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Bandit algorithms applied to environments with multiple learners

by Changlun Wang

Multi-agent learning algorithms are commonly used in a multi-agent environ-
ment. However, algorithms in such environments must learn the opponents’ strate-
gies in order to perform an agent’s action, a process which increases the time and
space complexity of an algorithm. In contrast, Bandit algorithms used in multi-
armed bandit problems are agnostic to opponent behavior, which reduces algorithm
complexity.

Given the different results of utilizing opponent behavior, this research investi-
gates how bandit algorithms scale with an increasing number of players in a multi-
agent environment in comparison to general-purpose multi-agent learning algo-
rithms. The proposed hypothesis expects that the performance of bandit algorithms
degrades slower than multi-agent learning algorithms when the number of play-
ers increases. To verify this hypothesis, a test bed has been developed in order to
run a scalable tournament with configurable algorithm sets and game generators.
More specifically, the Kolmogorov-Smirnov test and Spearman’s rank correlation
have been applied in order to inspect the distributions of test data and verify the
hypothesis.

After analyzing the testing data, the performance of bandit algorithms has been
concluded to degrade slower than multi-agent learning algorithms when the num-
ber of players increases under bounded conditions. Precisely, the difference of aver-
age rewards between two sets of algorithms continuously decreases when the num-
ber of player increases from 2 players to 7 players at 2-action games, even though
multi-agent algorithms receive higher average rewards than bandit algorithms in
these games. This result suggests the benefit of observing opponents’ behavior for
multi-agent algorithms is reduced as a number of players increases. However, the
similar pattern was not found in 3-action and 4-action games, which sets a boundary
to the proposed hypothesis.
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Overall, this thesis built a testbed that analyzed the boundary of applying ban-
dit algorithms to multi-agent environments by comparing the performance between
two sets of algorithms in m-action n-player games. The experimental result showed
that the proposed hypothesis partially holds on the condition from 2-action 2-player
games to 2-action 7-player games. As such, the project paves the way to apply a ban-
dit algorithm to a multi-agent environment, considering bandit algorithms have less
time and space complexity and their performance degrade slower than multi-agent
learning algorithms’ performance as a number of player increases within the certain
range.

Keywords: multi-agent learning, multi-armed bandit, algorithm, test bed, multi-
agent system
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Chapter 1

Introduction

1.1 Introduction

The field of Multi-Agent Learning (MAL) has attracted an increasing amount of
research because MAL helps identify optimal solutions for various Multi-Agent Sys-
tem (MAS) problems, such as autonomous driving [20] and traffic light control [7],
among others. The potential for wider applications has incentivized researchers to
investigate not only the performance of MAL algorithms, but also the behavior that
influences these algorithms. More specifically, researchers begun to consider how
behavior influences an algorithm. By knowing the boundary of each algorithm in
a given multi-agent environment, we can select a proper algorithm tackling various
MAS problems in the real world.

In this project, we categorize all algorithms into two sets based on awareness of
other agents in the environment. Awareness can be defined as whether the agent
uses information from other agents in order to perform its action. For example, the
agent may observe the last 50 actions of the opponent in order to perform its action.
In this scenario, the agent is considered aware of other agents. On the other hand,
the agent base an action on its own information, such as the average payoff of ac-
tions. Thus, the awareness of other agents’ actions is used to divide algorithms into
two sets — MAL algorithms and Multi-Armed Bandit (MAB) algorithms. Besides, a
special case is an algorithm is not categorized if it uses neither opponents’ informa-
tion nor agent’s information, such as Random algorithm.

The set of MAL algorithms, such as Fictitious Play (FP) [1] and No-Regret [6], allow
an agent to observe opponents’ actions in a multi-agent environment. The observa-
tion helps the agent learn from its opponents’ strategies so that the agent can utilize
the additional information to perform an action with higher rewards. For instance,
the agent using FP stores the action history of its opponents. Based on the empirical
frequency distribution of actions, the agent can best respond to its opponents during
the subsequent iterations.

In contrast, the MAB algorithms are designed to tackle multi-armed bandit prob-
lems, such as ε-greedy [4] [18], QL [5], Softmax [12], UCB [8], and Exp3 [9]. The agent
using MAB algorithms performs its own action based on its own information with-
out knowing its opponents’ actions. The agent decides by relying on the average
payoffs of each action, rather than learning its opponents’ strategies. For example,
the agent adopting ε-greedy spends ε % time exploring actions with the non-highest
average payoffs among all actions while spending (1 - ε)% time exploiting the action
with the current highest average payoff. As such, the agent emphasizes the correla-
tion between actions and corresponding average payoffs instead of considering the
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information associated with other agents.

1.1.1 Research questions

The MAL and MAB algorithms strive to maximize an agent’s cumulative re-
wards. Whether using added opponents’ information to perform an action dif-
ferentiate them. However, this major distinction raises specific questions, which
have formed the guiding research questions of this thesis. One question exam-
ines whether the observation of opponents’ actions provides more information to
an agent and asks if the additional information is always beneficial, leading to better
performance, for example. If questions are only answered by specifying a given en-
vironment setting, then what conditions influence the answer? Do game selections,
number of players, or number of player actions have an impact on the answer? In
addition, what conditions help confirm the statement that MAL algorithms may out-
perform MAB algorithms, even though MAL algorithms take advantage of learning
opponents’ strategies?

By answering these questions, we are able to observe the performance of each
algorithm and identify the correlation of performance between the two sets of algo-
rithms.

1.2 Literature review

To answer the aforementioned questions, we have examined the existing liter-
ature. Although several experiments discussed the performance of MAL or MAB
algorithms, we have identified three main limitations in the literature—algorithm
selection, various testing environments, and different experiment goals. In this sec-
tion, we explain these limitations and discuss why they are obstacles to answering
the research questions.

1.2.1 Imperfect algorithm selection

Most of the literature focused on the performance of the same category, rather
than choosing a similar amount of algorithms from each set. For example, [13] con-
ducted a tournament, including 9 algorithms for comparison. However, 6 out of 9
algorithms, including generalized tit-for-tat (GTFT), best response to previous action
(BR), FP, best response to FP, Bully, and Saby, are all MAL algorithms. The remaining
three algorithms were Random, Maxmin, and Nash. Thus, a small amount of MAB
algorithms were included. On the other hand, the tournament of another study,
[19], focused on MAB algorithms. Six of the algorithms, including ε-greedy, Boltz-
mann exploration (or Softmax), pursuit [3], reinforcement comparison, UCB1 and
UCB1-Tuned, were MAB algorithms. However, a much larger tournament was con-
ducted by Bouzy [17] and included 12 algorithms—JR [2], Minimax, FP, QL, S [10],
M-Qubed, UCB, Exp3, HMC [6] Bully, Optimistic, and Random. Although the liter-
ature has included MAL, MAB and other non-learning algorithms in its evaluation
framework, the tournament only ran 2-player matrix games, which limits the access
of algorithm scalability.
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The study [14] conducted a tournament which included 11 algorithms from both
MAL and MAB algorithms, including FP, AWESOME, determined, meta, GIGA-
WoLF, GSA, RVS, QL, Minimax-Q, Minimax-Q-IDR and Random, thereby consti-
tuting a well-balanced selection. However, several state-of-the-art algorithms, in-
cluding UCB, Exp3, and ε-greedy, were not chosen, a limitation which reduces the
effectiveness of the experimental results. Indeed, the claim that one category of algo-
rithms outperforms the other is not convincing if it relied on algorithms developed
decades ago. While the experiment does not require all combinations of algorithms
and games in order to be reliable, it should, as a minimum requirement, include rep-
resentative algorithms based on MAL and MAB so that the two sets of algorithms
can be objectively compared.

The literature discussed above indicated that the number of chosen MAL and
MAB algorithms were neither the same nor similar in those experiments. We ob-
served that most authors did not chosen algorithms based on whether they are MAL
or MAB. Instead, they chose algorithms based on other research purposes. As a re-
sult, we have conducted a new experiment with two sets of algorithms with the
capability of running in m-action n-player games in order to examine our research
interest.

1.2.2 Result integration difficulties

Many experiments were conducted [13, 19, 17, 14] to provide insight into algo-
rithm performance. If the results of these experiments can be directly merged, a
ranking order of performance among algorithms is concluded for the algorithms in
which we are interested. However, the various testing settings that significantly dif-
fer among these experiments limit our usage of them. Therefore, in the paragraphs
below, we have examined the testing settings and decision choices of four papers
and discussed how they differ.

To begin, Airiau, S. and Saha, S. and Sen, S. [13] adopted an evolutionary tour-
nament to rank algorithms in order of performance. In this tournament, 57 2x2 con-
flicted games were played for 1,000 iterations. Of the 57 games, 51 had one Nash-
equilibrium, while the remaining games had multiple equilibria. To remove bias for
the agent only playing as a row player or column player, each agent played 1,000
iterations as a row player and then restarted for 1,000 iterations as a column player.

Kuleshov, Volodymyr and Doina Precup [19] conducted a tournament for MAB
algorithm comparison. Since MAB algorithms only focus on the relation between
actions and their corresponding payoffs, this tournament set the number of actions
in a game by using the number of arms, K, from which the agent could choose. In
this case, K was valued at 2, 5, 10, and 50. The expected payoff of each arm was
given at random, on [0,1] with standard deviation at 1%, 10%, and 100%. The result
of each game was given after 1,000 iterations.

Bouzy, Bruno and Marc Métivier [17] set payoffs in the range [-9, +9]. In contrast
to the two previous experiments, these authors set the number of iterations up to
3,000,000 because the testing result indicated that the ranking of algorithms changes
after 1,000 iterations. This observation increased its number of iterations to become
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larger than that of the aforementioned studies.

Zawadzki, Erik P. [14] conducted the largest of the mentioned experiments by in-
cluding five action set sizes, 2x2, 4x4, 6x6, 8x8, and 10x10, and 11 algorithms. More-
over, the experiment included 600 game instances with 100,000 iterations, although
90,000 were not used for analysis due to the beginning settle. In total, 72,600 matches
were evaluated for algorithm comparison.

