
Autonomous Anomaly Detection in
Games

Master Thesis

Geert Beuneker

A thesis presented for the degree of
Master of Science

Faculty of Science
Utrecht University

Netherlands

Autonomous Anomaly Detection in Games

Master Thesis

Geert Beuneker

Abstract

In game development, a lot of time is spent on making sure the product runs smoothly and
without too many bugs. This makes testing a very important part of the game development
cycle. Delivering a high quality product is critical to maintaining customer satisfaction. Generally,
testing games is done by a manual process which can be very time consuming and expensive for
developers. In this paper we explore techniques to enable autonomous bug detection and improve
the testing pipeline. To achieve this, we employ state-of-the-art anomaly detection techniques.
We developed a generic framework for using anomaly detection to analyze the relations between
different variables in games. Further, we perform a case study comparing different state-of-the-art
anomaly detection algorithms in a wide range of scenarios.

With our framework it is possible to autonomously detect 15%-20% of the inserted anomalies
with an accuracy of about 90% without the need for any training data. This research lays the
groundwork for easy integration of autonomous testing in games. However, improvements can still
be made with future research.

1

Acknowledgements
First and foremost I would like to thank Dr. Wishnu Prasetya for all his great feedback and advice
and the overall pleasant collaboration throughout the process. I would also like to thank Prof. Dr.
Frank Dignum for being the second supervisor of this thesis.

I would also like to thank the people at SOEDESCO for allowing me to scout at their location,
to see how they work and helping me develop the ideas for this thesis.

Finally, a special thanks to my girlfriend for her mental support throughout the process as well
as my friends and family.

2

Contents
1 Introduction 5

1.1 Motivation . 6
1.1.1 Scientific Motivation . 6
1.1.2 Business Motivation . 6

1.2 Background Information . 6

2 Related Work 7
2.1 State of the Art . 8

2.1.1 Classification Algorithms . 8
2.1.2 Clustering Algorithms . 8
2.1.3 Neural Network Algorithms . 9
2.1.4 Statistical Algorithms . 10
2.1.5 SVM Algorithms . 10

2.2 Existing automated testing techniques . 11
2.2.1 Automatic Software testing . 11
2.2.2 Automatic Games Testing . 12

3 Research Goals 12
3.1 Research Questions . 12
3.2 Research Objective . 13

4 Algorithms 13
4.1 KNN - K-Nearest Neighbours . 13
4.2 LOF - Local Outlier Factor . 14
4.3 LOCI - Local Correlation Integral . 16
4.4 SOM - Self-Organizing Maps . 17

5 The Anomaly Detection Framework 18
5.1 Outlier Scores . 19

5.1.1 KNN Outlier Score . 20
5.1.2 LOF Outlier Score . 20
5.1.3 LOCI Outlier Score . 20
5.1.4 SOM Outlier Score . 21

5.2 Event Logging . 21

6 Experiment Setup 21
6.1 OpenTTD . 22
6.2 Anomaly injections . 22
6.3 Variable/Feature selection . 23
6.4 Experiment Parameters . 23

7 Results 25
7.1 Overview . 26
7.2 1 Player . 27

7.2.1 Results . 27
7.2.2 Evaluation . 27

7.3 4 players . 28
7.3.1 Results . 28
7.3.2 Evaluation . 29

7.4 1v4 players . 30
7.4.1 Results . 30
7.4.2 Evaluation . 30

7.5 1v10 players . 31
7.5.1 Results . 31
7.5.2 Evaluation . 32

7.6 Anomaly score threshold . 32
7.6.1 Results . 32

3

7.6.2 Evaluation . 33
7.7 Window Size . 34

7.7.1 Results . 34
7.7.2 Evaluation . 34

7.8 K value . 35
7.8.1 Results . 35
7.8.2 Evaluation . 36

7.9 Combinations . 36
7.9.1 Results . 36
7.9.2 Evaluation . 37

8 Conclusions and Future Work 38
8.1 Scientific Evaluation . 38

8.1.1 (a) Which algorithm achieves the best accuracy? 38
8.1.2 (b) What degree of variable deviation can we detect? 38
8.1.3 (c) What factors limit the number of false positives and false negatives? . . 38
8.1.4 Main Research Question . 39

8.2 Conclusion . 39
8.3 Discussion . 39
8.4 Future Work . 40

A Results 42
A.1 Players: 1 | Anomaly Size: 100% | Threshold: e-15 | Window size: MAX | k: 50% . 42
A.2 Players: 1 | Anomaly Size: 200% | Threshold: e-15 | Window size: MAX | k: 50% . 43
A.3 Players: 1 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 50% 44
A.4 Players: 4 | Anomaly Size: 100% | Threshold: e-15 | Window size: MAX | k: 50% . 46
A.5 Players: 4 | Anomaly Size: 200% | Threshold: e-15 | Window size: MAX | k: 50% . 47
A.6 Players: 4 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 50% 48
A.7 Players: 1v4 | Anomaly Size: 100% | Threshold: e-15 | Window size: MAX | k: 50% 49
A.8 Players: 1v4 | Anomaly Size: 200% | Threshold: e-15 | Window size: MAX | k: 50% 50
A.9 Players: 1v4 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 50% 52
A.10 Players: 1v10 | Anomaly Size: 100% | Threshold: e-15 | Window size: MAX | k: 50% 53
A.11 Players: 1v10 | Anomaly Size: 200% | Threshold: e-15 | Window size: MAX | k: 50% 54
A.12 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k:

50% . 55
A.13 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-5 | Window size: MAX | k: 50% 57
A.14 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-50 | Window size: MAX | k:

50% . 58
A.15 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: 20 | k: 50% 59
A.16 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: 75 | k: 50% 60
A.17 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k:

25% . 61
A.18 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k:

75% . 62
A.19 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k:

50% | UNION . 63
A.20 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k:

50% | INTERSECTION . 66

4

1 Introduction
Throughout the development process of video games, bug testing and quality assurance are very
important parts of delivering a quality product. Generally, unit tests are used in software develop-
ment to test isolated behaviour and ensure those parts of the program are still working correctly
after implementing new features or changing the code. Such tests are useful for software develop-
ment, however they are often not applicable to game development. While the separate entities in
games usually implement simple behaviour which could be encapsulated in unit tests, the primary
focus of testing games is testing the entire game experience. The complexity of performing such
tests mainly comes from the combined behaviour of multiple entities which make up the game
experience. Testing the game experience would require testing the system as a whole instead of
isolated parts. The reason for this is that game entities usually aren’t isolated and have many com-
plex, context sensitive dependencies between them. Because this complex combined behaviour is
very hard to test automatically, a lot of time is spent on manually testing games. Developers want
to make sure their games are working properly so that a high quality product can be delivered.
This means a lot of time is spent on testing and Quality Assurance (QA). Therefore, enabling the
use of automated testing to assist this manual testing can save a lot of time and money as well as
increasing the likelihood of finding bugs in games. We will be researching the possibilities of using
machine learning to perform autonomous testing. We would like to autonomously detect whether
the behaviour of the game is in line with the previously observed behaviour or if the behaviour is
incorrect, anomalous. Games are systems with a high level of interaction, a high number of mutual
interacting entities and sometimes multiple users. This makes it unfeasible to describe the game
state using classical predictors, such as "Properties" in [8], the pre/post-conditions mentioned in
[32] or linear temporal logic predictions as seen in [31]. To be able to perform autonomous testing
we need to look at anomalies, observations that are significantly different from previous observa-
tions as to arouse suspicion that they were generated by a faulty mechanism. To be able to detect
these anomalies we will look into the field of Anomaly Detection. Performing Anomaly Detection
for autonomous testing will allow us to create a generic framework which can observe a game state
and report whether that state is behaving correctly, regardless of the specific implementation of
the game. This may allow game developers to more easily perform autonomous testing.

Currently anomaly detection is scarcely used in game development. Most applications of
anomaly detection can be found in cheat-detection applications [26] [40]. While these papers
focus on cheat-detection rather than bug testing, the fundamental idea is the same. Similar to bug
detection, cheat-detection tries to detect whether observed behaviour was generated by a different
underlying mechanism. The main difference is whether that different underlying mechanism was
used intentionally by the user (cheating) or was unintentionally hidden in the program (bug)1. [26]
shows a nice comparison of different anomaly detection algorithms. However, their research focuses
more on tracking specific, isolated behaviour such as valid transactions and detecting whether that
behaves suspiciously. Their approach is more similar to log analysis. They observe logs for isolated
variables, but do not observe the relations between different variables. Additionally,[40] shows
cheat-detection using dynamic Bayesian networks. However, this requires training the algorithm
beforehand making it more troublesome to use. The algorithm also works with the assumption
that predictors can be found for the variables observed. This makes the approach much more
difficult to use for a generic anomaly detector in games, as such predictors often cannot deal with
the complex mutual interactions between game entities. Some work has been done in automated
bug testing in games as well [30] [35] [1], but these applications are either focused on exploring the
game state space or are designed for a specific game or application. Additionally, these existing
applications for automated testing can only detect system failures such as crashes or exceptions.
These errors however, are usually trivial to detect and can easily be identified. Moreover, errors
such as exceptions are usually found relatively easily by developers or testers. However, finding
faults which do not crash or halt the application but do exhibit unwanted behaviour are usually
much more resource-intensive to find, if they’re found at all. These bugs are often detected by users
after the release of the product, which is undesirable for most developers. This research will focus
on detecting these kinds of faults in the program. Detecting these requires specifying what is "cor-
rect" and what is "unwanted" behaviour. Determining "unwanted behaviour" is often non-trivial
as formal software specifications which describe the correct behaviour of the program are rarely

1The distribution of data can be different for a cheating mechanism as users might use the mechanism constantly
whereas bugs would occur occasionally, but this is currently beyond our scope.

5

defined for games. In this research we will explore ways of specifying unwanted behaviour of games
using machine learning techniques and using that to perform automatic anomaly detection. We
will test the effectiveness of various algorithms as well as compare their accuracy and performance.
The contribution of our research is the exploration of methods to reduce the amount of resources
required for testing. Secondly, we introduce a generic way to automate parts of the testing process
which can be easily implemented by developers for many different types of games. Additionally,
we explore a large solution space and find out what factors influence the accuracy of the results in
order to lay the foundations for future research into automated anomaly detection for games.

1.1 Motivation
The motivation for this thesis was based on personal experience and observations done in the
game development industry. A large part of developing games is testing them and making sure
they run according to specifications. However, based on personal experience this can be very time
consuming and usually has to be done manually every time a new feature is implemented. To find
out if this problem also exists in the industry and to see how the game development industry deals
with QA testing, some preemptive research was done. As part of this preemptive research a few
days of scouting was conducted at SOEDESCO, a game dutch game publishing company which
actively performs QA testing on games. From the observations done and the interviews conducted
there, it was found that QA testing in the industry is mostly done manually and can be very time
consuming. Thus, the motivation for this thesis comes not only from a scientific motivation but
also from a business motivation.

1.1.1 Scientific Motivation

Not a lot of research has been done currently in the domain of automated anomaly detection in
games. This makes it an interesting subject from a scientific perspective. Due to the interactive
nature of games, every run of the game can be very different. This makes a lot of existing anomaly
detection techniques incompatible. To conduct anomaly detection for this specific domain, some
groundwork has to be laid down and some modifications of existing anomaly detection are required.
We intend to thoroughly explore this relatively new domain by constructing a framework and
comparing existing anomaly detection algorithms using various parameter settings in a series of
different scenarios. By doing this, we intend to gain insight into the important parameters and
settings to lay the proper groundwork for future research into this domain.

1.1.2 Business Motivation

As stated before, a lot of resources are spent on QA testing. This is mainly because it costs a lot
of man hours to detect bugs in games. Additionally, QA testers aren’t always available throughout
the whole process due to time constraints. If some parts of this process can be automated it
could save a company lots of resources. From a business perspective it is very important their
product keeps working correctly to ensure their users remain satisfied. To this purpose, automated
anomaly detection can be used to constantly monitor the software both during development and
after deployment to catch possible bugs early. This could potentially detect issues or exploits
before a lot of users are affected. This is important for user satisfaction and for possibly avoiding
malicious exploitations in the product.

1.2 Background Information
An anomaly or outlier, can be defined as given by Hawkins[14]: “An outlier is an observation that
deviates so much from other observations as to arouse suspicion that it was generated by a different
mechanism”. Using algorithms to detect such anomalies in software is called Anomaly Detection.
The field of Anomaly Detection has a very broad spectrum with applications in health care [11],
fraud detection[7], intruder detection [29], industrial applications [27] and big sensor data systems
[15] just to name a few. Generally, we can distinguish three different types of anomalies:

1. Point anomalies 1a anomalies where a single data point is considered anomalous in the
global context of the program.

6

2. Contextual anomalies 1b anomalies where a data point is considered anomalous in its
local context, while not necessarily being anomalous in the global context.

3. Collective anomalies 1c anomalies that contain a stream of data that is considered anoma-
lous with respect to the complete dataset.

(a) Point Anomalies (b) Context Anomalies (c) Collective Anomalies

Figure 1: Different types of anomalies

Anomaly detection algorithms work by learning what behaviour is normal and what behaviour
is anomalous for the program. This learning can be done in three different ways:

1. Supervised learning algorithms need to be trained with a complete dataset of both positive
and negative training data to detect anomalies. This means the algorithm needs labeled data
for both non-anomalous and anomalous behaviour. The advantage is that this technique has
great accuracy and speed compared to the other techniques. The downside is that labeled
training data for both positive and negative behaviour is often not available. This makes
supervised learning techniques overall less generalizable than the other types of learning.

2. Semi-Supervised learning techniques only need to be trained using positive training data.
Algorithms using semi-supervised learning can detect anomalies after being trained on just
the normal behaviour of the program. While this technique is generally less accurate than
supervised learning techniques, it has the advantage that you only need positive labeled
training data which is much more widely available.

3. Unsupervised learning doesn’t need any labeled training data. Because no labeled training
data is required, unsupervised learning techniques are the most widely applicable. The trade-
off for this very high generalizability is that unsupervised learning algorithms are often less
accurate and slower than supervised or semi-supervised learning algorithms.

2 Related Work
We will begin by looking at the most commonly used algorithms for anomaly detection and what
is currently considered as state-of-the-art. To get an overview of the currently existing algorithms
for anomaly detection we looked at the works of [29][7][16][25] which are reviews and overviews of
anomaly detection algorithms. [23] and [24] provide a more detailed in-depth look at specifically
statistical and neural network approaches of anomaly detection. From these overviews and reviews
we can derive the most prominent categories of anomaly detection. The types of anomaly detection
that are commonly used are:

1. Classification Based

2. Clustering Based

3. Neural Network

4. Statistical

5. Support Vector Machines (SVM)

7

These works look at the broad applications of anomaly detection, showing methods for detecting
Point Anomalies, Context Anomalies and Collective Anomalies as well as varying methods for
Supervised, Semi-Supervised and Unsupervised learning techniques. Using these sources we get
an overview of the advantages and disadvantages of each type of anomaly detection, on which we
can base our choice of algorithms for our research. The next section will go over each of these
categories and list the current state-of-the art research as well as their relevance to our domain.

2.1 State of the Art
This section will discuss the development and the latest trends of the anomaly detection categories
mentioned above. We will look at the fundamentals of each category as well as current state-of-
the-art algorithms. Additionally, we’ll discuss their relevance to our domain, their strengths and
their weaknesses. This should show us what algorithms are applicable for our domain and motivate
our choice of algorithms for our research

2.1.1 Classification Algorithms

Classification techniques learn a classification model from a set of labeled data instances and
then use that classifier to label new instances. For anomaly detection, such classifiers often make
predictions about the data and then compare those predictions to the observed results. This works
with the assumption that such a classifier exists for the data and that it can be used to distinguish
anomalous data from normal data.

A common classification algorithm is the Bayesian Network [18]. A bayesian network can be
viewed as a graphical model that shows the causal relationships between different sets of variables.
It uses supervised learning to learn causal relationships between variables. Given X it can predict
the chance of Y. In anomaly detection this can be used by observing an event Y and comparing
that to the predicted probability of Y by the bayesian network based on the current state X. The
more improbable the occurring event is based on the state X, the more likely it is an anomaly.

Valdes et al. [37] developed an anomaly detection system using naive Bayesian networks. They
showed that their use of Bayesian Networks can detect distributed intrusions in which the attack
sessions individually were not anomalous enough to warrant an alert, but the sessions combined
were. An example of the usage of Bayesian networks in anomaly detection closer to our domain
of games can be found in [40]. Here, a bayesian model is used to detect cheats in online games.
Their dynamic approach to the bayesian network provides an effective and scalable solution in the
detection of anomalous, cheating behaviour.

Overall however, classification algorithms will likely be unsuitable for our domain. Reliable causal
relationships between variables can be very difficult to detect in interactive games because many
variables will depend on the player’s input, which can vary greatly. While bayesian networks
and other classification algorithms can be very good at expressing relationships between variables,
they usually require Supervised learning and are not very generalizable. Since in most cases we
won’t have training data available and we need a highly generalizable algorithm for testing games,
classification algorithms will not be considered for our research.

2.1.2 Clustering Algorithms

Clustering algorithms try to determine from a set of points in n-dimensional space where those
points form clusters. It is used to group data points with similar properties into clusters. These
algorithms work with the assumption that anomalous datapoints are significantly different from
non-anomalous datapoints as given by Hawkins 1.2. Given this definition we can identify datapoints
that fall outside of this non-anomalous cluster as anomalies. One of the earliest examples of solving
this clustering problem is the K-Nearest Neighbour algorithm[34]. This algorithm is first trained
by storing feature vectors with their corresponding labels in an n-dimensional space. Then, for
classification, it checks for a datapoint its k nearest neighbours. These k neighbours determine
what label is assigned to the datapoint. The label that is most common among these neighbours
is what is assigned to the datapoint.

The KNN algorithm has a few drawbacks however. First, for every new datapoint all datapoints
in the training set must be tested. This makes the algorithm slow for large datasets, especially
if it is used in an unsupervised manner where the dataset keeps growing over time. Second, the

8

algorithm is quite sensitive to the chosen value of k, having imprecise results for lower values
of k or losing the ability to properly detect outliers for higher values of k. Finally, it has weak
performance for datasets of varying density. When some points form tight clusters and others form
a loose cluster KNN loses accuracy. Another drawback of this property is that KNN only detects
global outliers, meaning that it can only identify anomalies if the datapoint differs greatly from
the entire dataset. Because of this, KNN deals poorly with datasets that have multiple clusters of
varying density. However, it can still be a very powerful algorithm for anomaly detection as shown
in [13] and[22].

The Local Outlier Factor (LOF)[5] attempts to solve the locality problem of clustering algo-
rithms. Their first contribution is not assigning a binary property to a datapoint being an outlier
or not. Instead, they assign a "Local Outlier Factor" to each object which determines to what
degree that object is an outlier. For objects with a similar density as its neighbours the LOF value
will be approximately 1, values higher than 1 indicate a higher density than the its neighbours
while values lower than 1 indicate a lower density its neighbours. This was shown to deal much
better with varying densities and the contextual information surrounding a datapoint. It has been
shown to have great accuracy for anomaly detection in our domain of games as observed in [26].
However, it is still dependent on a user-defined k parameter similar to KNN. Second, the algorithm
is very resource intensive for large datasets.

An algorithm less sensitive to k-values and which has much better performance on large datasets
is the Local Correlation Integral (LOCI)[28]. Similarly to LOF, they introduce a value which
represents the degree of outlierness to a datapoint called the Multi-granularity Deviation Factor
(MDEF). However, unlike LOF their value does not just contain the outlierness of a point, it
adds more information such as the data in the vicinity of the point, the determining clusters,
micro-clusters, their diameters and their inter-cluster distances. All of this extra information
is added while still being as fast as competing clustering algorithms such as the LOF. Because
of this extra information, their algorithm handles both local context and varying densities very
well. Unlike LOF and KNN, the implementation of LOCI leads to a fast approximation algorithm
named aLOCI which performs much better on large datasets. While LOCI can be modified, most
parameters have preset recommended values as mentioned in [28]. This makes LOCI much less
sensitive to user-defined parameters.

The Local Anomaly Descriptor (LAD)[19] proposes a method which is also very robust against
different values of k. This algorithm employs physics principles of heat distribution amongst data
points to determine if points belong to a cluster. When compared to LOF, LOCI and a few other
KNN-based algorithms LAD shows generally better accuracy and stability. The major advantages
of LAD are its improved accuracy when classifying datapoints close to two clusters and its increased
stability over LOF and other KNN-based algorithms with different values of k.

Most clustering algorithms are fully unsupervised making them highly generalizable. This makes
clustering algorithms a good fit for our domain since we can generally make no assumptions about
our dataset and usually don’t have data available for training. The drawback is that they can be
quite demanding on large datasets when classifying datapoints, since usually the algorithm needs
to check all existing datapoints to properly classify a new datapoint.

2.1.3 Neural Network Algorithms

Neural networks have the ability to learn complex connections between a large amount of neurons.
These neurons can represent values in our system, all the neurons in our network combined can
then describe the current state our system is in. By training neural networks they can detect
whether our system is behaving normally or anomalously. Most of the time neural networks have
to be trained Supervised or Semi-Supervised meaning we would need labeled training data, making
most neural network algorithms unsuitable.

[24] gives a detailed overview of a wide range of neural network functions. While it shows many
applications, most neural networks shown require some form of training using labeled data. There
do exist unsupervised learning algorithms however, the approach proposed by Kohonen [21] offers
a neural network approach similar to clustering. The Self-Organizing Map (SOM) requires no
dataset of labeled class data. It works by adjusting the nodes in the SOM for every new datapoint.
For every datapoint that is added, the closest node is pulled towards that point and subsequently
pulling the nodes connected to that closer as well. It converges to a state where its nodes(here

9

called: neurons) properly enclose the group of datapoints it has seen. After training anomalies can
be detected by checking whether points fall inside or outside of the map created by the algorithm.

[3] uses features from the Self-Organizing Map to construct a highly adaptive algorithm for
detecting anomalies. The SONDE algorithm proposed combines features from Adaptive Resonance
Theory (ART) and Grow When Required (GWR) with the Self-Organizing Map. It shows the great
adaptability of an SOM while maintaining decent accuracy for detecting anomalies.

Since it is difficult to get properly labeled training data and especially labeled anomalous train-
ing data most neural network algorithms cannot be used for our domain. The Self-Organizing Map
however does not require labeled training data and can be trained fully unsupervised. Unfortu-
nately, the SOM can have difficulty distinguishing between separate groups of datapoints which
may reduce its accuracy in some cases. However, due to its similarity to clustering algorithms it
is highly adaptable and generalizable which makes it an interesting algorithm to include in our
research.

2.1.4 Statistical Algorithms

Generally statistical approaches require some knowledge about the distribution of the dataset in
order to perform proper anomaly detection as seen in [23] and [29]. Moreover, statistical approaches
are rarely unsupervised as they usually have to be trained on some known statistical distribution
of data. [27] claims an unsupervised statistical approach to anomaly detection. However, their
algorithm works mainly for analyzing a group ranked by anomaly scores and using statistics for
determining which ones should really be considered anomalous compared to the rest of the group.
This is less useful since it already requires instances ranked by anomaly scores. One more promising
occasion of unsupervised statistical anomaly detection is SmartSifter(SS) presented by [39]. Their
approach works by first using a probabilistic model to represent an underlying mechanism of data-
generation. They’re using a histogram to represent the categorical probability density of variables
and a finite mixture model to represent the continuous probability density of variables. Next, for
every new data input SS employs an online learning algorithm which updates the model represent-
ing the probability density, the amount a new data point changes this model represents that data
point’s anomaly score. The advantage is that their method is computationally inexpensive and
can deal with both categorical and continuous anomalies. Finally, because it can be performed
unsupervised the algorithm is much more generalizable than other statistical approaches.

