, and not some false semantic relationship
that was dreamed up by the existing model. The idea is that our neural network uses the semantic information
contained in the labels in the neighborhood to predict the best fitting center label, and the most relevant
semantic information is the true meaning of the current label assignment. If the label embeddings were trained
using the false label assignments from an existing model, the embedded labels would together implicitly convey
the wrong intention of the program, even for programs that actually have their correct labels assigned. Thus
in this situation with the falsely obtained embeddings, the correct labeling might actually seem to contain
contradictory information according to our model, because it is not imperfect like the assignments given by the
existing model. We’d like, at least for programs in the training set, for our model to have the property that a
perfect labeling of a program is actually the best situation for the model to start making predictions.

Related to this, we want our model to be independent of the actual candidate set used. When we fill context
positions with actual candidates while training, our neural network learns to use the underlying prediction
pattern of the existing model that generated these candidates to make its own predictions. These patterns
are very specific to the source model, and this means our model will degrade in performance when the actual

65

candidates adhere to a different set of underlying patterns, even if those different patterns are actually better
than those of the candidates it was trained on. In the end we hope that our model can improve upon the
candidate rankings of any existing model, and specifically, that it can improve upon its own generated rankings
by feeding the output of one instantiation of our model as input to another instantiation of the same model.
The closer the candidates come to the ideal situation, the closer our predictions come to the ideal situation,
and then the predictions of a second instantiation of our model would hopefully come even closer. Ideally, we
would iterate this process until we reach a fixed point, which would then be our returned solution.

6.9.1 Initial Semantic Embedding Classifier
This experiment trains the initial label embeddings. Figure 6.5 graphically shows the information obtained
from the radius-2 context rays. The nodes at distance 1 and distance 2 from the center each supply 150 real
numbers of information to the context ray from the embedding of the respective labels at these positions. When
training, these labels will be the actual labels as there were found in the training set while during validation
and evaluation these labels are supplied by the conditional random field baseline model when they are otherwise
not available. The edges at distance 1 and distance 2 are always statically known and always supply 150 real
numbers worth of information. In total, each context ray delivers 600 reals of information. Table 6.22 shows
that each context ray is summarized into 300 reals by a single tanh-activated hidden layer, and these individual
ray summaries are then averaged via the attention mechanism to obtain a final 300 real vector that represents
the complete context.

EMPTY
edge label

150

CRF1

candidate label
150

edge label
150

CRF1

candidate label
150

edge label
150

CRF1

candidate label
150

edge label150

CRF
1

candidate label
150

edg
e lab

el

150

CRF
1

can
did

ate
lab

el

150

Figure 6.5: Neighborhood layout for layer 0 in the Baseline Extension experiments.

Modified Training Objective

Table 6.21 shows that this summarized context input represented by 300 reals is transformed by two consecutive
stages to yield feature maps of respective dimensions of 300 and 150 reals. In section 6.6.6 we discussed that
these last 150 real numbers are the final features used to make the target label predictions via a single linear
transformation that puts the final prediction of the layer in the same vector space as the embedding node labels,
and it is here where they can subsequently be compared with the predicted vector on similarity via their mutual
dot products. Normally, the network is now optimized to directly maximize the similarity of the predicted

66

vector and the embedding of the label that was given in the training set, but for this first embedding layer we
make a slightly different choice.

The problem with predicting from the final 150 outputs of this layer is that there are now three (very wide)
layers between the initial embedding and the final predictions. Deep neural networks (i.e. networks having 2 or
more hidden layers) are known to be very flexible, being able to fit almost any pattern when the network is made
sufficiently wide. For our embedding purposes, we like the information in the embedding vector spaces to be
organized as efficiently as possible, so that related concepts occupy similar regions of space. Unfortunately, the
flexibility of the following layers doesn’t really encourage the neural network to organize the embedded vectors
efficiently as possible, because even when similar concepts are placed far apart and are seemingly unorganized,
the deep network still has enough capacity to undo these inefficiencies and still come to good predictions for the
data it was optimized for. This means the training loss might still become very low while training, even though
the network has not learned much about efficiently organizing similar concept. The result is that the network
does not generalize very well.

To overcome our network neglecting the initial embedding layer while still allowing it to construct higher
level concepts from these embeddings to use in subsequent layers, we’ve opted for optimizing for both these
contradictory objectives at the same time. In addition to trying to predict the center label from the 150 reals
delivered by the final stage, we also try to predict the center label directly from the original 300 reals that
constitute the summarized context input via a single linear transformation from this summary space to the
space where the node labels are embedded. Again we use a joint soft-max over the dot products between the
predicted vector and each of the embedded node labels in our dictionary to obtain a probability distribution
over the target labels, and again we try to maximize the probabilities of the actual labels that were found in
the data set. This auxiliary classifier is called the shortcut predictor in our framework. The final loss function
is now taken to be the average of the original loss function that predicts from the final 150 reals and this latter
loss function that predicts directly from the 300 reals from the summarized context input column.

layer stage
center

candidate
labels

center
features

total
center
input

summarized
context
input

output
labels

output
features

inherited
layer

parameters
B - n/a n/a n/a n/a 150 n/a n/a

0 0 - - - 300 - 300 -1 - 300 300 - 150 150

Table 6.21: Main Configuration for Initial Semantic Embedding Classifier.

layer stage context
pieces

edge 1
labels

node 1
labels

node 1
features

edge 2
labels

node 2
labels

node 2
features

raw
context
input

summarized
context
input

0 0 200 150 150 (B1) - 150 150 (B1) - 600 300
1 0 - - - - - - - -

Table 6.22: Context Configuration for Initial Semantic Embedding Classifier.

Results

We’ve trained the layer by optimizing the combined loss function over ten epochs. The validation accuracies
for both predictors are plotted by epoch in figure 6.6. The TOP-1, TOP-2 and TOP-3 validation accuracies for
the model at epochs 5 and 10 are shown in table 6.23. We see that initially the validation accuracy grows
quite rapidly while it starts to stagnate around the fourth epoch. The accuracies of the shortcut classifier are
always slightly higher than the accuracies of the classifier that goes through the deep network. In hindsight, we
probably should have kept this base embedding shallow from the start, maybe with the averaged context rays
directly being delivered as the final feature map. To maintain uniformity across the experiments, we will still
always use the 150 feature maps delivered by the final stage when the output of this layer is used as input to a
subsequent layer in the experiments below, even though these seem to give slightly worse predictions.

67

Unfortunately, we’ve started using this layer as the base layer in our followup experiments already at the
end of the fifth epoch, so these experiments all use a base layer that is not optimized as well as it could have
been; we only found out that there were a few more accuracy points to be gained at a much later stage when it
was already too late to re-run all these experiments with a better optimized base layer. Another thing to note is
that these validation accuracies were accidentally measured with suboptimal candidate set (we used the locally
optimized baseline predictions instead of the globally optimized ones, see section 6.2.2). This means that the
validation accuracies shown here are slightly lower than the validation accuracies shown for later experiments.
No candidates were used while training (we have omniscient neighborhood information enabled), so the presence
of these wrong candidates does not influence the obtained model.

layer epochs TOP-1 TOP-2 TOP-3
0 5 46.67 54.06 57.68
0 10 49.18 56.41 59.80

shortcut-0 5 47.77 55.06 58.55
shortcut-0 10 49.53 56.51 59.90

Table 6.23: Accuracy results for the Initial Semantic Embedding Classifier on the validation set (around 500k
predictions total) after 5 and after 10 epochs.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

V
al

id
at

io
n

A
cc

ur
ac

y

Epoch

layer-0
shortcut-layer-0

Figure 6.6: Validation accuracies during the initial embedding phase, measured on a validation set of 5000
programs with approximately 500k predicted labels. The shortcut graph directly predicts from the averaged
context rays, bypassing the higher stages of the layer.

6.9.2 Augmented Classifier
For this embedding we build upon the base layer trained in the previous experiment at the end of the fifth
epoch. Table 6.24 shows the main configuration for the layers used by this experiment. Layer 0 has the same
configuration parameters as the previously discussed baseline layer, while there are three layers added on top
that each consume some of the feature maps generated by the final stages of some of the previous layers. Layers
1 and 2 are similar in that their first stage only consumes the summarized context input while their second
stage combines the output from the first stage with the feature maps delivered by the last stage of the previous
layer. Layer 3 breaks this pattern by having the first stage consume both the summarized context input and
the delivered feature maps from the final stages of all of the previous layers. Table 6.25 shows that all layers
above the base layer only source from the contexts at the first stage, where they use the baseline candidates
whenever a requested node still needs to have its value predicted. Again, these candidates are only used when

68

validating and evaluating; while training, all layers have omniscient neighborhood knowledge enabled (see the
discussion in the introduction of this section). Figure 6.7 graphically shows the information that is available
at each position for layer 1 and 2, while figure 6.8 shows what information is available at each position for the
third layer.

layer N-1
node features

150

edge label
150

CRF1

candidate label
150

layer N-1
node features

150

edge label
150

CRF1

candidate label
150

layer N-1
node features

150

Figure 6.7: Neighborhood layout for layer N ∈ {1, 2} in the Augmented Classifier experiment.

layer 0
node features

150

layer 1
node features

150

layer 2
node features

150

edge label
150

CRF1

candidate label
150

layer 0
node features

150

layer 1
node features

150

layer 2
node features

150

edge label
150

CRF1

candidate label
150

layer 0
node features

150

layer 1
node features

150

layer 2
node features

150

Figure 6.8: Neighborhood layout for layer 3 in the Augmented Classifier experiment.

layer stage
center

candidate
labels

center
features

total
center
input

summarized
context
input

output
labels

output
features

inherited
layer

parameters
B - n/a n/a n/a n/a 150 n/a n/a

0 0 - - - 300 - 300 -1 - 300 300 - 150 150

1 0 - - - 300 - 300 01 - 150 300 450 - 150 150

2 0 - - - 225 - 225 -1 - 150 225 375 - 150 150

3
0 - 150 150 150 450 400 - 425

-1 - 425 - - - 300
2 - 300 - - 150 150

Table 6.24: Main Configuration for Augmented Classifier.

