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‘Then you should say what you mean,’ the March Hare went on.
‘I do,’ Alice hastily replied; ‘at least–at least I mean what I say–that’s the same

thing, you know.’
‘Not the same thing a bit!’ said the Hatter. ‘You might just as well say that "I see

what I eat" is the same thing as "I eat what I see"!’.

— Alice’s Adventures in Wonderland, Lewis Carrol





A B S T R A C T

We study supersymmetric solutions of minimal six-dimensional supergravity,
which can be uplifted to F-theory. We focus in particular on the class of solutions
defined on a Gibbons-Hawking base space, which are fully characterized by a
set of six independent harmonic functions. We generate new solutions of this
theory using transformations in the group Sp(6, R) thereby mapping solutions
to solutions. We analyze this group by acting on flat space background solutions,
as well as a plane wave solution. We classify the generated solutions, and find a
subgroup preserving flatness asymptotically when acting on flat space. Moreover,
we discuss a solution with an AdS3× S3 event horizon geometry, and calculate its
entropy. The solution changes in a nontrivial way by adjusting certain parameters,
and we perform an initial analysis of the implications of such changes.
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1
I N T R O D U C T I O N

Shortly after Einstein published his theory of general relativity, a search for
solutions to the field equations started. This resulted in a number of mysterious
predictions, including that of the black hole and gravitational waves. Recent years
have seen a breakthrough in the observation of gravitational waves, providing an
entirely new method of observing astrophysical phenomena. However, as a result
of the existence of black holes, the theory of general relativity has its own breaking
point build into it. This is a result of the fact that general relativity provides the
possibility for a smooth initial system to create singularities in spacetime [1].
Classically this is not so much of a problem, as these singularities are hidden
behind an event horizon [2, 3]. But it is this property which eventually led
Hawking to formulate the black hole ‘information paradox’, motivating, together
with thermodynamic properties of black holes, the study of black hole microstates
which is currently still an active field of research.

Another interesting, albeit it somewhat mysterious, property of general relativ-
ity, is that the field equations are not specific to any dimension. So far the solutions
of four and five dimensional general relativity have been thoroughly analyzed,
and in chapter 2 of this thesis we will discuss some of the interesting solution that
have been found. In four dimensions the uniqueness theorems state that black
holes in general relativity are fully characterized by three observables, these are
mass, angular momentum and electric charge. Nevertheless, in five dimensions
we find that there is not only an object with horizon topology S3, analogue to
a five dimensional black hole, but also an object with horizon topology S2 × S1
called a black string. This is an example showing that, in general, physics is richer
in higher dimensions. But other than simple curiosity of what solutions we can
find for the field equations, the study of higher dimensions is also relevant in
the context of string theory, which are theories of quantum gravity living in ten
dimensions.

Where we just discussed general relativity in the context of the most mas-
sive objects in our universe, there is another theory describing the physics of
fundamental particles. This is the standard model of particle physics, which is
described in terms of quantum field theories, and this currently provides our most
fundamental understanding of the smallest particles. Around same period when
the standard model was being finalized and experimentally confirmed, another
framework was being developed, that of (global) supersymmetry. Supersymmetry
will be discussed in chapter 3 of this thesis, but allow us to mention here that
the premise of supersymmetry is that it predicts a bosonic ‘superpartner’ for
each fermion, and a fermionic superpertner for each boson, which lead to some
promising results. Among the most significant of these results are that utraviolet
divergence of supersymmetric theories is better behaved than that of the standard
model as a result of cancellation between particles and their superpartner in loop
diagrams, this is a purely technical argument. However, it can also be used to
explain how the three gauge couplings of the standard model obtain the same
value at high energy (also known as the Grand Unified Theory (GUT) scale), and
the extra particles predicted by supersymmetry contain possible candidates for
dark matter particles.

One of the key concepts underlying the standard model is gauge symmetry.
This concept has been applied to supersymmetry, and resulted in an extension of
general relativity called supergravity. Just as general relativity, supergravity still
breaks down at the Planck scale, which is at an energy EP ≈ 1019GeV . At this
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2 introduction

scale we need a theory of quantum gravity. String theory is currently the prime
candidate to describe such a theory of quantum gravity, while also unifying all
fundamental forces in nature in a single theory. Ten-dimensional supergravity
is the low energy limit of string theory, and since quantum effects only become
relevant beyond the Planck scale, for many purposes supergravity is studied in
the context of string theory.

In addition to these properties, supergravity simplifies the classification of
solutions to the field equations. As we will see in chapter 3 of this thesis, the
symmetry parameter of supergravity admits a covariantly constant spinor, and
this turns out to be such a strong constraint that it is often possible to determine
general solutions by satisfying this condition. Such a characterization has been
made for a number of supergravity theories in four and five dimensions, as well as
for minimal six-dimensional supergravity by Gutowksi Martelli and Reall in [4]. In
particular they found that the so called Gibbons-Hawking class of solutions in this
theory are fully characterized by a set V of six harmonic functions. Subsequently
Crichigno, Porri and Vandoren realized in [5], that the group Sp(6, R) provides a
linear map V→ V, transforming solutions into solutions. Where the symplectic
property of these transformations prevents singularities in the fields of the theory.

The main goal of this thesis is to provide more insight into the meaning and
consequences of the group Sp(6, R) in the context of six-dimensional minimal
supergravity. Previous work on this has been done by Porri [6], and Duaso [7],
and this thesis is an extension of their work.

outline

In chapter 2 we will discuss solutions to Einstein’s field equations. Most of our time
will be spent on the discussion of the Reissner-Nordström black hole, but we will
also spent some time on the motivating the study of higher dimensional solutions
of general relativity, as well as plane wave solutions to the field equations.

In chapter 3, we introduce some basic aspects of supergravity. We introduce
global supersymmetry and gauge the resulting spinor field (the gravitino) to
obtain supergravity. The chapter ends with a discussion of p-branes and D-branes,
and a describe how supergravity arises as the low energy limit of string theory.

Subsequently, in chapter 4, we introduce the theory of minimal six-dimensional
supergravity following [4], which will be the main focus of this thesis. We then
provide some examples of known solutions to the field equations within the
context of this theory, and describe a way of generating more solutions using the
group Sp(6, R).

Afterward, in chapter 5, we discuss some properties of this group in the context
of the six-dimensional theory.

Chapters 6 and 8 provide examples of generated solutions by transforming flat
space and plane wave solutions using the group Sp(6, R), respectively.

Finally, in chapter 8 we study nontrivial transformations of a BTZ-black hole.
Among other things, we identify a horizon, and calculate the macroscopic entropy.



Part I

S U P E R G R AV I T Y

This part introduces supergravity and the specific supergravity theory
of interest in this thesis. Before delving right into supersymmetry,
we will first introduce some well known solutions to Einstein’s field
equations and motivate the study of higher dimensions than the
3+1 commonly studied in general relativity. After this, (global) su-
persymmetry will be introduced, and we will discuss how gauging
supersymmetry leads to a theory of supergravity. Finally, the the-
ory of six dimensional minimal supergravity is introduced closely
following [4].



2
S O L U T I O N S T O E I N S T E I N ’ S F I E L D E Q UAT I O N S

In this thesis we commit to the study of suprsymmetric solutions to Einsteins
field equations in six dimensions. However, in order to gain understanding for
the physical implications of these solutions it is useful to first understand some of
the most important solutions to general relativity in four dimensions, which we
will introduce here. We will provide a discussion of the Reissner-Nordström black
hole, as well as the plane wave solutions, which will both aid the understanding
of some of the more exotic solutions we will encounter in this thesis. Good
pedagogical introductions to general relativity include [8–10], or as a rich resource
with extensive bibliography, albeit it somewhat outdated in some parts, [11] is
widely regarded the standard textbook in the field.

2.1 black holes

Among the most remarkable features of General Relativity, is its prediction of
black holes. In the four-dimensional theory of general relativity a stationary,
asymptotically flat black hole coupled to electromagnetism is uniquely determined
by its mass M, electric and magnetic charges Q and P and angular momentum
J [12–15]. This kind of charged, rotating black hole is called a Kerr-Newmann
black hole and the uniqueness theorems are commonly referred to as the no-hair
theorem. This uniqueness does however not hold in higher dimensional solutions
to general relativity, which we will briefly touch upon later in this section.

2.1.1 Charged black holes

In this subsection we will discuss Reissner-Norström black hole, which is a black
hole solution coupled to electromagnetism. It will serve as a toy-model for the
more complicated objects studied later on in this thesis.

Starting from the Einstein-Hilbert action in four spacetime dimensions coupled
to matter fields

S =
1

16πGN

∫
d4x
√
−gR+ Sm, (2.1)

we can obtain the equations of motion of general relativity coupled to matter by
varying the action with respect to the metric. The resulting equations are Einstein’s
field equations:

Rµν −
1

2
Rgµν = 8πGNTµν, (2.2)

where Rµν is the Ricci tensor, R the Ricci scalar and GN the Newton constant in
four spacetime dimensions.

The energy-momentum tensor of the matter fields can be obtained from Sm via

Tµν =
−2√
−g

δSm

δgµν
. (2.3)

Since we are discussing the Reissner-Norström black hole, we will be interested
in gravity coupled to electromagnetism. In this case Sm is the Maxwell action
given by

Sm = −
1

4

∫
d4x
√
−gFµνF

µν = −
1

2

∫
d4xF∧ ?F. (2.4)

4



2.1 black holes 5

Using (2.3) we can calculate the energy-momentum tensor of the electro-
magnetic field, which reads

Tµν =
1

2

(
FµσF

σ
ν −

1

4
FρσF

ρσ

)
. (2.5)

Besides Einstein’s equations, we also have to take into account the homogeneous
Maxwell equations, they are

dF = 0, d ? F = 0. (2.6)

The electromagnetic field strength F is defined as the exterior derivative of the
electromagnetic potential:

F ≡ dA. (2.7)

The electromagnetic potential can be given a geometric interpretation in terms
of a five dimensional theory, in which case electromagnetism is gauge theory on
a fibre bundle which is topologically S1, with U(1) gauge symmetry. This is the
main idea behind the Kaluza-Klein reduction discussed in appendix E, and is one
of the reasons to study higher dimensions.

A solution satisfying both Einstein’s and Maxwell’s equations is given by the
Reissner-Nordsröm metric

ds2 = −∆(r)dt2 +∆−1(r)dr2 + r2dΩ22, (2.8)

where

∆(r) = 1−
2GnM

r
+
G(Q2 + P2)

r2
, (2.9)

and dΩ22 = dθ2 + sin2 θdφ2 is the metric on a two-sphere S2.
The corresponding field strength is

F = −
Q

r2
dt∧ dr2 + P sin θdθ∧ dφ. (2.10)

Setting Q = P = 0 in this solution, we obtain a black hole solution without any
matter content, this is the Schwarzschild solution [16].

When ∆(r) = 0 at r± = GNM±
√
G2NM

2 −G(Q2 + P2), gtt vanishes, meaning
there appears to be a horizon. However, grr blows up, indicating a singularity in
the line element. To see that these are not actual curvature singularities but rather
just artifact of our choice of coordinates we can calculate curvature scalars:

R = 0, RµνR
µν =

4G2N(P2 +Q2)2

r8
. (2.11)

From these scalars it becomes clear that the only curvature singularity is at r = 0.
Depending on the values of parameterQ, P andMwe distinguish three different

cases:

• GNM2 < Q2 + P2 In this case ∆(r) is positive for all r > 0, and as a
result there is no horizon shielding the singularity at r = 0. Such a naked
singularity violates the cosmic censorship conjecture, which implies that
such solutions cannot be the result of gravitational collapse, and the result is
therefore generally considered nonphysical. More intuitively the statement
GM2 < Q2 + P2 means that the total energy of the solution is less than the
energy of the electromagnetic field, which would be the case when the mass
of the matter that carries the charge is negative.



6 solutions to einstein’s field equations

• GNM2 > Q2 + P2 In this case we do not have the properties that led us to
consider the previous solution to be nonphysical. This solution has two null
surfaces at r = r± > 0, thus the singularity at r = 0 is hidden behind the
event horizons.

• GNM2 = Q2 + P2 If this equality is satisfied, the solution describes what
is called the extremal Reissner-Nordström black hole. In this case there is
only a single horizon at r = r+ = r− = GNM when ∆(r) = 0. The extremal
Reissner-Norström black hole is an example of an object which can preserve
certain supersymmetries, and are therefore of interest in the study of black
holes in quantum gravity. An interesting property of an extremal black hole
is that the mass is balanced by its charge, and as a result the electromagnetic
and gravitational forces between multiple black holes cancel. This enables
us to write stable solutions containing multiple black holes.

Let us now focus on this last case, the extremal Reissner-Nordström black hole.
Here the metric is

ds2 = −

(
1−

GNM

r

)2
dt2 +

(
1−

GNM

r

)−2

dr2 + r2dΩ22, (2.12)

with the horizon at r = GNM. To study the solution near the horizon we shift the
radial coordinate as

ρ ≡ r−GNM, (2.13)

resulting in the metric in isotropic form:

ds2 = −H−2(ρ)dt2 +H2(ρ)
(
dρ2 + ρ2dΩ22

)
, (2.14)

where
H(ρ) = 1+

GNM

ρ
, (2.15)

which is a Harmonic function with respect to the coordinates on R3. One can
check that H obeys the Poisson equation

∇2H = ∇2
(
1+

GNM

ρ

)
= 0, ρ > 0. (2.16)

Taking the limit ρ → 0 in this metric, yields the near horizon metric, which
reads

ds2 = −

(
ρ

GNM

)2
dt2 +

(
GNM

ρ

)2
dρ2 +G2NM

2dΩ22. (2.17)

Here we can recognize that the near-horizon geometry is AdS2 × S2. It might notFor a description of
Anti-de Sitter (AdS)

space see appendix C.
be immediately clear that the Ricci curvature scalar still vanishes, but since the
AdS2 and S2 both have nonzero Ricci curvature of equal magnitude but different
sign, the total Ricci curvature vanishes.

The field strength of the solution (2.10), now allows us to calculate the charges
contained inside the horizon:

P =
1

2π

∫
S2
F, (2.18)

Q =
1

4π

∫
S2

?F. (2.19)

Solutions of this kind, are known as Bertotti-Robinson solutions [17, 18].
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2.1.2 Dirac string

If we so desire, we are free to add an electric charge to the Maxwell equations,
resulting in

dF = 0, d ? F = ?J. (2.20)

However, introducing a magnetic monopole is not as straightforward since we
want the field strength to be a closed form. Dirac proposed in [19], that one could
introduce a magnetic monopole if we were to exclude a single point from the
integration area in (2.18). In this situation dF = 0 could hold anywhere, but on this
single point on the integration surface. In order to introduce an actual magnetic
monopole, this would require defining a line of such points stretching to infinity
since we can choose to integrate over any two-surface around the monopole, and
we should always find such a point. This line of points is called a Dirac string.
Since the vector potential Aµ is not well defined on the string, such a string
can only exist if it is not observable. This is the case if the wave-function of a
particle circulating the string, only acquires as a phase change a multiple of 2π.
The acquired phase by a particle moving in a loop around the string is equal to
the magnetic flux through this loop, and thus through the Dirac string. From this
it can be concluded that the restriction on the phase change after such a loop,
quantizes the magnetic flux through the Dirac string. This has led to the Dirac
quantization condition, which states that the existence of a magnetic monopole
would imply that the magnetic and electric charges must be quantized.

2.1.3 Electromagnetic duality

Let us have another look a the Lagrangian (2.4). The equations of motion (2.6)
obtained from this Lagrangian are invariant under transformations of the form(

F

?F

)
→ g

(
F

?F

)
, (2.21)

where g ∈ GL(2, R). Note that even though the equations of motion are invariant,
the action itself will be scaled by a factor equal to the determinant of G.

In a Lorentzian manifold there is a restriction to the subgroup Sp(2, R) ⊂
GL(2, R). To see this, consider the transformation(

F ′

(?F) ′

)
= g

(
F

?F

)
. (2.22)

Transforming with g ∈ GL(2, R) can result in F ′ ∝ ?F and (?F) ′ ∝ F, and combin-
ing these expressions leads to

F ′ ∝ ?(?F) ′. (2.23)

When the Hodge operator is defined in a Lorentzian manifold, acting with the
Hodge star twice changes sign: ? ?A = −A. This means that (2.23) can be rewritten
as

? F ′ ∝ −(?F) ′. (2.24)

However, for consistency we require (?F) ′ = ?(F ′), which is in disagreement with
(2.24). Limiting g to be an element of the group Sp(2, R), resolves this problem due
to the anti-symmetric property of the symplectic group. This result generalizes
to the transformation of n field strengths corresponding to n different one-form
gauge fields, so essentially to a case with n different charges. In this case the
duality transformation are elements of the group Sp(2n, R) [20, Chapter 4].
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2.1.4 Rotating black holes

The Reissner-Norström metric discussed above is fully described by the mass and
charge parameters. However, if we were to study the astrophysical black holes
observed in our universe, we would notice that angular momentum is another
parameter needed to describe these black holes.

The metric of a solution of a rotating mass requires axial symmetry instead of
spherical symmetry, this proved to be a considerably more challenging task than
finding the metric that describes black holes with only mass and charges, and it
was not until 1963 when Kerr had managed to find the solutions for a rotating
black hole [21]. Shortly after, this result was generalized to include charge, the
resulting charged, rotating black hole is described by the Kerr-Newman metric
[22]. In Boyer-Lindquist coordinates [23], the metric reads

ds2 =−

(
1−

2GNMr−GNM(Q2 + P2)

ρ2

)
dt2

−
2(2GNMr−GNM(Q2 + P2))a sin2 θ

ρ2
dtdφ+

ρ2

∆
dr2

+ ρ2dθ2 +
sin2 θ
ρ2

[
(r2 + a2)2 − a2∆ sin2 θ

]
dφ2,

(2.25)

where

∆(r) =r2 − 2GMr−GNM(Q2 + P2) + a2, (2.26)

ρ(r, θ) =r2 + a2 cos2 θ, (2.27)

and
a = J/M, (2.28)

with J the angular momentum of the black hole.

2.1.5 Higher dimensions

As the title of this thesis already suggests we will be interested in solutions of
more than four dimensions, here we will briefly discuss some higher-dimensional,
asymptotically flat vacuum solutions important in the study of black holes, explic-
itly solutions in five spacetime dimensions. Reviews of these type of solutions are
[24, 25].

A solution which might be among the most obvious generalizations of four
dimensional black holes, is the Myers-Perry black hole [26]. The Myers-Perry black
hole is the higher-dimensional analogue of the four dimensional Kerr solutions,
it is parametrized by its mass and angular momentum, just as the Kerr solution,
however since we are in higher dimensions, there is the possibility for rotation in
several independent planes [27].

Another higher dimensional solution parametrized by mass and angular mo-
mentum is the black ring [28]. This is a solution with S1 × S2 horizon topology. A
black ring is a loop of matter, where the gravitational force acting to collapse the
ring, is counteracted by the angular momentum, which results in a stable solution.
If we were to find such an object in asymptotically Taub-NUT space, which is
topologically R3 × S1, we can reduce the fifth dimension on a circle and obtain aAppendix E provides an

introduction to
dimensional reduction

on a circle.

solution in four dimensions with an S2 event horizon, a Kerr black hole.
We have just provided two objects parametrized by the same parameters of

mass and angular momentum (and without charge), which is impossible in
four dimensions by virtue of the uniqueness theorems. This shows the richness
of solutions in higher dimensions, which motivates further research of these
spacetimes. As an example we will discuss the explicit solution of a higher
dimensional black hole.
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The Tangherlini black hole and black rings

The Tangherlini black hole is a generalization to five-dimensions of the Reissner-
Nordström black hole. It turns out that the five-dimensional analogue is simpler
to construct from a brane perspective than the four-dimensional black hole, and
it is therefore commonly studied in the context of string theory. The Tangherlini
metric in Einstein frame reads [29]

ds2 = −H−2dt2 +H
(
dr2 + r2dΩ23

)
, (2.29)

where H is a harmonic function with respect to the spacelike coordinates.
Considering only a single black hole, the corresponding single centered solution

has
H = 1+

Q

r2
, (2.30)

where Q is the electric charge originating from the only nonvanishing component
in the gauge field Fµν, Ftr = −Q/r3.

This solution is similar to the solution of the Reissner-Nordström black hole,
with the major difference being that there is a different power of r in the harmonic
function.

Above we also mentioned the existence of black ring solutions. A heuristic way
to construct such a ring is as the direct product of D− 1 dimensional Tangherlini
black holes and a circle S1. This results in a black object with horizon topology
SD−3 × S1. In essence such a solution will contract along the S1 direction as a
result of tension and gravitational interaction with itself. However, as mentioned
above, we can introduce angular momentum along this direction to counteract
this collapse.

