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Chapter 1

Introduction

In this thesis I will discuss different types of quantum simulation, focusing on simulation
of two-dimensional systems. I will start with an introduction into quantum simulation in
chapter 2, describing different methods before focusing on two-dimensional (2D) electron
gases. From there on, the thesis basically consists of two parts, on surface states of metals
and surface states of topological insulators.

In chapter 3 I will discuss an electronic fractal built using the surface electrons of copper.
Many lattices have already been built using carbon monoxide molecules on copper [1–
3]. Recently, it was shown by Kempkes et al. [4] that it is possible to confine electrons
into a fractal structure and measure the fractal dimension of the electron wave function.
The fractal used in that case is the Sierpiński triangle; in the related Sierpiński carpet,
quantum transport, topological phases and Hall conductivity have been studied [5–7].
I will first replicate some results from the Sierpiński triangle to become acquainted with
the technique and the concept of fractal dimension, and then generalise this to study
multifractals in chapter 4: a fractal in which different parts have a different dimension,
as opposed to a monofractal, which has the same fractal dimension anywhere and at any
length scale. Multifractality has been predicted in electronic states of systems featuring
a transition to/from a state with Anderson localisation [8], and an example system in
which this has been found is a quantum Hall system at the transition between Landau
levels [9]. As such, it is interesting to study whether multifractality can be observed in
other electronic systems. I will do this for the electronic Sierpiński triangle, to find out
whether the electrons confined to this monofractal form a monofractal themselves.

In the last part of the thesis, in chapter 5, I will introduce a three-dimensional topological
insulator (3D TI) as a new material to simulate 2D fermions. 3D TIs are insulating in
the bulk but conducting on the surface and this conduction comes from surface states,
which form a 2D electron gas. As opposed to the surface electrons of copper, these
surface states are massless Dirac fermions, having some similarities with the electrons in
graphene. Unlike graphene however, these surface states are helical: spin is locked to
momentum [10, 11]. This can be used to manipulate their electronic properties in new
ways, for instance by introducing magnetic nanoparticles that act on the spin and the
momentum of the surface states. I will study the electronic properties of these surface
states using various kinds of potentials, to explore the possibilities that 3D TIs offer when
nanoparticles are placed on top of them. Many of these potentials have already been
studied using graphene [12–15], and it has been shown that a magnetic barrier can be
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2 CHAPTER 1. INTRODUCTION

used to manipulate the current on a TI surface [16].
I will give an overview of the different types of potentials and discuss their similarities and
differences with graphene. For each type of potential, I will calculate the transmission
through a quasi-1D barrier and the band structure of a square lattice in 2D, to explore
the different ways in which the surface states can be manipulated.



Chapter 2

Quantum simulations

I want to talk about the possibility
that there is to be an exact
simulation, that the computer will do
exactly the same as nature.

Richard P. Feynman, 1981 [17]

Quantum mechanics is the physical theory describing the behaviour of particles on the
scale of single atoms. It has successfully explained various systems such as the electron
states of the hydrogen atom. However, as systems get larger and include more particles,
it quickly becomes impossible to provide exact solutions. For this reason, theorists try
to study quantum mechanical systems by simulating them. This task is impractical on a
classical computer because the amount of computing power required grows exponentially
as the system size increases. In 1981, Richard Feynman came up with the idea to simulate
quantum systems using another quantum system [17].

Feynman envisioned quantum computers to perform these simulations, but quantum com-
puters outperforming traditional ones have not yet been made. Still, it is possible to
simulate a quantum system, by using a purpose-made simulator instead of a general
quantum computer [18]. In the next section, I will discuss various methods to simulate
two-dimensional electronic systems, before introducing the simulation method used in this
thesis.

The goal of a quantum simulation is usually to build a system that has the same degrees of
freedom as the simulated system, but at a (much) larger scale, which makes it is easier to
manipulate [19]. In this chapter, I will give a number of examples of quantum simulators
of 2D condensed matter systems. Cold atoms, photonic or electronic simulators can be
used to simulate spin systems with nearest-neighbour interactions, and to reproduce the
electronic band structure of various lattices. I will then go on to describe the simulator
of 2D electrons used in the following chapters.

3



4 CHAPTER 2. QUANTUM SIMULATIONS

2.1 Cold atoms

Ultracold atoms can be confined in an optical lattice to simulate a condensed-matter
system. An optical lattice is created by using counter-propagating lasers: for instance,
two sets of lasers in the x- and y-direction are required for a 2D square lattice [20]; 3
lasers at angles of 120° for a triangular lattice [21], or three sets of lasers in the x-, y-,
and z-directions for a 3D square lattice [22]. An example of 2D and 3D square optical
lattices can be seen in figure 2.1.

Figure 2.1: Optical lattices in 2D (top) and 3D (bottom). From Bloch et al. [22].

This optical lattice forms a defect-free potential whose lattice constant is determined
by the wavelength of the lasers. In this potential, fermions or bosons can be placed;
their interactions can be controlled by Feshbach resonances, which can be used to induce
attractive or repulsive interactions in certain atomic species by applying a magnetic field.
In particular, a repulsive interaction can be used to trigger a phase transition for bosons
from a superfluid to a Mott insulator [23]. Other possible applications include simulating
spin systems such as the quantum Ising model [23] and topological insulators [24].

Another possible cold atom simulation can be made using a Fermi gas: a gas of fermions
in which all quantum states are occupied up to the Fermi level. The interactions between
these atoms can be tuned by Feshbach resonances too. Attractive interactions will lead the
fermions to form (bosonic) pairs; in the case of weak interactions, these are Cooper pairs
leading to superfluidity as described by BCS theory. In the case of strong interactions
these bosons form a Bose–Einstein condensate [23].

There are much more possibilities to use cold atoms in simulations. For instance Anderson
localisation can be simulated using a disordered optical potential [25, 26], a rotating Fermi
gas can be used to simulate a quantum Hall system [23], ions in radiofrequency traps can
be used to simulate magnetic systems on a lattice [27], and cold atoms on an optical
lattice can be applied to high-energy physics, simulating lattice gauge theories [28].
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2.2 Photonics

Photons can be easily guided using waveguides and do not interact much. This means
that they can be moved without much decoherence, so they can be used to simulate a
lattice without actually being confined to it. Interactions are modelled by generating
superpositions of two photon beams using beam splitters. This results in interference
between the beams which can be measured in a detector at the end of the circuit. As
photons are bosonic, these simulators are well suited to simulating bosons. A schematic
example of a photonic simulator can be seen in figure 2.2.

Figure 2.2: An example of a photonic simulator. From Aspuru-Guzik and Walther [30].

Using relatively simple optical setups, systems of interacting spins can be simulated. This
has been demonstrated for a 4-atom frustrated Heisenberg system [29]. Apart from spin
systems, applications of photonic systems are foreseen in particle physics [30]. Topological
edge states can be found in photonic crystals with periodic modulation, so-called Floquet
time crystals [31], or by simulating a quantum Hall system in a magnetic field [32].

2.3 Electronic quantum simulators

Like bosons can be simulated using photons, fermions can be simulated using electrons.
It is well possible for instance, to simulate an electronic system on a lattice by building a
similar lattice on a different scale. This can be used to find the electronic properties of the
simulated system. Compared to simulators based on cold atoms and photonic simulators,
electronic simulators are still rather new. So far, it has mainly been used to build various
two-dimensional lattices artifically, to simulate the behaviour of electrons on these kinds
of lattices in condensed-matter systems.

Here, I will discuss a number of examples of electronic simulators, which I will divide into
bottom-up approaches, where a lattice is assembled by placing particles on lattice sites
and top-down approaches, where a lattice is created by confining electrons to lattice sites.

2.3.1 Bottom-up: colloidal nanocrystals

From lead chalcogenides (PbS, PbSe, or PbTe), colloidal particles can be formed, which
have the shape of truncated nanocubes. These colloids can self-assemble into a lattice, in
which they take the place of atoms, hence characterising a bottom-up approach.
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Possible lattices using this type of colloid are a square lattice or a buckled honeycomb-
like “silicene” lattice. These colloidal systems exhibit electronic bands resembling those
of graphene, and interesting topological states due to spin-orbit coupling have been the-
oretically predicted [33, pp. 44–56, 34, 35, 36]. An example of such a system can be seen
in figure 2.3.

(a) Example of a truncated nanocube.
From Tadjine [33, p. 44].

(b) Examples of hexagonal crystal structures of trun-
cated nanocubes. From Boneschanscher et al. [35].

Figure 2.3: Colloidal nanoparticles self-assembled into a crystal.

2.3.2 Top-down: 2D electron gases

A 2D electron gas is formed by confining an electronic system in one direction, for instance
by using a thin film of a (semi-)conducting material, or the surface states of a topological
insulator. In these systems, electrons can be confined even further to form an artificial
lattice, hence this is a top-down approach. Many experiments with 2D electron systems
were done after it was theoretically shown that graphene can be simulated by patterning
a 2D electron gas [37]. Here I will present some examples of 2D electron systems, which
have been built experimentally to model various lattices.

Semiconductors
Electrons can form a 2D electron gas on the boundary of a thin semiconducting film in the
presence of a dopant. These electrons can be confined by etching holes into the system.
This approach has been demonstrated using AlGaAs or GaAs with a triangular pattern
to build an artificial graphene lattice. This method allows simulating localised as well as
delocalised electronic states [38] and massless Dirac fermions [39–41]. The lattice constant
in these simulations is usually in the range 50–150 nm.

Metals
In metals such as copper, there are surface states that form a 2D electron gas. In such a
system, electrons can be confined to a lattice either by creating vacancies in the surface,
or by building nanostructures on top of the surface. The properties of such structures can
be measured using STM. Lattice constants in the order of 2 nm are well possible in these
systems, much smaller than in semiconductors.