Results

We’ve shown some performance measurements of the various classifiers used in this experiment in table 6.26.
The base layer 0 of course shows the same (up to random fluctuations) performance as it did during the first
experiment. From the results for layer 1 we see directly that adding the feature maps from the base layer
greatly improves the prediction performance of the layer over all performance measures by at least 10 percent.
Unfortunately, the addition of layer 2 above layer 1 does not show a similar jump in performance, although it
still manages to improve most measures by slightly less than 1 percent. Layer 3 was configured to consume
the final stage feature maps from all layers before it, with the hope that these layers all offered useful different
perspective on the situation. Unfortunately, this increase in information does not easily translate into an increase
in accuracy: the final performance of layer 3 after 5 epochs is slightly lower than it was for layer 2 after the

69

layer stage context
pieces

edge 1
labels

node 1
labels

node 1
features

edge 2
labels

node 2
labels

node 2
features

raw
context
input

summarized
context
input

0 0 200 150 150 (B1) - 150 150 (B1) - 600 300
1 0 - - - - - - - -

1 0 50 150 150 (B1) 150 - - - 450 300
1 0 - - - - - - - -

2 0 50 150 150 (B1) 150 - - - 450 225
1 0 - - - - - - - -

3
0 50 150 150 (B1) 150 150 150 - - - 750 400
1 0 - - - - - - - -
2 0 - - - - - - - -

Table 6.25: Context Configuration for Augmented Classifier.

same number of epochs. Unfortunately we stopped training each of the layers after 5 epochs and as such we
currently do not know whether layer 3 would have eventually caught up or even surpassed the other 2 layers.

Besides the four main classifiers corresponding to the main layers, we’ve also combined our layer classifiers by
averaging over their predicted probability distributions (see section 6.7.1) and we’ve also combined this averaged
classifier with the baseline classifier using the combination heuristic (see section 6.7.2). These are shown in the
table under the layers respectively named A and C. Unfortunately, the averaged classifier, while being more
accurate than any of the numbered layer classifiers, does not manage to come close to the performance of the
baseline B, with it still lacking around 4 percentage points in accuracy. On the other hand, the heuristically
combined classifier does actually manage to improve upon the baseline ranking in all six measured performance
criteria. The precision, recall, F1 and TOP-1 accuracies are marginally improved by about a quarter percentage
points each, but the TOP-2 and TOP-3 accuracies each show improvements of around 1 percent. Tables A.1,
A.2 and A.3 show pairwise comparisons of the various classification layers, where for each pair of layers we’ve
recorded how many times either of the layers made a prediction in respectively the TOP-1, TOP-2 and TOP-3
that was strictly better in rank than the prediction made by the other classifier. These tables also record the
p-value of these results under the null hypothesis that these win-lose and lose-win events should occur with
a probability of 0.5 when both classifiers perform equally well. These tables show that the obtained results
are very unlikely under this null hypothesis at a significance level of 0.005, and thus that the shown accuracy
improvements are all statistically significant.

layer epochs precision recall F1 TOP-1 TOP-2 TOP-3 time notes
0 5 50.06 49.82 49.83 48.43 55.30 58.61 ∼ 2.5 days initial embedding, radius = 2
1 5 62.82 62.65 62.64 61.57 66.76 68.99 ∼ 2 days [feature maps 0]
2 5 63.67 63.46 63.48 62.47 67.41 69.54 ∼ 2.5 days [feature maps 1]
3 5 63.23 62.97 63.01 62.03 67.04 69.18 ∼ 3.5 days [feature maps 0, 1, 2]
A 20 64.07 63.84 63.87 62.88 67.79 69.92 ∼ 10.5 days averaged over layers 0, 1, 2, 3
B 22 68.89 68.82 68.82 68.38 71.91 72.98 ∼ 5 days conditional random field
C - 69.06 68.98 68.98 68.54 72.79 74.07 - days heuristically combined A and B

Table 6.26: Accuracy results for Augmented Classifier on the evaluation set (around 2 million predictions total).

6.9.3 Refinement Classifier
With the previous experiment we tested whether our convolutional architecture could aggregate enough informa-
tion from the candidate-filled neighborhoods to arrive at a classifier that could beat the prediction performance
of the baseline model. Here each of the layers had access to the TOP-1 candidate for any context position that
still needed to be predicted, but it did not directly have access to any of the baseline predictions for the actual
position currently being predicted.

Unfortunately, none of our main layer classifiers could directly improve upon the baseline model, although
an ad-hoc combination of the baseline classifier with the averaged super classifier did manage to improve the

70

TOP-K performances in a statistically significant way. For this experiment we want to see what happens when
we let each layer take the TOP-3 baseline candidates for the node that is currently being predicted as additional
input features. Hopefully, the model can be taught to pick the correct answer whenever its given the TOP-3
baseline candidates where this correct answer is already present. A comparison of the TOP-K accuracy score
measurements for the baseline model shows that the correct answer was placed at the 2nd or 3rd position in
around 4 percent of the cases, which means that there is around 4 percent to be gained by just re-organizing
within the TOP-3.

Figure 6.9 graphically shows the available features for each of the three higher layers in this experiment.
Table 6.28 shows the data flow between the various layers while table 6.29 shows the information extracted from
the context positions for each of the layers. Again we use the same base layer 0 as we obtained from our first
initial embedding experiment. For this experiment we’ve configured each layer above the base layer to read
from the context at both the first and the second stage. Each of these stage calculates its own attention vector
and is thus allowed decide on its own on which of the context rays to put its focus on.

layer N-1
node features

150

CRF1

candidate label
150

CRF2

candidate label
150

CRF3

candidate label
150

edge label
150

CRF1

candidate label
150

layer N-1
node features

150

edge label
150

CRF1

candidate label
150

layer N-1
node features

150

Figure 6.9: Neighborhood layout for layers N ∈ {1, 2, 3} in the Refinement Classifier experiment.

Candidate Shuffling

The main purpose of this experiment is to obtain a classifier that is able to recognize and then utilize the
presence of the correct label from a lineup of labels where the target label may or may not actually be present.
When we actually use the classifier, we first query the baseline model for the 3 most likely candidates, whose
concatenated embeddings are then fed as input features to the neural network. Hopefully the network will
use the knowledge it gained on the training set to pass through the information related to the candidate that
is the most consistent with the surrounding context, while blocking candidates that are less inconsistent with
the context. To train the classifier, we’ve generated candidates for each point of prediction in our training
set by generating the candidates for one part of the training set by using a baseline model trained on the
complementary part (see section 6.2.3). Generating candidates this way (as opposed to generating them using
the full baseline model trained on the complete training set) ensures that the candidate distribution is not ’too
good’ due to the candidates being generated for the same dataset that the generating model was trained on.
Of course, the baseline model is already quite good at predicting the correct label, with the baseline attaining
TOP-1 prediction accuracies of around 70 percent. Unfortunately, the high TOP-1 accuracy of these candidate
predictions presents a small problem for training our model.

If we would train our model directly on the baseline candidates in their original baseline ranking, our neural
model might get the idea that the correct candidate is always the candidate ranked highest by the baseline
model. This strategy gives the correct answer in about 70 percent of the cases and doesn’t even require any
contextual knowledge. Obviously the model learning this strategy is not desirable. What we actually want
is that the model learns come to a decision by comparing each of the three candidates with its context, and
selecting the candidate most consistent with this context. To encourage the model to analyze the information
at all three candidate positions, we’ve decided to randomly permute the candidates in the training set a bit
so that the actual target label will not be at the TOP-1 position as often as they would have been if we had
always kept the baseline rankings. This way the model sees the correct label randomly jump between the first,
second and third ranks, which forces it to actually examine the contents of the labels instead of relying on just
the rank. Table 6.27 shows the initial probabilities we choose for picking a candidate from the 5 highest ranked

71

candidates. Candidates are drawn without replacement until all 5 ranks are filled. After a candidate is picked
it is removed from the table and all remaining probabilities are renormalized.

position 1 2 3 4 5
probability 0.50 0.25 0.15 0.05 0.05

Table 6.27: Initial candidate probabilities for when shuffling the baseline candidate lists for the Refinement
Classifier.

Candidates are shuffled on-the-fly when reading the pre-processed, candidate-augmented training set. An
advantage of this on-the-fly candidate shuffling is that our (post-shuffling) training set is now never quite the
same over multiple epochs, with each epoch giving rise to different candidate shufflings for the same data points.
Unfortunately we did not get around to investigate the effects of disabling the random shuffling of candidates.

layer stage
center

candidate
labels

center
features

total
center
input

summarized
context
input

output
labels

output
features

inherited
layer

parameters
B - n/a n/a n/a n/a 150 n/a n/a

0 0 - - - 300 - 300 -1 - 300 300 - 150 150

1
0 150 (B1) 150 (B2) 150 (B3) 150 600 200 - 400

-1 - 400 400 200 - 300
2 - 300 300 - 150 150

2
0 150 (B1) 150 (B2) 150 (B3) 150 600 200 - 400

-1 - 400 400 200 - 300
2 - 300 300 - 150 150

3
0 150 (B1) 150 (B2) 150 (B3) 150 600 200 - 400

-1 - 400 400 200 - 300
2 - 300 300 - 150 150

Table 6.28: Main Configuration for Refinement Classifier.

layer stage context
pieces

edge 1
labels

node 1
labels

node 1
features

edge 2
labels

node 2
labels

node 2
features

raw
context
input

summarized
context
input

0 0 200 150 150 (B1) - 150 150 (B1) - 600 300
1 0 - - - - - - - -

1
0 50 150 150 (B1) 150 - - - 450 200
1 50 150 150 (B1) 150 - - - 450 200
2 0 - - - - - - - -

2
0 50 150 150 (B1) 150 - - - 450 200
1 50 150 150 (B1) 150 - - - 450 200
2 0 - - - - - - - -

3
0 50 150 150 (B1) 150 - - - 450 200
1 50 150 150 (B1) 150 - - - 450 200
2 0 - - - - - - - -

Table 6.29: Context Configuration for Refinement Classifier.

Results

Table 6.30 shows the evaluation performances for this experiment. We immediately see that the precision, recall
and F1 scores for the classifier obtained by averaging of the individual layer classifiers now are higher (albeit

72

marginally) than those of the baseline model, even though its raw TOP-1 accuracy is still a bit lower. This means
that our (averaged) model performs worse than the baseline model at correctly pinpointing the exact subtoken
sequences, but overall it predicts fewer of the subtokens incorrectly (precision) while it also retrieves more of
the expected subtokens (recall) than the baseline model. Tables A.4, A.5 and A.6 again show the pair-wise
performances of each of the classifiers used within this experiment.

Of interest here is that while the TOP-1 accuracy of the baseline classifier is still a bit higher than the TOP-1
performance of the classifier obtained by averaging over the predictions made by all four layers, the difference
in performance is no longer significant. Looking at the TOP-2 and TOP-3 accuracies, we see that our averaged
classifier now manages to improve upon the baseline in these categories by at least half a percent. It seems
that at least our embeddings are of an high enough quality for the model to be able to differentiate between
the various labels with enough confidence to at least match and to improve upon the accuracies of the baseline
classifier in respectively the TOP-1 and the TOP-2 and TOP-3 categories.