Given the four experimental papers discussed above, we observed the various
testing approaches and test settings used to conduct experiments. Some papers used
the permutation of row and column players to eliminate bias. Testing settings varied
in terms of maximum number of iterations, range of payoffs, size of action set, and
number of games. However, we only examined variables associated with games,
not parameters associated with algorithms. Certain experiments optimized the pa-
rameters of algorithms in the tournament to ensure that each algorithm performs its
best during the experiment process. Yet most authors did not mentioned how they
tuned these parameters. Therefore, these experiment distinctions in design purpose
and detail led to difficulty not only in duplicating an existing experiment but also in
integrating the testing results.

1.2.3 Experiment goals

At this point, we have discussed two main limitations. One limitation comes
from the biased selection of algorithm combinations in existing experiments, which
cannot perfectly mix two sets of algorithms, and the other comes from the difficulty
of integrating experiment results. Next, we explain another critical limitation asso-
ciated with our hypothesis. As we are interested in the question of whether MAB
algorithms can be applied to the MAL environment, one purpose of conducting this-
experiment is to determine the relation between the two groups of algorithms. Most
literature [14] [13] [19] [17] focused on the relation between individual algorithms,
as noted above. Previous studies often designed experiments to compare all algo-
rithms and identify which algorithm is superior. This fundamental distinction cre-
ates variance in experiment design, especially in terms of how experiments choose
algorithms in the beginning stage and how they analyze test data, either based on
a single algorithm or group algorithms. Most importantly, this explains why the
algorithm comparison plots presented in the literature did not discuss the relation
between MAB and MAL algorithms.

In summary, we aim to categorize MAL and MAB algorithms based on whether
the agent learns from the opponents’ actions or simply relies on its own informa-
tion. The distinction of both algorithms leads us to examine the conditions that af-
fect their performance. Moreover, we question whether MAB algorithms can be ap-
plied in a multi-agent environment, regardless of their information use. With these
questions in mind, the limitations present in the existing literature—such as biased
algorithm selection, experiment settings, and different experiment purposes—have
encouraged us to conduct this experiment in order to answer our research questions.
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1.3 Hypothesis

We have discussed the key difference between MAB algorithms and MAL al-
gorithms. Here, we provide a hypothesis, as noted in Table 1.1, which proposes
how that difference influences algorithm performance. As such, we aim to predict
the performance difference between MAB and MAL algorithms in different environ-
ment settings.

TABLE 1.1: Hypothesis setting and expected result

No. of Players Reward of MAB algorithms Reward of MAL algorithms
2 X1 Better than X1
>2 Similar to Y1 Y1

The first row of the table presents a simple two-player game. The hypothesis
expects that the MAL algorithm will outperform the MAB. In this case, the agent
using the MAB algorithm would receive the reward X1, whereas the agent using the
MAL algorithm would receive a reward larger than X1. This outcome results from
the fact that the agent using MAL could observe the other agent in order to learn the
strategies of its opponent. Learning opponents’ strategies allows the MAL agent to
achieve the best response, which receives maximum rewards. In contrast, the agent
using MAB only plays the action based on the payoff of actions, without consider-
ing the opponent’s action. While the agent may receive a better payoff than playing
a random action, the action that the agent chooses cannot always be the optimized
action because the payoff of the action is determined by the agent’s action as well as
the opponents’ actions. If the opponents’ actions change over time, the agent’s pay-
off also changes, which makes the agent’s action less optimal. Hence, we suggest
that MAL outperforms MAB in a two-player game.

The second row of the table describes a game that involves more than two play-
ers. In this case, we expect an insignificant performance difference between MAL
and MAB. As the table indicates, the agent using the MAL algorithm would receive
the reward Y1, whereas the agent using the MAB algorithm would receive a reward
similar to Y1. When the game involves more players, the complexity of opponent
learning strategies increases. This increasing complexity offsets the benefit of MAL
such that the agent can optimize his or her action based on knowledge of the oppo-
nents’ strategy. Thus, the performance between the two sets of algorithms becomes
subtle.

If this hypothesis holds at the end of the experiment, we could question why
MAB algorithms are not used in a multi-agent environment when the number of
players is larger than two, given that MAB algorithms achieve similar performance
as MAL algorithms in an environment with more players. In addition, MAB algo-
rithms use less information only associated with its own actions and payoffs. This
feature allows them to be more easily implemented than MAL algorithms because
they do not have to retrieve information from opponents. If the hypothesis only
holds under specific conditions, we can confirm the application of MAB algorithms
when such conditions are satisfied. On the other hand, if the hypothesis does not
hold for any condition, questions should be raised for further investigation. For in-
stance, if we agree that MAL algorithms are more applicable in a multi-agent envi-
ronment, despite increases in a number of players, we must ask why the complexity
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of increasing players does not reduce the benefit of using opponents’ information.

1.4 Thesis structure

The thesis begins with an overview of the existing literature and a presentation
of our hypothesis. Chapters 2 and 3 introduce all of the algorithms and game types
that can be used in the tournament. Chapter 4 discusses the about metrics used to
evaluate algorithm performance. Next, Chapter 5 reviews the research methodology,
which explains how we built the test framework to answer our research questions.
After conducting the experiment, we will present the collected data and results in
Chapter 6. Lastly, in Chapter 7 we offer a conclusion based on our experiment and
discuss possibilities for future research.
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Chapter 2

Algorithms

This chapter introduces two categories of algorithm, multi-agent learning algo-
rithms (MAL) and multi-armed bandit algorithms (MAB) individually. To illustrate
the core idea of these algorithms, 2-player games are used as examples. Some dis-
cussions are about the scalability of algorithms in terms of the number of players
and the number of actions. In general, MAL algorithms that use more information
in their calculation may suffer from increasing computation cost as the game size
increases, while MAB algorithms using less information have less time and space
complexity, e.g. linear or constant complexity. More detail of time and space com-
plexity are discussed in each algorithm.

In addition, the term agent is used to indicate a player using an introduced al-
gorithm, while the term opponent or opponents is used to indicate the remaining
player(s) using other algorithms.

2.1 Multi-agent learning algorithms

MAL algorithms are based on the information from both an agent and its oppo-
nents. The information from its opponents, for example, could be opponents’ action
history that stores how many times each action has been played. Moreover, this ac-
tion history could be completely used or partially used, e.g. only using the last 20
iterations for calculation, which is determined by algorithms. The opponent’s in-
formation can also be combined with agent’s information, e.g. based on opponents’
action history, the agent chooses an action with the highest average rewards.

Yet, the cost of using more information might be the increasing space complexity
or time complexity of algorithms. In addition, we cannot conclude this additional
information benefits the performance for all kinds of game size until the analysis of
the experiment results has been done. Both time and space complexity are listed in
the end of discussion of each algorithm.

2.1.1 Fictitious play

Fictitious Play chooses its action based on opponent’s action history. The algo-
rithm calculates the frequency of each action that opponents have played in the past
iterations so that the agent can take advantage of knowing which action is more
likely to be played in the next iteration by his opponent. On top of this, the best
response of the agent is to pick the action that gains the highest average rewards.
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The pseudo code is given by:

Algorithm 1 Fictitious play algorithm

1: function FP(opponentActionHistory)
2: mostFrequentAction← find maximum counts of actions in action history
3: for agentAction in agentActions do
4: avgPayo f f ← get average payoff by(agentAction, mostFrequentAction)
5: if avgPayo f f < maxAvgPayo f f then
6: bestAction← agentAction
7: end if
8: end for
9: return bestAction

10: end function

In practice code, if the frequency of opponent’s actions are equally being played,
the most frequent action is randomly chosen among actions with equal frequency.

Complexity analysis:

• Space complexity : O(n2)

• Time complexity : O(n2)

Fictitious Play uses not only agent’s average rewards of actions, but also oppo-
nents’ action history. This makes the space complexity increased quickly since the
algorithm stores the counts of each action that have been played by each player,
which is O(n2). The time complexity is O(n2) as well because the algorithm has to
find which action is more likely being played by each player through looping oppo-
nent’s action history of every player.

2.1.2 No-regret learning

No-regret learning chooses its action based on evaluating those agent’s actions that
would have been successful in the past. The term regret is explained as: an algorithm
evaluates all hypothesized rewards of all actions that is played by the agent in the
past. If the hypothesized rewards of an action was larger than the received rewards
of a chosen action at that time, it produces regret on this non-chosen action by the
value of difference between hypothesized rewards and received rewards.

After the evaluation of hypothesized rewards of each action, the agent then chooses
its action that would have received the most hypothesized rewards in the past. It is
also the same as choosing an action having the most regrets. The goal of the al-
gorithm is to minimize the accumulated regrets among actions. The algorithm is
separated into a few steps shown below.

• The agent maintains a hypothesized reward vector, that stores accumulated
hypothesized rewards for each action if the agent might have played that ac-
tion in the past.
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• After each iteration, the agent updates hypothesized reward vector for each
action.

• The agent chooses best action based on the action with the maximum accumu-
lated hypothesized rewards in the hypothesized reward vector.

To illustrate how algorithm works, the pseudo code is given by:

Algorithm 2 NoRegretLearning algorithm

1: function NoRegret(actionHistory)
2: receivedReward← rewards received by a chosen action in the last iteration
3: for all actions do . update hypothesized rewards for each action
4: hypoRewards← the rewards if action has been played
5: hypoRewards[action] += (hypoReward - receivedReward)
6: end for
7: bestAction← the action with maximum hypothesized rewards
8: return bestAction
9: end function

Complexity analysis:

• Space complexity : O(n)

• Time complexity : O(n)

No-regret learning only needs a vector to store hypothesized rewards for each ac-
tion so that the space complexity is O(n). Since the size of vector is the number
of actions that the agent can choose. The time complexity is O(n) as well because
the algorithm loops the hypothesized reward vector once to choose the best action
with maximum value and update hypothesized reward vector once in each iteration.
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2.2 Multi-armed bandit algorithms

MAB algorithms were invented to solve Multi-Armed Bandit Problems (MABP),
which strives to gain rewards, as many as possible from a number of slot machines
(one arm bandits). The total rewards are determined by these fixed limited set of
resource as in competing choices. A MAB algorithm has to explore different slot
machines over iterations to obtain reward information behind these machines, or
exploit a particular slot machine that is considered to have higher rewards.

If MAB algorithms are applied to multi-agent environment, a number of slots are
simply replaced with a number of opponents. The goal of MAB algorithms stays the
same to figure out how to help an agent to maximize received rewards against its
opponents. In addition, a MAB algorithm can adopt exploration and exploitation
strategies to choose an action where it used in a multi-armed bandit problem.