While the algorithm can perform unsupervised anomaly detection in a very computationally
inexpensive way, it would probably not work well for our domain. The data received from an
interactive game may not show a consistent statistical mechanism for data-generation as most data
is generated by the user’s choices. Additionally, statistical approaches are often bad at representing
correlations between a lot of variables and instead focus more on detecting anomalous behaviour
of isolated variables. Moreover, statistical approaches are much less generalizable than clustering
or machine learning approaches. Therefore, statistical approaches will not be considered for our
research.

2.1.5 SVM Algorithms

Support Vector Machines [17] are supervised machine learning models that can classify data in
binary categories. Based on labeled training data, a Support Vector is drawn which separates
the two different labels. SVMs are similar to clustering techniques in the sense that they try to
separate clusters of data and use that separation to label data points. A drawback of an SVM is
its poor performance when the datapoints do not have a clear line of separation. Additionally, A
Support Vector Machine requires supervised learning where both positive and negative datapoints
are required for training.

To solve the problem of supervised learning one-class SVMs exist, which can determine whether
a datapoint belongs to a class or doesn’t belong to that class. For anomaly detection this class can
represent the normal, non-anomalous behaviour. If a datapoint does not fall into that class, it can
be marked anomalous. This property of one-class SVMs is leveraged by [4] and enhanced to allow
for unsupervised anomaly detection using Support Vector Machines. Their experiments show that
on some of their datasets the SVM based algorithms outperform clustering and statistical based
unsupervised anomaly detection algorithms. They also introduce a method for calculating outlier
score based on the distance to the decision boundary. Their experiments show that unsupervised
SVMs generally perform at least as well and in some cases better than state-of-the-art clustering

10

and nearest-neighbour techniques.

It is shown by [4] that one-class Support Vector Machines can be used for unsupervised anomaly
detection. An advantage of the SVMs is that they do not require a k value like in KNN-based algo-
rithms. However, even though the SVMs sometimes outperformed clustering and nearest-neighbour
techniques, their performance does depend on the dataset. Additionally, using these techniques we
would only be able to use one-class SVMs meaning that it would be difficult to detect anomalies
caused by correlations between different variables. Since we are looking for a very generalizable
solution, and because we would like the ability to take correlations between variables into account
clustering techniques seem more suitable.

2.2 Existing automated testing techniques
In the following section we will take a look at current automatic testing techniques. We will look
at their strengths and weaknesses and identify their shortcomings.

2.2.1 Automatic Software testing

First we will take a look at regular software testing techniques as they are more common than
games testing techniques. This should give us a good idea of what automatic testing pipelines are
deployed.

We start by taking a look at the T3 [32] testing suite. T3 is designed for testing Java classes. It
randomly generates a large amount of test sequences to trigger faulty behaviour. Faulty behaviour
is only identified as behaviour where an exception is thrown. The advantage is that T3 is very
quick with decent performance. It works mainly on exploration, meaning that it just tries to find
combinations of functions which cause an exception to be thrown. This means that it does not focus
on detecting deviations or anomalies, it only considers exceptions to be errors. As shown in [32],
the T3 algorithm was generally outperformed by the Evosuite[12] which uses genetic algorithms to
generate its test cases. Evosuite employs several mutation and evolutionary based techniques to
maximize the coverage of their test cases with a minimal amount of test cases. While this increases
the coverage and accuracy of finding errors, the only errors it is able to find are predefined errors
such as exceptions or timeouts. TESTAR [10] is an open source tool for automated software testing
that is continuously being updated and improved. It is used for testing the GUI of applications.
In TESTAR Q-learning is used for finding the best test actions. This allows for deep exploration
and exploitation of all the possible actions. Executing an action in a specific state provides the
agent with a reward, the algorithm explores the tree of actions based on a maximum reward and
discount parameters. These parameters influence the exploration and exploitation of the search
space. By maximizing its total reward the algorithm can find the action space most likely to find
errors in the program.

A different perspective on anomaly detection is known as invariant detection. Instead of trying
to find anomalous behaviour, invariant detection attempts to find the statements and relations
that always hold true for an application. For instance, a program where x = 2y+3z and a ≤ x ≤ b
always hold true. Detecting such invariants can be used to perform anomaly detection by observing
when such invariants no longer hold true. The Daikon system [9] is one example of such invariant
mining. Daikon can automatically discover likely invariants for a program as well as conditional
invariants or implications. It discovers such invariants by first instrumenting the target program
to trace certain variables. Then by observing these traced variables it deduces invariants over both
the observed variables and the variables derived from those. The invariant patterns that Daikon
finds are called specifications which indicate some aspects of the behaviour of the system. Trying
to detect these specifications is known as specification mining. Other ways of specification mining
exist, another example is defining artificial specifications using a neural network [33]. Here, a Feed
forward Neural Network (FNN) is used to mine for artificial specifications. An advantage of using a
neural network approach is that it can give continuous information about the state of the program.
Additionally, it can handle a lot of input variables and detect connections and correlations between
them. However, the challenge of using neural networks is generating enough properly labeled data
for training. As mentioned in the paper the training can be done with back propagation requiring
a set of sample inputs, or it can be done using an incremental learning mode which is easier, but
might result in a weaker specification. Trying both of these training methods, it was shown to have
promising performance with a True Positive rate of about 60-70% and a False Positive rate around

11

5%. This shows that it could be a very powerful method for generating artificial specifications for
your program.

By doing specification mining as seen above, the specifications found can be used to do runtime
verification [6]. This means checking the program at runtime against these formal specifications.
Doing such runtime verification can tell you whether the program is behaving correctly or not.
This is a common way of performing anomaly detection in software. However, these specifica-
tions aren’t always clear and cannot always be found. In games it is usually more difficult to find
such system specifications as many of the game’s systems are influenced by players, making vari-
able observations over different runs much more inconsistent. Therefore, automatic testing tools
commonly used for software can be difficult to use on interactive games. Different systems have
been researched and developed for automatic testing in games, which will be discussed in the next
session.

2.2.2 Automatic Games Testing

ICARUS [30] shows a framework for unsupervised automated game testing. By narrowing down
their scope and focusing on a specific genre of games, point-and-click adventure games, they man-
aged to create a proper framework for automatically testing their games. Their framework can
work fully unsupervised, meaning they do not need training data for their algorithm. Due to their
choice of genre, they could easily generate a tree of actions and state transitions since in adventure
games the players mainly have to find the correct combinations of items and correct sequences of
actions to perform. This makes it a lot easier to explore the possible game states in the game.
However, their technique is fairly limited. ICARUS is only able to detect common errors such
as blocking or crashes and is not able to detect other, less clearly defined anomalous behaviour.
Additionally, their state exploration is similar to a unit test which makes it much easier to detect
anomalies. Simply by comparing a run to previous runs of the game, the program can observe if
the runs behaved identical and reporting an anomaly if they behaved differently.

Another tool is Prowler [1] which demonstrates tools for AI-powered automated games testing.
Their framework can train an agent to accomplish a goal in the game world. Their example shows
an agent trying to reach a door in a room. By having an agent try to reach the same goal every time,
developers can observe metrics such as CPU usage, GPU usage, framerates and completion time
for each run. By comparing these metrics with previous runs developers can identify if problems
occurred after changes in the program. This is more similar to some of the exploratory algorithms
mentioned above such as T3 [32] and EvoSuite [12].

A final example of an automated game testing framework is Crushinator [35]. It promises
to eliminate the need for a lot of beta testing in games. The framework was designed for per-
forming server load testing and event-driven systems. The framework provides developers a way
of simulating lots of clients and testing a program’s limits. The crushinator framework focuses
on performance testing, while this can detect certain systems failures we are more interested in
functional testing of programs. Our research focuses more on finding anomalous behaviour under
normal conditions, making this framework less relevant.

Overall, not a lot of generic automated game testing frameworks exist. Most frameworks seem
to be intended for internal use within the companies that developed them for the type of games
they’re working on. Others focus more on exploring the game state, rather than detecting anoma-
lies within that game state. We intend to explore this field and research possibilities for detecting
anomalies other than trivial crashes or freezes in games.

3 Research Goals

3.1 Research Questions
In this paper we will research the application and accuracy of anomaly detection algorithms in
games. We focus on the automatic detection of non-blocking, non-crashing bugs i.e. faults in
the program which cause unexpected or abnormal behaviour but do not crash the game. For our
research we seek to provide insight into the following research questions:

12

1. Can anomaly detection be performed for autonomously detecting anomalous behaviour of
variables in games while limiting the number of false positives and false negatives?

(a) Which algorithm achieves the best accuracy?

(b) What degree of variable deviation can we detect?

(c) What factors limit the number of false positives and false negatives?

These research questions can be answered by conducting experiments with the different al-
gorithms we have chosen from our literature study. To determine whether anomaly detection
algorithms can provide us with meaningful automatic bug detection methods, we will conduct the
experiments on an open-source actively played video game. By injecting our own bugs/anomalies
into the game we can determine if the anomaly detection algorithms are capable of detecting the
bugs we inserted. These injected anomalies can also be used for measuring the accuracy of our
algorithms by measuring when our injected anomalies are detected by the anomaly detection algo-
rithms. We will be experimenting with several different parameters to find out what factors affect
the accuracy of our algorithms.

Due to time constraints, we have decided to restrict our domain to a case study for a single
game. However, as is further explained below, OpenTTD is a proper representation of commercial
games and a good product to perform experiments on further motivated by [36]. OpenTTD has
also been used as a case study before in other research such as [20]. Therefore, this case study
should allow us to give insight into the answers of our research questions stated above.

3.2 Research Objective
The objective of our research is to provide insight into the possibilities of automating parts of
the Quality Assurance(QA) process during game development. We would like to provide valuable,
fundamental research for creating a generic, genre-independent framework for autonomous games
testing. We aim to find methods to improve and speed up the development process of video games
and to try and give the functional testing of games, which is quite unstructured by nature, a more
structured approach. Ultimately, the goal of this research is to contribute to the game development
industry as a whole by improving the game development cycle.

4 Algorithms
In this section we will give an explanation as well as a motivation of the algorithms chosen for
our research. Given our domain and because we would like to have high generalizability, we are
looking for unsupervised learning techniques. Therefore, the algorithms chosen are three clustering
algorithms: KNN[34], LOF[5] and LOCI[28] and one clustering-like neural network algorithm: the
Self-Organizing Map (SOM)[21]. Next follows the explanation and motivation of these algorithms.

4.1 KNN - K-Nearest Neighbours
K-Nearest Neighbours is a simple machine learning algorithm. The basic idea of KNN is that it
checks for a given data point its k nearest neighbours and assigning it to the most frequent label
among these k neighbours.

Training the KNN simply consists of storing feature vectors with their corresponding class la-
bels in an n-dimensional space. Then, for classification, new data points are tested against this
training set using a distance function (e.g. Euclidean distance, Manhattan distance, etc.). It only
checks the k neighbours that are nearest based on this distance function. The classification of
the new data point is based on these k neighbours, the label that is most frequent among these
neighbours is the one that is assigned to our new data point. Pseudocode for this can be seen in
Algorithm 1. A visual representation of the KNN algorithm can be found in Figure 2

13

Figure 2: The KNN classification

Result: Classification of new datapoint x
// Initialization;
for All points in training set do

Get k points closest to x;
end
for k closest points (excluding x) do

Get most frequent label l;
end
x.label = l;

Algorithm 1: KNN classification
This can be altered to also calculate the longest distance from one point to its k neighbours.

For anomaly detection this distance could tell you something about a point’s outlierness. You can
then set a threshold to determine whether a point can be considered an outlier or not, based on
how far its k nearest neighbours are. While this algorithm isn’t really state-of-the art anymore,
due to the fact that it is fundamental to many clustering algorithms and because it still has decent
performance we feel that it is important to include this in our research. It should provide a good
baseline performance to compare against the other algorithms.

4.2 LOF - Local Outlier Factor
The Local Outlier Factor(LOF) is an iteration on the KNN algorithm. Calculating the LOF of a
point p consists of a few parts. We will go over each of the individual parts first and then explain
how they combine into the Local Outlier Factor.

We start with the k-distance of a point p. The k-distance(p) is defined as the distance to the
k -th nearest neighbour of p, meaning that we want to find the distance to a point o where there
are k-1 points closer to p. For instance, a k value of 3 would mean we look for the distance to a
point which has two points closer to p, making it the 3rd closest point to p. A k value of 1 would
mean we would just return the distance to the point closest to p, since there are 0 points closer
to p. Additionally, we define the k-distance neighbourhood(p) denoted as Nk(p) as the collection
of points whose distance from p is not greater than the k-distance(p). For example for a k of 3
this collection would contain the first, second and 3rd closest points. It is important to note that
the size of Nk(p) can be greater than k when multiple points have the same distance to p. For
example, if p has 10 points encircling it, each with a distance of 1 the size of Nk(p) would be 10
even for a k of 1.

Next we define distance(p, o) as some distance function between point p and o. Common
distance functions are the Manhattan distance or the euclidean distance. In this example we will
be using the euclidean distance as our distance function.

Now we can define the reach-distancek(p, o) of a point p with respect to point o. This is defined
as the maximum between the k-distance(o) and distance(p, o). An illustration of this can be seen
in 3 This means that if point p is far away from o then the reach distance between the two is just
the actual distance, in this case their euclidean distance. Alternatively, if p and o are too close,
then their euclidean distance is replaced with the k-distance(o) meaning it will use the distance
to the k -th nearest point instead. This acts as a smoothing effect for if there are a lot of p’s close
to o. The strength of this smoothing effect can be controlled by k.

14

Figure 3: An illustration of the reach distance of a point o

The next component is the Local Reachability Density of p. This is defined as

lrdk(p) =
|Nk(p)|∑

o∈Nk(p)
reach-distancek(p, o)

(1)

This is the amount of points in the set of k nearest points to p divided by the sum of the reach-
distance(p,o) of each of those k nearest points to p. The Local Reachability Density is the inverse
of the average reachability distance based on the k nearest neighbours of p.

Finally, all these components are combined into the Local Outlier Factor (LOF). The LOF is
defined as

LOFk(p) =

∑
o∈Nk(p)

lrdk(o)

lrdk(p)

|Nk(p)|
(2)

This captures the degree to which we can call p an outlier. The formula represents the average of
the ratio of the local reachability density of p and its k -nearest neighbours. Generally the LOF
value means:

• LOFk(p) ≈ 1 means p has a similar density as its neighbours

• LOFk(p) < 1 means p has a higher density than its neighbours (inlier)

• LOFk(p) > 1 means p has a lower density than its neighbours (outlier)

The value of the LOF will be approximately 1 for points in a cluster. The more outlying a point
is, the higher its LOF value will be. The paper defines a general lower and upper bound for any
value of LOF (p).

• directmin(p) = min{reach-dist(p, q)|q ∈ Nk(p)}

• directmax(p) = max{reach-dist(p, q)|q ∈ Nk(p)}

• indirectmin(p) = min{reach-dist(q, o)|q ∈ Nk(p) and o ∈ Nk(q)}

• indirectmax(p) = max{reach-dist(q, o)|q ∈ Nk(p) and o ∈ Nk(q)}

Intuitively, directmin(p) is the minimum reach distance of all the k closest points to p, which
are the direct k neighbours of p. Similarly, directmax(p) is the maximum reach distance of p’s
direct k neighbours. The indirect neighbours of p are the k nearest neighbours of all of p’s direct
neighbours. An illustrated example of this can be seen in4 Then, the general lower and upper
boundaries of the LOF values of all the points p in the dataset are denoted as:

directmin(p)

indirectmax(p)
≤ LOF (p) ≤ directmax(p)

indirectmin(p)
(3)

Intuitively, the closer the LOF value is to 1, the more uniformly distributed the cluster is in which
p resides. In a perfectly uniformly distributed dataset, where all distances between neighbouring
points are the same we consider all points to be part of the same cluster. Since all distances are

15

Figure 4: Illustration of the lower and upper bounds of a point p

the same, all reach-dist(p, q) will be the same for all points, meaning that the LOF value for all
points will always be equal to 1. Only points with significantly different distances to the other
points will deviate from 1.

The Local Outlier Factor is an interesting improvement over the traditional KNN algorithm. It
can deal much better with the context around a single point and with distributions of varying
densities. It would be interesting to see if this results in more accurate results. A closer look at
LOF and a comparison of many variations of calculating the Local Outlier Factor can be found in
[38].

4.3 LOCI - Local Correlation Integral
The Local Correlation Integral is another improvement over the KNN algorithm. Much like the
LOF described above it is much better in dealing with the local context and multiple levels of
granularity in the dataset. But one important improvement over LOF is that it is much less
sensitive to a user-defined k-value. They do this by introducing the Multi-granularity deviation
factor (MDEF). This factor consists of a few parts.

The first part is the number of r-neighbours of p denoted as n(p, r). This is the number of
neighbours within a range r from point p. The collection of points within range r of p is denoted
as N (p, r). Note that this neighbourhood also always contains p itself.

Next we have n̂(p, r, k) which is the average of n(p, kr) over the set of r-neighbours.

n̂(p, r, k) =

∑
o∈N (p,r) n(o, kr)

n(p, r)
(4)

This calculates the average over all data points o in the r-neighbourhood of p. The k is known
as the sampling neighbourhood of p and is usually chosen to be k = 1

2 . A visualization of the
neighbourhood and the sampling neighbourhood can be seen in 5. The value r is in the range of
rmax ≈ k−1 · Rmax (where Rmax corresponds to the maximum radius between any points in the
dataset) and rmin, which the paper states is usually determined to be the minimum radius that
contains 20 points. The use of two radii for o and p serves to decouple the neighbour size radius
kr from the radius r over which we are averaging.

These combine into the MDEF function

MDEF (p, r, k) = 1− n(p, kr)

n̂(p, r, k)
(5)

Important to note is that the MDEF formula stated in [28] seems to contain an error. In the
paper, the denominator in the formula is stated as n̂(p, α, r) which should be changed to n̂(p, r, α)
to make their derivation of the MDEF formula correct. The main anomaly detection scheme relies
on the standard deviation of the kr -neighbour count over the sampling neighbourhood of p. This
is defined as

σMDEF (p, r, k) =
σn̂(p, r, k)

n̂(p, r, k)
(6)

16

Figure 5: Visualization of the neighbourhood and sampling neighbourhood used in the LOCI
algorithm

where

σn̂(p, r, k) =

√∑
o∈N (p,r)(n(o, kr)− n̂(p, r, k))2

n(p, r)
(7)

To flag a point as anomalous, its MDEF score is compared with the σMDEF . More concretely,
a point is flagged as anomalous if, for any r ∈ [rmin, rmax] : MDEF (p, r, k) > lσσMDEF (p, r, k)
In all experiments done by [28], they used lσ = 3 and the chosen value for k was k = 1

2 . Usually
the MDEF value is observed for a range of r values, in most experiments done by the paper the
MDEF is observed over the full range of r values from rmin to rmax, if any of these values reach the
threshold defined above, the point can be flagged as anomalous. By using the standard deviation
the algorithm solves much of the problems of "magic cut-offs" nearest-neighbour algorithms often
face, such as an arbitrarily chosen k-value for KNN or LOF.

In addition to the regular algorithm, the researchers also propose a fast, approximate LOCI algo-
rithm: aLOCI. This works by performing a box count over a grid. Instead of precisely checking
the distances to every point, it is possible to approximate that number by simply adding up the
amount of points in adjacent cells in the grid. To obtain information at several scales, store cell
counts can be efficiently stored in an n-dimensional quad-tree. Each cell of size 2kr is subdivided
into 2n subcells, each with size kr until the desired scale is reached (specified in terms of side length
or cell count). This cell grid is used to quickly count the amount of surrounding elements around
a point p and can give us a really quick approximation of the MDEF score.

The LOCI algorithm was chosen because it is much less dependent on a "magic cut-off" value
of k. By taking into account multiple nearby neighbourhoods and their densities, it seems a good
improvement over both KNN and LOF in terms of accuracy. In addition, the algorithm can be
approximated and performed really quickly using their grid-based aLOCI approach which could
be interesting in terms of speed concerns. Because of its improved accuracy and high applicability
due to the option of a faster aLOCI approach, it makes it interesting to test against the other
algorithms.

4.4 SOM - Self-Organizing Maps
The Self Organizing Map[21] is called a neural network. However, SOM is a special kind of neural
network. As mentioned before, SOM is an unsupervised neural network. But its workings are more
similar to a clustering-based approach. The "neurons" in the network act more like nodes. The
Self-Organizing Map works in Euclidean space, meaning these nodes can be arranged in a single
2-dimensional or 3-dimensional grid. As data is processed, this grid of neurons will try and enclose
the dataset. . The algorithm works in an iterative process, the steps are as follows:

• Step 0: Randomly position the grid’s neurons in the data space

17

• Step 1: Select one data point, this can either be a random datapoint from the dataset or
one chosen iteratively.

• Step 2: Find the neuron that is closest to the chosen datapoint. This neuron is called the
Best Matching Unit (BMU)

• Step 3: Move the BMU closer to the datapoint. How far the BMU is moved is determined
by the learning rate, which decreases after each iteration.

• Step 4: Move the BMU’s neighbours closer to the data point as well. The closer the
neighbours are to the BMU, the more they move. Neighbours are identified by their distance
to the BMU, the threshold for this distance decreases as well after each iteration.

• Step 5: Update the learning rate and BMU radius.

• Step 6: Repeat steps 1-5 until the positions of the neurons have stabilized

The algorithm is fairly simple and will stabilize to a point where the neurons neatly enclose the
dataset. The advantage is that, once trained, this algorithm can quickly determine if a point is
an outlier or not based on the enclosure of the neurons. However, having just one grid of neurons
might mean that this algorithm performs poorly on datasets with multiple clusters. It would be
interesting to observe how well the Self Organizing Map performs compared to other clustering
algorithms.

5 The Anomaly Detection Framework
In this chapter we introduce our framework to perform autonomous anomaly detection on games.
This enables developers to easily incorporate automated testing into their games. We designed
the framework to be independent of what game is used specifically. Therefore, it’s designed to
be agnostic of the data that is used for anomaly detection. The framework can be easily hooked
up to games by simply flagging the variables that need to be tracked. Additionally, our modular
design allows the user to use any preferred anomaly detection algorithm. Finally, by incorporating
a sliding window approach the framework can deal with large datasets and allows it to be used for
online anomaly detection. The framework has been designed to be highly flexible so that it can be
applied in a broad range of different games across different genres.

A B C D
A X AB AC AD
B X X BC BD
C X X X CD
D X X X X

Table 1: Variable combinations

The first step is to make a selection of the variables we would like to observe. The collection
of observed variables will be denoted as V. The variables can then be added to our anomaly
detection framework which will be used to detect anomalous behaviour in the game. Once all
variables have been added, the framework will create charts using all possible combinations of the
tracked variables. An example of how these combinations are constructed can be seen in Table
1. The collection of charts generated from these variables will be denoted as G. The amount of
charts generated from this step can be calculated as follows: |G| = n!

k!(n−k)! . With n the amount
of variables we are tracking and k the amount of variables we combine into one chart. For our
framework k = 2, as we will only be combining two variables at a time in each chart. As can
be observed from the formula, the amount of charts increases exponentially with the amount of
variables tracked. During runtime, the framework reads the values from the variables and plots
their values in each chart. Then, these values are evaluated using our anomaly detection algorithms.

18

The evaluation step marks whether the new points are an outlier or not and assigns them an outlier
score from 0 to 1 which represents the certainty of the point being an outlier, 1 being 100% and 0
being 0% certain that the point is an outlier. Each chart is given an outlier score representing that
chart’s current "outlierness". Next, the outlier scores of all charts are added together to give an
overall anomaly score. This anomaly score is used to determine whether the current gamestate is
anomalous or not. The threshold for this anomaly score is determined by the amount of variables
we are tracking. Every variable v ∈ V is combined with every other variable in V except itself
{vi ∈ V|vi 6= v}. Thus, every variable exists in |V|−1 charts. When a variable v changes, anomaly
detection for that variable is performed. The outlier score of each chart containing v is added up
and combined into a single anomaly score. We set our threshold such that if the anomaly score
is at least half of the maximum score possible for a single variable, the current state is flagged as
anomalous.

