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Abstract

The ALICE detector at CERN is used to study collisions between heavy ions, which
can create a high-energy quark-gluon plasma as they collide inside the detector. In this
research the Boosted Decision Tree algorithm is applied to distinguish electron-positron
pairs created by the conversion of photons emitted by this plasma, from background
consisting of falsely identified ” pairs” of electrons and positrons which do not originate
from a photon. The algorithm is trained on over 1.5 million photon candidates generated
by a Monte Carlo simulation. Suitable variables for training are determined, data
separated into bins to ensure consistency and a K-S test is performed to confirm that
the algorithm is not subject to overtraining. Comparison with traditional cuts on the
same data show that this BDT method provides a 30% purity increase at maximum
significance.
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1 Variables and abbreviations

photonPt: pr. The transverse (in the direction perpendicular to the beam axis) momentum
of the photon.

photonR: Distance from the primary vertex at which the photon decays into an electron-
positron pair.

photonQt: The relative momentum of the electron/positron pair with respect to the pho-
ton.

photonInvMass: The rest mass of the photon as defined in its own frame of reference.
photonEta: The pseudorapidity (parallel-ness to the lead atom beams) of the photon.
photonPsiPair: The angle between the plane spanned by the opening angle of the elec-
tron/positron pair, and the plane orthogonal to the magnetic field in the detector.
photonAlpha: The longitudinal momentum asymmetry of the electron/positron pair.
photonChi2: The chi-square test is a statistical test, applied here to determine the proba-
bility that the electron/positron pair have a photon as mother particle.
dEdxElectronITS: The energy loss of the electron as measured by the various sensors of
the ITS detector. If there is no data for that electron (high-py photons won’t decay inside
ITS), it is assigned a value of 1000.

photonCosPoint: The pointing angle, which is the angle between the vector that points
from the primary vertex to the location where the photon decays, and the momentum vector
of the photon at the time of decay.

nSigmaTPCElectron: The number of standard deviations in which the energy loss of the
electron as it travels through the TPC detector, differs from the mean.

clsITSElectron: The number of sensors in the ITS detector that are triggered by the elec-
tron.

fracCIsTPCElectron: A measure of the fraction of sensors in the TPC detector that are
triggered by the electron.

CERN: Conseil Europen pour la Recherche Nuclaire, or the European organisation for nu-
clear research.

LHC: Large Hadron Collider, CERNs particle accelerator near Geneva.

ALICE: A Large Ion Collider Experiment, one of the detector locations at the LHC.
BDT: Boosted Decision Tree, a type of machine learning algorithm.

ROOT: A C++ framework built to analyse large amounts of data easily.

TMVA: A package within ROOT which includes a generic BDT script.

AliIROOT: The implementation of ROOT within the ALICE experiment.

QGP: Quark-gluon plasma, a high-energy state of matter in which protons and neutrons
melt into their constituent parts.
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2 INTRODUCTION 1

2 Introduction

The Department for Subatomic Physics at Utrecht researches high-energy collisions of lead
atoms in the ALICE detector at the LHC. One of the specific fields of interest in this research
is to analyse electron-positron pairs in order to determine whether they were created by the
conversion of a photon. At the moment, this process is done by removing those pairs which
are unlikely to come from a photon because their properties exceed certain thresholds. All
other pairs are accepted as coming from a photon, but in this selection of data there is still
a large fraction of unwanted background.

One way to improve on this method, is to use a machine learning algorithm, called a
Boosted Decision Tree (abbreviated as BDT), and teach it to recognise the distinctive prop-
erties of both signal and background. This teaching process can be carried out by feeding
the BDT a set of data from pre-existing Monte Carlo simulations, which model the results
of an actual experiment. Using these simulations as training data allows for a test of the
algorithms output, since the desired output (signal or background) is known.

The goal now is to configure a Boosted Decision Tree to analyse data from ALICE experi-
ments in such a way that it can assign a BDT output value to the detected photon candidates,
corresponding to the probability that it is a signal photon, so that a single cut can be made
by the researcher to separate background from signal. This method should produce reliable
results for varying ranges of photon pr and centrality of the primary collision event, and it
should be demonstrably more efficient than the by hand cutting method currently used to
separate background photons from the signal.