Vacancies in a Cu(100) surface have recently been used to model the Lieb lattice [42],
which is a square lattice with some missing sites that I will describe in section 2.6. Carbon
monoxide molecules adsorbed on Cu(111) have been used as well to model this lattice,
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Figure 2.4: Example of a graphene lattice on a semiconductor surface. From Nádvorńık
et al. [40].

and other lattices such as the graphene lattice [1]. Recently a fractal was simulated: the
Sierpiński triangle [4], which I will describe in chapter 3.

It has also been shown that quantum simulation with CO molecules on a Cu(111) surface
can reproduce the atomic s- and p-orbitals of atoms in a graphene or Lieb lattice. In a Lieb
lattice geometry the px- and py-orbitals can even be manipulated separately [3]. These
recent developments open up many possibilities for simulating 2D electronic systems [43],
coming a step closer to the universal quantum simulator envisioned by Feynman.

Topological insulators
Three-dimensional topological insulators feature surface states that behave as a massless
2D electron gas. Like the edge states of two-dimensional topological insulators [44], these
surface states are helical, which means that they have a spin locked to their momentum
[10, 11].

These materials are still relatively new, having been theoretically predicted in 2007 [45]
and experimentally detected in 2009 [11]. Some experiments have been set up to pattern
a topological insulator by doping with, or adsorbing iron atoms [46, 47]. It has been
suggested that the helical property of the surface states can be used for spintronics :
electronics driven by spin currents instead of charge currents [48, 49].

In chapter 5, I will explore the possibilities of patterning a topological insulator surface
with different kinds of nanoparticles, and compare the TI surface states with the massless
Dirac fermions of graphene, which are not helical.

2.4 Muffin tin method

In this section, I will give a theoretical description of surface electrons, confined by pat-
terning the surface using nanoparticles. This confinement generates artificial atomic sites,
of which the occupancy can be modelled using either a muffin tin potential, or a tight-
binding model [1, 2, 4].

I will describe the muffin tin potential here: a potential that has a nonzero value V within
a radius r around the particle, and is zero anywhere else. When drawn in 3D using a
square lattice, this potential resembles an upside-down muffin tin. The parameters V and
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r depend on the properties of the nanoparticles; to describe CO molecules on a Cu(111)
surface, I will use V = 0.9 meV and r = 0.3 nm. The surface states themselves are
described by the Schrödinger equation with an effective mass m∗ = 0.42 me [50]. The
Hamiltonian is then given by

H = − ~2

2m∗
∇2 + VCO(~r), (2.1)

with VCO(~r) the muffin tin potential as described.

Solving the Schrödinger equation numerically in this system results in a set of electron
eigenfunctions and their respective energies. For the binding energy, −0.45 eV is used;
this value is added to the energy levels of the surface states. Experimentally this is known
to be −445 meV [51]. A Lorentzian broadening of Γ = 0.08 eV is applied to the calculated
eigenenergies to calculate the local density of states (LDOS) because interactions with the
bulk of the metal cause surface states to be broadened [1]. The LDOS can be plotted at
a fixed position/lattice site as a function of energy, or at a fixed energy as function of
position, which is called an LDOS map. All parameters mentioned here are in line with
Kempkes et al. [4] to allow comparison with existing results.

Later, in section 5.2.4, I will apply a similar potential on top of a gas of massless Dirac
fermions to study surface states of topological insulators.

2.5 Experiment

This system of CO molecules adsorbed on a copper surface can be studied experimentally
using a scanning tunneling microscope (STM). Using the tip of an STM, one can pick up
CO molecules and arrange them in a lattice, and then use the STM to measure the LDOS
of the resulting system. This method has been described before by Gomes et al. [1].

The tunnelling current between the tip of the STM and the surface is proportional to
the number of conducting states below the Fermi level. This level is determined by the
voltage applied between the tip and the substrate. The density of states at a certain
voltage is then found by taking the derivative of the current to the voltage, also called
the differential conductance dI

dV
.

These spectra depend greatly on the tip of the STM, and for that reason they need to be
normalised using the dI

dV
spectrum of a clean copper surface. By dividing the spectrum

of a lattice site by that of clean copper, one “divides out” the effects caused by the tip
and the copper bulk, and the result is a normalised spectrum that can be seen as an
experimental LDOS.

An example of this procedure can be seen in figure 2.5. It shows the dI
dV

spectrum at
a certain lattice site for three different tips, before and after normalisation, and the
main features of this spectrum are present with all tips. These figures come from an
experiment on the Sierpiński triangle [4], which will be described in section 3.1. However
to understand the procedure of normalisation it is not necessary to know the details of
the lattice structure.
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Figure 2.5: (a,c,e) The differential conductance spectrum of a clean copper surface
(dashed) compared with that of a number of equivalent sites in the third generation
Sierpiński triangle, for three different STM tips. (b,d,f) The corresponding normalised
spectrum for the same sites and tips. From Kempkes et al. [4], supplementary material.
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2.6 The Lieb lattice

To become acquainted with the method, I first show the results for the Lieb lattice, which
had already been studied before by Slot et al. [2]. Here, I reproduce their muffin-tin
calculations and compare them with their experimental results.

The Lieb lattice is depicted in figure 2.6a. It is a variation on the square lattice; in the
unit cell of 2 × 2 particles, one of the four is missing. This leads to a lattice in which
there are particles with four neighbours (“corner sites” shown in blue in the figures) or
two neighbours (“edge sites” in red). This lattice is interesting to study as it is a common
feature of high-Tc superconductors based on CuO2 [52].

  

(a) The lattice with corner sites in blue and
edge sites in red. The dotted line marks one
unit cell.

(b) The band structure around the M point
of the Brillouin zone.

Figure 2.6: The Lieb lattice and its band structure.

The Lieb lattice is one of the simplest lattices featuring sites with different connectivity.
When taking only nearest-neighbour hopping into account, it has a Dirac cone around the
M point of the Brillouin zone and a flat band through the Dirac point, as can be seen in
figure 2.6b. This flat band becomes dispersive when introducing next-nearest-neighbour
hopping, which plays a significant role in this electronic Lieb lattice [2].

The muffin-tin potential used to study this lattice consists of 5 × 5 unit cells of 2.66 ×
2.56 nm each; this difference between width and length follows from the underlying FCC
lattice structure of the copper substrate, which dictates at which sites CO molecules can
be placed. The placement of CO molecules on the substrate can be seen as black dots in
figure 2.7 and the potential can be seen in figure 2.8.

For infinite periodic systems, the Bloch theorem tells us that the wave functions will be
periodic with a phase difference between neighbouring unit cells [53, pp. 137-138]. The
experimental system however has a finite size. Numerically it is also easier to solve the
Schrödinger equation with periodic boundary conditions without a phase difference. I
have taken a size of 5 × 5 unit cells, which is roughly comparable to the experimental
system. Later, in section 5.2.2, I will use the Bloch theorem to describe an infinite system
on a 3D topological insulator surface.

The LDOS for edge and corner sites is depicted in figure 2.9. In this figure, one can see
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Figure 2.7: The placement of CO molecules (black) on top of a Cu(111) surface, to confine
the surface electrons to the red and blue states. From Slot et al. [2].

Figure 2.8: The muffin tin potential used to study the Lieb lattice. Scale in nm, colour:
potential in eV.

that around −200 meV both intensities are roughly equal; around −50 meV the intensity
at edge sites peaks and around +150 meV the intensity at corner sites peaks, which means
that these are interesting energies to study the Lieb lattice system. At these energies,
I have plotted the LDOS map of the system, which can be seen in figure 2.10. When
comparing the data with STM data from Slot et al. [2], one can observe a clear similarity.

The energies given in electronvolt can be equated to the tension in volt between the needle
and substrate in an STM, because the electronvolt is defined as the energy acquired by
an electron charge moving through a potential difference of 1 V. This allows comparing
the experimental and theoretical results.

As expected from figure 2.9, one can observe that electrons are localised on edge sites in
figure 2.10b and on corner sites in figure 2.10c. There is a very good agreement between
the calculated and experimental LDOS.

This is just one example of a system where the muffin tin method works well to describe
the electronic surface states of copper with adsorbed CO molecules and in this section
I have shown that I can reproduce this calculation. I will use this method in the next
chapters to study electrons in fractal geometries.
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Figure 2.9: LDOS for edge and corner sites in the Lieb lattice, calculated using the
muffin-tin method.

Muffin-tin

(a) E = −200 meV. (b) E = −50 meV. (c) E = +150 meV.

Experiment

(d) U = −200 mV. (e) U = −50 mV. (f) U = +150 mV.

Figure 2.10: (a-c) LDOS map for various energies of a Lieb lattice of 5 × 5 unit cells,
(d-f) experimental results of Slot et al. [2] at the corresponding potentials. The areas in
yellow (white) have a high density of electronic states and the areas in blue (black) a low
density.



Chapter 3

Fractals

The left bank of the Vistula, when
measured with increased precision,
would furnish lengths ten, hundred
and even thousand times as great as
the length read off the school map.

Hugo Steinhaus, 1954 [54]

Lengths of natural borders are hard to measure because they depend on the scale at which
you are looking. This is true for the banks of the Wis la (or Vistula) river in Poland, but
also for coastlines and land borders. It was in 1967, that Benoit Mandelbrot quantified
this by measuring the dimension of the west coast of Britain [55].

The mathematical concept of this dimension was already defined in 1918 by Felix Haus-
dorff [56], who also proposed that it could be fractional. This Hausdorff dimension can
be calculated as D = logN

logS
, with N the number of copies of the fractal created by scaling

the object by a factor S. It contrasts with the topological dimension DT of an object
which is always integer: zero for a point and one for a curve.

Figure 3.1: The Koch curve.

