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For, lo, the wicked bend their bow, they make ready their arrow
upon the string, that they may privily shoot at the upright in
heart. - Psalm 11:2 (King James Version)

Abstract

In this thesis, singular loci in Kähler moduli space of type IIA string theory on a Calabi-
Yau threefold are considered. The compactification of type IIA string theory to 4D
is described and the moduli spaces of the Calabi-Yau threefold are introduced. Then,
singularities in the Kähler moduli space are discussed and classified using the theory of
mixed Hodge structures and nilpotent orbits, which is introduced in some detail. We use
this classification of singular loci to find constraints on the triple intersection numbers
KIJK that occur in the metric of type IIA Kähler moduli space. These are classified in
terms of the various singularity types. We also try to find ‘ficticious’ KIJK that violate the
constraints, finding that these usually seem to yield moduli space metrics that degenerate
somewhere on moduli space. This leads one to propose that this feature might be true in
general. Lastly, we also describe the nilpotent orbits arising near the singular loci from a
slightly different viewpoint, in which their nilpotent generators relate flux configurations
of different kinds and are interpreted in terms of Freed-Witten anomalous branes attached
to domain walls in the 4D theory.

3



1 Introduction
Auf, liebe Sänger! Greifet in die Saiten! — Richard Wagner,
Tannhäuser (act 2, scene 4).

1.1 String theory and compactification

Quantum mechanical theories have been extremely successful in predicting physics at the
scale of fundamental particles. Hence, the laws of physics are believed to be ultimately
written in the language of quantum mechanics. Incorporating gravity into quantum me-
chanics has, however, been a notoriously difficult task. The most naive procedure of
turning general relativity into a quantum theory leads to severe mathematical incon-
sistencies when taken too seriously; hence, the theory obtained in this way cannot be
fundamental. One thus needs a theory of quantum gravity that deals with these issues.
Furthermore, one would like to extend this theory to include all of the other known forces,
obtaining a unified framework that describes

String theory has proven to be an interesting theory of quantum gravity and a can-
didate for a consistent theory of everything. The starting point of string theory is the
idea that fundamental particles are not pointlike, but consist of tiny loops of string, the
vibrational modes of which determine the properties of the particle, such as their spin
and mass. From this relatively simple idea, the laws of physics are supposed to emerge.
String theory automatically includes the graviton, the particle that mediates the force of
gravity. Hence, string theory includes gravity very naturally.

Apart from automatically including gravity, string theory has other appealing features
that have turned it into an important focus of theoretical physics research. One important
such feature is its high degree of uniqueness, which sets it apart from most frameworks in
which one can invent theories of physics. For example, in quantum field theory, one can
write down any renormalizable Lagrangian and use it as a physical theory. In contrast,
string theory turns out to imply strong consistency requirements that severely limit the
amount of possible theories. In fact, there turn out to be only five consistent superstring
theories: the type I, type IIA, type IIB and two heterotic theories. These, in turn, are
believed to all be different limits of a single larger theory, the precise formulation of
which is not yet known. Furthermore, the five string theories specify the possible fields
and interactions in much detail and specify the amount of spacetime dimensions to be
precisely ten.

As noted before, in order for superstring theory to be mathematically consistent,
the theory requires spacetime to be exactly ten-dimensional. Naively, this is a clear
contradiction with everyday experience: the universe appears to be four-dimensional,
having three spacelike dimensions and one timelike one. Hence, if string theory describes
the real world, six out of ten dimensions should be hidden away from daily life. There are
ways to achieve this: commonly, one assumes that the six ‘invisible’ dimensions comprise
a compact manifold with a typical length scale so small that the extra dimensions are
indeed invisible on ‘regular’ length and energy scales. The physics within the other six
dimensions does, however, play an important role in the four-dimensional physics by
influencing what appear to be the internal degrees of freedom of the theory from a 4D
viewpoint.
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1.2 Swampland criteria, the Swampland Distance Conjecture
and nilpotent orbits

Although string theory, when viewed as a ten-dimensional theory, is highly unique, the
resulting physics in the four large dimensions depends strongly on the choice of compact-
ification manifold. Hence, if one wants to make contact between string theory and the
real world, one needs a good understanding of the process of compactification. One can
ask the question which theories can and cannot be obtained from string theory. In this
context, a distinction is often made between the so-called ‘string landscape’, consisting of
field theories that arise in some limit from string theory, and the ‘swampland’, consisting
of theories that cannot be UV-completed using string theory[1].

Recent research activity has given rise to a host of different swampland criteria. These
are (conjectured) properties that field theories should satisfy if they can be consistently
embedded in string theory, that is, if they belong to the string landscape. For a com-
prehensive review of the various swampland criteria, we refer the interested reader to [2].
One specific conjecture that is relevant to this thesis is the so-called Swampland Distance
Conjecture. This conjecture is concerned with certain special points P in field space that
are at infinite field distance. That is, there exist no geodesics of finite length connecting
P to any other point Q in that field space. Here, a ‘field space’ is understood to be the
space in which the fields of the theory take their values. The statement of the Swampland
Distance Conjecture is then that, when moving towards P in field space, towers of states
appear that become massless exponentially fast in the field distance. Loosely speaking,
the mass scale m of the states goes as m ∼ exp (−d(P,Q)), where d(·, ·) is the geodesic
distance between two points[3].

In order to show that the Swampland Distance Conjecture holds in some setup, one
first has to find infinite distance points, then identify a tower of states that becomes
massless when approaching the infinite distance point. This was done for many types of
singular points in the complex structure moduli space of type IIB string theory compact-
ified on a Calabi-Yau threefold[4, 5], and in the mirror setting of the type IIA Kähler
moduli space by the use of the mirror map[6]. These spaces are field spaces of 4D scalars
that come from massless deformations of the metric on the Calabi-Yau space Y used
for compactification. In these specific settings, applying a deep mathematical framework
turned out to be a fruitful avenue to demonstrating rather general properties of the mod-
uli spaces near singular points. This mathematical formalism is concerned with Hodge
structures, their variation over moduli spaces and their degeneration into mixed Hodge
structures[7, 8, 9, 10, 11].

The theory of degenerating Hodge structures describes (as a special case) the behavior
of the middle cohomology H3(Y,C) of the Calabi-Yau threefold Y on which the theory
is compactified. The middle cohomology H3(Y,C) is a vector space of differential three-
forms that is topological in origin. H3(Y,C) decomposes into complex subspaces by a
decomposition that depends on the complex structure of the Calabi-Yau threefold. This
dependence is captured by the theory of degenerating Hodge structures. Furthermore, the
theory allows one to analyze the theory in singular limits in which the middle cohomology
becomes ill-behaved, by using the monodromy transformations of H3(Y,C) that arise
when encircling the singularity.

In a realistic 4D theory resulting from a string theory compactification, the formalism
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of mixed Hodge structures operates ‘under the hood’. One can then ask whether one can
invent a theory formulated in 4D spacetime that looks realistic, but in which the require-
ments of mixed Hodge theory are not satisfied. In this way, one has a 4D theory that
belongs to the swampland in a non-trivial way. In particular, there might be nontrivial
constraints on coupling constants in the 4D theory.

In this thesis, the main focus will be on compactified type IIA superstring theory.
Specifically, we will study the Kähler moduli space of type IIA supergravity, to which we
will apply the formalism of mixed Hodge structures. In order to introduce this moduli
space, we will treat the compactification of type IIA supergravity in some detail. Then,
we will combine the formalism of mixed Hodge structures with explicit expressions for
the monodromy matrices in order to search for a 4D theory that is inconsistent in the
way described above.

1.3 Outline of this thesis

The structure of this thesis is as follows. In chapter 2, the compactification of type IIA
superstring theory on a Calabi-Yau manifold is described, in order to provide some general
context for the more detailed calculations that will follow. The low-energy effective action
of type IIA superstring theory, type IIA supergravity, is introduced. Then, the geometry
of Calabi-Yau manifolds and their moduli spaces is discussed. The compactification of
the IIA supergravity action is then carried out, resulting in a 4D effective supergravity
action. Finally, the relevance of orientifolds and flux parameters is described. Since the
geometry of the Kähler moduli space of type IIA superstring theory is not profoundly
affected by the orientifold procedure, we will not go into too much detail.

In chapter 3, we specialize to studying the type IIA Kähler moduli space and the
monodromy that can arise on it. First, the framework of mixed Hodge structures will be
introduced in the context of the mirror setting of type IIB complex structure moduli space
and then applied to type IIA Kähler moduli space. The monodromy transformations aris-
ing near singular points and the nilpotent matrices generating these transformations are
introduced, together with some explicit expressions in the context of certain large-moduli
limits in type IIA Kähler moduli space. Then, the classification of singular points in
moduli space will be introduced and the possible ways in which a singularity can degen-
erate will be discussed. The properties of the different singularity types are connected to
the properties of the nilpotent monodromy generators, which turn out to be useful and
interesting objects.

In chapter 4, we present partially new results regarding constraints on a certain tensor
in 4D supergravity, the triple intersection tensor KIJK . For a 4D supergravity theory to
descend from 10-dimensional supergravity compactified on a Calabi-Yau manifold, it is
necessary that the elements of this tensor obey certain constraints called the ‘polarization
conditions’, coming from the theory of degenerating Hodge structures as presented in the
previous chapter. For low-dimensional moduli spaces, we will try to classify the possible
KIJK that can occur, depending on the singularity types of the various large-moduli limits
that they give rise to. We will try to violate the polarization conditions, but find that
this seems to result in the moduli space metric not being positive-definite. One suspects
that this result might be general, but we will not attempt to prove this.

Finally, in chapter 5, we discuss a slightly different subject, that is nevertheless simply
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connected to the topic of nilpotent orbits. We treat a slightly different interpretation of
the nilpotent matrices described in chapter 3 in terms of Freed-Witten anomalous branes
in flux compactifications. Specifically, domain walls between different regions of space-
time in which there are different flux configurations can decay by emitting Freed-Witten
anomalous 4D strings, and the transformations that relate the different configurations on
both sides of the domain wall turn out to be the monodromy transformations familiar
from chapter 3. This more physical interpretation was found in references [12, 13] based
on [14], where the scalar potential in type IIA supergravities compactified in the presence
of fluxes was analyzed. Here, we will resort to a flying tour of the physics of Freed-Witten
anomalies, D-branes and the way in which these give rise to nilpotent matrices.

We end this thesis with some concluding remarks, in which we summarize the discus-
sion and the results.
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2 Dimensional reduction of type IIA supergravity

String theory is a theory, formulated in ten spacetime dimensions, which is supposed to
give a consistent description of quantum gravity phenomena at arbitrarily high energies.
However, most household phenomena take place at low energies with respect to typical
quantum gravity energy scales. Furthermore, daily life takes place in only four of the
ten spacetime dimensions. Therefore, in order to make contact with mundane physics,
one would like to have an effective description of the low-energy physics of string theory.
Additionally, one needs to have a way to remove six of the ten spacetime dimensions,
which can be done by a process called compactification.

In this chapter the low-energy action of type IIA string theory, type IIA supergravity,
will be introduced. Then, after the theory of deformations of Calabi-Yau metrics and
the corresponding moduli spaces is discussed, the compactification of IIA supergravity
to 4D using a Calabi-Yau threefold is described. Finally, flux parameters and orientifold
projections will be concisely discussed.

2.1 IIA superstring theory and supergravity

Superstring theory is a version of string theory in which there are fermionic excitations of
the string as well as bosonic ones. These excitations are related to each other by super-
symmetry, both on the worldsheet and in spacetime. Famously, there are five different
(but dual) superstring theories, called type I, type IIA, type IIB, heterotic SO(32) and
heterotic E8×E8. These theories differ mainly in their field content. Here, we will not be
concerned with the heterotic and type I superstring theories at all; we will mainly focus
on type IIA string theory and refer to the type IIB string theory on a few occasions.
Furthermore, we will almost entirely focus on closed strings, although D-branes will be
introduced in chapter 5.

Superstring theory is often considered from a worldsheet perspective, in which the
string is considered as a (1+1)-dimensional object on which one can do quantum field
theory. However, the massless excitations of the superstring serve double duty as fields
in (9+1)-dimensional spacetime that provide a background for the string to propagate
in. Hence, it is convenient to have a spacetime description of the dynamics of these
fields. This desription is provided by the low-energy effective action of the superstring
theory[15, 16, 17].

Like the type IIA superstring theory itself, the type IIA effective action is formulated
in 10 spacetime dimensions. It is given by the so-called type IIA supergravity action,
which will be introduced below. Whereas the low-energy effective action of bosonic string
theory can be derived by analyzing the beta functions of the corresponding worldsheet
model[16], for superstrings, the form of the effective action is actually dictated by su-
persymmetry. The low-energy effective action of type IIA string theory (or rather, of its
bosonic fields) will be the starting point of this thesis.

The massless bosonic excitations of the closed string sector of type IIA string theory
are the metric ĝ, a dilaton φ̂ and a two-form B̂2 in the NSNS sector and the one-form
Ĉ1 and three-form Ĉ3 in the RR sector. The low-energy effective action of these fields is
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given by the type IIA bosonic supergravity action[18, 19, 15]:

SIIA =

∫
−1

2
e−2φ̂R̂ ∗10 1 + 2e−2φ̂dφ̂ ∧ ∗10dφ̂−

1

4
e−2φ̂Ĥ3 ∧ ∗10Ĥ3 −

1

2
F̂2 ∧ ∗10F̂2

− 1

2
F̂4 ∧ ∗10F̂4 + Ltop,

(1)

with topological terms Ltop given by

Ltop = −1

2

[
B̂2 ∧ dĈ3 ∧ dĈ3 −

(
B̂2

)2

∧ dĈ3 ∧ dĈ1 +
1

3

(
B̂2

)3

∧ dĈ1 ∧ dĈ1

]
, (2)

where the powers of B̂2 are shorthand for wedge products; for example,
(
B̂2

)2

≡ B̂2∧B̂2.

R̂ is the Ricci scalar belonging to the metric ĝ and the field strengths Ĥ3, F̂2 and F̂4 of
the fields B̂2, Ĉ1 and Ĉ3 are given by

Ĥ3 = dB̂2,

F̂2 = dĈ1 and

F̂4 = dĈ3 − dC1 ∧ B̂2.