In addition, the essential characteristic of MAB algorithms does not utilize any
opponents’ information. This is because MAB algorithms simply observe how many
rewards that each slot generates in MABP rather than which action is performed by
its opponents in multi-agent environment. Not using opponents’ information makes
most MAB algorithms to be designed more easily in terms of less space and time
complexity. We will elaborate how each MAB algorithm works and what its space
and time complexity are.

2.2.1 ε-greedy and N-greedy

ε-greedy chooses its action between exploration and exploitation, which is based
on the value of ε. In each iteration, the agent randomly chooses an action with the
non-highest average rewards by the probability ε, while the agent chooses the action
with the highest rewards by the probability (1 - ε). It means the agent spends ε time
exploring a new action that would have given the agent more rewards while the rest
of time to exploit the action with the highest average rewards in the past.

The probability of choosing action i at the time step t + 1 is represented by:

pi(t + 1) =

1− ε if i = arg max
j=1,...,K

µj(t)

ε otherwise
(2.1)

µj(t) : empirical average rewards of action j in time step t

The pseudo code of the algorithm is as:
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Algorithm 3 ε-greedy algorithm

1: function ε-greedy(none)
2: rand← generate random value between 0 to 1
3: if rand < ε then
4: bestAction← pick a random action
5: else
6: bestAction← action with the highest average rewards
7: end if
8: return bestAction
9: end function

We observe that the value of ε determines the proportion of exploration and ex-
ploitation. However, the value is fixed, which means that the agent always spends ε
time on exploration no matter the number of iterations are. If a multi-agent environ-
ment is static and the agent has received stable average rewards for each action, any
action with the non-highest rewards may only decrease the agent’s total rewards.

To improve the aforementioned problem coming from a fixed ε value, N-greedy
is introduced where its ε value decreases over the time. The new ε value is deter-
mined by the value of the number of actions divided by the number of total itera-
tions. Therefore, the exploration time decreases while the number of total iterations
increases, which reduces choosing non-highest rewards actions.

Complexity analysis:

• Space complexity : O(n)

• Time complexity : O(n)

The algorithm only stores the average rewards for each action in order to choose
an action in the next iteration. Thus, the space complexity is O(n). The algorithm
exploits the action with the highest average rewards by looping each action once,
which results in the time complexity O(n).

2.2.2 Boltzmann Exploration - Softmax

Softmax (or Boltzmann Exploration) chooses its action based on a probability of
an action. The probability is proportional to action’s average rewards. An agent be-
gins to explore available actions in order to obtain average payoffs of each action,
which are converted into probabilities. Next, the agent choose an action by these
probabilities.

Similar to ε-greedy, Softmax keeps a possibility to explore actions by using the
probability of actions, which enables the algorithm to be more adoptive in dynamic
environments, e.g. the average rewards of each action may change over time. How-
ever, the trade-off is as same as ε-greedy has by not fully exploiting to an optimal
action with the highest average rewards. This trade-off between exploration and
exploitation is tuned by the parameter τ that is introduced later. The probability of
choosing an action i as the best action in the next step t + 1 is derived by:
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pi(t + 1) =
eµi(t)/τ

∑K
i=1 eµi(t)/τ

(2.2)

where
K : the number of available actions for agent

τ : a temperature parameter, that is used to determine the randomness
of choosing the action.

µi(t) : the average rewards for an action i

The pseudo code is given by:

Algorithm 4 So f tmax algorithm

1: function So f tmax(averageRewardactioni )
2: for all actions do . calculate a probability of each actioni
3: probabilityactioni ← formula 2.2
4: end for
5: rand← generate a random value between 0 to 1
6: for all probability do . choose an action by action probabilities
7: rand = rand− probabilityactioni

8: if rand < 0.0 then
9: bestAction← actioni

10: end if
11: end for
12: return bestAction
13: end function

Based on different τ values, there are three kinds of behavior of choosing agent’s
best action as below. A smaller value leads to more exploitation, while a larger value
leads to more exploration. In practice, the value is tuned in between by running
experiments.

Pure exploitation if τ = 0
Pure exploration (uniformly choose an action) if τ → ∞
the mix of exploration and exploitation otherwise

(2.3)

Complexity analysis:

• Space complexity : O(n)

• Time complexity : O(n)

The information needs to be stored is the average rewards for each action so that
it does not have to be recalculated in each iteration. Therefore, the space complexity
isO(n) based on the number of actions. Each iteration, the probability of each action
has to be calculated once, which results the time complexity O(n)
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2.2.3 Q-learning

Q-learning chooses its action based on the optimal policy in Finite Markov Decision
Process (FMDP) by evaluating Q-values by a given pair (state, action), which maxi-
mizes total rewards in the next subsequent steps. We define the step of updating Q
values as:

Qn(x, a) = (1− αn) ·Qn−1(xn, an) + αn · [rn + γ ·max
a

Qn−1(xn+1, a)] (2.4)

xn : current state in step n

an : the action being performed in step n

yn : the subsequent state in step n

rn : received rewards by performing action xn in step n

γ : the discount factor, that determines how important the future expected re-
wards might be. If the γ is set to 0, it means that the agent only considers the current
rewards. In contrast, the γ is set to 1 or close to 1, which leads the agent to only seek
for an infinite future rewards.

αn : the learning rate at the time step n, that determines how fast Q value is up-
dated against the change of current received rewards and future expected rewards.

maxa Qn−1(xn+1, a) : agent chooses the best action a that can receive maximum
estimated rewards in the future in the next state xn+1

Because our testing game environment is stateless, which views each iteration as
the same state. The formula of updating Q-value is reduced to:

Qn(a) = (1− αn) ·Qn−1(a) + αn · [rn + γ · 1] (2.5)

Finally, with each iteration the agent evaluates all Q-values and then performs
the action with the maximum Q value.

In addition to using Q-value to determine the best action, the ε-greedy policy is
adopted to spend ε time exploring other actions. The ε value can also be decreasing
over time, which is controlled by the value of decreasing exploration rate.

Complexity analysis:

• Space complexity : O(n)

• Time complexity : O(n)

The stateless Q-learning stores a Q-value array with the same size to available
actions. The space complexity is O(n). Each iteration, it updates single element in
the Q-value array and picks the action with the maximum Q-value by looping each
Q-value. Thus, the time complexity is O(n).
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2.2.4 Satisficing

Satisficing chooses its action based on the criteria whether the received rewards
meet an attained threshold. If the current received rewards of the best action exceed
a given threshold, the agent keeps choosing this action until the condition is vio-
lated. In contrast, the violated condition leads the agent to randomly choose other
actions that have not been chosen in the previous iteration.

The threshold is called aspiration level in Satisficing. In Satisficing, the agent main-
tains a tuple (At, αt) at any time step t, which is represented by:

At : the currently chosen action

αt : the aspiration level that is used as a threshold to enable the agent to select
other new actions.

In each iteration, the aspiration level is updated by:

αt+1 = (1− λ)αt + λrt (2.6)

λ : the persistence rate that influences how fast to update the aspiration level by
new coming received rewards.

rt : the received payoff in the time step t

The best action in the next iteration is determined by:

At+1 =

{
At, if rt ≥ αt,
any other action otherwise

(2.7)

The current action is chosen if the received rewards do not exceed the aspiration
level. However, if the current received rewards decrease somehow, the aspiration level
decreases as well. When the current received rewards are lower than the aspiration
level, the agent chooses other actions.

Compared to other algorithms who exploit to an action with the highest rewards,
the Satisficing does not always choose an optimal action. Instead, it only chooses an
action that meets its need (higher than aspiration level) until the need is not met.

Complexity analysis:

• Space complexity : O(1)

• Time complexity : O(1)

Satisficing only maintains a single tuple including a value of chosen action and
aspiration level, which makes the space complexity O(1). With each iteration the val-
ues in the tuple are updated without any loop so that the time complexity is O(1).
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2.2.5 EXP3

Exponential-weight algorithm for exploration and exploitation (EXP3) chooses its ac-
tion based on the probability distribution of available actions. A higher probability
represents high expected rewards. The probability distribution is updated by using
a weight array with the equal size to available action size. After each iteration, the
weight array is updated as follows:

Initially, each element wi in the weight array is set to 1, which gives all actions
the same probability in the first iteration.

wi(t) = 1 Only if t = 0 (2.8)

Each action is chosen by a weighing value in the weight array. A higher weight-
ing value means that the corresponding action has higher probability to be chosen
and updated. In the beginning iterations, randomly updating an action more fre-
quently results in higher weighting values of this action. However, this reduces the
opportunity to explore other actions that have not been chosen in the beginning it-
erations. In order to eliminate the imbalanced sampling, a function pi(t) is used to
serve as a probability dense function. The function is used in the later formula of
updating weighting values. Basically, higher weighting value wi(t) results in higher
pi(t), which leads to update less weighting value instead.

pi(t) = (1− γ)
wi(t)

∑n
i=1 wi(t)

+
γ

N
(2.9)

γ : the learning rate of updating weighting value

N : the size of all available actions that are chosen by the agent.

Updating weighting values wi(t) are calculated below. The first formula is to cal-
culate the estimated rewards by the observe rewards ri(t) divided by the probability
density function pi(t) that has been calculated by the formula above. The second
formula then updates the corresponding weighting value wi(t) in the weight array
by the estimated rewards ri.

r(t) =

{
ri(t)
pi(t)

, if a(t) = i

0, otherwise
(2.10)

wi ← wi(γri/N) (2.11)

Complexity analysis:

• Space complexity : O(n)

• Time complexity : O(n)

EXP3 stores a weighting array with the size as same as action size, which leads
the space complexity O(n). In each iteration, the algorithm generates a new prob-
ability distribution based on the weighting array and then pick an action by the
probability of weighting value. These calculations are associated with the action
size, which results in the time complexity O(n).
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2.2.6 UCB1

Upper confidence bound 1(UCB1) chooses its action based on both average re-
wards received in the past and the number of times that an action was played. Using
average rewards in the evaluation ensures the agent has a tendency to choose an ac-
tion with higher average rewards in the past. On the other hand, using the frequency
of each action keeps a possibility to explore actions that have been played less often.

To choose the best action, we calculate the values based on both the average
rewards and the frequency of each action mentioned above. Then, the best action is
picked by the action with the maximum value. The detail calculation is shown by:

a(t) = arg max
i=1,...,N

ri +

√
2 ln t

ti
(2.12)

ti : the number of times that action i was played up to time-step t

ri : the average rewards received when action i was played

From the equation above, the algorithm not only exploits the action with the
highest average rewards in the past by the first term of equation, but also explores
actions that have not been played often by the second term of equation.