One of the earliest fractals to be developed was the Koch curve by Helge von Koch in
1904, at a time when the word fractal had not yet been introduced. The Koch curve is
shown in figure 3.1. As a curve, its topological dimension is 1. The curve is obtained by
iteratively taking the middle third of every line segment and replacing it by an outward
pointing equilateral triangle, removing the original line segment at the base. The removed
segment is thus replaced by two segments of the same length as the original. Every one
iteration creates four copies of the previous curve at a size three times smaller; or, in
other words, scaling the system to three times its size results in a curve length four times

13



14 CHAPTER 3. FRACTALS

longer, leading to a Hausdorff dimension D = log 4
log 3
≈ 1.26 [57, pp. 34–38]. Combining

three Koch curves, one gets the Koch snowflake. I will use the Koch curve later as an
example in section 4.1.

In 1975, Mandelbrot [57, p. 15] used this dimension to define a fractal as a set for which the
Hausdorff Besicovitch dimension strictly exceeds the topological dimension. This definition
allows for a very broad range of fractals, and not everybody is comfortable with it because
of a number of edge cases, which are by this definition a fractal, but lack some important
properties that are found in other fractals. For instance, the Peano curve is a curve
which fills the whole unit square, i.e. D = 2, DT = 1 [57, p. 58]. Unlike the Koch curve,
this square is very simple to describe geometrically and lacks structure at small scales.
Because of these and other edge cases, Falconer came up with a “hand-waving” definition
of a fractal [58, p. xxv]. By this definition, a fractal should at least:

� have a detailed structure at any length scale,

� be not easily described in geometric terms,

� have some sort of self-similarity,

� usually have a Hausdorff dimension D strictly greater than DT ,

� usually be described with a very simple, perhaps iterative, procedure.

The Koch snowflake complies with all of these and is thus by either definition a fractal.
This also applies to the other fractals that I will discuss in this thesis, and I will not take
a stand on which definition is “right”.

Note that in either definition, it is not necessary that D is fractional even though the
name fractal suggests so. The boundary of the well-known Mandelbrot set, for instance,
has a Hausdorff dimension of 2 [59]. Following Mandelbrot, I will from now on use fractal
dimension for the Hausdorff dimension of a fractal.

3.1 Sierpiński triangle

I will focus on one particular fractal known as the Sierpiński triangle, which can be seen in
figure 3.2. This triangle was first described in a mathematical sense by Wac law Sierpiński
in 1915, when he proved that it is a curve on which every point is a branch point [60].

The fractal, also called the Sierpiński gasket, is created iteratively from an equilateral
triangle by dividing the triangle into 4 smaller ones, then taking out the middle triangle
and repeating this procedure on the three remaining triangles. Repeating this process,
the area tends to zero, and in the limit of infinitely many iterations one gets the curve as
described by Sierpiński [57, p. 131].

The Sierpiński triangle was not an entirely new idea at the time: stuctures resembling
the Sierpiński triangle can be found in medieval art [61], and the idea of having a (three-
dimensional) structure with many branch points and different length scales was already
used in architecture. Of course a structure of zero volume is not physical, but after a
few iterations of “taking out triangles”, one obtains a structure which is strong and has
a small density, and as a result (relatively) lightweight. Such a structure is found in, for
instance, the Eiffel tower [57, p. 131]. Nanomaterials with a three-dimensional structure
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Figure 3.2: The Sierpiński triangle.

similar to the Sierpiński triangle have been produced experimentally, and these too have
an extraordinary strength compared to their density [62]. Besides, such structures were
envisioned as low-density building blocks for extraterrestrial technology in a semi-serious
paper by Dyson [63] written for the 60th birthday of physicist Hans Bethe, which outlines
how societies with more advanced space technology would probably look like.

Scaling the Sierpiński triangle by a factor of 2 results in three copies of the triangle, which
means that the fractal dimension is D = log 3

log 2
≈ 1.58. This is indeed greater than the

topological dimension of a curve DT = 1. Electrons in this fractal have already been
studied by Kempkes et al. [4], and in the next section I will reproduce some of their
results.

3.2 Results

I have applied the same muffin tin calculation as described in section 2.4, to the third-
generation Sierpiński triangle. The boundary conditions are different as this system is not
periodic in the x- or y-direction. For this reason I used Neumann boundary conditions
setting the derivative of the wave function to zero at this boundary. I used a square system
of 38× 33 nm, which is twice the length and width of the Sierpiński triangle itself. I have
done this to avoid creating lattice sites on the boundary of the system where electrons
are confined between two Sierpiński triangles. The potential can be seen in figure 3.3.

First, I plotted the LDOS for sites with one, two or three neighbours. This can be seen
in figure 3.4. It shows that the LDOS of different sites peaks at different energies.

Using this figure, four interesting energy levels are selected. At E = −325 meV all
three kinds of sites show a roughly equal intensity; at −200 meV sites with one or two
neighbours are accentuated and at −100 meV even more; at +100 meV sites with three
neighbours are accentuated. The results for these energy levels can be seen in figure 3.5,
compared with experimental data of Kempkes et al. [4].
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Figure 3.3: The muffin-tin potential used to study the Sierpiński triangle. Scale in nm,
colour: potential in eV.
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Figure 3.4: LDOS for the three different sites in the third generation Sierpiński triangle,
calculated using the muffin-tin method.
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(a) E = −325 meV, muffin tin. (b) U = −325 mV, experimental.

(c) E = −200 meV, muffin tin. (d) U = −200 mV, experimental.

(e) E = −100 meV, muffin tin. (f) U = −100 mV, experimental.

(g) E = +100 meV, muffin tin. (h) U = +100 mV, experimental.

Figure 3.5: LDOS map of the Sierpiński triangle: (a,c,e,g) Muffin-tin calculations.
(b,d,f,h) Experimental data from Kempkes et al. [4]. Same scale as figure 3.3.
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The fractal nature of wave functions in this model of the Sierpiński triangle can be con-
firmed by analysing the Fourier transform of the LDOS maps. Figure 3.6 shows that
this system exhibits self-similarity up to 3 levels: there is a threefold repetition in the
Fourier spectrum, and one can retrieve the second- and first-generation Sierpiński triangle
from the Fourier spectrum by removing the points with the highest momenta. This is as
expected when studying the third generation of the fractal.

Figure 3.6: (a) Fourier transform of the experimental LDOS map at U = −325 mV shown
in figure 3.5b. (b-d) Inverse transform of the Fourier spectrum inside the blue, red, and
yellow circles of (a) respectively. (c) is similar to the second-generation Sierpiński triangle
and (d) is similar to the first-generation Sierpiński triangle. From Kempkes et al. [4].

Determining the dimension of a fractal numerically can be done with the box counting
method: counting the number of boxes necessary to cover the fractal, at different box
sizes. The dimension is then found as

D = lim
r→0

logN(L)

− logL
, (3.1)

with N(r) the number of boxes of length L necessary to cover the fractal [58, p. 43]. To
apply this to an LDOS map, a cutoff has to be defined to determine whether a box is
said to contain any part of the electronic fractal. Also, the range of box sizes used has to
be chosen. As these parameters are rather arbitrary, this means that the results of box
counting can vary. I have thus averaged N(L) for a number of different cutoffs ranging
from 60% to 90% of the maximum intensity of the LDOS map, using box sizes ranging
from 50× 50 to 500× 500 pixels in an image of size 3500× 3500. The results can be seen
in table 3.1.

Energy (meV) Dimension
-325 1.84± 0.017
-200 1.782± 0.023
-100 1.70± 0.04
+100 1.774± 0.023

Table 3.1: Box counting dimension of the LDOS map as a function of energy.

The dimension of the electronic fractal is higher than 1.58 but clearly between one and
two. This is another indication that the electrons in this system are confined to a fractal.
In the next chapter I will analyse the dimensionality of the system further by looking at
multifractality.



Chapter 4

Multifractality

Much of textbook mechanics concerns
dynamical systems whose attractors
are points, near-circles, or other
shapes from Euclid. But these are
rare exceptions, and the behavior of
most dynamic systems is
incomparably more complicated:
their attractors or repellers tend to
be fractals.

Benoit B. Mandelbrot, 1982 [57,
p. 195]

In the previous chapter, I introduced fractals that were very regular structures charac-
terised by a particular fractal dimension. Fractality, however, can also be observed in less
regular systems. In this section I will introduce the multifractal, an object that shows
fractality under distortion. As a generalisation of the fractal with a single dimension
D, it has a multifractal dimension Dq which is a function of the moment q. Studying
multifractality is a powerful tool to analyse images in medicine [64] and geology [65].

Figure 4.1: The Hénon attractor.
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A good example of a multifractal is the Hénon attractor, shown in figure 4.1. It is formed
from a dynamical system known as the Hénon map; for a given starting point in R2,
this system evolves either to infinity or to a set of points known as the attractor. This
attractor looks rather simple but it is not; the “curves” visible in the figure are actually
sets of more-or-less parallel “curves” which themselves resemble a Cantor set [66]. A
detail of this can be seen in figure 4.2. As such, it has a visible fractal structure at small
scales, and it has a fractal dimension of D = D0 = 1.261± 0.003 [67].

Figure 4.2: Detail of the Hénon attractor, 5× 105 iterations.

At the end of the previous chapter I studied an electronic fractal, formed by confining
electrons to the third generation of the Sierpiński triangle. From the Fourier spectrum
and dimension, one could deduce that the electronic states resemble a fractal.

The Sierpiński triangle is a known monofractal, which has the same fractal dimension
anywhere. In this chapter, I want to determine whether its electronic version has the same
properties, or whether it is a multifractal containing components of different dimensions.
This is interesting because multifractality has already been observed in electronic surface
states of a semiconductor with adsorbed atoms by Morgenstern et al. [9]. I have used the
method devised by Chhabra and Jensen [68] to determine the f(α) spectrum.