2.1.6 The BTZ black hole

In three spacetime dimensions the graviton does not have any polarization modes,
and hence the concept of gravity is we know it form dimensions D > 4 does not
apply in three dimensions. Nonetheless, there exists a solution known as the BTZ
black hole, named after Bañados, Teitelboim and Zanelli, which is a black hole
solution in three dimensions [30, 31]. This solutions shares many properties with
the black hole in four dimensions, including the fact the fact that it can be the final
state of a gravitational collapse [32]. These similarities, are the reason we call the
solution a black hole, but there are of course also differences with the black holes
in higher dimensions, where especially the origin of its horizon is very different.

The BTZ black hole is locally AdS3. But other than geometrical aspects, the
topology of a manifold is also of importance. Let us take ξ to be the generator of
a rotation in AdS3, and let us furthermore define

x→ en2πξx, n ∈ Z. (2.31)

Because ξ is a Killing vector, and as such the orbits that are a result of the identi-
fication 2.31 describe isometries, the metric remains well-defined with constant
negative curvature, and still describes a solution to Einstein’s equations.

To ensure the absence of closed timelike curves, ξ must be spacelike [30],
resulting in the condition

ξ · ξ > 0. (2.32)

To enforce this condition the part of spacetime where the condition is violated
is removed from the solution. As a result there are no longer any geodesics
that cross ξ · ξ = 0, and therefore this point is interpreted as a singularity. The
singularity is of a different nature than the ones we have seen so far, since it is not
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a curvature singularity but rather a singularity as a result of the causal structure
of the solution.

The metric of a BTZ black hole reads

ds2 = −N2dt2 +N−2dr2 + r2
(
Nφdt+ dφ

)2
, (2.33)

where

N2(r) =−M+
r2

l2
+
J2

4r2
, (2.34)

Nφ(r) =−
J

2r2
. (2.35)

Here the coordinate φ corresponds to the rotations generated by ξ, and we have
0 6 φ 6 2π. The constants M and J are associated with mass and angular
momentum, respectively.
N(r) vanishes at two values of r, where the outer radius corresponds to the

black hole horizon. For the horizon to exist, the following conditions must hold:

M > 0, |J| 6Ml. (2.36)

If these conditions are not satisfied, the solution contains a naked singularity. In
supergravity we are often interested in extremal solutions, this is the case when
|J| =Ml. In the extremal case both radii for which N(r) vanishes coincide.

It should be noted that the radius of curvature l, plays an important role in this
solution. In this solution the mass is dimensionless, and l is the length scale used
to define a horizon. Furthermore, it was shown in [32] that the BTZ black hole
can be the result of collapsing matter.

2.1.7 Black hole thermodynamics

There are similarities between properties of black hole mechanics and the laws of
thermodynamics, a review of the topic is presented in [33]. Here we shall limit
ourselves to a quick description of the results.

They can be summarized as

• Zeroth Law: The surface gravity k, of a black hole is uniform over the black
hole horizon.

• First Law: Variations in black hole energy E, are related to a change in
angular momentum J, charge Q and area A as

dE = ΩBHdJ+ΦBHdQ+
κ

8π
dA, (2.37)

where ΩBH is the angular velocity and ΦBH is the electrostatic potential
energy.

• Second Law: The area of the black hole horizon is non-decreasing as a
function of time:

dA > 0. (2.38)

• Third Law: κ = 0 cannot be reduced to zero by a finite sequence of operation.

Here the surface gravity at the horizon is defined as

kµ∇µkν = κkν, (2.39)

where kµ is a normalized Killing vector [8].
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Let us make the identifications

SBH =
A

4GN
, (2.40)

and [34]
TBH =

κ

2πGN
. (2.41)

If we now look back at the dynamic properties of black holes as listed above,
we can observe an analogy between the laws of black holes and the laws of
thermodynamics by interpreting SBH as the black hole entropy, and TBH as the
black hole temperature.
SBH is referred to as the Bekenstein-Hawkking entropy [35, 36]. Here the

entropy is described as a macroscopic property, but as we know from statistical
physics, the entropy of a system is related to the number of microstates consistent
with a macrostate. The microstates of black holes are studied in the context of
branes in string theory, which was first done in [37] for certain five-dimensional
extremal black holes. Since then, it has been done for a number of other black
objects, and it is still an active area of research.

2.2 plane and pp-waves

So far we have devoted most of our attention to the description of black holes
and various other black objects. Nevertheless, another class of solutions that
are interesting from a physical perspective are plane waves. These solutions
describe electromagnetic or gravitational radiation. With the relatively recent
observation of gravitational waves, new possibilities of studying the universe have
become available. Besides the measurement of gravitational waves, we would
like gain better understanding from a theoretical perspective as well. Therefore,
this subsection introduces pp-wave spacetimes, as well the subset of plane wave
solutions.

The class of pp-waves are characterized by a covariantly constant null vector
field ~k describing plane-fronted waves. This means that the covariant derivative
of ~k vanishes

∇~k = 0. (2.42)

We call ~k the wave vector, and there exist hypersurfaces orthogonal to ~k which
may be interpreted as a planar wave surface [38].

The class of pp-waves with constant curvature tensor at the surfaces orthogonal
to the wave vector, are what we call plane waves.

Pp-wave spacetimes are often expressed in terms of Brinkmann coordinates.
Defining the Killing vector ~k = ∂v, yields a metric of the form

ds2 = −2dudv+H(u,~x)du2 + |d~x|2, (2.43)

with H(u,~x) any smooth function. If H(u,~x) is a harmonic function with respect
to the coordinates ~x, the metric is a solution of the vacuum Einstein equations.

In the case where H(u,~x) = bij(u)xixj, the corresponding metric describes a
plane wave. If we wish for the plane waves to correspond to the transverse polar-
izations of gravitational waves, some restrictions on bij are needed as discussed
in [8].

Let us consider a plane-wave in four spacetime dimensions, in which case

H(u, x1, x2) = a(u)(x21 − x
2
2) + 2b(u)x1x2 + c(u)(x

2
1 + x

2
2), (2.44)

with a, b and c arbitrary functions of u. ForH of the form (2.44) in the metric (2.43),
a and b correspond to the ‘plus’-polarization and the ‘cross’-polarization modes
of gravitational waves, respectively. c does not correspond to any polarization of
the gravitational waves, and should therefore be set to zero.



3
A S P E C T S O F S U P E R G R AV I T Y A N D D - B R A N E S

Currently our understanding of the most fundamental physics is described by two
separate theories, both of which have been confirmed by experimental tests to work
really well. One is the standard model of particle physics, described as a quantum
field theory. The other is Einstein’s theory of general relativity describing gravity,
which is a classical theory. One might wonder if the fundamental mechanisms
behind gravity and the standard model are entirely disconnected, or whether they
are both embedded in a more fundamental theory. So the question to ask is if
there is some way to introduce gravity into the standard model. An important
role in approaching this question is fulfilled by supersymmetry, and particularly
its gauged version: supergravity.

This chapter is intended to introduce the reader to some of the basic aspects
of supergravity needed to understand the solutions discussed in this thesis. This
section is largely inspired by [20], other sources providing an overview of the
subject are e.g. [39, 40].

3.1 supersymmetry

The standard model is invariant under certain spacetime, as well as internal
transformations. An attempt to make a non-trivial connection between these two
sets of symmetry algebra’s leads to supersymmetric generators, here we will see
how.

Starting from the set of spacetime symmetries:

GPoincaré = R1,3 n SO(1, 3), (3.1)

where the R1,3 symmetries correspond to translations in four dimensional space-
time, which are combined in a semi-direct product with the set of rotations and
boosts forming the group of Lorentz transformations SO(1, 3). This combined set
of transformations form what is called the Poincaré group, and any Lagrangian
we write down for the standard model should be invariant under these spacetime
transformations.

Another type of transformation that is present in the standard model are the
internal transformations that do not have anything to do with spacetime but rather
they are acting only on the fields. And so for the standard model it turns out that
the set of internal symmetries is related to transformations in the Lie groups:

GInternal = SU(3)︸ ︷︷ ︸
Strong force

×SU(2)×U(1)Y︸ ︷︷ ︸
Electroweak

Higgs
−−−→ SU(3)×U(1)EM. (3.2)

Forcing the Lagrangian to be invariant under these transformations is actually
a source of the interactions in the standard model and as such we can identify
the SU(3) gauge symmetry with the strong interactions, and SU(2)×U(1)Y is
the unified electroweak interaction. Below a critical temperature well above the
temperature natural to our current universe, this symmetry is broken by the Higgs
mechanism, and as a result the symmetry group that we observe is the strong
interactions and the U(1)EM which corresponds to electromagnetism.

12
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If we look at the semidirect product of spacetime generators, they have a Lie
algebra given by the following set of commutators:

[Pµ,Pν] = 0, (3.3)

[Mµν,Pρ] = Pµηνρ − Pνηµρ, (3.4)

[Mµν,Mρσ] = ηµρMνσ − ηµρMνσ − ηνρMµσ + ηνσMµρ, (3.5)

where the generators Mµν correspond to Lorentz transformations and the genera-
tors Pµ to spacetime translations. For the internal groups we have Lie algebras

SU(3) : [tA, tB] = fABCtC (3.6)

SU(2) : [tA, tB] = εABCtC (3.7)

U(1) : [tA, tB] = 0. (3.8)

The standard model in its current form was finalized in the 1970’s, but even
before that people were already wondering whether it would be possible to
combine spacetime and internal symmetries. Writing out the standard model
group in full reads:

GStandardModel = GPoincaré ×GInternal. (3.9)

All commutators of generators between the internal and spacetime transforma-
tions vanish. Hence the spacetime and internal transformations are completely
disconnected. If we wanted them to be connected in some way, at least one of the
commutators has to be non-vanishing. People were attempting this until Coleman
and Mandula came up with their no-go theorem in [41]. In this paper they claim
that it is impossible to cobine spacetime and internal symmetries in “any but a
trivial way”.

However, this no-go theorem is based on a set of assumptions, one of them being
that the symmetries in question are based on commutators of operators. Another
way to think about this would be that the Coleman-Mandula theorem assumes
bosonic symmetries. However, in 1975 Haag Łopuszański and Sohnius showed
in [42] that by generalizing the theorem to include anticommuting symmetry
generators, there is the possibility of a nontrivial extension of the Poincaré algebra,
which we now know as the supersymmetric algebra. These anti-commuting
operators satisfy what is known as Clifford algebra instead of Lie algebra relations.
This leads to the following extension of the standard model algebra relations:

[Qα,Pµ] = 0,

{Qα, Q̄β} = −
1

2
(γµ)α

βPµ,

[Mµν,Qα] = −
1

2
(γµν)α

βQβ.

(3.10)

where Q is a spinor supercharge generating supersymmetric transformations, and
Q̄ is its Dirac adjoint. Resulting in massless multiples containing fields with spins
(s, s− 1/2). Given the Coleman-Mandula theorem this is the only way to extend
the group of standard model symmmetries, meaning there is a uniqueness to
this extension and we can only add something that corresponds to a fermionic
transformation.

3.2 extended supersymmetry

We can extend the supersymmetry algebra by adding more supersymmetry
generators, this is what is referred to as ‘extended supersymmetry’. The algebra
of an extended supersymmetric theory with N generators is

{QIα,QJβ} = εαβZ
IJ, (3.11)
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where I, J ∈ [N] and Z is an operator called the central charge of the algebra. The
central charge is traceless and antisymmetric in the indices I and J. It is traceless
because a supercharge has vanishing anticommutation relation with itself, this
means that for N = 1, the central charge vanishes. The ‘central’ charge obtained
its name because it has vanishing commutation relations with all other operators.

Using the second equation in (3.10) we can determine the expectation value of
{Q, Q̄} with respect to an arbitrary state. Moreover, in the massive representation
in the rest frame we have Pµ = (M,~0). Combining this with (3.11), results in
Bogomol’nyi-Prasad-Sommerfield (BPS) bound M > 1

2 |Z
IJ| [43, 44]. It is common

in literature to define ZIJ ≡ εIJZ, in which case the BPS bound reads

M > |Z|. (3.12)

A detailed derivation of this bound will be present in any good set of notes
on supersymmetry, see e.g. [45]. Solutions that saturate the bound (3.12), e.g.
representations for which the mass is equal to one or more eigenvalues of the
central charge, are known as BPS states. If the bound is saturated for all of the
eigenvalues, the solution is called full-BPS and when the bound is saturated for
half of the eigenvalues, it is called half-BPS. One should now be able to extrapolate
the systematic approach to naming these solutions.

We know from the spin-statics theorem that a boson is an integer spin particle
and a fermion is a particle with half-integer spin. The transformation with the
operators Q, is actually acting with a half integer spin, meaning that it generates
a symmetry between fermions and bosons. From the third equation in (3.10) we
know that supersymmetry transformations are tied to translations, and thus gaug-
ing supersymmetry requires making the transformations by Q local. And again
because of the relation between translation and supersymmetry transformations,
gauging supersymmtry requires the gauging of translations as well. And this is
where things become particularly interesting, since a theory of gauged translations
is general relativity and thus gauging supersymmetry automatically results in a
theory of gravity. This theory precisely what we call supergravity.

Because the supersymmetry transformation only changes spin, the mass and all
the other quantum numbers have to be the same for a particle and its superpartner.
However, so far we have not observed these superpartners. A possible explanation
for this lack of observations can be the spontaneous breaking of supersymmetry,
and if this breaking of supersymmetry happens together with the symmetry
breaking of the standard model, the Higgs mechanism could give mass to the
superpartners that are larger than the experimental bounds, of which the current
state of the art is set by the Large Hadron Collider at Cern.

One might wonder if there is some limit to the number of supercharges a theory
can have. And indeed there does turns out to be such a bound. The reasoning is
roughly that no particles with spin s > 2 are known. This means that we wish the
helicity λ of the particles to be bounded to values ranging from -2 till 2. In fact a
supersymmetry transformation can be interpreted as changing the helicity of a
state, rather than the spin, the difference being that helicity contains information
on whether the spin is aligned with the momentum. Transformations as a result
of acting with a supercharge change the helicity by 1/2, and it will thus take eight
supercharges to combine states with helicity -2 and 2. As a result we say that there
is a bound on the number of supercharges N 6 8.

3.3 gauging supersymmetry

We have thus far introduced the concept of supersymmetry, which is a global
symmetry. However, we also hinted that an attempt to gauge a supersymmetric
theory would lead us towards a theory of gravity. In this section we will go
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somewhat more in-depth on the formulation of a local theory of supersymmtetry:
supergravity.

Introducing the gravitino

The parameter of the transformations of supersymmtery is a constant spinor which
we will denote εα. An attempt to formulate a supersymmetric gauge theory leads
to the requirement that the spinor has to be spacetime dependent εα(x). The
locality property also means that the fermionic supersymmteric parameters are
gauged, and this introduces an associated spin 3/2 gauge field, ψµα, this is called
the Rarita-Schwinger field and was first introduced in [46]. In the context of
supergravity it is however called the gravitino, since it is the superpartner of the
graviton.

considering the free limit, in which there is no interaction, we take ψµα(x) to
be a free field, transforming under a gauge transformation as

ψµα(x)→ ψµα(x) + ∂µεα(x). (3.13)

We now need to find an action which is invariant under this tranformation, as
well as first order in derivatives since the gravitino is a spinor. The action for this
field is the Rarita-Schwinger action:

S3/2 = −

∫
dDxψ̄µγ

µνρ∂νψρ. (3.14)

Fundamental spinor

The transformation parameter of supersymmetry is the spinor εα. In general the
spinor associated with a certain supersymmetric theory in D dimensions, is the
one with the least possible components in that dimension. In the six-dimensional
theory, this is the symplectic Majorana-Weyl spinor. And since Weyl spinors are
Majorana spinors with well-defined chiral projections (where the Weyl spinor
can be either left-chiral or right-chiral), we sometimes denote the theory by (l, r).
Here l and r are the number of right-chiral and left-chiral spinors, respectively.
In this thesis we study minimal supergravity in six dimensions. The addition
‘minimal’, means that N = 1, which is often denoted N = (1, 0) in the case of a
six-dimensional theory. For more information on spinors and their representation
in various dimensions, see appendix D.

3.4 D = 4, N = 1 supergravity

In order to obtain a theory of supergravity we need some way to couple the spinors
to curved spacetime. We first define the gamma matrices on curved spacetime by
relating them to the gamma matrices in Minkowski spacetime by making use of
the vielbein: For an introduction to

the vielbein formalism,
and how it is used to
couple spinors to curved
backgrounds, see
appendix D.2

γµ(x) ≡ eµα(x)γα. (3.15)

Furthermore, we replace the partial derivative in (3.14) by a covariant derivative,
which results in the following equation of motion:

γµνρ∇νψρ = 0. (3.16)

This covariant derivative acts as

∇µψν = ∂µψν +
1

4
ωµabγ

abψν − Γρµνψρ, (3.17)
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where ωµab is the spin connection, and Γρµν is the affine connection (a coordinate
independent notion of the Christoffel symbols). Because the affine connection is
symmetric in its lower indices µ and ν, it will vanish upon contraction of indices
with the antisymmetric gamma matrix. This allows us to simplify the equation of
motion of the gravitino somewhat, and it has to obey

γµνρDµψν = γµνρ
(
∂µ +

1

4
ωµabγ

ab

)
ψν = 0. (3.18)

The field content of the D = 4, N = 1 theory consists only of the graviton and the
gravitino, of which the transformations rules are [47]

δeaµ =
1

2
ε̄γaψµ, (3.19)

δψµ =Dµε(x) = ∂µε+
1

4
ωµabγ

abε. (3.20)

The action invariant under these transformations is

S =S2 + S3/2, (3.21)

with
S2 =

∫
dDxeeaµebνRµνab(ω) =

∫
dDxeR(e,ω), (3.22)

and S3/2 as given in (3.14), which in curved spacetime becomes

S3/2 = −

∫
dDxψ̄µγ

µνρDµνψρ. (3.23)

Constructing a solution

Let us consider the simplest classical solution of N = 1, D = 4 supergravity, which
is Minkowski spacetime. Therefore, we have gµν|0 = ηµν, and vanishing gravitino
field ψµ|0 = 0. This simplifies the transformations rules (3.20) and (3.20), which
in this case read

δeaµ =0, (3.24)

δψµ =∂µε, (3.25)

since ψµ|0 = 0 and in Minkowski space the spin connection vanishes. The residual
global supersymmetric algebra is determined by the vanishing of these variations,
and the requirement δeaµ = 0 and δψµ = 0 mean that the transformations do not
change the background fields.

In this case the requirements for the preservation of supersymmetry have thus
simplified to ∂µε = 0, which is solved for all four linearly independent equations
if εα is a set of four linearly independent Majorana spinors. In analogy with
Killing vectors, which represent isomteries of spacetime, these spinors are called
‘Killing spinors’.

Using a combination of two such Killing spinors ε and ε ′, we can construct
the spinor bilinear (ε̄ ′γµε), which transforms as a Killing vector under Lorentz
translations. Spinor bilinears are useful objects in the construction of a metric of
the supersymmetric solution.

The total number of real components of supercharges in a theory is given by the
number of real components in a spinor supercharge Qα multiplied by the number
N of supercharges. This statement may seem superfluous, but the number of real
components of supercharges in a theory is often used to express how much of the
supersymmetry is conserved by considering the fraction of linearly independent
Killing spinors in a theory relative to the total number of real components of
supercharges in a theory. The solution of Minkowski space studied above is called
fully supersymmetric, as there are four linearly independent Killing spinors and
thus four out of four supercharges are conserved.
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Black holes in extended supergravity

Extended supergravities in four dimensions contain U(1) gauge fields, called
graviphotons. These correspond to a transformation of the central charge. If we
consider the graviphoton to fulfill the role of the electromagnetic potential in the
Einstein-Maxwell theory, we have that the central charge is [29]:

GnZ
2 = Q2 + P2. (3.26)

In subsection 2.1.1 we mentioned that the Reissner-Nordström black hole is
extremal if GNM2 = P2 +Q2 is satisfied. If a solution is supersymmetric, the
BPS bound (3.12) is satisfied. Combining the BPS bound with (3.26), allows us to
conclude that supersymmetric black holes are extremal.

3.5 branes

We have previousely in subsection 2.1.1 introduced the extremal Reissner-Nordström
black hole, and in subsection 2.1.5, we hinted at the existence of higher dimen-
sional black hole solutions. In this section we will introduce the p-brane, which are
p-dimensional surfaces one can think of as a generalized version of a black hole.
These p-branes are supersymmetric solutions in supergravity, and they turn out to
correspond to the low energy limit of D-branes in string theory [48]. We can also
introduce fields into the action, here we will only discuss the bosonic field content
since this is sufficient to develop the ideas, and it is a rather straightforward
exercise to complement the bosonic fields with fermionic fields through supersym-
metric transformations. In what follows we will limit our attention to massless
modes of the string, since massive excitation are at the Planck scale. Many of the
results in this subsection are more thoroughly discussed in e.g. [49–51].