Anomalous =

{
true, if anomaly score >= 0.5× (|V| − 1)

false, otherwise

The threshold is only exceeded when the charts containing v report on average an outlier score of
at least 0.5, meaning that the charts are on average at least 50% certain the currently observed
value of v is an outlier. Every game tick where this threshold is exceeded, the gamestate will be
flagged as anomalous.

Our framework uses a sliding window approach. This means the anomaly score is based only
on the last n observed points within our window. This approach allows us to drop points once
they fall outside of our sliding window, which reduces the resources used for anomaly detection.
This enables the analysis of large datasets and supports an online anomaly detection approach.

Currently, the four anomaly detection algorithms discussed in Chapter 4 have been selected as
standard for our framework. However, our framework can be used with other anomaly detection
algorithms as well. In principle, any anomaly detection algorithm could be used, as long as it can
detect outlying points and assign them a certainty score from 0-1. An overview of the framework
can be found in Figure 6

Figure 6: The Anomaly Detection Framework

5.1 Outlier Scores
Outlier detection algorithms commonly flag points in a binary manner as either anomalous or
non-anomalous. However, for our anomaly detector we need to derive a point’s "outlierness" to
determine their outlier score. Similar to a neural network, our algorithms each calculate a point’s
"outlierness" and feed it into a sigmoid function to produce an outlier score from 0-1. The sigmoid
function is defined as:

Sigmoid(x) =
L

1 + e−s(x−x0)
(8)

where:

• L: curve’s maximum value

19

• x0: value of sigmoid’s midpoint

• s: steepness of the curve

Using this sigmoid function makes sure that the input values can never exceed our boundaries of
0-1.

In the following sections we will discuss how a point’s "outlierness" is determined and how
outlier scores can be calculated for each of our algorithms.

5.1.1 KNN Outlier Score

For the K-Nearest Neighbours the radius of the k nearest neighbours, denoted as kr, is calculated
for every point p. Then, the average and standard deviation are calculated for the last n k-radii
observed, denoted as avgkr and σkr respectively. The size of n is determined by the size of our
sliding window. To determine the "outlierness" of a point, its k-radius is compared to the average
k-radius observed over the last n points. Its outlier score is determined by the amount of standard
deviations the value is removed from the average. For our experiments we used an upper bound of
3 standard deviations, for a normal distribution this means that less than 1% of the values exceeds
this threshold. Additionally, this was also the threshold chosen for the LOCI algorithm for the
same reason. This value is then fed into a sigmoid function which will approach 1 for larger values
and 0 for smaller values (including negative values). Notice that this means even when kr < avgkr ,
the sigmoid function will still produce a value from 0-1. In summary, the outlier score of a point
p is calculated as follows:

outlier score = sigmoid(
kr − avgkr
3 ∗ σkr

) (9)

5.1.2 LOF Outlier Score

Since there is no clear threshold stated in [5] our process will be very similar to the above section.
For every point p the Local Outlier Factor(LOF) is calculated indicating that point’s "outlierness".
A higher LOF value means the point has a higher "outlierness". However, without any reference
this value is hard to link directly to a uniform outlier score. Therefore, we once again observe the
amount of standard deviations the LOF score is removed from the average LOF score accumulated
over the last n points. Once more, an upper bound of 3 standard deviations is used and fed into
our sigmoid function to get an outlier score. The outlier score is calculated as:

outlier score = sigmoid(
LOFp − avgLOFp

3 ∗ σLOF
) (10)

5.1.3 LOCI Outlier Score

Unlike our previous examples, [28] states a very clear boundary for when a point can be flagged as
outlier. The boundary mentioned in the paper is:

MDEF (p, r, k) > lσσMDEF (p, r, k) (11)

With lσ = 3 as stated in [28]. This gives us a very clear boundary for when a point can be
flagged as outlier or not. However, this is a binary threshold flagging a point as anomalous if it
exceeds this boundary. In our experiments we calculated the outlier score as the amount of standard
deviations the MDEF value exceeds this boundary, which was then once again fed into our sigmoid
function. Unlike previous examples, the LOCI algorithm already incorporates an outlier threshold
using 3 standard deviations. However, we would still prefer some indication of certainty rather
than a binary value. Therefore, our outlier score for the LOCI algorithm is calculated by checking
how far this threshold is exceeded with a maximum of one standard deviation. The outlier score
for the LOCI was calculated as follows:

outlier score = sigmoid(
MDEF (p, r, k)− lσσMDEF (p, r, k)

σMDEF (p, r, k)
) (12)

20

5.1.4 SOM Outlier Score

The Self-Organizing Map(SOM) has no pre-determined way of defining points as outliers or not.
The algorithm builds a cloud of points surrounding a given dataset. The Self-Organizing Map
also has a more general purpose outside of outlier detection. Therefore, there is no clear definition
stated in [21] for determining whether a point is outlier. Still, the Self-Organizing Map can be used
for outlier detection. To determine whether a point is inside our outside of our Self-Organizing
Map we construct a convex shape around the SOM nodes. If a point is inside the shape, it is
considered an inlier otherwise it is considered an outlier. To determine a point’s "outlierness" its
distance to the closest edge of the convex shape is measured, illustrated in 7. Then, similar to
KNN and LOF, this distance is compared to the average edge distances observed over the last n
points. The outlier score is once again determined by the amount of standard deviations removed
from the average, maxing out at 3 standard deviations. Once again, this is fed into a sigmoid
function to get an outlier score. The outlier score for the SOM is calculated as:

outlier score = sigmoid(
edgedist− avgedgedist

3 ∗ σedgedist
) (13)

Figure 7: Classification with the Self-Organizing Map

5.2 Event Logging
For our Anomaly Detection framework we decided to make the algorithm event based instead
of frame based. The reason for this is that with a frame based approach the baseline used for
comparison becomes skewed. Most of the time, the variables we’re tracking don’t change. Including
all frames where the data remains exactly the same introduces a bias against any changes in the
data at all. Because we only want to detect if changes in the game are anomalous or not it becomes
much more difficult to detect anomalies if all frames are considered. Changing this towards an
event based system where we only log variables if their values change compared to the previous
frame removes this bias and makes sure we only observe changes in the variables.

6 Experiment Setup
For our experiments we want to emulate realistic player behaviour. In a realistic scenario every
play through will be different, this means we want to test our games in a stochastic setting. To
avoid a lot of manual playthroughs we make use of AI agents in OpenTTD. For our experiments
we use the SimpleAI scripts described in [2]. SimpleAI is compatible for running multiple instances
of itself because it builds its routes randomly, this is needed because we want to run experiments
with several players at a time. The AI also keeps managing its routes after they’re built, selling
unprofitable vehicles and replacing old ones. This is useful for our experiments because the AI
will keep actively purchasing and selling vehicles. Using the SimpleAI script, we can let several

21

Figure 8: Open Transport Tycoon Deluxe (OpenTTD)

AI agents play the game and run our anomaly detection algorithms on those playthroughs. This
should give us representable player data for our experiments and give us a good foundation to
compare our algorithms with each other. By emulating stochastic player behaviour and injecting
"random" system failures we should have a realistic setting in which we can research our research
questions.

6.1 OpenTTD
For our experiments we will be using Open Transport Tycoon Deluxe (OpenTTD). OpenTTD is
an online multiplayer real-time strategy game developed in C++. The game involves controlling a
transportation company and earning money by building infrastructure and transportation vehicles.
By constructing infrastructure and allowing transport between towns players can indirectly influ-
ence the growth of cities and towns placed on the map. The game’s map is generated randomly
every round, making every round different. The game is simulated in ticks, which means that
the simulation of the game is not influenced by framerate. The simulation of the game is entirely
dependent on the seed provided. This means we can run the same exact simulation using different
Anomaly Detection algorithms uninfluenced by execution times.

OpenTTD is an open source project still actively being developed. It is currently a fully featured
game played by many people. This means we have a realistic product similar to projects used in
the commercial gaming industry to perform experiments on.

6.2 Anomaly injections
In order to properly measure the accuracy of our anomaly detection algorithms we will need to
inject our own anomalies. All anomaly injections will be injected at random intervals based on
a random seed we can set. If needed, this will allow us a reasonable amount of control over our
experiments. Of course, we must ensure that these injected anomalies are still a realistic depiction
of bugs in actual game production. While there is no real way of verifying whether injected
anomalies are realistic or not, we can try and emulate "random" system failures. This should give
us a realistic scenario in which we can perform experiments to answer our research questions. We
can inject everal different types of anomalies into our program:

1. Variable extrapolation - On some variable changes, we can randomly increase/decrease
the variable by much more than is intended

22

2. Variable resets - On some variable changes, we can randomly set the variable to some
unexpected value such as 0, max value or some invalid value.

3. Function Failures - On some function calls, we can randomly make the function exit too
early

6.3 Variable/Feature selection
It is very important to select the right variables(features) for our experiments. Observing the entire
game state would give us too much data to work with, making Anomaly Detection unfeasible.
Therefore we have to make a selection of the features which have the greatest impact on the game.
The variable selection was done by hand. The variables selected for our experiments were:

• delta roads

• delta railways

• delta road vehicles (trucks, busses, etc.)

• delta rail vehicles (trains, trolleys, etc.)

The selected variables should give a decent representation of the most important elements in
the game. These variables will be observed by our anomaly detector and should indicate whether
an anomaly has occurred or not.

6.4 Experiment Parameters
A couple of important parameters can be identified for our experiments:

• Outlier detection Algorithm: KNN, LOF, LOCI, SOM

• Amount of players

• Type of anomaly insertion: variable reset, variable extrapolation, function failures

• Size of variable extrapolation for anomaly insertion

• Function for calculating outlier score

• Size of the sliding window

• K-size

One important parameter is testing all of the different outlier detection algorithms. Thus, our tests
will include comparisons between all the chosen outlier detection algorithms. Since OpenTTD is
a multiplayer game it can be played between several players. For consistency, the players in all
of our experiments will be using the same SimpleAI scripts (see [2]) to control their behaviour.
We will experiment with different amounts of players as we might observe very different results
between different amounts of players. We will be testing a couple of different scenario’s:

• 1 player: a scenario with one player is synonymous with single-player games where we can
only observe a single player’s behaviour. This scenario is more sensitive to anomalies, but it
might also be more difficult to establish a baseline describing "normal" behaviour.

• 4 players: this scenario includes tracking the variables of multiple players at the same
time and using their aggregated values for anomaly detection. For companies with massive
multiplayer games it can be very beneficial to be able to detect anomalies using the aggregated
values of all players. This would make for a very lightweight way to detect anomalous
behaviour amongst all players. Accumulating the values of all the players provides us with a
decent baseline for normal behaviour. However, if just one player has anomalous behaviour
it might be more difficult to detect.

23

(a) e−5 (b) e−15 (c) e−50

Figure 9: Sigmoid functions

• 1 vs n players: in this scenario every player’s behaviour is compared to the aggregated
behaviour of all n players. This tries to combine the benefits of both scenarios by establish-
ing a proper baseline of all n players while maintaining the sensitivity of a single player’s
anomalous behaviour. It is however, much more resource intensive than the other scenarios
as each player’s behaviour has to be evaluated against the average.

We have chosen to test just one type of anomaly for our experiments. We will be testing our
Anomaly Detector using variable extrapolation, meaning we will be increasing or decreasing the
amount a variable changes in its function call. This was deemed similar to a variable reset, be-
cause resetting a variable to a certain value is in principle an exaggerated version of the variable
extrapolation. Additionally, function failures are very unlikely to be detected as it does not affect
the values of variables directly. Therefore, those will also not be considered for our experiments.
The Anomaly Size parameter we are using for our experiments indicates the percentage with which
we increase the variable in its function call. For example an Anomaly Size of 1000% means we
increase the variable with 10 times its value when it is changed in its function.

Threshold
As explained earlier, our outlier scores are all determined by using a sigmoid function. This is
commonly used in neural networks, but also very useful in our application. The sigmoid function
is defined as:

Sigmoid(x) =
L

1 + e−s(x−x0)
(14)

where:

• L: curve’s maximum value

• x0: value of sigmoid’s midpoint

• s: steepness of the curve

For our experiments we choose an L value of 1, to make sure the function always maps from 0
to 1. The x0 (midpoint) parameter represents the point at which the function is exactly 0.5. For
all experiments we set x0 to 0.75. Finally, the steepness of the function is determined by the s
parameter. A higher value represents a greater steepness as indicated by 9. For our experiments
we will be comparing threshold values of s = 5, s = 15 and s = 50, in our parameters we indicate
this steepness as: e−5, e−15 and e−50.

Window Size
Our framework uses a sliding window approach to reduce resources used. The size of this sliding
window is one of our parameters. The window size represents the amount of events we consider
for our anomaly detection. Meaning that a window size of n uses the last n events for anomaly
detection. For our experiments three different window sizes are tested: 20, 75 and MAX. The first
two parameters evaluate the last 20 and 75 events respectively. The last parameter of MAX means
that the window size is infinite, causing all events that occurred in the entire run to be evaluated
and used for anomaly detection.

24

K
Finally, both LOF and KNN are sensitive to their k parameter. Usually, this parameter is chosen
manually per dataset. However, in our case we do not know beforehand what our dataset is going
to look like thus it becomes very difficult to select a k value manually. Therefore, we chose to
define our k relative to the size of the dataset instead of an absolute value. This way, the k param-
eter is always consistent in size compared to the amount of data. This is similar to choosing the
parameter manually for a given dataset, as the relative size of k for a static dataset is consistent.
In our experiments we define our k value in terms of percentage of the total amount of data in the
current dataset. We run experiments using a k-value of 25%, 50% and 75%.

7 Results
Based on when our anomaly injections occur, we can extract the amount of true positives(tp), false
positives(fp), true negatives(tn) and false negatives(fn) (See Table 2).

Condition True Condition False
Predicted True True Positive (tp) False Positive (fp)
Predicted False False Negative (fn) True Negative (tn)

Table 2: Confusion Matrix

Using this information, we will compare our algorithms by looking at several different accuracy
measures. First, we look at their precision and recall:

Precision =
tp

tp+ fp

Recall(TPR) =
tp

tp+ fn

Precision is the amount of correct positive results divided by the number of all positive results. In
other words, the precision represents the percentage of correctly predicted events from all predic-
tions made. Recall, also known as the True Positive Rate (TPR), is the amount of correct positive
results divided by the amount of all samples that should have been identified as positive. This
shows what percentage of all positive conditions were actually predicted to be positive. These
combine into an F-score which is the harmonic average of the precision and recall:

F1 = 2 · precision · recall
precision+ recall

Next, we calculate the true negative rate (TNR):

TNR =
tn

tn+ fp

The True Negative Rate represents the amount of correct negative results divided by all results
that should have been identified as negative. Finally, we will calculate the overall accuracy of the
algorithm:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn

The Accuracy represents the amount of correctly flagged events divided by all occurred events.
This represents from all data, the percentage of data that was labeled correctly.

For our experiments we use the same list of 10 unique seeds to run 10 different simulations of
the game. These seeds are used by both the AI and the generation of the game world itself. This
means that every seed produces a unique simulation of the game, but using the same seed also
makes sure the game produces the same behaviour as long as the same number of players is used.
This makes sure that for 1, 4 and 10 players we run the same 10 unique simulations to properly
compare the average behaviour of the different parameters.

25

The values below are represented by the average value over 10 different simulations with their
standard deviation over these 10 runs. A single run of the game takes one in-game year which
constitutes of 27000 ticks. It takes approximately 10 minutes to go through a single run. The
table below shows the average number of events that occurred for the amount of players used in
our experiments:

Number of Events (average ± stdev)
1 player 91 ± 30
4 players 337 ± 47
10 players 896 ± 66

Table 3: Average number of events

7.1 Overview
We will comparing the results of the following parameters:

• Players: 1, 4, 10

• Algorithms: KNN, LOF, LOCI, SOM

• Anomaly Size: 100%, 200%, 1000%

• Threshold: e−5, e−15, e−50

• Window Size: 20, 75, MAX

• K-size: 25%, 50%, 75%

For more explanation of what these paramaters mean exactly you can refer to section Experiment
Parameters.

In sections 7.2-7.5 we want to investigate what degree of anomalies can be detected. Addi-
tionally, we will investigate whether there is a noticeable difference between evaluating all the
aggregated data at once or evaluating the data of a single player against the aggregated data of
all players makes a difference.

In section 7.6 we investigate the influence of the threshold parameter for the sigmoid function.
Section 7.7 compares different sizes of the sliding window and observes whether that has a large
influence on the ability to detect anomalies. Section 7.8 investigates the influence of different
K-values on the performance of KNN and LOF, since those are the only algorithms that use a
K-value. Finally, in section 7.9 we look at combining the results of different algorithms. We take
unions and intersections of different algorithms and investigate whether that can have a positive
influence on our ability to detect anomalies. The values in the cells of the tables below are shown
as: average ± standard deviation.

26

7.2 1 Player
7.2.1 Results

100 200 1000
0

0.5

1

Anomaly Size [%]

F
-s
co
re

KNN LOF LOCI SOM

100 200 1000
0

0.5

1

Anomaly Size [%]
A
cc
ur
ac
y

KNN LOF LOCI SOM

Figure 10: F-score and Accuracy for 1 player

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.014 ± 0.045 0.009 ± 0.029 0.011 ± 0.035 0.960 ± 0.010 0.858 ± 0.035
LOF 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.947 ± 0.025 0.846 ± 0.050
LOCI 0.020 ± 0.063 0.009 ± 0.029 0.013 ± 0.040 0.982 ± 0.012 0.877 ± 0.034
SOM 0.125 ± 0.212 0.031 ± 0.054 0.049 ± 0.084 0.976 ± 0.016 0.875 ± 0.047

Table 4: Players: 1 | Anomaly Size: 100% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.031 ± 0.065 0.016 ± 0.035 0.021 ± 0.045 0.955 ± 0.014 0.854 ± 0.040
LOF 0.107 ± 0.167 0.052 ± 0.070 0.065 ± 0.085 0.945 ± 0.029 0.850 ± 0.050
LOCI 0.033 ± 0.105 0.018 ± 0.057 0.024 ± 0.074 0.979 ± 0.009 0.875 ± 0.035
SOM 0.198 ± 0.221 0.056 ± 0.068 0.085 ± 0.100 0.975 ± 0.017 0.877 ± 0.048

Table 5: Players: 1 | Anomaly Size: 200% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.310 ± 0.228 0.228 ± 0.263 0.249 ± 0.237 0.956 ± 0.009 0.880 ± 0.040
LOF 0.313 ± 0.201 0.211 ± 0.151 0.248 ± 0.170 0.950 ± 0.017 0.871 ± 0.044
LOCI 0.275 ± 0.309 0.068 ± 0.088 0.108 ± 0.136 0.983 ± 0.009 0.886 ± 0.034
SOM 0.270 ± 0.262 0.144 ± 0.202 0.181 ± 0.222 0.969 ± 0.022 0.882 ± 0.053

Table 6: Players: 1 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

7.2.2 Evaluation

We can see that for KNN, LOF and LOCI the F-scores are almost zero for an anomaly size of
100%. This is likely because the anomaly size is too small and thus deviates too little from the
baseline behaviour of one player. These tiny fluctuations also occur for normal behaviour when a

27

player decides to buy multiple tracks or vehicles in one frame. Thus, an anomaly size of just 100%
is hard to differentiate from normal behaviour by observing just one player. This results in little
to no true positives for KNN, LOF and LOCI which explains the extremely low F-scores. The
SOM has a slightly better detection rate, with quite some standard deviation. This is likely due to
the fact that it can quickly establish a rough baseline behaviour by constructing maps around the
observed behaviour of the player in the first stages of the game. Depending on how good this initial
rough baseline fits the actual behaviour the SOM can have either a decent or a very low detection
rate. From the results we can see that some runs showed decent enough detection rates to increase
the average F-score. For all algorithms observed, The rate of true negatives is quite high, roughly
around 95% and higher. This means that the algorithms tested have few false positives relative to
the total amount of events that occurred. The accuracy for the algorithms is also similar around
85%.

For an anomaly size of 200% the algorithms tested start detecting some anomalies. KNN and
LOCI still have very low amounts of true positives, resulting in very low f-scores. LOF and SOM
seem to be performing a bit better, even though both still have very low True Positive Rates.
Overall, almost no anomalies are detected, which causes larger differences in F-scores with just a
few true positives. The TNR and Accuracy scores of all algorithms remain roughly the same.

Once an anomaly size of 1000% is reached, the anomaly detection algorithms start showing
acceptable detection rates. Best performing are KNN and LOF with F-scores around 0.25. Both
show a precision scores around 0.31, showing that around 30% of all positive predictions made
were anomalies. Both also show a recall of >20%, which means that around 20% of all anomalies
inserted were detected by KNN and LOF. LOCI shows the worst F-score here. This seems to
be mainly caused by its low recall score compared to the other algorithms. It appears that for
this case, the LOCI algorithm is only able to detect a small amount of the inserted anomalies.
For this anomaly size SOM was outperformed by both KNN and LOF. It appears that once the
"outlierness" of the anomalies becomes large enough, the rough baseline created by SOM is quickly
outperformed by other outlier detection algorithms. Overall, the accuracy and true negative rate is
consistent for all anomaly sizes, with only a slight improvement in accuracy for the larger anomaly
sizes due to the increase in true positives.

7.3 4 players
7.3.1 Results

100 200 1000
0

0.5

1

Anomaly Size [%]

F
-s
co
re

KNN LOF LOCI SOM

100 200 1000
0

0.5

1

Anomaly Size [%]

A
cc
ur
ac
y

KNN LOF LOCI SOM

Figure 11: F-score and Accuracy for 4 players

28

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.138 ± 0.183 0.025 ± 0.029 0.042 ± 0.048 0.975 ± 0.014 0.886 ± 0.018
LOF 0.135 ± 0.151 0.035 ± 0.030 0.054 ± 0.050 0.971 ± 0.014 0.883 ± 0.017
LOCI 0.080 ± 0.141 0.019 ± 0.030 0.029 ± 0.047 0.972 ± 0.008 0.883 ± 0.012
SOM 0.086 ± 0.122 0.028 ± 0.042 0.041 ± 0.061 0.974 ± 0.017 0.885 ± 0.015

Table 7: Players: 4 | Anomaly Size: 100% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.148 ± 0.201 0.028 ± 0.033 0.046 ± 0.056 0.975 ± 0.013 0.886 ± 0.017
LOF 0.158 ± 0.171 0.038 ± 0.028 0.060 ± 0.047 0.972 ± 0.013 0.885 ± 0.016
LOCI 0.101 ± 0.139 0.025 ± 0.029 0.039 ± 0.046 0.972 ± 0.009 0.884 ± 0.011
SOM 0.186 ± 0.136 0.049 ± 0.047 0.075 ± 0.068 0.975 ± 0.015 0.888 ± 0.015

Table 8: Players: 4 | Anomaly Size: 200% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.324 ± 0.178 0.097 ± 0.057 0.146 ± 0.076 0.980 ± 0.007 0.898 ± 0.011
LOF 0.349 ± 0.111 0.141 ± 0.057 0.198 ± 0.067 0.973 ± 0.007 0.896 ± 0.010
LOCI 0.210 ± 0.078 0.068 ± 0.036 0.100 ± 0.045 0.975 ± 0.007 0.891 ± 0.012
SOM 0.235 ± 0.181 0.057 ± 0.045 0.089 ± 0.068 0.982 ± 0.009 0.896 ± 0.015

Table 9: Players: 4 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

7.3.2 Evaluation

For both an anomaly size of 100% and an anomaly size of 200% we see similar results. The F-scores
are very low for all algorithms tested, meaning that both precision and recall scores are low. This is
likely explained by the fact that anomalies occur for a single player at a time. This makes it much
harder to detect anomalies when observing the aggregated value of all 4 players. When compared
to the single player tests, we see slightly higher F-scores. However, this is likely due to the fact
that much more events occur with 4 players, which means there are much more opportunities to
label anomalies correctly. Because of this increase in events, the precision and recall scores are
pushed above 0 for most runs resulting in slightly higher F-scores.