For any given box length L, one divides the system into square boxes, where one can
calculate a probability Pi(L) for every box i by adding up the numerical values of all pixels
contained in the box. These must be normalised, so the sum over all boxes

∑
i Pi(L) = 1

for any L. Each of these boxes is given a measure µi(q, L) which depends on the moment
q, given by µi(q, L) = [Pi(L)]q/

∑
i[Pi(L)]q, again normalised. Applying this distortion

leads to a new dimension f(q) given by

f(q) = lim
L→0

∑
i µi(q, L) log µi(q, L)

logL
, (4.1)

as well as a singularity strength α(q) given by

α(q) = lim
L→0

∑
i µi(q, L) logPi(q, L)

logL
. (4.2)

One can easily determine the multifractal dimension using

Dq =
qα(q)− f(q)

q − 1
. (4.3)

For the normal box counting procedure, I used the slope of logN versus logL to find
the dimension. However to determine f , α or Dq at high or low values of q, this would
not produce correct results because the data points for small box sizes would deviate. I
think this is because of the limited precision used when solving the Schrödinger equation
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numerically. As such, I have taken a range of box sizes for which the fraction in equa-
tion (4.1) does not show large deviations and averaged over those box sizes instead of
taking a limit. This method is sufficiently accurate to determine whether an object is a
monofractal or a multifractal.

What I will use in this chapter is the f(α) spectrum generated by calculating f(q) and
α(q) for various values of q and plotting them against each other. In the next section, I
will show how this spectrum can be used to determine whether a fractal is a monofractal
or multifractal.

4.1 Results for fractals

As a reference, I have calculated the f(α) spectrum of the Koch curve, a known monofrac-
tal, and the Hénon attractor, a known multifractal. I will use these in the next section to
interpret the spectrum of electronic states in the Sierpiński triangle.

Monofractal: Koch curve
I have calculated the f(α) spectrum for the Koch curve of figure 3.1, which can be found
in figure 4.3. The number of boxes ranges from 50× 50 to 150× 150. For positive values
of q, f decreases somewhat, with hardly any change in α; this is probably a numerical
artifact coming from the low resolution of the figure. For negative values, f(α) becomes
parabolic. This is unlike a multifractal for which the entire spectrum, for positive and
negative q, is expected to be parabolic [69].

Multifractal: Hénon attractor
Next, I have calculated the f(α) spectrum for the Hénon attractor, which can be found
in figure 4.4. The number of boxes ranges from 50 × 50 to 150 × 150. It more or less
resembles a parabola, which is as expected for a multifractal [69]. From this image, one
can conclude that the Hénon attractor contains components of different length scales α
that show different fractal behaviour.
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Figure 4.3: f(α) for the Koch curve shown in figure 3.1. The values of q used range from
−5 to +5 in steps of 0.5, with additional data points for −0.25, −0.75, and −1.25.
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Figure 4.4: f(α) for the Hénon attractor shown in figure 4.1. The values of q used range
from −5 to +5 in steps of 0.5, with additional data points for −0.25, −0.75, and −1.25.
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4.2 Results for electronic states in fractals

Finally, I have calculated the f(α) spectrum for the wave functions at various energy
levels of the Sierpiński triangle. The number of boxes ranges from 150×150 to 500×500.
The results can be found in figure 4.5.
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(a) E = −325 meV.
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(b) E = −200 meV.
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(c) E = −100 meV.
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(d) E = +100 meV.

Figure 4.5: f(α) for the muffin-tin wave function maps shown in figure 3.5 at the same
four energies. The data points for q < 0 are plotted in yellow, those for q ≥ 0 in blue.
The values of q used range from −5 to +5 in steps of 0.5, with additional data points for
0.25, 0.75, and 1.25.

Comparing these results with the known spectrum of a monofractal (figure 4.3) and a mul-
tifractal (figure 4.4), one can see that the spectrum closely resembles that of a monofrac-
tal. One concludes that the wave functions of electrons confined to this monofractal are
themselves good approximations of monofractals.
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Chapter 5

Three-dimensional topological
insulators

The previous chapter described the surface states of copper, which are electrons that can
be described by the Schrödinger equation as they have a nonzero effective mass. Spin does
not play an important role in the problems described in the previous chapter, apart from
introducing a twofold degeneracy. The surface states in graphene [70] and 3D topological
insulators [11], however, can be described as massless Dirac fermions. Massless means
that the dispersion relation (energy as a function of momentum) is linear instead of
quadratic. Furthermore it is important to consider spin when considering Dirac fermions,
as I will show later. Patterned graphene has already been widely studied theoretically [12–
15, 71–74] and in experiments focusing on applications in electronics and energy storage
[75–77]. Patterning 3D topological insulators however is relatively new. I will start with a
theoretical study of the different kinds of potentials possible for 3D topological insulators,
and compare them to the results known for graphene. These potentials represent different
kinds of nanoparticles that could be placed on the surface of a 3D topological insulator.
In this chapter, I will use TI to denote a 3D topological insulator.

The surface states of TIs are massless spin-1
2

fermions, described by the following low-
energy effective Hamiltonian:

H = vF (~σ × ~p) · ẑ = vF (σxp̂y − σyp̂x) (5.1a)

= vF

(
0 p̂y + ip̂x

p̂y − ip̂x 0

)
, (5.1b)

where vF is the Fermi velocity and ~σ the vector formed by the three Pauli matrices [10].
As I am working with spin-1

2
particles, states to which this operator is applied are two-

component spinors. This Hamiltonian differs from the one for graphene [15] given by

H = vF~σ · ~p = vF (σxpx + σypy), (5.2)

by replacing the dot product with a cross product.

At first sight, the introduction of a cross product in the Hamiltonian of equation (5.1) just
causes a rotation in spin space given by x→ y and y → −x. However, in a TI, ~σ represents
real spin, while in graphene it represents pseudospin and the real spin is not coupled to
momentum. As a result, the surface states of a TI are helical, or, in other words, feature
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spin-momentum locking. This difference becomes relevant when introducing magnetic
fields, because there are two different ways in which a magnetic field can act on the
surface states.

Magnetic fields act on electric charges via the Lorentz force, which can be described using a
vector potential shifting the momentum of the particles (minimal coupling), but electrons
also carry a magnetic moment of themselves which features Zeeman interaction with a
magnetic field. The Zeeman interaction is proportional to the field ~B rather than the
potential ~A, which means that it falls off faster with distance. This makes it a prominent
effect at short distances, such as a magnetised nanoparticle placed on top of a TI surface
[46]. The Zeeman interaction splits the real spin states in graphene, while the Lorentz
interaction splits the pseudospin states. This introduces a difference between (real) spin
of a TI and pseudospin of graphene, which is more than just a rotation in spin space.

For an analysis of the Lorentz interaction, which is similar in graphene, I will refer to
the literature [71, 72]. In this chapter, I will analyse the Zeeman interaction in way
comparable to the treatment of interactions with graphene’s pseudospin. The starting
point is the plane wave solution to the Hamiltonian of equation (5.1) given by

Ψ~k(~x) = Aei
~k·~x
(
i
eiφ

)
, (5.3)

with φ the polar angle of the wave vector ~k. The p̂i operators are defined as −i~ ∂
∂xi

which
means their eigenvalues are given by ~vFki and represent the components of the plane
wave’s momentum. The related polar angle φ however, determines the spinor, and that
is how we get spin-momentum locking.

To become acquainted with the behaviour of Dirac fermions, I will first present a study of
a quasi-1D system with a barrier of finite width, which extends in the y-direction. I will
use the wave function of equation (5.3) to describe scattering against such a barrier. To
do so, I will assume a rightwards incoming particle. I will define φ = arctan(ky/kx) in the

interval −π/2 < φ < π/2, k = |~k|, and p = ~k. Here, φ is then the incident angle of the
particle, and the angle of reflection is given by π − φ. The reflected particle is obtained
by transforming kx → −kx and φ→ π − φ:

Ψ(x, y) = Aeip(x cosφ+y sinφ)/~
(
i
eiφ

)
+ reip(−x cosφ+y sinφ)/~

(
i

ei(π−φ)

)
(5.4a)

= Aei(kxx+kyy)

(
i

(kx + iky)/k

)
+ rei(−kxx+kyy)

(
i

(−kx + iky)/k

)
. (5.4b)

with A and r the amplitudes of the incoming and reflected wave function, respectively. It
should be noted that the spinor changes under reflection, which means that any scattering
process needs to change spin. When using φ = 0, the equation essentially describes a 1D
system as the dependence on y drops out. In this 1D case, the incident and reflected state
are orthogonal eigenstates of the Hamiltonian, and as such not coupled to each other.
Scattering at φ = 0 thus requires a perturbation which couples the two states.

I will consider two different potentials to add to this system: the electrostatic potential
V (~r) for comparison with graphene literature and the magnetic field ~B(~r) via the Zeeman



5.1. TRANSFER MATRIX METHOD FOR SINGLE BARRIERS 27

interaction. The Hamiltonian with both potentials included reads

H = vF (~σ × ~p) · ẑ + V (~r)I− ~m · ~B(~r) (5.5a)

=

(
V +mBz (vF p̂y +mBx) + i(vF p̂x −mBy)

(vF p̂y +mBx)− i(vF p̂x −mBy) V −mBz

)
, (5.5b)

using the magnetic moment of the electron ~m = −m~σ, with m = gsµB with gs the effective
gyroscopic factor and µB the Bohr magneton. As an example, the Zeeman gyroscopic
factor was found to be 23± 3 out-of-plane and 32± 3 in-plane for surface states of Bi2Se3

[78], but close to 2 for Bi2Te2Se [79].

An electrostatic barrier shifts the energies but does not couple to spin. This has interesting
consequences: electrostatic barriers are transparent to massless Dirac fermions incident
at φ = 0 (or in any one-dimensional problem). This also applies to massive particles if the
mass times v2

F is negligible compared to the potential V . As wave functions described by
the Schrödinger equation show exponential decay inside a barrier, this was an unexpected
result. It is known as the Klein paradox [12]. A magnetic field in the z-direction on the
other hand, produces a term similar to the mass term in the Hamiltonian of a massive
Dirac particle [13]. This couples the spin states as σz does not commute with the kinetic
part of the Hamiltonian.