3.5.1 Elementary string theory

The principle concept of string theory is that the particles described in the standard
model are not the most fundamental particles of nature, but instead they are
composed of one-dimensional objects we call strings. The dynamics of a string in
a curved spacetime background with metric Gµν(X) is described by the action

S =
1

4πα ′

∫
Σ
d2σ
√
−hhαβ∂αX

µ∂βX
νGµν(X), (3.27)

called the ‘non-linear sigma model’ [49]. Which is a rather straightforward gener-
alization of the Polyakov action. Here the coordinates on the string world sheet Σ
are σa = (τ,σ), a = 0, 1, and hαβ is the worldsheet metric. Xµ are the coordinates
of the string in spacetime, and α ′ is the only independent dimensionful parameter When we say ‘the only

dimensionful parameter’,
we of course mean in
addition to the natural
units we set to 1 in our
convention.

in string theory equal to the string length squared. Hence this action provides a
map from the worldsheet of the string into a spacetime with metric Gµν(X).

We also have to impose boundary conditions, for which we have two options.
The first one is the Neumann boundary condition

∂σX
µ|∂Σ = 0, (3.28)

which corresponds to open strings.
The second option, is to impose the Dirichlet boundary condition

∂τX
µ|∂Σ = 0, (3.29)

which fixes the endpoints of the string at some constant position in space. Notice
however, that momentum is not conserved at the endpoints. This suggest that the
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strings are coupled to other objects, which are called D-branes, where D stands for
Dirichlet. A p-dimensional D-brane is usually called a Dp-brane. The existence of
these objects implies that string theory is not just a theory of strings in a vacuum
background, but instead the theory also contains these higher dimensional branes.

3.5.2 Type IIB supergravity

Those who have studied string theory might know that we distinquish five
different types of string theory: Type I, heterotic SO(32), heterotic E8 × E8, as
well as type IIA and type IIB. Witten found that all these different theories can
arise as different limits of what he called M-theory, and they are related through
S-dualities or T-dualities [52].

In this thesis we are interested in solutions of six-dimensional (1, 0) supergravity.
Which can be obtained though the compactification of F-theory on an elliptically
fibered Calabi-Yau threefold [53]. F-theory is effectively a twelve dimensional
theory which provides a geometric interpretation to type IIB string theory with
D7-branes [54]. The reason to study this configuration in F-theory is that the back-
reaction of the D7-brane is strong and as a result cannot be studied perturbatively
in ten dimensional string theory. For this reason we will focus our discussion on
type IIB solutions.

Type II string theories, are theories describing closed strings, and we distinguish
furthermore type IIA (non-chiral) and type IIB (chiral) string theories. Both of
which are maximally supersymmetric.

Open strings, such as they appear in type I theory, can either have anti-periodic
boundary conditions, in which case we say it lives in the Ramond (R) sector,
or it can have periodic boundary conditions, in which case we say it is in the
Neveu-Schwarz (NS) sector. We can combine these open strings to obtain closed
strings, which as a result can live in the R-R, R-NS, NS-R or NS-NS sector. It turns
out that the R-R and NS-NS sectors describe bosonic strings, whereas the R-NS
and NS-R sectors describe fermionic strings.

The NS-NS sector of the massless spectrum of type II theories contains the
graviton Gµν, a two-form Bµν, and a dilaton φ, this holds for both type II
supergravity and type II string theory. Furthermore, in the R-R sector type IIA
theories contain p-forms Ap with an odd rank (p) whereas a type IIB theory
contains forms with an even rank: A0, A2 and A4.

The bosonic part of the type IIB supergravity action reads [55]

SIIB =SNS + SR(IIB) + SCS(IIB), (3.30)

2κ2SNS =

∫
d10x

√
−ge−2φ

(
R+ 4∂µφ∂

µφ−
1

2
|H3|

2

)
, (3.31)

2κ2SR(IIB) =−
1

2

∫
d10x

(
|F1|

2 + |F̃3|
2 +

1

2
|F̃5|

2

)
, (3.32)

2κ2SCS(IIB) =−
1

2

∫
C4 ∧H3 ∧ F3, (3.33)

where F1 = dA0, H3 = dB2, and the field strengths in the Chern-Simons term
SCS(IIB) read

F̃3 =dC2 −C0 ∧H3, (3.34)

F̃5 =dC4 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3. (3.35)

Finally, the self duality constraint

F̃5 = ?F̃5, (3.36)

does not automatically follow from the action and have to be imposed as an
addition condition.
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3.5.3 p-branes in supergravity

An interesting set of solutions to the equations of motion of the type II action
(3.30) are what we call p-branes, these are hypersurfaces which extend in p+1

spacetime dimensions. p-branes couple to (p+1)-rank gauge field Ap+1 as∫
dp+1σ∂α1X

µ1 . . . ∂α−p+1X
µp+1Aµ1...µp+1ε

α1...αp+1 , (3.37)

which is a generalization of the way in which a point particle couples to a one-
form gauge field, or Bµν couples to a string worldstheet. Again analogous to the
case of a point particle, the electric charge Q of a p-brane can be determined using

Q ∼

∫
SD−p−2

?Fp+2, (3.38)

and the magnetic charge P by

P ∼

∫
Sp+2

Fp+2. (3.39)

The charges have to satisfy

QP = 2πn, n ∈ Z, (3.40)

which is a generalization of the Dirac quantization condition for electric and
magnetic monopoles discussed in subsection 2.1.2.

Extremal p-branes are 1/2 BPS, and their solution reads
ds2 = H

−1/2
p (dt2 + dxidx

i) +H
1/2
p dyjdy

j,

e2φ = H
(3−p)/4
p ,

A0,...p = H−1
p − 1,

(3.41)

where the xi coordinates lie parallel to the brane, and the yj coordinates are
transverse to the brane direction. Moreover, Hp is a harmonic function, which for
7− p > 0, is given by

Hp = 1+

(
Qp

r

)7−p
. (3.42)

Here Qp is an integration constant related to the charge of the p-brane, and it
reads

Qp = (4π)(5−p)/2gsα
′(7−p)/2N, (3.43)

where N denotes the number of branes.
Remember this discussion of the p-brane is prefaced by the statement that they

are used in the construction of black holes. One of the properties that enables us
to do this, is the fact that a p-brane has an event horizon at r = 0, this is also the
reason why p-branes are sometimes referred to as black branes.

D-branes in string theory

We previously claimed that extremal p-branes in supergravity, are the low energy
limit of D-branes in string theory, and hence they actually describe the same object
[56]. At first sight p-branes, which are solutions of supergravity, and D-branes,
which are solutions of perturbative string theory may seem unrelated as they
appear in two different places. However, D-branes are charged under the R-R
fields of type II string theory [48], which is what inspired Polchinski to make the
identification of D-branes with R-R charged extremal p-branes, and in doing so
sparking (together with other works) the ‘second superstring revolution’.
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Figure 3.1: A Dp− brane surrounded by a naked curvature singularity at a finite
radius. The negative brane induces metric signature (10 − p,p) for
transverse direction r smaller than the radius of the singularity.

3.5.4 Negative branes

The concept of negative branes is introduced in [57], and the basic idea of those
branes is that the introduction of a stack of N Dp-branes results in a background
solution similar to (3.41):

ds2 =H(r)−1/2ds2p+1 +H
1/2ds29−p (3.44)

H(r) = 1+
(2
√
πls)

7−pΓ(7−p2 )

4π

N

r
, (3.45)

where we now have N = N+ −N−. If we consider a solution with N− > N+,
H(r) = 0 at r = rs > 0, resulting in a naked singularity at r = rs. This is a
result of the negative tension of a negative brane, and it is analogue to the naked
curvature singularity that occurs for a Schwarzschild black hole with negative
mass. However, we can analytically continue the metric as a function ofH, avoiding
the singularity by encircling H(r) = 0 in the complex plane. This results in the
following metric beyond the singularity:

ds2 =i−1H̄(r)−1/2ds2p+1 + iH̄
1/2ds29−p, (3.46)

where H̄ ≡ −H. Now we can use a Weyl transformation to obtain a real metric:

ds2 =− H̄(r)−1/2ds2p+1 + H̄
1/2ds29−p, (3.47)

up to an arbitrary overall sign. The resulting spacetime is real, but it means that forWe denote the metric
signature as (s, t), with
s the number of spacelike

dimensions and t the
number of timelike

dimensions.

r < rs, the metric has signature (10− p,p) instead of the usual (9, 1). A schematic
representation of the effect of a negative brane on the spacetime signature is
presented in figure 3.1.
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M I N I M A L S I X - D I M E N S I O N A L S U P E R G R AV I T Y

In this thesis we are interested in solutions of minimal six-dimensional supergrav-
ity, which will be introduce in this chapter. First, the theory will be described in
terms of its field content and equations of motion, followed by the discussion of
the Gibbons-Hawking class of solutions where we discuss the results obtained in
[4]. Finally, a number of examples of possible solutions are presented.

4.1 setting

In this thesis we are particularly interested in minimal (N = (1, 0)) supergravity.
In supergravity the number of degrees of freedom of the bosonic sector has to
be equal to that of the fermionic sector [20, Chapter 6]. Previously we presented
the N = 1, D = 4 theory of which the field content was made up only of the
graviton and the gravitino, which in four dimensions both have 2 on-shell degrees
of freedom. However, when going to six dimensions, as we will do in this thesis,
the on-shell degrees of freedom of the graviton and gravitino are nine and twelve,
respectively. In the case of minimal supergravity in six dimensional supergravity
the supermultiplet also contains a two-form field Bµν, with self-dual field strength
G ≡ dB (The self duality condition is G = ?G). If we were to repeat the counting
of the on-shell degrees of freedom with this two-form included, one would see
that both the bosonic and the fermionic sector count twelve degrees of freedom.

This two-form has a particularly interesting property. It can be considered as a
generalization of the electromagnetic potential, which is a one-form giving charge
to a point particle. To obtain the contribution to the action of the electromagnetic
potential, we have to integrate over a one-dimensional worldline, which corre-
sponds to a point particle. Analogously, to obtain the contribution to the action of
the two-form potential we have to integrate over a two-dimensional worldsheet,
which corresponds to an object that extends in one spatial dimension (see (3.37)).
This means that the two-form potential couples to a one-dimensional string. In
subsection 3.5.2 we mentioned that the field content of a type II theory includes
a two-form, and following the reasoning above we can interpret the string from
string theory as the source for this two-form field. Essentially this six-dimensional
theory is the simplest example of a string theory.

The field content of minimal supergravity in six dimensions consists of the
graviton gµν, a two-form Bµν with self-dual field strength G ≡ dB, and a gravitino
ψAµ . Here A is an index in the representation Sp(1), and moreover the gravitino is
a left handed symplectic Majorana-Weyl spinor [58]. Where left handed implies
that the helicity is negative, or γ7ψ = −ψ.

When discussing the example of N = 1, D = 4 supergravity in subsection 3.4,
we mentioned that the requirement to preserve supersymmetry is given by the
Killing spinor equation. In six-dimensional supergravity we have to take into
account the supersymmetry variation of the two-form field as well, and as a result
the supersymmetry condition reads [4]

∇µε+
1

4
Gµνργ

νρε = 0. (4.1)

21
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The equations of motion of the bosonic fields are

G = ?G (4.2)

∇µGµνρ =0, (4.3)

Rµν =GµρσGν
ρσ, (4.4)

where, (4.2) and (4.3) can be rewritten as

dG = 0. (4.5)

Using (4.4), we observe that the Ricci scalar is given by R = Rµ
µ = GµνρG

µνρ.
In differential form we can write a similar expression:

G∧ ?G =
1

3!
GµνρG

µνρvol6 =
1

3!
R vol6, (4.6)

where the left hand side vanishes due to the self duality of condition. Hence it
follows that

R = 0, (4.7)

in which case Einstein’s field equations (2.2) read

Rµν = GµρσGν
ρσ = 8πGNTµν. (4.8)

Given a spinor satisfying (4.1), one can construct spinor bilinears, which are [4]

Vµε
AB =ε̄Aγµε

B, (4.9)

ΩABµνρ =ε̄Aγµνρε
B, (4.10)

obeying a number of constraints.
Using Fierz identities, some algebraic constraints can be obtained, specifically

V has to be a null Killing vector field and the Killing spinor has to obey the
projection

V · γε = 0. (4.11)

Furthermore, the three forms ΩAB induce an almost hyper-Kähler structure on a
four-dimensional base space.

Supersymmetric solution in a coordinate dependent basis

The projection (4.11) and further differential constraints on the vector V and three-
forms composing ΩAB, imply that a basis can be chosen such that the equation
for the Killing spinor reduces to

∂µε = 0. (4.12)

As (4.11) is the only projection, a supersymmetric solution has to preserve either
one half or all of the supersymmtry. Introducing coordinates, in which V = ∂v,
the six dimensional metric can be written as [4]

ds2 = 2H−1(du+β)

(
dv+ω+

F

2
(du+β)

)
+Hhmndx

mdxn, (4.13)

where hmn will be referred to as the four dimensional base space, with β and ω
one forms on this base space, and H and F are arbitrary functions. These elements
can all depend on u and the base space coordinates xi, but not on v since ∂v is a
Killing vector.

Similarly the expression for the three-form G can also be given in terms of these
coordinates. However, as it is not very enlightening, we do not present it here.
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4.2 the gibbons-hawking class of solutions

The general solutions simplify considerably when there is no dependence on u.
Solutions of this type can be characterized by the existence of a Killing vector ∂u. For a discussion on

hyper-Kähler manifolds,
and their application to
supersymmetric
solutions, see appendix
B.3

If we furthermore assume that ∂u preserves the three forms Ω, there is no more
u-dependence in our equations. In this case the base space is hyper-Kähler. The
one-form β has self-dual curvature on the base, and metric reads

ds2 = −2H−1(du+β)

(
dv+ω−

F

2
(du+β)

)
+Hds2HK4 . (4.14)

In order to find solutions satisfying the superposition principle expected of BPS
objects, we study the most general hyper-Kähler manifold admitting a Killing
vector field ∂ψ. This are solutions of a hyper-Kähler base space with an extra U(1)
isometry called a Gibbons-Hawking space [59].

The metric of the Gibbons-Hawking base space reads

ds2GH = V−1
1 (dψ+ χ)2 + V1ds

2
R3

, (4.15)

and the expression for the three-form is [4]

G =
1

2
?4 dH−

1

2
H−1(du+β)∧

(
dω− +

1

2
Fdβ

)
+
1

2
(dv+ω)∧ d

(
H−1(du+β)

)
,

(4.16)

where ?4 is the Hodge star in the four-dimensional base space, and dω± =
1
2 (dω± ?4dω).

The coefficients and forms present in (4.14), (4.15) and (4.16), can be written
in terms of six harmonic functions on R3 denoted by Vi, where i ∈ [6]. They are
defined as [4]

β =
V2
V1

(dψ+ χ) + β̄, (4.17)

ω =

(
V4 +

V6V3 + V2V5
V1

+
V2V

2
3

V21

)
(dψ+ χ) + ω̄, (4.18)

F = 2V5 +
V23
V1

, (4.19)

H = V6 +
V2V3
V1

, (4.20)

where

∗3dχ = dV1, ∗3dβ̄ = −dV2, ∗3dω̄ = 〈V,dV〉. (4.21)

Here V ∈ R6 is a vector Vi ≡ Vi, and

〈A,B〉 ≡ ATΩB, (4.22)

with Ω a skew-symmetric matrix, is the symplectic norm on R6. Properties of the
symplectic group are discussed in section 5.

We will mostly be interested in solutions characterized by harmonic functions
of the form Vi = α+ β

r , where α and β are real constants and r2 = xix
i with

i ∈ [3] is the radial coordinate in the R3 section of the base space. We will denote
the vector

V = Γ∞ +
Γ

r
, (4.23)
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Figure 4.1: A schematic of the Gibbons-Hawking base space consisting of a Eu-
clidean space R3 with a U(1) fibre corresponding to the coordinate ψ,
spanning curves between the sources of the function V1 [5].

describing a point-like source at r = 0 with residues of the harmonic functions
(charges)

Γ = (m,q,p, j,n,µ) (4.24)

and moduli specified by

Γ∞ = (m∞,q∞,p∞, j∞,n∞,µ∞). (4.25)

In this thesis we are interested in single centered solution, however one can also
aspire to analyze solutions with multiple centers. This has for example been done
to study bound states of black holes in [5]. In this case (4.23) can be generalized to

V = Γ∞ +
∑
a

Γa

|~x− ~xa|
, (4.26)

with ~x denoting points in the R3 section of the base space.

4.2.1 Classifications of Gibbons-Hawking space

The exact form of the Gibbons-Hawking metric is determined by the harmonic
function V1, which we will mostly consider to be single centered, which means
that it is of the form V1 = m∞ + m

r . Close to a center the Gibbon-Hawking metric
is R4/Z|m|, which means that m ∈ Z. Possible spaces that can be obtained are
flat space (V1 = 1

r , V1 = constant), Eguchi-Hanson space (V1 = m
r ) [60] and

Taub-NUT space
(
V1 = m∞ + m

r

)
[61, 62].

Eguchi-Hanson space is an example of asymptotically locally Euclidean (ALE)
space, and Taub-NUT is an example of a asymptotically locally flat (ALF) space,
these are asymptotic to R4/Zm and R3 × S1, respectively. The S1 fibre of an
ALF solution is often a modulus of the solution, meaning that it can be altered
freely. In the case where S1 is large compared to the size of the area in which
the sources are positioned, the base space can be considered locally flat. On the
other hand, if S1 is small the base is effectively three-dimensional. An example of
a Gibbons-Hawking base corresponding to a description of two black holes, and a
smooth center is shown in figure 4.1.

Below we list some explicit examples.

Flat space

Four dimensional Euclidean space R4 is obtained for V1 = 1
r , which gives the

metric

ds2
R4

= r(dψ+ (1+ cos θ)dφ)2 +
1

r
(dr2 + r2dθ2 + r2 sin2 θdφ2). (4.27)
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Redefining the coordinates

r =
ρ2

4
, θ = 2θ ′, ψ = 2ψ ′, φ = −ψ ′ −φ ′, (4.28)

results in the line element

ds2
R4

= dρ2 + ρ2(dθ ′2 + sin2 dψ ′2 + cos2 θ ′dφ ′2), (4.29)

which is a direct product R3 × S1.
Another choice of V1 resulting in a (locally) flat base space is V1 = m∞. In this

case the metric reads
ds2 = m−1∞ dψ2 +m∞|d~x|2. (4.30)

Which effectively describes a dimensional reduction of the ψ-coordinate on a
circle.

Eguchi-Hanson space

Eguchi-Hanson space is an example of an asymptotically locally Euclidean (ALE)
space. For V1 = m

r , the metric is a metric on R4/Zm. We can see this by plugging
V1 = m

r into the metric (4.15), which yields

ds2 =
r

m
(dψ+m cos θ)2 +

m

r

(
dr2 + r2dΩ22

)
. (4.31)

Which we can rewrite to obtain

ds2 =
ρ2

4

(
dψ

m
+ cos θ

)2
+ dρ2 +

ρ2

4
dΩ22, (4.32)

where we redefined r = ρ2

4
√
m

.

Taub-NUT space

Another interesting possibility for the base space is obtained when taking V1 =

m∞ + m
r , in this case the base space metric is the Taub-NUT metric, where m

is called the NUT charge. Taub-NUT space is an example of an asymptotically
locally flat (ALF) space. The Taub-NUT metric reads

ds2TN =
(
m∞ +

m

r

)−1
(dψ+m cos θdφ)2 (4.33)

+
(
m∞ +

m

r

)
(dr2 + r2dθ2 + r2 sin2 θdφ2). (4.34)

Close to the center (r→ 0) Taub-NUT locally looks like R4/Zm, which implies
that m ∈ Z and that for m = 1 the metric locally describes R4.

Asymptotically (r→∞) the Taub-NUT metric is locally R3 × S1, which is an
interesting property since this allows us to reduce the metric along this asymptotic
S1.

examples of gibbons-hawking class solutions

In later chapters we will be interested in classifying solutions of spacetimes. To
do so one should of course be able to recognize different well-known spacetimes,
and therefore we list a selection of several known classes of solutions below.
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4.2.2 Vacuum solutions

An interesting class of solutions to Einstein’s equations, are the vacuum solutions.
These are Ricci-flat solutions for which the three-form (4.16) vanishes. For G = 0

we require
dH = dβ = dω− = 0, (4.35)

which places some constraints on the harmonic functions [6]:

V2 = v1V1, V3 = v3 −
v4
v6
V1, V4 = v4 − v1V5, V6 = v6 − v1v3 + v1

v4
v6
V1.,

(4.36)
with constants vi ∈ R.

This description contains some gauge freedom as represented by the group
element 5.26 discussed in section 5.4, which we can use to find that another set of
restrictions on the harmonic functions describing a vacuum solution is [6]:

V2 = 0, V3 = −
v4
v6
V1, V4 = v4, V6 = 1. (4.37)

In which case H = 1 and β = ω = 0, resulting in a metric of the form

ds2 = −2dudv+ Fdu2 + V−1
1 (dψ+ χ)2 + V1|d~x|

2, (4.38)

where

F = 2V5 +
v24
v26
V1. (4.39)

These sets of constraints on the harmonic functions can be used to identify
vacuum solutions just by looking at the harmonic functions defining the solution.