(3)

We use a hat to denote 10-dimensional quantities; after compactification, we will end up
with a 4D theory and the hats will be dropped. We denote the ten-dimensional Hodge
star by ∗10; the Hodge star on the resulting 4D space will be denoted by ∗4 or simply by
∗ when there is no risk of confusion. The Hodge star on Y is denoted by ∗Y .

The action of the fermionic fields of type IIA supergravity is related to the bosonic
action by supersymmetry. Hence, we will not consider the fermionic fields here.

2.2 Compactification on a Calabi-Yau manifold

Type IIA superstring theory and type IIA supergravity are formulated in a spacetime
that is ten-dimensional. In order to arrive at a four-dimensional theory, one needs to
get rid of six of the spatial dimensions. A common way to do this is to assume that
spacetime is a product R1,3 × Y , where R1,3 is standard 4D Minkowski spacetime and Y
is a six-dimensional compact manifold that has a typical length scale lc that is so small
that it is not detectable in a direct way. One can then investigate the physics on energy
scales much smaller than 1/lc and compute the resulting effective action. This is what
we will do in this chapter.

The fact that the typical length scale of Y is much smaller than the length scale does
not mean that the properties of Y are irrelevant to the effective 4D physics. On the
contrary, the choice of compactification manifold Y is crucial in determining the precise
field content and couplings of the 4D theory.

A particularly well-known kind of compactification manifold is given by the so-called
Calabi-Yau manifolds. These turn out to give the 4D theory a realistic amount of
supersymmetry[20]. Furthermore, the theory of compactifications on these manifolds
is by now well-established.

In order to describe what a Calabi-Yau manifold is, we first need to introduce so-called
Kähler manifolds. A Kähler manifold is a complex manifold that admits a Hermitian
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metric h and a real (1,1)-form J that are compatible with each other and with the
complex structure[21]. In such a setting, J is more commonly called the Kähler form and
given by the imaginary part of the metric: J = ihµνdx

µdx̄ν .
A Calabi-Yau manifold, in turn, is a Kähler manifold in which the metric can be chosen

to be Ricci-flat: that is, one can find a Kähler metric h of which the corresponding Levi-
Civita connection has vanishing Ricci tensor, R(h) = 0. One of many other equivalent
definitions is that a Calabi-Yau manifold is a Kähler manifold with vanishing first Chern
class; yet another definition is that a Calabi-Yau manifold has SU(N) holonomy.

A fact that will be relevant to our discussion is that the shape of the complex coho-
mology of a Calabi-Yau manifold is highly constrained. More precisely, if one writes down
the general Hodge diamond of a Calabi-Yau manifold, in which the dimensions hp,q of
the cohomology groups Hp,q(Y ) (the so-called Hodge numbers) are displayed, that Hodge
diamond is given by[22]

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

. (4)

There are only two independent Hodge numbers: h2,1 and h1,1. Furthermore, the coho-
mology groups H3,0 and H0,3 are one-dimensional. They are spanned by harmonic forms
respectively called Ω and Ω̄, where Ω̄ is the complex conjugate of Ω.

2.3 Calabi-Yau moduli spaces

Generically, on a given Calabi-Yau threefold Y , the Calabi-Yau metric h is not unique[23].
One can vary the metric by adding a small variation δh so that the new metric is h+ δh.
If this new metric satisfies the Ricci flatness condition R(h + δh) = 0 and is Hermitian
with respect to some complex structure, it is a valid Calabi-Yau metric in its own right.
Hence, Y comes with a parameter space of possible Calabi-Yau metrics, which is called
the moduli space of Y .

If Y is the internal Calabi-Yau of a compactified supergravity theory, the moduli
of Y turn out correspond to massless fields in the effective 4D theory. Hence, it is
important to have a good understanding of Calabi-Yau moduli spaces if one wants to
study compactified supergravity theories. We will here describe the deformation theory
of Calabi-Yau manifolds, introduce and discuss the two distinct kinds of moduli spaces
and introduce their natural metrics.

We are interested in the possible metrics on a Calabi-Yau manifold that do not destroy
the Calabi-Yau property. To this end, we need the varied metric h+ δh to preserve Ricci
flatness R(h+ δh) = 0. Some such ‘deformations’ are the δh that arise due to coordinate
transformations. These are not very interesting, since they do not change the physical
properties of Y . One therefore removes such metric variations by demanding that the
interesting δh obey the coordinate condition ∇µδhµν = 0. Metric variations obeying this

condition also obey
∫
Y

√
hδhµν(∇µξν +∇νξµ)d6x = 0; hence, these δh are orthogonal to

metric variations obtained by coordinate transformations[15, 23].
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One can then expand the Ricci tensor R(h+ δh) to first order in δh. Using the Ricci
flatness condition as well as ∇µδhµν = 0 one arrives at[15, 24]

∇ρ∇ρδhµν + 2R ρ σ
µ ν δhρσ = 0. (5)

Depending on their index structure, the metric variations δhµν obeying the above condi-
tion split into variations of the Kähler class δhi̄ and of the complex structure δhij. On
a Calabi-Yau manifold, these two types of δh obey equation 5 separately. We will now
describe both of these classes of variations in turn and express them in terms of harmonic
forms on Y .

2.4 Complex structure moduli space

We first turn to metric variations of the form δhij. From the index structure of δhij, one
concludes that the new metric h + δh is not Hermitian with respect to the old complex
structure anymore[15]. Hence, such variations are variations of the complex structure on
Y .

The complex structure variations δhij are in one-to-one correspondence with (1,2)-
forms χ̄ on Y [23] through

δhij =
i

||Ω||2
z̄K (χ̄K)īı̄ Ωı̄̄

j
(6)

The basis χu is related to Ω by Kodaira’s formula,

∂zuΩ = (−∂zuKcs) Ω + iχu, (7)

where Kcs is a function that will turn out to be the complex structure Kähler potential,
which will be introduced later. The zu are called complex structure moduli and function
as coordinates on the so-called complex structure moduli space Mcs.

The space Mcs of complex structure moduli turns out to be a Kähler manifold, with
the zi as coordinates. One can investigate the geometry ofMcs in more detail. To do this,
we first decompose the holomorphic three-form Ω into a real, symplectic basis (αK , β

K)
(K = 0, ..., h2,1), having the properties∫

Y

αK ∧ αL = 0,∫
Y

βK ∧ βL = 0 and∫
Y

αK ∧ βL = δLK .

(8)

It is convenient to choose a real basis, since it does not depend on the complex structure
of the manifold. Ω is then decomposed as

Ω = ZKαK − GKβK . (9)

where the periods ZK and GK are given by

ZK =

∫
Y

Ω ∧ βK ,

GK =

∫
Y

Ω ∧ αK .
(10)
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Since there are 2h2,1 + 2 periods, whereas Mcs is only h2,1-dimensional, not all of these
periods can be independent. One can write

GK = ∂ZKG (11)

where G is a prepotential that is a homogeneous function of degree 2 in the ZK periods[25].
Hence, the G periods are not independent, but are entirely determined by the ZK , given
the form of the prepotential.

One is left with h2,1 + 1 periods, the last of which is removed by considering that
Ω can be arbitrarily rescaled without changing the complex structure. Hence, one can
arbitrarily choose one of the (nonzero) ZK , which is conventionally denoted by Z0, and
set it to 1. The remaining h2,1 periods zi = Zi/Z0 (i = 1, ... h2,1) are the coordinates on
Mcs given before.

The periods can be displayed in the form of a period vector Π given by

Π =


Z0

ZK

GK
G0

 . (12)

This object transforms as a vector under symplectic rotations of the basis (αK , β
K).

The tangent space of Mcs has a natural metric gi̄, called the Weil-Petersson metric,
given by

gi̄ = −i
∫
Y
χi ∧ χ̄̄∫

Y
Ω ∧ Ω̄

. (13)

It can be given in terms of a Kähler potential Kcs given by

Kcs = − log

(
i

∫
Y

Ω ∧ Ω̄

)
= − log

(
iZ̄KGK − ZKḠK

)
.

(14)

Then the metric gKL̄ is obtained from Kcs by

gKL̄ = ∂zK∂z̄L̄K
cs, (15)

with the χK from the basis given earlier. From these expressions, one concludes that a
holomorphic rescaling of Ω does not affect the metric gij, as we anticipated earlier.

Furthermore, the Hodge duals of the (αK , β
K) are traditionally written in terms of a

coupling matrix M by using the annoying expressions∫
Y

αA ∧ ∗αB = − (Im M)− (Re M) (Im M)−1 (Re M)∫
Y

βA ∧ ∗βB = − (Im M)−1∫
Y

αA ∧ ∗βB = − (Re M) (Im M)−1 .

(16)

Even worse, M is given in terms of the following awkward expression,

MAB = ḠAB +
2i

ZCIm GCDZD
Im GAIZIIm GBJZJ , (17)
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that is dictated by special geometry. We will not need this explicit expression, but we
will use the matrix M in the 4D effective action.

The presentation of the complex structure moduli space given here is purely geomet-
rical in nature. In type IIA string theory, the behavior of the complex structure sector
is strongly modified by space-time (D-brane) instantons. Meanwhile, in type IIB string
theory, the complex structure sector retains its classical structure.

2.5 Kähler moduli space

Now, we consider variations of the metric of the form δhi̄. Metric variations of this form
preserve the Hermiticity condition on the metric automatically, as can be concluded from
the index structure. The condition (5) now reads

∇ρ∇ρδhi̄ + 2R k l̄
i ̄ δhkl̄ = 0. (18)

Reinterpreting δhi̄ as a (1,1)-form, this is the condition that its Laplacian ∆δhi̄ vanishes.
Hence the metric variations δhi̄ correspond to harmonic (1,1)-forms, making the space of
such variations h1,1-dimensional. Given a basis ωA of H1,1(Y ) (A = 1, ..., h1,1), a general
δhi̄ can be expanded as

δhi̄ =
h1,1∑
A=1

vA(ωA)i̄. (19)

Note that varying the metric in this way also changes the cohomology class of the
Kähler form

J = ihi̄dz
i ∧ dz̄ ̄. (20)

Hence, the vA are called Kähler moduli.
There is an additional constraint coming from the fact that the metric h+ δh should

be positive-definite[15]. This restriction translates into the conditions on the Kähler form∫
C

J > 0;

∫
S

J ∧ J > 0;

∫
Y

J ∧ J ∧ J > 0, (21)

for all irreducible proper curves C and surfaces S on Y . The space of tAωA for which these
conditions are satisfied is called the Kähler cone and one could check that it is indeed a
cone. The Kähler cone of a Calabi-Yau threefold can be simplicial or non-simplicial; if it
is simplicial, this means that the cone is spanned by exactly h1,1 generators. If h1,1 ≥ 3,
the Kähler cone can also be non-simplicial, in which case more generators are needed to
span the full cone.

In a string theory setting, one also has a B2 field that can upon compactification on
a CY threefold likewise be decomposed into the ωA basis as

B2 = ...+
h2,1∑
A=1

bAωA, (22)

where the dots indicate the external part, normally a two-form in Minkowski space. It
turns out to be convenient to combine vA and bA into h1,1 complex scalars, yielding the
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so-called complexified Kähler moduli tA = bA + ivA. Equivalently, one can talk about a
complexified Kähler form Jc given by

Jc = B2 + iJ = tAωA. (23)

The space of complexified Kähler moduli tA is a manifoldMK in its own right, called the
Kähler moduli space.

Like Mcs, MK also has a natural metric GAB that gives the kinetic terms of the tA

fields and comes naturally out of the compactification procedure. It is given by

GAB =
1

4K

∫
Y

ωA ∧ ∗ωB, (24)

where K is given by

K =
1

6

∫
Y

J ∧ J ∧ J =
1

6

∫
Y

vAvBvCωA ∧ ωB ∧ ωC

≡ 1

6
KABCvAvBvC

=
i

48
KABC

(
tA − t̄A

) (
tB − t̄B

) (
tC − t̄C

)
,

(25)

where we defined the intersection numbers

KABC =

∫
Y

ωA ∧ ωB ∧ ωC . (26)

The intersection tensor represented by the KABC is a topological object, although its
components depend on the basis ωA. In particular, if one chooses an integral basis
consisting of the generators of the Kähler cone, the intersection numbers are integers.

We can rewrite the expression for GAB in another interesting form. The Hodge dual
of a harmonic (1,1)-form η can be written as[15, 26]

∗η = −J ∧ η +
3

2

∫
η ∧ J ∧ J∫
J ∧ J ∧ J

J ∧ J (27)

Using this identity, the metric GAB can alternatively be expressed as[19]

GAB = −1

4

(
KAB
K
− 1

4

KAKB
K2

)
. (28)

Here, we use the traditional abbreviations

KA =

∫
Y

ωA ∧ J ∧ J, KAB =

∫
Y

ωA ∧ ωB ∧ J. (29)

One can now check that the metric GAB can be obtained as

GAB = −∂vA∂vB log (8K) . (30)

Hence, G is a Kähler metric with Kähler potential K given by

K = − log (8K) . (31)
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Actually, one can write this Kähler potential in terms of a prepotential as well[23]. One
defines the coordinates XI = (1, tA) and a prepotential F as

F = −1

6

KIJKXIXJXK

X0
, (32)

and, like in the complex structure sector, we can denote derivatives of the prepotential
by suffixes as

FI ≡ ∂XIF . (33)

The Kähler potential is then given by

K = − log i
(
X̄IFI −XIF̄I

)
≡ − log

(
iΠ̄ · ϑ · Π

)
, (34)

where

Π =


X0

XA

FA
F0

 =


1
tA

−1
2
KABCtBtC

1
6
KABCtAtBtC

 (35)

and the symplectic pairing ϑ is given by

ϑ =


0 0 0 1
0 0 δIJ 0
0 −δIJ 0 0
−1 0 0 0

 . (36)

The above expressions for the period vector Π and the prepotential F are purely
geometric quantities. In contrast to the complex structure moduli space, however, the
Kähler moduli space undergoes perturbative α′-corrections coming from string theory.
If one wants an integral basis for the cohomology, one needs to take into account these
quantum corrections. The computations of these corrections is hard will not be presented
here. A way to find the full form of the Kähler period vector, including α′-corrections,
is to compute the complex structure periods on the mirror manifold[27]. These are given
by [28, 29, 6]

Π =


1
tA

1
2
KABCtBtC + 1

2
KABBtB − bA

1
6
KABCtAtBtC −

(
1
6
KAAA + bA

)
tA + iζ(3)χ

8π3

 . (37)

The pairing ϑ is now given by

ϑ =


0 −1

6
KJJJ − 2bJ 0 −1

1
6
KIII + 2bI

1
2
(KIIJ −KIJJ) δIJ 0

0 −δIJ 0 0
1 0 0 0

 , (38)

where bI = 1
24

∫
Y
ωI ∧ c2(Y ), with c2(Y ) the second Chern class of Y .