The heuristic combination classifier again manages to (significantly) improve upon the baseline in all TOP-K
categories, with a slightly bigger margin in the TOP-1 and TOP-3 categories and a slightly worse margin in the
TOP-2 category compared to the previous experiment were no candidates were used for the center position.

Even though the baseline and the averaged classifiers lie very close to each other with respect to the TOP-1
accuracy, table A.4 shows that there is actually quite a bit of disagreement between the two classifiers. Maybe
a deeper analysis of the dominating sets for the respective classifiers can shed more light on how to combine
both viewpoints to obtain an even better combination classifier.

Table 6.10 shows the validation accuracy for each of the layers with respect to the number of epochs trained.
We see that the accuracy of layer 1 already surpasses the best accuracy obtained by our framework in the
previous experiment in the first epoch. The accuracy of layer 2 is a bit higher than the accuracy of layer 1 after
6 epochs (which is when layer 1 stopped training). From epoch 6 until epoch 15 there seem to be only marginal
improvements in validation accuracy for layer 2. Layer 3 matches but never improves upon the accuracy of layer
2 and seems to be a bit useless on its own, although it might still have contributed something to the accuracy
of the averaged classifier. Unfortunately, the validation accuracies for the first 4 epochs of training layer 3 were
lost and are not shown in this graph.

layer epochs precision recall F1 TOP-1 TOP-2 TOP-3 time notes
0 5 50.11 49.87 49.87 48.48 55.36 58.67 ∼ 2.5 days initial embedding, radius = 2
1 6 68.30 68.22 68.20 67.47 72.10 73.80 ∼ 3 days [feature maps 0]
2 15 68.84 68.72 68.72 68.07 72.25 73.79 ∼ 9 days [feature maps 1]
3 10 68.71 68.56 68.58 67.90 72.16 73.70 ∼ 7 days [feature maps 2]
A 20 69.14 69.01 69.02 68.37 72.47 74.08 ∼ 21.5 days averaged over layers 0, 1, 2, 3
B 22 68.89 68.82 68.82 68.38 71.91 72.98 ∼ 5 days conditional random field
C - 69.12 69.05 69.05 68.61 72.72 74.10 - days heuristically combined A and B

Table 6.30: Accuracy results for Refinement Classifier on the evaluation set (around 2 million predictions total).

73

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

2 4 6 8 10 12 14

V
al

id
at

io
n

A
cc

ur
ac

y

Epoch

baseline-globally-optimized
layer-0
layer-1
layer-2
layer-3

Figure 6.10: Validation accuracies for the Refinement Classifier, measured on a validation set of 5000 programs
with approximately 500k predicted labels.

74

6.10 Standalone Experiments
The experiments in the previous section were meant to show some of the qualities of our framework when used
for the purpose of extending an existing model by using its candidate predictions for bootstrapping our own
predictions. Of course, having these baseline predictions is never strictly necessary, as we can always fill in
missing information by using the dummy MISSING placeholder. The experiments in this section are designed to
probe how well our framework copes when the candidate suggestions have been removed from the information
pool.

6.10.1 Initial Standalone Embedding Classifier
The initial embedding base layer that was used by all experiments in the previous section was trained to predict
center node labels from complete neighborhood contexts. While training, this layer was forced to develop a
semantically rich embedding of edge and node labels such that these became excellent features for predicting
the center label. For this experiment, we would like to train a standalone base layer that is capable of working
with neighborhood contexts where no candidate labels are available for the nodes that still need to be predicted.
Even though the contexts now have less information contained in them, the semantic relations established by
the base layer from the previous section are still valid, and for our standalone base layer we’d like to reuse these
as much as possible.

We start the construction of our our standalone base layer by creating an exact copy of the previous base
layer as it was at the end of training the 5th epoch. We then start training this layer for an additional 5 epochs,
but now we remove all candidate labels from the training set so that this layer is now forced to learn to predict
from partial neighborhoods. This results in a layer that is described by the information shown in figure 6.11
and the tables 6.31 and 6.32. The only difference between these figures and the corresponding figures in the
previous section is that here all baseline sourcings (B) have been replaced with a missing sourcing (M).

EMPTY
edge label

150

MISSING
candidate label

150

edge label
150

MISSING
candidate label

150

edge label
150

MISSING
candidate label

150

edge label150

MISSING
candidate label

150

edg
e lab

el

150

MIS
SIN

G

can
did

ate
lab

el

150

Figure 6.11: Neighborhood layout for layer 0 in the Standalone Experiments.

Results

Figure 6.12 shows the validation accuracies of this layer plotted together with the validation accuracies of the
previous base layer. We see that the validation accuracies of this standalone base layer are initially higher than

75

layer stage
center

candidate
labels

center
features

total
center
input

summarized
context
input

output
labels

output
features

inherited
layer

parameters

0 0 - - - 300 - 300 Initial Semantic
Embedding1 - 300 300 - 150 150

Table 6.31: Main Configuration for the Standalone Embedding Classifier.

layer stage context
pieces

edge 1
labels

node 1
labels

node 1
features

edge 2
labels

node 2
labels

node 2
features

raw
context
input

summarized
context
input

0 0 200 150 150 (M) - 150 150 (M) - 600 300
1 0 - - - - - - - -

Table 6.32: Context Configuration for the Standalone Embedding Classifier.

the validation accuracies of the previous base layer during the first epoch. This of course is due to the fact that
this layer already starts with its embedding vocabularies fully optimized. After the first epoch, this advantage
subsides and after 5 epochs the final validation accuracy of this standalone base layer is quite a bit lower than
the validation accuracies of the previous base layer after 5 epochs, which is understandable because this layer
has less information to work with. The evaluation results of this base layer are not shown here, but they are
present in the tables displaying the results of the experiments shown below that build upon this standalone base
layer.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

V
al

id
at

io
n

A
cc

ur
ac

y

Epoch

standalone-layer-0
initial-layer-0

Figure 6.12: Validation accuracies during the standalone embedding phase, measured on a validation set of 5000
programs with approximately 500k predicted labels.

6.10.2 Standalone Classifier
With this experiment we build upon the standalone base layer described in the previous subsection. The
configuration and neural network topologies are exactly the same as those of the first experiment (’Augmented
Classifier’) of the previous section. The only difference here in this experiment is that the base layer 0 does not
have any candidate suggestions and that all subsequent layers use the candidates generated by their respective
predecessor layers instead of the baseline candidates. The available information at the various positions for
layers 1 and 2 is shown in figure 6.13, while the same information for layer 3 is shown in figure 6.14. The

76

adjusted layer data plumbing is shown in tables 6.33 and 6.34.
All layers are initialized with the state of the embedding dictionaries at the end of the previous layer. Layers

2 and 3 have all parameters initialized randomly according to the prescribed default initialization strategies for
their respective activation functions (see section 6.3.5). Layer 1 is the exception in that it inherits all parameters
from layer 0 whenever these are available in layer 0. This means that the final linear transformation from the
150 result feature maps to the node label space, as well as most of the context and attention parameters are also
inherited from the previous layer. The only parameters that are not inherited are those related to the additional
feature maps that are added to the context, and these are initialized according to their usual initialization
strategies.

layer N-1
node features

150

edge label
150

[layer N-1]1

candidate label
150

layer N-1
node features

150

edge label
150

[layer N-1]1

candidate label
150

layer N-1
node features

150

Figure 6.13: Neighborhood layout for layer N ∈ {1, 2} in the Standalone Classifier experiment.

layer 0
node features

150

layer 1
node features

150

layer 2
node features

150

edge label
150

MISSING
candidate label

150

layer 0
node features

150

layer 1
node features

150

layer 2
node features

150

edge label
150

MISSING
candidate label

150

layer 0
node features

150

layer 1
node features

150

layer 2
node features

150

Figure 6.14: Neighborhood layout for layer 3 in the Standalone Classifier experiment.

layer stage
center

candidate
labels

center
features

total
center
input

summarized
context
input

output
labels

output
features

inherited
layer

parameters

0 0 - - - 300 - 300 Initial Semantic
Embedding1 - 300 300 - 150 150

1 0 - - - 300 - 300 01 - 150 300 450 - 150 150

2 0 - - - 225 - 225 -1 - 150 225 375 - 150 150

3
0 - 150 150 150 450 400 - 425

-1 - 425 - - - 300
2 - 300 - - 150 150

Table 6.33: Main Configuration for Standalone Classifier.

Results

Table 6.35 shows the evaluation accuracies of the various layers in the standalone experiment. We see here that
none of the layers come even close in performance to the baseline model in any of the performance metrics.
Layer 1 offers a substantial improvement upon the base layer 0 by utilizing the feature maps generated from
the latter layer. Layer 2 still managed to improve a bit upon the performance of layer 1, but this increase is not
very substantial. Just like in the previous experiment section, layer 3 was designed to see what happens when
a layer has access to all final feature maps of all previous layers. Again, just like the corresponding experiment

77

layer stage context
pieces

edge 1
labels

node 1
labels

node 1
features

edge 2
labels

node 2
labels

node 2
features

raw
context
input

summarized
context
input

0 0 200 150 150 (M) - 150 150 (M) - 600 300
1 0 - - - - - - - -

1 0 50 150 150 (0) 150 - - - 450 300
1 0 - - - - - - - -

2 0 50 150 150 (1) 150 - - - 450 225
1 0 - - - - - - - -

3
0 50 150 150 (2) 150 150 150 - - - 750 400
1 0 - - - - - - - -
2 0 - - - - - - - -

Table 6.34: Context Configuration for Standalone Classifier.

in the previous section, this jump in information did not allow the network to squeeze out more performance in
the 5 epochs it was given, although it might still be possible that this layer might squeeze out some additional
performance when it is given more epochs to properly learn. Figure 6.15 shows the validation accuracies of
the various layers plotted against epoch number. The baseline graph shown is the locally optimized one from
section 6.2.2, which is not nearly as good as the globally optimized one (not shown here). Our multi-layer
standalone architecture manages to compete with the trivial inference option of the baseline model, while not
coming even close to the performance of the actual globally optimized baseline model. Tables A.7, A.8 and A.9
show some of the pair-wise TOP-K performances of the various classifiers used in this experiment. The upshot
of this experiment is that apparently our architecture is capable enough to correctly predict the target label
from a total of about 80k labels in about 60 percent of the cases, which is quite a bit better than mere random
guessing.

layer epochs precision recall F1 TOP-1 TOP-2 TOP-3 time notes
0 5 46.55 46.24 46.27 44.85 51.84 55.20 ∼ 5 days initial embedding, radius = 2
1 5 58.45 58.24 58.23 56.89 62.75 65.40 ∼ 2 days [feature maps 0]
2 5 59.68 59.42 59.43 58.15 63.83 66.37 ∼ 2.5 days [feature maps 1]
3 5 59.40 59.15 59.16 57.84 63.64 66.26 ∼ 3.5 days [feature maps 0, 1, 2]
A 20 59.91 59.64 59.66 58.38 63.93 66.44 ∼ 13 days averaged over layers 0, 1, 2, 3
B 22 68.89 68.82 68.82 68.38 71.91 72.98 - days conditional random field

Table 6.35: Accuracy results for Standalone Classifier on the evaluation set (around 2 million predictions total).