Once again, the algorithms start properly detecting anomalies at an anomaly size of 1000%.
When compared to the experiment with 1 player, the F-scores are lower for all algorithms. This
can be explained by reduced impact of a single player on the aggregated value of all 4 players.
When an anomaly occurs in one player, it is much harder to detect when the values of all 4 players
combined are analyzed. This is supported when we look at the values of the precision and recall.
While the precision shows similar results, the recall is much lower for all algorithms which means
that of all anomalies that occurred much less are detected when compared to the single player test.
The highest F-score of 0.198 is achieved by LOF, followed by KNN with an F-score of 0.146. Once
again, LOF and KNN achieve the highest F-scores. True negative rate and accuracy have risen
slightly, with TNR roughly around 97% and accuracy around 89%.

29

7.4 1v4 players
7.4.1 Results

100 200 1000
0

0.5

1

Anomaly Size [%]

F
-s
co
re

KNN LOF LOCI SOM

100 200 1000
0

0.5

1

Anomaly Size [%]
A
cc
ur
ac
y

KNN LOF LOCI SOM

Figure 12: F-score and Accuracy for 1v4 players

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.143 ± 0.185 0.031 ± 0.032 0.050 ± 0.053 0.973 ± 0.012 0.883 ± 0.016
LOF 0.117 ± 0.164 0.028 ± 0.033 0.044 ± 0.052 0.974 ± 0.008 0.884 ± 0.014
LOCI 0.100 ± 0.109 0.039 ± 0.037 0.055 ± 0.054 0.965 ± 0.008 0.876 ± 0.013
SOM 0.124 ± 0.172 0.031 ± 0.043 0.046 ± 0.061 0.974 ± 0.012 0.884 ± 0.014

Table 10: Players: 1v4 | Anomaly Size: 100% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.151 ± 0.183 0.033 ± 0.032 0.053 ± 0.053 0.973 ± 0.012 0.883 ± 0.016
LOF 0.155 ± 0.154 0.040 ± 0.031 0.062 ± 0.049 0.974 ± 0.009 0.885 ± 0.013
LOCI 0.114 ± 0.108 0.044 ± 0.037 0.063 ± 0.055 0.965 ± 0.007 0.877 ± 0.011
SOM 0.217 ± 0.192 0.052 ± 0.038 0.082 ± 0.058 0.976 ± 0.009 0.888 ± 0.015

Table 11: Players: 1v4 | Anomaly Size: 200% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.355 ± 0.149 0.127 ± 0.069 0.181 ± 0.083 0.976 ± 0.009 0.896 ± 0.013
LOF 0.381 ± 0.120 0.138 ± 0.067 0.199 ± 0.083 0.978 ± 0.006 0.899 ± 0.012
LOCI 0.277 ± 0.137 0.109 ± 0.054 0.154 ± 0.072 0.971 ± 0.009 0.890 ± 0.015
SOM 0.260 ± 0.145 0.060 ± 0.040 0.094 ± 0.059 0.981 ± 0.009 0.894 ± 0.016

Table 12: Players: 1v4 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

7.4.2 Evaluation

This experiment attempts to create a good baseline by using the average of multiple players while
comparing every player individually to this baseline to maintain sensitivity. For smaller anomaly
sizes, this doesn’t seem to impact the results by much. The F-scores are only slightly higher for an

30

anomaly size of 100% and 200%. There is a slight, but noticeable difference in performance for the
LOCI algorithm. With 4 players, LOCI achieved an F-score of 0.029 for an anomaly size of 100%.
Now, by comparing each player to the baseline of 4 players, LOCI achieves an F-score of 0.055.

For the larger anomaly size of 1000% we see something interesting. When compared to the
run with just 4 players KNN and LOCI show significantly better results. However, both LOF and
SOM remain roughly the same. It appears the LOF algorithm is still performing effectively when
observing the aggregated values of all 4 players. True negative rate and accuracy are similar to
what we observed before with an accuracy of roughly 89% and TNR of around 97%.

7.5 1v10 players
7.5.1 Results

100 200 1000
0

0.5

1

Anomaly Size [%]

F
-s
co
re

KNN LOF LOCI SOM

100 200 1000
0

0.5

1

Anomaly Size [%]

A
cc
ur
ac
y

KNN LOF LOCI SOM

Figure 13: F-score and Accuracy for 1v10 players

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.097 ± 0.072 0.031 ± 0.022 0.047 ± 0.033 0.971 ± 0.008 0.887 ± 0.014
LOF 0.121 ± 0.085 0.032 ± 0.025 0.050 ± 0.038 0.979 ± 0.005 0.894 ± 0.012
LOCI 0.103 ± 0.053 0.058 ± 0.031 0.074 ± 0.039 0.951 ± 0.006 0.871 ± 0.013
SOM 0.181 ± 0.124 0.034 ± 0.029 0.056 ± 0.044 0.987 ± 0.005 0.901 ± 0.011

Table 13: Players: 1v10 | Anomaly Size: 100% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.101 ± 0.073 0.033 ± 0.023 0.049 ± 0.035 0.972 ± 0.008 0.888 ± 0.014
LOF 0.119 ± 0.116 0.032 ± 0.028 0.049 ± 0.044 0.979 ± 0.008 0.894 ± 0.014
LOCI 0.138 ± 0.064 0.078 ± 0.039 0.100 ± 0.048 0.952 ± 0.006 0.873 ± 0.014
SOM 0.219 ± 0.141 0.042 ± 0.035 0.069 ± 0.053 0.988 ± 0.005 0.903 ± 0.010

Table 14: Players: 1v10 | Anomaly Size: 200% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

31

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.366 ± 0.081 0.139 ± 0.029 0.200 ± 0.038 0.976 ± 0.006 0.902 ± 0.012
LOF 0.376 ± 0.097 0.101 ± 0.019 0.158 ± 0.030 0.983 ± 0.006 0.905 ± 0.013
LOCI 0.306 ± 0.081 0.185 ± 0.075 0.228 ± 0.078 0.961 ± 0.007 0.893 ± 0.012
SOM 0.324 ± 0.211 0.065 ± 0.043 0.106 ± 0.067 0.989 ± 0.006 0.907 ± 0.010

Table 15: Players: 1v10 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

7.5.2 Evaluation

By observing more players we should be able to establish a better baseline. Comparing individual
players to this baseline could give us better detection rates. For the smaller anomaly sizes of 100%
and 200% we see that mostly the LOCI algorithm is affected. This is likely because LOCI uses the
most contextual information of all algorithms. Using this information, LOCI is the most capable
to take advantage of the stronger baseline. KNN, LOF and SOM show similar results to the 1v4
experiment.

When looking at an anomaly size of 1000% we see a big jump in F-score for KNN, LOF and
LOCI. It appears KNN can only take advantage of the improved baseline with a larger anomaly
size. When compared to 1v4 players, KNN shows slightly better performance with an F-score
of 0.18 for 1v4 players and an F-score of 0.20 for 1v10 players. Interestingly LOF does not take
advantage of an increased baseline. It appears to have decreased in performance when compared
to both the 1v4 players and the 4 players experiments. Previously, LOF achieved an F-score of
0.198 and 0.199 for 4 players and 1v4 players respectively. Now, its F-score decreased to 0.158 for
an anomaly size of 1000%. It seems LOF does not take advantage of comparing individual players
to a baseline established by multiple players. That could explain the worse performance for 1v10
players, because without the advantage of comparing individual values to the baseline it would
be even harder to detect anomalies in a group of 10 players when compared to 4 players. SOM
appears to have stable performance for all experiments. True Negative Rate and Accuracy also
seem similar to the other experiments with TNR around 98% and Accuracy around 90%.

7.6 Anomaly score threshold
7.6.1 Results

e−5 e−15 e−50

0

0.5

1

Threshold [%]

F
-s
co
re

KNN LOF LOCI SOM

e−5 e−15 e−50

0

0.5

1

Threshold [%]

A
cc
ur
ac
y

KNN LOF LOCI SOM

Figure 14: F-score and Accuracy for different threshold values

32

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.355 ± 0.086 0.133 ± 0.036 0.192 ± 0.048 0.976 ± 0.006 0.902 ± 0.011
LOF 0.377 ± 0.095 0.093 ± 0.016 0.148 ± 0.025 0.984 ± 0.005 0.906 ± 0.012
LOCI 0.297 ± 0.079 0.166 ± 0.060 0.211 ± 0.067 0.963 ± 0.007 0.893 ± 0.012
SOM 0.329 ± 0.205 0.066 ± 0.041 0.108 ± 0.064 0.989 ± 0.006 0.908 ± 0.009

Table 16: Players: 1v4 | Anomaly Size: 1000% | Threshold: e−5 | Window Size: MAX | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.366 ± 0.081 0.139 ± 0.029 0.200 ± 0.038 0.976 ± 0.006 0.902 ± 0.012
LOF 0.376 ± 0.097 0.101 ± 0.019 0.158 ± 0.030 0.983 ± 0.006 0.905 ± 0.013
LOCI 0.306 ± 0.081 0.185 ± 0.075 0.228 ± 0.078 0.961 ± 0.007 0.893 ± 0.012
SOM 0.324 ± 0.211 0.065 ± 0.043 0.106 ± 0.067 0.989 ± 0.006 0.907 ± 0.010

Table 17: Players: 1v4 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.357 ± 0.076 0.139 ± 0.027 0.199 ± 0.036 0.975 ± 0.007 0.901 ± 0.012
LOF 0.350 ± 0.078 0.104 ± 0.017 0.159 ± 0.025 0.981 ± 0.005 0.903 ± 0.012
LOCI 0.332 ± 0.079 0.224 ± 0.087 0.265 ± 0.085 0.959 ± 0.008 0.894 ± 0.012
SOM 0.342 ± 0.192 0.074 ± 0.048 0.119 ± 0.071 0.989 ± 0.006 0.908 ± 0.010

Table 18: Players: 1v4 | Anomaly Size: 1000% | Threshold: e−50 | Window Size: MAX | K: 50%
(Experiment Parameters)

7.6.2 Evaluation

We observed various different thresholds for our sigmoid function. A higher value means a steeper
sigmoid function. We tested three different thresholds. For the varying thresholds only the LOCI
algorithm has a slight increase in F-score for a threshold of e−50. The other algorithms show little
to no difference when tested with different threshold for the sigmoid funciton. It seems that the
threshold chosen for the sigmoid function has little to no influence on the results. This is likely
because most anomalies that are detected show rather far outlying behaviour. This would mean
that the outlier scores fed into the sigmoid mostly fall into the tail end of the sigmoid function,
translating the score to almost 1 for any of the thresholds chosen.

33

7.7 Window Size
7.7.1 Results

20 75 MAX
0

0.5

1

Window Size [%]

F
-s
co
re

KNN LOF LOCI SOM

20 75 MAX
0

0.5

1

Window Size [%]
A
cc
ur
ac
y

KNN LOF LOCI SOM

Figure 15: F-score and Accuracy for different window sizes

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.370 ± 0.179 0.057 ± 0.031 0.099 ± 0.053 0.991 ± 0.003 0.908 ± 0.014
LOF 0.362 ± 0.066 0.197 ± 0.045 0.254 ± 0.052 0.967 ± 0.003 0.899 ± 0.010
LOCI 0.343 ± 0.066 0.121 ± 0.027 0.177 ± 0.034 0.977 ± 0.006 0.902 ± 0.013
SOM 0.369 ± 0.269 0.066 ± 0.041 0.109 ± 0.065 0.990 ± 0.007 0.908 ± 0.009

Table 19: Players: 1v4 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: 20 | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.379 ± 0.154 0.054 ± 0.024 0.094 ± 0.041 0.992 ± 0.003 0.910 ± 0.010
LOF 0.325 ± 0.096 0.113 ± 0.040 0.167 ± 0.056 0.977 ± 0.005 0.901 ± 0.011
LOCI 0.313 ± 0.111 0.162 ± 0.061 0.212 ± 0.076 0.966 ± 0.006 0.895 ± 0.013
SOM 0.334 ± 0.204 0.069 ± 0.042 0.112 ± 0.064 0.989 ± 0.007 0.907 ± 0.009

Table 20: Players: 1v4 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: 75 | K: 50%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.366 ± 0.081 0.139 ± 0.029 0.200 ± 0.038 0.976 ± 0.006 0.902 ± 0.012
LOF 0.376 ± 0.097 0.101 ± 0.019 0.158 ± 0.030 0.983 ± 0.006 0.905 ± 0.013
LOCI 0.306 ± 0.081 0.185 ± 0.075 0.228 ± 0.078 0.961 ± 0.007 0.893 ± 0.012
SOM 0.324 ± 0.211 0.065 ± 0.043 0.106 ± 0.067 0.989 ± 0.006 0.907 ± 0.010

Table 21: Players: 1v4 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

7.7.2 Evaluation

We also tested different window sizes, meaning the algorithms observed different amounts of values
from the total set of values when calculating the outlier score. For KNN we see little to no difference
between a window size of 20 and a window size of 75. However, once we set the window size to

34

encompass all values (MAX) we see an increase in F-score. LOF seems to have an inverse effect,
where a smaller window size results in a higher F-score. This can be explained by the fact that
for a smaller window size, LOF has much less values to evaluate and the values have less context
around them. This can make the algorithm more sensitive to small outliers which would otherwise
not be flagged as anomalous when classified using the added context of a larger window size. This
can be supported by looking at the recall of the LOF algorithm. We can see that LOF has a
recall value of 0.197 for the smallest window size and a value of 0.101 for the maximum window
size. This means that for the smaller window size is was able to detect a larger amount of the
inserted anomalies. The LOCI algorithm improves slightly with larger window sizes. It has a
larger context to consider with a maximum window size, but due to its implementation it will also
consider subsets of smaller radii within this set op points which is similar to considering varying
window sizes. SOM is mostly unaffected by window size as its mapping is updated with every new
point that is observed. This is not dependent on window size. Accuracy and true negative rate are
consistent across all window sizes.

7.8 K value
7.8.1 Results

25 50 75
0

0.5

1

K-percentage [%]

F
-s
co
re

KNN LOF

25 50 75
0

0.5

1

K-percentage [%]

A
cc
ur
ac
y

KNN LOF

Figure 16: F-score and Accuracy for different k values

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.346 ± 0.058 0.144 ± 0.029 0.201 ± 0.034 0.973 ± 0.006 0.900 ± 0.010
LOF 0.359 ± 0.326 0.023 ± 0.026 0.041 ± 0.043 0.995 ± 0.004 0.910 ± 0.011

Table 22: Players: 1v10 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: MAX | K: 25%
(Experiment Parameters)

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.366 ± 0.081 0.139 ± 0.029 0.200 ± 0.038 0.976 ± 0.006 0.902 ± 0.012
LOF 0.376 ± 0.097 0.101 ± 0.019 0.158 ± 0.030 0.983 ± 0.006 0.905 ± 0.013

Table 23: Players: 1v10 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: MAX | K: 50%
(Experiment Parameters)

35

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.328 ± 0.078 0.107 ± 0.050 0.156 ± 0.068 0.979 ± 0.009 0.902 ± 0.012
LOF 0.357 ± 0.062 0.113 ± 0.023 0.171 ± 0.032 0.980 ± 0.004 0.904 ± 0.011

Table 24: Players: 1v10 | Anomaly Size: 1000% | Threshold: e−15 | Window Size: MAX | K: 75%
(Experiment Parameters)

7.8.2 Evaluation

For this experiment only KNN and LOF are relevant since those are the only algorithms sensitive
to a k-value. The k-value here is shown as a percentage. This represents what percentage of the
total amount of values is used as the value for k. For further explanation of this k-percentage
refer to section 6.4. We can observe that KNN performs roughly the same for a k-value of 25%
and 50%. However, for a larger k-value of 75% its performance decreases. This can be explained
by the fact that for a larger k, more context is considered. But if k becomes too large, then it
becomes increasingly less sensitive to changes between individual points. That makes it harder
to detect anomalies resulting in a decrease in recall values, which can be seen in our data. LOF
performs better for larger K values. This is likely because LOF also considers the neighbourhood
around a point for its classification. Meaning that for a larger k, a larger neighbourhood is used
for classification which can result in better detection rates.

The accuracy and true negative rate are largely unaffected by the different k-percentages.

7.9 Combinations
In this section we will look at the intersections (∩) and unions (∪) of the different tested algorithms.
Combining the results of different algorithms could result in a better detection rate or reduced false
positives.

7.9.1 Results

TOTAL (10 runs) Precision Recall, TPR F-Score TNR Accuracy
KNN 0.366 ± 0.081 0.139 ± 0.029 0.200 ± 0.038 0.976 ± 0.006 0.902 ± 0.012
LOF 0.376 ± 0.097 0.101 ± 0.019 0.158 ± 0.030 0.983 ± 0.006 0.905 ± 0.013
LOCI 0.306 ± 0.081 0.185 ± 0.075 0.228 ± 0.078 0.961 ± 0.007 0.893 ± 0.012
SOM 0.324 ± 0.211 0.065 ± 0.043 0.106 ± 0.067 0.989 ± 0.006 0.907 ± 0.010
KNN ∪ LOF 0.385 ± 0.065 0.159 ± 0.043 0.222 ± 0.046 0.975 ± 0.006 0.903 ± 0.012
KNN ∪ LOCI 0.341 ± 0.061 0.223 ± 0.058 0.267 ± 0.056 0.959 ± 0.008 0.894 ± 0.012
KNN ∪ SOM 0.360 ± 0.064 0.154 ± 0.031 0.214 ± 0.038 0.973 ± 0.005 0.901 ± 0.009
LOF ∪ LOCI 0.338 ± 0.054 0.214 ± 0.055 0.260 ± 0.053 0.960 ± 0.008 0.894 ± 0.011
LOF ∪ SOM 0.358 ± 0.052 0.124 ± 0.028 0.183 ± 0.037 0.979 ± 0.003 0.903 ± 0.009
LOCI ∪ SOM 0.305 ± 0.084 0.193 ± 0.077 0.234 ± 0.080 0.959 ± 0.006 0.892 ± 0.011
KNN ∪ LOF ∪
LOCI 0.343 ± 0.062 0.227 ± 0.056 0.271 ± 0.056 0.958 ± 0.008 0.894 ± 0.012

KNN ∪ LOF ∪
SOM 0.359 ± 0.062 0.159 ± 0.030 0.218 ± 0.037 0.973 ± 0.005 0.901 ± 0.009

KNN ∪ LOCI ∪
SOM 0.335 ± 0.062 0.227 ± 0.059 0.268 ± 0.058 0.957 ± 0.007 0.892 ± 0.011

LOF ∪ LOCI ∪
SOM 0.327 ± 0.066 0.215 ± 0.065 0.257 ± 0.064 0.958 ± 0.007 0.892 ± 0.010

KNN ∪ LOF ∪
LOCI ∪ SOM 0.337 ± 0.064 0.231 ± 0.057 0.272 ± 0.057 0.956 ± 0.008 0.892 ± 0.011

Table 25: Union(∪) | Players: 1v10 | Anomaly Size: 1000% | Threshold: e−15 | Window Size:
MAX | K: 50% (Experiment Parameters)

36

TOTAL Precision Recall, TPR F-Score TNR Accuracy
KNN 0.366 ± 0.081 0.139 ± 0.029 0.200 ± 0.038 0.976 ± 0.006 0.902 ± 0.012
LOF 0.376 ± 0.097 0.101 ± 0.019 0.158 ± 0.030 0.983 ± 0.006 0.905 ± 0.013
LOCI 0.306 ± 0.081 0.185 ± 0.075 0.228 ± 0.078 0.961 ± 0.007 0.893 ± 0.012
SOM 0.324 ± 0.211 0.065 ± 0.043 0.106 ± 0.067 0.989 ± 0.006 0.907 ± 0.010
KNN ∩ LOF 0.373 ± 0.099 0.094 ± 0.017 0.148 ± 0.026 0.984 ± 0.006 0.905 ± 0.013
KNN ∩ LOCI 0.311 ± 0.077 0.101 ± 0.036 0.151 ± 0.048 0.979 ± 0.005 0.901 ± 0.011
KNN ∩ SOM 0.314 ± 0.191 0.050 ± 0.035 0.085 ± 0.057 0.991 ± 0.004 0.908 ± 0.011
LOF ∩ LOCI 0.345 ± 0.106 0.083 ± 0.027 0.133 ± 0.040 0.984 ± 0.005 0.905 ± 0.013
LOF ∩ SOM 0.308 ± 0.193 0.042 ± 0.031 0.073 ± 0.051 0.992 ± 0.004 0.908 ± 0.012
LOCI ∩ SOM 0.322 ± 0.199 0.057 ± 0.039 0.095 ± 0.062 0.991 ± 0.005 0.908 ± 0.011
KNN ∩ LOF ∩
LOCI 0.344 ± 0.105 0.081 ± 0.025 0.129 ± 0.037 0.984 ± 0.005 0.905 ± 0.013

KNN ∩ LOF ∩
SOM 0.298 ± 0.190 0.039 ± 0.028 0.068 ± 0.047 0.992 ± 0.004 0.908 ± 0.012

KNN ∩ LOCI ∩
SOM 0.297 ± 0.180 0.046 ± 0.035 0.078 ± 0.056 0.992 ± 0.004 0.908 ± 0.011

LOF ∩ LOCI ∩
SOM 0.308 ± 0.193 0.042 ± 0.031 0.073 ± 0.051 0.992 ± 0.004 0.908 ± 0.012

KNN ∩ LOF ∩
LOCI ∩ SOM 0.298 ± 0.190 0.039 ± 0.028 0.068 ± 0.047 0.992 ± 0.004 0.908 ± 0.012

Table 26: Intersection(∩) | Players: 1v10 | Anomaly Size: 1000% | Threshold: e−15 | Window
Size: MAX | K: 50% (Experiment Parameters)

7.9.2 Evaluation

The union(∪) of different algorithms means that for each event the maximum anomaly score is
taken from each algorithm. This means that if any algorithm in the union detects an anomaly
for that event, it is marked as anomalous. This should increase sensitivity and improve the recall
rate, meaning it would detect more of the inserted anomalies. However, it would also mean it
would detect more false positives which would decrease our precision. When compared to the
singular algorithms we can see a significant increase in recall when algorithms are combined.
Especially combinations which contain the LOCI algorithms greatly increase in recall. Notably
KNN∪LOCI and KNN∪LOF∪LOCI show a significant increase in recall while only slightly
decreasing in precision. This implies that most algorithms detect the same false positives, while
not detecting the same true positives. We can also see a slight decrease in true negative rate and
accuracy, but the difference is very small when compared to the singular algorithms. This makes
the union effective at increasing the detection rate of true positives while limiting the increase in
false positives.

Taking the intersection(∩) of different algorithms means that for each event the minimum
anomaly score is taken from each algorithm. This means that the event is only marked anomalous
if if all algorithms detect an anomaly for that event. This should result in a decrease in the amount
of false positives, but also decrease the amount of true positives. When we look at the data we can
see a significant decrease in the recall values when taking the intersection of different algorithms.
However, we can also see a decrease in precision when more algorithms are intersected. This
implies that most algorithms have more overlap in false positives than true positives. By taking
the intersection of more algorithms less anomalies are detected while more false positives remain,
resulting in a decrease in both precision and recall. As indicated by the increase in true negative
rate we can see that the intersection does indeed reduce the amount of false positives, however, as
indicated by the recall it also vastly reduces the amount of true positives. The intersection seems
much less effective at increasing the anomaly detection rate because it seems to reduce the amount
of true positives more than the amount of false positives.

37

8 Conclusions and Future Work

8.1 Scientific Evaluation
In our research we stated the following research question:

1. Can anomaly detection be performed for autonomously detecting anomalous behaviour of
variables in games while limiting the number of false positives and false negatives?

(a) Which algorithm achieves the best accuracy?

(b) What degree of variable deviation can we detect?

(c) What factors limit the number of false positives and false negatives?

In order to answer our main research questions we will evaluate our results in relation to our
sub questions.

8.1.1 (a) Which algorithm achieves the best accuracy?