The quality of the UCB1 is evaluated by its expected accumulative bound. Ac-
cording to [8], the expected cumulative regret of UCB1 after t iterations is bounded
by :

8 ∑
i:µi<µ∗

ln t
∆i

+

(
1 +

π2

3

) k

∑
i=1

∆i (2.13)

where

µ∗ : the expected rewards of the best action

µi : the expected rewards of action i

∆(i) = µ∗ − µi: how suboptimal the action i is

The formula above is separated into two terms. The first term includes accumu-
lative regrets, which means an agent performs suboptimal actions for a logarithmic
number of times t. It is divided by ∆(i) indicating how easy the agent distinguish
an action from the optimal action. A smaller ∆(i) means the distinction between
optimal and suboptimal action is more difficult, the agent may need more time to
explore actions, resulting in an increasing accumulative regret.

The second term is used to cap the first term (the inverse of ∆(i)) when the agent
plays a number of suboptimal actions.

The pseudo code of UCB1 is given by:



2.3. Random 17

Algorithm 5 UCB1 algorithm

1: function UCB1(averageReward)
2: if initialState then . play each action once
3: bestAction← initialAction . initialAction=0
4: if initailAction == actionSize - 1 then
5: initialState← f alse
6: end if
7: initialAction← initialAction + 1
8: return bestAction
9: end if

10: for all actions do . choose best action
11: sumi ← formula 2.11
12: end for
13: bestAction← action with maximum sum
14: return bestAction
15: end function

Complexity analysis:

• Space complexity : O(n)

• Time complexity : O(n)

UCB1 stores average rewards of each action, which produces the space complex-
ity O(n). The time complexity is also O(n) based on looping each action to find the
maximum value in the formula above.

2.3 Random

Random algorithm chooses an action by an equal probability among all actions,
which do not require information from an agent or its opponents. Therefore, it does
not belong to MAL or MAB by the definition in Chapter 1. However, it is used as
a benchmark against other MAL or MAB algorithms. For example, any algorithm
with exploitation characteristic against the Random should receive similar average
rewards since these algorithms tend to exploit the action with the highest average
rewards after a certain number of iterations.

Besides, due to the simplicity of Random algorithm, the algorithm is used to eval-
uate the correctness of other implemented algorithms given that any other algorithm
outperforms Random. As the performance of any other algorithm is not as expected,
the algorithm against Random algorithm helps identify a possible issue.

Complexity analysis:

• Space complexity : O(1)

• Time complexity : O(1)

Random chooses its action randomly so that it does not need to save any infor-
mation for any extra calculation.



18 Chapter 2. Algorithms

2.4 Complexity Summary

TABLE 2.1: Complexity of MAL algorithms
MAL FP No-regret

Space Complexity O(n2) O(n)
Time Complexity O(n2) O(n)

TABLE 2.2: Complexity of Bandit algorithms

Bandit ε-greedy N-greedy Softmax QL Satisficing EXP3 UCB1
Space Complexity O(n) O(n) O(n) O(n) O(1) O(n) O(n)
Time Complexity O(n) O(n) O(n) O(n) O(1) O(n) O(n)

TABLE 2.3: Complexity of other algorithm
Other Random

Space Complexity O(1)
Time Complexity O(1)
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Chapter 3

Games

In Chapter 2, we have introduced different algorithms that can be used by the
agents. Each algorithm except for Random tries to maximize received payoffs from
payoff matrix in a game instance. In this chapter we will talk about different game
types that can be used to generate different payoff matrices. Also, we will talk about
how to set parameters in all game types in general.

Diverse game types are designed not only to satisfy scientific interests where
different algorithms may choose a pure or mixed strategy, but also to evaluate the
performance of algorithms against each other in a multi-agent environment. Some
algorithms may perform better in different types of games than others. For instance,
any algorithm is supposed to perform better than the Random algorithm in most
game types. In Prisoners Dilemma, for instance, two agents both using Random al-
gorithm would perform slightly better than two agents using Nash-equilibrium. This
indicates various game types can produce different result for a given algorithm pair.
Thus, we will evaluate all algorithm pairs in various game types in order to obtain a
more general result for algorithm performance.

To utilize game types with scientific interest instead of only using random games,
the GAMUT [11] is used to work as a game generator to produce game instances in
various game types. In this project, we will only use part of game types to evalu-
ate our algorithms in the tournament. This is because one of our research interests
is to find out the possible relationship between the number of players and actions
and the performance of MAL and MAB algorithms. However, some game types in
GAMUT can be only played in a fixed number of players or actions, which limits our
experiment. Therefore, in our tournament we will evaluate all algorithms by using
those game types with more than two players and more than two actions. For other
less important experiment, e.g. observing basic algorithm performance in all two
players and two actions games, we will run all types of game, which supports two
players and two actions.

3.1 Games types and parameters

We divide all games into four groups based on whether the game type supports
more than two players or more than two actions shown in tables below. In addition,
we will not dive into each game type in each group in detail since the description of
each game type can be found in the document of GAMUT. Here we will only dis-
cuss the basic values that are applied to all game types in order to generate different
game instances.
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Firstly, each game type can generate different payoff matrices, but the range of
payoff matrices has to be the same in order to make a fair comparison among dif-
ferent game types. Therefore, we apply normalization to the payoff matrix in each
game instance so that the minimum payoff and the maximum payoff will be nor-
malized to a given range (-100, 100).

Secondly, each game type has its game specific parameters. Neither do we test
all possible values for these parameters, nor do we tune them in purpose. Instead, in
most cases the values of parameters are set by default or by using a built-in random
function. This makes algorithms to be agnostic for game types to avoid introducing
bias into the experiment.

The first group of game types are listed below, this group includes 12 game types
that can support more than two players and more than two actions. The group is the
most essential for the experiment since the adjustable players and actions make these
game types more flexible to evaluate algorithms in the same game type using differ-
ent numbers of players and actions.

Group 1 : >= 2 players and >= 2 actions

G1 RandomGame
G2 MajorityVoting
G3 DispersionGame
G4 GuessTwoThirdsAve
G5 CovariantGame
G6 BertrandOligopoly
G7 BidirectionalLEG
G8 TravelersDilemma
G9 RandomGraphicalGame
G10 RandomLEG
G11 UniformLEG
G12 MinimumEffortGame

The following three groups contain the game types with an adjustable number
of actions but not players, players but not actions and the types in which neither
can be changed. Even though these game types are not used to answer the research
question, still, they can be used as a general reference by evaluating the performance
of algorithms with a complete set of 29 kinds of game types.

Group 2: 2 players and >= 2 actions

G13 RandomZeroSum
G14 GrabTheDollar
G15 LocationGame
G16 ArmsRace
G17 CournotDuopoly
G18 WarOfAttrition
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Group 3 : >= 2 players and 2 actions

G19 CollaborationGame
G20 RandomCompoundGame
G21 CoordinationGame

Group 4 : 2 players and 2 actions

G22 Chicken
G23 RockPaperScissors
G24 PrisonersDilemma
G25 BattleOfTheSexes
G26 MatchingPennies
G27 HawkAndDove
G28 ShapleysGame
G29 TwoByTwoGame
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Chapter 4

Metrics

The performance of an algorithm is viewed as an indication of which algorithm
or which set of algorithms may perform better than others in a tournament. Liter-
ature [15] Section 7.1 suggested a more common approach to evaluate the perfor-
mance by asking whether an algorithm achieves rewards that are high enough. The
term of "high enough" contradicts the concept of "best response", which focuses on the
highest rewards. This approach includes three basic properties, Safety, Rationality,
and No-regret, which evaluates an algorithm from different aspects. More specifi-
cally, Safety ensures an secured rewards to an agent by obtaining at least minmax
rewards; Rationality focuses that an agent plays best response to other opponents
that have settled stationary algorithms; and No-regret means that an agent pursues
rewards that are less than the rewards that an agent could have received by playing
one of agent’s pure strategy.

These properties can be used to evaluate the performance of algorithms, even cat-
egorize an algorithm by examining whether it meets a number of properties. Instead
of applying these properties to performance comparison directly, our experiments
adopted similar but more quantitative approaches to measure the performance of
algorithms. The following sections introduced two major metrics used in experi-
ments: average rewards and average regrets.

4.1 Average rewards

The received reward is the most important to an algorithm because each agent all
strives to maximize their received reward in each iteration. The metric of the average
rewards is introduced to measure the quality of an algorithm, which is based on the
average of accumulated rewards of an agent in a sampling period T = b − a, as
formula 4.1 shows.

Average rewards ≡ ∑b
t=a R(t)

b− a + 1
(4.1)

The sampling period of the metric is supposed to be long enough to measure
whether an algorithm tends to converge. Some approaches suggested using an
adaptive way to decide the number of total iterations in order to measure the sta-
ble state, which represents the variation of average rewards converge to a defined
range. However, the different numbers of iterations favor the performance of differ-
ent groups of algorithms in various environment settings. Instead of using a varied
number of iterations, in our experiments, a number of total iterations was set to a
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fixed value. Though a fixed value may not be optimal to the performance of all al-
gorithms, it maintained the consistency of tests; and more possible values could be
tested in other experiments. In addition, some approaches suggested remove the
results of earlier iterations in the metric since the results of these iterations are used
for action exploration by algorithms. However, no significant performance differ-
ence were observed between using all iterations in a game instance and the removal
of the results from the earlier iterations. Therefore, the entire sampling period was
used in the average rewards. For instance, the average rewards are calculated by
sampling 10,000 iterations as a game is run by 10,000 iterations.

4.2 Average regrets

Regrets are the difference between the current received rewards and the hypoth-
esized rewards if an agent has had played the best action when opponents’ actions
kept the same. The average regrets are derived by the average of accumulated re-
grets in a sampling period T = b− a, as formula 4.2 shows. In a time step t, regrets
are calculated by the current received rewards (i.e. r(a, a(t)−i ) minus expected rewards

(i.e. E[r(σ(t)
i , a(t)−i )]). More detail can be found in [14].