In the next section, I will first introduce the transfer matrix method to study a quasi-
1D system. Next, I will use this method to show that there is indeed Klein tunnelling
through electrostatic barriers, but a gap opens for z-magnetic barriers analogous to a
massive Dirac particle.

5.1 Transfer matrix method for single barriers

I will assume a square potential that extends from x = x1 to x = x2 and infinitely in the
y-direction. The wave function in that case is divided into three regions, ψ1 left of the
barrier, ψ2 inside the barrier and ψ3 right of the barrier. In the ψ2 region, a potential is
applied. The boundary conditions between these regions are given by

ψ1(x1, y) = ψ2(x1, y), (5.6a)

ψ2(x2, y) = ψ3(x2, y). (5.6b)

The three regions of the wave function and the incident angle φ can be seen in figure 5.1.
I will set the amplitude of the incoming wave to 1 and will assume there is no incoming
wave from the right. ψ1 and ψ3 can then be defined as

ψ1(x, y) = eip(x cosφ+y sinφ)/~
(
i
eiφ

)
+ reip(−x cosφ+y sinφ)/~

(
i

ei(π−φ)

)
, (5.7a)

ψ3(x, y) = teip(x cosφ+y sinφ)/~
(
i
eiφ

)
, (5.7b)

with t the transmission amplitude and r the reflection amplitude. The definition of ψ2

depends on the type of potential applied. In any case, the conserved quantities in the
problem are the energy vFp and the y-momentum p sinφ, as equations (5.6) should hold
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Figure 5.1: A particle incident at angle φ being transmitted through a quasi-1D barrier,
showing the three regions of the wave function ψ.

regardless of the value of y. I will first discuss the transfer matrix method used to solve
these equations and then I will discuss a number of different potentials.

I will use the method described by McKellar and Stephenson Jr. [80] to calculate the
scattering matrix of this system. To do so, the wave functions ψ1, ψ2, and ψ3 have to be
arranged in a matrix form, by separating the forwards and backwards components and
the two components of the spinor. For a wave function of the form

ψ(x, y) = a1

(
ψ↑,A(x)
ψ↓,A(x)

)
+ a2

(
ψ↑,B(x)
ψ↓,B(x)

)
(5.8)

with a1 and a2 the amplitudes of the forwards and backwards components A and B, the
Ω matrix can be written as

Ω(x) =

(
ψ↑,A(x) ψ↑,B(x)
ψ↓,A(x) ψ↓,B(x)

)
. (5.9)

The plane waves on either side of the barrier can then be connected to each other using
the matching matrix

M = Ω−1
3 (x2)Ω2(x2)Ω−1

2 (x1)Ω1(x1), (5.10)

with Ω1, Ω2, and Ω3 being the matrices constructed from ψ1, ψ2, and ψ3, respectively,
using the method described above. For this purpose, ψ3 has been given a backwards
component, similar to the one in ψ1, even though in a physical scattering process, with a
particle incoming from the left, the amplitude of this component will be zero. With ψ1 as
given by equation (5.8), the amplitudes b1 and b2 of the two components of ψ3 are then
given as (

b1

b2

)
= M

(
a1

a2

)
. (5.11)

Another way to treat this problem is by using a scattering matrix, defined as

S =

(
t r′

r t′

)
⇔
(
b1

a2

)
= S

(
a1

b2

)
, (5.12)

with t′ and r′ the transmsision and reflection amplitudes of a wave coming from the right.
From equation (5.11), we find that

b1 = M11a1 +M12a2, (5.13a)

b2 = M21a1 +M22a2, (5.13b)
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and from equation (5.12), we find that

b1 = S11a1 + S12b2, (5.14a)

a2 = S21a1 + S22b2. (5.14b)

Equation (5.13b) can be rewritten to

a2 =
b2 −M21a1

M22

. (5.15)

Combining this with equation (5.13a), we find

b1 =

(
M11 −

M12M21

M22

)
a1 +

M12

M22

b2. (5.16)

Equating these two results to equations (5.14a) and (5.14b), we find the components of
the S-matrix, given by

S11 =

(
M11 −

M12M21

M22

)
, (5.17a)

S12 =
M12

M22

, (5.17b)

S21 =
−M21

M22

, (5.17c)

S22 =
1

M22

. (5.17d)

Using detM = M11M22 −M12M21, we can now write down the S-matrix as

S =
1

M22

(
detM M12

−M21 1

)
. (5.18)

The transmission and reflection coefficients can now be calculated as T = |t|2 and R = |r|2.

I will use this method to describe transmission through a single barrier using different
kinds of potentials, applying an electrostatic potential in every case, which gives the
energy scale.

5.1.1 Electrostatic potential

When only considering an electrostatic barrier with a fixed height V (~r) = V inside the
barrier and V (~r) = 0 outside, the Hamiltonian (5.5) inside the barrier becomes

H =

(
V vF (p̂y + ip̂x)

vF (p̂y − ip̂x) V

)
. (5.19)

Its eigenvalues as a function of wave vector (kx, ky) are given by

E = V ± ~vF
√
k2
x + k2

y, (5.20)
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and outside the barrier, the energy of a particle is given by

E = vFp. (5.21)

Using conservation of energy and of ky, we can find a new value of kx in terms of V and
the properties of the incoming wave p and φ:

~k′x = ±
√

(p− V/vF )2 − (p sinφ)2. (5.22)

Again, there are two states, a forward and a reflected one, unless k′x is imaginary: an
imaginary k′x will lead to a state which decays exponentially and one which increases
exponentially.

This k′x can be inserted in place of the kx in equation (5.4b) to find the wave function ψ2

inside the barrier, given by

ψ2(x, y) = a1e
i(k′xx+kyy)

(
i

k′x + iky

)
+ a2e

i(−k′xx+kyy)

(
i

−k′x + iky

)
. (5.23)

For φ 6= 0, this change of angle causes a coupling between leftwards and rightwards states
because the spinors in region 2 have a complex phase different from the one in region
1 and 3. It therefore becomes possible to scatter off the barrier and part of the wave
function will be reflected. When | sinφ| > |vFp − V |/vFp, k′x becomes imaginary and in
this case it is also possible for the wave function to reflect inside the barrier, leading to
resonances.

As an example of this resonance phenomenon, I have numerically determined the scat-
tering matrix S for various values of vFp below the potential barrier V . The width of
the barrier is set to 12~vF/V . The resulting transmission probability as a function of the
incident angle for a number of different momenta can be seen in figure 5.2.

I indeed observe Klein tunnelling at φ = 0 at any of these momenta, as expected because
scattering is not possible at this angle. Interestingly, the case p = 0.2V/vF shows a
large transmission over a wide angle, while p = 0.5V/vF shows narrow peaks in the
transmission probability caused by resonances inside the barrier. The p > V case shows
resonances spaced more closely together, increasing with momentum. The results show
some similarities to graphene for p < V/vF [12] and p > V/vF [13], which also show
resonances in the former case and an angle of transmission increasing with energy in the
latter case.
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Figure 5.2: The transmission probability as a function of the incident angle in a system
with an electrostatic potential barrier, for different incoming momenta p greater or smaller
than V/vF .

5.1.2 Out-of-plane magnetic field

When only an electrostatic potential and a z-magnetic field are considered, the Hamilto-
nian (5.5) inside the barrier becomes

H =

(
V +mBz vF (p̂y + ip̂x)
vF (p̂y − ip̂x) V −mBz

)
. (5.24)

The mBzσz term added is similar to the mass term in the Dirac equation for massive
fermions. Applying this potential is thus equivalent to making the particle massive instead
of massless in a certain region, which is theoretically possible in graphene too.

Its eigenvalues are given by

E = V ±
√

~2v2
F (k′2x + k2

y) +m2B2
z , (5.25)

and conservation of energy and y-momentum leads to

~vFk′x = ±
√

(vFp− V )2 − (vFp sinφ)2 −m2B2
z , (5.26)

which can be inserted into equation (5.23). The result of this mass is thus that k′x turns
imaginary for any angle when the incoming momentum is in the “gap” V −mBz < vFp <
V +mBz, and Klein tunnelling in this gap is suppressed.
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I have repeated the same numerical calculations for a mass of mBz = 0.1V . This means
there is a gap at 0.9V/vF < p < 1.1V/vF . As expected, inside the gap Klein tunnelling
almost disappears, and on either side of the gap resonances are observed similar to those
in the purely electrostatic case. This is similar to results for mass barriers in graphene
[13, 15], and in line with existing calculations for surface resistance of TIs, which indicate
that a z-magnetic field can cause a large electrical resistance depending on the Fermi level
[16]. Experimentally, such a gap was found in Bi2Se3 doped with Mn [81]. However Fe
atoms adsorbed on Bi2Se3 were found to align there magnetic moment in-plane, opening
no gap [46, 47]. I will discuss in-plane magnetic fields in the next section.
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Figure 5.3: The transmission probability as a function of the incident angle in a system
with an electrostatic and zmagnetic potential barrier, for different incoming momenta p
greater or smaller than V/vF and a magnetic field mBz = 0.1V/v2

F .