4.2.3 Flat space

Above we have seen how the harmonic function V1 characterizes the Gibbons-
Hawking base space, and among other things we found that V1 = 1

r and V1 =

constant yield flat spaces. One rather obvious choice for harmonic functions
describing flat space, and one that we will come back to later, is

Vflat =



1
r

0

0

0

0

1


. (4.40)

The corresponding metric is of the form (4.14), with β = ω = F = 0, H = 1 and
V1 = 1

r , which reads
ds2 = −2dudv+ dsR4 . (4.41)

We can now ask ourselves what the most general vector of harmonic functions,
V, describing flat space looks like. In order to find such a general vector, we
have to determine when all components of the Riemann tensor vanishes. This
computation has been performed numerically using the xAct toolbox for Wolfram
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Mathematica [63]. For the two different characterizations of a flat base space we
found

Vflat =



m∞
q∞
p∞
j∞
n∞
µ∞


, Vflat =



m
r

0

p∞
0

n∞
µ∞


. (4.42)

These are invariant under the SL(2, R) gauge transformations discussed in section
5.4.

4.2.4 AdS3 × S3

By acting on flat space one can generate a set of harmonic functions describing
AdS3 × S3, which results in the set of harmonic functions [6]:

VAdS3×S3 =



1
r

0

0

0

n
µ
r


. (4.43)

which corresponds to the metric

ds2 = −2
r

µ
du(dv−ndu) +

µ

r2
dr2 + 4µdΩ23, (4.44)

and the three-from reads

G =
1

2µ
dr∧ du∧ dv+

1

2
µ sin(θ)dθ∧ dφ∧ dψ

=

(
1+ ?6
2µ

)
du∧ dv∧ dr.

(4.45)

Notice that the three-form does not depend on n, and that it can be removed
from the metric by a coordinate transformation v ′ = v+nu. This means that n is
a redundant parameter in the description of this solution.

Let us now define a coordinate ρ as

r =
4µ2

ρ2
. (4.46)

The metric in terms of the new coordinates v ′ and ρ is

ds2 =
4µ

ρ2

(
−2dudv ′ + dr ′2

)
+ 4µdΩ23, (4.47)

which is the metric on AdS3 × S3 as we can see by defining v = (t+ x)/
√
2 and

u = (t− x)/
√
2, and comparing the resulting metric to (C.4).
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4.2.5 BTZ black hole

By turning on just one parameter in (4.43) we can obtain

VBTZk =



0

0

0

0

n

0


+



1

0

0

0

k

µ


1

r
. (4.48)

As a result of this extra parameter, the metric is has changed and it now reads

ds2 = −
2r

µ
dudv ′ +

2k

µ
du2 +

µ

r2
dr2 + 4µdΩ23. (4.49)

Because of this, we can no longer remove the guu component of the metric via a
coordinate transformation, as we have done for the AdS3 × S3 solution.

It will now be helpful to define the following coordinates [6]:

r =
w2 − 4k

4
, u =

t− 2
√
µϕ√
2

, v =
t+ 2

√
µϕ√
2

, (4.50)

which yields the metric

ds2 = −h(w)2dt2 + h(w)−2dw2 +w2
(
dϕ−

2k
√
µw2

dt2
)2

+ L2dΩ23, (4.51)

where

h(w) =
w2 − 4k√
2µw

. (4.52)

Making the periodic identification ϕ ∼ ϕ+ 2π, this metric describes an extremal
BTZ black holes in a direct product with a three-sphere with 4µ radius. The BTZ
black hole itself is characterized by the radius L, mass M and angular momentum
J:

L2 = 4µ, M =
2k

µ
, J =

4k
√
µ

. (4.53)

4.2.6 The black string

In subsection 2.1.5, we introduced black string solutions as a higher dimensional
analogue of the black hole, with a topologically SD−3 × S1 horizon. In this
subsection we will introduce the black string solution as a solution in the Gibbons-
Hawking class, and we will express it in terms of Harmonic functions. The
direction of the black ring will be along the u coordinate, and as such it proves
a natural way to reduce the solution to five dimensions. The black string in six
dimensions will have a S3 × S1 horizon topology, and the near horizon geometry
is a direct product of an extremal BTZ black holes and S3/Zm.

The most general form of the harmonic functions corresponding to the black
string solution is

Vbs =



0

0

0

− 1
m (p− qn∞)
n∞/2
1


+



m

q

p

j

n/2

µ


1

r
. (4.54)
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This result has been obtained in [5] by restricting the metric to be asymptotically
isometric to R1,4 × S1u.

The corresponding metric reads

ds2 =− 2

(
1+

Q̃

2
√
2mr

)−1 [
dv+

Jψ

8m2r
(dψ+m cos θdφ) −

1

2

(
n∞ +

Q

4mr

)
du ′

]
du ′

+

(
1+

Q̃

2
√
2mr

)[
r

m
(dψ+m cos θdφ)2 +m

dr2

r
+mrdΩ22

]
,

(4.55)

with u ′ = u+ q
mψ. Due to the periodicity of u and ψ this leads to the restriction

4πq
Lm ∈ Z, with L the period of u, in order for the coordinate system to be globally
defined.

The constants Q, Q̃ and J appearing in the metric are defined as

Q̃ =4
√
2 (µm+ qp) ,

Q =4(nm+ p2),

Jψ =8

(
qp2 + µpm+

1

2
qnm+ jm2

)
.

(4.56)

The black string solution has a horizon at r = 0, and this can be used to calculate
the Bekenstein-Hawking entropy:

S =
A

4G
=

1

4GN

∫
r=0

dA
√
g =

2π

|m|

√(
1

2
QQ̃2 − J2

)
, (4.57)

with g the determinant of the metric at r = 0 and working in conventions in which
GN = 1

4πL.
Using methods that will be discussed in section 4.3, the black string solution

can be reduced along the u direction resulting in a black hole in five dimensions
with horizon topology S3. In the context of these black holes we find that the
charges (4.56) have a geometric meaning, from which we can deduce a physical
interpretation. The scalars in (4.56) can be obtained through the integrals on a the
horizon H of a black hole in five dimensions, with the Komar integrals [5]:

Q̃ =−

√
2

8π2

∫
H

?5dÃ, (4.58)

Q =−
1

8π2

∫
H

?5dA (4.59)

Jψ =
1

4π2

∫
H

?5K
(ψ), (4.60)

(4.61)

where K(ψ) is the one form associated with the Killing vector ∂ψ. This way we
are able to make the identification of Jψ as the angular momentum, while Q̃
and Q are two electric charges corresponding to the one-forms obtained through
dimensional reduction as per the Ansatz (4.78) and (4.73).

Using the timelike Killing vector ∂t, we can also calculate the total energy of
the solution. However, it is already determined via the BPS condition and reads
[5]

M =
1

4

(
Q+
√
2Q̃
)

. (4.62)
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4.2.7 Plane and pp-waves

In section 2.2 we introduced plane and pp-wave spacetimes, as solutions of the
field equations characterized by a covariantly constant null Killing vector field. In
this subsection we will discuss the possible plane waves in the Gibbons-Hawking
class of solutions.

We have two possible choices to define this Killing vector, they are ∂v and
∂u, and each choice will lead to a different description in terms of harmonic
functions. Here we will simply state the results, so that we can use them later. For
a derivation of the results, see [6].

As said there are two different choices for the Killing vector, and since plane
waves are defined on a flat base space, there are two more options for the harmonic
function V1: V1 = 1

r and V1 = m∞. Thus we will have four different descriptions
of plane wave solutions.

Plane wave: wave vector ∂v, base space R4

Starting with ∂v as the covariantly constant vector, and with V1 = 1
r leads to the

set of harmonic functions [6]:

V =



0

0

a0/c6

−c3c6

0

c6 − a0c2/c6


+



1

c2

c3

c2c
2
3/2

−c23/2

−c2c3


1

r
+



0

0

0

c6 − a0c2/c6

a0/c6

0


~a ·~x+



0

0

0

−c2

1

0


~b ·~x,

(4.63)
which results in a metric diffeomorphic to

ds2I = −2dudv+

(
2~b ·~x− 1

4
|~a|2|~y|2

)
du2 + |d~y|2, (4.64)

and the three-form reads

G = −
ai
2
du∧

(
dxi ∧ (dψ+ χ) +

1

r
?3 dx

i

)
. (4.65)

The coordinates xi ∈ R3 and yi ∈ R4 are related via

2x1 =y1y3 + y2y4

2x2 =y2y3 − y1y4,

4x3 =(y1)2 + (y2)2 − (y3)2 − (y4)2.

(4.66)

We furthermore note that the only physically relevant parameters in the har-
monic functions are ~a and ~b, as all the other do not appear in the metric or
three-form. The parameters in ~a and ~b parametrize the gravitational and electro-
magnetic components of the wave, respectively. We recognize this again from the
form of the quadratic function in (2.44), as well as from the fact that the three-form
is characterized by ~a.

In this case there are only three independent parametrizations of the gravita-
tional wave, while a graviton in six dimensions without any restrictions has nine
degrees of freedom. In this case the fact that ∂ψ is Killing, has led to this restriction
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on the degrees of freedom. This is better understood by explicitly providing the
mapping R3 → R4, which reads

y1 =2
√
r cos

(
θ

2

)
cos
(
ψ+φ

2

)
, (4.67)

y2 =2
√
r cos

(
θ

2

)
sin
(
ψ+φ

2

)
, (4.68)

y3 =2
√
r sin

(
θ

2

)
cos
(
ψ−φ

2

)
, (4.69)

y4 =2
√
r sin

(
θ

2

)
sin
(
ψ−φ

2

)
. (4.70)

In the case of a plane wave solution we want guu to be quadratic in the background
coordinates, and the metric components have to be independent of ψ, since ∂ψ is
Killing. There are only three linearly independent combinations satisfying these
solution, and this are the ones given in (4.66).

wave vector ∂v, base space R3 × S1

Another possible class of plane wave solutions, is one where the wave vector is
∂v and the base space is R3 × S1, as a result of choosing V1 = m∞. In this case
metric that can be obtained reads [6]:

ds2 = −2dudv+

(
2bijx

ixj −
|~c|2

3
|~x|2
)
du2 + |d~x|2 +m−1∞ dψ2, (4.71)

and the three-form is given by

G = −
1

2
du∧ (dxi ∧ dψ+ ?3dx

i)ci. (4.72)

Here we can make a distinction between the vector ~c parametrizing electromag-
netic waves, and the tensor bij parametrizing gravitational waves. And because
bij corresponds to gravitational waves, there are some restrictions on the degrees
of freedom since it should be in the transverse traceless gauge [64]. As a result,
bij corresponds to five independent polarizations.

It is clear that this solution differs from the one discussed previously. The
most notable difference are the number of independent polarizations of the plane
waves. Where the previous solution only had three independent polarizations
for the gravitational part of the wave, this solution has five. In the previous case
it was intuitively hard to interpret the restrictions, in this case it is very clear.
This solution describes a plane wave in five dimensions in a direct product with
S1ψ. Here the counting of the polarizations works out, as the graviton in five
dimensions has exactly five independent polarization modes.

wave vector ∂u + F
2∂v

As mentioned in the beginning of this subsection there is another possibility for
the covariant vector: ∂u. However, ∂u is not null, so instead we work with the
linear combination ∂u + F

2∂v, which is null.
We can be quick about solutions of this class. In the case where V1 = 1

r , the
solutions we can obtain are isometric to a subclass of the solution with wave
vector ∂v and V1 = 1

r . This subclass are the solutions where |a| = a0 and bi = 0.
The case where V1 = m∞ is even simpler, as it corresponds to flat space on a

base R3 × S1.
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4.3 reduction to five dimensions

In section 2.1.5 we discussed some interesting properties of higher dimensional
solutions to the field equations, and thereby motivated the study of those higher-
dimensional solution. We have also mentioned the possibility of compactification
in the context of Taub-NUT spaces in section 4.2. When considering higher-
dimensional solutions there appears to be a disagreement with the physics of
our universe where we observe only four dimensions, therefore when discussing
such solution we are interested in the compactification on compact manifolds,
which provides a method of relating higher dimensional solutions to solutions
in four dimensions. In this section we will discuss the compactification of the six
dimensional solution on u or ψ obtaining a five-dimensional solution.

Kaluza-Klein compactificatoin of minimal six-dimensional supergravity yields
one Kaluza-Klein vector from the metric, one from the two-form potential and
one from dualizing the three-form field strength. However, due to the self duality
condition on the three-form, only two of these are independent.

Provided u is spacelike, i.e. provided F is positive, the D = 5 timelike class
can be obtained by dimensional reduction of u-independent solutions using the
Ansatz (E.6) in Einstein frame:

dŝ2 = e−
2
3φds2 + e2φ(dz+A)2. (4.73)

.
To do so it is convenient to rewrite the six-dimensional metric as

ds26 = H−1F
(
du+β− F−1(dv+ω)

)2
−H−1F−1(dv+ω)2 +Hds24. (4.74)

Using the Ansatz (4.73) we find the dilaton is given by

e2φ = H−1F, (4.75)

and the expression for the graviphoton is

A = β− F−1(dt+ω). (4.76)

Here we renamed v→ t, because if we look at the five-dimensional metric as a
result of this compactification

ds25 = −H−4/3F−2/3(dt+ω)2 +H2/3F1/3ds24, (4.77)

we find that t is the timelike coordinate.
We can also reduce the three-form field strength, for which the Ansatz is

Ĝ = G+
1

2
dÃ∧ (du+A) . (4.78)

We will not present the explicit reduction to obtain the three-form in five dimen-
sions here, but this does provide insight into the origin of the second vector we
claimed to obtain though Kaluza-Klein reduction.

Reduction to four dimensions

By reducing the six-dimensional solution along both the u and ψ coordinate, we
obtain a four-dimensional theory characterized by six harmonic functions. As a
result of this compactification the theory now contains two more vector potentials,
besides the vector potential corresponding to the electric and magnetic field
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strengths already present in the six-dimensional theory. In this four-dimensional
theory we can define the vector

(m,q,p, j,n,µ) , (4.79)

where m, q and p correspond to magnetic charges and j, n and µ to the electric
charges [6]. The Sp(6, R) group we consider acts linearly on these charges. This is
important since any Lagrangian we write down for these charges is not invariant
under just any transformation in GL(6, R), but instead we have to restrict ourselves
to elements of the symplectic group when transforming electric and magnetic
charges. This is a generalization to multiple charges of the transformation we
discussed in subsection 2.1.3 on electromagnetic duality. This is one way to gain
some physical understanding of the significance of the group Sp(6, R) in the
context of a four-dimensional solution.





Part II

G E N E R AT I N G S O L U T I O N S

Having introduced the theory we are interested in, we now have the
required knowledge to proceed with the analysis of the symplectic
group, and the solutions generated using transformations in this
group. We will begin with an introduction of the symplectic group
itself, and discuss its algebra and several subgroups of interest. After
this we will use the symplectic group to generate new solutions, and
we aim to characterize and discuss interesting properties of these new
solutions.



5
S Y M P L E C T I C G R O U P

Since Einstein’s equations are a set of ten non-linear partial differential equations,
is is quite difficult to find solutions. And on top of that we are interested in
solutions preserving supersymmetry. However, one way to find new solutions to
the Einsteins equations is by employing symmetry relations to known solutions. In
this thesis these symmetry relations correspond to transformations with Sp(6, R),
and this chapter is devoted to the analysis of this group.

5.1 bubble equations

As discussed in section 4.2, the Gibbons-Hawking class of solutions depends on a
set of six harmonic functions. Thus acting linearly on these six harmonic functions
maps a solution to a solution. However, although any transformation which is a
result of acting with an element of GL(6, R) on the six harmonic functions gener-
ates a new solution, these new solutions will typically contain Dirac-Misner string
singularities [65]. These are similar to the Dirac string discussed in subsection
2.1.2, but where we use the term Dirac string for vector potentials of Maxwell
fields, the term Dirac-Misner string is used when the vector is part of the metric.
To obtain solutions which do not contain Dirac-Misner strings, the one-form ω̄

needs to be globally well-defined, which is only the case if

d2ω̄ = 0. (5.1)

By inserting (4.21) into (5.1), this condition can be written as

d2ω̄ = d [∗3〈V,dV〉] = 0. (5.2)

Taking V of the form (4.26), results in [5]:∑
a6=b

〈Γa, Γb〉
rab

= 〈Γ∞, Γa〉. (5.3)

Here rab is the distance between two centers and as a result of this equation,
there is a constraint on these distances. These constraints are colloquially referred
to as ‘bubble equations’, because they determine the behavior of the ‘bubbles’ in
the Gibbon-Hawking base space, as is shown in figure 4.1.

As we have mentioned before, in this thesis we mostly restrict ourselves to
single centered solutions described by harmonic functions of the form (4.23).
Under this assumption (5.3) simplifies to

〈Γ∞, Γ〉 = 0. (5.4)

This condition clearly does not hold for a general set of harmonic functions
V, but by starting from a solution which satisfy this condition, elements g in the
subgroup of GL(6, R) which preserves the symplectic product will send a solution
free of Dirac-Misner strings to another solution with this same property. This
leads us to consider elements obeying the relation

gTΩg = Ω, (5.5)

which means g ∈ Sp(6, R). We can thus use the symplectic group to generate
solutions of six dimensional supergravity without Dirac-Misner strings. Under
the condition that the starting solution is free of Dirac-Misner string singularities.

36
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Example: Flat space to AdS3 × S3

To show how such a transformation is performed we as an example send a solution
describing flat space, to a solution describing Ad3 × S3. For this, let us consider
the matrix A ∈ Sp(6, R):

A =



1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 − 1µ
1
µ 0

0 0 0 0 1 0

0 0 0 0 0 1

µ 0 0 0 0 0


. (5.6)

Acting on flat space (as presented in (4.40)), with this matrix yields

A ·Vflat =



1
r

0

0

0

1
µ
r


, (5.7)

where we recognize the set of harmonic functions corresponding to AdS3 × S3, as
given in 4.43.

5.2 properties of the symplectic group

The symplectic group of degree 2n over the real numbers R, denoted Sp(2n, R) , It should be noted that
what is here referred to
as Sp(2n, R), is in some
literature referred to as
Sp(n, R).

is the group of 2n× 2n real matrices which preserve a skew-symmetric bilinear
form on R2n. Hence, the group Sp(2n, R) is defined as the set of matrices M
obeying

MTΩM = Ω, (5.8)

where Ω is a 2n× 2n nonsingular anti-symmetric matrix. In this thesis we will
work in the basis in which

Ω =

(
0 In

−In o

)
, (5.9)

where In is the n×n identity matrix.
Let us now consider M ∈ Sp(2n, R) to be a block matrix

M =

(
A B

C D

)
, with A,B,C,D ∈ Rn×n. (5.10)

This yields the following restrictions on the matrices A,B,C and D:

ATC = (ATC)T , BTD = (BTD)T , ATD−CTB = In. (5.11)

To determine the dimension of the group Sp(2n, R), we start from the even
dimensional general linear group denoted GL(2n, R) and determine the degrees
of freedom restricted when going to Sp(2n, R). The first two equations in (5.11)
restrict two n×n matrices to be symmetric, which means 12 (n

2 −n) restrictions
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for each equations. The last equation results in another n2 restrictions. From this
we can determine the dimension of the symplectic group to be

Dim [Sp(2n, R)] = Dim [GL(2n), R)] − d.o.f. restricted (5.12)

= (2n)2 − (2n2 −n) = n(2n+ 1). (5.13)

Taking the determinant on both sides of (5.8) yields

det(MT )det(Ω)det(M) = det(Ω), (5.14)

and thus det(M) = ±1. A nice proof that it is in fact strictly positve, and thus

det(M) = 1, (5.15)

is given in [66].

group elements of Sp(2n, R)

The group Sp(2n, R) is generated by the matrices [67](
I λeii

0 I

)
,

(
I 0

λeii I

)
,

(
I λ(eij + eji)

0 I

)
, (5.16)

(
I 0

λ(eij + eji) I

)
,

(
I+ λeij 0

0 I− λeji

)
, (5.17)

where λ ∈ R, and 1 6 i, j 6 n for i 6= j and eij represent n×n matrices with
1 in the position (i, j) and 0 elsewhere. The 0 in the matrices above, denotes an
n×n matrix with all elements equal to 0.

Considering that the microscopic description of any solutions found will rely
on a integer number of branes, it is interesting to wonder if anything simplifies
when considering the discrete group Sp(2n, Z). The discrete group is generated
by the matrices [68]:
translations

T =

(
I A

0 I

)
, AT = A, (5.18)

rotations

R =

(
B 0

0 (BT )−1

)
, B ∈ GL(n, R), (5.19)

semi-involutions

S =

(
C I−C

C− I C

)
, (5.20)

where C are diagonal matrices with zeroes and ones on the diagonal.Here we specify the
group to n = 3 as

apposed to keeping a
general n, this is because

there is no generalized
description for the

generators for any n.
For example, if n > 3
the group is generated
by only two matrices.

However, this does not constitute a minimal set of generators. In [69] it is shown
that the matrices D, R and T below also generate the entire group Sp(6, Z).