We have observed that LOF has very good performance when analyzing results aggregated by all
players. For the 4 player and 1v4 player experiments LOF reached the highest f-score. However,
it showed no improvement in performance when singular players were tested against the average
of all players. LOCI achieved the highest f-score for the 1v10 players experiment. This implies
that LOCI performs the best with a good enough baseline. Based on our results, when comparing
singular players to a properly established baseline LOCI is the best choice. When classifying the
aggregated values of all players as a whole, LOF is the best choice.

KNN showed decent performance overall, coming in as either second or a shared first place for
our experiments. This shows the great versatility of KNN, having a decent performance in many
scenarios. The Self Organizing Map often came in last with the worst f-score of all algorithms.
Out of all algorithms, SOM was the most stable for all experiments. This would imply that it was
good at establishing the same rough baseline for the relations between all the tracked variables. It
just wasn’t as effective at detecting if values deviated from this baseline.

8.1.2 (b) What degree of variable deviation can we detect?

Our experiments showed that anomaly sizes of 100% and 200% were often too small to detect. For
the 1v10 experiment LOCI was able to detect some anomalies for an anomaly size of 200%, which
shows that given a good enough baseline it is possible to detect small deviations to some degree.
However, it was only once we increased the anomaly score to 1000% we were able to properly
perform anomaly detection, commonly achieving an F-score of around 0.2.

8.1.3 (c) What factors limit the number of false positives and false negatives?

From our results we observed that there is a significant difference in detection rates for the number
of players. For most algorithms tested, detection rates were much lower when observing the
aggregated values of many players at a time. The more players observed at a time, the harder it
gets to detect anomalies occurring in one player. Most algorithms were affected positively when
comparing singular players to a baseline established by taking the average of all players. It seems
that a strong baseline is an important factor in the number of false positives and false negatives.

We have also tested if the threshold of the sigmoid function influences the results. Our results
imply that the threshold has little to no effect on the number of false positives and false negatives.

Window size does have an impact on detection rates. Espectially KNN and LOF were affected,
where KNN showed better performance with larger window sizes and LOF showed worse perfor-
mance for larger window sizes. LOCI was shown to improve slightly with larger window sizes.
SOM remained consistent regardless of window size.

KNN and LOF require the input of a k-value. We tested the influence of this parameter k on
the results. Our results imply that KNN performs slightly worse for a k-value that becomes too
large. LOF showed an opposite effect where a larger k-value resulted in better performance.

Finally we observed combinations of different algorithms. Taking the intersections of different
algorithms influenced the detection rates negatively. From our results we can see that the inter-
sections mostly increase the false negatives while having just a slight decrease in false positives.

38

We have shown that taking a union of KNN and LOCI and KNN, LOF and LOCI greatly reduces
false negative rate while limiting the increase of false positives. This implies that taking the union
positively influences the number of false positives and false negatives.

8.1.4 Main Research Question

Our experiments have shown that anomaly detection can autonomously detect anomalous be-
haviour of variables in OpenTTD. Our false positive rate was generally lower van 5% with an
accuracy of around 90%, meaning that 90% of the events were correctly labeled. In most of our
experiments about 15%-20% of the inserted anomalies could be detected. The best results were
achieved by taking the union of all our algorithms with an f-score of 0.27 and an accuracy of around
90%.

We can conclude from our results that it is indeed possible to employ anomaly detection for
autonomously detecting anomalous behaviour of variables in games.

8.2 Conclusion
In this thesis we have looked at 4 different anomaly detection algorithms testing them in several
different scenarios. We evaluated their performance of autonomously detecting anomalies in vari-
ables in the game Open Transport Tycoon Deluxe (OpenTTD). We compared their performance
using their f-score, accuracy score and various other performance measures. It was possible to au-
tonomously detect about 15-20% of the inserted anomalies in the game with about a 90% accuracy
rate without the need for training data. For situations where a single player could be evaluated
against a baseline established by multiple players LOCI had the best performance, given that there
were enough players to establish a proper baseline. For situations where the data of all players
combined was evaluated LOF showed the best performance. KNN showed good performance over-
all, though it was never the single best performing algorithm for any of the scenarios tested. SOM
was able to do some anomaly detection, but was shown to be the worst performing algorithm.

This thesis has made contributions to both the scientific and the business domains. The scien-
tific contributions were the following:

• Compared both fundamental and state-of-the-art anomaly detection algorithms in a set dif-
ferent scenarios using various different parameter settings.

• Showed what parameters have the most influence on the results.

• Presented a framework for performing anomaly detection on a selection of variables from an
interactive game

The contributions to the business domain were:

• Laid the foundation for autonomous anomaly detection in games.

• Implemented a generic, modular, flexible and easily integratable framework for autonomously
detecting anomalies in various variables selected from a game with <5% false positive rate.

8.3 Discussion
Due to time constraints it was only possible to do a case-study for a single game. While we
have shown that autonomous anomaly detection is possible for the game tested, it is desirable
to test this for different games and genres as well. To improve generalizability, we have made as
little assumptions as possible about the data and the relations of the variables. However, from
a business perspective, it is important for the algorithm to be applicable to other games as well.
Therefore, we would still need to test whether our results transfer to different games and genres.
We can speculate that the framework will behave similarly for other strategy games as the data
will likely have similar structures. However, the structure of the data will differ greatly between
different games and genres. With more chaotic data it will be harder to detect anomalies. It would
require further study to see if our framework performs similarly on other genres such as shooters
or role-playing games.

To compare the different algorithms the F-score was used. This gives equal weight to the
precision and recall scores of each algorithm. However, for the applicability of this framework it

39

might be more important to look at the false positive rate which is contained in the precision. In
practice it would cost man-hours to check every report. Having little false positives would mean
less man-hours wasted, making the precision of the algorithm an important part. Thus, it might
be interesting to look at different accuracy measures which put more emphasis on the false positive
rate.

Finally, we zoom in on the false positives that occurred. We noticed false positives often
occurred when a player suddenly purchased a lot of roads or railway tracks at once. This is
considered normal, expected behaviour in the game but for the anomaly detection algorithms
such a large purchase is considered an outlier. With the variables we tracked it was very hard to
distinguish this from anomalous behaviour. Theoretically, by tracking more variables such as the
money spent or some relation between railway tracks earned and money spent such occurrences
would not be marked as outlier. However, this requires the insight that such a problem exists and
as such introduces a new challenge: how to determine which variables/relations should be tracked?
This would require further study into the problem of feature selection.

8.4 Future Work
We explored a broad range of scenarios and parameter settings for various algorithms. However,
while the false positive rate is quite low only about 15-20% of the anomalies could be detected.
This obviously leaves room for improvement.

One possibility would be to employ a more neural network based approach to our framework.
Currently, all charts containing variable combinations have the exact same weight. However, it is
possible that some variable combinations have a stronger relation than others which would make
their results more reliable than other charts. Assigning weights to different charts according to
this reliability might improve our detection rates.

Another possibility for improving detection rates could be using training data. Future work
might look into the improvements that can be made by using supervised or semi-supervised learning
instead of completely unsupervised learning.

For our thesis we manually selected variables from the game representing the game state. It
could be interesting to look into automatically detecting the most influential variables of a game.
This would make integration even easier as the developers wouldn’t even have to do a manual
feature selection of their product.

As we have stated before, we only tested one game. Testing this framework on various different
games could show more about the framework’s versatility.

Finally, other outlier detection algorithms exist. Better results might be achieved by using
different anomaly detection algorithms. Our research mainly contained clustering algorithms.
Future work might focus on different types algorithms or perhaps test more advanced clustering
algorithms.

References
[1] Prowler.io. https://www.prowler.io/blog/ai-tools-for-automated-game-testing.

[2] Simple ai - openttd. https://wiki.openttd.org/AI:SimpleAI.

[3] M. K. Albertini and R. F. de Mello. A self-organizing neural network for detecting novelties.
pages 462–466, 2007.

[4] M. Amer, M. Goldstein, and S. Abdennadher. Enhancing one-class support vector machines
for unsupervised anomaly detection. pages 8–15, 2013.

[5] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: identifying density-based local
outliers. 29(2):93–104, 2000.

[6] T.-D. Cao, T.-T. Phan-Quang, P. Felix, and R. Castanet. Automated runtime verification for
web services. pages 76–82, 2010.

[7] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM computing
surveys (CSUR), 41(3):15, 2009.

40

https://www.prowler.io/blog/ai-tools-for-automated-game-testing
https://wiki.openttd.org/AI:SimpleAI

[8] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of haskell
programs. Acm sigplan notices, 46(4):53–64, 2011.

[9] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and
C. Xiao. The daikon system for dynamic detection of likely invariants. Science of computer
programming, 69(1-3):35–45, 2007.

[10] A. I. Esparcia-Alcázar, F. Almenar, M. Martínez, U. Rueda, and T. Vos. Q-learning strategies
for action selection in the testar automated testing tool. 6th International Conferenrence on
Metaheuristics and nature inspired computing (META 2016), pages 130–137, 2016.

[11] B. T. Fine. Unsupervised anomaly detection with minimal sensing. page 60, 2009.

[12] G. Fraser and A. Arcuri. Evosuite: automatic test suite generation for object-oriented software.
pages 416–419, 2011.

[13] A. Grover. Anomaly detection for application log data. 2018.

[14] D. M. Hawkins. Identification of outliers. 11, 1980.

[15] M. A. Hayes and M. A. Capretz. Contextual anomaly detection framework for big sensor
data. Journal of Big Data, 2(1):2, 2015.

[16] S. He, J. Zhu, P. He, and M. R. Lyu. Experience report: System log analysis for anomaly
detection. pages 207–218, 2016.

[17] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector machines.
IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.

[18] D. Heckerman. A tutorial on learning with bayesian networks. pages 301–354, 1998.

[19] H. Huang, H. Qin, S. Yoo, and D. Yu. Local anomaly descriptor: a robust unsupervised
algorithm for anomaly detection based on diffusion space. pages 405–414, 2012.

[20] M. Jiang, O. W. Visser, I. Prasetya, and A. Iosup. A mirroring architecture for sophisticated
mobile games using computation-offloading. Concurrency and Computation: Practice and
Experience, 30(17):e4494, 2018.

[21] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

[22] P. Kostjens. Anomaly detection in application log data. 2016.

[23] M. Markou and S. Singh. Novelty detection: a review—part 1: statistical approaches. Signal
processing, 83(12):2481–2497, 2003.

[24] M. Markou and S. Singh. Novelty detection: a review—part 2:: neural network based ap-
proaches. Signal processing, 83(12):2499–2521, 2003.

[25] D. Miljković. Review of novelty detection methods. pages 593–598, 2010.

[26] T. T. Nguyen, A. T. Nguyen, T. A. H. Nguyen, L. T. Vu, Q. U. Nguyen, and L. D. Hai.
Unsupervised anomaly detection in online game. pages 4–10, 2015.

[27] T. Olsson and A. Holst. A probabilistic approach to aggregating anomalies for unsupervised
anomaly detection with industrial applications. 2015.

[28] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier detection
using the local correlation integral. pages 315–326, 2003.

[29] A. Patcha and J.-M. Park. An overview of anomaly detection techniques: Existing solutions
and latest technological trends. Computer networks, 51(12):3448–3470, 2007.

[30] J. Pfau, J. D. Smeddinck, and R. Malaka. Automated game testing with icarus: Intelligent
completion of adventure riddles via unsupervised solving. pages 153–164, 2017.

[31] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. IEEE, 1977.

41

[32] I. W. B. Prasetya. T3, a combinator-based random testing tool for java: benchmarking. pages
101–110, 2013.

[33] I. W. B. Prasetya and M. A. Tran. Neural networks as artificial specifications. pages 135–141,
2018.

[34] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large
data sets. 29(2):427–438, 2000.

[35] C. Schaefer, H. Do, and B. M. Slator. Crushinator: A framework towards game-independent
testing. pages 726–729, 2013.

[36] S. Shen, O. Visser, and A. Iosup. Rtsenv: An experimental environment for real-time strategy
games. pages 1–6, 2011.

[37] A. Valdes and K. Skinner. Adaptive, model-based monitoring for cyber attack detection. pages
80–93, 2000.

[38] H. R. Vanda Vintrova, Tomas Vintr. Comparison of different calculations of the density-
based local outlier factor. International Conference on Advances in Information Mining and
Management, 2012.

[39] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne. On-line unsupervised outlier detec-
tion using finite mixtures with discounting learning algorithms. Data Mining and Knowledge
Discovery, 8(3):275–300, 2004.

[40] S. F. Yeung and J. C. Lui. Dynamic bayesian approach for detecting cheats in multi-player
online games. Multimedia Systems, 14(4):221–236, 2008.

A Results

A.1 Players: 1 | Anomaly Size: 100% | Threshold: e-15 | Window size:
MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 5 12 114 0.000 0.000 0.000 0.958 0.870
LOF 0 5 12 114 0.000 0.000 0.000 0.958 0.870
LOCI 0 0 12 119 0.000 0.000 0.000 1.000 0.908
SOM 1 1 11 118 0.500 0.083 0.143 0.992 0.908

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 1 9 67 0.000 0.000 0.000 0.985 0.870
LOF 0 1 9 67 0.000 0.000 0.000 0.985 0.870
LOCI 0 1 9 67 0.000 0.000 0.000 0.985 0.870
SOM 0 2 9 66 0.000 0.000 0.000 0.971 0.857

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 6 10 120 0.143 0.091 0.111 0.952 0.883
LOF 0 9 11 117 0.000 0.000 0.000 0.929 0.854
LOCI 1 4 10 122 0.200 0.091 0.125 0.968 0.898
SOM 0 2 11 124 0.000 0.000 0.000 0.984 0.905

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 4 4 79 0.000 0.000 0.000 0.952 0.908
LOF 0 4 4 79 0.000 0.000 0.000 0.952 0.908
LOCI 0 3 4 80 0.000 0.000 0.000 0.964 0.920
SOM 0 3 4 80 0.000 0.000 0.000 0.964 0.920

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 2 8 50 0.000 0.000 0.000 0.962 0.833

42

LOF 0 2 8 50 0.000 0.000 0.000 0.962 0.833
LOCI 0 1 8 51 0.000 0.000 0.000 0.981 0.850
SOM 0 1 8 51 0.000 0.000 0.981 0.850

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 2 8 50 0.000 0.000 0.000 0.962 0.833
LOF 0 7 15 87 0.000 0.000 0.000 0.926 0.798
LOCI 0 2 15 92 0.000 0.000 0.000 0.979 0.844
SOM 0 2 15 92 0.000 0.000 0.000 0.979 0.844

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 4 13 95 0.000 0.000 0.000 0.960 0.848
LOF 0 5 13 94 0.000 0.000 0.000 0.949 0.839
LOCI 0 0 13 99 0.000 0.000 0.000 1.000 0.884
SOM 2 2 11 97 0.500 0.154 0.235 0.980 0.884

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 2 10 48 0.000 0.000 0.000 0.960 0.800
LOF 0 5 10 45 0.000 0.000 0.000 0.900 0.750
LOCI 0 1 10 49 0.000 0.000 0.000 0.980 0.817
SOM 0 3 10 47 0.000 0.000 0.000 0.940 0.783

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 5 14 93 0.000 0.000 0.000 0.949 0.830
LOF 0 6 14 92 0.000 0.000 0.000 0.939 0.821
LOCI 0 1 14 97 0.000 0.000 0.000 0.990 0.866
SOM 1 3 13 95 0.250 0.071 0.111 0.969 0.857

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 3 4 65 0.000 0.000 0.000 0.956 0.903
LOF 0 2 4 66 0.000 0.000 0.000 0.971 0.917
LOCI 0 2 4 66 0.000 0.000 0.000 0.971 0.917
SOM 0 0 4 68 0.000 0.000 0.000 1.000 0.944

A.2 Players: 1 | Anomaly Size: 200% | Threshold: e-15 | Window size:
MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 5 12 115 0.000 0.000 0.000 0.958 0.871
LOF 0 4 12 116 0.000 0.000 0.000 0.967 0.879
LOCI 0 1 12 119 0.000 0.000 0.000 0.992 0.902
SOM 1 1 11 119 0.500 0.083 0.143 0.992 0.909

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 1 9 65 0.000 0.000 0.000 0.985 0.867
LOF 1 1 8 65 0.500 0.111 0.182 0.985 0.880
LOCI 0 1 9 65 0.000 0.000 0.000 0.985 0.867
SOM 0 2 9 64 0.000 0.000 0.000 0.970 0.853

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 6 10 123 0.143 0.091 0.111 0.953 0.886

43

LOF 2 9 9 120 0.182 0.182 0.182 0.930 0.871
LOCI 2 4 9 125 0.333 0.182 0.235 0.969 0.907
SOM 2 3 9 126 0.400 0.182 0.250 0.977 0.914

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 4 4 80 0.000 0.000 0.000 0.952 0.909
LOF 0 4 4 80 0.000 0.000 0.000 0.952 0.909
LOCI 0 3 4 81 0.000 0.000 0.000 0.964 0.920
SOM 0 3 4 81 0.000 0.000 0.000 0.964 0.920

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 2 8 48 0.000 0.000 0.000 0.960 0.828
LOF 1 3 7 47 0.250 0.125 0.167 0.940 0.828
LOCI 0 1 8 49 0.000 0.000 0.000 0.980 0.845
SOM 0 1 8 49 0.000 0.000 0.000 0.980 0.845

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 7 15 89 0.000 0.000 0.000 0.927 0.802
LOF 0 7 15 89 0.000 0.000 0.000 0.927 0.802
LOCI 0 2 15 94 0.000 0.000 0.000 0.979 0.847
SOM 1 2 14 94 0.333 0.067 0.111 0.979 0.856

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 5 13 98 0.000 0.000 0.000 0.951 0.845
LOF 0 5 13 98 0.000 0.000 0.000 0.951 0.845
LOCI 0 2 13 101 0.000 0.000 0.000 0.981 0.871
SOM 2 2 11 101 0.500 0.154 0.235 0.981 0.888

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 2 10 47 0.000 0.000 0.000 0.959 0.797
LOF 1 6 9 43 0.143 0.100 0.118 0.878 0.746
LOCI 0 1 10 48 0.000 0.000 0.000 0.980 0.814
SOM 0 3 10 46 0.000 0.000 0.000 0.939 0.780

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 5 13 91 0.167 0.071 0.100 0.948 0.836
LOF 0 4 14 92 0.000 0.000 0.000 0.958 0.836
LOCI 0 1 14 95 0.000 0.000 0.000 0.990 0.864
SOM 1 3 13 93 0.250 0.071 0.111 0.969 0.855

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 3 4 66 0.000 0.000 0.000 0.957 0.904
LOF 0 3 4 66 0.000 0.000 0.000 0.957 0.904
LOCI 0 2 4 67 0.000 0.000 0.000 0.971 0.918
SOM 0 0 4 68 0.000 0.000 0.000 1.000 0.944

A.3 Players: 1 | Anomaly Size: 1000% | Threshold: e-15 | Window size:
MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 6 3 114 0.600 0.750 0.667 0.950 0.932

44

LOF 6 3 8 117 0.667 0.429 0.522 0.975 0.918
LOCI 3 1 9 119 0.750 0.250 0.375 0.992 0.924
SOM 8 2 4 118 0.800 0.667 0.727 0.983 0.955

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 3 8 65 0.250 0.111 0.154 0.956 0.857
LOF 1 4 8 64 0.200 0.111 0.143 0.941 0.844
LOCI 0 1 9 67 0.000 0.000 0.000 0.985 0.870
SOM 1 4 8 64 0.200 0.111 0.143 0.941 0.844

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 7 5 4 125 0.583 0.636 0.609 0.962 0.936
LOF 5 4 6 126 0.556 0.455 0.500 0.969 0.929
LOCI 2 1 9 129 0.667 0.182 0.286 0.992 0.929
SOM 3 3 8 127 0.500 0.273 0.353 0.977 0.922

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 4 4 80 0.000 0.000 0.000 0.952 0.909
LOF 1 4 3 80 0.200 0.250 0.222 0.952 0.920
LOCI 0 3 4 81 0.000 0.000 0.000 0.964 0.920
SOM 0 3 4 81 0.000 0.000 0.000 0.964 0.920

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 2 7 50 0.333 0.125 0.182 0.962 0.850
LOF 1 3 7 49 0.250 0.125 0.167 0.942 0.833
LOCI 0 1 8 51 0.000 0.000 0.000 0.981 0.850
SOM 0 1 8 51 0.000 0.000 0.000 0.981 0.850

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 5 14 91 0.167 0.067 0.095 0.948 0.829
LOF 1 7 14 89 0.125 0.067 0.087 0.927 0.811
LOCI 0 1 15 95 0.000 0.000 0.000 0.990 0.856
SOM 1 3 14 93 0.250 0.067 0.105 0.969 0.847

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 5 12 98 0.167 0.077 0.105 0.951 0.853
LOF 3 5 10 98 0.375 0.231 0.286 0.951 0.871
LOCI 1 1 12 102 0.500 0.077 0.133 0.990 0.888
SOM 2 2 11 101 0.500 0.154 0.235 0.981 0.888

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 3 7 49 0.500 0.300 0.375 0.942 0.839
LOF 3 4 7 48 0.429 0.300 0.353 0.923 0.823
LOCI 1 1 9 51 0.500 0.100 0.167 0.981 0.839
SOM 1 4 9 48 0.200 0.100 0.133 0.923 0.790

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 3 11 95 0.500 0.214 0.300 0.969 0.875
LOF 2 4 12 94 0.333 0.143 0.200 0.959 0.857
LOCI 1 2 13 96 0.333 0.071 0.118 0.980 0.866
SOM 1 3 13 95 0.250 0.071 0.111 0.969 0.857

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 2 4 67 0.000 0.000 0.000 0.971 0.918
LOF 0 3 4 66 0.000 0.000 0.000 0.957 0.904
LOCI 0 2 4 67 0.000 0.000 0.000 0.971 0.918
SOM 0 0 4 69 0.000 0.000 0.000 1.000 0.945

45

A.4 Players: 4 | Anomaly Size: 100% | Threshold: e-15 | Window size:
MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 12 30 323 0.000 0.000 0.000 0.964 0.885
LOF 0 12 30 323 0.000 0.000 0.000 0.964 0.885
LOCI 0 8 30 327 0.000 0.000 0.000 0.976 0.896
SOM 4 7 26 328 0.364 0.133 0.195 0.979 0.910

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 4 25 247 0.200 0.038 0.065 0.984 0.895
LOF 1 7 25 244 0.125 0.038 0.059 0.972 0.884
LOCI 0 9 26 242 0.000 0.000 0.000 0.964 0.874
SOM 0 8 26 243 0.000 0.000 0.000 0.968 0.877

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 9 31 266 0.182 0.061 0.091 0.967 0.870
LOF 2 6 31 269 0.250 0.061 0.098 0.978 0.880
LOCI 2 9 31 266 0.182 0.061 0.091 0.967 0.870
SOM 0 7 33 268 0.000 0.000 0.000 0.975 0.870

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 8 22 262 0.000 0.000 0.000 0.970 0.897
LOF 1 10 21 260 0.091 0.045 0.061 0.963 0.894
LOCI 0 11 22 259 0.000 0.000 0.000 0.959 0.887
SOM 0 6 22 264 0.000 0.000 0.000 0.978 0.904

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 20 42 348 0.000 0.000 0.000 0.946 0.849
LOF 1 22 41 346 0.043 0.024 0.031 0.940 0.846
LOCI 0 11 42 357 0.000 0.000 0.000 0.970 0.871
SOM 0 4 42 364 0.000 0.000 0.000 0.989 0.888

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 2 27 250 0.500 0.069 0.121 0.992 0.897
LOF 2 4 27 248 0.333 0.069 0.114 0.984 0.890
LOCI 2 7 27 245 0.222 0.069 0.105 0.972 0.879
SOM 0 2 29 250 0.000 0.000 0.000 0.992 0.890

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 7 30 346 0.000 0.000 0.000 0.980 0.903
LOF 0 9 30 344 0.000 0.000 0.000 0.975 0.898
LOCI 0 10 30 343 0.000 0.000 0.000 0.972 0.896
SOM 1 25 29 328 0.038 0.033 0.036 0.929 0.859