Average regrets ≡
maxa∈A∑b

t=a[r(a, a(t)−i )−E[r(σ(t)
i , a(t)−i )]]

b− a + 1
(4.2)

Average regrets are used to evaluate how much time an algorithm exploits to an
action in a game. In Prisoner Dilemma, for instance, an algorithm using Nash Equi-
libria to determine its action will end up exploiting to the action (Defect, Defect)
in all iterations. Because the algorithm does not explore other possible actions with
higher rewards, the algorithm will produce higher regrets than other algorithms that
explore actions with higher rewards. In contrast, other algorithm, such as ε-greedy,
spends ε time exploring different actions (C,C) (C,D) (D,C), which generates higher
rewards and leads to less regrets.

To sum up, average rewards will mainly be used through the experiment since
the metric is directly associated with the performance of any algorithm. Moreover, it
was being widely used in all tournament experiments, such as [14]. As for average
regrets, the metric is used as a reference instead of in the performance comparison,
though it was used in a pure bandit algorithm tournament. [12]
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Chapter 5

Methodology

To answer our research question, we carried out an experiment by conducting
tournaments. A tournament consists of game types, algorithms, and evaluation met-
rics, as discussed in previous chapters. After running the tournament, we analyzed
the tournament results based on algorithm performance. The results served to verify
the hypothesis.

A test bed was used to run the tournament, for which we collected results for
analysis. The following sections introduce the test framework that was used to run
the experiment, discuss how the games and algorithms were chosen in the frame-
work, examine the scale of the tournament, and consider how the data collected in
the tournament was analyzed.

5.1 Test framework

The main goal of the test framework was to establish a flexible, efficient and ro-
bust platform that allowed us to run various experiments in order to answer the
research question. The framework needed to be flexible enough to quickly add or
remove algorithms and games. Moreover, we made the associated parameters easy
to configure. The framework also had to be efficient in order to save time during
large comparisons. The more efficient the test framework, the more comparisons it
can run. Finally, the robust platform ensured the collection of valid results for data
analysis.

The test framework can be broken up into several steps, as depicted below in
Figure 5.1. The pipeline begins at the interface of the command line input, which
allows a user to specify parameters to configure the test framework in the config-
uration step. For instance, it can determine the set of game types and the set of
algorithms used in the experiment in addition to the number of players and actions
used in each game. Based on the configuration, the task generation generates game
instances and tasks, which are run in the subsequent computation step.

The computation step is composed by the number of compute units, which is
based on the number of CPU cores provided by the hardware. Each compute unit
retrieves one task from the task queue and obtains the required game file of the task.
The compute units work in parallel in order to minimize total running time. All of
the raw data of experiment results is stored in the database, which is used in the next
step, data analysis.
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FIGURE 5.1: Test framework structure

5.1.1 Choosing tournament game types

In Chapter 3, we introduced all game types that could be used in the tournament.
In the test framework, all game types were placed in a pre-defined game pool so that
each tournament could pull a set of game types by a given criteria. For instance, the
tournament could be run with game types of more than two players. In our experi-
ment, we ran two versions of the tournament by using different sets of game types.
The first tournament utilized the set of game types with two players and two actions.
The tournament including all game types allowed us to obtain a basic benchmark for
each game type played with algorithms. The second version used a small set of game
types with more than two players and more than two actions. These types provided
us with greater flexibility for examining algorithm performance when the number
of players or the number of actions increased.

5.1.2 Choosing tournament algorithms

In Chapter 2, we introduced the algorithms. These algorithms were placed in
a pre-defined algorithm pool in order to be available by a tournament. As this re-
search focuses on the performance of MAL and MAB algorithms in a multi-player
environment, the algorithms were grouped into MAL or MAB, except for the Ran-
dom algorithm, which remained uncategorized.

After this categorization, the number of algorithms in the MAL and MAB groups
was unbalanced. The total number of MAL algorithms was 2, which was unequal
to the number of MAB algorithms, 6. However, the two MAL algorithms, FP and
No-Regret, are more representative than the other MAL algorithms, which are not
suitable for n-player games. For example, Tit f orTat and Bully are typically designed
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for two-player games. Markov is suitable for n-player games, although it becomes
impractical when the algorithm uses greater memory storage for holding exponen-
tially increasing action states. Yet, this framework more easily allows the future
addition of more MAL algorithms.

5.2 Tournament arrangement

Given the pre-defined pools of game type and algorithm, the tournament was
able to pull a subset from each pool in order to run different scales of experiment.
The tournament scale was determined by the number of game types, algorithm
pairs, players and actions, as demonstrated in formula 5.1.

To identify the tournament boundary, the maximum value of each parameter
was used. More specifically, given the number of game types, which has been listed
in Chapter 3, we used types which supported more than two players and more than
two actions. In addition, each algorithm played against all others so that the total
number of algorithm pairs was the square of total number of algorithms. Thus, 10
algorithms and 10 algorithms equaled 100 algorithm pairs. Each n-player game cre-
ated n permutations of players in order to eliminate the bias of players who used
different payoff matrices in the same game. Lastly, the number of actions for each
player did not increase the number of total matches. However, the number of ac-
tions did increase the size of each game, which exponentially increased the running
time, as demonstrated in Section 6.1.4, thereby adding more search space for each
player.

5.2.1 Tournament scale

To calculate the number of matches played in a tournament, the formula below
is given:

Total matches = (game types) ∗ (algorithm pairs) ∗ (player permutation). (5.1)

By using formula 5.1, we derived that tournament scale mainly relied on the
number of game types, algorithms and players. Both game types and players were
linearly proportional to the total matches, while the algorithms scaled quadratically
with the number of matches.

5.2.2 Game size

The game size represented as follows:

Game size = ActionsPlayers. (5.2)

Although the game size did not increase the total number of matches, it did influ-
ence other aspects of the tournament. First, game size can be viewed as a searching
space for players in a game. If the game size increases, the player cannot explore all
possible actions in the finite iterations as a player can only find the best action if the
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player has already gone through all possible actions.

For instance, a game size of 100 in a 2-player and 10-action game would cost a
player at least 100 iterations to explore each possible action once. If the game was
only run for 50 iterations, it is unlikely that a player would be able to identify which
action produces the highest reward as some actions with higher rewards may not
have been explored. This problem is solvable by increasing the number of itera-
tions. However, the number of iterations should not be infinitely increased as more
iterations too quickly increases the running time, which may result in meeting the
hardware limitation. Moreover, the scale of tournament is less important once the
relation among relevant variables has been observed.

5.2.3 Tournament evaluation

To determine whether a correlation exists among the tournament variables, we
first evaluated the performance of algorithm pairs in each match by using the met-
rics discussed in Chapter 4. For instance, each match produced the average payoffs
for the main algorithm and its opponents. Thus, the tournament generated equal
amounts of raw data for all matches. To derive meaningful data that can represent
the performance of MAL and MAB algorithms in multi-player environments, we
developed a multi-step evaluation process:

1. Collect all raw data by averaging accumulated payoffs or other metrics in each
match.

2. Determine the performance of each algorithm pair by summing up matches
with the same algorithm pair but different game types.

3. Determine the performance of MAL and Bandit algorithms by grouping algo-
rithm pairs into two sets.

4. Repeat steps 1 to 3 for different number of players and actions.

5. Perform data analysis in order to answer the research question (refer to Section
5.3.5)

5.3 Implementation of test framework

In section 5.1, we introduced the individual components of the test framework
that each serve distinct roles, which were assembled into a compact and flexible plat-
form. Now, we discuss practical implementation in terms of the tasks that must be
carried out and the relevant techniques for doing so.

Several multi-agent learning frameworks and learning algorithms have been writ-
ten in various programming languages and already exist online. However, none of
these frameworks and algorithms satisfy our requirement to run a large scale tour-
nament with few modifications. Nonetheless, they may be useful as references.



5.3. Implementation of test framework 29

5.3.1 Command-line input / configuration

The first task for our framework was to determine possible design choices for
each component. In this case, the program provided the command line input, allow-
ing us to configure all parameters in the test framework. However, it was unclear if
the GUI interface be better to visualize parameter settings or experiment results. A
graphical interface may be more human friendly, but it also increases both computa-
tion costs and the complexity of the test framework. Input arguments must include
adjustable variables such as the number of players, the number of actions, the num-
ber of strategies and the game types.

Using simple command-line input also has advantages. To begin, the informa-
tion is on the same terminal. There is no need to handle event callbacks and data
transformation between text-based data and GUI. The GUI may also provide an easy
way to inspect data, such as the game matrix displayed by a table. However, we fo-
cused on tasks that were considered necessary to run the experiment. As a result,
we designed a command-line input that accepted most programming options. The
details of these options are located in Appendix A.

5.3.2 Programming language

Running a large scale tournament involved many computations, especially when
the number of actions and players increased. Although the tournament could be run
once to generate all needed raw data, we were unsure how much computation time
the tournament would require in advance. Moreover, the scale may have needed to
change over time based on our research interests. If we did not prepare more capa-
bilities to the framework beforehand, overcoming the limitations of the framework
would have required more effort. As a result, we used C++, which equips more
capabilities in system low-level control in order to write a more efficient applica-
tion than other programming languages. It allowed us to take a full advantage of
hardware cores and equally distribute computation tasks among computation units.
In addition, effective memory operations reduced the amount of overhead. How-
ever, performance was not the only consideration in the test framework. We started
the framework from scratch in order to have an opportunity to choose features that
added more flexibility.

5.3.3 Task generation / computation

The basic workflow to execute a single is described below. First, a game instance
was generated by an external program, GAMUT executable file, which was written
in Java. The GAMUT output a single game file storing game matrices. Second, the
game file was loaded into the C++ program with a parser, parsing the raw data of
the file into payoff matrices. Lastly, we created a task with game settings, including
the number of players, number of actions, number of algorithms used by players,
and total iterations. A compute unit executed this task in order to generate the re-
sults and save them in the database.

The basic workflow functioned smoothly. However, the execution time of the ex-
periment could have easily increased if the scale of tournament increased. Thus, the
distributed approach was introduced to ease this problem by using multiple CPU
cores to calculate in parallel. In practice, we created 8 threads as workers that could
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operate independently, based on the maximum number of CPU cores. First, those
workers generated all game files and put associated tasks in a task queue. After the
workers finished generating the game files, they took tasks from the task queue and
executed them until the task queue was empty. Compared to the basic workflow,
this approach could effectively reduce execution time by taking advantage of multi-
threading. It also provides the possibility to run larger scales of experiment.