5.1.3 In-plane magnetic field

While applying a magnetic field out-of-plane in the z-direction induces a mass, applying
a magnetic field in-plane in the x- or y-direction shifts the momentum. When V , mBx

and mBy are included, the Hamiltonian (5.5) becomes

H =

(
V (vF p̂y +mBx) + i(vF p̂x −mBy)

(vF p̂y +mBx)− i(vF p̂x −mBy) V

)
, (5.27)

with Bx and By the magnetic field in the x- and y-direction, respectively. Note that Bx

shifts p̂y and the other way around with a sign difference, because the momentum has a
cross product with spin in the Hamiltonian and the magnetic field a dot product.
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The eigenvalues of this Hamiltonian are given by

E = V ±
√

(~vFkx −mBy)2 + (~vFky +mBx)2, (5.28)

and conservation of energy and y-momentum then leads to a new x-momentum of the
plane wave given by

~vFk′x = mBy ±
√

(vFp− V )2 − (mBx + vFp sinφ)2. (5.29)

The eigenfunctions of this Hamiltonian are given by

ψ2(x, y) = a1e
i(k′xx+kyy)

(
i

(k′x −mBy/~vF ) + i(ky +mBx/~vF )

)
+ a2e

i(−k′xx+kyy)

(
i

−(k′x −mBy/~vF ) + i(ky +mBx/~vF )

)
. (5.30)

We can see here that Bx shifts the y-momentum in the spinor but not that of the plane
wave (which is conserved by the translational symmetry of the potential). This means
that the angle under which Klein tunnelling happens is shifted away from zero. As k′x
changes, the energies of states are shifted too. For large fields it is possible for k′x to become
imaginary, causing the wave function to fall off exponentially like it did for out-of-plane
magnetic fields.

A y-magnetic field on the other hand leaves the spinor invariant but changes the shape
of the plane wave. This merely introduces a complex phase to the matching matrix M
which does not change the probability of transmission or reflection.

In figure 5.4 numerical results can be seen for Bx = 0.1V/vFm. One can see here that the
angle of Klein tunnelling is now nonzero as expected. As k′x is shifted in different directions
for positive and negative φ, the energies of resonances caused by reflections inside the
barrier do so too. This can be seen in the plot for the resonance near φ = ±π/3: it
appears at p = 0.5V/vF in figure 5.2, and at p = 0.45V/vF and p = 0.55V/vF for positive
and negative φ, respectively, in figure 5.4.

I will give a further interpretation of this in section 5.2.4 when discussing the band struc-
ture of 2D systems with an in-plane magnetic field.
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Figure 5.4: The transmission probability as a function of the incident angle in a system
with an electrostatic and x-magnetic potential barrier, for different incoming momenta p
greater or smaller than the height of the barrier and a magnetic field Bx = 0.1V/vFm.

5.1.4 Delta barrier

For a 1D system (a wave with incident angle φ = 0) the transmission coefficient through an
electrostatic barrier in a one-dimensional system is given by McKellar and Stephenson Jr.
[82] as

T =
1

1 + 1
4

(
Λ
λ
− λ

Λ

)2
sin2(Ka)

, (5.31)

with λ = ~vF k
E+mv2F

, Λ = ~vFK
E−V+mv2F

, ~vFK =
√

(E − V )2 −m2v4
F , where m is the mass of

the particle, V the height, and a the width of the barrier. The period of this oscillation is
found by setting Ka = nπ with n ∈ Z. When k � V and m� V , this condition simplifies
to a condition for the area A of the barrier which is A = V a = nπ~vF , indicating that
Klein tunnelling is possible for particles of a small mass if the area of a delta barrier is a
multiple of π~vF .

Setting m = 0, one finds
(

Λ
λ
− λ

Λ

)
= 1 which results in Klein tunnelling for all kinds of

electrostatic barriers at φ = 0, just as observed in section 5.1.1. However, in the previous
sections we already found that Klein tunnelling does not occur at greater angles. As
such, I will now study the massless system numerically at a finite angle, approximating
an electrostatic delta peak using a potential of height 103 ~vFk and width between 0 and
10−2 ~vF/V , to find out what happens to Klein tunnelling at angles away from zero in
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the case of a delta barrier.

In figure 5.5, a plot of the angular dependence of the transmission can be seen for a
number of different areas of the delta barrier. In this plot, the transmission still appears
to decrease with the area of the barrier; however, the transmission as a function of area
for a fixed angle in figure 5.6 indicates that the transmission is cyclic.
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Figure 5.5: The transmission probability as a function of the incident angle in a system
with an electrostatic delta barrier, for different areas of the barrier.

Interestingly, the period of this cyclic phenomenon is very close to the value of π found in
a 1D system with a (slightly) massive particle. These results are similar to results found
for graphene [14], which also show Klein tunnelling around φ = 0 and cyclic transmission
at greater angles.
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Figure 5.6: The transmission probability as a function of the area of the barrier in a system
with an electrostatic delta barrier, at a number of angles φ. The period of oscillation is
approximately 3.14.

As expected from section 5.1.2, a mass barrier (in a TI equivalent to a z-magnetic field
interacting with the electron magnetic moment) kills Klein tunnelling. While the results
for finite barriers still showed an enlarged transmission around φ = 0, the result for a mass
barrier in the delta limit does not depend on the angle anymore. The cyclic phenomenon
from an electrostatic delta peak is also not observed; transmission decreases with the area
of the barrier, as can be seen in figure 5.7.
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Figure 5.7: The transmission probability as a function of the area of the barrier in a
system with a z-magnetic delta barrier. This does not depend on the incident angle. I
have limited the width of the barrier to 4 × 10−3 ~vF/V in the plot, as transmission is
already negligible for an area of 4 ~vF .

I have repeated these calculations using a barrier with a fixed height of 104 ~vFk or one
with a fixed width of 10−3 ~vF/V . In both cases, the resulting dependency on area is the
same as in the plots above. This leads me to conclude that a potential barrier of height
103 ~vFk and width < 10−2 is sufficiently narrow and peaked to study a delta barrier.
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5.2 Multiple barriers and periodic systems

If multiple barriers are placed close to each other, so that the wave does not decohere
travelling between the barriers, the transfer matrix method can be applied to a system of
multiple barriers. This would imply multiplying the transfer matrices M of the barriers.
However, I found that this procedure is not numerically stable. Instead, barriers can be
combined by working with the scattering matrix directly [83, p. 126]. Two scattering
matrices S1 and S2 whose values have the subscripts 1 and 2 can be combined as

S =

(
0 r1

r′2 0

)
+

1

1− r′1r2

(
t1t2 r′1t2t

′
2

t1t
′
1r2 t′1t

′
2

)
, (5.32)

assuming the right side of system 1 connects to the left side of system 2. This procedure
can be applied iteratively to describe any number of barriers. For a small number of
barriers this is sufficient, but for a larger number one needs to use different methods. In
the next section, I will explore band structures as a way of studying macroscopically large
systems.

5.2.1 Band structure and the Bloch theorem

A single barrier or small number of barriers can be studied by calculating scattering
probabilities directly. For larger systems this calculation becomes unfeasible. It is however
possible to calculate the properties of a periodic system if one assumes that the system
is so large that all finite-size effects are negligible. This means that we consider a system
that is infinite, or at least macroscopically large. The assumption here is that the wave
function of the system repeats itself after a (possibly macroscopic) number of unit cells
N . This is known as the Born–von Kármán condition. From this condition, the Bloch
theorem can be derived, which states that the energy states of electrons in a periodic
potential can be described as

ψ(~r) = ei
~k·~ru(~r), (5.33)

with u(~r) a periodic function with the same periodicity as the system [53, pp. 135–139].
In the case of surface states of a TI, the functions ψ(~r) and u(~r) will be two-component
spinors.

This means that a relation can be derived between the energy and Bloch or crystal mo-
mentum of a given state, which defines the band structure of the system. Note that the
Bloch momentum is not the same as the incoming momentum of a particle before it hits
a barrier; the momentum outside the barrier is instead directly related to the particle’s
energy. The Bloch momentum is not a real momentum of the electron; it is comparable
to the group velocity of a wave packet, with the real momentum as phase velocity [84,
p. 39].

In the quasi-1D systems considered here, the y-component of the momentum is conserved
in the barriers. One can therefore take the Bloch ky to be equal to the real ky anywhere
in the system. In the x-direction however the momentum differs inside and outside the
barrier, and as such there is a distinct Bloch momentum describing the phase difference
across one unit cell in a quasi-1D system. When treating quasi-1D systems, I will use kx
for the x-component of the incoming momentum and κ for the x-component of the Bloch
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momentum. In 2D systems instead I will only work with Bloch ~k because the concept of
incoming momentum is not defined there.

The quasi-1D potential that I use here is periodic with a unit cell of width l, containing
one barrier of width w < l extending infinitely in the y-direction. Two unit cells of the
potential and their x-coordinates are shown in figure 5.8.

Figure 5.8: Two unit cells of length l of the quasi-1D periodic potential as a function of
x showing the barriers of potential V with a width w.

To derive the properties of this periodic system, a matrix similar to the matching matrix
of equation (5.10) is used. This transfer matrix is given by

T = Ω1(l)Ω−1
1 (w)Ω2(w)Ω−1

2 (0), (5.34)

with Ω1 describing the wave function outside the barrier and Ω2 the one inside. The
barriers are assumed to extend from x = nl to x = nl + w for n ∈ Z. In the start of this
section, we assumed that the wave function repeats itself after N unit cells, which means
that TN = 1. This means that the eigenvalues of the matrix are given by e2πin/N and the
trace is

Tr(T ) = 2 cos(2πin/N). (5.35)

One can now define the Bloch momentum as κ = 2πn/L with L = Nl, or remove N and
L from the equation by calculating it directly from the transfer matrix using [13, 80]

2 cos(κl) = Tr(T ). (5.36)

The matrix T here depends on ky and the particle’s energy. This equation sets up the
relation between κ, ky, and E necessary to calculate the band structure. For every value
of Tr(T ) in the interval [−2, 2], there are two possible solutions in the first Brillouin zone
−π/l < κ < π/l. A trace outside that interval indicates a band gap, where (in the limit
of an infinite system) no states are allowed.