This text will now explain briefly the theoretical background of the ALICE experiment,
before expanding on the methodology of the BDT algorithm in the third chapter. The fourth
chapter guides the reader through the various building blocks necessary to successfully apply
the algorithm to the context of this experiment, and provides analysis to support the choices
made. The results of testing these developments are presented in the fifth chapter and its po-
tential shortcomings discussed in the sixth. The final chapter provides a concluding summary.
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3 Theoretical background

A good understanding of the context of the experiment is crucial to the understanding of the
experiment itself, and therefore this chapter aims to explain the fundamentals of the photon
experiments at ALICE which lie at the core of this thesis. The first section treats the basics
of the Standard Model, the theoretical model behind photons and other subatomic particles.
Section 3.2 elaborates on the technical aspect and the detectors involved. Finally, section
3.3 explains what happens during a collision event, and explains the creation of the particles
that we detect.

3.1 The Standard Model

Most of our current understanding of the realm of subatomic physics is contained in what is
called the standard model[2]. The elements of this model are shown in Figure[l] The standard
model describes the elementary particles, which can be subdivided into two groups: fermions
and bosons. The difference between these groups of particles is a property called spin, which
is a quantum-mechanical number that has no analogue in classical physics. Fermions have
half-integer spin, and bosons have integer spin.

In fact, gauge bosons, like the photon and the gluon, have a spin of exactly 1. These
bosons are called gauge bosons, or force carriers, since they govern the interactions between
fermions. Some of them have mass or charge, but the photon and the gluon are both massless
and electrically neutral. The former mediates the electromagnetic force; the latter carries a
force known as the strong interaction.
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Figure 1: Schematic representation of the particles in the standard model.[]]
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Figure 2: Overview of ALICE and its subdetectors.

Fermions have spin-1/2 and are, themselves, subdivided into two groups: leptons and
quarks. There are six different flavours of quarks; usually bound together to form hadrons,
which is the name for well-known larger particles such as the proton. They are not usually
found as free particles, and their lifetime as such is extremely short. Leptons, on the other
hand, can be found as free particles. Examples include the electron, the positron and the
neutrino. These particles are part of the lightest group of leptons, with two other groups
containing similar but heavier particles.

3.2 The ALICE Detector

A Large Ion Collider Experiment (ALICE) is one of the experiments at the LHC site.

The ALICE array consists of a number of detectors with varying specifications, each of
which measures a different aspect of the particle shower created after the collision. The most
important ones of these detectors for the research at hand will be described briefly in the
next section, using information taken from the documentation on ALICEs website.[3]

The Inner Tracking System (ITS) and the Time Projection Chamber (TPC) are
two of the main detectors in the array, and their data is of key importance in this research.
Their function is to detect, track and identify charged particles as they fly through the de-
tector. Since photons can produce an electron-positron pair when they interact with matter,
detecting these particles can give valuable information about the nature of the photon that
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produced them. The ITS is the smaller detector of the two, and detects photons only when
they decay close to the primary vertex. It consists of six layers of silicon detectors, surround-
ing this vertex, and made to be as lightweight as possible. The TPC is a larger detector
behind the ITS which contains a volume of gas, which shows charged particles as they ionise
the gas in their path. Due to its size, it can detect more photons as they have the time to
decay within the limits of the detector.

The Time of Flight Detector (TOF) consists of 1593 detector strips which measure
the time it takes for a particle to reach it. This time can be used to calculate the velocity of
the particle, which also helps calculate the particle mass.

Whereas the first three detectors can only measure photons by their decay products, the
Photon Spectrometer (PHOS) detects the photons themselves when they strike the de-
tectors lead tungstate crystals and produce scintillation light. While the PHOS measures the
photons very accurately on a limited domain, the Electromagnetic Calorimeter (EMCal)
and Photon Multiplicity Detector (PMD) extend that reach over a wide area, albeit at
a lower precision.

The TO detector and VO detector are used to determine whether, and when, a colli-
sion has taken place. The latter also provides one of the crucial data points for this research,
namely the centrality of the collision event. It determines this by measuring the total energy
deposited into the two parts of its detector (one on each side parallel to the beam), which
scales with the number of particles generated in the collision, in turn a measure for the cen-
trality. An estimate for the same is also produced by the Zero-Degree Calorimeters.