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 3 34 331 0.400 0.056 0.098 0.991 0.900
LOF 3 4 33 333 0.429 0.083 0.140 0.988 0.901
LOCI 2 3 34 331 0.400 0.056 0.098 0.991 0.900
SOM 1 6 35 328 0.143 0.028 0.047 0.982 0.889

46

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 6 28 289 0.000 0.000 0.000 0.980 0.895
LOF 0 7 28 288 0.000 0.000 0.000 0.976 0.892
LOCI 0 7 28 288 0.000 0.000 0.000 0.976 0.892
SOM 1 8 27 287 0.111 0.036 0.054 0.973 0.892

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 9 38 312 0.100 0.026 0.041 0.972 0.869
LOF 1 11 38 310 0.083 0.026 0.039 0.966 0.864
LOCI 0 9 39 312 0.000 0.000 0.000 0.972 0.867
SOM 2 8 37 313 0.200 0.051 0.082 0.975 0.875

A.5 Players: 4 | Anomaly Size: 200% | Threshold: e-15 | Window size:
MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 12 30 320 0.000 0.000 0.000 0.964 0.884
LOF 0 10 30 322 0.000 0.000 0.000 0.970 0.890
LOCI 0 9 30 323 0.000 0.000 0.000 0.973 0.892
SOM 5 6 25 326 0.455 0.167 0.244 0.982 0.914

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 4 25 246 0.200 0.038 0.065 0.984 0.895
LOF 1 8 25 242 0.111 0.038 0.057 0.968 0.880
LOCI 0 9 26 241 0.000 0.000 0.000 0.964 0.873
SOM 0 8 26 242 0.000 0.000 0.000 0.968 0.877

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 9 31 261 0.182 0.061 0.091 0.967 0.868
LOF 2 6 31 264 0.250 0.061 0.098 0.978 0.878
LOCI 2 8 31 262 0.200 0.061 0.093 0.970 0.871
SOM 1 7 32 263 0.125 0.030 0.049 0.974 0.871

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 8 22 257 0.000 0.000 0.000 0.970 0.895
LOF 1 10 21 255 0.091 0.045 0.061 0.962 0.892
LOCI 1 11 21 254 0.083 0.045 0.059 0.958 0.889
SOM 2 7 20 258 0.222 0.091 0.129 0.974 0.906

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 18 42 353 0.000 0.000 0.000 0.951 0.855
LOF 1 20 41 351 0.048 0.024 0.032 0.946 0.852
LOCI 1 12 41 359 0.077 0.024 0.036 0.968 0.872
SOM 1 3 41 368 0.250 0.024 0.043 0.992 0.893

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 2 27 248 0.500 0.069 0.121 0.992 0.896
LOF 2 3 27 247 0.400 0.069 0.118 0.988 0.892
LOCI 2 6 27 244 0.250 0.069 0.108 0.976 0.882
SOM 1 2 28 248 0.333 0.034 0.063 0.992 0.892

47

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 7 30 347 0.000 0.000 0.000 0.980 0.904
LOF 1 9 29 345 0.100 0.033 0.050 0.975 0.901
LOCI 0 10 30 344 0.000 0.000 0.000 0.972 0.896
SOM 1 22 29 332 0.043 0.033 0.038 0.938 0.867

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 3 33 333 0.500 0.083 0.143 0.991 0.903
LOF 3 3 33 333 0.500 0.083 0.143 0.991 0.903
LOCI 2 3 34 333 0.400 0.056 0.098 0.991 0.901
SOM 1 7 35 329 0.125 0.028 0.045 0.979 0.887

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 6 28 289 0.000 0.000 0.000 0.980 0.895
LOF 0 7 28 288 0.000 0.000 0.000 0.976 0.892
LOCI 0 7 28 288 0.000 0.000 0.000 0.976 0.892
SOM 1 8 27 287 0.111 0.036 0.054 0.973 0.892

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 9 38 314 0.100 0.026 0.041 0.972 0.870
LOF 1 11 38 312 0.083 0.026 0.039 0.966 0.865
LOCI 0 8 39 315 0.000 0.000 0.000 0.975 0.870
SOM 2 8 37 315 0.200 0.051 0.082 0.975 0.876

A.6 Players: 4 | Anomaly Size: 1000% | Threshold: e-15 | Window size:
MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 7 27 328 0.300 0.100 0.150 0.979 0.907
LOF 8 12 22 323 0.400 0.267 0.320 0.964 0.907
LOCI 2 7 28 328 0.222 0.067 0.103 0.979 0.904
SOM 4 3 26 332 0.571 0.133 0.216 0.991 0.921

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 5 24 251 0.286 0.077 0.121 0.980 0.897
LOF 4 7 22 249 0.364 0.154 0.216 0.973 0.897
LOCI 1 7 25 249 0.125 0.038 0.059 0.973 0.887
SOM 2 9 24 247 0.182 0.077 0.108 0.965 0.883

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 6 30 271 0.333 0.091 0.143 0.978 0.884
LOF 3 7 30 270 0.300 0.091 0.140 0.975 0.881
LOCI 2 8 31 269 0.200 0.061 0.093 0.971 0.874
SOM 1 7 32 270 0.125 0.030 0.049 0.975 0.874

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 4 8 18 262 0.333 0.182 0.235 0.970 0.911
LOF 2 8 20 262 0.200 0.091 0.125 0.970 0.904
LOCI 3 11 19 259 0.214 0.136 0.167 0.959 0.897
SOM 3 6 19 264 0.333 0.136 0.194 0.978 0.914

48

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 8 11 34 363 0.421 0.190 0.262 0.971 0.892
LOF 7 11 35 363 0.389 0.167 0.233 0.971 0.889
LOCI 4 10 38 364 0.286 0.095 0.143 0.973 0.885
SOM 2 2 40 372 0.500 0.048 0.087 0.995 0.899

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 2 26 256 0.600 0.103 0.176 0.992 0.902
LOF 3 4 26 254 0.429 0.103 0.167 0.984 0.895
LOCI 1 5 28 253 0.167 0.034 0.057 0.981 0.885
SOM 0 2 29 256 0.000 0.000 0.000 0.992 0.892

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 8 28 349 0.200 0.067 0.100 0.978 0.907
LOF 3 10 27 347 0.231 0.100 0.140 0.972 0.904
LOCI 3 10 27 347 0.231 0.100 0.140 0.972 0.904
SOM 1 7 29 350 0.125 0.033 0.053 0.980 0.907

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 4 3 32 337 0.571 0.111 0.186 0.991 0.907
LOF 7 5 29 335 0.583 0.194 0.292 0.985 0.910
LOCI 3 5 33 335 0.375 0.083 0.136 0.985 0.899
SOM 1 7 35 333 0.125 0.028 0.045 0.979 0.888

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 6 28 294 0.000 0.000 0.000 0.980 0.896
LOF 4 10 24 290 0.286 0.143 0.190 0.967 0.896
LOCI 1 5 27 295 0.167 0.036 0.059 0.983 0.902
SOM 1 6 27 294 0.143 0.036 0.057 0.980 0.899

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 8 37 321 0.200 0.051 0.082 0.976 0.878
LOF 4 9 35 320 0.308 0.103 0.154 0.973 0.880
LOCI 1 8 38 321 0.111 0.026 0.042 0.976 0.875
SOM 2 6 37 323 0.250 0.051 0.085 0.982 0.883

A.7 Players: 1v4 | Anomaly Size: 100% | Threshold: e-15 | Window
size: MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 12 29 319 0.077 0.033 0.047 0.964 0.886
LOF 0 8 30 323 0.000 0.000 0.000 0.976 0.895
LOCI 1 13 29 318 0.071 0.033 0.045 0.961 0.884
SOM 4 9 26 322 0.308 0.133 0.186 0.973 0.903

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 6 25 238 0.143 0.038 0.061 0.975 0.885
LOF 1 6 25 238 0.143 0.038 0.061 0.975 0.885
LOCI 0 10 26 234 0.000 0.000 0.000 0.959 0.867
SOM 0 9 26 235 0.000 0.000 0.000 0.963 0.870

49

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 7 31 255 0.222 0.061 0.095 0.973 0.871
LOF 2 7 31 255 0.222 0.061 0.095 0.973 0.871
LOCI 3 10 30 252 0.231 0.091 0.130 0.962 0.864
SOM 0 6 33 256 0.000 0.000 0.000 0.977 0.868

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 9 22 260 0.000 0.000 0.000 0.967 0.893
LOF 0 9 22 260 0.000 0.000 0.000 0.967 0.893
LOCI 1 12 21 257 0.077 0.045 0.057 0.955 0.887
SOM 0 6 22 263 0.000 0.000 0.000 0.978 0.904

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 16 41 344 0.059 0.024 0.034 0.956 0.858
LOF 1 13 41 347 0.071 0.024 0.036 0.964 0.866
LOCI 1 12 41 348 0.077 0.024 0.036 0.967 0.868
SOM 0 6 42 354 0.000 0.000 0.000 0.983 0.881

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 2 27 246 0.500 0.069 0.121 0.992 0.895
LOF 2 2 27 246 0.500 0.069 0.121 0.992 0.895
LOCI 3 6 26 242 0.333 0.103 0.158 0.976 0.884
SOM 1 1 28 247 0.500 0.034 0.065 0.996 0.895

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 9 30 336 0.000 0.000 0.000 0.974 0.896
LOF 0 9 30 336 0.000 0.000 0.000 0.974 0.896
LOCI 1 13 29 332 0.071 0.033 0.045 0.962 0.888
SOM 1 16 29 329 0.059 0.033 0.043 0.954 0.880

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 4 33 320 0.429 0.083 0.140 0.988 0.897
LOF 3 10 33 314 0.231 0.083 0.122 0.969 0.881
LOCI 2 12 34 312 0.143 0.056 0.080 0.963 0.872
SOM 2 7 34 317 0.222 0.056 0.089 0.978 0.886

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 6 28 287 0.000 0.000 0.000 0.980 0.894
LOF 0 5 28 288 0.000 0.000 0.000 0.983 0.897
LOCI 0 6 28 287 0.000 0.000 0.000 0.980 0.894
SOM 0 8 28 285 0.000 0.000 0.000 0.973 0.888

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 13 39 302 0.000 0.000 0.000 0.959 0.853
LOF 0 10 39 305 0.000 0.000 0.000 0.968 0.862
LOCI 0 12 39 303 0.000 0.000 0.000 0.962 0.856
SOM 2 11 37 304 0.154 0.051 0.077 0.965 0.864

A.8 Players: 1v4 | Anomaly Size: 200% | Threshold: e-15 | Window
size: MAX | k: 50%

50

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 12 29 316 0.077 0.033 0.047 0.963 0.885
LOF 2 11 28 317 0.154 0.067 0.093 0.966 0.891
LOCI 0 13 30 315 0.000 0.000 0.000 0.960 0.880
SOM 4 6 26 322 0.400 0.133 0.200 0.982 0.911

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 5 25 237 0.167 0.038 0.063 0.979 0.888
LOF 1 5 25 237 0.167 0.038 0.063 0.979 0.888
LOCI 0 9 26 233 0.000 0.000 0.000 0.963 0.869
SOM 0 8 26 234 0.000 0.000 0.000 0.967 0.873

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 7 31 251 0.222 0.061 0.095 0.973 0.869
LOF 2 6 31 252 0.250 0.061 0.098 0.977 0.873
LOCI 3 10 30 248 0.231 0.091 0.130 0.961 0.863
SOM 1 6 32 252 0.143 0.030 0.050 0.977 0.869

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 9 22 255 0.000 0.000 0.000 0.966 0.892
LOF 0 9 22 255 0.000 0.000 0.000 0.966 0.892
LOCI 1 12 21 252 0.077 0.045 0.057 0.955 0.885
SOM 2 6 20 258 0.250 0.091 0.133 0.977 0.909

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 16 40 348 0.111 0.048 0.067 0.956 0.862
LOF 2 13 40 351 0.133 0.048 0.070 0.964 0.869
LOCI 2 13 40 351 0.133 0.048 0.070 0.964 0.869
SOM 1 6 41 358 0.143 0.024 0.041 0.984 0.884

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 2 27 244 0.500 0.069 0.121 0.992 0.895
LOF 2 2 27 244 0.500 0.069 0.121 0.992 0.895
LOCI 3 6 26 240 0.333 0.103 0.158 0.976 0.884
SOM 2 1 27 245 0.667 0.069 0.125 0.996 0.898

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 9 30 337 0.000 0.000 0.000 0.974 0.896
LOF 1 9 29 337 0.100 0.033 0.050 0.974 0.899
LOCI 2 12 28 334 0.143 0.067 0.091 0.965 0.894
SOM 1 12 29 334 0.077 0.033 0.047 0.965 0.891

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 4 33 322 0.429 0.083 0.140 0.988 0.898
LOF 3 9 33 317 0.250 0.083 0.125 0.972 0.884
LOCI 2 12 34 314 0.143 0.056 0.080 0.963 0.873
SOM 2 7 34 319 0.222 0.056 0.089 0.979 0.887

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 6 28 287 0.000 0.000 0.000 0.980 0.894
LOF 0 5 28 288 0.000 0.000 0.000 0.983 0.897
LOCI 0 7 28 286 0.000 0.000 0.000 0.976 0.891
SOM 1 9 27 284 0.100 0.036 0.053 0.969 0.888

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 13 39 304 0.000 0.000 0.000 0.959 0.854
LOF 0 10 39 307 0.000 0.000 0.000 0.968 0.862
LOCI 1 11 38 306 0.083 0.026 0.039 0.965 0.862

51

SOM 2 10 37 307 0.167 0.051 0.078 0.968 0.868

A.9 Players: 1v4 | Anomaly Size: 1000% | Threshold: e-15 | Window
size: MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 8 10 22 321 0.444 0.267 0.333 0.970 0.911
LOF 8 9 22 322 0.471 0.267 0.340 0.973 0.914
LOCI 4 7 26 324 0.364 0.133 0.195 0.979 0.909
SOM 4 3 26 328 0.571 0.133 0.216 0.991 0.920

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 7 23 241 0.300 0.115 0.167 0.972 0.891
LOF 2 5 24 243 0.286 0.077 0.121 0.980 0.894
LOCI 0 7 26 241 0.000 0.000 0.000 0.972 0.880
SOM 1 9 25 239 0.100 0.038 0.056 0.964 0.876

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 7 30 257 0.300 0.091 0.140 0.973 0.875
LOF 3 6 30 258 0.333 0.091 0.143 0.977 0.879
LOCI 2 10 31 254 0.167 0.061 0.089 0.962 0.862
SOM 1 6 32 258 0.143 0.030 0.050 0.977 0.872

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 4 9 18 260 0.308 0.182 0.229 0.967 0.907
LOF 2 9 20 260 0.182 0.091 0.121 0.967 0.900
LOCI 4 12 18 257 0.250 0.182 0.211 0.955 0.897
SOM 3 7 19 262 0.300 0.136 0.188 0.974 0.911

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 8 10 34 358 0.444 0.190 0.267 0.973 0.893
LOF 6 8 36 360 0.429 0.143 0.214 0.978 0.893
LOCI 7 9 35 359 0.438 0.167 0.241 0.976 0.893
SOM 2 3 40 365 0.400 0.048 0.085 0.992 0.895

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 2 26 252 0.600 0.103 0.176 0.992 0.901
LOF 3 3 26 251 0.500 0.103 0.171 0.988 0.898
LOCI 3 5 26 249 0.375 0.103 0.162 0.980 0.890
SOM 1 2 28 252 0.333 0.034 0.063 0.992 0.894

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 8 28 341 0.200 0.067 0.100 0.977 0.905
LOF 2 7 28 342 0.222 0.067 0.103 0.980 0.908
LOCI 4 12 26 337 0.250 0.133 0.174 0.966 0.900
SOM 1 5 29 344 0.167 0.033 0.056 0.986 0.910

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 5 4 31 326 0.556 0.139 0.222 0.988 0.904
LOF 7 7 29 323 0.500 0.194 0.280 0.979 0.902
LOCI 5 6 31 324 0.455 0.139 0.213 0.982 0.899

52

SOM 2 7 34 323 0.222 0.056 0.089 0.979 0.888

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 5 27 293 0.167 0.036 0.059 0.983 0.902
LOF 6 6 22 292 0.500 0.214 0.300 0.980 0.914
LOCI 2 7 26 291 0.222 0.071 0.108 0.977 0.899
SOM 1 6 27 292 0.143 0.036 0.057 0.980 0.899

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 10 36 313 0.231 0.077 0.115 0.969 0.873
LOF 5 8 34 315 0.385 0.128 0.192 0.975 0.884
LOCI 4 12 35 311 0.250 0.103 0.145 0.963 0.870
SOM 2 7 37 316 0.222 0.051 0.083 0.978 0.878

A.10 Players: 1v10 | Anomaly Size: 100% | Threshold: e-15 | Window
size: MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 5 27 86 779 0.156 0.055 0.081 0.967 0.874
LOF 3 17 88 789 0.150 0.033 0.054 0.979 0.883
LOCI 8 43 83 763 0.157 0.088 0.113 0.947 0.860
SOM 2 10 89 796 0.167 0.022 0.039 0.988 0.890

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 37 95 863 0.051 0.021 0.029 0.959 0.868
LOF 3 17 88 789 0.150 0.033 0.054 0.979 0.883
LOCI 2 46 95 854 0.042 0.021 0.028 0.949 0.859
SOM 0 7 97 893 0.000 0.000 0.000 0.992 0.896

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 20 74 789 0.048 0.013 0.021 0.975 0.894
LOF 0 16 75 793 0.000 0.000 0.000 0.980 0.897
LOCI 8 36 67 773 0.182 0.107 0.134 0.956 0.883
SOM 4 17 71 792 0.190 0.053 0.083 0.979 0.900

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 13 65 777 0.188 0.044 0.071 0.984 0.909
LOF 4 14 64 776 0.222 0.059 0.093 0.982 0.909
LOCI 4 33 64 757 0.108 0.059 0.076 0.958 0.887
SOM 3 14 65 776 0.176 0.044 0.071 0.982 0.908

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 30 72 834 0.032 0.014 0.019 0.965 0.891
LOF 2 16 71 838 0.111 0.027 0.044 0.981 0.906
LOCI 3 50 70 814 0.057 0.041 0.048 0.942 0.872
SOM 1 7 72 857 0.125 0.014 0.025 0.992 0.916

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 34 89 838 0.081 0.033 0.047 0.961 0.872
LOF 2 25 90 847 0.074 0.022 0.034 0.971 0.881
LOCI 8 47 84 825 0.145 0.087 0.109 0.946 0.864

53

SOM 9 18 83 854 0.333 0.098 0.151 0.979 0.895

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 6 22 81 826 0.214 0.069 0.104 0.974 0.890
LOF 6 18 81 830 0.250 0.069 0.108 0.979 0.894
LOCI 6 39 81 809 0.133 0.069 0.091 0.954 0.872
SOM 3 8 84 840 0.273 0.034 0.061 0.991 0.902

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 16 55 705 0.059 0.018 0.027 0.978 0.909
LOF 0 11 56 710 0.000 0.000 0.000 0.985 0.914
LOCI 2 28 54 693 0.067 0.036 0.047 0.961 0.894
SOM 2 10 54 711 0.167 0.036 0.059 0.986 0.918

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 14 84 725 0.000 0.000 0.000 0.981 0.881
LOF 1 12 83 727 0.077 0.012 0.021 0.984 0.885
LOCI 1 36 83 703 0.027 0.012 0.017 0.951 0.855
SOM 0 11 84 728 0.000 0.000 0.000 0.985 0.885

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 4 25 78 782 0.138 0.049 0.072 0.969 0.884
LOF 5 23 77 784 0.179 0.061 0.091 0.971 0.888
LOCI 5 41 77 766 0.109 0.061 0.078 0.949 0.867
SOM 3 5 79 802 0.375 0.037 0.067 0.994 0.906

A.11 Players: 1v10 | Anomaly Size: 200% | Threshold: e-15 | Window
size: MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 23 88 784 0.115 0.033 0.051 0.971 0.876
LOF 2 14 89 793 0.125 0.022 0.037 0.983 0.885
LOCI 8 39 83 768 0.170 0.088 0.116 0.952 0.864
SOM 2 9 89 798 0.182 0.022 0.039 0.989 0.891

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 37 94 865 0.075 0.031 0.044 0.959 0.869
LOF 3 29 94 873 0.094 0.031 0.047 0.968 0.877
LOCI 4 46 93 856 0.080 0.041 0.054 0.949 0.861
SOM 0 6 97 896 0.000 0.000 0.000 0.993 0.897

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 20 74 798 0.048 0.013 0.021 0.976 0.895
LOF 0 15 75 803 0.000 0.000 0.000 0.982 0.899
LOCI 11 33 64 785 0.250 0.147 0.185 0.960 0.891
SOM 7 15 68 803 0.318 0.093 0.144 0.982 0.907

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 13 65 783 0.188 0.044 0.071 0.984 0.910
LOF 4 8 64 788 0.333 0.059 0.100 0.990 0.917
LOCI 5 33 63 763 0.132 0.074 0.094 0.959 0.889

54

SOM 4 14 64 782 0.222 0.059 0.093 0.982 0.910

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 30 72 829 0.032 0.014 0.019 0.965 0.891
LOF 3 25 70 834 0.107 0.041 0.059 0.971 0.898
LOCI 4 51 69 808 0.073 0.055 0.063 0.941 0.871
SOM 2 6 71 853 0.250 0.027 0.049 0.993 0.917

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 4 33 88 841 0.108 0.043 0.062 0.962 0.875
LOF 2 25 90 849 0.074 0.022 0.034 0.971 0.881
LOCI 11 46 81 828 0.193 0.120 0.148 0.947 0.869
SOM 9 16 83 858 0.360 0.098 0.154 0.982 0.898

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 7 22 80 835 0.241 0.080 0.121 0.974 0.892
LOF 7 18 80 839 0.280 0.080 0.125 0.979 0.896
LOCI 10 38 77 819 0.208 0.115 0.148 0.956 0.878
SOM 2 8 85 849 0.200 0.023 0.041 0.991 0.901

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 14 55 706 0.067 0.018 0.028 0.981 0.911
LOF 0 9 56 711 0.000 0.000 0.000 0.988 0.916
LOCI 4 29 52 691 0.121 0.071 0.090 0.960 0.896
SOM 3 11 53 709 0.214 0.054 0.086 0.985 0.918

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 14 84 725 0.000 0.000 0.000 0.981 0.881
LOF 0 12 84 727 0.000 0.000 0.000 0.984 0.883
LOCI 3 36 81 703 0.077 0.036 0.049 0.951 0.858
SOM 0 9 84 730 0.000 0.000 0.000 0.988 0.887

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 4 25 78 784 0.138 0.049 0.072 0.969 0.884
LOF 5 23 77 786 0.179 0.061 0.091 0.972 0.888
LOCI 3 36 81 703 0.077 0.036 0.049 0.951 0.858
SOM 4 5 78 804 0.444 0.049 0.088 0.994 0.907

A.12 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window
size: MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 17 82 803 0.346 0.099 0.154 0.979 0.891
LOF 9 16 82 804 0.360 0.099 0.155 0.980 0.892
LOCI 15 30 76 790 0.333 0.165 0.221 0.963 0.884
SOM 7 6 84 814 0.538 0.077 0.135 0.993 0.901

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 13 28 84 889 0.317 0.134 0.188 0.969 0.890
LOF 9 18 88 899 0.333 0.093 0.145 0.980 0.895
LOCI 7 35 90 882 0.167 0.072 0.101 0.962 0.877

55

SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 11 19 64 806 0.367 0.147 0.210 0.977 0.908
LOF 9 13 66 812 0.409 0.120 0.186 0.984 0.912
LOCI 20 32 55 793 0.385 0.267 0.315 0.961 0.903
SOM 9 15 66 810 0.375 0.120 0.182 0.982 0.910

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 11 9 57 796 0.550 0.162 0.250 0.989 0.924
LOF 7 6 61 799 0.538 0.103 0.173 0.993 0.923
LOCI 10 22 58 783 0.313 0.147 0.200 0.973 0.908
SOM 7 13 61 792 0.350 0.103 0.159 0.984 0.915