5.2.2 2D systems

Determining the band structure from the transfer matrix as done in the previous sec-
tion, works well for 1D and quasi-1D systems. For two-dimensional potentials however,
one cannot describe transmission of electrons in terms of the number of barriers passed.
Instead, the bands can be described by reworking equation (5.33) into a matrix-vector
equation by using the fact that the Fourier transform of a periodic function is discrete. I
will derive this matrix-vector equation following Ashcroft and Mermin [53, pp. 137-138]
replacing the kinetic term of the Schrödinger equation by equation (5.1).
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The starting point for this derivation is again the Born–von Kármán condition, now in
2D, which tells us that the wave function repeats itself after a (possibly macroscopic) Ni

amount of unit cells in the direction i = x, y. The Fourier transform of ψ is thus discrete
and each spin component of it can be written as

ψσ(~r) =
∑
~q

ei~q·~rc~q,σ, (5.37)

with ~q a vector in reciprocal space and σ = ±1 associated with the up or down spin
component. The vectors ~q need not be reciprocal lattice vectors as the periodicity of the
wave function is larger than one unit cell.

For this wave function, the kinetic term given by equation (5.1) can be written as

vF

(
0 p̂y + ip̂x

p̂y − ip̂x 0

)
· ψ(~r) = ~vF

∑
~q

ei~q·~r
(

0 qy + iqx
qy − iqx 0

)
· c~q (5.38a)

= ~vF
∑
~q,σ

ei~q·~r(qy + iσqx)c~q,−σ, (5.38b)

where c~q is used to denote the vector containing both spin components c~q,σ.

As different potentials U act on the spinor in different ways, I will write it as a matrix Uσσ′ .
An electrostatic potential is then given by a scalar potential times the identity matrix;
a mass potential by a scalar times the Pauli matrix σz and the other two Pauli matrices
describe an in-plane magnetic field. Every component of this matrix can be written in
terms of its Fourier components as

Uσσ′(~r) =
∑
~K

ei
~K·~rU ~K,σσ′ ⇔ U ~K,σσ′ =

1

A

∫
cell

d~r e−i
~K·~rUσσ′(~r), (5.39)

with A the area of a unit cell in real space, and ~K being a vector of the reciprocal lattice
as U has a periodicity of one unit cell. The potential term in the Schrödinger equation
can then be rewritten as

Uψ =
∑
σ′

∑
~K

ei
~K·~rU ~K,σσ′

∑
~q

ei~q·~rc~q,σ′

 (5.40a)

=
∑
~K~qσ′

ei(
~K+~q)·~rU ~K,σσ′c~q,σ′ . (5.40b)

Under the assumption of an infinite system the substitution ~q → ~q − ~K can be made,
leading to

Uψ =
∑
~K′~qσ′

ei~q·~rU ~K′,σσ′c~q− ~K′,σ′ , (5.41)

where ~K has been relabeled to ~K ′.

Together, the Schrödinger equation for this system becomes

∑
~qσ

ei~q·~r

(qy + iσqx)c~q,−σ − Ec~q,σ +
∑
~K′σ′

U ~K′,σσ′c~q− ~K′,σ′

 = 0. (5.42)
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As this needs to hold for any ~r, this is equivalent to

(qy + iσqx)c~q,−σ − Ec~q,σ +
∑
~K′σ′

U ~K′,σσ′c~q− ~K′,σ′ = 0, (5.43)

for any ~q and σ. This equation give the first hint that the Hamiltonian can be written
as a system of linear equations but the vectors ~q are not the desired components. The
equations can be rewritten in terms of reciprocal lattice vectors just as the potential U
can be defined in terms of those. To do this, I define ~q = ~k − ~K with ~K again a lattice
vector and ~k a vector in the first Brillouin zone. This can be done for any reciprocal
vector ~q, leading to

[ky −Ky + iσ(kx −Kx)]c~k− ~K,−σ − Ec~k− ~K,σ +
∑
~K′σ′

U ~K′,σσ′c~k− ~K− ~K′,σ′ = 0. (5.44)

Note that ~k is, unlike in the previous subsection, the Bloch momentum of the particle.
Substituting ~K ′ → ~K ′ − ~K leads to

[ky −Ky + iσ(kx −Kx)]c~k− ~K,−σ − Ec~k− ~K,σ +
∑
~K′σ′

U ~K′− ~K,σσ′c~k− ~K′,σ′ = 0. (5.45)

This form of the equation can be turned into a matrix-vector equation for every ~k in the
first Brillouin zone as it only depends on ~k and the reciprocal lattice vectors ~K and ~K ′,
which are discrete. The matrix is given by

M ~Kσ ~K′σ′(
~k) = [ky −Ky + iσ(kx −Kx)]δ ~K ~K′(1− δσσ′) + U ~K′− ~K,σσ′ , (5.46)

such that ∑
~K′σ′

M ~Kσ ~K′σ′(
~k) c ~K′σ′(

~k) = Ec ~Kσ(~k), (5.47)

for any ~K and σ, which can also be written as

M(~k) · c(~k) = Ec(~k). (5.48)

In this form it is clearly an eigenvalue equation. As a result, the energies E for every ~k are
given by the eigenvalues of the matrix M(~k) defined by equation (5.46). The eigenvectors

c(~k) can be interpreted as the Fourier transform of the two spin components of the periodic
function u(~r) from equation (5.33). As such, the wave function ψ(~r) of a single unit cell
is retrieved, up to a phase factor, by Fourier transforming the spin components of c back
to real space and inserting in equation (5.33).

In theory, there is an infinite number of bands in an infinite system, but using this method
the number of bands depends on the size of the matrix. The dimensions of the matrix
M are defined by the number of ~K-vectors taken into account. In a quasi-1D system, ~K
is limited to the x-axis. When considering a system with ~K up to the n-th reciprocal
lattice site in positive and negative x-directions, N = 2n + 1 different values of Kx need
to be considered, ranging from −n to +n times the lattice vector in the x-direction. The
M -matrix will then have dimensions 2N × 2N because there are 2 spin components and
as a result, the eigensystem will consist of 2N bands.
In a 2D system with square geometry, ~K can take N ×N values, and the M -matrix will
have 2N2 × 2N2 components resulting in 2N2 bands.



5.2. MULTIPLE BARRIERS AND PERIODIC SYSTEMS 41

As an example, the matrix for a quasi-1D system for N = 3, meaning 6 bands, with an
(electrostatic) potential that does not act on spin, is given by

M =



U0 ky+i(kx−2π/l) U1 0 U2 0

ky−i(kx−2π/l) U0 0 U1 0 U2

U−1 0 U0 ky+ikx U1 0

0 U−1 ky−ikx U0 0 U1

U−2 0 U−1 0 U0 ky+i(kx+2π/l)

0 U−2 0 U−1 ky−i(kx+2π/l) U0


, (5.49)

with Un being the n-th Fourier component of the quasi-1D potential.

On the diagonal one finds 2×2 blocks each containing a kinetic term describing one band.
The elements outside these blocks represent interactions between bands that cause avoided
crossings if nonzero. In order to describe a band accurately, it is thus necessary to include
all bands in the calculation whose energies are close to the band under consideration.
This determines the minimum size of the matrix necessary for accurate calculations. I
will discuss the role of the U0 later in section 5.2.5; it will appear that for other types of
potentials the 0th Fourier component can also cause an avoided crossing.

Not only the band structure can be determined this way, also the density of states (DOS):
the number of states available to electrons at a given energy, which is related to the slope
of the bands. In two dimensions, minima and maxima of a band will show in the DOS as
a step, while saddle points in a band will show up in the DOS as a peak. Such points are
known as Van Hove singularities [84, pp. 101–103].

5.2.3 Results for quasi-1D

To verify the results I have calculated the band structure of a quasi-1D system with
the potential shown in figure 5.8, using the same parameters used by Barbier et al. [13],
in two different ways. The results can be seen in figure 5.9. As the surface states are
Dirac fermions, positive and negative energy states exist, mirroring each other - forming
infinitely many bands in the limit of an infinite crystal. Therefore the bands of interest
are those in the centre of the spectrum, close to the Fermi energy. In the Bloch method,
every eigenvalue represents a band and thus one can easily plot a specific band; in the
transfer matrix method, small sections of higher and lower bands will be seen if they fall
within the same energy range.

What we see in this figure is that the band structure exhibits a Dirac cone at ~k = (0, 0)
and E = 50 meV using either methods. The energy of this Dirac point is equal to the
zeroth Fourier component of the potential: the potential averaged over one unit cell. If
the potential is shifted to have valleys of −50 meV and barriers of 50 meV, I find that the
spectrum will be shifted 50 meV downwards and the crossing is again at zero. I will come
back to the role of the 0th Fourier component when studying 2D systems in section 5.2.5.

This Dirac point can be compared to the Klein tunnelling measured in systems of one
barrier. In a system with one barrier, transmission was possible at any energy for φ =
0⇔ ky = 0. In this periodic system, the bands are touching each other at ky = 0, which
means that there are left- and right-moving energy states at any energy when incident
at a right angle to the barriers. At nonzero values for ky, we see a gap between the two
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(a) Transfer matrix method. The four colours
represent the four different solutions to the co-
sine in equation (5.36) in the interval −2π/l <
κ < 2π/l.

(b) Bloch method, for N = 3 reciprocal lattice
sites, which means 6 bands. Only two inner-
most bands shown.

Figure 5.9: Band structure between E = −50 meV and E = 150 meV for w = 10 nm,
l = 20 nm, vF = 106 m/s, and V = 100 meV. Note that the interval on the x-axis is larger
than the first Brillouin zone.

bands and no transmission at energies close to 50 meV. This is similar to the case of one
barrier, where there was limited transmission at higher angles for energies close to the
height of the potential.

Apart from some small numerical artifacts in figure 5.9a, the two are in good agreement
with each other and Barbier et al. [13].

5.2.4 Results for 2D: muffin tin

To study two dimensions, I have taken the muffin tin potential on a square lattice as
studied numerically by Park et al. [85]: a square lattice with a lattice constant of 10 nm,
with at the centre of every unit cell a potential of 300 meV with a radius of 2.5 nm, and
vF = 106 m/s as for graphene. The unit cell of the potential can be seen in figure 5.10a
and the first Brillouin zone with the Γ, X, and M high-symmetry points in figure 5.10b.