D =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0


, (5.21)
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R21 =



1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 −1 1 0

0 0 0 0 0 1


, (5.22)

T1 =



1 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (5.23)

5.3 on the algebra sp(2n, R)

In order to find what restrictions an element X of the Lie algebra sp(2n, R) must
obey, we define M = eX. Plugging this into equation (5.8), we find that X should
obey The result of (5.24) is

more thoroughly derived
in appendix F.2.

(ΩX)T = ΩX. (5.24)

From which it can be observed that X = Ω−1S, where S is a symmetric matrix. A
basis for these symmetric matrices S is the set of n(2n+ 1) symmetric matrices
{Sij}, where the only nonzero entries of Sij are the elements (i, j) and (j, i) of the
matrix, which we will take to be equal to 1.

Using this we find that the corresponding set of generators {Xij} is

{Xij} = {Ω−1Sij}, with i, j ∈ [2n]. (5.25)

5.4 the entropy conserving subgroup

The entropy of a BPS object with an event horizon is given in (4.57). The set of
entropy conserving matrices can be divided into six linearly independent genera-
tors of the group Sp(6, R), these are discussed in [5]. These six generators can in
turn be combined in pairs which correspond already known transformations. As
we will see below, these matrices correspond to coordinate transformations called
gauge transformations, spectral flow, and a rescaling. An analysis of the gauge
transformations and spectral flow have been studied by Bena, Bobev and Warner
in [70].

Gauge transformations

The matrix corresponding to gauge transformations reads [5]:

Mgauge =



1 0 0 0 0 0

g2 1 0 0 0 0

2g1 0 1 0 0 0

2g21g2 2g21 2g1g2 1 −g2 −2g1

−2g21 0 −2g1 0 1 0

−2g1g2 −2g1 −g2 0 0 1


. (5.26)

Acting with a matrix of this form leaves the functions H, F, V1 and the 1-form
ω invariant, while the 1-form β is transformed: β → β− g2dψ, which can be



40 symplectic group

undone by a transformation u → u+ g2ψ. Here we thus find that when we set
g2 = 0, the metric is left unchanged.

The transformation of the harmonic functions as a result of Mgauge is

m→m
q→q+ g2m
p→p+ 2g1m

j→ j+ 2g21g2m− 2g1µ− g2n+ 2g1g2p+ 2g
2
1g2q

n→n− 2g21m− 2g1p

µ→µ− 2g1g2m− g2p− 2g1q,

(5.27)

which are redundancies in our description and leave the physics of the solution
unchanged.

Spectral flow

The matrices corresponding to the spectral flow transformations are of the form
[5]:

Msflow =



1 γ2 2γ1 2γ21γ2 −2γ21 −2γ1γ2

0 1 0 2γ21 0 −2γ1

0 0 1 2γ1γ2 −2γ1 −γ2

0 0 0 1 0 0

0 0 0 −γ2 1 0

0 0 0 −2γ1 0 1


. (5.28)

Matrices of this form induce some non-trivial transformations. Also note that
Msflow =MTgauge.

Rescaling

Finally there are matrices of the form [5]:

Mresc. =



β2 0 0 0 0 0

0 β21β2 0 0 0 0

0 0 β−11 0 0 0

0 0 0 β−12 0 0

0 0 0 0 β−21 β−12 0

0 0 0 0 0 β1


, (5.29)

which simply rescales the harmonic functions.

Lie algebra

The matrices above can be written as an exponential mapping of six generators ti
as follows

Mgauge = e2g1t1+g2t2 , Msflow = e2γ1t3+γ2t4 ,

Mresc. = e
ln (β1)t5+ln (β1β2)t6 .

(5.30)

Defining

e =
√
2t3, f =

√
2t1, h = 2t6 (5.31)

ẽ =t2, f̃ = t4, h̃ = 2t5 (5.32)
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The non-vanishing commutation relations of these generators are

[e, f] = h [h, e] = 2e [h, f] = −2f, (5.33)

and similarly for the generators with a tilde.
This is the sp(2, R) algebra. Thus the transformation in Sp(6, R) which leave the

entropy invariant are generated by the sl(2, R)⊕ sl(2, R) algebra corresponding to
the group

SL(2, R)× SL(2, R) ⊂ Sp(6, R). (5.34)

A well known 2-to-1 homomorphism is SL(2, R)× SL(2, R) ' SO(2, 2) [71], which
as is discussed in appendix C, describes the isomteries of AdS3. The near-horizon
geometry of a black string is the direct product of an extremal BTZ black hole and
S3/Zm, which in turn are locally isometric to AdS3 × S3. It should come as no
surprise that we find the entropy invariant under this subgroup of Sp(6, R) since
the entropy defined in (8.31) depends on the horizon area.

Reparametrization of u and ψ by SL(2, R)

The Gibbons-Hawking class of six-dimensional solutions studied in this theses
are characterized by a U(1)×U(1) isometry, corresponding to the independence
of the solution on the coordinates u and ψ. Because of this, the equations of
motion can be reduced along dψ∧ du, which describes the reduction on a torus.
This leads us to suspect that solutions of this type should contain some SL(2, R)

isometry relating to the u and ψ coordinates.
Let us show that this transformation is generated by the generators t2 t4 and

t5, which corresponds to transformations by the matrices (5.26), (5.28) and (5.29),
with g1 = 0, γ1 = 0 and β1 = β−12 . The product Mgauge.Msflow.Mresc. is

M =



1
β1

β1γ2 0 0 0 0

g2
β1

β1 (g2γ2 + 1) 0 0 0 0

0 0 1
β1

0 0 −β1γ2

0 0 0 β1 (g2γ2 + 1) −g2β1 0

0 0 0 −β1γ2
1
β1

0

0 0 −g2β1 0 0 β1 (g2γ2 + 1)


∈ SL(2, R).

(5.35)
Where for convencience we can define a = β1(g2γ2 + 1), b = β1γ2, c = g2β−11

and d = β−1, resulting in

M =



d b 0 0 0 0

c a 0 0 0 0

0 0 d 0 0 −b

0 0 0 a −c 0

0 0 0 −b d 0

0 0 −c 0 0 a


, ad− bc = 1. (5.36)

Which corresponds to the following change of coordinates [6](
ψ

u

)
→

(
a b

c d

)(
ψ

u

)
, ad− bc = 1. (5.37)

Thus we can conclude that the set of generators {t2, t4, t5}, correspond to an
SL(2, R) transformation of the u and ψ coordinates.
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Transormations by elements of the other SL(2, R) group

It now remains to find out the implications of the other sl(2, R) set of generators:
{t1, t3, t6}

Gauge transformations generated by t1 do not change the solution, as all
functions in the solution are invariant under these transformations.

Acting with the rescaling β1 = β2, transform the solution as [6]:

(ds2) ′ = β21ds
2(ψ→ β−11 ψ,u→ β−31 u). (5.38)

Finally all we have left are the spectral flow transformations with γ2 = 0. These
do change the solution in a nontrivial way, see for example (6.17), where flat space
was transformed into a plane wave solution under this transformation.

5.5 a transformation providing an equivalence between any two

solutions

An interesting element of Sp(6, R) is

M =



m 0 0 0 0 m∞
q 1 0 0 0 q∞
p mn∞−nm∞

µm∞−mµ∞ −m
µm∞−mµ∞ −m∞

µm∞−mµ∞ qm∞−mq∞
µm∞−mµ∞ p∞

j µn∞−nµ∞
µm∞−mµ∞ −µ

µm∞−mµ∞ −µ∞
µm∞−µ∞m qµ∞−µq∞

µm∞−mµ∞ j∞
n 0 0 0 1 n∞
µ 0 0 0 0 µ∞


,

(5.39)

with mj∞ − jm∞ + qn∞ −nq∞ + pµ∞ − µp∞ = 0.
Using a numerical method is has been confirmed that matrices of this form

constitute a group, meaning that a product of two such matrices yields another
matrix of the same form, and these matrices are invertible. The group is however
still to be identified, but it should be noted that it is generated by matrices of the
algebra {sp(6, R) \ sp(4, R)}.

Furthermore, there are some restriction on the parameters in M, which should
be obeyed in order for M to be an element of Sp(6, R). A rather obvious restriction
is that the determinant of the matrix has to be non-vanishing, and as a result
not all variables in a row or column can be set to 0. This means that for example
solutions with m = m∞ = 0 can not be obtained from M.

Also, we observe that the parameters cannot be set in such a way that µm∞ −

mµ∞ = 0, as this will result in a matrix which is not well defined. However by
acting with matrix D defined in (5.21), we obtain

D.M =



q 1 0 0 0 q∞
p mn∞−nm∞

µm∞−mµ∞ m
mµ∞−µm∞ − m∞

µm∞−mµ∞ qm∞−mq∞
µm∞−mµ∞ p∞

−j nµ∞−µn∞
µm∞−mµ∞ µ

µm∞−mµ∞ µ∞
µm∞−mµ∞ µq∞−qµ∞

µm∞−mµ∞ −j∞
n 0 0 0 1 n∞
µ 0 0 0 0 µ∞
m 0 0 0 0 m∞


,

(5.40)
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where we can redefine the variables as follows: q → m, p → q, −j → p, n →
j, µ→ n, m→ µ, and similarly for the variables with∞ subscript. This results in
the matrix

(D.M) ′ =



m 1 0 0 0 m∞
q jµ∞−µj∞

µn∞−nµ∞ µ
µn∞−nµ∞ µ∞

µn∞−nµ∞ µm∞−mµ∞
µn∞−nµ∞ q∞

p nj∞−jn∞
µn∞−nµ∞ n

nµ∞−µn∞ − 1
µ−nµ∞

n∞
nm∞−mn∞
nµ∞−µn∞ p∞

j 0 0 0 1 j∞
n 0 0 0 0 n∞
µ 0 0 0 0 µ∞


.

(5.41)

Acting on flat space with (D.M) ′ has the same result as acting on flat space with
M, because the first and last columns are the same. However, where (5.39) was
not well defined if µm∞ −mµ∞ = 0, (5.41) is not well defined if µn∞ −nµ∞ = 0.

Operations with D, have an equivalence property. Explicitly this means that
D1 = −D7 = D13. Since we use D to transform M, and a sign change of M can
be undone by a redefinition of the parameters, we say that the power of D has a
modulus of six. Because of this we can write down six matrices of the form of M,
but each one has to satisfy another condition to prevent elements from ‘blowing
up’. As a result, the only case in which we will not be able to write down a well
defined matrix of the form Dn.M, is if all of these equations are satisfied

µm∞ −mµ∞ = 0,

qm∞ −mq∞ = 0,

qp∞ − pq∞ = 0,

jp∞ − pj∞ = 0,

jn∞ −nj∞ = 0,

nµ∞ − µn∞ = 0.

(5.42)

Through some manipulation we find that this means that the only solution
which can not be obtained from Vflat (besides of course solutions for which
〈Γ∞, Γ〉 6= 0 ), are solutions for which Γ is proportional to Γ∞. Thus we can conclude
that any two linearly independent vectors can be transformed into each other by
acting with elements of the symplectic group.

On a final note it we should mention that in the case of single centered solutions,
there are four different classes of solutions we can distinguish.

1. There is the class of orbits for solutions of the form Γ ∝ Γ∞, which after
acting with the same group element on both vectors will obviously remain
proportional to each other with an unchanged proportionality factor.

2. Solutions for which Γ = 0, restricting the class of solutions to solutions with
vanishing Riemann tensor, see (4.42).

3. Solutions for which Γ∞ = 0, this includes AdS3 × S3.

4. Solutions for which Γ 6= 0, Γ∞ 6= 0 and Γ linearly independent of Γ∞.

Here we will be most interested in solutions of the fourth type, as this is the
only class of solutions in which acting with a matrix will induce nontrivial trans-
formations on harmonic functions of the form V = a+ b

r . However, since any
combination of two linearly independent vectors with vanishing symplectic prod-
uct can be transformed into any other combination of two vectors with vanishing
symplectic product, this class of solutions can not be divided into different ‘orbits’.
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This result implies that systematically analyzing the transformations of this group
will prove challenging, since a solution can be obtained through a symplectic
transformation of any other solution.
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One can imagine that
understanding the
conjugacy classes of the
symplectic group might
be a good starting point
when attempting a
systemetic approach. A
discussion of the
conjugacy classes is
given in F.1, but
unfortunately did not
provide helpful insight.

In chapter 5 we found that the dimension of the symplectic group is n(2n+ 1) (see
(5.12)). Since we are interested in six dimensions, this means we are dealing with
an algebra containing 21 generators. As this is a rather large number, a systematic
approach of sending solutions to solutions would be preferred over randomly
acting with each generator and then try to find out what the resulting spacetime is.
In this chapter we will act on a specific example of a vector of harmonic functions,
namely one corresponding to a solution for flat space, which we denote Vflat. In
our analysis we will furthermore separate solutions which are asymptotically (at
large r) equal to the original vector Vflat, and solutions for which the asymptotic
limit has changed.

6.1 stabilizer group

A vector of harmonic functions that corresponds to flat space is given by (4.40):

Vflat =



1
r

0

0

0

0

1


. (6.1)

To start off, we can determine what subgroup g1 ⊂ Sp(6, R) leaves Vflat
unchanged. Elements M1 ∈ g1 of this subgroup should obey M1Vflat = Vflat,
corresponding to the requirement that a generator X1 (defined as M1 ≡ eX1)
should satisfy X1Vflat = Ω−1S1Vflat = 0. This means that S1 should be a
symmetric matrix of the form

S1 =



0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0


, (6.2)

where the empty elements are free scalars.
It can now be observed that the non-zero elements in the above matrix, when

multiplied by Ω−1, form the 10 dimensional set of generators sp(4, R). And since
the dimension of a Lie group is equal to the dimension of the corresponding Lie
algebra, and the dimension of the group Sp(4, R) is 10, it can be concluded that
the empty elements in the matrix above correspond to generators for the entire
group Sp(4, R).

6.2 asymptotically flat solutions

Another property of interest is the asymptotic limit r → ∞. In general we will
study solutions of spacetime in which matter is placed on an empty background,

45
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the bending of spacetime as a result of this matter should be local, and thus in the
asymptotic limit the background geometry should be recovered. Using this it can
be determined that matrices M2 ∈ Sp(6, R) satisfying M2Vflat

r→∞
= Vflat, are of

the form

M2 =



1 0

0

0

0

0

1


, (6.3)

where again the empty matrix elements represent ‘free’ scalars, with some
restrictions as M2 ∈ Sp(6, R). We can thus conclude that the requirement to
recover the flat background metric asymptotically results in seven more restrictions
on the elements of the group we act with, as represented by the seven fixed
parameters in M2.

Flat space to Black String transformations

The dimension of the symplectic group in six dimension on real space is 21. In
the section above we found that elements of Sp(4, R) (which has dimension 10)
preserve flat space in the form of equation (4.40), and we found that asymptotic
flatness results in seven more restrictions on the generators. We thus expect to find
21− 10− 7 = 4 generators which do not preserve flat space in its current form,
but do respect asymptotic flatness. These are potentially interesting solutions.

Those four generators turn out to be

X1 =

(
0 0

λ1e11 0

)
, X2 =

(
0 0

(e12 + e21) 0

)
, (6.4)

X3 =

(
0 0

(e13 + e31) 0

)
, X4 =

(
e21 0

0 −e12

)
, (6.5)

where λ ∈ R and eij represent n×n matrices with 1 in the position (i, j) and 0
elsewhere.

These generators have non-vanishing commutation relation

[X2,X4] = −2X1, (6.6)

which forms a closed subalgebra isomorphic to the Heisenberg algebra.
It can be checked that the group elements given by the exponential mappings

of X1,X2 and X3, generate black string solutions, whereas the group elements
corresponding to the exponential mapping of X4 generates flat space. This flat
space solution does have V2 = λ/r, but the parameter λ can be removed through
a coordinate transformation.
X3 has only vanishing commutation relations implying isomorphism to the

group U(1).
The transformations corresponding to X1, X2 and X3 are given in matrix form

by

eλ1X1eλ2X2eλ3X3 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

λ1 λ2 λ3 1 0 0

λ2 0 0 0 1 0

λ3 0 0 0 0 1


, (6.7)
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with λ’s real numbers. This is the product of a set of three fully commuting
transformations. If we use these transformations to act on flat space or a black
string solution, the angular momentum, momentum and electric charge are shifted
as a result of acting with X1, X2 and X3, respectively.

6.3 not asymptotically flat

Now that we identified the asymptotically flat solutions, we move on to generating
the solutions with the seven generators that have asymptotics which differ from
Vflat as represented in equation (4.40). These are generated by acting on Vflat
with group elements

Mij = exp(λXij) = exp (λΩ−1Sij). (6.8)

Following the counting of generators above, there are seven generators left which
we have not yet looked at. Here the transformations of those seven different
generators will be given along with a classification of the resulting metric. We
will preface this list by noting that six of the solutions found below are vacuum
solutions, and one of them is a plane wave solution (see section 4.2.1 for a detailed
discussion of these type of solutions).

1. The first transformation we look at is

M26 ·Vflat =



1 0 0 0 0 0

0 1 0 0 0 0

0 −λ 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 λ

0 0 0 0 0 1





1
r

0

0

0

0

1


=



1
r

0

0

0

λ

1


, (6.9)

for which the metric reads

ds2 =− 2du (dv+ λdu) + ds2
R4

(6.10)

=− 2dudv ′ + ds2
R4

, (6.11)

where we defined v ′ = v+ λu.

The obtained solution describes flat space.

2. The transformation

M36 ·Vflat =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1
λ 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 λ





1
r

0

0

0

0

1


=



1
r

0

0

0

0

λ


, (6.12)

yields the metric

ds2 =− 2
1

λ
dudv+ λds2

R4
. (6.13)

The solution we find is again diffeomorphic to flat space, we are free to
redefine the coordinates such that the λ dependent factors disappear from
the metric.
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3. The transformation

M66 ·Vflat =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 −λ

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





1
r

0

0

0

0

1


=



1
r

0

−λ

0

0

1


, (6.14)

yields the metric

ds2 = −2dudv+ λ2rdu2 − 2λr(dψ+ cos θdφ)du+ ds2
R4

, (6.15)

of which it is not immediately clear what space this describes. However,
since the form of the metric is invariant under reparametrization of u and ψ,
we can perform a gauge transformation (5.36) with a = 1, b = −λ, c = 0 and
d = 1 to generate the following transformation of the harmonic function

1 −λ 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 λ

0 0 0 1 0 0

0 0 0 λ 1 0

0 0 0 0 0 1





1
r

0

−λ

0

0

1


=



1
r

0

0

0

0

1


= Vflat. (6.16)

Thus, it turns out that this solution also describes flat space.

4. The transformation

M56 ·Vflat =



1 0 0 0 0 0

0 1 0 0 0 −λ

0 0 1 0 −λ 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





1
r

0

0

0

0

1


=



1
r

−λ

0

0

0

1


, (6.17)

gives the metric

ds2 = −2 (du− λr(dψ+ χ))dv+ r(dψ+ χ)2 +
1

r
|d~x|2. (6.18)

Let us now redefine ψ→ ψ− λv, and we obtain

ds2 = −2dudv− λ2rdv2 + r(dψ+ χ)2 +
1

r
|d~x|2, (6.19)

which is a plane wave metric.

5. The transformation

M16 ·Vflat =



1 0 0 0 0 0

0 1 0 0 0 0

−λ 0 1 0 0 0

0 0 0 1 0 λ

0 0 0 0 1 0

0 0 0 0 0 1





1
r

0

0

0

0

1


=



1
r

0
−λ
r

λ

0

1


, (6.20)
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Yields the metric

ds2 = −2dudv+
λ2

r
du2 + ds2

R4
. (6.21)

This is a Ricci-flat (vanishing Ricci tensor), pp-wave spacetime (∂v is a
covariantly constant Killing vector), but is not included in the class of plane
waves. One of the requirements to have a plane-wave metric is that guu is
at most quadratic in the Cartesian coordinates, in this case the requirement
is not satisfied.

6. The transformation

M46 ·Vflat =



1 0 0 0 0 −λ

0 1 0 0 0 0

0 0 1 −λ 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





1
r

0

0

0

0

1


=



1
r − λ

0

0

0

0

1


, (6.22)

results in a change of the Gibbons-Hawking base space. The corresponding
base space metric is a Taub-NUT metric, which has been discussed in
subsection 4.2.

7.

M14 ·Vflat =



λ 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
λ 0 0

0 0 0 0 1 0

0 0 0 0 0 1





1
r

0

0

0

0

1


=



e−λ

r

0

0

0

0

1


(6.23)

Again, in this case V1 is the only function to have changed under the
transformation, and thus the base space has changed. The corresponding
base space metric is an Eguchi-Hanson metric, the properties of which are
discussed in subsection 4.2.