One can also compute the Kähler potential in the presence of quantum corrections,
which is modified to

K = − log

(
1

6
KABCvAvBvC +

ζ(3)χ

32π3

)
≡ − logVY . (39)
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Finally, the Kähler sector also has its own coupling matrix N , which is the analog of
M from the complex structure sector and which is given by the analogous horrible-looking
expression:

NIJ = F̄IJ +
2i

XM Im FMNXN
Im FIKXKIm FJLXL. (40)

Armed with this expression and the explicit form of the prepotential, one can also compute
the explicit expressions for the real and imaginary parts of N :

Re N00 = −1

3
KABCbAbBbC , Im N00 = −K +

(
KAB −

1

4

KAKB
K

)
bAbB

Re NI0 =
1

2
KIABbAbB, Im NI0 = −

(
KIA −

1

4

KIKA
K

)
bA

Re NIJ = −KIJAbA, Im NIJ =

(
KIJ −

1

4

KIKJ
K

) . (41)

2.6 Compactification of type IIA supergravity on a Calabi-Yau
threefold

Recall that the bosonic part of the ten-dimensional type IIA supergravity action is given
in the string frame by[19]:

SIIA =

∫
−1

2
e−2φ̂R̂ ∗10 1 + 2e−2φ̂dφ̂ ∧ ∗10dφ̂−

1

4
e−2φ̂Ĥ3 ∧ ∗10Ĥ3 −

1

2
F̂2 ∧ ∗10F̂2

− 1

2
F̂4 ∧ ∗10F̂4 + Ltop,

(42)

with

Ltop = −1

2

[
B̂2 ∧ dĈ3 ∧ dĈ3 −

(
B̂2

)2

∧ dĈ3 ∧ dĈ1 +
1

3

(
B̂2

)3

∧ dĈ1 ∧ dĈ1

]
. (43)

We compactify the action (42) on a Calabi-Yau three-fold Y3. In order to do this, we
decompose the fields in terms of modes on Y and assume that only the 4D massless modes
contribute. These are the eigenmodes of the Laplacian corresponding to eigenvalue zero,
that is, the harmonic forms on Y .

First, the dimensional reduction of the metric is sketched out; then, the other fields
will be treated. We assume that the 10D metric ĝMN can be written in the following
diagonal form[30], inspired by the discussion from the previous section:

ĝMNdx
MdxN = g(x)µνdx

µdxν +hi̄dy
idy̄− ivA(x)(ωA)i̄dy

idy̄+ z̄K(x)(b̄K)ijdy
idyj, (44)

where the coordinates on Y3 are denoted by yi and the coordinates in the resulting 4D
space by xµ. Furthermore, g(x) is a 4D metric that can have any form, but which is
assumed not to depend on the coordinates on the internal manifold Y , although one can
generalise the following treatment to the case where it does. hi̄ is a constant background
metric on Y . va and z̄u are 4D scalar fields that will turn out to be massless, at least
in the absence of fluxes. As before, the ωA are (1,1)-forms with components (ωA)i̄; they
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form a basis of H1,1(Y ). Finally, the b̄K are in one-to-one correspondence with harmonic
(2,1)-forms on Y by[30]

(b̄K)ij =
i

||Ω||2
(χ̄K)iāb̄Ω

āb̄
j, (45)

with ||Ω||2 = 1
6
ΩijkΩ̄

ijk.
To perform the dimensional reduction of the Einstein-Hilbert term, we need to expand

the Ricci scalar to second order in the moduli va and zu. The result of this tedious
calculation is∫

10

1

2
e−2φ̂R̂ ∗10 1 =

∫
4

−K
2
e−2φ̂R ∗4 1 +

1

4
e−2φ̂dvA ∧ ∗4dv

B

(∫
Y

ωA ∧ ∗ωB
)

+

∫
4

1

2
e−2φ̂dzi ∧ ∗4dz̄

j

(∫
Y

χi ∧ ∗χj
)

≡
∫

4

1

2
e−2φR ∗4 1− e−2φ

(
GABdv

A ∧ ∗4dv
B
)
− e−2φ

(
gijdz

i ∧ ∗4dz̄
j
)
.

(46)
Here, the four-dimensional dilaton φ is given by

e−2φ = Ke−2φ̂. (47)

The field metrics GAB and gij are the field space metrics given by equations 15 and 24.
We now turn to the dimensional reduction of the other fields. In the low-energy

approximation, the relevant modes are supposed to be the massless ones. As stated before,
these correspond to harmonic forms on the internal Calabi-Yau. Hence, we expand the
bosonic fields in bases of harmonic forms on Y3:

φ̂(x, y) = φ̂(x)

B̂2(x, y) = B2(x) + bA(x)ωA(y)

Ĉ1(x, y) = C1(x)

Ĉ3(x, y) = dC3(x) + CA
A(x) ∧ ωA(y) + ξK(x)αK(y)− ξ̃L(x)βL(y),

(48)

where ωA is the basis of (1,1)-forms used before and (αK , β
K) is a symplectic basis of real

3-forms that obeys ∫
αK ∧ αL = 0,

∫
βK ∧ βL = 0∫

αK ∧ βL = δLK .

(49)

Ĉ1 has no internal part, because there are no harmonic 1-forms on a Calabi-Yau manifold.
Furthermore, the 4D three-form C3 is not dynamical, since it is dual to a constant and
hence does not have any physical degrees of freedom. However, it turns out that the 4D
three-form C3 does play a role as a flux parameter[19]. We will discuss flux parameters
in a later section, but leave C3 in for now; we can set the resulting parameter to zero
afterwards.
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The 10D field strengths are now given by

Ĥ3(x, y) = dB2 + dbA ∧ ωA
F̂2(x, y) = dC1

F̂4(x, y) = dC3 +
(
dCA

A − dC1 ∧ bA
)
∧ ωA + dξK ∧ αK − dξ̃L ∧ βL − dC1 ∧B2.

(50)

One can use these expressions in the type IIA supergravity action and evaluate the
integrals on the internal Calabi-Yau manifolds. This gives for the kinetic part of the
action

SIIA =

∫
10

Lmetric + 2e−2φ̂dφ̂ ∧ ∗10dφ̂−
1

4
e−2φ̂H3 ∧ ∗10H3

− 1

4
e−2φ̂dbA ∧ ∗4db

B ∧ ωA ∧ ∗Y ωB −
1

2
dC1 ∧ ∗10dC1

− 1

2

(
dCA

A − dC1 ∧ bA
)
∧ ∗4

(
dCB

A − dC1 ∧ bB
)
∧ ωA ∧ ∗Y ωB

− 1

2

(
dξKαK − dξ̃KβK

)
∧ ∗10

(
dξLαL − dξ̃LβL

)
− 1

2
(dC3 − dC1 ∧B2) ∧ ∗10 (dC3 − dC1 ∧B2) + Ltop

=

∫
4

Lmetric + 2e−2φdφ ∧ ∗4dφ−
1

4
e−2φH3 ∧ ∗4H3

− e−2φGABdb
A ∧ ∗4db

B − K
2
F 0 ∧ ∗4F

0

− 2KGAB

(
FA − bAF 0

)
∧ ∗4

(
FB − bBF 0

)
+

1

2

(
Im M−1

)AB [
dξ̃A + (M · dξ)A

]
∧ ∗4

[
dξ̃B + (M · dξ)B

]
− K

2

(
dC3 − F 0 ∧B2

)
∧ ∗4

(
dC3 − F 0 ∧B2

)
+ Ltop

(51)

where the 10D dilaton φ̂ has again been replaced by the 4D dilaton φ and the 4D field
strengths are given by

H3 = dB2,

F 0 = dC1,

FA = dCA
A .

(52)

The coupling matrix M was used to express the terms with the (α, β) forms and their
Hodge duals, with (M · dξ)A =MACdξ

C .
Similarly, the compactification of the topological terms

∫
Ltop gives

Stop =

∫
4

1

2
H3 ∧

(
ξ̃Kdξ

K − ξKdξ̃K
)
− 1

2
KABCbAFB ∧ FC +

1

2
KABCbAbB ∧ FC ∧ F 0

− 1

6
KABCbAbBbCF 0 ∧ F 0,

(53)
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where the first term has been integrated by parts. The total compactified action is then

SIIA =

∫
4

1

2
e−2φR ∗ 1− e−2φGABdt

A ∧ ∗dt̄B − e−2φgijdz
i ∧ ∗dz̄j

+ 2e−2φdφ ∧ ∗dφ− 1

4
e−2φH3 ∧ ∗H3

− K
2
F 0 ∧ ∗F 0 − 2KGAB

(
FA − bAF 0

)
∧ ∗
(
FB − bBF 0

)
+

1

2

(
Im M−1

)AB [
dξ̃A + (M · dξ)A

]
∧ ∗
[
dξ̃B + (M · dξ)B

]
− K

2

(
dC3 − F 0 ∧B2

)
∧ ∗
(
dC3 − F 0 ∧B2

)
+

1

2
H3 ∧

(
ξ̃Kdξ

K − ξKdξ̃K
)

− 1

2
KABCbAFB ∧ FC +

1

2
KABCbAbB ∧ FC ∧ F 0

− 1

6
KABCbAbBbCF 0 ∧ F 0,

(54)

where vA and bA were combined into the complexified Kähler variables tA = bA + ivA.
In order to rewrite the resulting action in a standard form and arrange all the fields in

standard supergravity multiplets, one has to first dualize C3 into a constant e0 and then
the B2 field into a scalar field a[19]. The C3 field can be dualized by adding a Lagrange
multiplier term e0

2
dC3 in the action, such that

SIIA ⊃
∫
−K

2

(
dC3 − F 0 ∧B2

)
∧ ∗4

(
dC3 − F 0 ∧B2

)
− e0dC3 (55)

Solving this equation for dC3 causes this field to be dualized into the parameter e0,
yielding

SIIA ⊃
∫
− 1

2K
e2

0 ∗ 1 + e0H3 ∧ C1, (56)

where the second term has been integrated by parts. Similarly, dualizing B2 to the scalar
a can then be done by adding the term 1

2
H3 ∧ da to the action:

SIIA ⊃
∫
−1

4
e−2φH3 ∧ ∗H3 +

1

2
H3 ∧

(
ξ̃Kdξ

K − ξKdξ̃K
)

+ e0H3 ∧ C1 +
1

2
H3 ∧ da. (57)

Solving the equation of motion for H3 gives

SIIA ⊃
∫
−e

2φ

4

[
Da+

(
ξ̃Kdξ

K − ξKdξ̃K
)]
∧ ∗
[
Da+

(
ξ̃Ldξ

L − ξLdξ̃L
)]
, (58)

where Da ≡ da+ 2e0C1.
The last step in the compactification to 4D is to perform a Weyl rescaling gµν → e2φgµν

of the metric in order to get the right Einstein-Hilbert term. Under this rescaling, the
determinant of the metric transforms as g → e8φg and the inverse metric as gµν →
e−2φgµν ; furthermore, the Ricci scalar can be checked to transform as R→ e−2φR. Using
that for any differential form ω we can write ω∧∗ω =

√
−g ωµν...ωρσ...gµρgνσ..., the action
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of the Weyl rescaling is easily checked to yield the action

SIIA =

∫
4

1

2
R ∗ 1−GABdt

A ∧ ∗dt̄B − gijdzi ∧ ∗dz̄j

+ 2dφ ∧ ∗dφ− K
2
F 0 ∧ ∗F 0

− 2KGAB

(
FA − bAF 0

)
∧ ∗
(
FB − bBF 0

)
+
e2φ

2

(
Im M−1

)AB [
dξ̃A +

1

2
e−2φ (M · dξ)A

]
∧ ∗
[
dξ̃B + (M · dξ)B

]
− K

2

(
dC3 − F 0 ∧B2

)
∧ ∗
(
dC3 − F 0 ∧B2

)
− 1

2
KABCbAFB ∧ FC +

1

2
KABCbAbB ∧ FC ∧ F 0

− 1

6
KABCbAbBbCF 0 ∧ F 0 − e4φ

2K
e2

0 ∗ 1

− e2φ

4

[
Da+

(
ξ̃Kdξ

K − ξKdξ̃K
)]
∧ ∗
[
Da+

(
ξ̃Ldξ

L − ξLdξ̃L
)]

(59)

One can write this as the following concise expression:

S
(4)
IIA =

∫
4

1

2
R ∗ 1 +

1

2
ImNABFA ∧ ∗FB +

1

2
ReNABFA ∧ FB

−GABdt
A ∧ ∗dt̄B − huvdq̃u ∧ ∗dq̃v −

e4φ

2K
e2

0 ∗ 1,

(60)

where the appearance of the coupling matrix N was recognized from the explicitly given
forms of N , and where the quaternionic sector huvdq̃

u ∧ ∗dq̃v is given by

huvdq̃
u ∧ ∗dq̃v = dφ ∧ ∗dφ+ gijdz

i ∧ ∗dz̄j

+
e4φ

4

[
Da+

(
ξ̃Ldξ

L − ξLdξ̃L
)]
∧ ∗
[
Da+

(
ξ̃Ldξ

L − ξLdξ̃L
)]

− e2φ

2

(
Im M−1

)AB [
dξ̃A + (M · dξ)A

]
∧ ∗4

[
dξ̃B + (M · dξ)B

]
.

(61)

The standard form of compactified IIA supergravity is obtained by setting the parameter
e0, that was included here only to facilitate dualization of B2, to zero. In the next section,
we will loosely discuss more parameters like e0 and their relevance.

The fields in the 4D theory can be arranged into the supergravity multiplets to which
they belong. This means that the fields in one multiplet transform into each other under
supersymmetry transformations, together with their fermionic counterparts, which we did
not take into consideration. The resulting classification of the (bosonic) fields is shown
in table 1.