78

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V
al

id
at

io
n

A
cc

ur
ac

y

Epoch

baseline-locally-optimized
layer-0
layer-1
layer-2
layer-3

Figure 6.15: Validation accuracies for the Standalone Classifier, measured on a validation set of 5000 programs
with approximately 500k predicted labels.

79

6.10.3 Centerless Classifiers
The previous experiment was one attempt at showing the possibilities of using our architecture as a standalone
model. This previous experiment was configured (see tables 6.33 and 6.34) to allow each layer to have access
to the feature maps generated by the previous layer at both the center and the context positions. Allowing a
layer to have access to the generated feature maps of the center location might allow the layer to become a bit
lazy: directly passing through the feature maps from the previous layer while ignoring the context would allow
the layer to attain exactly the same accuracy as the layer before it without it having to perform any actual
additional work. For this experiment we try to see what happens if we remove access to the center feature maps
from each layer. Now each higher layer has to base its predictions solely on the information in the context rays,
just like base layer 0. The only difference now is that the context rays for the higher layers additionally have
the feature maps from the predecessor layer available to them. The main information availability for the layers
1, 2 and 3 is visualized in figure 6.16 while tables 6.36 and 6.37 show how the various layers are interconnected
and how information is extracted from the context rays.

EMPTY
edge label

150

MISSING
candidate label

150

layer N-1
node features

150

edge label
150

MISSING
candidate label

150

layer N-1
node features

150

Figure 6.16: Neighborhood layout for layers N ∈ {1, 2, 3} in the Centerless Classifiers experiment.

layer stage
center

candidate
labels

center
features

total
center
input

summarized
context
input

output
labels

output
features

inherited
layer

parameters

0 0 - - - 300 - 300 Initial Semantic
Embedding1 - 300 300 - 150 150

1 0 - 150 150 200 - 100 -1 - 100 100 - 150 150

2 0 - 150 150 200 - 100 -1 - 100 100 - 150 150

3
0 - 150 150 200 - 100 -1 - 100 100 - 150 150

Table 6.36: Main Configuration for the Centerless Classifiers.

layer stage context
pieces

edge 1
labels

node 1
labels

node 1
features

edge 2
labels

node 2
labels

node 2
features

raw
context
input

summarized
context
input

0 0 200 150 150 (M) - 150 150 (M) - 600 300
1 0 - - - - - - - -

1 0 50 150 150 (M) 150 - - - 450 200
1 0 - - - - - - - -

2 0 50 150 150 (M) 150 - - - 450 200
1 0 - - - - - - - -

3 0 50 150 150 (M) 150 - - - 450 200
1 0 - - - - - - - -

Table 6.37: Context Configuration for Centerless Classifier.

80

Results

Table 6.38 shows the measured performances in the usual categories for this experiment. We see that the
performances of the higher layers are all about the same and that they are all quite a bit lower than the results
of our previous standalone experiment. For this experiment we didn’t record any information on the time it took
to train each layer because these experiments were performed on a different machine than the other experiments.
Tables A.10, A.11 and A.12 show the pair-wise comparisons of respectively the TOP-1, TOP-2 and the TOP-3
accuracies.

layer epochs precision recall F1 TOP-1 TOP-2 TOP-3 notes
0 5 46.52 46.21 46.24 44.82 51.82 55.19 initial embedding, radius = 2
1 5 54.53 54.27 54.25 52.71 59.42 62.51 [feature maps 0]
2 5 54.94 54.62 54.64 53.17 59.77 62.86 [feature maps 1]
3 5 54.33 53.97 54.01 52.50 59.18 62.27 [feature maps 2]
A 20 56.93 56.57 56.61 55.17 61.82 64.81 averaged over layers 0, 1, 2, 3
B 22 68.89 68.82 68.82 68.38 71.91 72.98 conditional random field

Table 6.38: Accuracy results for the Centerless Classifiers on the evaluation set (around 2 million predictions total).

6.11 Pipelining Experiments
Our framework is designed such that each concrete instantiation of the framework operates as a function that
consumes a stream of possibly candidate-augmented graphs and that outputs another stream of graphs that are
augmented with the predictions made by the final layer of the instantiation. Conceptually, it does not matter
whether the input of such a framework instantiation is the conditional random field baseline classifier or any
other candidate-augmenting graph producer. In particular, it is possible for the output of one instantiation
of our framework to be consumed as input to another. Our framework actually allows our experiments to be
chained this way at will, for example by first running the standalone classifier stack to generate candidates from
scratch without any help from the baseline conditional random field, and by then improving these candidates
using the refinement classifier stack. Unfortunately, this combination delivered results that were a lot worse
than the initial outputs of the standalone stack, and so the dream of obtaining increasingly better solutions
by iterating a refinement stack until a fixed point is reached was shattered. In hindsight, this result seems
unsurprising, given that the stack is trained to find the best label among only the best 3 candidates, and this
is not often the case when the candidates are generated by a badly performing classifier. Perhaps the results
would be better if the refinement stack took into account a (much) larger number of candidates than the 3
candidates it is currently trained for.

81

Chapter 7

Related Work

7.1 Identifier Inference

7.1.1 Statistical Deobfuscation of Android Applications
Bichsel, Raychev, Tsankov, and Vechev, 2016 adapt the conditional random field techniques first developed in
(Raychev et al., 2015) to work on obfuscated Java programs. The base techniques used are the same, but the
kind of information they model in their knowledge graphs is extended to the typed Java domain. While the
original framework (which worked on untyped JavaScript programs) was designed to predict only names for
local variables, the present framework explicitly does not attempt to make predictions for local variables, but
instead makes predictions for all other identifier types which were not declared in an external API, i.e. package
names, class names, method names etc. The reason for this is that their framework deobfuscates on the level
of APK packages, and the original local variable names were never included in the pre-obfuscated packages to
begin with.

Working in the typed Java environment, their framework exploits the available static type information by
making it available through additional known nodes in the knowledge graphs. Their reported performance of
an overall prediction accuracy of around 80% is higher than the performance of 63% reported by Raychev et al.,
2015 on the VarNaming problem in the untyped JavaScript setting.

7.1.2 Recovering Clear, Natural Identifiers from Obfuscated JS Names
Vasilescu, Casalnuovo, and Devanbu, 2017 use an off-the-shelf statistical machine translation tool called Moses,
which was originally designed for NLP purposes. The tool works line-by-line and doesn’t use any source code
specific features. For each identifier they generate candidates for every line where the identifier occurs, using
the rest of the tokens on the respective line as context. Identifiers are ranked by the model and the best one
is chosen. They go through great lengths to rank the results returned by the tool and to choose an overall
assignment which preserves the original program semantics (e.g. no duplicate names within the same scope,
which Moses does not naturally deal with).

Even though the approach seems to discard quite a lot of structure inherent to source code, it manages to
surpass the performance of Raychev et al., 2015 (Raychev et al., 2015), especially in situations where jsNice
seems to perform badly. The tool they built is dubbed Autonym, but they also construct a tool called jsNaughty
which augments their Autonym tool with the predictions made by JSNice, hoping to achieve the best of both
worlds. They seem to succeed at this, reporting a mean prediction accuracy per file which is higher than the
reported accuracies of both jsNice and Autonym.

The Autonym tool itself seems to be specifically trained to recover the original variable names for source files
which were obfuscated by UglifyJS (i.e. it learns the obfuscation algorithm), which would limit the usefulness
of the tool in more general situations where there are no original identifier names to begin.

82

7.1.3 Context2Name: A Deep Learning-Based Approach to Infer Natural Variable
Names from Usage Contexts

Bavishi, Pradel, and Sen, 2018 use recurrent neural network to embed identifiers in vector space together with
their usage contexts. For each usage of an identifier v, they collect the q preceding and the q following tokens
in the source stream and put them into one-hot encoded context vectors c ∈ {0, 1}k of size k = VocabSize · 2 · q.
An auto-encoder network is trained to create embeddings for the contexts c, where the encoder uses a single
layer of recurrent LSTM units to consume the one-hot encoded input into a dense representation. The decoder
consists of a single layer of LSTM units, outputting reconstructed contexts c̃ ∈ [0, 1]k via a softmax layer. The
final network is trained to minimize the negative log-loss over the probability Pr(c̃ | c) := cT · c̃. Afterwards
some processing of the results is done to make sure the renamings preserve original program semantics (e.g. no
overlapping variable names within the same scope etc).

Given these usage context embeddings, they train a second recurrent LSTM network which takes the first l
usages of the variable v and calculates a softmax distribution which is compared with a one-hot encoding of a
vocabulary of potential output labels, again using the negative log-loss function.

They report comparable accuracies to jsNice and jsNaughty while being much more efficient to train. They
also mention that jsNaughty only achieves good performance when it is allowed to take an unrealistically long
time for inference (> 10 minutes).

7.1.4 Learning to Represent Programs with Graphs
Allamanis, Brockschmidt, and Khademi, 2017 describe how Gated Graph Neural networks can be used in the
context of variable identifier naming. Names are predicted for a single identifier Y only, using the rest of the
program as context. Programs P are represented by knowledge graphs GP = (V P , EP) which are obtained by
methods similar to, but not quite the same, as those described in section 4.1. An important difference is that
V P contains a node Y k for each occurrence k of the variable variable Y within the program whereas in our
knowledge graph they are all condensed into a single node. In their paper, Allamanis et al., 2017 also introduce
the VarMisuse problem which tries to find out whether the variable used at a given location is actually the
correct variable to use there, given a list all variables which are in scope at that position.

Each node Zi has an associated state vectorHi containing its current state. MessagesMr
i := createMessager~αr (Hi)

are calculated from this state which are sent to all nodes Zj connected to Zi by the relation r. In turn, each node
Zi receives messages Mr

j which were generated by neighboring nodes Zj which are connected via the relation r.
Node Zi aggregates the messages Mr

j thus received into a final summary M̃i := aggregateNeighborhood({Mr
j |

(Zi, r, Zj) ∈ EP }), where the aggregateNeighborhood function is a pointwise averaging of the individual
messages. Gated recurrent units are used to combine the current state Hi and the aggregated neighborhood
information M̃i into the successor state h′i := GRU ~γ(M̃i, Hi). This propagation of information is repeated for
a fixed number of time steps and the final value of the state vector Hi is used as a feature vector to make
predictions for the node Yi. The parameters ~αr and ~γ for respectively the message functions and the GRU are
determined at training time.