5.3.4 Limitations of GAMUT

To generate the heatmap of a m-action n-player tournament presented in Figure
6.3, the 8-player and 9-player 4-action games were not run. One reason for this was
the limitation of the test framework discussed in Section 5.2.2, explaining that the
present research did not focus on a larger scale tournament when an agent was un-
able to explore each possible action even once. The other reason was that the game
generation relied on GAMUT, a Java program which can only generate a game in-
stance under a fixed game size. The maximum game size is limited by the maximum
virtual memory size (8 GB). Although the maximum virtual memory size can be con-
figured to a higher number if the system’s physical memory is increased, in this case
the available physical memory was viewed as a limitation of running a larger tourna-
ment. For visualization reasons in the heatmap, the testing data of 8-player 4-action
games was applied to the data of both 9-player 4-action and 10-player 4-action.

5.3.5 Data analysis

sqlite3 was used as a database to store all raw data from the computation results.
More specifically, sqlite3 is a single database file that can be easily created and used to
store data in addition to being compatible with SQL syntax. In the database schema,
the format of each observation was defined, including game type, algorithm used
by each player, accumulated rewards received by players, total iterations, number
of actions, and number of players. The format ensured that we were later able to
manipulate data.

After the raw data was stored in the sqlite3 database, we entered it into an R pro-
gram, which is used for statistical analysis. In R, the raw data can be aggregated and
processed given the research interests. For instance, we can categorize data based on
several criteria, including number of players, number of actions, set of game types,
or two algorithm types – MAL and MAB. The basic process for grouping data is to
average all data points in the same group. However, this approach may be biased
and ignore the distribution of the original data. Therefore, different statistical anal-
yses for distribution comparison are introduced in the next section.

5.4 Statistical analysis

Two statistical approaches are introduced in this section. In general, the Kolmogorov-
Smirnov test is used to determine whether the difference between two data distribu-
tions is significant. This test avoids the disadvantage of using mean values that do
not consider the data distribution. For example, two similar mean values of the av-
erage rewards may be interpreted as the same performance, even though their data
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distributions are different. On the other hand, Spearman’s rank correlation helps
inspect the correlation between two variables. In this case, each approach serves a
different purpose and manipulates raw data in different ways. Therefore, we de-
scribe how we applied them in our data analysis.

5.4.1 Kolmogorov-Smirnov test

To avoid incorrectly interpreting the data results, the Kolmogorov-Smirnov (KS)
test is used to identify the magnitude of difference between two distributions. A
KS test uses two distributions as inputs and converts them into ECDFs (Empirical
Cumulative Distribution Function) that represent data in a probability space. After
comparing two ECDFs, the test finds a maximum distance between two ECDFs in
order to indicate how large the difference is between two distributions. More detail
about the KS test is located in [16].

Below, Figure 5.2 demonstrates a KS test as applied to two data distributions in
terms of normalized average rewards. The vertical dashed line represents the maxi-
mum distance between two ECDFs. More specifically, a KS test obtains the value of
the maximum vertical distance and another p-value (significance level) in order to
determine if the maximum difference of two distributions is large enough. In fact,
Zawadzki [14] has set the significance level as 0.05 in the KS test in order to discern
whether two distributions of algorithm performance are significantly different.

FIGURE 5.2: KS-test example

In our research, the KS test was applied to determine if the data distributions
between MAL and MAB were significantly different for various numbers of actions
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and players. In terms of the test process, for the m-action n-player tournament, we
first separated the results of the tournament, which included average rewards of
all games and all algorithm pairs, into the MAL group or the MAB group. Each
group of data was comprised of all data subsets, with different numbers of actions
and players. Next, we applied KS tests to evaluate any two subsets of data with the
same number of actions and players. The results of each KS test generated a value
of the maximum distance of data distributions from two subsets as well as a p value
of the significance level of the test. Lastly, we analyzed these values by comparing
them with the given significance level in order to indicate whether the performance
of MAL and MAB were significantly different for various numbers of actions and
players.

5.4.2 Spearman’s rank correlation

Spearman’s rank correlation was used to examine whether two variables demon-
strated a monotonic relationship. Figure 5.3 illustrates examples of three possible
relationships between two variables: monotonically increasing, monotonically de-
creasing, or non-monotonic. Given a possible kind of relationship, called alternative
hypothesis, Spearman’s rank correlation calculated how well two variables matched
the given relationship. For example, the literature [14] has used Spearman’s rank
correlation to examine whether a monotonic relationship exists between game size
and average rewards of an algorithm. The details of how Spearman’s is used in the
correlation analysis are located in [21].

FIGURE 5.3: Examples of monotonic and non-monotonic relation-
ships

In our statistical analysis, we emphasized three hypotheses to test correlations
among variables, as noted below. The first and second hypotheses examined whether
the number of players or actions served a role in degrading the performance of MAL
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or MAB. The third hypothesis constitutes our research question.

1. An increasing number of players may lead to decreasing average rewards of
MAL and MAB at 2-action, 3-action, or 4-action games.

2. An increasing number of actions may lead to decreasing average rewards of
MAL and MAB.

3. An increasing number of players may lead to decreasing the difference of av-
erage rewards between MAL and MAB.

In order to run Spearman’s rank correlation for each hypothesis, we pre-processed
our raw data in the tournament, which was later fed into Spearman’s rank correla-
tion. The complete test process of the first hypothesis was as follows:

1. Retrieve a subset of raw data in the m-action n-player tournament, which only
used data in 2-action games.

2. Categorize the subset data into MAL and MAB groups.

3. Average the grouped data based on a numbers of players.

4. Run Spearman’s rank correlation with two input variables and the alternative
hypothesis "less" (number of players and the average rewards).

5. Repeat step 1 by 3-action and 4-action.

6. Analyze the p-value in each test result.

In step 4, we specified the type of alternative hypothesis "less," which indicates
testing a monotonically decreasing relationship. In step 6, if the p value was lower
than the significance level 0.05, the tested hypothesis held. At the end of the process,
we collected six results given the numbers of actions and the groups of MAL and
MAB.

Similar to the first hypothesis, in the second hypothesis, we grouped the raw data
based on a number of actions and the average rewards in MAL and MAB. However,
we did not separately run tests for different numbers of players. Therefore, we only
obtained two test results from MAL and MAB.

The last hypothesis is also similar to the first hypothesis test. The added step in
this case is the subtraction of average rewards between MAL and MAB. Given the
combined data of MAL and MAB, this hypothesis only generated three results by
the number of actions.

In summary, we have described Spearman’s rank correlation and how we used it
to test our hypotheses. Especially for the third hypothesis, the test results are directly
associated with our research question. As such, more detailed discussion of this test
result is provided in the final chapter.
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Chapter 6

Results

6.1 Performance

This section presents the test results from the two tournaments that were con-
ducted on the testbed. One set of results comes from a tournament with various 2-
player and 2-action game types, while the other set includes n-player and m-action
games types. Each tournament included all available algorithms in the test bed.

6.1.1 Tournament for 2-player 2-action game types

Figure 6.1 1displays a heatmap of the test results from 29 kinds of 2-player, 2-
action game types for all algorithms. Each cell indicates the performance of an al-
gorithm played in a game type. Darker cell colors represent lower average payoffs,
while brighter cell colors represent higher average payoffs. In fact, the Random al-
gorithm performed worse in most game types than the other algorithms.

FIGURE 6.1: Performance of all algorithms in the 2-player 2-action
tournament
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After grouping all algorithms except Random into MAL or MAB algorithms from
the previous heatmap, another heatmap was produced. As Figure 6.2 2indicates, this
heatmap represents the performance of MAL and MAB algorithms. Depending on
the game type, MAL and MAB algorithms may outperform each other.

FIGURE 6.2: Performance of MAL and MAB algorithms in the 2-
player 2-action tournament

6.1.2 The tournament for n-player m-action game types

This section discusses the experiment results from the tournament for n-player,
m-action game types. Figure 6.3 3displays a heatmap for the 12 game types of sup-
ported n-player, m-action games for all available algorithms. Since this research
focuses on the performance of algorithms as increasing the number of players and
actions, each cell represents the average performance of an algorithm over 12 game
types at n players and m actions.

The y-axis of the figure measures the number of players, n, ranging from 2 to 10,
while the x-axis represents all available algorithms played at the number of actions,
m, ranging from 2 to 4. The cells at 9-player 4-action and 10-player 4-action games
are the same as cells at 8-player 4-action games, which are manually made for visu-
alization purpose. The lack of tests for running these games come from a limitation

1The labels on the y-axis in Figure 6.1 can be read off by zooming in. The plot is rendered in a
vector-based graphics format.

2The labels on the y-axis in Figure 6.2 can be read off by zooming in. The plot is rendered in a
vector-based graphics format.
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of GAMUT. This limitation is considered in more detail in Section 5.3.4.

The heatmap provides an overview of performance by spotting it along the x-
axis or y-axis. For instance, more dark cells appeared at 4-action (ten columns in
the rightmost) than at 3-action (ten columns in the middle). Moreover, more dark
cells appeared in the middle 10 columns than in the left-most 10 columns. More
dark cells along the x-axis indicates that an increasing number of actions may lead
to degrading performance for some algorithms. Similarly, the cell color becomes
darker from the bottom row to the top row (2-player to 10-player), which suggests
that an increasing number of players may lead to degrading performance for some
algorithms.

FIGURE 6.3: Performance of all algorithms in the n-player m-action
tournament.

3The labels on the x-axis in Figure 6.3 can be read off by zooming in. The plot is rendered in a
vector-based graphics format.
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To precisely compare the performance of algorithms over the n-player m-action
tournament, the raw data of Figure 6.3 is presented in Table 6.1, 6.2 and 6.3 for 2-
action, 3-action, and 4-action games.