2.7 Flux parameters

A generic supergravity compactification on a Calabi-Yau manifold contains many massless
fields, as can be concluded from the action in equation 60. These massless fields are the
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Name Amount Fields
Gravity multiplet 1 (gµν , C1)
Vector multiplet h1,1 (CA

A , t
A)

Hypermultiplet h2,1 + 1 (zK , ξK , ξ̃K) and (a, ξ0, ξ̃0)

Table 1: Field content of a 4D compactification of type IIA string theory on a Calabi-Yau
threefold.

moduli t and z of the Calabi-Yau manifold and the dilaton φ. Such massless fields give
rise to long-ranged forces, which are not observed in nature. Hence, it is desirable to have
a mechanism in order to stabilize the vacuum expectation value of these fields by giving
them a mass.

A way out is suggested by the term e4φe2
0∗1 in the compactified action, which provides

a potential for φ. Hence, including e0 at least partially cures the problem of massless
fields. There are several other constant parameters like e0 that can be included in the
theory and that also contribute to the potential for the scalars. These parameters are
called ’flux parameters’; they correspond to 4D expectation values for the field strengths
Fp (‘RR fluxes’) and H3 (‘NS-NS fluxes’), when these are given harmonic parts on the
internal Calabi-Yau. This is possible when the corresponding potentials do not enter
separately in the action.

Explicitly, two sets of RR flux parameters, eA andmA, can be introduced by replacing[19]

dĈ3 → dĈ3 + eAω̃
A and

dĈ1 → dĈ1 −mAωA,
(62)

where ω̃A is the basis dual to ωA. Hence, adding flux parameters amounts to adding
harmonic parts to the field strengths. This is only consistent when the potentials C3 and
C1 only enter the action in terms of their field strengths.

e0, as well, has an interpretation as the background value of a field strength, namely
the dual field strength ∗F4. This interpretation is more clearly visible in an alternative
formulation of type IIA string theory, called the ‘democratic formulation’, in which the
field strengths F2 and F4 are treated on the same footing as their Hodge duals ∗F4 ≡ F6

and ∗F2 ≡ F8, and the Hodge duality condition is implemented separately[31, 32]. We
will not discuss the democratic formulation here.

Furthermore, one can write down a version of type IIA supergravity which contains a
parameter m, called the Romans mass, making the two-form B2 massive[33]. The action
of this theory is modified from the original action in equation 1 by changing the RR field
strengths to

F̂2 = dĈ1 +mB̂2 and

F̂4 = dĈ3 − dC1 ∧ B̂2 −
m

2
(B2)2 .

(63)

A cosmological constant term −1
2
m2 ∗ 1, is added to the action. Finally, the topological
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terms are changed to

Ltop = −1

2

[
B̂2 ∧ dĈ3 ∧ dĈ3 −

(
B̂2

)2

∧ dĈ3 ∧ dĈ1 +
1

3

(
B̂2

)3

∧ dĈ1 ∧ dĈ1

−m
3

(
B̂2

)3

∧ dĈ3 +
m

4

(
B̂2

)4

∧ dĈ1 +
m2

20

(
B̂2

)5
]
.

(64)

Like e0, the Romans mass m can be interpreted as the background value of an RR ‘field
strength’. In this case, the field strength would be a zero-form F0, even though there is
no such thing as a (-1)-form C−1 being the potential of F0. Again, this description is
more natural in the democratic formulation.

By turning on fluxes, it turns out that it is possible to stabilize all geometric moduli
of the IIA theory, at least on the level of the classical theory[34, 35]. Hence, the study
of flux compactifications has become important for finding phenomenologically realistic
compactifications. Specifically, including these flux parameters generates a potential V for
the scalars[19]. This potential can be written conveniently in the form of a superpotential
W , given by[12]

WRR = e0 − eAtA +
1

2
KABCmAtBtC − m

6
KABCtAtBtC . (65)

The full scalar potential V , in the form in which it appears in the action S = ... +
∫
V ,

can then be obtained by

V = eK
(
KαβDαWDβ̄W̄ − 3|W |2

)
, (66)

where K = KK +Kcs is the full Kähler potential, the Kähler derivative Dα = ∂α + (∂αK)
and the Greek indices run over all fields. Kαβ is the inverse of the Kähler metric obtained
from the potential K. This quirky way of writing the scalar potential is useful in the
study of supergravity.

It is also possible to include NSNS fluxes in the compactification by some field redef-
initions and adding a harmonic part to dB̂2 by

dB̂2 → dB̂2 + pAαA + qAβ
A. (67)

Again, this is only possible if B̂2 only enters the action in terms of its field strength. We
will not discuss NSNS fluxes in detail here.

2.8 Orientifolds and N = 1 supergravity

We arrived at the expression for type IIA supergravity compactified on a Calabi-Yau
manifold to 4D:

S
(4)
IIA =

∫
−1

2
R ∗ 1 +

1

2
ImNÂB̂F

Â ∧ ∗F B̂ +
1

2
ReNÂB̂F

Â ∧ F B̂

−GABdt
A ∧ ∗dt̄B − huvdq̃u ∧ ∗dq̃v.

(68)

This theory has two supersymmetry generators, so it is said to have N = 2 supersymme-
try. Theories with N = 2 are interesting in themselves and have been the subject of much
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research. However, these theories have too much supersymmetry to yield realistic 4D com-
pactifications. This is because N = 2 theories cannot contain chiral fermions; these can
only appear in theories with N = 1 supersymmetry or without supersymmetry[15]. Since
it is important to have chiral fermions if one wants to construct a theory that reproduces
the Standard Model at low energies, one needs a technique to reduce the supersymmetry
content of the above model.

This reduction is made possible by a procedure called orientifolding. This procedure
amounts to taking the quotient of the compactified theory by a symmetry operationO and
projecting out the field excitations that are not invariant under O. Here, O = Ωp(−1)FLσ,
where Ωp is the world-sheet parity operator, (−1)FL is the space-time fermion number
operator and σ is an anti-holomorphic involution of the Calabi-Yau three-fold Y [25] that
acts on the differential forms on the Calabi-Yau. This orientifold projection reduces the
N = 2 supersymmetry of the theory to N = 1.

In order to determine which modes are invariant under O and survive the orientifold
projection, it is useful to first state the action of the operators Ωp and (−1)FL . The RR
fields C1 and C3 are odd under (−1)FL , whereas the other fields are even. Furthermore,
under worldsheet parity Ωp, B2 and C3 are odd, and the other fields are even. Hence the
O-invariant modes that survive the orientifold projection are the modes obeying

σ∗φ̂ = φ̂

σ∗ĝ = ĝ

σ∗B̂2 = −B̂2

σ∗Ĉ1 = −Ĉ1

σ∗Ĉ3 = Ĉ3.

(69)

Since the 4D C1 field only has external 4D indices, on which σ acts trivially, the C1 field is
fully projected out of the spectrum. Similarly, the 4D B2 field which is the 4D two-form
of B̂2 is projected out.

In the ansatzes for the compactification of the B̂2 and Ĉ3 fields, the orientifold proce-
dure restricts the amount of internal harmonics on Y on which the fields are expanded.
The space Hp(Y ) of p-forms on Y can be split into a part that is even under σ∗ and a
part that is odd:

Hp(Y ) = Hp
−(Y )⊕Hp

+(Y ) (70)

Hence, we can take a basis ωA for the space H1,1(Y ) that splits into even forms ωi and
odd forms ωα. Similarly, the real symplectic basis (αK , β

K) of H3(Y ) splits into even
forms (αK , β

L) and odd forms (αL, β
K). Furthermore, one can (by a relabeling α ↔ β)

choose these forms so that the forms (αK , β
L) are absent, so that all the α are even and

all the β are odd.
The fields B̂2 and Ĉ3 can now be expanded as

B̂2(x, y) = bα(x)ωα(y)

Ĉ3(x, y) = c3(x) + Ci
(A)(x) ∧ ωi(y) + ξK(x)αK(y),

(71)

i.e. the B̂2 field is expanded into even modes, and the Ĉ3 field into odd modes. The
4D three-form from Ĉ3 was renamed to c3, because C3 is conventionally used for the last
term of Ĉ3 in this context.
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We can also look at the effect of the orientifold procedure on the Kähler and complex
structure moduli spaces. We will start with the former. In order to preserve N = 1
supersymmetry, σ has to act on J as

σ∗J = −J, (72)

In the original theory, the complexified Kähler form Jc is decomposed in a basis of har-
monic (1,1)-forms ωa:

Jc = B + iJ = (bA + ivA)ωA ≡ tAωA. (73)

As noted before, under the orientifold projection, the space H1,1(Y ) of harmonic (1,1)-
forms decomposes as the direct sum of an even part H1,1

+ (Y ) and an odd part H1,1
− (Y ).

Hence, for the ωA, one can take a basis that splits into even and odd forms.
The anti-holomorphic involution σ is required to obey σ∗J = −J and B is odd under

(−1)FLΩp due to being odd under the worldsheet parity operator Ωp. Therefore, the
N = 1 spectrum in the Kähler sector consists of the σ-odd modes va, where the index
a now runs from 1 to the dimension of the σ-odd part of H1,1(Y ). The new Kähler
moduli space is a trivial truncation of the original Kähler moduli space that does not
affect the structure and geometry of the moduli space significantly, apart from reducing
the dimension of the space.

In contrast to the Kähler sector, the orientifold projection acts rather non-trivially on
the complex structure moduli space. As stated before, the involution σ acts on Ω as

σ∗Ω = e2iθΩ̄, (74)

where θ is some constant phase. This relation is implied by the action of σ∗ on the Kähler
form J ,

σ∗J = −J, (75)

which implies that the volume form is odd under σ∗[25].
The space of harmonic 3-forms on Y decomposes as the direct sum of the forms that

are even under σ∗, contained in the space H3
+, and the ones that are odd H3

−. These two
spaces have to be of equal dimension by Hodge duality and the fact that the volume form
is odd.

The real symplectic forms (αI , β
I) can be chosen to split up into even forms (αL, β

L)
and odd forms (αK , β

K). Furthermore, one can (by a relabeling α ↔ β) choose these
forms so that the forms (αK , β

L) are absent, so that all the α are even and all the β are
odd. Hence,

σ∗Ω = σ∗
(
ZLαL − FKβK

)
= ZLαL + FKβ

K ; (76)

for this to be equal to e2iθΩ̄, it is required that

Im
(
e−iθZL

)
= 0 (77)

and
Re
(
e−iθFK

)
= 0. (78)

These are conditions on the complex structure moduli that pick out a submanifold of the
original complex structure moduli space.
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In the N = 2 setting, one starts out with h2,1 + 1 complex variables ZI , one of
which does not correspond to an actual degree of freedom due to the scaling symmetry
Ω → Ωe−h, leaving us with h2,1 complex structure moduli za. Here we have to be a
little bit more careful with counting the degrees of freedom. Initially, we have h2,1 + 1
complex variables ZI again. One of the h2,1 + 1 real conditions in equation 77 can be
trivially satisfied by rescaling Ω by a phase; the other equations remove h2,1 real degrees
of freedom from the complex structure moduli zI . Hence, we are left with h2,1 + 1 real
degrees of freedom. One of these could again be removed by using the rescaling symmetry
of Ω. However, it is traditional to leave all the degrees of freedom and implement the
rescaling symmetry by multiplying Ω by a ’compensator’ C given by

C = e−D−iθeKcs/2 (79)

The dilaton D provides the extra degree of freedom that is needed to get to h2,1 + 1 real
degrees of freedom.

Eventually, the coordinates on the complex structure moduli space are given by the
periods of the form Ωc[25], which is given by

Ωc = C3 + 2iRe (CΩ) , (80)

where C3 is now the fully internal part of the 10D RR three-form Ĉ3, given by

C3 = ξKαK (81)

in our basis. The complex coordinates NK are then defined by

NK =
1

2

∫
Ωc ∧ βK =

1

2
ξK + ilK . (82)

The complex structure sector Kähler potential is given by

Kcs = −2 log

[
2

∫
Y

Re (CΩ) ∧ ∗Re (CΩ)

]
= − log e−4D. (83)

Just as for the N = 2 supergravity theory, one can write down an explicit effective
action for the orientifolded theory. Since we will mostly focus on the Kähler sector, it
is sufficient for us to note that the Kähler sector has the same structure as the original
N = 2 Kähler sector, but with a reduced number of Kähler moduli.
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3 Singular limits in moduli space and nilpotent or-

bits

The Kähler and complex structure moduli spaces MK and Mcs contain singular points,
at which the geometry of the Calabi-Yau behaves non-smoothly in some way. Examples
of such limits include the large volume point in Kähler moduli space or its mirror, the
large complex structure point.

As advertised in the introduction to this thesis, the geometry around these singular
points turns out to be very interesting in the context of the Swampland Distance Conjec-
ture. Recently, general singular points in the complex structure moduli space of type IIB
string theory compactified on a Calabi-Yau threefold were studied in much detail and to a
high degree of generality[4, 5]. It was found that a convenient handle on the geometry of
type IIB complex structure moduli space is provided by the monodromy of the complex
structure period vector Πcs around singular points. The behavior of Πcs around singu-
lar limits can be very well characterized using the advanced mathematical technology
of mixed Hodge structures[7, 36, 37, 9] and the so-called nilpotent orbit theorem[8, 10],
which can be applied very naturally to the complex structure moduli space. In this way,
the existence of the towers of states required by the Swampland Distance Conjecture
was proven quite generally for this specific setting. These findings and the formalism of
nilpotent orbits were translated to the large-modulus limits of type IIA Kähler moduli
space as well, by the use of the mirror map[5, 6].

The central idea behind the formalism outlined in this chapter is that the middle
cohomology H3(Y,C) near singular points in moduli space can be structured using the
(logarithm of the) monodromy transformations about the singular points as well as the
usual Hodge decomposition into complex cohomology groups. In particular, when ap-
proaching the singularity, one obtains a refined splitting of the limit of H3(Y,C) into
certain subspaces, called the Deligne splitting. This Deligne splitting can be used to clas-
sify the singularities into various different types. Furthermore, it yields certain nontrivial
constraints on the Deligne splitting of H3(Y,C) at intersecting singular loci in moduli
space.