I have plotted the band structure and DOS using N = 3 reciprocal lattice sites in the x-
and y-direction to build the matrix, for different types of potential with the same muffin
tin shape in a square lattice. I have found this to be sufficient to calculate the bands
close to zero energy accurately. The results can be seen in figure 5.11 without potential,
figure 5.12 with electrostatic potential and figure 5.13 with an out-of-plane magnetic field.

The dimensions of this matrix are 2N2 × 2N2 = 18 × 18. This means that there are 18
bands included in the calculation, 9 above zero energy and 9 below (unless shifted by an
electrostatic potential). The result is that the density of states, in theory V-shaped, drops
off rapidly above 700 meV and below −700 meV as further bands are not included in the
calculation. This way the low-energy behaviour can be captured. The highest bands in
the plots are not exact because they might show avoided crossings with even higher bands,
if those are included.
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(a) Unit cell of muffin-tin potential on a square
lattice. Scale in nm, colour: potential in meV.
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(b) First Brillouin zone with high-symmetry
points.

Figure 5.10: Unit cell and first Brillouin zone of the square lattice with a muffin-tin
potential.

Electrostatic potential
What we see when comparing figures 5.11 and 5.12, is that an electrostatic potential
shifts the Dirac point at the Γ point to a higher energy. At higher energies, the potential
lifts some degeneracies. From the density of states, it can be seen that there is a small
particle-hole asymmetry in this case. I find that the Dirac point which was at zero energy
has moved to 61 meV, and the Fermi velocity given by the slope of the band near the
crossing has reduced to 95.20±0.04% of the original vF = 106 m/s. I have determined this

Fermi velocity using a linear fit through the energy as a function of |~k| within 0.05π/L of
the Dirac point. This is very similar to the quasi-1D case shown in section 5.2.3, where
the Dirac cone also shifted. From the densities of states plotted here, it is even more
apparent that there is an energy level where transmission tends to a minimum, like we
saw in the case of a single barrier in section 5.1.1.
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Figure 5.11: Band structure and DOS of TI surface states without applied potential, using
N = 3 reciprocal lattice sites in both directions.

Γ X M Γ

-500

0

500

1000

E
(m
e
V
)

(a) Band structure

-500

0

500

1000

DOS (a.u.)

E
(m
e
V
)

(b) DOS

Figure 5.12: Band structure and DOS of TI surface states with electrostatic potential of
300 meV, using N = 3 reciprocal lattice sites in both directions.
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Figure 5.13: Band structure and DOS of TI surface states with mBz = 300 meV, using
N = 3 reciprocal lattice sites in both directions.

Out-of-plane magnetic field
As discussed in the beginning of this chapter, an out-of-plane magnetic field couples the
two spin states. We see that this leads to avoided crossings in the band structure, with
the biggest gap at zero energy. This is in line with the results for a a single barrier as
discussed in section 5.1.2, where |E − V | < mBz lead to an exponentially decaying wave
function and reduced transmission. In the limit of an infinite system this means that no
transmission is possible, thus a periodic system does not have any energy states in that
range: a band gap. The gap is smaller than 2mBz though because of the shape of the
muffin-tin potential, whose barriers do not extend infinitely in the y-direction.
Looking at the density of states we see that the Van Hove singularities become more pro-
nounced, and no particle-hole asymmetry is observed in this system with zero electrostatic
potential. I find a width of the gap of 105 meV.

In-plane magnetic field
In section 5.1.3, I discussed that a magnetic field in the x-direction in a quasi-1D system
shifts the y-momentum and thus the angle of maximum transmission. In this periodic
system I find that the Dirac cone in this system shifts in the −ky-direction under such a
field. I have plotted the band structure for mBx = 300 meV in figure 5.14 as an example,
where the Dirac point is located near ky = −0.27π/l and the Fermi velocity in has reduced
to 95.32± 0.23% of the original vF = 106 m/s. This is very close (within 1σ) to the value
found for an equally strong electrostatic potential, which also shifted the Dirac point but
did not open a gap.

I find that the Dirac point moves linearly in k-space as a function of mBx. This is plotted
in figure 5.15.
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Figure 5.14: Band structure along the ky-axis of the Brillouin zone and DOS of TI surface
states with mBx = 300 meV, using N = 3 reciprocal lattice sites in both directions. The
horizontal axis is different from previous figures to show the shift of the Dirac point away
from the Γ point.
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Figure 5.15: Position of Dirac points on the ky-axis of the Brillouin zone as a function of
magnetic field in the x-direction.
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5.2.5 The role of the 0th Fourier component

The interesting range of the spectrum to study is close to zero energy, as the higher
and lower bands in an experimental 3D TI may be obscured by the bulk’s valence or
conduction band. In this section I will discuss the innermost two bands, whose crossing is
described by the ~K = 0 components of the matrix. These components form a 2× 2 block
similar to the matrix in equation (5.5), but containing the average values of each potential
over one unit cell. This part of the matrix determines whether the two innermost bands
cross at a Dirac point or avoid each other, and whether the Dirac point is shifted away
from zero energy in the Γ point of the Brillouin zone.

The matrix M(~k) of the 0th Fourier components of the various potentials is given by

M(~k) =

(
V0 +mBz,0 (~vFky +mBx,0) + i(~vFkx −mBy,0)

(~vFky +mBx,0)− i(~vFkx −mBy,0) V0 −mBz,0

)
,

(5.50)

with the 0 subscripts used to denote the ~K = 0 Fourier component. As the muffin tin
potential covers π/16 ≈ 20% of the area in the example with l = 10 nm and r = 2.5 nm,
these 0th components are given by π/16 times the applied potential.

The eigenvalues of this matrix are given by

E0(kx, ky) = V0 ±
√

(~vFky +mBx,0)2 + (~vFkx −mBy,0)2 + (mBz,0)2. (5.51)

This indicates that there is a Dirac point at ~k = (mBy,0,−mBx,0)/~vF , E = V0 if mBz,0 =
0. For mBz,0 6= 0, a gap of width ∆E = 2mBz,0 opens at this point.

In this low-energy approximation, the Dirac point in the electrostatic case is predicted
to be at E = πV/16 ≈ 59 meV which corresponds well with the 61 meV found in
section 5.1.1. The width of the gap in the out-of-plane magnetic case is predicted to be
E = 2πmBz/16 ≈ 118 meV which is a bit larger than the gap of 105 meV found in
section 5.1.2. Likely this gap becomes smaller due to coupling to higher bands, as it can
be seen in figure 5.13 that the crossings with the next bands are avoided. The location in
k-space of the Dirac point at zero energy in the in-plane magnetic case is predicted to be
ky = −πmBx/16~vF ≈ −0.27π/l, which matches the value found in section 5.1.3.

These results indicate that the position of the Dirac point and the presence of a gap
can be well predicted using just the average value of the potential. This suggests that a
potential with an average of zero does not move the Dirac point or open a gap: potentials
consisting of (positive) barriers and (negative) wells. In such a case the two innermost
energy bands do not couple to each other, though they will couple to higher energy bands.

As a test, I have calculated the band structure for an out-of-plane magnetic field, shifted
such that its average value is zero. The barrier is still 300 meV higher than the valley. The
result can be seen in figure 5.16. It can be seen that there is no gap at zero energy, even
though the avoided crossings at higher energies remain. The Fermi velocity is reduced
more strongly to 89.4± 0.6% of its original value.

I conclude that the 0th Fourier component, or average value of the potential, can predict
accurately where the Dirac point is found and whether there is a gap. On the other hand,
the size of the gap is overestimated by about 12% in the example and the reduction in
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Figure 5.16: Band structure and DOS of TI surface states with a barrier of height mBz =
300 meV and the average value of the potential set to 0, up to the 1st Fourier components
of the potential.

Fermi velocity cannot be modelled using equation (5.51), which gives a Fermi velocity
equal to the original vF in any case without a gap. I conclude that, while the location
of the Dirac point is given by the average of the potential, the Fermi velocity near this
point is determined by the higher Fourier components which describe the shape of the
potential.



Chapter 6

Conclusions and outlook

It is known that electrons can exhibit multifractality close to an Anderson localisation
transition [8], and an example of such a system where multifractality has been observed
is a quantum Hall system close to the Landau level transition [9]. The electronic states
in the third generation of a Sierpiński triangle which I studied in chapter 4, on the other
hand, do not form a multifractal. This is a nice result in the sense that it provides new
evidence to support the conclusion of Kempkes et al. [4] that fractality can be replicated
using electronic states.

Surface states of 3D topological insulators, as discussed in chapter 5, are a promising
material to build quantum simulators. I have started with a single barrier and observed
Klein tunnelling for electrostatic and in-plane magnetic barriers; in a periodic system with
one of these potentials, there is a Dirac point which is moved away from zero energy by
an electrostatic potential or away from the Γ point by an in-plane magnetic field. Out-
of-plane magnetic fields kill Klein tunnelling in the case of a single barrier, and open a
gap in the case of a periodic system. Interestingly, many of the properties of a periodic
system can be derived from the average value of the potential (or 0th Fourier component)
rather than its exact shape.

What will depend on the shape of the potential, is the local density of states (LDOS).
On copper surfaces, the LDOS has been used to study confinement to lattice sites. A
possible next step would be to study this on topological insulator surfaces too for various
lattices. Another suggestion for future research would be to classify the surface states
using topological quantum chemistry [86], which has already been done with photonic
systems [87].
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[65] A. N. D. Posadas, D. Giménez, M. Bittelli, C. M. P. Vaz, and M. Flury, “Multifractal
characterization of soil particle-size distributions,” Soil Science Society of America
Journal, vol. 65, pp. 1361–1367, 2001.
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