TABLE 6.1: Performance for n-player, 2-action games

Random UCB1 EXP3 Satis. ε-greedy N-greedy Softmax NoRe. FP QL
2 44.84 71.89 72.98 73.88 71.26 75.07 72.64 77.57 76.39 71.33
3 49.83 69.82 67.92 70.68 68.44 70.23 71.20 71.81 72.62 72.46
4 46.19 66.67 64.71 64.06 66.18 68.51 68.03 69.55 67.86 70.17
5 44.74 61.87 64.61 65.40 64.98 69.11 66.65 66.78 68.00 62.85
6 46.76 65.48 63.96 62.09 61.06 63.44 61.57 65.71 62.53 64.17
7 43.92 63.40 62.10 65.69 65.39 58.96 63.98 62.59 63.73 60.76
8 45.59 61.75 61.60 63.54 61.23 62.72 61.55 64.48 62.18 61.62
9 45.37 63.18 63.67 66.06 61.65 62.32 59.78 63.21 65.73 59.24

10 45.14 61.38 63.34 61.98 62.28 62.49 60.61 64.37 62.29 61.51

Raw data in terms of average rewards can be used to investigate the performance
change for any specific algorithm at different numbers of players and actions. For
example, as Table 6.1 shows, NoRegret’s average rewards are from 77.57, 77.81,..., to
64.37 as player numbers are from 2 to 10 in 2-action games. This presents a trend
that the performance of NoRegret degrades when the number of players increases.
This trend is generally applied to other MAL and MAB algorithms except for small
amount of data points, e.g. a trend of a decreasing average reward as long as an
increasing number of player holds for FP algorithm from 2-player to 8-player, but it
was broken at 9-player (65.73), which is higher than average reward at 8-player and
10-player (62.18 and 62.29).

The table can also be used to find top two best algorithms based on their average
rewards, which the total number of MAL algorithms is two. At 2-player games in the
first row, the top two algorithms are NoRegret and FP, which score 77.57 and 76.39
individually. However, the top two algorithms change to NoRegret and EXP3 as the
player numbers increase to 10-player, which score 64.37 and 63.34. NoRegret stays
in the top two algorithms in both cases, while FP is replaced with EXP3 at 10-player
case. For the rest of cases with different player numbers, the FP with the second
highest average rewards is also replaced by one of other MAB algorithms.

In addition, the performance comparison between two single algorithms can be
conducted by picking two columns in a table. For instance, given two columns of
ε-greedy and N-greedy performance in Table 6.1, the average payoffs of N-greedy
are higher than those of ε-greedy, except for the case of 7-player (65.39, 58.96). This
result suggests that N-greedy may dominate ε-greedy at 2-action n-player games.
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TABLE 6.2: Performance for n-player, 3-action games

Random UCB1 EXP3 Satis. ε-greedy N-greedy Softmax NoRe. FP QL
2 49.78 72.87 70.87 75.52 73.83 75.12 71.76 74.34 73.97 75.19
3 46.18 66.16 67.79 69.58 65.56 68.88 66.80 67.46 66.80 65.86
4 43.40 63.68 62.05 66.67 61.40 64.38 63.35 66.54 63.35 63.52
5 45.70 59.95 61.45 63.17 62.07 61.40 60.81 63.48 62.58 63.35
6 44.37 59.82 56.54 60.09 62.07 62.26 57.45 61.61 60.94 60.30
7 43.12 57.90 56.77 61.76 60.53 59.25 57.74 59.76 59.76 60.14
8 43.74 55.87 56.86 59.18 57.99 58.33 58.50 62.00 58.09 57.48
9 44.87 55.18 56.60 60.87 58.38 59.36 57.13 63.06 55.93 57.06

10 42.17 57.21 58.73 59.47 58.89 60.64 58.14 61.74 58.34 60.49

A similar analysis is applied to raw data in Table 6.2, which observes if there
is a pattern of degraded performance as player number increases and top two al-
gorithms at 3-action games. First, the raw data of each MAL or MAB algorithm
shows a trend of a decreasing average rewards as a number of player increases,
though the trend may not be applied to a higher number of players. For instance,
average rewards of -greedy keep similar values at 8-player (57.99), 9-player (58.38),
and 10-player (58.89) games, even there is an opposite trend for N-greedy (58.33,
59.36, 60.64). Secondly, two best algorithms at 2-player games are Satisficing and
QL with two highest average rewards, 75.52 and 75.19 individually, while two best
algorithms become NoRegret and N-greedy at 10-player games. In 3-action games,
there is no single algorithm can stay in the top-two algorithm list at any number of
players.

TABLE 6.3: Performance for n-player, 4-action games

Random UCB1 EXP3 Satis. ε-greedy N-greedy Softmax NoRe. FP QL
2 46.28 71.65 72.30 74.93 72.91 74.08 67.96 72.57 74.51 74.77
3 44.31 69.58 66.17 67.01 67.23 67.10 62.86 67.47 64.65 66.35
4 46.86 60.28 62.20 63.36 60.65 62.93 60.08 66.28 62.34 62.30
5 44.49 62.25 59.36 61.05 58.68 62.81 60.11 63.85 60.98 62.54
6 43.74 61.59 59.02 62.58 61.00 61.84 58.68 61.98 58.33 59.32
7 44.03 58.62 57.92 59.36 57.61 58.91 58.07 58.00 56.08 60.86
8 44.62 57.58 57.72 58.82 56.71 59.19 54.96 61.08 56.15 59.06

It is evident that a trend mentioned before is also applied to the raw data in Table
6.3. For instance, NoRegret’s average rewards decrease from 72.57 to 58.00 as a num-
ber of player increases from 2-player to 7-player in the table. Given the observations
at 2-action, 3-action and 4-action in three tables, they suggest a possible relation be-
tween an increasing number of player and decreasing average rewards of an either
MAL or MAB algorithm. Yet, these examples only indicate how these tables can be
used to demonstrate that possible patterns exist. They do not lead to any conclusion
until developing a more comprehensive analysis.
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6.1.3 Grouped data for MAL and MAB algorithms

To compare the performance between MAL and MAB algorithms, the experi-
ment data in the previous n-player m-action tournament is grouped into MAL and
MAB categories. Columns belonging to the same categories have been combined,
such as MAL including NoRegret and FP, and the values have been averaged for
the same number of players. Figure 6.4 displays a heatmap of the average rewards
of MAL and MAB in the n-player m-action tournament. The figure reveals that the
upper right cells are darker than the lower left cells, suggesting an increased num-
ber of actions or players, all of which may degrade performance for MAL and MAB
algorithms. The raw data of this heatmap is included for further analysis in Table 6.4.

FIGURE 6.4: Performance of MAL and MAB in the n-player m-action
tournament

TABLE 6.4: Performance for n-player, m-action games by MAL and
MAB

MAL_2A Bandit_2A MAL_3A Bandit_3A MAL_4A Bandit_4A
2 76.98 72.72 74.16 73.60 73.54 72.66
3 72.21 70.11 67.13 67.23 66.06 66.61
4 68.71 66.90 64.94 63.58 64.31 61.68
5 67.39 65.07 63.03 61.74 62.41 60.97
6 64.12 63.11 61.27 59.79 60.15 60.57
7 63.16 62.90 59.76 59.16 57.04 58.76
8 63.33 62.00 60.04 57.74 58.62 57.72
9 64.47 62.27 59.50 57.80 58.62 57.72

10 63.33 61.94 60.04 59.08 58.62 57.72
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To determine the exact difference between MAL and MAB performance, a sub-
traction operation was made for any two cells with the same condition in Table 6.4.
Based on thesubstration results, Figure 6.5, 6.6, and 6.7 present not only the raw data
of Table 6.4, but also the difference between MAL and MAB for 2-action, 3-action
and 4-action, respectively. In these three figures, the x-axis represents the number
of players. The left y-axis represents the average payoffs of MAL and MAB, while
the right y-axis represents the difference payoffs between MAL and MAB. Therefore,
each figure shows the performance change of both MAL and Bandit algorithms and
their difference over an increasing number of players. A detailed discussion of each
figure and the relation behind them is provided in Section 7.1.1.

FIGURE 6.5: Performance comparison between MAL and MAB for
n-player, 2-action games
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FIGURE 6.6: Performance comparison between MAL and MAB for
n-player, 3-action games

FIGURE 6.7: Performance comparison between MAL and MAB for
n-player, 4-action games
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6.1.4 Running time in the n-player m-action tournament

To evaluate the amount of computing time required for running an n-player m-
action tournament, we tested the relation between the number of game instances in
the tournament and their execution time. In general, the more instances a tourna-
ment ran, the more execution time was needed. Furthermore, higher numbers of ac-
tions increased the execution time as larger game sizes lead to more calculations for
algorithms. Figure 6.8 depicts the execution time as increasing exponentially when
the number of players increases. In addition, more actions required more execution
time. This result can be used to estimate the required execution time for different
tournament scales in the future.

FIGURE 6.8: Running cost for a n-player m-action tournament

6.2 Statistical analysis

6.2.1 Kolmogorov–Smirnov test

After conducting the KS test analysis, as described in Section 5.4.1, Table 6.5 pro-
vides the analysis results based on testing data of the m-action n-player tournament
for MAL and MAB algorithms. Each KS test evaluated two distributions in terms
of the average rewards of MAL and MAB algorithms at any number of actions and
players. A single test generated results including statistics and p-value. The p-value
is used to examine whether two distributions are significantly different when the
p-value is less than the significant level of 0.05. In this case, the results indicate
whether two distributions of MAL and MAB algorithms are significantly different.
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TABLE 6.5: KS-test for average rewards of MAL and MAB in n-player
m-action tournament

2-action 3-action 4-action
statistic p.value statistic p.value statistic p.value

2 1.876E-01 8.564E-13 1.119E-01 1.739E-04 1.199E-01 4.326E-05
3 1.115E-01 5.564E-07 1.008E-01 2.288E-05 8.472E-02 6.451E-04
4 9.231E-02 2.063E-06 8.185E-02 9.050E-05 7.738E-02 2.616E-04
5 8.319E-02 1.673E-06 5.250E-02 1.166E-02 7.119E-02 1.557E-04
6 1.012E-01 3.234E-11 6.339E-02 2.464E-04 8.968E-02 2.997E-08
7 9.513E-02 1.490E-11 6.378E-02 4.840E-05 4.821E-02 4.599E-03
8 9.138E-02 3.719E-12 7.760E-02 3.086E-08 6.019E-02 1.588E-14
9 8.181E-02 5.266E-11 6.772E-02 4.055E-07 6.019E-02 1.588E-14

10 6.626E-02 3.877E-08 7.244E-02 6.205E-09 6.019E-02 1.588E-14

As Table 6.5 displays, all p-values in all KS-tests are less than the significant level,
which indicates two distributions of average rewards between MAL and MAB algo-
rithms are significantly different. If the raw data in the previous Table 6.4 is exam-
ined again, in some cases two mean values in terms of average rewards between
MAL and MAB algorithms are close, such as 59.76 (7-player, MAL 3A) and 59.16
(7-player, MAB 3A). However, the p-value of the corresponding KS test at 3-action
7-player is 4.84E-05. Therefore, while the test results of MAL and MAB algorithms in
terms of mean values are close, their distributions are different and can be inspected
through other analytical methods, e.g. comparing the ECDF of two distributions.