As a side-effect of this, the period vector Π near a singular point can be well approx-
imated by some constant vector a0 transformed by the exponential of a nilpotent matrix
containing the dependence on the local coordinates on moduli space. This means that,
for the period vector Π,

Π ≈ exp
(
tINI

)
a0, (84)

in some choice of local coordinates where the singular point is given by tI → i∞. Here,
a0 is a constant vector and NI is a nilpotent matrix. This approximation for Π is called
a nilpotent orbit; hence the name ‘nilpotent orbit theorem’. It turns out that most of
the information about the singularity types is also contained in the generators NI of the
monodromy around the singular loci. The period vector Π and the nilpotent generators
NI gives one convenient tools with which one can do more explicit computations.

In this section, the formalism of nilpotent orbits and mixed Hodge structures will be
introduced in the setting of the type IIB complex structure moduli space and the mirror
setting of the IIA Kähler moduli space. The classification of monodromy logarithms into
singularity types will be given and some applications will be reviewed.
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3.1 Mixed Hodge structures and Deligne splittings

Here, a short discussion of the abstract outlines of the theory of mixed Hodge structures
will be given, mainly based on references [5] and [4], in which more details can be found.
We mainly use the abstract theory discussed here in the specific setting of the complex
structure moduli space of Calabi-Yau manifolds. After that, more concrete results will
be treated, switching over to the quantum Kähler sector of type IIA moduli space, which
is related by mirror symmmetry to the complex structure moduli space in type IIB string
theory.

A pure Hodge structure (HZ, H
p,q) of weight n is defined as a lattice HZ together

with a decomposition of its complexification HC = HZ ⊗Z C into subspaces Hp,q such
that HC =

⊕
p+q=nH

p,q and Hp,q = Hq,p[38]. Such a decomposition can equivalently be
described in terms of a decreasing filtration {F p} with

HC = F 0 ⊃ F 1 ⊃ ... ⊃ F n ⊃ {0}, (85)

with the condition that HC ' F p ⊕ F n−p+1. Then, F n ≡ Hn,0, F n−1 = Hn,0 ⊕ Hn−1,1

and so forth.
A famous example of a pure Hodge structure is provided by the middle cohomology

H3(Y,C) of a smooth Calabi-Yau threefold Y . This space decomposes as a direct sum of
the Dolbeault cohomologies Hp,q(Y ) with p + q = 3, a decomposition that is called the
Hodge decomposition. It is clear that this setting is a stereotypical example of a pure
Hodge structure.

A polarized Hodge structure is defined to be a pure Hodge structure together with a
polarization, which is an antisymmetric, nondegenerate bilinear form S such that

S(v, w) = 0 for v ∈ Hp,q and w ∈ Hr,s with (p, q) 6= (s, r)

ip−qS(v, v̄) > 0 for v ∈ Hp,q and v 6= 0.
(86)

On H3(Y,C) the form S is given by the intersection form,

S(v, w) = −
∫
Y

v ∧ w, (87)

or in component notation,
S(v, w) = vT · ϑ ·w, (88)

where

ϑIJ = −
∫
Y γI ∧ γJ . (89)

Since the Hodge decomposition of H3(Y,C) depends on the complex structure moduli,
one can study the behavior of {F p} as one varies the moduli. One uses the {F p} and not
the Hp,q, since the {F p} turn out to vary holomorphically with respect to the moduli,
whereas the Hp,q do not[4]. We are particularly interested in points in moduli space where
the geometry of Y becomes singular in some way, since these are possibly the infinite
distance points which we are looking for. Around singular points, parallel transport
of the Hodge structure of H3(Y,C) becomes path-dependent, and elements of H3(Y,C)
undergo a monodromy transformation when parallel-transported around such points.
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It turns out that the monodromy transformation can be written as the exponential
of a nilpotent matrix N . This N can be used to give a finer split of H3(Y,C) near the
singularity. To this end, one defines a mixed Hodge structure, which captures both the
splits of the space H3(Y,C) on the basis of the Hodge decomposition and on the basis of
the weight of elements of H3(Y,C) under the nilpotent generator N .

Near a singular locus, the splitting {F p} of H3(Y,C) becomes ill-behaved. However,
one can ‘divide out’ the singular behavior from the spaces F p. This is done as follows.
Consider local coordinates tI in which the singular locus is reached by sending the first
n coordinates t1, ..., tn → i∞. Then the spaces F p

∞ given by

F p
∞ = lim

t1,...,tn→i∞
exp

(
−
∑
I

tINI

)
F p, (90)

with NI the monodromy generators around the singular loci tI → i∞, are in fact well-
behaved[8]. Hence, these spaces can be used as a so-called limiting Hodge structure.
Here, it is necessary to remark that this limiting Hodge structure is not an actual pure
Hodge structure. Therefore, we need the notion of mixed Hodge structure in order to get
a handle on H3(Y,C) at the singular locus. By using mixed Hodge structures, however,
it will be possible to find certain flags of subspaces of the F p

∞ that turn out to be pure
Hodge structures, as we will soon describe.

A mixed Hodge structure is given by a vector space H together with two filtrations.
The first filtration is a decreasing filtration {F p}, as discussed above, which for the current
setting of H3(Y,C) at a singular locus is given by the limiting Hodge filtration {F p

∞}.
The second filtration is an increasing weight filtration {Wj}, called the Jacobson-Morosov
filtration, for which one uses the properties of the nilpotent monodromy generators N .
Note that every nilpotent matrix can induce a weight filtration on the space it acts on, in
terms of the kernels and images of that matrix. Here, the monodromy weight filtration
is specified by the conditions[4]

W−1 ≡ 0 ⊂ W0 ⊂ W1 ⊂ ... ⊂ W2D ≡ H,

NWi ⊂ Wi−2,

N j : GrD+j → GrD−j is an isomorphism,

(91)

with the graded spaces Grj ≡ Wj/Wj−1.
Using these two filtrations, one can split the space H3(Y,C) into smaller spaces. A

way to do this[9] is the so-called Deligne splitting {Ip,q}. The subspaces Ip,q ⊂ H3(Y,C)
are given by the rather intimidating expression

Ip,q = F p ∩Wp+q ∩

(
F̄ q ∩Wp+q +

∑
j≥1

F̄ q−j ∩Wp+q−j−1

)
. (92)

Even though this expression looks annoying, the subspaces thus obtained turn out to have
rather nice properties. Specifically, this splitting turns out to be the unique splitting[10]
satisfying

F p =
⊕
s

⊕
r≥p

Ir,s, Wl =
⊕
p+q≤l

Ip,q. (93)

28



Hence, although the Ip,q are given by a complicated expression, given the Deligne split-
ting {Ip,q} it is easy to reconstruct the filtrations F p and Wl, and there is an intuitive
interpretation of the Ip,q as the vectors of a certain Hodge weight p and monodromy
weight p+ q.

The dimensions of the Ip,q are denoted by ip,q, which are called the Deligne numbers.
Like the Hodge numbers hp,q, the ip,q can be displayed in a diamond-shaped diagram,
here called a Hodge-Deligne diamond, which for n = 3 takes the shape

i3,3

i3,2 i2,3

i3,1 i2,2 i1,3

i3,0 i2,1 i1,2 i0,3

i2,0 i1,1 i0,2

i1,0 i0,1

i0,0

(94)

However, certain Deligne numbers are related by symmetries; one finds that ip,q = iq,p =
i3−p,3−q. Furthermore, in the middle cohomology of a Calabi-Yau threefold, H3(Y,C) and
hence F 3 is one-dimensional; hence, only one of the i3,q can be nonzero.

Hence, there are only four possible Hodge-Deligne diamonds for H3(Y,C), which are
given by the following shapes, with a dot representing that the corresponding vector space
has zero dimension:

Ia :

·
· ·

· a ·
1 a′ a′ 1
· a ·
· ·
·

IIb :

·
· ·

1 b 1
· b′ b′ ·

1 b 1
· ·
·

(95)

IIIc :

·
1 1

· c ·
· c′ c′ ·
· c ·

1 1
·

IVd :

1
· ·

· d ·
· d′ d′ ·
· d ·
· ·

1

(96)

These four types of Hodge-Deligne diamonds classify the possible types of singularities
that can arise in the complex structure moduli space of a Calabi-Yau threefold, or its
mirror.

The nilpotent matrix N acts as a morphism, with, for v ∈ Ip,q, Nv ∈ Ip−1,q−1. One
can also consider the primitive subspaces P p,q, consisting of the vectors not in the image
of N , which are given by P p,q = Ip,q ∩ kerNp+q−2. In terms of these subspaces, one finds
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the following decomposition of the Ip,q:

P 3,3

P 3,2 P 2,3

P 3,1 P 2,2 ⊕NP 3,3 P 1,3

P 3,0 P 2,1 ⊕NP 3,2 P 1,2 ⊕NP 2,3 P 0,3

NP 3,1 NP 2,2 ⊕N2P 3,3 NP 1,3

N2P 3,2 N2P 2,3

N3P 3,3

(97)

Crucially, whereas the full spaces Ip,q do not constitute a Hodge structure, the P p,q for
p+ q = k do in fact form a pure Hodge structure of weight k[5].

One also would like to have a notion of polarization on the mixed Hodge structure.
This is provided by making use of the intersection form S on the original pure Hodge
structure on H3(Y,C) as well as the nilpotent morphism N . Specifically, the primitive
spaces P p,q are polarized by S(·, Np+q−3).

Let us summarize the above discussion. Near a singular point in moduli space, the
Hodge structure on the middle cohomology H3(Y,C) ceases to be well-behaved; one can,
however, consider the limiting Hodge structure given by the filtration F p

∞. Refining
this split by making use of the nilpotent monodromy generator N to create a mixed
Hodge structure, one has a nicely structured space with a well-behaved polarization
condition. Furthermore, one can start to ask interesting questions about the possible
Deligne splittings into which H3(Y,C) can split up.
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3.2 Monodromy around large-modulus limits in Kähler moduli
space

So the ark of the Lord compassed the city, going about it once.
— Joshua 6:11 (King James Version)

We will now look at a more explicit treatment of the formal discussion from the previ-
ous section. To this end, we will treat singular loci arising in type IIA Kähler moduli
space, which is mirror to the type IIB complex structure moduli space treated above.
Specifically, we will discuss the singularities arising when sending one or multiple Kähler
moduli to i∞, since the monodromy transformations arising in these limits have well-
known expressions[5, 6].

A particular result that fits within the formalism outlined above is that the period
vector Π can be approximated as

Π ≈ lim
t1,...,tn→i∞

exp

(∑
I

tINI

)
a0. (98)

Here, a0 is a nonsingular vector that depends holomorphically on the coordinates. We can
write Π = exp

(∑
A t

ANA
)
a0 as a consequence of Schmid’s Nilpotent Orbit Theorem[8].

Physically, the nilpotent orbit approximation amounts to throwing away the exponential
corrections caused by worldsheet instantons, which fall off when moving towards the
large-volume point anyway.

As mentioned earlier, the large-volume period vector Π for Kähler moduli space is
given by[5, 6]

Π =


X0

XA

FA
F0

 =


1
tA

1
2
KABCtBtC + 1

2
KABBtB − bA

1
6
KABCtAtBtC −

(
1
6
KAAA + bA

)
tA + iζ(3)χ

8π3

 , (99)

where bI = 1/24
∫
Y
c2(Y ) ∧ ωI as defined in the previous chapter, χ is the Euler number

of Y .
We can investigate the action of shifting an axion by subtracting its unit period,

bI → bI − 1. We shift the axion by −1 in order to comply with the conventions outlined
in reference [6]. This axion shift corresponds to circling the large modulus limit tI → i∞,
causing Π to undergo a monodromy transformation. Under this shift, Π changes to

1
tA − δAI

1
2
KABCtBtC −KAICtC + 1

2
KABBtB − bA

1
6
KABCtAtBtC − 1

2
KIBCtBtC +

(
1
6
KAAA − 1

2
KIIC + bA

)
tA + bI + iζ(3)χ

8π3

 . (100)

This expression can be written as the original Π transformed by a monodromy transfor-
mation matrix TI :

Π(...bI−1...) =


1 0 0 0
−δIA δAB 0 0

0 −KIAB δAB 0
0 1

2
(KIIB +KIBB) −δIB 1

 ·Π(...bI ...) ≡ TI ·Π(...bI ...). (101)
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Furthermore, TI can in turn be written as expNI , with NI given by

NI =


0 0 0 0
−δIA 0 0 0
−1

2
KIIA −KIAB 0 0

1
6
KIII 1

2
KIBB −δIB 0

 . (102)

Note now that the period vector Π can, as expected, actually be written as

Π = exp

(∑
I

tINI

)
·


1
0
−bI
iζ(3)χ

8π3

 ≡ exp

(∑
A

tANA

)
· a0. (103)

Hence, the NI play a much bigger role than just generating monodromy transformations.
The NI capture the entire dependence of Π on the complex Kähler moduli tI , at least
in the regime where the given expressions for Π are valid. Since Π connects directly to
the geometry of Kähler moduli space through the Kähler potential K, it should be no
surprise that one can learn much about Kähler moduli space by studying the nilpotent
generators NI .

From now on, much of this discussion will take place in the case where the Kähler
cone is simplicial. This means that it is spanned by exactly h1,1 generators; in such a
case, the KABC are all nonnegative in some choice of basis ωA.