3.3 Collisions

When particles collide with each other in the centre of the detector array, there usually isnt
a perfect head-on collision there is a certain centrality to the event, which describes how
much overlap there is between the particles when they collide, or in other words, how well
they are aligned. To illustrate this, Figure |3 shows examples of varying centrality, which is
expressed in a percentage value. This percentage is the amount of collisions in the data that
are more central; so, a centrality of 10% means that out of all events in the data, 10% are
more central, and 90% are less central.

Even for a higher centrality percentage, the collisions in the LHC release an incredibly
large amount of energy, so large in fact that it can temporarily create a special state of mat-
ter; a quark-gluon plasma (QGP)M][5]. This soup of fundamental particles is in the same
sort of condition as one could find in the beginning of the universe, just after the Big Bang,
and the temperatures involved are 100,000 times hotter than the centre of the sun. Although
the quarks are usually bound together by the strong force provided by gluons, in this extreme
state the energies involved are so large that they overcome the forces between the elementary
particles, the bonds are broken and both quarks and gluons float freely through the plasma.
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Figure 3: Rough illustration of a collision of a red particle (travelling out of the paper) with
a blue particle (travelling into the paper) at varying centrality.

For a moment, the quark-gluon plasma takes the properties of an almost perfect fluid,
with small viscosity. Then, inevitably and very quickly after it was formed the plasma cools
and expands, and the quarks and gluons combine again. Once again they form ordinary
matter, which shoots away from the primary vertex, along with many direct photons formed
in the QGP fireball.

These and other photons can undergo a particularly interesting process called ”photon
conversion” [6]. It is this transformation of a photon into an electron-positron pair that our
research relies on. As a photon passes through matter (such as the detectors in ALICE), it
has a chance to interact with the nuclei of the matter and decay into an electron-positron
pair. These electrons and positrons are far easier to detect than the elusive photons, and
from this conversion extra information about the photons can be gathered, through their
daughter particles. The challenge is to identify which electrons and positrons are created
through photon conversion, and which are not. To this end, this research will employ ma-
chine learning on the various properties of these leptons.
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4 The Boosted Decision Tree

The machine learning method chosen for this research is the Boosted Decision Tree algorithm.
It is a relatively simple and well-integrated method, with proven potential[7].

Section 4.1 of this chapter explains the basic concept of decision trees, and section 4.2 the
improvement on this concept called boosting. The third section details the potential pitfall
of overtraining, and some usual measurements that are used to determine the performance
of the BDT. Finally, section 4.4 details how the BDT is implemented within the framework
of the ALICE experiment.

The inner workings of a boosted decision tree algorithm have been described clearly by
B.P. Roe et al (2005)[8] and M. Sas (2014)[9] , so the following chapter will liberally use
information from their texts.

4.1 Decision Trees

The basic concept of a BDT revolves around a decision tree; a form of instruction for the
algorithm to determine which cuts to make in which variables. When using a decision tree, it
checks all data for the first condition. Data that matches the condition goes down one branch
of the tree, data that does not travels through the other. The combination of a condition and
the data it checks is called a node. When data is checked in a node, it travels onto another
node where it is checked again, until it reaches the final node in its branch. This creates a
chain of conditions that the data is checked with, depending on which checks it passed or
failed previously.

Figure [4] illustrates how background and signal photons are separated in a typical decision
tree. A cut in the photonR variable separates a node with relatively pure data (90% purity)
from a node with relatively impure data (32% purity). Each node is then split three more
times, as long as the total amount of data in a node exceeds the minimum size of a node for
splitting. Each time, the node is split according to the variable which would create the best
separation between signal and background.

The key to building a decision tree, is finding out which cuts in which variables create
the best separation. To determine this ideal split, we define the purity of a node;

P_ ZSWS
YW+ >, Wy

where W is the weight of a photon in the calculation, ) the sum over signal photons
and ), the sum over background photons. We also introduce the Gini index;

Gini =Y (W;)P(1— P),
i=1
where N is the number of events in that node. Now, the ideal split is that which de-
creases the Gini index of the daughter nodes as much as possible. A big difference between
the parents and its daughters Gini index means that there is a high separation, and there-
fore that the cut has been very effective. The algorithm searches through all variables for
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the cut that maximises the separation gain, for each node until all nodes in the tree are filled.