Here we have presented a number of solutions obtained through transforma-
tions of a flat space solution with different elements of the group Sp(6, R). We
have classified the obtained solutions, which were all examples of known solutions
as discussed prior in this thesis. However, this does show the potential of these
transformations, and motivates why it is interesting to pursue this line of research.
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T R A N S F O R M AT I O N S O F A P L A N E WAV E S O L U T I O N

With the relatively recent observation of gravitational waves, new possibilities
of performing astrophysical measurements have arrived, and this provides an
opportunity to learn even more about our universe. Because of this, we would
also like to learn more about gravitational waves in supersymmetric solutions,
which is what we look into in this chapter.

We will generate solutions by acting on the plane wave solution given in (4.63).
However, we mentioned that the solution corresponding to (4.63) is independent
of many of the constants present in the harmonic functions, for this reason we fix
c6 = 1, c2 = c3 = a0 = 0 which still describes the same solution. To simplify the
solution somewhat further, we set ~a = ~0, resulting in G = 0 and leaving only the
gravitational part of the wave. Hence our starting point will be

V =



0

0

0

0

0

1


+



1

0

0

0

0

0


1

r
+



0

0

0

0

1

0


~b ·~x. (7.1)

Where we now write the vector of harmonic functions as the sum

V = Γ∞ + Γ
1

r
+ Γb~b ·~x. (7.2)

At times we will generate solutions which are not contained in any known class of
solutions. Often this will be explained by the fact that the solution violates some
generally accepted physical condition. One way to check whether we are dealing
with anomalous matter, is by checking if an energy condition is violated.Most books on general

relativity will contain
information on the

energy conditions, see
e.g. [8, Chapter 4].

The energy conditions we can check include, the null energy condition (NEC),
which states

Tµνl
µlν > 0, (7.3)

for l a null vector field. And the strong energy condition (SEC), which is(
Tµν −

T

2
gµν

)
tµtν > 0, (7.4)

where tµ is a timelike vector. However since the solutions studied have T ∝ R = 0

(see (4.7)), the SEC simplifies to

Tµνt
µtν > 0, (7.5)

which is also referred to as the weak energy condition (WEC). In the cases we
consider the Ricci scalar vanishes, and hence the energy-momentum tensor Tµν is
proportional to the Ricci tensor Rµν as per the field equations, meaning that if
the conditions hold for the Ricci tensor, they also hold for the energy-momentum
tensor. The null vector fields of our solution are ∂v and ∂v + F

2∂u.
In this section we will act with generators of the form (5.16), which act non-

trivially on the most right vector Γb in (7.1).

50
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• This time, the first transformation we look at is

M15 ·V =



1 0 0 0 0 0

−λ 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 λ 0

0 0 0 0 1 0

0 0 0 0 0 1


·V =



1
r

−λr
0

λ~b ·~x
~b ·~x
1


∈ VI. (7.6)

Now, remember we fixed a number of the constants that appeared in the
harmonic functions (4.63) to obtain (7.1). The solution we found here is
described by the set of harmonic functions (4.63), with c2 = −λ and the
other constants set to zero: a0 = c2 = c3 = c6 = 0. This means that this
transformation did not change the corresponding metric or field strength
characterizing the solution.

• The transformation

M25 ·V =



1 0 0 0 0 0

0 1
λ 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 λ 0

0 0 0 0 0 1


·V =



1
r

0

0

0

λ~b ·~x
1


∈ VI, (7.7)

leaves the solution unchanged as well. Also this set of harmonic functions
is part of the class of harmonic functions (4.63), since we are free to redefine
~b → ~b/λ. After this redefinition we obtain the set of harmonic functions
given in (7.1).

• The transformation

M35 ·V =



1 0 0 0 0 0

0 1 −λ 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 λ 1


·V =



1
r

0

0

0

~b ·~x
1+ λ~b ·~x


, (7.8)

results in a metric

ds2 = −
2du(dv − du~b ·~x)

1+ λ~b ·~x
+ (1+ λ~b ·~x)ds2

R4
, (7.9)

and three-form

G =
λ

2
~b · ?4d~x+

λ

2(1+ λ~b ·~x)2
~b · d~x∧ dv∧ du. (7.10)

We have H = 1+ ~b ·~x, this means that the curvature scalar

RµνR
µν =

3|~b|2r2λ4

2(1+ λ~b ·~x)6
, (7.11)
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blows up at 1+ ~b ·~x = 0. Where for the solutions we have encountered thus
far H = 0 was outside the range of our coordinate system, this is no longer
the case.

It can be concluded that this solution has a two-dimensional planar singu-
larity. Also note that the signature of the metric changes sign at the position
of this singularity.

This metric has a rather simple form, but it is unlike any solution we have
seen before. Before attempting to understand the physical implications of
this solution and provide a characterization, we should check if any energy
conditions are violated.

Let us start with the null energy condition (NEC), which should hold for
both null vector fields (∂v and ∂u + F

2∂v). The relevant components of the
Ricci tensor are

Rvv =0, (7.12)

Ruv =
|b|2rλ2

2 (λb ·~x+ 1) 4
> 0, (7.13)

Ruu =−
|b|2rλ2 (b ·~x)
(λb ·~x+ 1) 4

6 0, (7.14)

From which it is immediately clear that the NEC holds for lµ = ∂v, since
Rvv = 0. For lµ = ∂u + F

2∂v we have

Tµνl
µlν ∝ Ruu+FRuv =

|b|2rλ2

(λb ·~x+ 1)4
(F−b ·~x) = |b|2rλ2

(λb ·~x+ 1)4
b ·~x, (7.15)

where we used that F = 2b · ~x. This means the NEC only holds in the
half-space b ·~x > 0. However, remember that at the singularity the signature
of the metric flips. As a result of this signature change the NEC is also
satisfied for ~b ·~x+ 1 6 0, and this leaves −1/λ < ~b ·~x < 0 as the domain in
which it is not satisfied.

Furthermore, since there is a curvature singularity at b ·~x = −1
λ one could

argue that there are no spacelike paths from the region b ·~x > −1
λ into the

region where the NEC fails.

In order to perhaps better understand this solution, we can go to a five-
dimensional description by reducing along the u coordinate. This results in
the metric

ds25 =− (1+ λ~b ·~x)−4/3(2~b ·~x)−2/3dt2

+ (1+ λ~b ·~x)2/3(2~b ·~x)1/3ds2
R4

,
(7.16)

which has a Ricci scalar

R =
−4|~b|2|x|

(
1+ (1+ 3λ~b ·~x)2

)
9(~b ·~x)2(1+ λ~b ·~x)2

. (7.17)

From this it can be concluded that the singularities we observe in (7.16), are
not artifacts of our choice of coordinates, but they are actual curvature sin-
gularities. Which means we can interpret these two curvature singularities
as two parallel planes. There appears not to be a horizon in (7.16) meaning
that we are dealing with naked singularities.

The curvature tensor and three-form ‘blow-up’ at 1+ λ~b ·~x, meaning that
this solution corresponds to one with infinite mass density at this singularity.
Remember that we introduced the negative branes in subsection 3.5.4, which
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might explain a change in singularity but also do not quite fit this picture.
Thus, for now we will not look into this solution any further as it does not
seem to fit with any explanation.

• An interesting transformation is performed using the matrix below, which
transforms our starting solution with ∂v covariantly constant, into a type
pp-wave spacetime with ∂u covariantly constant. However, in order for this
solution to describe a plane wave we require β to be preserved along the
isometries of flat R4, this is however not the case.

The transformation is as follows:



1 0 0 0 0 0

0 0 0 0 λ 0

0 0 1 0 0 0

0 0 0 1 0 0

0 −1λ 0 0 0 0

0 0 0 0 0 1


·V =



1
r

λb ·~x
0

0

0

1


. (7.18)

Which corresponds to

H =1, ω = F = 0, (7.19)

β =λr~b ·~x (dψ+ cos θ)dφ−
1

2
εijkb

ixjdxk, (7.20)

yielding the metric

ds2 = −2(du+β)dv+ ds2
R4

, (7.21)

and three-form

G =
1

2
dv∧ dβ. (7.22)

Properties of this solution are a vanishing of the Kretschmann and RµνRµν

curvature scalars. Rvv is the only non-zero component of the Ricci tensor,
and it scales with r2. Since the Ricci tensor is proportional to the stress-
energy tensor, this means that the physical interpretation of such a Ricci
tensor corresponds to a spacetime with matter density growing with in-
creasing r. This suggests a anomalous matter, and we will not proceed
investigating this solution.

Even though we do not proceed investigating this solution, it is important to
note that this transformation maps a plane wave solution characterized by a
covariantly constant killing vector ∂v, to a pp-wave spacetime characterized
by a covariantly constant Killing vector ∂u.

• Another possibly interesting transformation is

M55 ·V =



1 0 0 0 0 0

0 1 0 0 λ 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


·V =



1
r

λb ·~x
0

0

b ·~x
1


. (7.23)
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This corresponds to the functions

H =1, (7.24)

F =2~b ·~x, (7.25)

β =λr~b ·~x (dψ+ cos θ) −
1

2
εijkb

ixjdk, (7.26)

ω =rλ(~b ·~x)2(dψ+ cos θdφ). (7.27)

For this solution computation of the analytic expression using Wolfram math-
ematica has become too demanding. However, if we simplify the problem
by setting b1 = b2 = 0, we have calculated the Ricci tensor. Some of the
simplest expressions of the Ricci tensor are

Rvv = b23r
2λ2(3 cos2(θ) + 1) > 0, (7.28)

Ruv = b23r
2λ2(3 cos2(θ) + 1) > 0, (7.29)

Ruu = b43r
4λ2 cos2(θ)(3 cos2(θ) + 2) > 0, (7.30)

which can be used to check the validity of the NEC. One can immediately
see that the NEC for the vector ∂v is satisfied. However, for the null vector
∂u + F

2∂v we require F
2

4 Rvv + FRuv + Ruu > 0. In this expression the FRuv
term dominates at r << 1, and for ~b · ~x < 0 the term becomes negative,
meaning there is a small regime for r << 1 and ~b ·~x < 0 where the NEC is
not satisfied.

Furthermore, the Kretschmann scalar reads

K =
1

2
b33r

2λ2 cos(θ)
(
143b33r

4λ2 cos(θ) + 33b33r
4λ2 cos(3θ) + 128

)
, (7.31)

thus asymptotically the curvature scalar approaches infinity. This would
imply that there is a region of infinite mass density in the large r limit,
similar to the previous solution we studied the energy-momentum tensor
also increases for larger r. For those reasons, as well as the violation of the
NEC we will not proceed the analysis of this solution.

It should be noted that similar calculations have been performed by setting
b1 = b3 = 0 and b2 = b3 = 0. Although the expressions are slightly
different, the analysis, and as such the subsequent conclusion, remains the
same.

Here we have performed a similar analysis as in chapter 6. However, in this case
the obtained solutions were in some cases considerably more complex. We have
found solutions with curvature scalars approaching infinity in the asymptotic
limit, corresponding to infinite matter density in this limit. As it is clear that
those solutions carry no physical explanation, we did not pursue analyzing them.
We furthermore encountered solutions with planar singularities, and although
this seems curious and we were not able to understand these solutions in terms
of extended branes, it is not ruled out that further research might provide an
explanation for these solutions.
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S P E C T R A L F L O W T R A N S F O R M AT I O N S O F T H E B T Z B L A C K
H O L E

As discussed in subsection 4.2.5 it is possible to find solutions describing BTZ×S3,
by acting on flat space with an element of the symplectic group. The Harmonic
functions describing the vacuum BTZ× S3 solution are the same as for AdS3× S3.
To obtain the BTZ solution from the Anti-de Sitter solution, a periodic identifica-
tion of a Killing vector is introduced, as discussed in subsection 2.1.6.

Here we will act with MBTZ on the vacuum BTZ solution, to ‘switch on’
an extra parameter in BTZ× S3 transforming the vacuum solution into a non-
vacuum black hole. Acting with MkBTZ results in an extremal BTZ metric with
mass M = 2k

µ and angular momentum J = 4k√
µ . Then, we act with the spectral

flow transformation (5.28) with γ2 = 0, which we denote Mγ, in the hope that it
will result in an interesting solution. The reason for choosing this specific matrix
is that it was shown in [6], to result in a nontrivial transformation, namely it
transformed flat space into a plane wave solution. In this section we will analyze
the solution we find as a result of the aforementioned transformations.

Performing the transformations described above, one obtains harmonic func-
tions of the form

MγM
k
BTZVAdS3×S3 (8.1)

=



1 0 2γ 0 −2γ2 0

0 1 0 2γ2 0 −2γ

0 0 1 0 −2γ 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 −2γ 0 1





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

0 0 0 0 0 1



k

1
r

0

0

0

n
µ
r


(8.2)

=



−2nγ2

0

−2nγ

0

n

0


+



1− 2kγ2

−2µγ

−2kγ

0

k

µ


1

r
. (8.3)

The expression of the corresponding metric tensor is not very illuminating, and
is therefore omitted. The same goes for the explicit expression of the three-form.
When discussing the Reissner-Nordström black hole in subsection 2.1.1, the
relevance of the parameter H, in the metric became clear. In the context of the
Reissner-Norström black hole solution the location of the black hole singularity
corresponds to H = 0, and the black hole horizon corresponds to H blowing up.
Therefore, analyzing point where H either vanishes or blows up, might prove
useful in analyzing the solution. For the solution discussed here, we have

H =−

(
1+ 2γ2(k+nr)

)
µ

r
(
−1+ 2γ2(k+nr)

) . (8.4)
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Even though the metric and three-form of this solution appear rather incompre-
hensible, there are some aspects of the geometry we can check. To begin, we can
calculate a curvature scalar

RµνR
µν =

3
(
4γ4(k+nr)2 + 4γ2(k−nr) + 1

)2
2µ2

(
2γ2(k+nr) + 1

)6 , (8.5)

from which it can be concluded that there is a curvature singularity when H(rs) =
0, where

rs = −
1+ 2kγ2

2γ2n
. (8.6)

Sign of H

The position r of the curvature singularity depends on the values of the parameters
γ, k, µ and n. It is possible for the singularity to be at a point where r < 0, in
which case it is outside the domain of the coordinate system. However, it is also
possible for the singularity to be at a point where r > 0, in which case we cannot
simply ignore the singularity.

The parameter µ, characterizes the curvature for the original AdS3 × S3, there-
fore µ has to be positive. Then, to avoid negative mass terms, k should be non-
negative. The vacuum solutions (for which k = 0), has been studied in [7], and
therefore here we take k > 0. Remember also that m ∈ Z, form which it follows
that solutions in the regime of parameter space where 2kγ2 < 1, are not well-
defined. We are thus interested in solutions for which 2kγ2 > 1. The parameter n
is still free. We mentioned that analyzing the sign of H is helpful in understanding
the Reissner-Norström metric, and for similar reasons we will analyze the sign of
H for the new solution as well.

For n > 0

H >0 for r < rs, rB < r < 0, (8.7)

H <0 for rs < r < rB, r > 0, (8.8)

while for n < 0

H >0 for r < 0, rB < r < rs, (8.9)

H <0 for 0 < r < rB, r > rs. (8.10)

Here rB is defined V1(rB) = 0, which gives rB = 1−2kγ2

2nγ2
. A graphic representation

of the above is given in figure 8.1. From the investigation of the sign of H, it
immediately becomes clear that for n > 0, H approaches negative infinity at r = 0,
while rB and rs are outside the domain of r. This is different for n < 0, where
an observer approaching the black hole from infinity, first encounters rs and rB.
We already know that rs corresponds to a curvature singularity, and still wish to
understand what happens at r = rB and r = 0.

r = rB

When r = rB we have that V1 = 0. However, it turns out that in most components
of the metric, the V1 terms cancel and thus nothing noteworthy happens at the
point r = rB. The only component in the metric where V1 is still present the
component guv, which vanishes when r = rB. In solutions where the part of the
metric depending on du and dv forms a direct product with the base space, this
would mean that we might be dealing with an ergosphere. This follows from the
fact that we can transform the lightcone coordinates to the standard coordinate
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(a) n > 0 (b) n < 0

Figure 8.1: Graphs showint he form of H for positive and negative n. Points where
H vanishes or blows up have been labeled rB, rs and 0.

system, where the vanishing of gµν would correspond to the vanishing of the
timelike component. Here, the metric components are not simply a direct product,
but one can still wonder whether there is something like an ergosphere at this
point, perhaps just hidden behind the choice of coordinates. Ideally we would now
go to the asymptotic limit, identify the time coordinate for a distant observer and
see if this coordinate vanishes at r = rB. In case it does, we would have confirmed
that there is an ergosphere at this point. However, as we we discuss later in section
8.3 the asymptotics of this solution are not well understood. The timelike vector
corresponds to energy conservation, and as such it should be a Killing vector. In
the current coordinate system however, we were not able to identify a timelike
vector in the asymptotic limit, and attempted coordinate transformations have
also failed to provide the desired result. For this reason it seems likely that the
vanishing of a metric component at the point r = rB is in fact just an artifact of our
choice of coordinates. One way to confirm this would be by defining the killing
vectors of a solution, and see if they describe a horizon at this location.

8.1 metric signature

To determine the three-from field strength we have to calculate a Hodge dual on
the base space, and thus we will have to know how the signature of the base space
in different regimes of parameter space. This motivates the study of the metric
signature below.

Let us start with the base space metric. One can calculate the eigenvalues of
this metric and see that they have signature (4, 0) for V1 > 0 and (0, 4) for V1 < 0.

Let us take a closer look at the signature of the base space metric:
For n > 0 the signature of the metric is

(4, 0) for rB < 0 < r (8.11)

(0, 4) for r < rB, r > 0. (8.12)

While in the case where n < 0, the metric signature is

(4, 0) for r < 0, r > rB (8.13)

(0, 4) for 0 < r < rB. (8.14)

For the six-dimensional metric the calculation of the eigenvalues becomes less
trivial, therefore these calculations were performed using Mathematica. It turns
out that the metric changes signature only in the singularity. For n > 0 the metric
signature is as follows:

(5, 1) for r > rs, (8.15)

(1, 5) for r < rs. (8.16)
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And for n < 0 the metric signature is

(5, 1) for r < rs, (8.17)

(1, 5) for r > rs. (8.18)

Since the convention in this thesis is to work in the ‘mostly plus’ metric signature,
we multiply the metric by an overall minus sign in the region where the metric
signature is (1, 5), such that we recover a (5, 1) signature. This is a somewhat
surprising result. Remember that in subsection 4.2.4 we noticed that in the solution
of the BTZ black hole, n was a redundant parameter. Here n is clearly no longer
redundant, and it would be nice to gains some understanding as to the physical
significance of n in this case. Unfortunately, we have not been able to comprehend
the meaning of this parameter and it remains an open problem.

8.2 horizon

Where we were unable to find a satisfying explanation for the point r = rB, we
have found that at r = 0 there is an event horizon. In this section we will discuss
the topological and geometrical properties of this horizon.

Setting r = 0 yields the metric

ds2|r=0 =
2kdu2

µ
(
1+ 2γ2k

) + µdψ2

1+ 2γ2k
+
(
µ+ 2γ2kµ

)(
dθ2 + dφ2

)
+
8γkCos[θ]dudφ

1+ 2γ2k
+
2
(
1− 2γ2k

)
µCos[θ]dφdψ

1+ 2γ2k
,

(8.19)

which extends in four spacelike dimensions. This corresponds to a hypersurface
in six-dimensional spacetime.

The r = 0 surface has normal vector

Nµ = ∇µr = δrµ, (8.20)

of which the norm is

|N|2 = gµνδrµδ
r
ν = grr =

r2

µ(1+ 2γ2(k+nr))
. (8.21)

The norm vanishes at the r = 0 surface, meaning it is a null hypersurface.
Furthermore, the Killing vector field Vµ = (∂v)

µ can be used to calculate the
surface gravity κ as defined in (2.39). We have

κVν = Vµ∇µVν = Vµ
(
∂v + Γ

ν
µρ

)
Vρ = Γρvv = 0, (8.22)

for all ν. Thus it can be concluded that the surface gravity vanishes for this Killing
horizon. Remember that vanishing surface gravity (or black hole temperature)
is characteristic of an extremal black hole, and BPS objects are expected to be
extremal.

8.2.1 Horizon topology

Let us now make the identification u = u+ L, and define

ζ =
4γku+ µ(1− 2γ2k)ψ

µ2(1+ 2γ2k)
, (8.23)

z =
(2kγ2 − 1)u+ 2γµψ

1+ 2kγ2
, (8.24)
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where we require

L

4π

4γk

µ(1− 2γ2k)
∈ Z,

L

4π

2kγ2 − 1

2γµ
∈ Z, (8.25)

for this coordinate change to be well defined. This leads to a quantization of the
possible values of L, as well as an additional restriction

8γ2k

(1− 2γ2k)2
∈ Q, (8.26)

on the parameters characterizing the solution.
In these coordinates the metric reads

ds2|r=0 =
2k

µ(1+ 2kγ2)
dz2 + µ(1+ 2γ2k)(dθ2 + sin2 θdφ2 + (dζ+ cos θdφ)2)

=
2k

(1+ 2kγ2)µ
dz2 + 4µ(1+ 2γ2k)dΩ23,

(8.27)

where we can that the horizon has S1z × S3 topology.
The charges as given in (4.56) are now One might think that we

have to adjust the range
of ψ in the integral since
the coordinates are
defined on a Zm

orbifold. However, in our
coordinate system
ψ = ψ+ 4π, and
changing this would
induce a change of the
metric components
leaving the expression
for the entropy S
invariant.