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 29 64 846 0.237 0.123 0.162 0.967 0.902
LOF 6 22 67 853 0.214 0.082 0.119 0.975 0.906
LOCI 15 45 58 830 0.250 0.205 0.226 0.949 0.891
SOM 6 6 67 869 0.500 0.082 0.141 0.993 0.923

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 15 26 77 860 0.366 0.163 0.226 0.971 0.895
LOF 10 17 82 869 0.370 0.109 0.168 0.981 0.899
LOCI 30 44 62 842 0.405 0.326 0.361 0.950 0.892
SOM 9 15 83 871 0.375 0.098 0.155 0.983 0.900

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 16 22 71 840 0.421 0.184 0.256 0.974 0.902
LOF 11 15 76 847 0.423 0.126 0.195 0.983 0.904
LOCI 19 31 68 831 0.380 0.218 0.277 0.964 0.896
SOM 2 8 85 854 0.200 0.023 0.041 0.991 0.902

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 17 47 714 0.346 0.161 0.220 0.977 0.919
LOF 6 6 50 725 0.500 0.107 0.176 0.992 0.929
LOCI 8 26 48 705 0.235 0.143 0.178 0.964 0.906
SOM 5 13 51 718 0.278 0.089 0.135 0.982 0.919

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 14 75 739 0.391 0.107 0.168 0.981 0.894
LOF 5 13 79 740 0.278 0.060 0.098 0.983 0.890
LOCI 9 31 75 722 0.225 0.107 0.145 0.959 0.873
SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 19 73 799 0.321 0.110 0.164 0.977 0.898
LOF 9 18 73 800 0.333 0.110 0.165 0.978 0.899
LOCI 16 28 66 790 0.364 0.195 0.254 0.966 0.896
SOM 5 3 77 815 0.625 0.061 0.111 0.996 0.911

56

A.13 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-5 | Window
size: MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 8 14 83 806 0.364 0.088 0.142 0.983 0.894
LOF 9 13 82 807 0.409 0.099 0.159 0.984 0.896
LOCI 13 27 78 793 0.325 0.143 0.198 0.967 0.885
SOM 7 5 84 815 0.583 0.077 0.136 0.994 0.902

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 10 27 87 890 0.270 0.103 0.149 0.971 0.888
LOF 9 17 88 900 0.346 0.093 0.146 0.981 0.896
LOCI 7 33 90 884 0.175 0.072 0.102 0.964 0.879
SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 12 20 63 805 0.375 0.160 0.224 0.976 0.908
LOF 6 11 69 814 0.353 0.080 0.130 0.987 0.911
LOCI 20 30 55 795 0.400 0.267 0.320 0.964 0.906
SOM 9 15 66 810 0.375 0.120 0.182 0.982 0.910

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 12 11 56 794 0.522 0.176 0.264 0.986 0.923
LOF 7 6 61 799 0.538 0.103 0.173 0.993 0.923
LOCI 10 20 58 785 0.333 0.147 0.204 0.975 0.911
SOM 6 13 62 792 0.316 0.088 0.138 0.984 0.914

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 8 29 65 846 0.216 0.110 0.145 0.967 0.901
LOF 6 21 67 854 0.222 0.082 0.120 0.976 0.907
LOCI 11 41 62 834 0.212 0.151 0.176 0.953 0.891
SOM 6 7 67 868 0.462 0.082 0.140 0.992 0.922

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 14 26 78 860 0.350 0.152 0.212 0.971 0.894
LOF 10 15 82 871 0.400 0.109 0.171 0.983 0.901
LOCI 22 42 70 844 0.344 0.239 0.282 0.953 0.885
SOM 9 15 83 871 0.375 0.098 0.155 0.983 0.900

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 17 22 70 840 0.436 0.195 0.270 0.974 0.903
LOF 10 15 77 847 0.400 0.115 0.179 0.983 0.903
LOCI 19 30 68 832 0.388 0.218 0.279 0.965 0.897
SOM 3 7 84 855 0.300 0.034 0.062 0.992 0.904

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 7 16 49 715 0.304 0.125 0.177 0.978 0.917
LOF 5 5 51 726 0.500 0.089 0.152 0.993 0.929
LOCI 8 26 48 705 0.235 0.143 0.178 0.964 0.906
SOM 5 13 51 718 0.278 0.089 0.135 0.982 0.919

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 14 75 739 0.391 0.107 0.168 0.981 0.894
LOF 5 13 79 740 0.278 0.060 0.098 0.983 0.890
LOCI 9 31 75 722 0.225 0.107 0.145 0.959 0.873
SOM 0 7 84 746 0.000 0.000 0.000 0.991 0.891

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy

57

KNN 9 19 73 799 0.321 0.110 0.164 0.977 0.898
LOF 8 17 74 801 0.320 0.098 0.150 0.979 0.899
LOCI 14 28 68 790 0.333 0.171 0.226 0.966 0.893
SOM 6 4 76 814 0.600 0.073 0.130 0.995 0.911

A.14 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-50 | Window
size: MAX | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 17 82 803 0.346 0.099 0.154 0.979 0.891
LOF 9 19 82 801 0.321 0.099 0.151 0.977 0.889
LOCI 24 37 67 783 0.393 0.264 0.316 0.955 0.886
SOM 8 7 83 813 0.533 0.088 0.151 0.991 0.901

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 13 31 84 886 0.295 0.134 0.184 0.966 0.887
LOF 9 24 88 893 0.273 0.093 0.138 0.974 0.890
LOCI 9 36 88 881 0.200 0.093 0.127 0.961 0.878
SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 11 20 64 805 0.355 0.147 0.208 0.976 0.907
LOF 9 13 66 812 0.409 0.120 0.186 0.984 0.912
LOCI 20 32 55 793 0.385 0.267 0.315 0.961 0.903
SOM 9 15 66 810 0.375 0.120 0.182 0.982 0.910

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 11 10 57 795 0.524 0.162 0.247 0.988 0.923
LOF 7 7 61 798 0.500 0.103 0.171 0.991 0.922
LOCI 10 22 58 783 0.313 0.147 0.200 0.973 0.908
SOM 7 13 61 792 0.350 0.103 0.159 0.984 0.915

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 10 31 63 844 0.244 0.137 0.175 0.965 0.901
LOF 7 23 66 852 0.233 0.096 0.136 0.974 0.906
LOCI 25 48 48 827 0.342 0.342 0.342 0.945 0.899
SOM 6 6 67 869 0.500 0.082 0.141 0.993 0.923

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 14 26 78 860 0.350 0.152 0.212 0.971 0.894
LOF 10 17 82 869 0.370 0.109 0.168 0.981 0.899
LOCI 30 44 62 842 0.405 0.326 0.361 0.950 0.892
SOM 9 13 83 873 0.409 0.098 0.158 0.985 0.902

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 16 22 71 840 0.421 0.184 0.256 0.974 0.902
LOF 11 15 76 847 0.423 0.126 0.195 0.983 0.904
LOCI 23 37 64 825 0.383 0.264 0.313 0.957 0.894
SOM 2 7 85 855 0.222 0.023 0.042 0.992 0.903

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy

58

KNN 9 17 47 714 0.346 0.161 0.220 0.977 0.919
LOF 7 13 49 718 0.350 0.125 0.184 0.982 0.921
LOCI 9 27 47 704 0.250 0.161 0.196 0.963 0.906
SOM 8 15 48 716 0.348 0.143 0.203 0.979 0.920

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 14 75 739 0.391 0.107 0.168 0.981 0.894
LOF 6 13 78 740 0.316 0.071 0.117 0.983 0.891
LOCI 10 33 74 720 0.233 0.119 0.157 0.956 0.872
SOM 1 11 83 742 0.083 0.012 0.021 0.985 0.888

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 20 73 798 0.310 0.110 0.162 0.976 0.897
LOF 8 18 74 800 0.308 0.098 0.148 0.978 0.898
LOCI 21 29 61 789 0.420 0.256 0.318 0.965 0.900
SOM 6 4 76 814 0.600 0.073 0.130 0.995 0.911

A.15 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window
size: 20 | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 11 88 809 0.214 0.033 0.057 0.987 0.891
LOF 20 27 71 793 0.426 0.220 0.290 0.967 0.892
LOCI 10 18 81 802 0.357 0.110 0.168 0.978 0.891
SOM 7 1 84 819 0.875 0.077 0.141 0.999 0.907

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 8 96 909 0.111 0.010 0.019 0.991 0.897
LOF 17 32 80 885 0.347 0.175 0.233 0.965 0.890
LOCI 12 16 85 901 0.429 0.124 0.192 0.983 0.900
SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 5 7 70 818 0.417 0.067 0.115 0.992 0.914
LOF 16 32 59 793 0.333 0.213 0.260 0.961 0.899
LOCI 12 18 63 807 0.400 0.160 0.229 0.978 0.910
SOM 9 14 66 811 0.391 0.120 0.184 0.983 0.911

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 8 4 60 801 0.667 0.118 0.200 0.995 0.927
LOF 16 26 52 779 0.381 0.235 0.291 0.968 0.911
LOCI 7 10 61 795 0.412 0.103 0.165 0.988 0.919
SOM 6 13 62 792 0.316 0.088 0.138 0.984 0.914

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 3 9 70 866 0.250 0.041 0.071 0.990 0.917
LOF 15 27 58 848 0.357 0.205 0.261 0.969 0.910
LOCI 7 16 66 859 0.304 0.096 0.146 0.982 0.914
SOM 5 5 68 870 0.500 0.068 0.120 0.994 0.923

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy

59

KNN 6 8 86 878 0.429 0.065 0.113 0.991 0.904
LOF 17 27 75 859 0.386 0.185 0.250 0.970 0.896
LOCI 14 27 78 859 0.341 0.152 0.211 0.970 0.893
SOM 9 11 83 875 0.450 0.098 0.161 0.988 0.904

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 6 6 81 856 0.500 0.069 0.121 0.993 0.908
LOF 15 27 72 835 0.357 0.172 0.233 0.969 0.896
LOCI 11 21 76 841 0.344 0.126 0.185 0.976 0.898
SOM 3 8 84 854 0.273 0.034 0.061 0.991 0.903

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 4 4 52 727 0.500 0.071 0.125 0.995 0.929
LOF 9 26 47 705 0.257 0.161 0.198 0.964 0.907
LOCI 8 19 48 712 0.296 0.143 0.193 0.974 0.915
SOM 5 15 51 716 0.250 0.089 0.132 0.979 0.916

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 11 82 742 0.154 0.024 0.041 0.985 0.889
LOF 10 25 74 728 0.286 0.119 0.168 0.967 0.882
LOCI 6 24 78 729 0.200 0.071 0.105 0.968 0.878
SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 6 7 76 811 0.462 0.073 0.126 0.991 0.908
LOF 23 24 59 794 0.489 0.280 0.357 0.971 0.908
LOCI 10 19 72 799 0.345 0.122 0.180 0.977 0.899
SOM 7 4 75 814 0.636 0.085 0.151 0.995 0.912

A.16 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window
size: 75 | k: 50%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 2 4 89 816 0.333 0.022 0.041 0.995 0.898
LOF 11 19 80 801 0.367 0.121 0.182 0.977 0.891
LOCI 16 25 75 795 0.390 0.176 0.242 0.970 0.890
SOM 7 6 84 814 0.538 0.077 0.135 0.993 0.901

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 0 4 97 913 0.000 0.000 0.000 0.996 0.900
LOF 8 20 89 897 0.286 0.082 0.128 0.978 0.893
LOCI 2 36 95 866 0.053 0.021 0.030 0.960 0.869
SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 5 8 70 817 0.385 0.067 0.114 0.990 0.913
LOF 12 19 63 806 0.387 0.160 0.226 0.977 0.909
LOCI 14 32 61 793 0.304 0.187 0.231 0.961 0.897
SOM 9 14 66 811 0.391 0.120 0.184 0.983 0.911

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy

60

KNN 4 6 64 799 0.400 0.059 0.103 0.993 0.920
LOF 8 14 60 791 0.364 0.118 0.178 0.983 0.915
LOCI 11 17 57 788 0.393 0.162 0.229 0.979 0.915
SOM 6 13 62 792 0.316 0.088 0.138 0.984 0.914

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 4 9 69 866 0.308 0.055 0.093 0.990 0.918
LOF 4 29 69 846 0.121 0.055 0.075 0.967 0.897
LOCI 15 31 58 844 0.326 0.205 0.252 0.965 0.906
SOM 6 7 67 868 0.462 0.082 0.140 0.992 0.922

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 6 5 86 881 0.545 0.065 0.117 0.994 0.907
LOF 13 21 79 865 0.382 0.141 0.206 0.976 0.898
LOCI 22 34 70 852 0.393 0.239 0.297 0.962 0.894
SOM 9 11 83 875 0.450 0.098 0.161 0.988 0.904

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 5 5 82 857 0.500 0.057 0.103 0.994 0.908
LOF 15 17 72 845 0.469 0.172 0.252 0.980 0.906
LOCI 16 26 71 836 0.381 0.184 0.248 0.970 0.898
SOM 4 8 83 854 0.333 0.046 0.081 0.991 0.904

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 4 5 52 726 0.444 0.071 0.123 0.993 0.928
LOF 7 13 49 718 0.350 0.125 0.184 0.982 0.921
LOCI 8 29 48 702 0.216 0.143 0.172 0.960 0.902
SOM 6 18 50 713 0.250 0.107 0.150 0.975 0.914

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 6 10 78 743 0.375 0.071 0.120 0.987 0.895
LOF 5 15 79 738 0.250 0.060 0.096 0.980 0.888
LOCI 9 24 75 729 0.273 0.107 0.154 0.968 0.882
SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 6 6 76 812 0.500 0.073 0.128 0.993 0.909
LOF 8 21 74 797 0.276 0.098 0.144 0.974 0.894
LOCI 16 24 66 794 0.400 0.195 0.262 0.971 0.900
SOM 6 4 76 814 0.600 0.073 0.130 0.995 0.911

A.17 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window
size: MAX | k: 25%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 10 18 81 802 0.357 0.110 0.168 0.978 0.891
LOF 1 4 90 816 0.200 0.011 0.021 0.995 0.897

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 14 32 83 885 0.304 0.144 0.196 0.965 0.887
LOF 1 5 96 912 0.167 0.010 0.019 0.995 0.900

61

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 13 24 62 801 0.351 0.173 0.232 0.971 0.904
LOF 1 1 74 824 0.500 0.013 0.026 0.999 0.917

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 10 13 58 792 0.435 0.147 0.220 0.984 0.919
LOF 2 0 66 805 1.000 0.029 0.057 1.000 0.924

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 10 31 63 844 0.244 0.137 0.175 0.965 0.901
LOF 2 10 71 865 0.167 0.027 0.047 0.989 0.915

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 14 26 78 860 0.350 0.152 0.212 0.971 0.894
LOF 8 9 84 877 0.471 0.087 0.147 0.990 0.905

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 17 23 70 839 0.425 0.195 0.268 0.973 0.902
LOF 3 1 84 861 0.750 0.034 0.066 0.999 0.910

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 21 47 710 0.300 0.161 0.209 0.971 0.914
LOF 0 1 56 730 0.000 0.000 0.000 0.999 0.928

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 15 75 738 0.375 0.107 0.167 0.980 0.892
LOF 0 6 84 747 0.000 0.000 0.000 0.992 0.892

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 19 73 799 0.321 0.110 0.164 0.977 0.898
LOF 1 2 81 816 0.333 0.012 0.024 0.998 0.908

A.18 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window
size: MAX | k: 75%

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 6 14 85 806 0.300 0.066 0.108 0.983 0.891
LOF 10 18 81 802 0.357 0.110 0.168 0.978 0.891

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 7 27 90 890 0.206 0.072 0.107 0.971 0.885
LOF 11 19 86 898 0.367 0.113 0.173 0.979 0.896

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 12 20 63 805 0.375 0.160 0.224 0.976 0.908
LOF 10 16 65 809 0.385 0.133 0.198 0.981 0.910

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 8 11 60 794 0.421 0.118 0.184 0.986 0.919
LOF 9 12 59 793 0.429 0.132 0.202 0.985 0.919

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 7 28 66 847 0.200 0.096 0.130 0.968 0.901
LOF 5 19 68 856 0.208 0.068 0.103 0.978 0.908

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy

62

KNN 13 26 79 860 0.333 0.141 0.198 0.971 0.893
LOF 13 23 79 863 0.361 0.141 0.203 0.974 0.896

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 16 21 71 841 0.432 0.184 0.258 0.976 0.903
LOF 11 16 76 846 0.407 0.126 0.193 0.981 0.903

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 7 15 49 716 0.318 0.125 0.179 0.979 0.919
LOF 6 9 50 722 0.400 0.107 0.169 0.988 0.925

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 8 14 76 739 0.364 0.095 0.151 0.981 0.892
LOF 7 13 77 740 0.350 0.083 0.135 0.983 0.892

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 1 2 81 816 0.333 0.012 0.024 0.998 0.908
LOF 9 20 73 798 0.310 0.110 0.162 0.976 0.897

A.19 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window
size: MAX | k: 50% | UNION

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 17 82 803 0.346 0.099 0.154 0.979 0.891
LOF 9 16 82 804 0.360 0.099 0.155 0.980 0.892
LOCI 15 30 76 790 0.333 0.165 0.221 0.963 0.884
SOM 7 6 84 814 0.538 0.077 0.135 0.993 0.901
KNN ∪ LOF 10 21 81 799 0.323 0.110 0.164 0.974 0.888
KNN ∪ LOCI 16 33 75 787 0.327 0.176 0.229 0.960 0.881
KNN ∪ SOM 13 18 78 802 0.419 0.143 0.213 0.978 0.895
LOF ∪ LOCI 17 34 74 786 0.333 0.187 0.239 0.959 0.881
LOF ∪ SOM 13 18 78 802 0.419 0.143 0.213 0.978 0.895
LOCI ∪ SOM 15 31 76 789 0.326 0.165 0.219 0.962 0.883
KNN ∪ LOF ∪ LOCI 17 37 74 783 0.315 0.187 0.234 0.955 0.878
KNN ∪ LOF ∪ SOM 14 22 77 798 0.389 0.154 0.220 0.973 0.891
KNN ∪ LOCI ∪ SOM 16 34 75 786 0.320 0.176 0.227 0.959 0.880
LOF ∪ LOCI ∪ SOM 17 35 74 785 0.327 0.187 0.238 0.957 0.880
KNN ∪ LOF ∪ LOCI ∪ SOM 17 38 74 782 0.309 0.187 0.233 0.954 0.877

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 13 28 84 889 0.317 0.134 0.188 0.969 0.890
LOF 9 18 88 899 0.333 0.093 0.145 0.980 0.895
LOCI 7 35 90 882 0.167 0.072 0.101 0.962 0.877
SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903
KNN ∪ LOF 14 28 83 889 0.333 0.144 0.201 0.969 0.891
KNN ∪ LOCI 15 39 82 878 0.278 0.155 0.199 0.957 0.881
KNN ∪ SOM 13 28 84 889 0.317 0.134 0.188 0.969 0.890
LOF ∪ LOCI 17 34 74 786 0.333 0.187 0.239 0.959 0.881
LOF ∪ SOM 9 18 88 899 0.333 0.093 0.145 0.980 0.895
LOCI ∪ SOM 7 35 90 882 0.167 0.072 0.101 0.962 0.877
KNN ∪ LOF ∪ LOCI 16 39 81 878 0.291 0.165 0.211 0.957 0.882
KNN ∪ LOF ∪ SOM 14 28 83 889 0.333 0.144 0.201 0.969 0.891
KNN ∪ LOCI ∪ SOM 15 39 82 878 0.278 0.155 0.199 0.957 0.881
LOF ∪ LOCI ∪ SOM 11 36 86 881 0.234 0.113 0.153 0.961 0.880
KNN ∪ LOF ∪ LOCI ∪ SOM 16 39 81 878 0.291 0.165 0.211 0.957 0.882

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy

63

KNN 11 19 64 806 0.367 0.147 0.210 0.977 0.908
LOF 9 13 66 812 0.409 0.120 0.186 0.984 0.912
LOCI 20 32 55 793 0.385 0.267 0.315 0.961 0.903
SOM 9 15 66 810 0.375 0.120 0.182 0.982 0.910
KNN ∪ LOF 12 20 63 805 0.375 0.160 0.224 0.976 0.908
KNN ∪ LOCI 20 33 55 792 0.377 0.267 0.313 0.960 0.902
KNN ∪ SOM 13 23 62 802 0.361 0.173 0.234 0.972 0.906
LOF ∪ LOCI 20 32 55 793 0.385 0.267 0.315 0.961 0.903
LOF ∪ SOM 11 19 64 806 0.367 0.147 0.210 0.977 0.908
LOCI ∪ SOM 21 33 54 792 0.389 0.280 0.326 0.960 0.903
KNN ∪ LOF ∪ LOCI 20 33 55 792 0.377 0.267 0.313 0.960 0.902
KNN ∪ LOF ∪ SOM 13 24 62 801 0.351 0.173 0.232 0.971 0.904
KNN ∪ LOCI ∪ SOM 21 34 54 792 0.382 0.280 0.323 0.959 0.902
LOF ∪ LOCI ∪ SOM 21 33 54 792 0.389 0.280 0.326 0.960 0.903
KNN ∪ LOF ∪ LOCI ∪ SOM 21 34 54 791 0.382 0.280 0.323 0.959 0.902

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 11 9 57 796 0.550 0.162 0.250 0.989 0.924
LOF 7 6 61 799 0.538 0.103 0.173 0.993 0.923
LOCI 10 22 58 783 0.313 0.147 0.200 0.973 0.908
SOM 7 13 61 792 0.350 0.103 0.159 0.984 0.915
KNN ∪ LOF 12 10 56 795 0.545 0.176 0.267 0.988 0.924
KNN ∪ LOCI 16 22 52 783 0.421 0.235 0.302 0.973 0.915
KNN ∪ SOM 14 17 54 788 0.452 0.206 0.283 0.979 0.919
LOF ∪ LOCI 11 22 57 783 0.333 0.162 0.218 0.973 0.910
LOF ∪ SOM 10 15 58 790 0.400 0.147 0.215 0.981 0.916
LOCI ∪ SOM 12 27 56 778 0.308 0.176 0.224 0.966 0.905
KNN ∪ LOF ∪ LOCI 16 22 52 783 0.421 0.235 0.302 0.973 0.915
KNN ∪ LOF ∪ SOM 14 18 54 787 0.438 0.206 0.280 0.978 0.918
KNN ∪ LOCI ∪ SOM 17 27 51 778 0.386 0.250 0.304 0.966 0.911
LOF ∪ LOCI ∪ SOM 13 27 55 778 0.325 0.191 0.241 0.966 0.906
KNN ∪ LOF ∪ LOCI ∪ SOM 17 27 51 778 0.386 0.250 0.304 0.966 0.911

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 29 64 846 0.237 0.123 0.162 0.967 0.902
LOF 6 22 67 853 0.214 0.082 0.119 0.975 0.906
LOCI 15 45 58 830 0.250 0.205 0.226 0.949 0.891
SOM 6 6 67 869 0.500 0.082 0.141 0.993 0.923
KNN ∪ LOF 17 27 51 778 0.386 0.250 0.304 0.966 0.911
KNN ∪ LOCI 18 50 55 825 0.265 0.247 0.255 0.943 0.889
KNN ∪ SOM 10 30 63 845 0.250 0.137 0.177 0.966 0.902
LOF ∪ LOCI 16 48 57 827 0.250 0.219 0.234 0.945 0.889
LOF ∪ SOM 10 23 63 852 0.303 0.137 0.189 0.974 0.909
LOCI ∪ SOM 17 46 56 829 0.270 0.233 0.250 0.947 0.892
KNN ∪ LOF ∪ LOCI 18 51 55 824 0.261 0.247 0.254 0.942 0.888
KNN ∪ LOF ∪ SOM 10 31 63 844 0.244 0.137 0.175 0.965 0.901
KNN ∪ LOCI ∪ SOM 18 51 55 824 0.261 0.247 0.254 0.942 0.888
LOF ∪ LOCI ∪ SOM 18 49 55 826 0.269 0.247 0.257 0.944 0.890
KNN ∪ LOF ∪ LOCI ∪ SOM 18 52 55 823 0.257 0.247 0.252 0.941 0.887