The result of a single tree is a simple binary result; if a photon ends up in a node with a
majority of signal photons, it is classified as signal (1). Similarly, all photons in a majority
background node are classified as such (-1). Inevitably, since the end nodes are rarely 100%
pure, this will result in photons receiving the wrong classification.

Pure Signal Nodes Decision Tree no.: 0

Pure Backgr. Nodes

Figure 4: The first decision tree in a BDT forest (trained on data with a centrality of 20-40%
and a photon pr between 0.5 and 1.0). A more blue colour indicates that more signal data
takes that path, a red colour indicates more background data.

4.2 Boosting

For the first tree generated by a boosted decision tree, the weights W of all photons are the
same. However, the strength of this method lies in its boosting that is to say, the algorithm
increases the weight of all photons that received the wrong classification and then runs a
new training round with the new weights. In this way, many trees and outputs are created,
forming a so-called forest.

The final score the BDT output of the photon is determined as an average of the result
of all the trees used in the training. A photon which lands into a final signal node in most
of the trees in the forest, will end up with an output value close to 1. Conversely, a photon
which often lands in background nodes, will have a value closer to -1.
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4.3 Testing

A trained BDT can be tested by running the finished algorithm on a test sample of similar
data. From the resulting output graph, three important measures of the quality of the
boosted decision tree can be determined, for a certain cut in the output. The purity of the
accepted data;

P =S5/(S+ B),

where S is the amount of signal photons accepted, and B the amount of background
accepted. The efficiency of the cut;

E = S/Stot7

where S;ot is the total amount of signal photons in the data. If we accept more data, the
efficiency will rise and purity will fall. If we accept less, vice versa. In order to determine an
optimal balance between the two, we measure the significance of the accepted data;

Sig = S/\/(S + B).

One of the dangers that can occur is that a BDT is over-trained. This means that the
algorithm judges photons by very specific properties which are only a good measure in the
training data that it was given, and not in all data that it might be applied to. The train-
ing data should be a good representation of a typical data set, but even then overtraining
can occur. For one, the data set must be large enough that statistical fluctuations are not
relevant to the training. Furthermore, if the settings of the BDT allow it to pick out very
specific properties, the chance that these properties cannot be generalised increases and so
the result has an increased risk of overtraining.

Applying a Kolmogorov-Smirnov test[I0] is a good way to ensure that the training of
the boosted decision tree has not actually caused overtraining of the algorithm. The test is
used on BDT output from a training sample and a test sample, with the assumption that
they should produce the same result. If the chance that their difference is due to statistical
error is small (usually: more than two standard deviations away from the mean, or <5% for a
normal distribution), then there is an indication that the BDT is over-trained to some degree.

4.4 Framework

The BDT used in this research builds on elements present within the Toolkit for Multivariate
Analysis (TMVA). TMVA is a package within ROOT[I1], a C++ framework built to analyse
large amounts of data easily. Critically, it provides an easy and quick way to access the
millions of variable data points produced by the Monte Carlo simulation, and convenient
plotting features for histograms. The TMVA package comes with several generic machine
learning scripts, including a BDT option which is used as the base for this research.
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In ROQOT, the forest of decision trees can be condensed into a weight file which produces
the same output. These weight files can then be applied to new data using an application
macro which creates an output histogram, showing the BDT output for all included photons.

The version of ROOT that is used within the ALICE experiment is called AliIROOT; this
research has aimed to integrate its results into the AliIROOT framework in order to make it
available for all future research there into photon physics.

For this experiment, the input data will consist of a Monte Carlo simulation of a lead-
lead collision event. These simulations are carried out within AIROOT, with the help of
software specially tailored for ALICE[12]. The software simulates a collision, the particles
that it produces, and then separately simulates how the detectors respond to these particles.
This method is widely used as the standard for simulating particles in the ALICE experiment.
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5 Implementation

The following chapter details the steps taken to implement the BDT algorithm to separate
signal photons from background in simulated lead-lead collisions. Section 5.1 details the
input data generated in these simulations. Section 5.2 and 5.3 build on previous research
in this field to determine the best settings and variables for the training process, improving
them as needed. The final two sections detail a crucial concept for the reliability of the
algorithm, which is data binning. These sections contain an in-depth analysis of the input
variables to support the specific bin choices and their efficiency.