Q̃ = 4
√
2µ
(
1+ 2γ2k

)
, Q = 8k, J = −32γkµ, (8.28)

giving a non-vanishing entropy:

S = 16π
√
2kµ2, (8.29)

independent of γ as expected since Mγ is an entropy conserving transformation.
As a consistency check we can also calculate the entropy by integrating over

the area of the horizon H at r = 0:

A =

∫
H

dA
√
g =

∫
H

√
2kµ2 sin2(θ)dudψdθdφ = 16π2L

√
2kµ2. (8.30)

We now substitute this area in the equation for the Bekenstein-Hawking entropy
to obtain:

S =
A

4GN
= 16π

√
2kµ2, (8.31)

where we work in conventions the conventions of [72], in which GN = 1
4πL. Hence

the results of (8.29) and (8.31), are in agreement as expected.

8.2.2 Near-horizon geometry

We can also look at the near horizon geometry of the S1z × S3 surface at r = 0.
It has been checked and confirmed that going to the limit r → 0 in the metric
yields the same result as taking this limit in the harmonic functions. Thus the near
horizon geometry is parametrized by the set harmonic functions

V =



1− 2kγ2

−2µγ

−2kγ

0

k

µ


1

r
, (8.32)
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corresponding to

H =
1

r
(µ+ 2µkγ2), F =

1

r
(2k+ 4k2γ2), (8.33)

β =
2µγ

2kγ2 − 1
dψ, (8.34)

ω =−
1

r

(
4kγµ+ 8µk2γ3

)(
dψ+ (1− 2kγ2)dφ

)
, (8.35)

where it should be noted that the solution does not depend on n in this regime.
Using the coordinate transformation defined in (8.23), we can describe the

resulting metric describing the near-horizon geometry as

lim
r→0

ds2 =
2k

(1+ 2kγ2)µ
dz2 +

2r

µ(1+ 2kγ2)
dzdv

+
µ

r2
(1+ 2kγ2)dr2 + 4µ(1+ 2γ2k)dΩ23.

(8.36)

This metric is locally AdS3× S3 which can be noticed by observing that it is of the
same form as (C.3), which after making the necessary identifications as described
in subsection 4.2.4, can be recognized as a direct product BTZk × S3/Zm.

8.3 asymptotics

We will now study the asymptotic limit of the metric by taking r → ∞ in the
harmonic functions. This yields

V =



−2nγ2

0

−2nγ

0

n

0


+



0

−2µγ

0

0

0

µ


1

r
, (8.37)

giving the corresponding metric

ds2|r→∞ =
2dvdψ
γn

+
dψ2µ
2γ2nr

+
2γ2nµdr2

r
+
2dudvr
µ

+ 2γ2nµrdθ2 + 4dvdφγCos[θ]r+ 2dφ2γ2nµrSin[θ]2,
(8.38)

and three-form

G =−
dr∧ du∧ dv

2µ
+ γCos[θ]dr∧ dv∧ dφ

+ γrSin[θ]dv∧ dθ∧ dφ+

√
n2µSin[θ]dθ∧ dφ∧ dψ

2n

=

(
1+ ?6
2µ

)
du∧ dv∧ dr

+ γCos[θ]dr∧ dv∧ dφ+ γrSin[θ]dv∧ dθ∧ dφ,

(8.39)

where in the second step it was assumed that n > 0. Here the first term in the
three-form is equal to the three-form corresponding to AdS3 × S3 as presented in
(4.45).

From our metric or three-form it is not immediately clear how to interpret
our asymptotic space. Acting on the harmonic functions with the element of



8.4 negative branes 61

the symplectic group corresponding to gauge transformations (5.26), does not
simplify the solution either.

We do have a constant Ricci tensor in the asymptotic limit, meaning that the
energy-momentum tensor is constant, which implies that the solution might
correspond to pp-waves in this limit. As describe in section 2.2 a pp-wave is
characterized by a covariantly constant null Killing vector field, the metric (8.38)
contains the null vectors ∂v and ∂u. However, they are not covariantly constant,
since d(gvµdxµ) 6= 0 and d(guµdx

µ) 6= 0. Thus it can be concluded that the
interpretation of the solution in the asymptotic limit as a pp-wave spacetime is
not correct.

8.4 negative branes

We might be able get some understanding in terms of a microscopic description in
string theory, of the signature change we found in our solution by introducing the
negative branes discussed in subsection 3.5.4. Because, as mentioned there one of
the main properties of negative brane solutions is that they contain a singularity
at some r > 0 where the signature changes.

We have to compactify four dimensions of the type IIB string theory to obtain a
six dimensional theory, this leaves several options for the D-brane configuration.
The options we have are introducing D1− branes, D3− branes wrapped on a 2-
cycle, or D5− branes wrapped on a 4-cycle. In ten dimensions these would result
in different metric signature for r < rs, since the metric signature is (10− p,p),
but we will compactify the solution on the wrapped cycles and thus the lower
dimensional metric signature does not depend on this choice of brane.

Regardless of the choice of brane, to obtain the six-dimensional solution from
ten-dimensional string theory we have to compactify four dimensions. This will
result in the required (5, 1) metric signature on both sides of the singularity.

The brane direction should correspond to Killing vectors in our six-dimensional
solutions. Let us denote therefore denote the directions of the brane that are not
compactified as

p = p1∂u + p2∂v. (8.40)

Because the brane directions change signature at the singularity, we need the
brane to be positioned such that |p|2 changes sign at the singularity. We have

|p|2 = pµgµνp
ν =

2p1
µ+ 2γ2µ(k+nr)

(
p1(k+nr) + p2r(2γ

2(k+nr) − 1)
)

.

(8.41)
When crossing the singularity the above norm changes sign as a result of the
change of signature of the metric. However, in general, the denominator in of the
norm also changes sign at this point, resulting both sign flips canceling out at this
singularity. To avoid this we would like to choose p1 and p2 such that the norm
does change sign at the singularity, which is the case if p1(k+nr) + p2r(2γ2(k+
nr) − 1) ∼ 1+ 2γ2(k+nr). Unfortunately, the only way to achieve this is for the
scalars p to be dependent on r. This means the direction parallel to the brane is
not described by a Killing vector in the metric we are trying to understand, and
hence the metric we found does not have a microscopic description in terms of
negative branes.

Besides ∂u and ∂v, ∂ψ is also a Killing vector of the solution. However, including
this vector in the search for a direction parallel to the brane, did not resolve the
issue.
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C O N C L U S I O N S A N D D I S C U S S I O N

In this thesis we have presented a review of black holes and higher dimensional
solutions in general relativity. This review is extended to that of supersymmetric
solutions in supergravity, the study of which has gained interest because of its
relevance in the context of string theory.

We inspected properties of the group Sp(6, R) in the context of minimal six-
dimensional supergavity, and in particular explored the phase space of solutions
by transforming solutions into solutions using elements of this group.

Transformations induced by the symplectic group are studied in the context
of flat space, where we find the stabilizer group to be Sp(4, R) and provide a
classification of the generated solutions, while separately studying solutions which
are asymptotically flat and those which are not.

A similar approach was taken in the context of plane wave solutions. In this case,
the solutions we found included solutions with a planar curvature singularity,
although we were not able to construct a physical argument for their existence,
they are an interesting appearance, and provide an example of a property of
a solution, which has by our best knowledge not been study before. Further
research is needed to gain a better understanding of these singularities. Moreover,
continuing the study of the symplectic group acting on plane wave solutions
deserves our attention, and might lead to more intriguing solutions and insights.

Finally, we studied the tranformation of a BTZ black hole using a spectral
flow transformation, which is an element of the entropy conserving subgroup of
Sp(6, R). We found that the solution had a horizon at r = 0, which is topologically
S1×S3 and its geometry is locally isomorph to AdS3×S3. The asymptotic limit is
however still not well understood, and more work on this is needed. Furthermore,
we found that a parameter n, which is redundant in the description of the BTZ
black hole, turned out to have a significant impact on the solution after this
transformation. When n < 0 the solution contains a naked singularity, and at this
point the metric signature flips. These properties are similar to that of negative
branes, but we showed that a microscopic explanation could not be provided
by these negative branes. We are not aware of any other objects with similar
properties, and understanding physical role of n is still an open problem.

At the very least it can be said that the group Sp(6, R) provides a promising
set of transformations worth studying. In the best case the Sp(6, R) could have an
origin in the microscopic theory giving meaning to the group. But regardless, it is
able to generate supersymmetric solutions of objects which have not been studied
before, and one can be hopeful to find new solutions of spacetime by proceeding
to explore the solutions to the theory using the elements of this group.

For further research I propose to attempt a more careful approach. A strong
physical intuition tells us that in the asymptotic limit we should be able to
recover the vacuum background solutions. In the case of minimal six-dimensional
supergravity, we know that there are three distinct maximally supersymmetric
solutions, those being flat R1,5, AdS3 × S3 and CW6 [4]. An approach for further
research would be to find the most general set of harmonic functions describing
these backgrounds, this has already been done for R1,5 in this thesis, for the
results see (4.42). Deviation from these spacetimes in the asymptotic limit does not
guarantee the solution solution is not worth studying, but considering the algebra
consists of 21 generators, placing thought through restrictions on the solutions
is advisable. Later on one could loosen this constraint by allowing for pp-waves.
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Even if this method does not provide any ‘new’ solutions, it will enable us to
make the statement that all solutions in the class obeying certain constraints, are
already known, and the existence of possibly undiscovered solutions can then be
ruled out.

Having found a potentially interesting solution in terms of a number of parame-
ters in the harmonic functions, one should investigate the region in this parameter
space where the solution is regular, meaning no closed timelike curves or other
anomalies occur.
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A
C O N V E N T I O N S

Some natural units are set to one:

c =  h = kB = 1. (A.1)

The spacetime metric used has sign convention ‘mostly plus’:

ηµν = (−,+ · · ·+). (A.2)

The (anti-)symmetrization of indices has weight 1, i.e.

T(µ1µ2...µn) =
1

n!
(
Tµ1µ2...µn + sum over permutations of indices

)
, (A.3)

and similarly for anti-symmetric indices, except there the sum of indices is alter-
nating, meaning that terms corresponding to an odd number of permutations
obtain negative sign.

The Levi-Civita symbol is defined by

εµ1µ2...µn =


+1, if (µ1,µ2, . . . ,µn) is an even permutation of (1, 2, . . . ,n)

−1, if (µ1,µ2, . . . ,µn) is an odd permutation of (1, 2, . . . ,n)

0, otherwise

.

(A.4)
Differential p-from components are defined by

φp =
1

p!
φµ1µ2...µpdx

µ1 ∧ dxµ2 ∧ . . .∧ dxµp (A.5)

The exterior derivative acts form the left, hence we denote

dA = ∂νAµdx
ν ∧ dxµ, A = Aµdx

µ. (A.6)

We denote the set of integers {1, 2, . . . ,n} as [n].
γ’s with multiple indices are antisymmetric products of gamma matrices

γµ1...µp =
1

p!
(γµ1γµ2 . . . γµp ± permutations of µ1 . . . µp) . (A.7)

Unless otherwise specified, all the spinors are symplectic Majorana

χi = εij(χj)c, (χi)
c = (χi)†γ0. (A.8)
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B
G E O M E T RY

Since we are working in curved spacetime, it is convenient to introduce some of the
concepts and tools that will prove useful in describing such spacetimes, and which
return throughout this thesis. Some aspects are considered prerequisites, these
include the metric, affine connection, Riemann tensor, and other concepts funda-
mental to understanding general relativity. Usually books on general relativity
will discuss these things, e.g. [8, 10].

For those not familiar with differential forms, the vielbein formalism or complex
geometry, this appendix provides an elementary introduction. For a more in-depth
discussion of these subjects and other geometrical objects used in physics, see e.g.
[51, 73, 74].

b.1 differential forms

Differential forms provide a method for constructing coordinate invariant expres-
sions, simplifying certain calculations. For example that of the curvature tensor.
Differential forms also play a central role in differential topology, such as De
Rham cohomology.

To begin, a differential p-form A(p) is simply a (0,p) tensor that is completely
antisymmetric. And a p-from in D dimensions has(

D

p

)
=

D!
p!(D− p)!

(B.1)

independent components, which is taken into account for the normalization of
the forms.

Differential forms have some interesting properties, which show when we
consider products, derivatives or integrals of forms. These three cases will be
discussed below.

wedge product

We can ‘multiply’ two forms and thereby obtain another form, if we are careful
to preserve antisymmetry. Taking the product of a p-, and a q-form is done as
follows:

A(p) ∧B(q) = C(p+q), (B.2)

which in terms of components is written as

Cµ1...µp+q = (A∧B)µ1...µ+p+q =
(p+ q)!
p!q!

A[µ1...µpBµp+1...µp+q]. (B.3)

Please be aware that often in differential-forms the wedge product symbol is
not explicitly written. For example, we often write the basis of a p-form as A(p) =
1
p!Aµ1...µpdx

µ1dxµ2 . . . dxµp , where the differential forms dx, still anticommute.

exterior derivative

Forms can vary over spacetime, so when we write Aµν, we really mean Aµν(x).
It would of course be useful to describe how forms vary, and this is where a
derivative comes in. We could just use the partial derivative, but the result is
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generally difficult to work with. However, by carefully involving anti symmetry,
we are able to define a derivative such that the derivative of a form gives another
form.

Let us define dA(p), which is a (p+1)-form with components

dAµ1...µp+1 = (p+ 1)!∂[µ1Aµ2...µp+1], (B.4)

where is an arbitrary p-form.
This is what we call the exterior derivative (of A(p)), and it has three especially

helpful properties:

1. It satisfies a modified Leibniz product rule.

For A(p) and B(q) we have d(A∧B) = dA∧B+ (−1)pA∧ dB.

2. Due to the anti symmetric properties of the exterior derivative, as opposed
to the regular partial derivative, the Christoffel connections cancel. As a
result we can take these derivatives without having to worry about a metric,
this means that exterior derivatives are only dependent of the topological
aspects of the spacetime.

3. The symmetric property of the partial derivative used in the definition of
the exterior derivative as given in (B.4), results in the vanishing of a ‘second
order’ exterior derivative:

d(dA) = d2A = 0. (B.5)

This feature is one of the keys to how exterior calculus of differential forms leads
to topological invariants.

integration

Once you have a derivative, it is natural to follow up with an attempt at integrating.
Here the anticummuting properties of forms also turns out to be very convenient.
As an example consider dxdy, and transform the variables as x → x ′(x,y) and
y→ y ′(x,y). which results in the transformation

dxdy→ dx ′dy ′ =

(
∂x ′

∂x
dx+

∂x ′

∂y
dy

)(
∂y ′

∂x
dx+

∂y ′

∂y
dy

)
,

=
∂x ′

∂x

∂y ′

∂x
dxdx+

∂x ′

∂x

∂y ′

∂y
dxdy+

∂x ′

∂y

∂y ′

∂x
dydx+

∂x ′

∂y

∂y ′

∂y
dydy.

(B.6)

However, we know that dxdy should transform with the Jacobian:

dx ′dy ′ =

(
∂x ′

∂x

∂y ′

∂y
−
∂x ′

∂y

∂y ′

∂x

)
dxdy, (B.7)

meaning that terms containing the products dxdy should vanish in (B.6). This is
exactly what happens when dx and dy anticommute.

From this we can observe that the basis of a p-from is actually an integration
measure over a p-dimensional oriented volume. This means that an expression
like

∫
Σp
A(p) is perfectly well defined and coordinate invariant. The physical

significance of this is that there is a natural coupling between p-form fields and
the p-dimensional world-surfaces swept out by (p-1)-dimensional objects.
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b.2 hodge star operator

Let us define the set of p-forms Ω(M) on a D-dimensional manifold M, with
metric g. Because p-forms and q-forms have the same number of components
if p+ q = D (see (B.1)), Ωp(M) is isomorphic to ΩD−q(M). This enables us to
define an isomorphism between p-forms and (D-p)-forms, which we will call
the Hodge operation, denoted by the Hodge star operator ?. The Hodge star is
defined as

〈α,β〉volD = α∧ ?β, (B.8)

where volD is the volume form of M.
The action of the Hodge operator on a p-form α

α =
1

p!
αµ1µ2...µpdx

µ1 ∧ . . .∧ dxµp , (B.9)

yields the Hodge dual of α, defined by

?α =

√
−g

p!(D− p)!
αµ1µ2...µpε

µ1µ2...µp
νp+1...νDdx

νp+1 ∧ . . .∧ dxνD . (B.10)

Here it should be noted that the volume form volD, can also be written as

? 1 =
√
−gdx1 ∧ dx2 ∧ . . .∧ dxD = volD. (B.11)

When the manifold M is 2n-dimensional, we can define the anti-self duality
and self duality conditions of n-forms as

?α =−α (B.12)

?α =α, (B.13)

respectively.
Repeatedly acting with ? on α yields

? ?α = (−1)p(D−p)α, (B.14)

if the metric is Riemannian, and

? ?α = (−1)1+p(D−p)α, (B.15)

if the metric is Lorentzian.

b.3 complex geometry

In this thesis we discuss solutions on four dimensional base space, where we
restrict ourselves to solutions for which the base space is a Gibbons-Hawking
space, which we claim is a hyper-Kähler space with an extra U(1) isometry. We
are intersted in hyper-kähler manifolds because of the hypermultiplet which
arises in supersymmetric theories. A hypermultiplet is made up of two half-
hypermultiplets and hence contains four real scalars and two Weyl fermions. We
can combine these four scalars into complex fields in three different ways, which
corresponds to the existence of three complex structures. Here we will explain in
some more detail what a hyper-Kähler space is. This section is largely based on
[75, 76].
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b.3.1 Manifolds

General relativity is defined on a manifold, this is a space which locally looks like
R. Take for example a sphere S2, if we then take all distances in a local region on
this sphere to be very small compared to the radius of the sphere, this enables us
to make use of the theory of analysis as developed on Rn. This does not mean
that the metric on a curved space is the same as the metric on flat space, but
that notions such as functions an coordinates work in a similar way. The entire
manifold is then described by describing a continuous mapping form each of
the local regions to its neighbors, often called the ‘sewing’ together of the local
regions.

Imagine an n-dimensional manifold on which we can define two local regions
A and B, for which there is some non-vanishing A∩B. We then have mappings

φA : A→ Rn, (B.16)

φB : B→ Rn, (B.17)

(B.18)

and on the region A∩B we have

φA ◦φ−1
B : Rn → Rn. (B.19)

Which just describes a coordinate transformation form the region B to region A,
by applying the two consecutive maps.

b.3.2 Complex manifolds

As the name already suggests, a complex manifold is related to the concept of
complex numbers. Let take the complex number c = x+ iy, where x,y ∈ R, which
we can define on the complex plane C. Hence we understand there should be
some map between an n dimensional complex space and an 2n dimensional real
space: R2n → Cn.

Consider a 2n-dimensional manifold, on which we now define the mappings

φA : A→ Cn, (B.20)

φB : B→ Cn, (B.21)

and this time the intersection of a 2n-dimensional manifold enables us to define
the transformation

φA ◦φ−1
B : Cn → Cn. (B.22)

In this case we require the maps to only depend on the coordinates zi, with
i ∈ [n], defined on the complex manifold, and not on their complex conjugates
zi∗. Maps of these kind are called holomorphic. Thus an important difference
between real manifolds and complex manifolds is that coordinate transformations
are preformed using differential and holomorphic maps on real and complex
space, respectively.

Let us consider a function f : C→ C, where

f(x+ iy) = u(x,y) + iv(x,y). (B.23)

Taking this mapping and imposing holomorphisity, we find the Cauchy-Riemann
equations:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −

∂v

∂x
. (B.24)

We can think of a complex manifold as a real manifold with a certain different
structure, this leads one to wonder in what cases we can think of a real manifold
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as a complex manifold with added structure. There are two restrictions on the real
manifold for us to be able to make such an identification. The first one is rather
obvious, and that is that the real manifold should be even dimensional.

The second requirement is not quite trivial. For this, let us consider a (1,1) tensor
Jµν that satisfies JµνJλµ = −δλν. Here Jµν is called an almost complex structure.
Now we want to use this almost complex structure to define a complex manifold,
to do so we define the Nijenhuis tensor

Nµν
ρ = (∂µJν

σ)Jσ
ρ − Jµ

σ(∂σJν
ρ) − (µ↔ ν). (B.25)

Here we have not given an explicit expression for the almost complex structure
with respect to local complex coordinates, and therefore the following argument
may seem to appear out of thin air. Nevertheless, it should be mentioned that if
the Nijenhuis tensor vanishes, Jµν is a complex structure and the manifold is a
complex manifold. We will elaborate on this shortly.