Note that one can also have ’combined’ monodromy, in which one shifts multiple bI at
the same time. This corresponds to encircling a limit in which multiple tI are sent to i∞.
The nilpotent matrices given by this monodromy are simply given by linear combinations
of the original NI . For instance, sending b1 → b1 + 2 and b2 → b2 + 1 corresponds to an
N given by

N = 2N1 +N2. (104)

Here, it is important to note that the NI commute among themselves[4]. The generaliza-
tion to sending an arbitrary amount of coordinates to i∞ is obvious. For convenience,
we define the nilpotent generator N(n) corresponding to encircling the first n coordinates,
which is given by

N(n) ≡
n∑
i=1

Ni =


0 0 0 0

−
∑n

i δiA 0 0 0
−1

2

∑n
i KiiA −

∑n
i KiAB 0 0

1
6

∑n
i Kiii

1
2

∑n
i KiBB −

∑n
i δiB 0

 . (105)

3.3 Classification of singularities

One can classify the possible types of singularities in Kähler moduli space by character-
izing the nilpotent matrices NI . Specifically, a nilpotent matrix N can be characterized
on the basis of its rank, the rank of its square N2, the rank of its cube N3 and the eigen-
values of ϑ ·N (where ϑ is the intersection form from the previous chapter) according to
table 3.3[6, 5]. This classification into four types corresponds to the four different Deligne
splittings of the mirror H3(Y,C), and one can check that the ranks of the matrices match
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Type Rank of N Rank of N2 Rank of N3 Eigenvalues of ϑ ·N
Ia a 0 0 a negative
IIb 2 + b 0 0 2 positive, b negative
IIIc 4 + c 2 0 not needed
IVd 2 + d 2 1 not needed

with the properties of N as a morphism within the mixed Hodge structures. For instance,
as indicated previously, a IVd type singularity corresponds to the Deligne splitting given
by the following Hodge-Deligne diamond:

1
· ·

· d ·
· d′ d′ ·
· d ·
· ·

1

. (106)

Here N maps between subspaces that are aligned vertically as NIp,q ⊂ Ip−1,q−1. From
the diamond and the requirement that powers of N represent isomorphisms between
spaces on different halves of the diamond, we conclude that N3 has to have rank one,
since it maps N3I3,3 ⊂ I0,0. Furthermore, N itself has to have rank d + 2, since it maps
the d-dimensional space I2,2 to I1,1, it maps I3,3 to a subspace of I2,2 and it maps a
one-dimensional subspace of I1,1 to I0,0.

One can apply this characterization immediately to the single-coordinate nilpotent
generators N I arising in the large-modulus limits tI → i∞, with the expression for N I

given before. To this end, one computes N2
I and N3:

N2
I =


0 0 0 0
0 0 0 0
KIIA 0 0 0

0 KIIB 0 0

 and N3
I =


0 0 0 0
0 0 0 0
0 0 0 0

−KIII 0 0 0

 (107)

Hence, one can immediately conclude that a singularity tI → i∞ is of type I or II if
KIIA = 0 for all A. Actually, by computing ϑ · NI with the given expressions, one can
conclude that type I singularities do not arise in this case. If KIIA 6= 0 for some A, but
KIII = 0, the singularity is of type III; if KIII 6= 0, the singularity must be of type IV.
The precise type can then be determined from the ranks of KIAB.

Similarly, one can characterize singularities that arise by sending multiple tI → i∞.
In this case, one finds

N2
(n) =


0 0 0 0
0 0 0 0∑n

i,j=1KijA 0 0 0

0
∑n

i,j=1KijB 0 0

 and N3
(n) =


0 0 0 0
0 0 0 0
0 0 0 0

−
∑

i,j,k=1Kijk 0 0 0

 .

(108)
Armed with these expressions, the conditions to determine the corresponding singularity
types follow straightforwardly. In particular, one can determine the singularity type of
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the large volume point, in which all of the tI → i∞. There, one can conclude that the
singularity type must be IVd, since the single entry in N3 is given by the volume of
Y , which must be nonzero. Furthermore, vIKIAB is required to be full rank[23]; hence,
d = h1,1, making the singularity type at the large volume point IVh1,1 .

We can consider an enhancement chain, in which we send the coordinates tI to infinity
one after another. It is a fundamental and useful result that, in such an enhancement
chain, the (Roman numeral) type of the singularity can only increase or stay the same[11].
There are also strong constraints on the subscript index of the enhanced singularity type.
Hence, a general enhancement chain looks like[6]

Ia1 → ...→ Iak → IIb1 → ...→ IIbl
→ IIIc1 → ...IIIcp → IVd1 → ...→ IVdq .

(109)

The precise conditions on the sub-indices are called ‘polarization conditions’ and are
displayed (for the relevant types of singularities) in table 3.3.

Possible starting type Enhanced type Conditions

IIb IIb̂ b ≤ b̂
IIIĉ 2 ≤ b ≤ ĉ+ 2

IVd̂ 1 ≤ b ≤ d̂− 1
IIIc IIIĉ c ≤ ĉ

IVd̂ c+ 2 ≤ d̂

IVd IVd̂ d ≤ d̂

Table 2: Relevant polarization conditions for h1,1 = 2[5]. The conditions for type I
singularities are not included, since these do not appear at the large-modulus loci and
will not be considered here.

These polarization conditions can be motivated in the following way. First, one draws
the Hodge-Deligne diamond for the starting Deligne splitting, using the ‘initial’ nilpotent
generator N1 corresponding to a limit in which one or possibly several of the tI are
sent to i∞. As noted earlier, the primitive subspaces in this Deligne splitting constitute
pure Hodge structures themselves. When the singularity enhances upon sending a new
modulus t2 → i∞, the corresponding nilpotent generator N2 causes a further refined
splitting of these pure Hodge structures into mixed Hodge structures. Hence, the only
possible enhanced singularity types are the ones that are compatible both with the original
mixed Hodge structure and with this refined splitting. Furthermore, this procedure turns
out to be equivalent to reassembling the relevant Hodge-Deligne diamonds in a certain
way. A precise description of this computation is given in appendix E of [5] based on
reference [11].

In the setting of the complex structure moduli space of Calabi-Yau threefolds, it was
shown for one-parameter degenerations that a singular point is at finite distance if and
only if the singularity is of type I[39]. Consequently, type II, III and IV singularities are
always at infinite distance. In a multi-parameter degeneration, it is hard to prove that
all type II, III and IV singularities are at infinite distance; however, one can show the
reverse direction, that infinite distance points are type II, III or IV singularities[5] by
showing the equivalent condition that type I singularities are always at finite distance.
Since the large-modulus limits are never of type I, these are all at infinite distance.
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3.4 Moduli space metric and infinite distances

To illustrate the use of the classification of singularity types, one can look at the metric
on Kähler moduli space and try to see that the large-modulus limits are indeed at infinite
distance.

Recall that the Kähler potential on the Kähler moduli space was given in terms of Π
by

K = − log
(
iΠ̄t · ϑ · Π

)
= − log

(
1

6
KABCvAvBvC +

ζ(3)χ

32π3

)
≡ − logVY .

(110)

The moduli space metric GAB is given by

GAB̄ = ∂tA∂t̄BK (111)

The distance between two points Q, P as measured along a path γ(s) in moduli space is
given by

dγ(Q,P ) =

∫
γ

√
2GAB̄ ṫA

˙̄tBds, (112)

where ṫA is shorthand for ∂tA/∂s.
Due to a growth theorem by Cattani, Kaplan and Schmid[10], the leading growth of

VY in a limit v1, ..., vn → ∞ can be determined[5, 6]. Here, it is important to note that
the vi should first be ordered in such a way that the limit is taken in the growth sector{

v1

v2
> λ, ...,

vn−1

vn
> λ, vn > λ

}
, (113)

for some positive λ. One can always relabel the vi so that they lie in this growth sector.
Then the leading term in VY as one approaches the singularity is given by

VY ∼ c
(
v1
)d1
(
v2
)d2−d1 ... (vn)dn−dn−1 , (114)

where c is some positive constant. Here, the dn are integers determined by the singularity
type corresponding to N(n), with d = 1, 2, 3 for N(n) having type II, III, IV. Note that
this must be the type of the enhanced singularity N1 +N2 + ...+Nn; hence, the di form
a non-decreasing sequence. Since the di can nevertheless be at most 3, maximally three
vI can appear in equation 114. This is natural, given that Vq is cubic in the moduli.
Furthermore, one can check that the leading term

From the above expression, it is clear that Vq becomes infinite in the large-modulus
limit vI → ∞. Hence, since the Kähler metric is determined from Vq directly, it is
plausible that the limits vI →∞ are at infinite distance. One can use a Cauchy-Schwarz
inequality to prove that this is indeed the case, by an argument given in reference [6].
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4 Calculation of allowed singularity enhancements

near large-modulus loci

In the previous chapter, the abstract formalism of mixed Hodge structures was discussed.
Furthermore, some more concrete results in the specific setting of the large-modulus loci
in Kähler moduli space were given. In this chapter we will utilize these results in order
to find conditions on the intersection numbers KIJK .

Such conditions might be interesting in order to discover field theories that seem to be
consistent, but cannot actually come from compactified string theories. In a supergravity
theory compactified on a Calabi-Yau manifold Y , the intersection numbers KIJK of Y
appear in the Lagrangian of the compactified theory. In principle, one can make up a 4D
theory in which one chooses one’s favorite numbers for KIJK . However, these might not
correspond to a valid compactification on a Calabi-Yau manifold. The most important
constraint on the KIJK is that they have to result in a positive-definite metric on the
Kähler moduli space[40]. We want to see whether the polarization conditions result in
additional conditions on the KIJK . In this light, it is interesting to try and construct
KIJK that look legit from any other viewpoint, but nevertheless cannot occur due to the
polarization conditions.

Furthermore, given the explicit forms of the nilpotent generators N of monodromy
around the large-volume loci, it is in principle possible to analyze all the possible sin-
gularity enhancements for a given dimension of the moduli space h1,1. We will look at
the cases h1,1 = 2 and h1,1 = 3. In the h1,1 = 2 case, all possible consistent singularity
enhancements can be listed explicitly; in the h1,1 = 3 case, this task is too tedious to do
by hand, but we can nevertheless analyze a few specific cases.

4.1 Two-variable case (h1,1 = 2)

We first consider the case in which there are two moduli t1 and t2. This case has already
been analyzed in much detail by Chongchuo Li in a private communication[41]; here,
we mostly follow his analysis, adding a few new results that correspond to slightly more
subtle singularity enhancements. We believe the resulting list of possible cases is now
exhaustive.

The two monodromy logarithms N1 and N2 are given by

N1 =


0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0

−1
2
K111 −K111 −K112 0 0 0

−1
2
K112 −K112 −K122 0 0 0

1
6
K111

1
2
K111

1
2
K122 −1 0 0

 (115)
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and

N2 =


0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
−1

2
K122 −K112 −K122 0 0 0

−1
2
K222 −K122 −K222 0 0 0

1
6
K222

1
2
K112

1
2
K222 0 −1 0

 . (116)

Then, the monodromy logarithm NV corresponding to encircling the large-volume point
is given by

NV ≡ N1 +N2. (117)

As discussed before, requiring that the large moduli limits t1 → i∞ and t2 → i∞
have certain singularity types corresponds to certain criteria which should be fulfilled by
the intersections KABC of the Calabi-Yau Y . The condition that the singularity type of
the limit tA → i∞ is II corresponds to the requirement that all intersection numbers of
the form KAAJ are zero; the singularity being of type III corresponds to the requirement
that KAAA = 0, but at least one KAAJ is nonzero.

In this case, there are only a few independent intersection numbers, namelyK111,K112,K122

and K222. Hence, it is feasible to enumerate all the possible singularity enhancements ex-
plicitly. One can set various intersection numbers to zero or try to find any conditions
on the intersection numbers that reduce the rank of the nilpotent generators N1, N2

and NV . This yields a ‘naive’ list of the singularity enhancements that can be obtained
by adjusting the intersection numbers. One then still needs to check whether these are
actually compatible with the polarization conditions, which are repeated here in table
4.1. Furthermore, if all the intersections KAIJ for a certain A are zero, the modulus vA

becomes unphysical.
We list the enhancements that are naively possible in table 4.1. Note that config-

urations which are related to the displayed ones by a trivial relabeling of moduli are
omitted.

Possible starting type Enhanced type Conditions

IIb IIb̂ b ≤ b̂
IIIĉ 2 ≤ b ≤ ĉ+ 2

IVd̂ 1 ≤ b ≤ d̂− 1
IIIc IIIĉ c ≤ ĉ

IVd̂ c+ 2 ≤ d̂

IVd IVd̂ d ≤ d̂

Table 3: Relevant polarization conditions for h1,1 = 2[5]. The conditions for type I
singularities are not included, since these do not appear at the large-modulus loci.

Two types of invalid singularity enhancements have been marked in the table. The
first type, marked by U, is the less interesting case. This corresponds to all of the
intersection numbers belonging to a certain modulus being turned off. In this case, that
modulus does not have any dynamics, since it does not enter into the Kähler potential
at all. Hence, this type might be considered to be trivially uninteresting.
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# Nonzero intersections N1 +N2 → NV Notes
1 None II0 + II0 → II0 U
2 K112 III0 + II1 → IV2

3 K111 IV1 + II0 → IV1 U, I
4 K112, K122 III0 + III0 → IV2

5 K111, K112 IV2 + II1 → IV2

6 K111, K122 6= K111 IV1 + III0 → IV2

7 K111, K122 = K111 IV2 + III0 → IV1 I
8 K111, K222 IV1 + IV1 → IV2

9 K111, K112, K122 generic IV2 + III0 → IV2

10 K111 = αK112 = α2K122 IV1 + III0 → IV2

11 K112 = αK122, K111 = (1 + α2 + α)K122 IV2 + III0 → IV1 I
12 K111, K112, K222 generic IV2 + IV2 → IV2

13 K111 = (K2
112/K222) +K112, K112, K222 IV2 + IV2 → IV1 I

14 K111, K112, K122, K222 generic IV2 + IV2 → IV2

15 K111 = αK112 = α2K122, αK222 6= K122 IV1 + IV2 → IV2

16 K111 = αK112 = α2K122 = α3K222 IV1 + IV1 → IV1

17 K111 (K122K222) +K112K222 = K2
122 +K112K122 +K2

112 IV2 + IV2 → IV1 I

Table 4: Singularity enhancements for h1,1 = 2 that are naively possible by only looking
at the intersection numbers. In the first column, the intersection numbers that are not set
to zero are listed. Intersection numbers used in the conditions are assumed to be nonzero,
whereas intersection numbers not listed are assumed to be zero. In the second column,
the resulting singularity types are listed. Configurations that either contain unphysical
moduli (U) or are inconsistent with the polarization conditions (I) are marked in the last
column.

N1 +N2 Amount #
II1 + III0 2 2
II1 + IV2 10 5
III0 + III0 2 4
III0 + IV1 12 (6,) 10
III0 + IV2 3 9
IV1 + IV1 0 (8,) 16
IV1 + IV2 17 15
IV2 + IV2 2 (12), 14

Table 5: Statistics of different type enhancements as obtained from the KS list of Calabi-
Yau threefolds. In the third list, the numbers of the possible (allowed) cases from the
previous table corresponding to the singularity enhancements are given. The cases that
yield non-positive definite metrics are enclosed in brackets.