5.1 Input data

The input data consists of just over 1.5 million events, taken from 7 separate runs of the
Monte Carlo simulation. Table (1| shows how these data points are distributed across varying
centrality and photon pr intervals. In general, the higher the event centrality percentage or
photon transverse momentum, the more background there is to contend with.

Photon p; (GeV/c)
Centrality (%) 0.2-0.5 0.5-1.0 | 1.0-2.0 | >2.0
0-20% S: 193966 | S: 146891 | S: 48027 | S: 9833
| B: 218003 | B: 75971 | B: 27376 | B: 5244
S: 213017 | S: 146621 S: 54532
20-407% | B 97205 | B: 28051 B: 11714
S: 124461 Signal: 109636 events
40-90% B: 18802 Background: 7281 events

Table 1: Centrality and photon py bins used in this research, and the number of data points
within them.

As shown in Table [T} the ratio between background and signal photons does not remain
constant throughout the data. However, for the BDT to work optimally, the amount of signal
and background fed into the algorithm will be taken as 50% each. Any excess data will just
be used for testing.

5.2 BDT Settings

Outside the ALICE photon research group, BDTs have been used previously, and the paper
Photon Conversion Classication by Boosting Decision Trees (Schaapherder, 2018)[7] has stud-
ied the feasibility of using machine learning to classify photons. In his paper, Schaapherder
determined that the standard settings of the BDT as provided in the TMVA package remain
valid for photon classification.

Indeed, as a part of this research it could be verified that increasing the number of trees
above the standard settings has a marginal effect on the significance of the resulting cut.
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Figure 5: Error fraction for the BDT after training up to 200 trees in the forest.

Option Value
NTrees 200
MinNodeSize 2.0%
MazxDepth 4

BoostType | AdaBoost
AdaBoostBeta 0.5
BaggedSampleFraction 0.5
SeparationType | Ginilndex
nCluts 20

Table 2: Settings used within the standard implementation of the BDT.

Different settings above and below the standard yield a very similar result, and Figure
shows that the error fraction as a function of the decision tree number levels off long before
n=200. To reduce the risk of overtraining, then, rather low settings will be used. These
settings are shown in Table [2]

5.3 Variables used for training

The Monte Carlo simulations and ALICE experiments yield a whole host of variable mea-
surements coming from its many detectors. The first step in configuring the BDT algorithm
should be to critically assess these variables and their usability in the training and testing
phase. Since the training of a BDT is a relatively fast process (i.e. computing time is not a
major issue), in principle, more variables for training will yield a better result.

However, there remain two good reasons not to use a certain variable for training. The
first of these is a strong, direct correlation with photon py. The data for lower pr contain a
higher fraction of signal to background. If the BDT is allowed to take this into consideration



5 IMPLEMENTATION 12

Rank Variable Separation
dEdxElectronITS
L +dEdxPositronlT'S 3-353 01
2 photonR 3.332 e-01
3 photonCosPoint 3.148 e-01
4 nSigmaTPCPositron | 2.434 e-01
) nSigmaTPCElectron | 2.346 e-01
6 photonlnvMass 2.112 e-01
7 photonQt 1.964 e-01
8 clsITSPositron 1.841 e-01
9 clsITSElectron 1.765 e-01
10 photonPsiPair 1.555 e-01
11 photonAlpha 7.049 e-02
12 fracClsTPCPositron | 5.661 e-02
13 fracCIsTPCElectron | 5.584 e-02

Table 3: All variables used to train the BDT. The second column shows their variable
separation ranking for a training run of the BDT on data with a centrality of 20-40% and a
photon pr cut from 0.5 to 1.0.

when training, it will be more inclined to cut away data at lower pr, which decreases the re-
liability of the BDT output when asked for data points at varying transverse momenta. The
second reason is when a variable is simply independent of the fact that a photon candidate is
background or signal. This can be determined visually by looking at the input variable plots
generated by the BDT, but the training macro in TMVA also provides a numerical measure
for the importance of a variable in the training process, the variable separation ranking.
Variables that performed exceptionally poorly in this test were removed.