Initially the statesHk of nodes Y k ∈ V P associated to Y get initialized by the embedding of a special UNKNOWN
placeholder feature, while all other other nodes Zi get initialized (presumably) by a word2vec embedding of
their respective tokenized names. The information propagation process described in the previous paragraph is
then iterated for the fixed number of time steps, resulting in a feature vector Hk for each location Y k which
summarize the usage of the variable Y at location k. The final feature vector calculated for Y is now obtained
by averaging the feature vectors obtained at the nodes Y k. This feature vector is then used by another GRU
to generate the tokens for the name predicted for identifier Y .

The reported accuracy for the VarNaming problem on unseen data is 44.0% using their own C# data set,
which seems substantially lower than the accuracy reported by Raychev et al., 2015 on a JavaScript data set.

7.1.5 Learning Natural Coding Conventions
Allamanis et al., 2015 present Naturalize, a framework for predicting variable names using an n-gram model.
They treat each identifier as an isolated prediction task, assuming the rest of the identifiers have all been correctly
named. Predictions are only made when a certain confidence threshold has been exceeded; a satisfactory
comparison of their results which our baseline CRF model could not be made.

83

7.1.6 Suggesting Accurate Method and Class Names
Allamanis et al., 2015 predict variable, method and class names using a neural network model. The predictions
made are at the level of subtokens, i.e. a descriptive identifier name is predicted by iteratively generating the
individual words ni (subtokens) which together compose as the identifier’s description. The authors construct a
log-bilinear probabilistic model where the log-probability log Pr(ni | ~c, ni−1, ni−2, . . . , n1) for the current token
ni, conditioned upon the previously generated tokens ni−1, ni−2, . . . , n1 and the contextual code sequence
~c := (c1, c2, . . . , ck), is a bilinear function of respectively the continuous features associated to the current token
ni and the continuous features associated to both the previously predicted subtokens ni−1, . . . , n1 and the code
context ~c surrounding the identifier which is currently being predicted. Their method does not make any effort
for attaining mutual consistency between the predicted identifier names when multiple names are predicted.
Predictions are only made when the model has attained a certain (configurable) confidence level on the result;
the results presented are not directly comparable to our baseline model.

7.2 Embedding Techniques
The following papers describe how various discrete entities can be embedded into some continuous d-dimensional
vector space.

7.2.1 Translating Embeddings for Modeling Multi-relational Data
Bordes, Usunier, Garcia-Durán, Weston, and Yakhnenko, 2013 show how directed knowledge graphs (see section
4.1) with mainly one-to-one relations can be embedded in some finite dimensional vector space such that
the embedded entities approximately respect the head-to-tail arithmetic: for a relation a

r−→ b we obtain an
embedding ã, r̃, b̃ ∈ Rd of the respective components such that b̃ ∼ ã + r̃. Using this arithmetic, a relation
triple p r−→ q with one of the three components missing can be completed by solving for the unknown within the
vector space, i.e. by finding the entity or relation which after embedding best fits the unknown slot.

Their approach doesn’t work well with one-to-many and many-to-one relations because the vector space
embedding forces two entities to occupy the same location whenever the other entity component and the rela-
tionship are shared. This means that unrelated entities will almost surely be thought of as equal as soon as
more complex relationships enter to knowledge graph.

7.2.2 Knowledge Graph Embedding by Translating on Hyperplanes
Wang, Zhang, Feng, and Chen, 2014 deal with the problem of relations which are not one-to-one (e.g. many-to-
one or one-to-many) in knowledge graphs. They improve upon the work of Bordes et al., 2013 by associating to
each embedded relation a relation-specific hyperplane and by forcing the head-and-tail arithmetic to happen
on the projections to the hyperplane of their respective embeddings, instead of on the embeddings themselves.
This allows entities which are related to multiple other entities to get a relation-specific space to perform the
arithmetic in, which prevents the degenerate situation where two different tails must occupy the same location
as soon as they are part of a triple in which they share the same head and relation.

7.2.3 Representation Learning of Knowledge Graphs with Entity Descriptions
Xie, Liu, Jia, Luan, and Sun, 2016 extend the approach taken by Bordes et al., 2013 of embedding knowledge
graphs in Rd with a complementary embedding of textual descriptions associated to the various entities. This
embedding (termed DKRL) is learned in such a way such that both the embedding of the entity as well as the
embedding of the accompanying description are encouraged to occupy the same location in Rd. This allows
the model to work with entities that were not available during model construction, as long as they have an
accompanying textual description. The embedding of this textual description can be used as a placeholder
for the embedding of the entity itself and it can be obtained by a generic pre-trained word embedding model
(word2vec).

84

7.2.4 Learning Graph-Level Representations with Gated Recurrent Neural Net-
works

Jin and JáJá, 2018 have shown how recurrent neural networks can be used to create vector space embeddings of
(possibly large) graphs given the embeddings of the individual nodes and their respective neighborhoods. The
nodes are put into a sequence, and the sequence of embeddings of nodes together with their neighborhoods is
fed into a recurrent neural network which then calculates a summary for this sequence which represents the
whole graph. Putting the nodes into a specific ordered sequence is required for the recurrent neural network to
function, but the precise order of this sequence greatly influences the final result, and so determining a good
order is crucial for this whole graph embedding to function properly. In their paper, Jin and JáJá, 2018 describe
how the Gumbal-Softmax distribution can be used to randomly sample a sequence of nodes in a way which still
allows the network to be trained by using standard gradient descent based techniques. The random sequence
sampling can be interpreted as a random walk around the graph, with the randomness in the node sequence
helping to prevent any order-biases to creep in which can negatively influence the final result. Their work shows
that this embedding technique compares favorably to competing graph embedding techniques in the task of
predicting a label with classifies the whole graph.

7.3 Attention Mechanisms
The papers listed here describe different attention mechanisms that are used to put emphasis on the relevant
parts of the input that is needed to calculate the desired output.

7.3.1 Summarizing Source Code using a Neural Attention Model
Iyer, Konstas, Cheung, and Zettlemoyer, 2016 use an attention mechanism to predict natural language sum-
maries for code fragments. The code fragment C is split into its token sequence ~c := (c1, c2, . . . , ck).

The goal is to predict the next word ni of the summary given the vector of previously predicted words
~ni−1 := (ni−1, ni−2, . . . , n1) and the token sequence ~c. This task is modeled by calculating a conditional
probability distribution Pr(ni | ~c, ~ni−1) of the next word to be predicted for the summary given the words
already predicted. The result is chosen via a beam search to be the word sequence n̂ that maximizes the joint
probability over the individual words.

The probability Pr(ni | ~c, ~ni−1) of the current word ni, is calculated via a weighted average ĉi of embedding
vectors c̃j ∈ Rd of the tokens cj in the sequence ~c. This ensures that each word predicted pays the most attention
to the tokens in the fragment that are most important for that word, given the words already predicted previously
in the summary. We have

ĉi :=
∑
j

A(c̃j ,~hi) · c̃j (7.1)

where the weights A(c̃j ,~hi) ∈ R are proportional to the dot product between the embedded token c̃j and the
current hidden state ~hi of a LSTM unit. This attention mechanism differs from ours in that their attention
is dynamic, being taken with respect to the current state vector of the LSTM unit, while ours is static, being
taking against a parameter vector which is global to the neural network.

The words in their natural language summaries might serve as good variable names when adequately con-
catenated when they are applied to the neighborhood triple embeddings that are described in this paper.

7.3.2 A Convolutional Attention Network for Extreme Summarization of Source
Code

Allamanis, Peng, and Sutton, 2016 use a convolutional neural network for the task of predicting natural language
summaries N for code fragments C. The fragment is split into its token sequence ~c := (c1, c2, . . . , ck).

Again, the goal is to predict the next word ni of the summary given the vector of previously predicted
words ~ni−1 := (ni−1, ni−2, . . . , n1) and the token sequence ~c. This task is modeled by calculating a conditional
probability distribution Pr(ni | ~c, ~ni−1) of the next word to be predicted for the summary given the words
already predicted.

85

The probability Pr(ni | ~c, ~ni−1) of the current word ni, is calculated via a weighted average ĉi of embedding
vectors c̃j ∈ Rd of the tokens cj in the sequence ~c. This ensures that each word predicted pays the most attention
to the tokens in the fragment that are most important for that word, given the words already predicted previously
in the summary. We have

ĉi :=
∑
j

A~φ(~c,~hi, j) · c̃j (7.2)

where the weight A~φ(~c,~hi, j) ∈ R used at the jth token is calculated via a stack of convolutional layers. For each
position j, each convolution layer calculated a new attention feature vector Fj that combines the neighborhood
information surrounding the token obtained in the previous layer. The last layer of these feature vectors, F̂j ,
is combined with the current state ~hi of a GRU unit to obtain at each position an attention feature vector
Ai,j that combines the prediction history of the previously predicted words ~ni−1 with the attention information
obtained via the convolution over the source tokens. In a final convolutional layer the vectors Ai,j are combined
to obtain for each position j the weight A~φ(~c,~hi, j) which indicates the importance of the embedding c̃j of the
jth token.

At each time step, the current hidden state ~hi of the GRU unit is obtained from the previous hidden state
~hi−1 and the embedding ãi−1 of the last predicted word via ~hi := GRU (ãi−1,~hi−1). The final probabilities for
the word ni given ~ni−1 and ~c are calculated via a softmax on ĉi via a linear layer.

Just like the previous paper, the words obtained from these summaries might serve as good variable names
when this mechanism is applied to the triple embeddings in a neighborhood surrounding the variable in the
knowledge graph. Each subtoken predicted would get its own attention view on the neighborhood, which differs
from the single global attention function described in our current work.

7.3.3 Graph2Seq: Graph to Sequence Learning with Attention-based Neural Net-
works

Xu, Wu, Wang, Feng, and Sheinin, 2018 use recurrent neural networks to generate token sequences for graph
inputs. For a given graph G = (V,E) with vector features attached to each node Zj ∈ V , the goal is to generate
a sequence of tokens ni. They do this by modeling a conditional probability distribution Pr(ni | G,~ni−1) where
the probability of generating a token ni is conditioned on the vector ~ni−1 := (ni−1, ni−2, . . . , n1) of tokens
generated previously.

They describe how the information in node neighborhoods can be aggregated to obtain a neighborhood
summary vector c̃j ∈ Rd for each node Zj . Then, for the prediction of a token ni, a context vector ĉi is
calculated by averaging over the neighborhood summary vectors c̃j using attention weights:

ĉi :=
∑
j

A~φ(c̃j ,~hi) · c̃j (7.3)

The attention weights A~φ(c̃j ,~hi) used for the predicted token ni are calculated by a separate neural neural
network (via a soft-max layer) which is trained in parallel with the other parameters. The context vector ĉi is
used in combination with the current hidden state hi of an LSTM unit and the embedding ñi−1 of the previously
predicted token ni−1 to calculate the probabilities for the current token ni.