The second type, consisting of the rows in the table marked by an I, is more interesting.
These are the singularity enhancements that are naively possible, but that are in fact ruled
out by the polarization conditions. Hence, we see that the polarization conditions can
limit the possible intersection numbers that can appear.

As one can read off from the table, the singularity enhancements marked with an I
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all have IV1 as their final type. However, this is in contradiction with the singularity
type of the large volume limit always being IVh1,1 , as was noted in reference [5] based
on [23]. Hence, in this case, there is still a rather obvious diagnostic that prevents these
configurations from happening in practice.

Finally, one can compute if some of the cases in table 4.1 cannot give rise to positive-
definite metrics at all, or if the metric cannot be positive definite in a large enough region
of field space. One would desire the field space metric to be positive-definite in the region
where t1, t2 > 0. This turns out to exclude cases 6, 8 and 12, as well as all the cases
discarded before (1, 3, 7, 11, 13 and 17); one can compute the determinant of the field
space metric, which turns out to always become zero somewhere within the allowed region
t1, t2 > 0, indicating that the metric degenerates.

In table 4.1, the singularity configurations that occur in the CY threefolds with h1,1 =
2 from the KS list[42, 43] are listed, together with the labels from table 4.1 that give rise
to these configurations. As a sanity check, the list of h1,1 = 2 was searched for the cases
6 and 8 from table 4.1; these were not found. We find, however, that all the possible
singularity types actually occur in the KS list, except for the IV1 + IV1 enhancement,
which only seems to occur in the highly constrained case 16.

4.2 Three-variable case (h1,1 = 3)

In this case we have another nilpotent generator N3 and more intersection numbers. The
new independent intersection numbers are K113, K133, K123, K223, K233 and K333; there
are now 10 independent intersection numbers in total. The explicit expressions for the
matrices N1, N2 and N3 will not be presented here, since the big matrices now become
rather unwieldy.

In the case h1,1 = 3, in contrast to the h1,1 = 2 case, it is a rather formidable task
to enumerate all the possible singularity enhancements explicitly. It is easy to impose
that the matrices should be of type II, III or IV by setting the corresponding intersection
numbers to zero. In this way, one can also determine whether certain type enhancements
are trivially impossible. However, the precise conditions on the ranks of the nilpotent
matrices and their sums can typically be satisfied in multiple ways, except when there
are few nonzero intersection numbers left.

A crude way of classifying the possible singularity enhancements in the h1,1 = 3 setting
is to take the symbolic forms of N1, N2 and N3 and all their sums, set several intersection
numbers to zero and evaluate the resulting singularity types. This might be done using
a computer, enumerating all the possible combinations of intersection numbers that are
switched off. In principle, there are now 210 = 1024 possible ways of setting intersection
numbers to zero. As in the previous case, many of these are equivalent by permuting the
labeling of the three moduli.

It turns out that by doing this automated scan, one can already find several non-
equivalent but related cases of singularity enhancements that are naively valid but ac-
tually forbidden by the polarization relations. Specifically, with one specific labeling of
moduli, all of these cases have that K111, K112, K113, K122, K123 and K222 are equal to
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zero. If the other intersection numbers are nonzero, one generically finds

Type N1 = II1,

Type N2 = III0,

Type N3 = IV3,

Type N1 +N2 = III0,

Type N1 +N3 = IV3,

Type N2 +N3 = IV3,

Type N1 +N2 +N3 = IV3,

(118)

which contains a forbidden II1 → III0 enhancement. This enhancement occurs by first
sending t1 → i∞ and then t2 → i∞. With this configuration of intersection numbers,
one can check that one can furthermore set K233 or K333 (or both) to zero. This changes
the type of N3 to III1, but does not affect the offending enhancement. Notice that in this
case, the singularity type of the large volume point is IV3, as desired, in contrast to the
illegal configurations in the h1,1 = 2 case. We will refer to this example as example A
and discuss it below.

One can also try to find forbidden singularity enhancements by hand. A way to do
this somewhat systematically is to choose the Roman numerals corresponding to the three
singularity types belonging to N1, N2 and N3, which give certain constraints on which
intersection numbers should already be zero, then go through the remaining possibilities
by hand. Even if this gives one a more or less systematic ritual by which one can compute
all the enhancements, it is still much work to enumerate all the cases.

By this procedure, another interesting forbidden enhancement was found. This case
occurs when all of the intersection numbers are set to zero, except K122 = αK123 =
α2K233. Now, one can check that the resulting singularity types are

Type N1 = II2,

Type N2 = III1,

Type N3 = III0,

Type N1 +N2 = IV2,

Type N1 +N3 = III0,

Type N2 +N3 = IV3,

Type N1 +N2 +N3 = IV3.

(119)

This contains a forbidden II2 → IV2 sub-enhancement, again upon first sending t1 → i∞
and then t2 → i∞. We will refer to this configuration as example B and treat it in some
detail below.

4.2.1 Example A

Recall that in example A, we had set K111, K112, K113, K122, K123, K222, K233 and K333

equal to zero. We now want to investigate the properties of this configuration in some
more detail. In particular, it is interesting to know whether this configuration of inter-
section numbers defines a genuine field theory. A simple check that we can do is to find
out whether the resulting field space metric is positive definite.
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The Kähler potential now has the structure

K = log 4
(
K133v

1v3v3 +K223v
2v2v3

)
, (120)

with a factor 3 to compensate for the symmetry of the contraction KIJKvIvJvK . This
allows one to compute the field space metric, which is given by

gIJ = −1

2
∂I∂J̄K. (121)

It turns out that this metric always has negative determinant as long as the intersection
numbers and the vI are positive, which is the case if we consider a simplicial Kähler
cone. Hence, the metric is never positive definite. Furthermore, the situation does not
change when setting K233 or K333 to some nonzero value. Clearly, this combination of
intersection numbers yields an invalid field theory to start with.

4.2.2 Example B

In example B the intersections K111, K112, K113, K133, K222, K223 and K333 are equal to
zero. Furthermore, K122 = αK123 = α2K233, with α > 0. We now want to investi-
gate in some more detail the properties of this configuration. Recall that the offending
enhancement II2 → IV2 occurred when first sending t1 → i∞ and then sending t2 → i∞.

The Kähler potential now has the general structure

K = log 4
(
α2K233v

1v2v2 + 2αK233v
1v2v3 +K233v

2v3v3
)
. (122)

With this Kähler potential, we can again compute the moduli space metric. This time,
the metric can be positive definite, depending on the position in moduli space and the
value of α.

To check whether the metric is positive definite, one can use Sylvester’s criterion. This
criterion states that a Hermitian matrix, in particular a real symmetric one, is positive
definite if and only if all the leading principal minors are positive[44]. Computing the
principal minors for the Kähler metric under consideration, one finds that the first two
minors are given by sums of products of α and the vI , which are all supposed to be
positive. Meanwhile, the determinant of the full metric g is given by

det g =
α2
(

(v3)
2

+ 2αv1v3 + α2 (v1 − v2) v2
)

2 (v2)2 ((v3)2 + 2αv1v3 + α2v1v2
)3 . (123)

This is positive if the numerator is positive. The boundary of the region where this is
the case is given by

v3 = −α
(
v1 ±

√
(v1)2 − v1v2 + (v2)2

)
. (124)

We can conclude from the above expressions that the metric is positive definite for
any v3 when v1 > v2. However, one can choose positive values for v1, v2 and v3 for which
the metric is not positive definite. Specifically, sending v2 → ∞ while keeping v1 and
v3 at finite values, one crosses a locus at which the metric degenerates. This set-up of
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intersection numbers apparently corresponds to a basis of H1,1(Y,C) that is not adapted
to the Kähler cone, since the metric should be positive-definite on the Kähler cone. As
a result, the monodromy around the singularity v2 → ∞ is not physical, and hence the
offending singularity enhancement is implausible to begin with.

It seems like it is hard to find intersection numbers that give a plausible, positive
definite metric for t1, t2, t3 > 0 while violating the polarization conditions. More examples
like the above also give rise to degenerating metrics. It seems like this might be a general
rule, and proving whether KIJK that are forbidden by the polarization conditions always
give rise to invalid metrics might be an interesting task that we, however, wish to leave for
further work. In this context, it needs to be noted that it was already remarked[40] that
randomly chosen KIJK do not tend to give positive definite metrics anyway, especially
for large h1,1. This does not rule out entirely, however, that there might be exceptional
KIJK that do give a positive-definite metric while violating the polarization conditions.

4.2.3 General scan of singularity type enhancements in the h1,1 = 3 case

As described before, one can do a crude scan of the intersection numbers in which one
sets all possible subsets of the set of intersection numbers at given h1,1 to zero. This scan
quickly becomes computationally expensive, as can be seen as follows. The number of
independent intersection numbers for given h1,1 is equal to

#KIJK =
h1,1 (h1,1 + 1) (h1,1 + 2)

3!
(125)

and the total number of subsets of intersection numbers is equal to

2#KIJK , (126)

which goes as the exponential of the cube of h1,1. Hence, the number of combinations that
are taken into account increases drastically with h1,1. Many of these combinations are
still related by a relabeling of moduli and one could attempt to ‘mod out’ this relabeling
symmetry to reduce the computational cost, but one needs to do nontrivial combinatorics
to achieve this.

Since this scan only yields rather crude results and does not take into account more
refined conditions on the ranks of the nilpotent matrices, it is not useful to perform it at
high values of h1,1. Nevertheless, at low enough h1,1, one can extract some basic statistics.

In the table in appendix A, the amount of singularity types obtained by the scan are
displayed. Configurations that are equivalent by a moduli relabeling symmetry are taken
into account separately; for example, the situation with only K111 set to zero is counted
separately from the situation with only K222 set to zero. However, the results have been
sorted so as to display the lowest singularity type in the configuration first.

Fron the list one can see that some singularity configurations are much more likely to
occur than others, as one would expect. Since in this scan all intersection numbers are
treated as generic, the table is probably biased towards higher intersection types, since
the singularity sub-index will be lower if the intersection numbers have certain special,
non-zero values.

As in the two-moduli case, we can also evaluate the singularity patterns for CY
manifolds with h1,1 = 3 that exist ‘in real life’ by using the KS list. Here, we restrict to

42



manifolds with simplicial Kähler cones in order to compare to the computed scan. The
singularity patterns are also displayed in the table. We see that the results from the
crude scan described above does not quite correspond to the statistical patterns in the
real world. Hence, these statistics are perhaps not too meaningful. There might be more
merit in a full list of all the possible cases in the spirit of table 4.1. Even though such a
list is tedious to obtain by hand, it might be obtained by clever computer programming.
One can then try to find out whether there are forbidden enhancements that do give rise
to positive definite metrics.
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5 Flux vacua and Freed-Witten anomalous branes

In the third chapter, the formalism of nilpotent orbits was introduced. These nilpotent
orbits give one a handle on certain properties of the theory near singular loci in moduli
space. They have an interpretation in terms of the degenerating Hodge structure of the
Calabi-Yau near those singular loci (or its image under the mirror map).

The appearance of nilpotent matrices was also discovered in the context of flux scalar
potentials in type IIA orientifolds[12, 13]. In that paper, a more physical argument for
the nilpotent matrices and the resulting monodromy transformations was given. We will
here review this interpretation.

The starting point is the fact that the monodromies discussed in chapter 3 also mani-
fest themselves as relations between various flux vacua. That is, vacua with configurations
of fluxes that are naively different can nevertheless be equivalent if there is a correspond-
ing shift in the background value of one of the axions if the flux configurations are related
by the corresponding monodromy transformation.

Such gauge equivalences become relevant if one has a spacetime in which the flux con-
figuration differs in different spatial regions. Generically, in such spacetimes, there are
domain walls separating the different flux domains, consisting of D-branes or NS5-branes;
however, these domain walls can sometimes be unstable and can decay by emitting an-
other brane[14]. The conditions that have to be satisfied for this decay to happen are
related to the Freed-Witten consistency conditions on the emitted brane, which them-
selves depend on the flux configurations at both sides of the domain wall.

5.1 D-branes and NS5-branes

In this chapter, a role will be played by D-branes and NS5-branes. In string theory, branes
are objects that can have any dimension, but are usually supposed to be different from
the fundamental string. They can be described as solitonic solutions to supergravity
theories; they also exist in string theories, where they correspond to nonperturbative
excitations[45].

D-branes are the objects that are charged under the RR potentials C1 and C3[46].
There are the natural electric RR couplings

Q1

∫
M1

C1 and Q3

∫
M3

C3 (127)

showing that type IIA should contain (0+1)-dimensional and (2+1)-dimensional D-branes,
called D0 and D2-branes respectively. In general, a (p+ 1)-dimensional D-brane is called
a Dp-brane. There are also D4 and D6 branes that couple magnetically to C3 and C1 re-
spectively, or electrically to the fields C5 and C7 given by the Hodge dualities dC5 = ∗dC3

and dC7 = ∗dC1. Lastly, it turns out that there is also a D8-brane[47], a fact that does
not follow obviously from the above discussion. Its presence will not be relevant in what
follows.

D-branes can be described by an effective action called the Dirac-Born-Infeld action.
However, we will not need this dynamical description of D-branes here, since it is not
necessary to understand the dynamical behavior of D-branes in order to understand the
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effects that are presented in this chapter. Rather, we will resort to using the D-branes as
RR charges and only address their influence on the flux configuration in nearby vacua.

Like D-branes, NS5-branes are extended objects that can be described as supergravity
solitons. They are the magnetic duals of fundamental strings: while the fundamental
string carries electric charge under the NSNS 2-form Bµν , the NS5-brane is magnetically
charged under this same field. NS5-branes are somewhat more poorly understood than
D-branes[16]. However, many properties of NS5-branes can be investigated indirectly by
using various dualities between string theories, that relate properties of D-branes and
fundamental strings to properties of NS5-branes. Again, we will not need to treat the
precise dynamical behavior of NS5-branes.

5.2 Flux vacua and domain walls

As described earlier in this thesis, string theory contains flux degrees of freedom, that
correspond to nontrivial backgrounds of the gauge fields on the internal Calabi-Yau ma-
nifold Y . Specifically, the equations of motion for the RR and NS-NS form fields admit
solutions in which the integral of their field strengths over cohomologically nontrivial
cycles is nonzero and given by some (integer) flux parameter. Given a string theory com-
pactified on a Calabi-Yau manifold, the choice of flux parameters in order to single out a
specific vacuum state.