According to these requirements, Table |3 shows the variables that were deemed suitable
for the training process. Histograms for these variables are shown in Appendix A, for signal
and background. The bigger the difference between the signal and background distributions,
the better; this allows the BDT to make effective cuts, and this is reflected in the separation
score. A similar list of variables was compiled in the feasibility study for applying BDTs to
photon classification (Schaapherder, 2018), which differs from this list on a few points. No-
tably, the ptElectron/ptPositron variables were removed due to their high linear correlation
with photon pr, and the clsITSElectron/clsITSPositron variables were retained.

5.4 Photon py binning

The variable photonAlpha also shows a high correlation with the transverse momentum of
the photon. However, as Figure [6] shows, this correlation is certainly not linear and due to
the exceptional shape of the correlation we can account for this by separating the data into
several bins, for different values of pr. Even though this decreases the amount of data avail-
able for training each BDT, separating the data into bins also helps increase the reliability
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Figure 6: Scatter plot of photon alpha / pr combinations in the background input data.

of the output. Most variables have some kind of small correlation with respect to pr, which
is often a variable of interest when researching photons (or, in fact, many other particles).

The correlation between alpha and transverse momentum of the photon shows a radical
change around py = 0.5, so it makes sense to put the border of the first bin at this point.
Further borders for the bins are chosen with two other considerations in mind. Firstly, that
some of the variables distributions change slowly as pr values increase above 0.5, which af-
fects the ideal cut locations only subtly. Secondly, that there is a rapidly decreasing amount
of data available as pr increases. pr = {1.0;2.0} therefore work well as the other borders.

Figure [7] shows the distribution of the photons alpha values, for each of the transverse
momenta bins. It is clear that the shape of the graph changes radically around pr = 0.5,
as the single peak around alpha = 0 disappears. This affects the background photons in
particular. The gradual change after pr = 0.5 is also visible as the standard deviation of the
background photon alpha value increases.

5.5 Centrality binning

The data received from the Monte Carlo simulation is grouped in 7 bins according to the
centrality of the lead-lead collision. It would be convenient to merge as many of these bins as
possible to reduce the number of different BDTs that have to be trained. However, a different
centrality gives rise to different physical events for example, the signal to background ratio
correlates with the centrality.
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Figure 7: Histogram of photon alpha value occurrence for varying photon pr. The top graph
shows only background photons, the bottom graph only signal photons. Data pictured for a
centrality of 0-20%. The graphs for lower photon pr have more data and are therefore higher
overall.
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Figure 8: Histogram of the distribution of the combined amount of TPC clusters triggered
by an electron-positron pair, coming from signal (light) and background (dark) photons, for
varying centrality of the collision event creating those photons.

Furthermore, some of the input variables have a different distribution when the central-
ity of the event is changed. In particular, the dE/dx of the electron-positron pair in the
ITS, and the number of clusters they trigger in the ITS and TPC are different. The lat-
ter of these variables is shown in Figure [§ for three centrality ranges. It is clear that the
relatively straightforward instructions in a decision tree (i.e. make a cut when variable y is
larger/smaller than x) arent ideal for this variable, because the locations of the signal and
background peaks change, and therefore the ideal cut changes.

Therefore, instead of universally applying the same cuts to all variables, independent of
the centrality of the event, separating the data into centrality bins will yield a better end
result.

Unfortunately, the least central event bins (such as 80-90%) contain much less data than
the more central bins (such as 0-10%). The least central event bins are also skewed to contain
a much higher fraction of signal to background, which means that a lot of signal data cannot
be used for training. After all, the data fed to the BDT should ideally have as many signal
as background events. Therefore, in order to preserve a high enough amount of data to
train the BDT accurately, some bins will have to be merged, particularly at higher centrality
percentiles. The cut-off point for enough data is chosen to be at least 5000 background and
signal events per bin. The resulting bins and the data they contain are shown in Table [T}
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6 Results

According to the specifications determined in the previous sections, nine different BDT's
were trained, one for each of the centrality and pr bins. This chapter includes the results of
various tests on the reliability and performance of the algorithms. Section 4.3 provides the
theoretical context for these tests. Section 6.1 is focused on the reliability of the BDTs and
describes the application of a Kolmogorov-Smirnov test and its implications. Then in section
6.2, the performance of the algorithms is tested by applying them to Monte Carlo test data
in AliIROOT.

6.1 Kolmogorov-Smirnov test
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Figure 9: BDT response for test and training samples of data at a centrality of 20-40% and
pr of 0.5-1.0.