This attention mechanism differs from ours in that we use a simple attention vector a to obtain weights
for each embedded triple ~cj by simply calculating the plain dot product between ~cj and a (and performing
a subsequent soft-max operation), while their weights are determined via a possibly arbitrary complex neural
network. We’ve chosen the simpler approach from (Alon et al., 2019) because we like its simplicity.

7.3.4 Learning Programs from Noisy Data
Raychev et al., 2016 do generative learning, i.e. they try to model the distribution of code fragments so that
they can generate adequate code completions. This is not what we’re interested in: we take the code as a static
entity where only semantic information in the form of identifiers needs to be inferred. They were kind enough
to supply their 150k JavaScript code corpus.

86

Chapter 8

Conclusion

8.1 Research Questions
With this project, we tried to answer the following research questions:

1. Can we (significantly) improve upon the conditional random field model by using a complementary (con-
volutional) neural network which uses higher order neighborhoods for increased information utilization?

2. Can we get our model to synergize with the original model, i.e. can the combination of two models
overcome each other’s weaknesses for a better overall result?

3. Can we do all this while maintaining the real-time inference property of the original conditional random
field framework?

Our first experiment (’Refinement’) showed us that we can answer the first research question in a positive
way: by combining our convolutional neural classifier with the baseline conditional random field model, we
obtain a classifier that is superior to both the baseline classifier and our own classifier. Improvement in TOP-1
accuracy is marginal but statistically significant, while the TOP-2 and TOP-3 accuracies have seen substantial
improvements of over 1.5%.

Besides refining an existing model, the architecture we’ve designed is also capable to function as a standalone
model. When used as such, we managed to achieve prediction accuracies of around 59 percent. This is much
lower than the 69 percent accuracy achieved by the fully, globally optimized, conditional random field model,
but it is very much comparable to the 58 percent accuracy achieved by the locally optimized version of the
baseline classifier that predicts its labels from assuming ideal neighborhoods. It would seem that our predictive
capabilities in this regard are not as globally informed as we would have liked, as our multi-layer, information
aggregating framework manages to squeeze out precisely as much predictive performance as the simple local
optimization maximization strategy of the local inference version of the conditional random field framework.
Also, the (global) conditional random field model already achieves similar accuracies as our best standalone
model when trained on a dataset of only around 5000 programs, while our framework needs a full 10+ epochs
over a dataset of 100k programs to achieve similar results. All in all it seems that our model does not offer
many advantages when used only for classification purposes. On the other hand, an interesting side-effect of
our architecture is the continuous semantic embedding of small graph neighborhoods in some finite dimensional
real vector space. This embedding might contain information which has utility beyond the direct prediction
of missing labels in our current setting, for example in topic segmentation etc. It remains to be seen whether
there are any domains where our standalone architecture has a clear advantage over use of conditional random
fields as per (Raychev et al., 2015), either for direct predictive purposes or by the utilization of its neighborhood
embeddings.

Unfortunately we were unable to start work on the second research question. Our experiments have shown
(see A.2) that there is quite a bit of disagreement between our classifiers and the baseline conditional random
field model. Our original hypothesis which led to this research question was that the baseline model gets stuck
in local optima during inference (see section 1.5.3). This means that it is unable to find a solution which is
globally optimal according to the model, even though it would be able to confirm the superiority of such an

87

optimal solution if it was magically handed such a solution. We still believe that an exchange of information
between our model and the baseline conditional random field model might allow the baseline model to break
free of its current local optimum in quite a few situations, allowing it to continue its search and eventually reach
a better (but probably still local) optimum. Iterating this process might result in an even better final solution.

Concerning the third research question: we can confirm that running our whole prediction pipeline does not
take more than a second of running time on average. This means that the real-time inference property of the
original conditional random field model is maintained, and that the integration of our refinement model into an
integrated development environment would still result in a feature that can be used on-the-fly while developing
without adding any significant delays that might preclude it from using used.

8.2 Future Work

8.2.1 Enhanced Combination Heuristic
Currently the baseline classifier and our classifiers are combined via a very simple heuristic that uses a single
threshold value to decide whether the suggestions returned by the baseline model should be swapped. Something
more clever is probably possible. One obvious approach would be to train a small (logistic) neural network that
uses the scores returned by each of the classifiers to obtain a better decision procedure on which pairs of
candidates should be swapped to obtain a better final candidate ranking.

8.2.2 Utilizing Conditional Random Field Weights as Features
In our current (refinement) experiments we only use the raw TOP-3 candidates returned by the conditional
random field model as input to our neural network, without any consideration of the scores the former model
already assigned to these labels when seen in their current contexts. Of course, these scores are very informative,
and they probably should already have been used as extra features given to our model. Unfortunately, our insight
as to their utility came a bit too late for us to pursue this any further, so this remains something to be done.

8.2.3 Bottleneck Feature Maps
Currently we train the feed-forwards neural network used in each convolutional layer to predict the center label
from its neighborhood context, and then we choose the feature maps generated by the final stage of this feed-
forward neural network to be the designated output for the node at this convolutional layer. Another possibility
would be to take the feature maps generated at any of the intermediate stages as the final output. Currently it
might be the case that the feature maps at the final stage are too much focussed on being good predictors for
the center label while throwing away neighborhood information that is not directly relevant at this prediction
task but which might become relevant when the features would be used as input to any subsequent layers. If
we use any of the intermediate layers, we might intercept the information flow at a point where it is not yet
committed to the final prediction task, which might result in features that are more generally useful.

8.2.4 More Sophisticated Training Objectives
Our current framework trains each layer separately with the training objective of predicting the label for the
center node of a neighborhood directly from all other information contained in the neighborhood. This objective
forces the layer to generate features which are good direct predictors for the center label, but unfortunately
this might not be a good long term strategy. Features which are not directly useful in predicting the final label
will never be generated, even though they might indirectly become very useful when used in a more complex
hierarchy. A different training objective might allow a layer to generated a more diverse set of features, instead of
forcing it to be greedy and only judge features by their direct utility. One such an alternative approach might be
to train each layer as an (variational) autoencoder, where the training objective is to accurately reconstruct the
input neighborhood from the generated features. This would force the network to preserve as much information
of the original neighborhood as possible, instead of only preserving information that is directly relevant for
predicting the center label. Our current architecture would be extended by a reverse network which takes as
input the final feature map of a layer and outputs something which can be compared to the original input
neighborhood. The training objective would then be to let this combination minimize (according to some yet to

88

be decided metric) the difference between the original neighborhood and the reconstructed neighborhood. How
this comparison between the initial and final neighborhoods is to be done is still an open research question,
given that these neighborhoods are all varying in size and that there is no definitive ordering on the various
pieces of information.

8.2.5 Abstract Syntax Tree Path Features
We currently use the feature set first introduced in (Raychev et al., 2015), but since then the authors of (Alon
et al., 2018) have managed to obtain even better results using the same base model by using an extended feature
set (i.e., a different set of features used as edges in the knowledge graphs), obtained from the paths between
variables in the abstract syntax tree of the original programs. They managed to improve upon the original
accuracies by a few percent. It would be interesting to see whether our model is also able to improve upon the
results of this extended baseline model.

8.2.6 Languages with Sophisticated Naming Conventions
Our current experiments have been performed on a JavaScript dataset, where the conditional random field
already achieved relatively high accuracies of around 70%. We’d say it’s plausible that the untyped nature of
JavaScript doesn’t really encourage descriptive variable names, which would mean that the variety of names
which actually occur in practice is limited. This might explain why symbolic approaches like CRFs achieve such
high performance. In strongly typed languages such as Java, most method names are very long and specific (e.g.
findPrivateCustomerInPreciouslyGenericDatabase, which greatly increases the number of unique names in
the dataset. The abundance of such very specific names of course makes it much harder to predict the correct
name when there are many very similar words in the training vocabulary which only differ only slightly at
just a few subtokens. As we’ve seen, our Refinement Classifier already manages to have better precision and
recall scores than the baseline conditional random field classifier, even though its absolute TOP-1 accuracy is
still lagging a bit behind. This gives us an indication that it is quite capable of getting the general gist of a
prediction correctly (e.g. findCustomerInDatabase or even findCustomer), even though it still struggles a bit
with pinpointing the exact token sequence. It would be nice to investigate how our model compares in precision
and recall scores with the conditional random field model when it is applied in to strongly typed programs where
there are many small variations of the same basic label.

8.2.7 More Representative Performance Measurements
We already mentioned in the previous item that our model manages to improve upon the baseline model in
precision and recall scores, even though it struggles with improving upon the baseline model at raw TOP-1
accuracy. A more sophisticated analysis of the predictions might shed more light on the situation. For example,
we could compare the union of the expected subtokens over a connected component with the union of generated
tokens over the same connected component. This way a noun subtoken like customer or employee is only taken
into account once when it is consistently wrongly suggested or missing over multiple predictions. This might
give a better indication on model’s ability to correctly predict the generic features of the required label when
the precise prediction is incorrect.

8.2.8 Subtoken Level Enhancements
Our classifier generates a number of suggestions which might all be variations of the same idea. For example, if
the TOP-4 candidates (in returned order) are drawRectangle, findCustomer, findEmployee and findManager,
we might draw the conclusion that the result is likely to contain the subtoken find. Then some search within
the predictions made for neighboring nodes might reveal that multiple suggestions independently mention the
subtoken employee, which would make the findEmployee prediction the most likely, even though it was not
returned as the top suggestion by our own classifier.

8.2.9 Deeper Networks
Increasing the number of (framework) layers beyond 3 became infeasible on our hardware, but increasing the
number of stages (i.e. the neural network layers within a framework layer) did not seem to drastically increase

89

the time needed to train a single layer. Our framework does not have absurdly high accuracies on the training
set yet; it seems like it’s not overfitting. Deeper networks (in the sense of having more stages per layer) might
be worthwhile to look at.

8.2.10 Larger/Better/Same Dataset
We currently use the publicly available dataset that was first used by Raychev et al., 2016 in their own ex-
periments. Unfortunately, this dataset is only half the size as the dataset that Raychev et al., 2015 originally
used in their conditional random field experiments. The performance measurements we made whilst repeating
their experiments on our chosen dataset show a substantial increase in accuracy of around 5% of the (almost
identically configured) model trained on our dataset compared to the results reported in (Raychev et al., 2015).
This increase in performance might be an indication that our dataset is either less diverse or of a worse quality
compared to theirs (ours might have more code duplication between the training and evaluation sets), or that we
just did something wrong in our performance assessment. A first step towards answering why our results differ
so much from the results reported in the original experiments might be to repeat our experimental procedures
on their exact dataset.