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 15 26 77 860 0.366 0.163 0.226 0.971 0.895
LOF 10 17 82 869 0.370 0.109 0.168 0.981 0.899
LOCI 30 44 62 842 0.405 0.326 0.361 0.950 0.892
SOM 9 15 83 871 0.375 0.098 0.155 0.983 0.900
KNN ∪ LOF 15 26 77 860 0.366 0.163 0.226 0.971 0.895
KNN ∪ LOCI 31 44 61 842 0.413 0.337 0.371 0.950 0.893
KNN ∪ SOM 16 28 76 858 0.364 0.174 0.235 0.968 0.894

64

LOF ∪ LOCI 31 44 61 842 0.413 0.337 0.371 0.950 0.893
LOF ∪ SOM 13 20 79 866 0.394 0.141 0.208 0.977 0.899
LOCI ∪ SOM 30 45 62 841 0.400 0.326 0.359 0.949 0.891
KNN ∪ LOF ∪ LOCI 31 44 61 842 0.413 0.337 0.371 0.950 0.893
KNN ∪ LOF ∪ SOM 16 28 76 858 0.364 0.174 0.235 0.968 0.894
KNN ∪ LOCI ∪ SOM 31 45 61 841 0.408 0.337 0.369 0.949 0.892
LOF ∪ LOCI ∪ SOM 31 45 61 841 0.408 0.337 0.369 0.949 0.892
KNN ∪ LOF ∪ LOCI ∪ SOM 31 45 61 841 0.408 0.337 0.369 0.949 0.892

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 16 22 71 840 0.421 0.184 0.256 0.974 0.902
LOF 11 15 76 847 0.423 0.126 0.195 0.983 0.904
LOCI 19 31 68 831 0.380 0.218 0.277 0.964 0.896
SOM 2 8 85 854 0.200 0.023 0.041 0.991 0.902
KNN ∪ LOF 17 22 70 840 0.436 0.195 0.270 0.974 0.903
KNN ∪ LOCI 23 35 64 827 0.397 0.264 0.317 0.959 0.896
KNN ∪ SOM 16 22 71 840 0.421 0.184 0.256 0.974 0.902
LOF ∪ LOCI 21 33 66 829 0.389 0.241 0.298 0.962 0.896
LOF ∪ SOM 11 15 76 847 0.423 0.126 0.195 0.983 0.904
LOCI ∪ SOM 19 31 68 831 0.380 0.218 0.277 0.964 0.896
KNN ∪ LOF ∪ LOCI 24 35 63 827 0.407 0.276 0.329 0.959 0.897
KNN ∪ LOF ∪ SOM 17 22 70 840 0.436 0.195 0.270 0.974 0.903
KNN ∪ LOCI ∪ SOM 23 35 64 827 0.397 0.264 0.317 0.959 0.896
LOF ∪ LOCI ∪ SOM 21 33 66 829 0.389 0.241 0.298 0.962 0.896
KNN ∪ LOF ∪ LOCI ∪ SOM 24 35 63 827 0.407 0.276 0.329 0.959 0.897

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 17 47 714 0.346 0.161 0.220 0.977 0.919
LOF 6 6 50 725 0.500 0.107 0.176 0.992 0.929
LOCI 8 26 48 705 0.235 0.143 0.178 0.964 0.906
SOM 5 13 51 718 0.278 0.089 0.135 0.982 0.919
KNN ∪ LOF 9 17 47 714 0.346 0.161 0.220 0.977 0.919
KNN ∪ LOCI 11 29 45 702 0.275 0.196 0.229 0.960 0.906
KNN ∪ SOM 9 23 47 708 0.281 0.161 0.205 0.969 0.911
LOF ∪ LOCI 10 27 46 704 0.270 0.179 0.215 0.963 0.907
LOF ∪ SOM 7 16 49 715 0.304 0.125 0.177 0.978 0.917
LOCI ∪ SOM 8 31 48 700 0.205 0.143 0.168 0.958 0.900
KNN ∪ LOF ∪ LOCI 11 29 45 702 0.275 0.196 0.229 0.960 0.906
KNN ∪ LOF ∪ SOM 9 23 47 708 0.281 0.161 0.205 0.969 0.911
KNN ∪ LOCI ∪ SOM 11 34 45 697 0.244 0.196 0.218 0.953 0.900
LOF ∪ LOCI ∪ SOM 10 32 46 699 0.238 0.179 0.204 0.956 0.901
KNN ∪ LOF ∪ LOCI ∪ SOM 11 34 45 697 0.244 0.196 0.218 0.953 0.900

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 14 75 739 0.391 0.107 0.168 0.981 0.894
LOF 5 13 79 740 0.278 0.060 0.098 0.983 0.890
LOCI 9 31 75 722 0.225 0.107 0.145 0.959 0.873
SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890
KNN ∪ LOF 9 14 75 739 0.391 0.107 0.168 0.981 0.894
KNN ∪ LOCI 13 31 71 722 0.295 0.155 0.203 0.959 0.878
KNN ∪ SOM 9 14 75 739 0.391 0.107 0.168 0.981 0.894
LOF ∪ LOCI 13 31 71 722 0.295 0.155 0.203 0.959 0.878
LOF ∪ SOM 5 13 79 740 0.278 0.060 0.098 0.983 0.890
LOCI ∪ SOM 9 31 75 722 0.225 0.107 0.145 0.959 0.873
KNN ∪ LOF ∪ LOCI 13 31 71 722 0.295 0.155 0.203 0.959 0.878
KNN ∪ LOF ∪ SOM 9 14 75 739 0.391 0.107 0.168 0.981 0.894
KNN ∪ LOCI ∪ SOM 13 31 71 722 0.295 0.155 0.203 0.959 0.878
LOF ∪ LOCI ∪ SOM 13 31 71 722 0.295 0.155 0.203 0.959 0.878

65

KNN ∪ LOF ∪ LOCI ∪ SOM 13 31 71 722 0.295 0.155 0.203 0.959 0.878

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 19 73 799 0.321 0.110 0.164 0.977 0.898
LOF 9 18 73 800 0.333 0.110 0.165 0.978 0.899
LOCI 16 28 66 790 0.364 0.195 0.254 0.966 0.896
SOM 5 3 77 815 0.625 0.061 0.111 0.996 0.911
KNN ∪ LOF 10 19 72 799 0.345 0.122 0.180 0.977 0.899
KNN ∪ LOCI 16 28 66 790 0.364 0.195 0.254 0.966 0.896
KNN ∪ SOM 10 19 72 799 0.345 0.122 0.180 0.977 0.899
LOF ∪ LOCI 17 28 65 790 0.378 0.207 0.268 0.966 0.897
LOF ∪ SOM 10 18 72 800 0.357 0.122 0.182 0.978 0.900
LOCI ∪ SOM 17 28 65 790 0.378 0.207 0.268 0.966 0.897
KNN ∪ LOF ∪ LOCI 17 28 65 790 0.378 0.207 0.268 0.966 0.897
KNN ∪ LOF ∪ SOM 11 19 71 799 0.367 0.134 0.196 0.977 0.900
KNN ∪ LOCI ∪ SOM 17 28 65 790 0.378 0.207 0.268 0.966 0.897
LOF ∪ LOCI ∪ SOM 18 28 64 790 0.391 0.220 0.281 0.966 0.898
KNN ∪ LOF ∪ LOCI ∪ SOM 18 28 64 790 0.391 0.220 0.281 0.966 0.898

A.20 Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window
size: MAX | k: 50% | INTERSECTION

Seed: 100 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 17 82 803 0.346 0.099 0.154 0.979 0.891
LOF 9 16 82 804 0.360 0.099 0.155 0.980 0.892
LOCI 15 30 76 790 0.333 0.165 0.221 0.963 0.884
SOM 7 6 84 814 0.538 0.077 0.135 0.993 0.901
KNN ∩ LOF 8 12 83 808 0.400 0.088 0.144 0.985 0.896
KNN ∩ LOCI 8 14 83 806 0.364 0.088 0.142 0.983 0.894
KNN ∩ SOM 3 5 88 815 0.375 0.033 0.061 0.994 0.898
LOF ∩ LOCI 8 13 83 807 0.381 0.088 0.143 0.984 0.895
LOF ∩ SOM 3 4 88 816 0.429 0.033 0.061 0.995 0.899
LOCI ∩ SOM 7 6 84 814 0.538 0.077 0.135 0.993 0.901
KNN ∩ LOF ∩ LOCI 8 13 83 807 0.381 0.088 0.143 0.984 0.895
KNN ∩ LOF ∩ SOM 3 4 88 816 0.429 0.033 0.061 0.995 0.899
KNN ∩ LOCI ∩ SOM 3 6 88 814 0.333 0.033 0.060 0.993 0.897
LOF ∩ LOCI ∩ SOM 3 4 88 816 0.429 0.033 0.061 0.995 0.899
KNN ∩ LOF ∩ LOCI ∩ SOM 3 4 88 816 0.429 0.033 0.061 0.995 0.899

Seed: 101 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 13 28 84 889 0.317 0.134 0.188 0.969 0.890
LOF 9 18 88 899 0.333 0.093 0.145 0.980 0.895
LOCI 7 35 90 882 0.167 0.072 0.101 0.962 0.877
SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903
KNN ∩ LOF 8 18 89 899 0.308 0.082 0.130 0.980 0.894
KNN ∩ LOCI 5 24 92 893 0.172 0.052 0.079 0.974 0.886
KNN ∩ SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903
LOF ∩ LOCI 5 17 92 900 0.227 0.052 0.084 0.981 0.893
LOF ∩ SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903
LOCI ∩ SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903
KNN ∩ LOF ∩ LOCI 5 17 92 900 0.227 0.052 0.084 0.981 0.893
KNN ∩ LOF ∩ SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903
KNN ∩ LOCI ∩ SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903
LOF ∩ LOCI ∩ SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903
KNN ∩ LOF ∩ LOCI ∩ SOM 0 1 97 916 0.000 0.000 0.000 0.999 0.903

Seed: 102 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy

66

KNN 11 19 64 806 0.367 0.147 0.210 0.977 0.908
LOF 9 13 66 812 0.409 0.120 0.186 0.984 0.912
LOCI 20 32 55 793 0.385 0.267 0.315 0.961 0.903
SOM 9 15 66 810 0.375 0.120 0.182 0.982 0.910
KNN ∩ LOF 8 12 67 813 0.400 0.107 0.168 0.985 0.912
KNN ∩ LOCI 11 18 64 807 0.379 0.147 0.212 0.978 0.909
KNN ∩ SOM 7 11 68 814 0.389 0.093 0.151 0.987 0.912
LOF ∩ LOCI 9 13 66 812 0.409 0.120 0.186 0.984 0.912
LOF ∩ SOM 7 10 68 815 0.412 0.093 0.152 0.988 0.913
LOCI ∩ SOM 8 14 67 811 0.364 0.107 0.165 0.983 0.910
KNN ∩ LOF ∩ LOCI 8 12 67 813 0.400 0.107 0.168 0.985 0.912
KNN ∩ LOF ∩ SOM 6 10 69 815 0.375 0.080 0.132 0.988 0.912
KNN ∩ LOCI ∩ SOM 7 11 68 814 0.389 0.093 0.151 0.987 0.912
LOF ∩ LOCI ∩ SOM 7 10 68 815 0.412 0.093 0.152 0.988 0.913
KNN ∩ LOF ∩ LOCI ∩ SOM 6 10 69 815 0.375 0.080 0.132 0.988 0.912

Seed: 103 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 11 9 57 796 0.550 0.162 0.250 0.989 0.924
LOF 7 6 61 799 0.538 0.103 0.173 0.993 0.923
LOCI 10 22 58 783 0.313 0.147 0.200 0.973 0.908
SOM 7 13 61 792 0.350 0.103 0.159 0.984 0.915
KNN ∩ LOF 6 5 62 800 0.545 0.088 0.152 0.994 0.923
KNN ∩ LOCI 5 9 63 796 0.357 0.074 0.122 0.989 0.918
KNN ∩ SOM 4 7 64 798 0.364 0.059 0.101 0.991 0.919
LOF ∩ LOCI 6 6 62 799 0.500 0.088 0.150 0.993 0.922
LOF ∩ SOM 4 7 64 798 0.364 0.059 0.101 0.991 0.919
LOCI ∩ SOM 5 9 63 796 0.357 0.074 0.122 0.989 0.918
KNN ∩ LOF ∩ LOCI 5 5 63 800 0.500 0.074 0.128 0.994 0.922
KNN ∩ LOF ∩ SOM 3 7 65 798 0.300 0.044 0.077 0.991 0.918
KNN ∩ LOCI ∩ SOM 3 6 65 799 0.333 0.044 0.078 0.993 0.919
LOF ∩ LOCI ∩ SOM 4 7 64 798 0.364 0.059 0.101 0.991 0.919
KNN ∩ LOF ∩ LOCI ∩ SOM 3 7 65 798 0.300 0.044 0.077 0.991 0.918

Seed: 104 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 29 64 846 0.237 0.123 0.162 0.967 0.902
LOF 6 22 67 853 0.214 0.082 0.119 0.975 0.906
LOCI 15 45 58 830 0.250 0.205 0.226 0.949 0.891
SOM 6 6 67 869 0.500 0.082 0.141 0.993 0.923
KNN ∩ LOF 6 21 67 854 0.222 0.082 0.120 0.976 0.907
KNN ∩ LOCI 6 24 67 851 0.200 0.082 0.117 0.973 0.904
KNN ∩ SOM 5 5 68 870 0.500 0.068 0.120 0.994 0.923
LOF ∩ LOCI 5 19 68 856 0.208 0.068 0.103 0.978 0.908
LOF ∩ SOM 2 5 71 870 0.286 0.027 0.050 0.994 0.920
LOCI ∩ SOM 4 5 69 870 0.444 0.055 0.098 0.994 0.922
KNN ∩ LOF ∩ LOCI 5 19 68 856 0.208 0.068 0.103 0.978 0.908
KNN ∩ LOF ∩ SOM 2 5 71 870 0.286 0.027 0.050 0.994 0.920
KNN ∩ LOCI ∩ SOM 3 5 70 870 0.375 0.041 0.074 0.994 0.921
LOF ∩ LOCI ∩ SOM 2 5 71 870 0.286 0.027 0.050 0.994 0.920
KNN ∩ LOF ∩ LOCI ∩ SOM 2 5 71 870 0.286 0.027 0.050 0.994 0.920

Seed: 105 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 15 26 77 860 0.366 0.163 0.226 0.971 0.895
LOF 10 17 82 869 0.370 0.109 0.168 0.981 0.899
LOCI 30 44 62 842 0.405 0.326 0.361 0.950 0.892
SOM 9 15 83 871 0.375 0.098 0.155 0.983 0.900
KNN ∩ LOF 10 17 82 869 0.370 0.109 0.168 0.981 0.899
KNN ∩ LOCI 14 26 78 860 0.350 0.152 0.212 0.971 0.894
KNN ∩ SOM 8 13 84 873 0.381 0.087 0.142 0.985 0.901

67

LOF ∩ LOCI 9 17 83 869 0.346 0.098 0.153 0.981 0.898
LOF ∩ SOM 6 13 86 873 0.316 0.065 0.108 0.985 0.899
LOCI ∩ SOM 9 14 83 872 0.391 0.098 0.157 0.984 0.901
KNN ∩ LOF ∩ LOCI 9 17 83 869 0.346 0.098 0.153 0.981 0.898
KNN ∩ LOF ∩ SOM 6 13 86 873 0.316 0.065 0.108 0.985 0.899
KNN ∩ LOCI ∩ SOM 8 13 84 873 0.381 0.087 0.142 0.985 0.901
LOF ∩ LOCI ∩ SOM 6 13 86 873 0.316 0.065 0.108 0.985 0.899
KNN ∩ LOF ∩ LOCI ∩ SOM 6 13 86 873 0.316 0.065 0.108 0.985 0.899

Seed: 106 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 16 22 71 840 0.421 0.184 0.256 0.974 0.902
LOF 11 15 76 847 0.423 0.126 0.195 0.983 0.904
LOCI 19 31 68 831 0.380 0.218 0.277 0.964 0.896
SOM 2 8 85 854 0.200 0.023 0.041 0.991 0.902
KNN ∩ LOF 10 15 77 847 0.400 0.115 0.179 0.983 0.903
KNN ∩ LOCI 12 18 75 844 0.400 0.138 0.205 0.979 0.902
KNN ∩ SOM 2 8 85 854 0.200 0.023 0.041 0.991 0.902
LOF ∩ LOCI 9 13 78 849 0.409 0.103 0.165 0.985 0.904
LOF ∩ SOM 2 8 85 854 0.200 0.023 0.041 0.991 0.902
LOCI ∩ SOM 2 8 85 854 0.200 0.023 0.041 0.991 0.902
KNN ∩ LOF ∩ LOCI 9 13 78 849 0.409 0.103 0.165 0.985 0.904
KNN ∩ LOF ∩ SOM 2 8 85 854 0.200 0.023 0.041 0.991 0.902
KNN ∩ LOCI ∩ SOM 2 8 85 854 0.200 0.023 0.041 0.991 0.902
LOF ∩ LOCI ∩ SOM 2 8 85 854 0.200 0.023 0.041 0.991 0.902
KNN ∩ LOF ∩ LOCI ∩ SOM 2 8 85 854 0.200 0.023 0.041 0.991 0.902

Seed: 107 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 17 47 714 0.346 0.161 0.220 0.977 0.919
LOF 6 6 50 725 0.500 0.107 0.176 0.992 0.929
LOCI 8 26 48 705 0.235 0.143 0.178 0.964 0.906
SOM 5 13 51 718 0.278 0.089 0.135 0.982 0.919
KNN ∩ LOF 6 6 50 725 0.500 0.107 0.176 0.992 0.929
KNN ∩ LOCI 6 14 50 717 0.300 0.107 0.158 0.981 0.919
KNN ∩ SOM 5 9 51 722 0.357 0.089 0.143 0.988 0.924
LOF ∩ LOCI 4 5 52 726 0.444 0.071 0.123 0.993 0.928
LOF ∩ SOM 4 4 52 727 0.500 0.071 0.125 0.995 0.929
LOCI ∩ SOM 5 9 51 722 0.357 0.089 0.143 0.988 0.924
KNN ∩ LOF ∩ LOCI 4 5 52 726 0.444 0.071 0.123 0.993 0.928
KNN ∩ LOF ∩ SOM 4 4 52 727 0.500 0.071 0.125 0.995 0.929
KNN ∩ LOCI ∩ SOM 5 8 51 723 0.385 0.089 0.145 0.989 0.925
LOF ∩ LOCI ∩ SOM 4 4 52 727 0.500 0.071 0.125 0.995 0.929
KNN ∩ LOF ∩ LOCI ∩ SOM 4 4 52 727 0.500 0.071 0.125 0.995 0.929

Seed: 108 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 14 75 739 0.391 0.107 0.168 0.981 0.894
LOF 5 13 79 740 0.278 0.060 0.098 0.983 0.890
LOCI 9 31 75 722 0.225 0.107 0.145 0.959 0.873
SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890
KNN ∩ LOF 5 13 79 740 0.278 0.060 0.098 0.983 0.890
KNN ∩ LOCI 5 14 79 739 0.263 0.060 0.097 0.981 0.889
KNN ∩ SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890
LOF ∩ LOCI 3 13 81 740 0.188 0.036 0.060 0.983 0.888
LOF ∩ SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890
LOCI ∩ SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890
KNN ∩ LOF ∩ LOCI 3 13 81 740 0.188 0.036 0.060 0.983 0.888
KNN ∩ LOF ∩ SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890
KNN ∩ LOCI ∩ SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890
LOF ∩ LOCI ∩ SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890

68

KNN ∩ LOF ∩ LOCI ∩ SOM 0 8 84 745 0.000 0.000 0.000 0.989 0.890

Seed: 109 TP FP FN TN Precision Recall, TPR F-Score TNR Accuracy
KNN 9 19 73 799 0.321 0.110 0.164 0.977 0.898
LOF 9 18 73 800 0.333 0.110 0.165 0.978 0.899
LOCI 16 28 66 790 0.364 0.195 0.254 0.966 0.896
SOM 5 3 77 815 0.625 0.061 0.111 0.996 0.911
KNN ∩ LOF 8 18 74 800 0.308 0.098 0.148 0.978 0.898
KNN ∩ LOCI 9 19 73 799 0.321 0.110 0.164 0.977 0.898
KNN ∩ SOM 4 3 78 815 0.571 0.049 0.090 0.996 0.910
LOF ∩ LOCI 9 18 73 800 0.333 0.110 0.165 0.978 0.899
LOF ∩ SOM 4 3 78 815 0.571 0.049 0.090 0.996 0.910
LOCI ∩ SOM 4 3 78 815 0.571 0.049 0.090 0.996 0.910
KNN ∩ LOF ∩ LOCI 9 18 73 800 0.333 0.110 0.165 0.978 0.899
KNN ∩ LOF ∩ SOM 4 3 78 815 0.571 0.049 0.090 0.996 0.910
KNN ∩ LOCI ∩ SOM 4 3 78 815 0.571 0.049 0.090 0.996 0.910
LOF ∩ LOCI ∩ SOM 4 3 78 815 0.571 0.049 0.090 0.996 0.910
KNN ∩ LOF ∩ LOCI ∩ SOM 4 3 78 815 0.571 0.049 0.090 0.996 0.910

69

	Introduction
	Motivation
	Scientific Motivation
	Business Motivation

	Background Information

	Related Work
	State of the Art
	Classification Algorithms
	Clustering Algorithms
	Neural Network Algorithms
	Statistical Algorithms
	SVM Algorithms

	Existing automated testing techniques
	Automatic Software testing
	Automatic Games Testing

	Research Goals
	Research Questions
	Research Objective

	Algorithms
	KNN - K-Nearest Neighbours
	LOF - Local Outlier Factor
	LOCI - Local Correlation Integral
	SOM - Self-Organizing Maps

	The Anomaly Detection Framework
	Outlier Scores
	KNN Outlier Score
	LOF Outlier Score
	LOCI Outlier Score
	SOM Outlier Score

	Event Logging

	Experiment Setup
	OpenTTD
	Anomaly injections
	Variable/Feature selection
	Experiment Parameters

	Results
	Overview
	1 Player
	Results
	Evaluation

	4 players
	Results
	Evaluation

	1v4 players
	Results
	Evaluation

	1v10 players
	Results
	Evaluation

	Anomaly score threshold
	Results
	Evaluation

	Window Size
	Results
	Evaluation

	K value
	Results
	Evaluation

	Combinations
	Results
	Evaluation

	Conclusions and Future Work
	Scientific Evaluation
	(a) Which algorithm achieves the best accuracy?
	(b) What degree of variable deviation can we detect?
	(c) What factors limit the number of false positives and false negatives?
	Main Research Question

	Conclusion
	Discussion
	Future Work

	Results
	Players: 1 | Anomaly Size: 100% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 1 | Anomaly Size: 200% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 1 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 4 | Anomaly Size: 100% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 4 | Anomaly Size: 200% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 4 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 1v4 | Anomaly Size: 100% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 1v4 | Anomaly Size: 200% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 1v4 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 1v10 | Anomaly Size: 100% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 1v10 | Anomaly Size: 200% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 50%
	Players: 1v10 | Anomaly Size: 1000% | Threshold: e-5 | Window size: MAX | k: 50%
	Players: 1v10 | Anomaly Size: 1000% | Threshold: e-50 | Window size: MAX | k: 50%
	Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: 20 | k: 50%
	Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: 75 | k: 50%
	Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 25%
	Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 75%
	Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 50% | UNION
	Players: 1v10 | Anomaly Size: 1000% | Threshold: e-15 | Window size: MAX | k: 50% | INTERSECTION