In order to test the reliability of the trained algorithms and ensure that they were not
subjected to overtraining, a K-S test was applied to each of them. Table [4] shows the result
of this test for all the BDTs used in this research. It can be seen that all results are within
a reasonable margin of likelihood. Figure [0] shows the worst test result, and illustrates that
even when the probability that the distributions are exactly the same is relatively small, they
still have a very similar shape, which means that potential small differences due to overtrain-
ing or a difference in the training data do not have a big effect on the result. The ideal cut
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Centrality (%) | pr (GeV/c) | Probability (signal, in %) | Prob. (background, %)
0-20 0.2-0.5 17.5 53.1
0-20 0.5-1.0 59.0 26.8
0-20 1.0-2.0 13.4 42.9
0-20 2.0+ 8.0 6.6
20-40 0.2-0.5 91.5 40.5
20-40 0.5-1.0 5.8 7.3
20-40 1.0+ 16.6 8.0
40-90 0.2-0.5 90.8 11.3
40-90 0.5+ 28.3 7.0

Table 4: K-S test results for all trained BDTs. The test is applied separately to background
and signal distributions.

number and significance remain similar even in this case.

6.2 Application to Monte Carlo data
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Figure 10: BDT output histograms, for photons of event centrality 20-40%, pr > 1. The dark
coloured lines are signal (blue) and background (red) output after applying the matching BDT
weight files. The lighter coloured lines are similar, but using the weight files for centrality
40-90%, photon pr 0.2-0.5.
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The nine different weight files and their functionality were successfully loaded into the
AlIROOT framework which allows for further testing of the BDT performance. Specifically,
the improvement gained by applying BDTs for several data bins, over applying one univer-
sal BDT, and over the by-hand method of applying cuts to variables which is currently in use.

Figure [10] illustrates the difference that centrality and photon py binning makes on the
eventual purity and efficiency of the data after using the BDT. When using the correctly
trained BDT (the one that was trained using data of the same centrality and pr as the data
it is applied to), the separation achieved between signal and background is better than using
a BDT trained for one of the other event bins. Especially the signal output is more peaked
around an output value of 0.3, at which point there is no more background output. This
means that a cut in the data can achieve a higher purity, for the same efficiency, if the data
is analysed using the BDT weight files with the appropriate centrality and photon py.
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Figure 11: BDT output histogram of a Monte Carlo simulation run within the ALICE frame-
work, on data with all usual cuts already pre-applied, displaying signal (blue) and background
(red) as a function of the BDT output value.
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Figure [11{shows that even after the by-hand cuts have been applied, there is ample back-
ground contaminating the data. The figure shows only data that would be classified as signal
with the usual method, but the real signal and background are known since we can access
that data in the Monte Carlo simulation. Before applying the boosted decision tree, the pu-
rity of the data equals 64.1%, for a total significance of 49.9. By applying the BDT algorithm
to further separate out signal and background, a cut in its output can radically increase the
purity of the accepted data at a low loss of efficiency.

For this data a cut on the BDT output value between -0.2 and 40.3 makes the most sense,
depending on whether purity, efficiency or significance is required. By computing the inte-
gral of the signal and background for various cutting points, the ideal cut can be determined.
Table |5| shows some of the possible cuts within the interval [-0.2;+0.3] and their attributes,
and it can be seen that the highest significance of the resulting data can be achieved with a
cut on the BDT output around 0.05. At this point, a cut would result in a purity of 94.1%,
which is an improvement of 30.0% compared to the manual cut.

Figure [12] illustrates this point; the safest cut at a low BDT output of -0.2 will achieve
a similar efficiency to the manual cuts, but with a much higher purity. If efficiency is not
essential, then even higher purity values can easily be reached by cutting at a higher BDT
output.