90

Bibliography

Allamanis, M., Barr, E. T., Bird, C., & Sutton, C. (2014). Learning natural coding conventions. In Proceedings
of the 22nd acm sigsoft international symposium on foundations of software engineering (pp. 281–293).
FSE 2014. Hong Kong, China: ACM. doi:10.1145/2635868.2635883

Allamanis, M., Barr, E. T., Bird, C., & Sutton, C. (2015). Suggesting accurate method and class names. In
Proceedings of the 2015 10th joint meeting on foundations of software engineering (pp. 38–49). ESEC/FSE
2015. Bergamo, Italy: ACM. doi:10.1145/2786805.2786849

Allamanis, M., Brockschmidt, M., & Khademi, M. (2017). Learning to represent programs with graphs. CoRR,
abs/1711.00740. arXiv: 1711.00740. Retrieved from http://arxiv.org/abs/1711.00740

Allamanis, M., Peng, H., & Sutton, C. (2016). A convolutional attention network for extreme summarization of
source code. In M. F. Balcan & K. Q. Weinberger (Eds.), Proceedings of the 33rd international conference
on machine learning (Vol. 48, pp. 2091–2100). Proceedings of Machine Learning Research. New York, New
York, USA: PMLR. Retrieved from http://proceedings.mlr.press/v48/allamanis16.html

Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2018). A general path-based representation for predicting
program properties. In Proceedings of the 39th acm sigplan conference on programming language design and
implementation (pp. 404–419). PLDI 2018. Philadelphia, PA, USA: ACM. doi:10.1145/3192366.3192412

Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2019). Code2vec: Learning distributed representations of code.
Proc. ACM Program. Lang. 3 (POPL), 40:1–40:29. doi:10.1145/3290353

Bavishi, R., Pradel, M., & Sen, K. (2018). Context2name: A deep learning-based approach to infer natural
variable names from usage contexts. CoRR, abs/1809.05193. arXiv: 1809 .05193. Retrieved from http:
//arxiv.org/abs/1809.05193

Bichsel, B., Raychev, V., Tsankov, P., & Vechev, M. (2016). Statistical deobfuscation of android applications. In
Proceedings of the 2016 acm sigsac conference on computer and communications security (pp. 343–355).
CCS ’16. Vienna, Austria: ACM. doi:10.1145/2976749.2978422

Binkley, D., Davis, M., Lawrie, D., Maletic, J. I., Morrell, C., & Sharif, B. (2013). The impact of identifier style
on effort and comprehension. Empirical Softw. Engg. 18 (2), 219–276. doi:10.1007/s10664-012-9201-4

Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for
modeling multi-relational data. In Proceedings of the 26th international conference on neural information
processing systems - volume 2 (pp. 2787–2795). NIPS’13. Lake Tahoe, Nevada: Curran Associates Inc.
Retrieved from http://dl.acm.org/citation.cfm?id=2999792.2999923

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In
Y. W. Teh & M. Titterington (Eds.), Proceedings of the thirteenth international conference on artificial
intelligence and statistics (Vol. 9, pp. 249–256). Proceedings of Machine Learning Research. Chia Laguna
Resort, Sardinia, Italy: PMLR. Retrieved from http://proceedings.mlr.press/v9/glorot10a.html

Iyer, S., Konstas, I., Cheung, A., & Zettlemoyer, L. (2016). Summarizing source code using a neural attention
model. In Proceedings of the 54th annual meeting of the association for computational linguistics (volume
1: Long papers) (pp. 2073–2083). Berlin, Germany: Association for Computational Linguistics. doi:10.
18653/v1/P16-1195

Jin, Y. & JáJá, J. F. (2018). Learning graph-level representations with gated recurrent neural networks. CoRR,
abs/1805.07683. arXiv: 1805.07683. Retrieved from http://arxiv.org/abs/1805.07683

Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv: 1412.6980 [cs.LG]
Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields: Probabilistic models

for segmenting and labeling sequence data. In Proceedings of the eighteenth international conference on
machine learning (pp. 282–289). ICML ’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Retrieved from http://dl.acm.org/citation.cfm?id=645530.655813

91

Lawrie, D., Morrell, C., Feild, H., & Binkley, D. (2006). What’s in a name? a study of identifiers. In 14th ieee
international conference on program comprehension (icpc’06) (pp. 3–12). doi:10.1109/ICPC.2006.51

Liblit, B., Begel, A., & Sweetser, E. (2006). Cognitive perspectives on the role of naming in computer programs.
In Proceedings of the 18th annual psychology of programming interest group workshop (Proceedings of
the 18th Annual Psychology of Programming Interest Group Workshop). Retrieved from https://www.
microsoft.com/en-us/research/publication/cognitive-perspectives-on-the-role-of-naming-in-computer-
programs/

Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. (2013). Efficient estimation of word representations in vector
space. Retrieved from http://arxiv.org/abs/1301.3781

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and
phrases and their compositionality. In Proceedings of the 26th international conference on neural infor-
mation processing systems - volume 2 (pp. 3111–3119). NIPS’13. Lake Tahoe, Nevada: Curran Associates
Inc. Retrieved from http://dl.acm.org/citation.cfm?id=2999792.2999959

Raychev, V., Bielik, P., Vechev, M., & Krause, A. (2016). Learning programs from noisy data. In Proceedings
of the 43rd annual acm sigplan-sigact symposium on principles of programming languages (pp. 761–774).
POPL ’16. St. Petersburg, FL, USA: ACM. doi:10.1145/2837614.2837671

Raychev, V., Vechev, M., & Krause, A. (2015). Predicting program properties from "big code". SIGPLAN Not.
50 (1), 111–124. doi:10.1145/2775051.2677009

Sonoda, S. & Murata, N. (2015). Neural network with unbounded activation functions is universal approximator.
doi:10.1016/j.acha.2015.12.005

Vasilescu, B., Casalnuovo, C., & Devanbu, P. (2017). Recovering clear, natural identifiers from obfuscated js
names. In Proceedings of the 2017 11th joint meeting on foundations of software engineering (pp. 683–693).
ESEC/FSE 2017. Paderborn, Germany: ACM. doi:10.1145/3106237.3106289

Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge graph embedding by translating on hyperplanes.
In Proceedings of the twenty-eighth aaai conference on artificial intelligence (pp. 1112–1119). AAAI’14.
Québec City, Québec, Canada: AAAI Press. Retrieved from http://dl.acm.org/citation.cfm?
id=2893873.2894046

Xie, R., Liu, Z., Jia, J., Luan, H., & Sun, M. (2016). Representation learning of knowledge graphs with entity
descriptions. In Proceedings of the thirtieth aaai conference on artificial intelligence (pp. 2659–2665).
AAAI’16. Phoenix, Arizona: AAAI Press. Retrieved from http://dl.acm.org/citation.cfm?id=3016100.
3016273

Xu, K., Wu, L., Wang, Z., Feng, Y., & Sheinin, V. (2018). Graph2seq: Graph to sequence learning with attention-
based neural networks. CoRR, abs/1804.00823. arXiv: 1804.00823. Retrieved from http://arxiv.org/abs/
1804.00823

92

Appendix A

Experimental Results

A.1 Augmented Classifiers

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

C B 4466 1428 +3038 +0.16% 0.0000
C A 177434 69726 +107708 +5.65% 0.0000
C 3 186093 62153 +123940 +6.50% 0.0000
C 2 182480 66857 +115623 +6.07% 0.0000
C 1 205095 72319 +132776 +6.97% 0.0000
C 0 439631 56333 +383298 +20.11% 0.0000
B A 178862 74192 +104670 +5.49% 0.0000
B 3 187436 66534 +120902 +6.34% 0.0000
B 2 183818 71233 +112585 +5.91% 0.0000
B 1 206492 76754 +129738 +6.81% 0.0000
B 0 440611 60351 +380260 +19.95% 0.0000
A 3 41066 24834 +16232 +0.85% 0.0000
A 2 30473 22558 +7915 +0.42% 0.0000
A 1 45071 20003 +25068 +1.32% 0.0000
A 0 297482 21892 +275590 +14.46% 0.0000
3 2 36624 44941 -8317 -0.44% 0.0000
3 1 63659 54823 +8836 +0.46% 0.0000
3 0 300885 41527 +259358 +13.61% 0.0000
2 1 57483 40330 +17153 +0.90% 0.0000
2 0 306951 39276 +267675 +14.04% 0.0000
1 0 278074 27552 +250522 +13.14% 0.0000

Table A.1: Pairwise TOP-1 comparison of the Augmented Classifier. The (X) dominates-columns indicate
the number of times classifier X made a prediction which was correct while the prediction made by the other
classifier classifier was incorrect.

93

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

C B 31315 12499 +18816 +0.99% 0.0000
C A 195917 86077 +109840 +5.76% 0.0000
C 3 209592 77911 +131681 +6.91% 0.0000
C 2 203668 82812 +120856 +6.34% 0.0000
C 1 223956 88725 +135231 +7.09% 0.0000
C 0 470525 69272 +401253 +21.05% 0.0000
B A 200402 96675 +103727 +5.44% 0.0000
B 3 211852 87986 +123866 +6.50% 0.0000
B 2 206622 92787 +113835 +5.97% 0.0000
B 1 227864 98535 +129329 +6.79% 0.0000
B 0 470275 77869 +392406 +20.59% 0.0000
A 3 63726 43750 +19976 +1.05% 0.0000
A 2 50315 40962 +9353 +0.49% 0.0000
A 1 69056 36438 +32618 +1.71% 0.0000
A 0 345518 33374 +312144 +16.38% 0.0000
3 2 55725 67181 -11456 -0.60% 0.0000
3 1 88923 78297 +10626 +0.56% 0.0000
3 0 350533 57868 +292665 +15.35% 0.0000
2 1 82660 59948 +22712 +1.19% 0.0000
2 0 356646 54918 +301728 +15.83% 0.0000
1 0 330498 40938 +289560 +15.19% 0.0000

Table A.2: Pairwise TOP-2 comparison of the Augmented Classifiers. The (X) dominates-columns indicate the
number of times classifier X made a TOP-2 prediction that was strictly better than prediction made by the
other classifier.