6.2.2 Spearman’s rank correlation

In Section 5.4.2, three kinds of hypothesis tests were introduced for evaluation by
Spearman’s rank correlation. The analysis results for each hypothesis are displayed
in Table 6.6, 6.7, and 6.8. Following the significance level suggests that the first hy-
pothesis holds, the second hypothesis is rejected, and the third hypothesis partially
holds. As these results can be used to examine the research questions, they are dis-
cussed in detail in Section 7.1.2.

TABLE 6.6: Spearman’s rank tested the alternative hypothesis that an
increasing number of players results in a decreasing average rewards

of MAL and MAB at the 2-action, 3-action and 4-action games.

statistic p.value estimate
MAL, 2-action 2.160E+02 6.914E-03 -8.000E-01
MAB, 2-action 2.380E+02 2.480E-05 -9.833E-01
MAL, 3-action 2.300E+02 6.559E-04 -9.167E-01
MAB, 3-action 2.320E+02 3.748E-04 -9.333E-01
MAL, 4-action 1.100E+02 1.389E-03 -9.643E-01
MAB, 4-action 1.120E+02 1.984E-04 -1.000E+00
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TABLE 6.7: Spearman’s rank tested the alternative hypothesis that an
increasing number of actions results in a decreasing average rewards

of MAL and MAB.

statistic p.value estimate
MAL 8.000E+00 1.667E-01 -1.000E+00
MAB 8.000E+00 1.667E-01 -1.000E+00

TABLE 6.8: Spearman’s rank tested the alternative hypothesis that
an increasing number of players leads to a decreasing difference of
average rewards between MAL and MAB at 2-action, 3-action, and

4-action games.

statistic p.value estimate
2-action 1.000E+02 2.401E-02 -7.857E-01
3-action 1.600E+01 9.669E-01 7.143E-01
4-action 6.200E+01 4.198E-01 -1.071E-01
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Chapter 7

Discussion and Conclusion

7.1 Discussion

7.1.1 Observation of the n-player m-action tournament

Figures 6.5, 6.6, and 6.7 display the individual test results of both MAL and MAB
algorithms in n-player 2-action, 3-action and 4-action games. By comparing the data
points at each action number, possible patterns were identified as described below.

• In n-player 2-action games, an increasing number of players leads the con-
vergence of performance between MAL and MAB algorithms from 2-player
to 7-player, even though the difference began to diverge from 8-player to 10-
player. Among these games, MAL always outperformed MAB.

• In n-player 3-action games, MAL outperformed MAB in all cases. However, if
the small difference data point is defined as the data point with a difference less
than 1, 4 data points with players at (2,3,7,10) satisfy the criteria. This result
differs from the result of 2-action games where the data points with players at
(7,8,9,10) with small differences only appear in more player games.

• In n-player 4-action games, most data points are in the small difference except
for the single data point with player number at (2). In addition, the test results
are the first indication of 3 data points with player numbers at (3,6,7) demon-
strating that MAB outperformed MAL.

Despite the observations for 2-action, 3-action, and 4-action games, it cannot yet
be concluded that MAB outperforms MAL when the number of players and the
number of actions are increased. However, increasing the number of players does
have a positive effect on leading the performance of MAB to converge with the per-
formance of MAL, as evidenced by the first observation in 2-action games, particu-
larly in the range of player numbers 2 to 7.

7.1.2 Statistical analysis

Based upon the KS-test, Table 6.5 reveals that all p-values were less than the
significant level of 0.05. This test result suggests that the distribution of average
rewards in MAL and MAB algorithms are significantly different in the m-action n-
player tournament, although the mean values may be similar. However, this result
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can be explained when each mean value (average rewards) comes from the average
result by playing an algorithm in many game types and encountering different algo-
rithms in the tournament. Hence, the distribution of an algorithm is different from
the distribution of any other algorithm.

Given the Spearman’s rank correlation analysis, the results of three alternative
hypotheses are presented in the Tables 6.6, 6.7, and 6.8. For the first hypothesis test,
all p-values in Table 6.6 were less than the significant level 0.05 at 2-action, 3-action,
and 4-action games. This test result indicates that an increasing number of players
leads to a decreasing average reward for both MAL and MAB algorithms at m-action
games. Next, the second hypothesis did not hold because the higher p-values in Ta-
ble 6.7 exceeded the significant level. This result refutes its hypothesis, which held
that an increasing number of actions led to a decreasing average reward in both MAL
and MAB. In terms of the last hypothesis, Table 6.8 revealed that the hypothesis only
held at 2-action games instead of 3-action and 4-action games.

From the results above, we derive that the average rewards of MAL and MAB
decrease as the number of players increases. A decreasing performance is expected
when an increasing number of players lead an agent to explore more actions that are
more difficult for MAL and MAB algorithms to find an action with higher rewards.
However, an increasing number of actions did not demonstrate a high correlation
with decreasing performance, which may be a result of the tournament only testing
the number of actions from 2 to 4, which was insufficient to find high correlation.

In fact, the third hypothesis, which suggested that the difference of average re-
wards between MAL and MAB algorithms became smaller when the number of
players increased, was only confirmed at 2-action games. This outcome is matched
with the previous observation about Figure 6.5, that the performance of MAB con-
verges with the performance of MAL in 2-action games from players 2 to 7.

7.2 Conclusion

For the purpose of this research, we have designed a test bed to conduct an m-
action n-player tournament for MAL and MAB algorithms. By combining the obser-
vations of the m-action n-player tournament in Section 7.1.1 and its statistical analy-
sis in Section 7.1.2, we conclude that the results partially support our main research
hypothesis, as presented in Table 1.1.

First, the average rewards of MAL algorithms are larger than MAB algorithms
at 2-player games (see Figures 6.5, 6.6, and 6.7). To be more precise, the raw data
from n-player m-action tournament, as detailed in Table 6.4, indicates that MAL al-
gorithms outperform MAB algorithms given their average payoffs at 2-player (the
first row). This result matches the description in the first row of Table 1.1. Thus, at 2-
player games MAL algorithms, by using opponent information, help agents receive
higher average rewards than MAB algorithms.

When the number of players increases in these figures, the difference of average
rewards decreases between MAL and MAB algorithms, or the performance of MAB
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algorithms degrades more slowly than MAL. However, this pattern was only sat-
isfied at 2-action games and was limited to the player range of 2 to 7. For 3-action
and 4-action games, we observe the performance of MAL and MAB algorithms as
similar when they outperformed each other based on different numbers of players.
However, the evidence is insufficient to suggest that the performance of MAL and
MAB are similar or exactly the same for these cases in 3-action and 4-action games.

Therefore, we conclude that the hypothesis is not held for any of the conditions
but does hold under a given number of actions and a specific range of players. As
such, MAB algorithms remain promising for application in a multi-agent environ-
ment when the boundary of application is known in advance.

7.3 Future research

Potential topics to be investigated in the future include a more accurate bound-
ary, algorithm level comparison, and game categories. To begin, this research has
evaluated a defined scale of tournament and identified a valid range to support the
hypothesis. However, many variables have yet to be tested, such as different num-
bers of iterations or algorithm-specific parameters. Thus, future research should
examine more combinations of variables in order to identify a clearer hypothesis
boundary.

In addition, although both MAL and MAB grouped data have been analyzed, the
comparison can be changed from group level to algorithm level. For example, the
best performance algorithm in the MAL group compares with the best performance
algorithm in the MAB group. Even though this comparison has bias toward specific
algorithm comparisons, the comparison helps determine how well the hypothesis
fits with a particular algorithm. Lastly, this research has not separated game types
into different categories, such as cooperation games or zero-sum games. This cate-
gorization of game types may help identify which multi-agent environments would
be more suitable to apply the hypotheses.
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Appendix A

AppendixA

A.1 Command line options

To configure the test bed in the C++ program, available command line options
are listed as follows:

Flag Description Default
-h [ –help ] print usage message
-g [ –gametype ] the game type for normal single game (Random)
-p [ –players ] the number of players in a game (2)
-a [ –actions ] the number of actions for each player (2)
-r [ –iterations ] the number of iterations in a game (10000)
-s [ –strategy ] set main strategy in a single game for comparison (0)
-e [ –opp_strategy ] set opponent strategy for comparison, in 2 player game (1)
-t [ –print_top ] print top n iterations info (3)
-l [ –print_last ] print last n iterations info (1)
-z [ –print_flag ] true to print more info. (true)
-y [ –permute ] run permutation of payoffs. (false)
-o [ –tournament ] run tournament w/ single game in all algorithm pairs. (false)
-q [ –tournament_all_games ] run tournament w/ all game types and all algorithms. (false)
-m [ –enable_multithreading ] enable multithreading. (true)
-v [ –total_stratagies ] total strategies for tournament mode. (10)
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Appendix B

AppendixB

B.1 Implementation details

The software includes two parts. The first part of the system is the test frame-
work that was implemented by C++ programming language, which is used to run
different scales of tournaments. To improve running time of tournaments, C++ pro-
gram adopted multi-threading to reduce computation time. In addition, two third-
party libraries were used: sqlite3 library was used for the access of a sqlite database,
while Boost library was used for parsing command line input arguments. The an-
other part of the system was R scripts in order to analyze raw data stored in a
database. These scripts can be used directly after the installation of external R li-
braries, e.g. RSQLite, ggplot2, and plotly

B.2 How to build and run the C++ program

The C++ source code and R scripts are stored in a remote repository. The C++
source code has to be built into a executable program, e.g. gcc or clang compiler. To
build the C++ program, Section Build dependencies in README.md in the repository
detailed instructions to install dependencies and build the program. After success-
fully building the program, Section How to use in README.md described the basic
usage of the program, e.g. run a 3-action 5-player tournament. To customize the
program, more command line flags were listed in Appendix A.

B.3 Where to find the program

The C++ source files and R scripts are maintained in: https://github.com/ryanpig/mal-
tournament.

https://github.com/ryanpig/mal-tournament
https://github.com/ryanpig/mal-tournament
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