BDT output cut | #Background | #Signal | Efficiency | Purity | Significance
-0.2 891 3872 0.996 0.813 | 56.1
-0.1 553 3849 0.991 0.874 | 58.0
0 327 3788 0.975 0.921 | 59.1
0.05 233 3718 0.957 0.941 | 59.2
0.1 161 3638 0.937 0.958 | 59.0
0.2 7 3298 0.849 0.977 | 56.8
0.3 24 2736 0.704 0.991 | 52.1

Table 5: Some of the possible BDT output cuts within the interval [-0.2;+0.3] and their
attributes.
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Figure 12: Purity as a function of efficiency (defined as 1 for manually cut data) for various
BDT cuts (as in Table |5 blue) and the manual cut (red).
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7 Discussion

Because the transverse momentum of the photon (pr) is often studied and used as a variable in
research into photons, it would be ideal if the BDT did not make any cuts that correlate with
the transverse momentum of the photon. Unfortunately, the training and testing data has
a much higher ratio of signal to background for higher centrality percentages. In particular,
the bin for pr between 0.2 and 0.5 has a significantly lower fraction of signal data, as shown
in Table [1] Figure [13] shows that the BDT output indeed has the expected dip between 0.2
and 0.5 pr. This makes it hard to assess whether the algorithm explicitly selects for high
pr. The variables used in this research were chosen to avoid this selection (section 5.3), but
further research may be necessary to confirm that explicit pr selection indeed doesn’t occur.
Of course, this is only a potential issue for the lowest pr bin, as Figure shows that the
input/output ratios fluctuate a lot less for py higher than 0.55.
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Figure 13: The ratio between the photon pr spectrum after selecting for a BDT output
higher than -0.1 and the pr spectrum before applying the BDT, for 100 pr bins. Data for
centrality 0-20%.

It is possible that some uncertainties and inaccuracies arise from the fact that for the
training of the BDT algorithm, Monte Carlo simulated data was used instead of real data
collected from an experiment at ALICE. Using experimental data is very impractical since
we dont have separate lists of signal and background photons which can be used to check
and improve the algorithm, whereas the Monte Carlo simulation gives a theoretically infinite
amount of this data to work with. Of course, if the simulation is subtly wrong, it could
cause the BDT to train itself on an artefact of the simulation which does not occur in a real
experiment. In this research, extra care has gone into avoiding overtraining of the BDT,
which should also reduce this effect of small errors in the simulation.
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8 Conclusion

The aim of this research was to develop a Boosted Decision Tree to analyse data from ALICE
experiments in such a way that it can assign a BDT output value to the detected photons,
corresponding to the probability that it is a signal photon, so that a single cut can be made
by the researcher to separate background from signal. 7 separate Monte Carlo simulation
runs produced a list of variables for each of just over 1.5 million events for the algorithm’s
training. Building on feasibility research into this subject, suitable variables were chosen
from these, as shown in Table

The first criterion was that the BDT method should produce reliable results for varying
ranges of photon pr and centrality of the primary collision event. As shown in Figures [0 and
B these ranges give rise to different physical effects, so the input data was separated into 9
bins. They were chosen to have both sufficient data for reliable training, as well as negligible
correlations between variables and the photon’s transverse momentum. Table |1 shows these
bins and the data they contain. There is less signal data for lower py, which shows as the
BDT cuts away more photon candidates here. However, there is no indication that this is
due to explicit selection of higher pr by the algorithm.

The second criterion was that, by using the BDT and making a cut on the output values,
the resulting data should be demonstrably better than the by hand cutting method currently
used to separate background photons from signal. To this end a K-S test was performed to
check for overtraining (Table [4)) which yielded a good result. The BDT was then applied on
data which was already improved in the usual method, and Figure |11 shows that significant
improvement can be gained by applying the BDT. At maximum significance, signal purity
was increased by 30%, from 64.1% to 94.1%. A sharper cut on the BDT output could increase
this even further, but at the cost of data efficiency.

With the tools developed in this research, which have been added into the AIROOT
framework, the ALICE photon research group will be able to improve the accuracy of their
results. As shown, the significance of the data will increase by using the BDT method, and
thus significant conclusions can be drawn even with less data to work on, and fewer corrections
for contamination by background pairs. A next step to this research could, for example,
be to determine which of the photons identified by the BDT are direct photons emitted
from a quark-gluon plasma. Identifying these specific photons might shed further light on
this interesting state of matter. Further improvement to the results themselves may be
gained by looking into different kinds of machine learning techniques such as neural networks.
Perhaps these algorithms can achieve an even higher purity and efficiency. Furthermore, any
improvement to the Monte Carlo simulation methods will also prove a boon for the usefulness
of the BDT, since it relies on the accuracy of the training data.
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Input variable: photonCosPoint
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