94

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

C B 46264 17512 +28752 +1.51% 0.0000
C A 205916 94133 +111783 +5.86% 0.0000
C 3 220560 85599 +134961 +7.08% 0.0000
C 2 214154 90841 +123313 +6.47% 0.0000
C 1 233642 96958 +136684 +7.17% 0.0000
C 0 482537 76311 +406226 +21.31% 0.0000
B A 208627 108494 +100133 +5.25% 0.0000
B 3 220953 98869 +122084 +6.41% 0.0000
B 2 215372 104084 +111288 +5.84% 0.0000
B 1 236046 109648 +126398 +6.63% 0.0000
B 0 480108 87807 +392301 +20.58% 0.0000
A 3 77315 56064 +21251 +1.11% 0.0000
A 2 62518 53292 +9226 +0.48% 0.0000
A 1 83277 47404 +35873 +1.88% 0.0000
A 0 369160 40409 +328751 +17.25% 0.0000
3 2 67549 80968 -13419 -0.70% 0.0000
3 1 103044 91979 +11065 +0.58% 0.0000
3 0 374190 67384 +306806 +16.10% 0.0000
2 1 97423 72031 +25392 +1.33% 0.0000
2 0 380296 63928 +316368 +16.60% 0.0000
1 0 356050 49113 +306937 +16.10% 0.0000

Table A.3: Pairwise TOP-3 comparison of the Augmented Classifiers. The (X) dominates-columns indicate the
number of times classifier X made a TOP-3 prediction that was strictly better than prediction made by the
other classifier.

95

A.2 Refinement Classifiers

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

C B 5813 1441 +4372 +0.23% 0.0000
C A 64694 60140 +4554 +0.24% 0.0000
C 3 68716 55235 +13481 +0.71% 0.0000
C 2 65186 54930 +10256 +0.54% 0.0000
C 1 84696 63057 +21639 +1.14% 0.0000
C 0 439297 55672 +383625 +20.13% 0.0000
B A 66135 65953 +182 +0.01% 0.6185
B 3 70070 60961 +9109 +0.48% 0.0000
B 2 66578 60694 +5884 +0.31% 0.0000
B 1 86095 68828 +17267 +0.91% 0.0000
B 0 439716 60463 +379253 +19.90% 0.0000
A 3 27153 18226 +8927 +0.47% 0.0000
A 2 19130 13428 +5702 +0.30% 0.0000
A 1 34448 17363 +17085 +0.90% 0.0000
A 0 401103 22032 +379071 +19.89% 0.0000
3 2 23537 26763 -3226 -0.17% 0.0000
3 1 49054 40896 +8158 +0.43% 0.0000
3 0 406397 36253 +370144 +19.42% 0.0000
2 1 43499 32116 +11383 +0.60% 0.0000
2 0 404143 30774 +373369 +19.59% 0.0000
1 0 383897 21911 +361986 +18.99% 0.0000

Table A.4: Pairwise TOP-1 comparison of the Refinement Classifiers. The (X) dominates-columns indicate
the number of times classifier X made a prediction which was correct while the prediction made by the other
classifier was incorrect.

96

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

C B 25777 7310 +18467 +0.97% 0.0000
C A 80180 79432 +748 +0.04% 0.0615
C 3 85877 72360 +13517 +0.71% 0.0000
C 2 82133 72502 +9631 +0.51% 0.0000
C 1 99234 80897 +18337 +0.96% 0.0000
C 0 472092 69594 +402498 +21.12% 0.0000
B A 81091 91316 -10225 -0.54% 0.0000
B 3 84944 83179 +1765 +0.09% 0.0000
B 2 81337 83552 -2215 -0.12% 0.0000
B 1 99558 91664 +7894 +0.41% 0.0000
B 0 469359 78077 +391282 +20.53% 0.0000
A 3 44478 34875 +9603 +0.50% 0.0000
A 2 35098 28135 +6963 +0.37% 0.0000
A 1 50584 32703 +17881 +0.94% 0.0000
A 0 442635 31499 +411136 +21.57% 0.0000
3 2 35654 39757 -4103 -0.22% 0.0000
3 1 66079 58032 +8047 +0.42% 0.0000
3 0 452488 48926 +403562 +21.17% 0.0000
2 1 59558 47534 +12024 +0.63% 0.0000
2 0 450634 42705 +407929 +21.40% 0.0000
1 0 438776 31674 +407102 +21.36% 0.0000

Table A.5: Pairwise TOP-2 comparison of the Refinement Classifiers. The (X) dominates-columns indicate the
number of times classifier X made a TOP-2 prediction that was strictly better than prediction made by the
other classifier.

97

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

C B 41687 10663 +31024 +1.63% 0.0000
C A 89666 88522 +1144 +0.06% 0.0068
C 3 96745 81315 +15430 +0.81% 0.0000
C 2 92790 81481 +11309 +0.59% 0.0000
C 1 108449 90284 +18165 +0.95% 0.0000
C 0 483519 76819 +406700 +21.34% 0.0000
B A 87526 104508 -16982 -0.89% 0.0000
B 3 91545 95081 -3536 -0.19% 0.0000
B 2 87711 95707 -7996 -0.42% 0.0000
B 1 105434 104032 +1402 +0.07% 0.0022
B 0 479104 88081 +391023 +20.51% 0.0000
A 3 54386 44613 +9773 +0.51% 0.0000
A 2 44707 37229 +7478 +0.39% 0.0000
A 1 59941 42199 +17742 +0.93% 0.0000
A 0 459664 37021 +422643 +22.17% 0.0000
3 2 43231 47914 -4683 -0.25% 0.0000
3 1 75043 68113 +6930 +0.36% 0.0000
3 0 470105 56221 +413884 +21.71% 0.0000
2 1 68258 56920 +11338 +0.59% 0.0000
2 0 468513 49701 +418812 +21.97% 0.0000
1 0 460170 37640 +422530 +22.17% 0.0000

Table A.6: Pairwise TOP-3 comparison of the Refinement Classifiers. The (X) dominates-columns indicate the
number of times classifier X made a TOP-3 prediction that was strictly better than prediction made by the
other classifier.

98

A.3 Standalone Classifiers

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

A 3 33320 22933 +10387 +0.54% 0.0000
A 2 31528 27101 +4427 +0.23% 0.0000
A 1 48312 19937 +28375 +1.49% 0.0000
A 0 282249 24318 +257931 +13.53% 0.0000
3 2 40968 46928 -5960 -0.31% 0.0000
3 1 61221 43233 +17988 +0.94% 0.0000
3 0 285459 37915 +247544 +12.99% 0.0000
2 1 65350 41401 +23949 +1.26% 0.0000
2 0 293050 39546 +253504 +13.30% 0.0000
1 0 266964 37408 +229556 +12.04% 0.0000

Table A.7: Pairwise TOP-1 comparison of the Standalone Classifiers. The (X) dominates-columns indicate
the number of times classifier X made a prediction which was correct while the prediction made by the other
classifier classifier was incorrect.

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

A 3 53987 41824 +12163 +0.64% 0.0000
A 2 51070 48159 +2911 +0.15% 0.0000
A 1 73989 35581 +38408 +2.02% 0.0000
A 0 331993 37524 +294469 +15.45% 0.0000
3 2 62640 70846 -8206 -0.43% 0.0000
3 1 90068 65124 +24944 +1.31% 0.0000
3 0 339176 55281 +283895 +14.89% 0.0000
2 1 94523 61868 +32655 +1.71% 0.0000
2 0 346179 57710 +288469 +15.13% 0.0000
1 0 320118 54473 +265645 +13.94% 0.0000

Table A.8: Pairwise TOP-2 comparison of the Standalone Classifiers. The (X) dominates-columns indicate the
number of times classifier X made a TOP-2 prediction that was strictly better than prediction made by the
other classifier.

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

A 3 67688 56058 +11630 +0.61% 0.0000
A 2 63987 63229 +758 +0.04% 0.0338
A 1 90630 47112 +43518 +2.28% 0.0000
A 0 358722 46360 +312362 +16.39% 0.0000
3 2 77050 86192 -9142 -0.48% 0.0000
3 1 108520 79171 +29349 +1.54% 0.0000
3 0 367850 65836 +302014 +15.84% 0.0000
2 1 112673 75073 +37600 +1.97% 0.0000
2 0 373541 68658 +304883 +16.00% 0.0000
1 0 348532 65409 +283123 +14.85% 0.0000

Table A.9: Pairwise TOP-3 comparison of the Standalone Classifiers. The (X) dominates-columns indicate the
number of times classifier X made a TOP-3 prediction that was strictly better than prediction made by the
other classifier.

99

A.4 Centerless Classifiers

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

A 3 75320 24341 +50979 +2.67% 0.0000
A 2 61517 23329 +38188 +2.00% 0.0000
A 1 73574 26639 +46935 +2.46% 0.0000
A 0 260565 63169 +197396 +10.36% 0.0000
3 2 56350 69141 -12791 -0.67% 0.0000
3 1 70260 74304 -4044 -0.21% 0.0000
3 0 255055 108635 +146420 +7.68% 0.0000
2 1 71458 62711 +8747 +0.46% 0.0000
2 0 258467 99259 +159208 +8.35% 0.0000
1 0 256961 106500 +150461 +7.89% 0.0000

Table A.10: Pairwise TOP-1 comparison of the Centerless Classifiers. The (X) dominates-columns indicate
the number of times classifier X made a prediction which was correct while the prediction made by the other
classifier classifier was incorrect.

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

A 3 119959 44678 +75281 +3.95% 0.0000
A 2 102446 43725 +58721 +3.08% 0.0000
A 1 116242 46995 +69247 +3.63% 0.0000
A 0 306760 88285 +218475 +11.46% 0.0000
3 2 85444 103235 -17791 -0.93% 0.0000
3 1 102836 108231 -5395 -0.28% 0.0000
3 0 305416 141436 +163980 +8.60% 0.0000
2 1 104705 92797 +11908 +0.62% 0.0000
2 0 309333 130129 +179204 +9.40% 0.0000
1 0 307020 138459 +168561 +8.84% 0.0000

Table A.11: Pairwise TOP-2 comparison of the Centerless Classifiers. The (X) dominates-columns indicate the
number of times classifier X made a TOP-2 prediction that was strictly better than prediction made by the
other classifier.

(1) (2) (1) dominates (2) dominates difference relative
difference p-value

A 3 145569 58914 +86655 +4.55% 0.0000
A 2 126215 58362 +67853 +3.56% 0.0000
A 1 140950 61724 +79226 +4.16% 0.0000
A 0 331674 103185 +228489 +11.99% 0.0000
3 2 103846 124722 -20876 -1.10% 0.0000
3 1 122837 129353 -6516 -0.34% 0.0000
3 0 331455 159836 +171619 +9.00% 0.0000
2 1 125548 111886 +13662 +0.72% 0.0000
2 0 335984 147311 +188673 +9.90% 0.0000
1 0 333279 156267 +177012 +9.29% 0.0000

Table A.12: Pairwise TOP-3 comparison of the Centerless Classifiers. The (X) dominates-columns indicate the
number of times classifier X made a TOP-3 prediction that was strictly better than prediction made by the
other classifier.

100