It is also possible to have a space-time in which different regions contain different
fluxes[48]. In such settings, there should be some wall-like object separating these regions.
Natural candidates for such domain walls are D-branes[49]. The fact that D-branes can
separate regions of different flux can be seen by a simple argument. Consider a D4-brane
wrapping a two-cycle Πa in Y3, furthermore spanning x0, x1 and x2 and located at x3 = 0.
In 4D space, this object looks like a domain wall separating two regions that will turn
out to differ by one unit of F4 flux wrapped on the dual form of Πa. The D4-brane acts
as a magnetic RR source for F4 as

dF4 = δ4(Πa) ∧ δ(x3)dx3, (128)

where δ4(Πa) is the Poincaré dual form (within Y ) to Πa and δ(x3)dx3 is a delta-function
valued one-form. The difference in F4|Πa flux is given by∫

Π,x3=+ε

F4 −
∫

Π,x3=−ε
F4 =

∫
Π,x3=(−ε,+ε)

dF4

=

∫
Π

δ4(Π)

∫
x3

δ0(x3)dx3

= 1.

(129)

Hence, domain walls this separate regions of different flux content. By similar arguments,
domain walls made out of other types of D-branes wrapped on certain cycles of Y cause
shifts in other fluxes on the duals of those cycles.

5.3 Freed-Witten anomalies

The Freed-Witten anomaly condition provides a consistency condition on the allowed
branes and fluxes in a string theory compactification. It restricts the possible fluxes
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that can be supported on a D-brane or NS5-brane. According to the FW condition, a
D-brane cannot support nontrivial NSNS-flux on its worldvolume, modulo a topological
class[50, 51].

The physics of Freed-Witten anomalies is most easily formulated in terms of D-branes
and NSNS-flux. Hence, we consider a D-brane which is wrapped on a cycle Q of the
Calabi-Yau space. In the presence of nontrivial NSNS flux, the condition for the system
to be free of anomalies turns out to be

W3(Q) + [H]|Q = 0, (130)

where W3(Q) is the third Stiefel-Whitney class of the tangent space of Q. We will ignore
W3(Q) for simplicity; then the anomaly condition can be derived from the equation of
motion of H and F on the D-brane, which reads

H = d(F +B). (131)

This implies immediately that H should be trivial in cohomology. However, if there is a
nonzero flux on the brane, [H]|Q 6= 0, so H is not cohomologically trivial anymore, and
the brane is Freed-Witten anomalous.

The anomaly can be cured by adding a magnetic source on the brane on a cycle Q′

determined by
PD(Q′ ⊂ Q) = [H]|Q. (132)

Here, the Poincaré dual PD(Q′ ⊂ Q) is taken to be the Poincaré dual of Q′ within the
homology of Q. By the definition of a magnetic source, [dF ] = PD(Q′ ⊂ Q), which is
harmonic and hence not trivial in cohomology anymore. Hence, with the magnetic source
attached, one has the equation of motion

[dF ] = [H]|Q, (133)

which is consistent.
Like D-branes, NS5-branes can also be Freed-Witten anomalous[14]. Since NS5-branes

are more difficult to describe by themselves, this is most easily seen by making use of
various duality transformations. Specifically, NS5-branes are related to D5-branes by
S-duality[15], and the H3 flux that drives D5-branes anomalous is converted to F3 flux
by S-duality[14]. Hence, NS5-branes are Freed-Witten anomalous in the presence of RR
flux.

5.4 D-branes ending on other D-branes

We have not yet introduced the specific magnetic source that we can use in order to
cure Freed-Witten anomalous D-branes or NS5-branes by the procedure suggested in the
previous section. We can use the endpoints of other D-branes, which turn out to be
magnetic sources of F [52, 53, 54].

For example, consider a D4-brane that wraps an FW anomalous 3-cycle [πK3 ] ∈
H3(Y,Z), the dual of which carries NSNS flux. We need to provide a magnetic source on
the Poincaré dual of [πK3 ] within the D4-brane, which is a 2-cycle. Therefore, we should
attach a D2-brane, the boundary of which is the required source.
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Again, using various dualities one can transfer this picture to Freed-Witten anomalous
NS5-branes. It is known that the endpoints of D-branes can attach to NS5-branes[55].
One thus expects D-branes to be the sources curing Freed-Witten anomalies on anomalous
NS5-branes.

5.5 Flux catalysis

Specific Freed-Witten anomalous branes that one is interested in in the context of 4D
compactifications of string theory are branes that look like strings in 4D[14]. These can
be wrapped on nontrivial cycles of Y and become anomalous if the duals of these cycles
carry nontrivial fluxes. To cure the anomalies, one adds other branes to the anomalous
strings. These can be the domain walls which we described earlier, with a boundary of
their worldvolume attaching to the string.

Running this argument in reverse, we see that the appearance of these strings provides
a decay mechanism for the domain walls[14, 56]. If one has a set of p domain walls in
the presence of p units of a certain flux, those domain walls can nucleate a hole encircled
by a 4D string. This 4D string would be FW anomalous if it were not attached to the
domain walls, but the boundary of these walls provide exactly the right magnetic sources
to cure the anomaly. This process of domain wall decay was termed ‘flux catalysis’ and
studied in detail in reference [14].

The different possible types of FW-anomalous strings are displayed in table 6, together
with the fluxes that drive them to be anomalous, the domain walls that they are attached
to and the flux jumps over these domain walls. This table is adapted from reference [12].

FW-anomalous string Flux Domain wall Jumping flux
NS5 on πI4 ∈ H4(Y,Z) F0 = m D6 on πI4 F2 on P.D. (πI4)
NS5 on πI4 ∈ H4(Y,Z) F2 = mJωJ D4 on π2 ∈ P.D. (F2 ∧ ωI) F4 on P.D. (π2)
NS5 on πI4 ∈ H4(Y,Z) F4 = eJ D2 F6

D4 on πK3 ∈ H3(Y,Z) H3 = hKβ
K D2 F6

Table 6: Different types of Freed-Witten anomalous strings that can appear in 4D string
theory compactifications together with the fluxes that generate the anomaly and the
domain walls that cure them[14, 12]. In the last column, the flux of which the value
jumps over the domain wall is displayed.

We can see in the table that the FW-anomalous strings can be seen as linear maps
sending the fluxes that create the FW anomaly to the fluxes that are caused to jump by
the domain walls that cure the anomaly, a fact first noted in [12]. One can display the
information from the table in two nilpotent matrices corresponding to the two types of
FW-anomalous strings. These nilpotent matrices are given by

NT
I =


0 δAI 0 0 0
0 0 KIJK 0 0
0 0 0 δI 0
0 0 0 0 0
0 0 0 0 0

 and MT
K =


0 0 0 0 δAK
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (134)
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in a basis ordered as (H3,3, H2,2, H1,1, H0,0, H3). Here, the first matrix corresponds to the
wrapped NS5 brane and the second matrix corresponds to a wrapped D4 brane. Now,
the first matrix, NT

I , turns out to be the transpose of the the monodromy generator NI

considered in chapter 3, but with loop corrections discarded. The second matrix is new
and involves the odd cohomology.

5.6 Equivalent flux vacua

The fact that sets of 4D domain walls can decay by emitting strings has consequences for
the treatment of the flux configurations on both sides of the domain wall. In particular,
flux vacua that are naively different can actually be related through gauge transforma-
tions, as advertised earlier.

As an example, consider a stack of p domain walls consisting of D6-branes wrapped
on πI4 described above. These domain walls separate two flux vacua in which the flux F2

on the Poincaré dual of πI4 differs by one unit. After turning on p units of F0 flux, these
domain walls become unstable with respect to nucleation of a 4D string loop consisting
of an NS5 brane wrapped around the cycle πI4 .

Moving through the 4D string also causes the axion bI =
∫
πI

4
B2 to shift by one

unit[56, 57]:
bI → bI + 1.

Hence, one has now two vacua, in which the values of the background flux F̄2 and the axion
bI are different, but which are connected to each other. These vacua should therefore in
fact be equivalent.

One can order the values of the RR fluxes in a flux vector q given by

q =


e0

eI
mI

m

 . (135)

We have found that the combined operation of shifting the background value of the
axion bI → bI + 1 and transforming the RR fluxes by the monodromy transformation
q→ TI · q yields a gauge equivalent vacuum. This is because the flux vector appears in
the superpotential in the combination

ΠT · q, (136)

which is an inner product in the even cohomology and which transforms under this
combined operation as

Π(...bI + 1...) · TI · qT = qT · Π(...bI ...). (137)

Hence, the superpotential and the resulting physics are fully invariant under the com-
bined transformation, which is just a monodromy transformation from the moduli space
viewpoint.

Likewise, in references [12] and [13], nilpotent matrices were also found for the complex
structure moduli (as noted above) and for D-brane moduli. It is interesting whether
these nilpotent matrices also have a deep mathematical interpretation in terms of Hodge
structures. We leave this question for future work.
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6 Conclusions

In this thesis, type IIA string theory compactified on a Calabi-Yau threefold was dis-
cussed. The type IIA Kähler moduli space and the singular loci within this moduli space
were analyzed using the formalism of mixed Hodge structures, which allows for a classi-
fication of singular loci in different subtypes. These were used to gain control over the
triple intersection numbers KIJK that occur in the Kähler moduli space metric. The the-
ory of enhancements of mixed Hodge structures gives rise to important constraints on the
KIJK . While we attempted to violate these constraints in order to produce a theory that
nontrivially belongs to the swampland, it turned out that the constraints imposed by the
polarization conditions were not stronger than the requirement of positive-definiteness of
the metric in the examples considered here. We suspect that it is a general rule that KIJK
that violate the polarization conditions also give rise to non-positive definite metrics, but
we did not attempt to prove this in general. Either way, the classification of Calabi-Yau
manifolds on the basis of their intersection numbers and the resulting singularity types
gives the zoo of Calabi-Yau manifolds an interesting structure.
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Appendix A: list of singularity enhancements from au-

tomated scan

N1 +N2 +N3 Amount (%) Amount in KS list (%)
II0 + II0 + II0 1 (0.10) U
II0 + II0 + IV1 3 (0.29) U
II0 + II1 + III0 6 (0.59) U
II0 + II1 + IV2 6 (0.59) U
II0 + III0 + III0 3 (0.29) U
II0 + III0 + IV2 12 (1.17) U
II0 + IV1 + IV1 3 (0.29) U
II0 + IV2 + IV2 9 (0.88) U
II1 + II1 + III0 3 (0.29) 0
II1 + II1 + IV2 3 (0.29) 0
II1 + III0 + III1 12 (1.17) 0
II1 + III0 + IV1 6 (0.59) 0
II1 + III0 + IV2 6 (0.59) 0
II1 + III0 + IV3 12 (1.17) 6 (1.25)
II1 + III1 + IV2 12 (1.17) 19 (3.97)
II1 + IV1 + IV2 6 (0.59) 0
II1 + IV2 + IV2 6 (0.59) 0
II1 + IV2 + IV3 12 (1.17) 55 (11.48)
II1 + IV3 + IV3 0 1 (0.21)
II2 + II2 + II2 1 9 (1.88)
II2 + II2 + III0 6 (0.59) 10 (2.09)
II2 + II2 + III1 3 (0.29) 1 (0.21)
II2 + II2 + IV2 0 7 (1.46)
II2 + II2 + IV3 12 (1.17) 23 (4.80)
II2 + III0 + III0 9 (0.88) 9 (1.88)
II2 + III0 + III1 18 (1.76) 2 (0.42)
II2 + III0 + IV2 6 (0.59) 18 (3.76)
II2 + III0 + IV3 42 (4.10) 16 (3.34)
II2 + III1 + III1 12 (1.17) 0
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N1 +N2 +N3 Amount (%) Amount in KS list (%)
II2 + III1 + IV2 6 (0.59) 10 (2.09)
II2 + III1 + IV3 42 (4.10) 4 (0.84)
II2 + IV2 + IV2 3 (0.29) 0
II2 + IV2 + IV3 6 (0.59) 33 (6.89)
II2 + IV3 + IV3 51 (4.98) 2 (0.42)
III0 + III0 + III1 18 (1.76) 0
III0 + III0 + IV1 3 (0.29) 11 (2.30)
III0 + III0 + IV2 0 12 (2.51)
III0 + III0 + IV3 27 (2.64) 4 (0.84)
III0 + III1 + III1 3 (0.29) 0
III0 + III1 + IV2 30 (2.93) 0
III0 + III1 + IV3 42 (4.10) 1 (0.21)
III0 + IV1 + IV2 12 (1.17) 12 (2.51)
III0 + IV1 + IV3 0 12 (2.51)
III0 + IV2 + IV2 3 (0.29) 0
III0 + IV2 + IV3 36 (3.52) 13 (2.71)
III0 + IV3 + IV3 57 (5.57) 15 (3.13)
III1 + III1 + III1 33 (3.22) 0
III1 + III1 + IV2 3 (0.29) 0
III1 + III1 + IV3 111 (10.84) 1 (0.21)
III1 + IV1 + IV2 0 74 (15.45)
III1 + IV1 + IV3 0 2 (0.42)
III1 + IV2 + IV2 21 (2.05) 23 (4.80)
III1 + IV2 + IV3 12 (1.17) 3 (0.63)
III1 + IV3 + IV3 147 (14.36) 2 (0.42)
IV1 + IV1 + IV1 1 (0.10) 0
IV1 + IV2 + IV2 9 (0.88) 0
IV1 + IV2 + IV3 0 32 (6.68)
IV1 + IV3 + IV3 0 1 (0.21)
IV2 + IV2 + IV2 3 (0.29) 0
IV2 + IV2 + IV3 24 (2.34) 24 (5.01)
IV2 + IV3 + IV3 9 (0.88) 6 (1.25)
IV3 + IV3 + IV3 82 (8.01) 6 (1.25)

Table 7: Statistics of large modulus singularity patterns in the h1,1 = 3 case obtained
by setting sets of intersection numbers to zero and treating the others as generic. The
total amount of possibilities is 1024. In the last column, the corresponding amount of
CY manifolds with the specified singularity patterns is given; here, only the h1,1 = 3
manifolds with simplicial Kähler cones were considered.
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