General Tensors

When acting on a vector Vµ, JµνVν = Vµ transforms a vector in tangent space to
M at point p, into another vector in tangent space as

Jµν : TpM→ TpM. (B.26)

Here we have that TpM is a real vector space at point p. To get a complex vector
space, we use TcM ≡ TpM⊗C. Acting with Jµν twice gives

JνµJµλV
λ = −Vµ. (B.27)

From which it follows that the eigenvalues of J are +i or −i. So we can take this
complex vector space and split it up in a set of vectors in T (1,0)

p with eigenvalue
+i under the application of the complex structure, and a second set in T (0,1)

p

with eigenvalue −i under the application of the complex structure. Each of these
eigenspaces are isomorphic to Cn, complex conjugate to each other, and we can
decompose

TCM = T (1,0)M⊕ T (0,1)M, (B.28)

where the (1,0) part is the holomorphic tangent bundle, and the (0,1) part is
anti-holomorphic tangent bundle. Similar results can be obtained analogously for
the cotangent space

T∗CM = T∗(1,0)M⊕ T∗(0,1)M, (B.29)

We can now consider vectors Va in the holomorphic part of tangent space and
vectors Vā in the anti-holomorphic part of tangent space, with the decomposition
of a general vector Vµ = Va ⊕ Vā.

For x ∈ TCM we can form the set of holomorphic and antiholomorphic tangent
space elements as

T (1,0)M = {X− iJX} (B.30)

T (0,1)M = {X+ iJX}. (B.31)

Acting with J on both yields

J(X− iJX) =JX+ iX = i(X− iJX) (B.32)

J(X+ iJX) =JX− iX = −i(X+ iJX), (B.33)

where we observe that indeed J can be used to split TCM into eigenvalues of J
with eigenvalues ±i.
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Alternatively we can think of the projection

T (1,0)M =
1

2
(1− iJ)X, (B.34)

where we define P− ≡ 1
2 (1− iJ). One can check that P2− = P−, and hence P− is a

projection operator.
Previously we mentioned that an almost complex manifold is a complex mani-

fold if the Nijenhuis tensor vanishes, here we will show that this is equivalent to
the statement that the transition on the overlaps are holomorphic.

An almost complex structure is also a complex structure when[
T (1,0)M, T (1,0)M

]
⊆ T (1,0)M, (B.35)

meaning when the Lie bracket of holomorphic vectors (which measures the
rate of change of one vector field along the flow induced by the other) remains
holomorphic. If v = va∂a, w = wa∂a then [v,w] = va∂awb∂b −wb∂bva∂a.

For

Z = [X− iJX, Y − iJY] = [X, Y] − [JX, JY] − i([X, JY] + [JX, Y]), (B.36)

we have that Z ⊆ T (1,0)M if JZ = iZ. Actions on (B.36) should thus give the same
result as multiplying the expression by i, which implies the Nijenhuis tensor

N(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] − [JX, JY], (B.37)

vanishes. One can check that this is indeed the coordinate independent description
of (B.25).

b.3.3 Kähler manifolds

Kähler manifolds are essentially those for which parallel transport of a holomor-
phic vector remains holomorphic.

More precisely, let us consider a hermitian metric g on a complex manifold M,
for any two vector fields X and Y we then have

g(JX, JY) = g(X, Y). (B.38)

Let us now define a two-form ω as

ω(X, Y) ≡ g(JX, Y). (B.39)

Using the hermitian property and the almost complex structure it can be shown
that

ω(X, Y) = −ω(Y,X), (B.40)

where we can go to local coordinates to find ωµν = −ωνµ.
A Kähler manifold is defined as a manifold on which ω is closed, i.e dω = 0.
Recall that starting with a real manifold which locally looks like R2n, we added

a complex structure to obtain a space which is locally Cn. The real tangent space
was R2n itself which we copmlexified to C2n, we then split it into a holomorphic
and anti-holomorphic subspace, each of complex dimension n.

So for a Kähler manifold of real dimension 2n, parallel transport maps Cn →
Cn preserve the length of a vector. These transformations form the group U(n), i.e.
Hol(M) ⊆ U(n). The real space R2n we started with has Hol(MR

2n) ∈ SO(2n)
as the most general group conserving the length of a vector in R2n. However, in
the case of a Kähler manifold we have Hol(MK

n) ∈ U(n).
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So the Kähler condition states that we only use half of the tangent space (since
it does not allow us to go from holomorphic to anti-holomorphic vector space or
vice-versa). The holonomy group of a Kähler manifold is the set of transformations
which takes something in one half of tangent space, and after transformation it is
still in this half. Hence the symmetry group performing these operations is U(1).

We know SO(2n) has n(2n− 1) generators and U(1) has n2 generators, so for
n > 1 (which is generally the case), there are more generators in SO(2n). Here
we have quantized the degrees of freedom restricted when ‘promoting’ a real
manifold to a Kähler manifold.

b.3.4 Hyper-Kähler manifolds

A hyper-Kähler manifold MHk is a 4n dimensional manifold with Hol(MHk) ∈
Sp(n). Hyper-kähler manifolds are a special class of Kähler manifolds that admit
three distinct complex structures I, J and K, satisfying the quaternion relations

I2 = J2 = K2 = IJK = −1. (B.41)

In our case these complex structures are related to the non-zero bilinears
(4.10), explaining why the base space of the theory discussed in this thesis is
hyper-Kähler.

b.3.5 Calabi-Yau manifolds

In the context of string theory the Calabi-Yau manifold serves as the manifold on
which ten-dimensional string theory is compactified to four dimensions. Therefore
we often compactify a string theory on a six-dimensional Calabi-Yau threefold, al-
though a Calabi-Yau manifold can be defined for any number of even dimensions. Note that it while it is

trivial to prove that a
vanishing Ricci tensor
leads to vanishing of the
first Chern class, the
prove in the other
direction is highly
nontrivial.

In 1954 Calabi proposed that any compact Kähler manifold with vanishing first
Chern class for the holomorphic tangent bundle, i.e. c1(M) = 1

2πTr(Rµν), admits
a unique metric for which the Ricci tensor Rµν = 0 [77]. Calabi was able to prove
this [78], and in 1977 Yau was able to prove existence of such a metric [79].

Since the existence prove, a lot of examples have been found. Currently estimates
have it that ∼ 10723 standard models can be obtained from string theory through
compactification on different Calabi-Yau manifolds [80]. Finding our universe
among the myriad of possibilities is an open problem in string theory.
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Anti de Sitter spacetime in D dimensions (AdSD) is the maximally symmetric
solution of Einstein’s equations

Rµν −
1

2
Rgµν +Λgµν = 8πGNTµν, (C.1)

with with negative cosmological constant Λ, resulting in a spacetime with constant
negative curvature. AdSD is defined as a hyperboloid

− x21 − x
2
2 +

D+1∑
i=3

x2i = −l2, l =

√
−1

2Λ
(D− 1)(D− 2) (C.2)

embedded in D+ 1 dimensional spacetime R2,D−1.
AdSD has the isometries that preserve the hyperboloid structure of the embed-

ding. The group of rotations and boosts in a geometry corresponding to Rp,q is
SO(p,q), and upon determining the algebra via the killing vectors one indeed
finds SO(2,D− 1) [64, 71] as the isometries of AdSD.

The metric reads

ds2 = −

(
1+

r2

l2

)
dt2 +

(
1+

r2

l2

)−1

dr2 + r2dΩ2D−2. (C.3)

In Poincaré coordinates, which cover only part of the AdS-space, the metric is

ds2 =
1

y2

(
−dt2 + dy2 +

∑
i

dx2i

)
. (C.4)

From this it follows that Anti-de Sitter metric in D spacetime dimensions has a
nonzero curvature scalar

R =
2D

D− 2
Λ. (C.5)
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The Dirac equation is the relativistic Schrödinger equation based on the so called
spinor representations, and reads

(γµ∂µ +m)ψ(x) = 0, (D.1)

where the symbol γµ represents a set of matrices acting on the spinor indices of
the wave function ψ.

In this appendix we will discuss the gamma matrices and their symmetries, as
well as irreducible spinors, and the vielbein formalism. This appendix is inspired
by [20, 47], which provide a more in-depth account of the matter discussed here.

d.1 gamma matrices and symmetries

Acting with another γµ∂µ on (D.1), yields

γµ∂µγ
ν∂νψ(x) =m

2ψ(x) (D.2)
1

2
(γµγν + γνγµ)∂µ∂νψ(x) =m

2ψ(x), (D.3)

and since we wish for the Dirac equation to be a generalization of a plane wave
equation, the operator on the left hand side should be equal to the d’Alembert
operator. This means the matrices should satisfy the relation

{γµ,γν} ≡ (γµγν + γνγµ) = 2ηµνI, (D.4)

which defines the Clifford algebra associated with the Lorentz group.
The Clifford algebra for a d dimensional Euclidean matrix can be constructed

in terms of the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (D.5)

which is a basis for the algebra su(2).
We then construct the gamma matrices as

γ1 =σ1 ⊗ I⊗ I⊗ . . . , (D.6)

γ2 =σ2 ⊗ I⊗ I⊗ . . . , (D.7)

γ3 =σ3 ⊗ σ1 ⊗ I⊗ . . . , (D.8)

γ4 =σ3 ⊗ σ2 ⊗ I⊗ . . . , (D.9)

γ5 =σ3 ⊗ σ3 ⊗ σ1 ⊗ . . . , (D.10)

. . . . (D.11)

To instead construct a Clifford algebra for a spacetime with Lorentzian signature
(t,d), the first t matrices are multiplied by i.

For D = t+m even, the representation is of dimension 2D/2, and since for
D = t + d + 1 we do not need the last σ1 in the construction of γd+t+1, the
dimension remains 2D/2.

The representation presented here is unique up to

γ ′ = U−1γU, (D.12)
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where U is a unitary matrix.
To proceed we will have to note that a basis for the even-dimensional Clifford

algebra is given by
{ΓA = I,γµ,γµ1µ2 , . . . ,γµD }. (D.13)

The highest ranked tensor element of the Clifford algebra is of special impor-
tance because of its properties relating odd and even dimensions, and it is related
to the chirality of fermions. Let us define

γ∗ = (−i)d/2+tγ1γ2 . . . γD, (γ∗)
2 = 1. (D.14)

There exists a unitary matrix C, called the charged conjugation matrix, such
that each matrix CΓA is either symmetric or antisymmetric. Whether the matrix is
symmetric or antysimmetric depends on the rank r of ΓA:(

CΓ (r)
)T

= −trCΓ
(r), tr = ±1. (D.15)

Here the sign of tr depends on the spacetime dimension D modulo 8, and the
rank r modulo 4.

Using γ∗ as presented in (D.14), we define the right and left chiral projectors

PL =
1

2
(I+ γ∗), PR =

1

2
(I− γ∗), (D.16)

respectively.
Since the representations are hermitian and as such obey (??), combining

the symmetry property (D.15) and (??) can be used to determine the complex
conjugate of γ as

γµ∗ = −t0t1Bγ
µB−1, B = it0Cγ

0. (D.17)

Because of the hermitian property of both the gamma matrices and the charge
conjugation matrix makes we do not define complex conjugates of spinor fields.
Instead, we will define the simpler charge conjugation operation, which is effec-
tively the same operation for any spinor whose indices are all contracted. The
charge conjugate of a spinor λ is defined as

λC = B−1λ∗. (D.18)

And using (D.17) we then have

λ̄C = (−t0t1)iλ
†γ0. (D.19)

irreducible spinors

The transformation parameter of supersymmetry is the spinor εα. In general
the spinor associated with a certain supersymmetric theory in D dimensions, is
the one with the least possible components in that dimension. Table D.1 shows
the possible spinors in different spacetimes, where there is only one timelike
dimensions. The conditions corresponding to the different spinors are listed
below.

Weyl spinors

Spinors satisfying either of the projection condition

PLψ = ψ, PRψ = ψ, (D.20)

are referred to as left chiral, or right chiral Weyl spinors, respectively. This condi-
tion is restricted to even dimensions where we have γ∗, as given in (D.14).
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D spinor min # components

2 MW 1

3 M 2

4 M 4

5 S 8

6 SW 8

7 S 16

8 M 16

9 M 16

10 MW 16

11 M 32

Table D.1: The irreducible spinors of D dimensional theories. The spinors can
obey constraints corresponding to Majorana (M), Majorana-Weyl (MW),
symplectic (S) or symplectic Weyl (SW) spinors [20].

Majorana spinors

Let us define the reality condition

ψ = ψC = B−1ψ∗, (D.21)

which using (D.19), can be written as

ψ∗ = Bψ. (D.22)

This is the reality condition. However, this condition does not hold in all dimen-
sions. We can see this by taking the complex conjugate of (D.22), followed by
inserting (D.22) back into the resulting expression, which leads us to B∗Bψ = ψ.
This means that the condition to have Majorana spinors is B∗B = I, which means
t1 = −1 and t0 = ±1. B2 = I if t0 = 1, which is the case for D = 2, 3, 4 mod 8.
The spinors in theories in these dimensions satisfying (D.22), are called Majorana
spinors. If t0 = −1, which is the case in D = 8, 9 mod 8, the spinor satisfying
(D.22) is called a pseudo-Majorana spinor.

Majorana-Weyl spinors

In dimensions D = 2 mod 8, a spinor can satisfy both the projection condition
(4.11) and the reality condition (D.22). These spinors are called Majorana-Weyl,
are the most fundamental spinors in theories of dimension D = 2 mod 8.

Symplectic Majorana spinors

We just mentioned that t1 = −1 is a requirement to have Majorana spinors.
However, in dimensions D = 5, 6, 7 mod 8 we have t1 = 1, which means that
the corresponding spinors do not satisfy the reality condition. Instead we now
have

(
ψC
)C

= −ψ, in which case we can introduce a spinor doublet consisting
of an even number of spinors χi. The spinors defined in theories with t1 = 1 are
symplectic Majorana spinors. Symplectic Majorana spinors satisfy an alternative
reality conditions, namely

χi = εij
(
χj
)C

(D.23)



78 spinors

where εij is an invertible skew-symmetric matrix.

Symplectic Majorana-Weyl spinors

If D = 6 mod 8, both the symplectic Majarona constraint, as well as the chiral
projection condition can be applied. Spinors satisfying both constraints are called
symplectic Majorana-Weyl spinors.

d.2 spinors in curved spacetime

Here we introduce how spinor fields are coupled to curved spacetime. To do so
we will discuss the Vielbein eµa(x), leading to the spin connection ωabµ (x) and we
discuss the vielbein formalism used to couple spinors to curved spacetime.

Usually when coupling bosonic fields to curved spacetime, we make use of
the metric tensor gµν, as well as first and second order derivatives to provide a
description of curvature in terms of the Christoffel connections Γλµν and Riemann
tensor Rµνρσ. However, we cannot simply couple spinor fields to gravity using
metric tensors, because there is no covering group for the group of general
coordinate transformations. We do, on the other hand, know how to work with
spinors in flat space. So taking the Clifford algebra in flat space {γa,γb} = 2ηab,
and replacing the Minkwoski metric with by a general metric gµν(x), the Clifford
algebra reads

{γµ(x),γν(x)} = 2gµν(x). (D.24)

Usually the dependence of the metric on spacetime coordinates is not explicitly
written, but it is exactly this dependence which requires spacetime dependence
on the left-hand side as well. Expanding γµ(x) in terms of the constant Dirac
matrices γa yields

γµ(x) = eµa(x)γ
a. (D.25)

Plugging (D.25) into (D.24), we obtain

gµν(x) = e
a
µ(x)e

b
ν(x)ηab. (D.26)

We define the inverse eaµ of eµa, as eµaeaν = δ
µ
ν is a complex structure and the

space is a complex manifold.
Notice that here we distinguish the Greek indices (µ,ν, . . .), and the Latin indices

(a,b, . . .), called ‘global‘ and ‘local’ indices, respectively. Tensor fields Aa(x) =
e
µ
a(x)Aµ(x), with local indices transform under the local Lorentz transformations,

as well as general coordinate transformations.
If we wish to write down an action of spinor fields invariant under local

Lorentz transformations, we require a gauge field, this is the spin connection
ωabµ hinted at in the first few lines. As opposed to the Christoffel connection Γµνρ,
which is symmetric in its lower indices, the spin connection is anti-symmetric:
ωabµ = −ωbaµ .

All the tools introduced above now enables us to couple a spinor ψ to spacetime.
To do so we define the covariant derivative

Dµψ(x) =

(
∂µ +

1

4
ωabµ γab

)
ψ. (D.27)

The Lagrangian invariant under the Lorentz as well as general coordinate
transformations can be written as

L = ieψ̄µγ
muνρDµψρ, (D.28)

where e = det(eaµ) =
√
−g.
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Here we will provide a short review of the Kaluza-Klein reduction. For a more in
depth overview of the subject, see e.g. [81], which this section is largely based on.

Kaluza-Klein theory is a way of explaining the existence of higher dimensions
in string theory, but the idea already stems from before string theory and was a
first attempt of explaining electromagnetism in general relativity. The main idea
of the theory is that even though we only observe 3+1 dimensions, higher spatial
dimensions can exist under the assumption they are curled up to a radius smaller
than the Planck length, which would explain why they have not been observed.

An example often used to explain the principle of Kaluza-Klein compactification
is to consider a water hose. A water hose is a two dimensional object (a cylinder),
and for an ant walking on the outer surface of the tube, it will certainly seem to
be a two dimensional surface. However, if a human were to look at the water hose
from a large enough distance, it would look like a one dimensional line.

This theory can be used to obtain lower or higher dimensional expressions
of space time, in which case the process is referred to as compactification or
oxidation, respectively. The same concept can now be used in string theory to
compactify a higher dimensional theory in an attempt to obtain a description in
four spacetime dimensions in order to relate the theory to observables.

In the context of compactification it is assumed that spacetimes can be written
in the form M4 ×X, where M4 corresponds to the four dimensional universe we
observe and X is some compact manifold. In this section we study compactification
of a single dimension to a circle: MD+1 = MD × S1.

In the discussion of Kaluza-Klein reduction below we will denote coordinates
in D+ 1 spacetime dimensions with a ‘hat’ xµ̂ = (xµ, z), where z is the compact
coordinate. As a result of the S1 topology of the compact coordinate all fields in
D+ 1 dimensions have to satisfy the boundary condition

φ̂(xµ, z) = φ̂(xµ, z+n2πR), (E.1)

where R is the radius of the circle S1 and n ∈ Z. As a result of this periodicity all
fields may be written as a Fourier expansion of the form

φ̂(xµ, z) =
∑
n∈Z

φn(x
µ)einz/R. (E.2)

Inserting this expansion in the massless Klein-Gordon equation gives

�̂φ̂n = 0 ⇒
(
�+

(n
R

)2)
φn = 0, (E.3)

which implies that the fields have masses

M = |n|/R. (E.4)

This infinite set of fields φn is typically called the tower of massive Kaluza-Klein
modes.

since n ∈ Z the momentum in the z direction becomes quantized. An important
aspect of Kaluza-Klein theory is that the momentum becomes a quantized charge,
where we refer to n as a charge resulting from some potential Aµ.

As a result of (E.4), one can conclude that for small radius R all particles
described by the fields φn have a large mass except for the massless mode n = 0.
These massive modes can be neglected when probing energies much smaller than
1/R, or distance scales much larger than R, in these limits theory would effectively
be D dimensional.
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reduction of the metric

The D+ 1 dimensional metric ĝµ̂ν̂ can be decomposed into the components: ĝµν,
ĝµz and ĝzz. Naively one could argue that these look like a metric, vector field
and scalar field in D dimensions. However, if we identify these components as
the corresponding D dimensional fields directly, they will not behave well under
general coordinate transformations. Therefore, a better Ansatz for the metric is

ĝµ̂ν̂ =

(
e2αφgµν + e2βφAµAν e2βφAµ

e2βφAν e2βφ

)
, (E.5)

with α, β ∈ R. Upon dimensional reduction we can identify the following D
dimensional fields: gµν becomes the D dimensional metric, φ is a scalar field
called the dilaton field and Aµ is a U(1) gauge field called graviphoton. This
ansatz corresponds to a line element of the form

dŝ2 = e2αφds2 + e2βφ(dz+Aµdx
µ)2. (E.6)

Here α and β are arbitrary constants. Using this Ansatz we can obtain a lower-
dimensional Einstein-Hilbert Lagrangian LEH = e(β+(D−2)α)φ√−gR . In order
to obtain a Lagrangian in the Einstein frame we thus require β = −(D− 2)α,
which is fine as long as we do not reduce to two dimensions.

Another frame that can be useful is the string frame, which is obtained by
setting α = 0 and β = 1. Hence the Kaluza-Klein Ansatz in string frame is

ĝµ̂ν̂ =

(
gµν + e2φAµAν e2φAµ

e2φAν e2φ

)
. (E.7)

reduction of the dilaton

From Ansatz for the Kaluza-Klein reduction in string frame one can conclude that
the square root of the determinants of the metric in different dimensions are related
via the dilaton scaling as

√
−ĝ = eφ

√
−g. Now, if we wish to compactify more

than just one dimension on a circle using this Ansatz, we obtain an expression for
the lower-dimensional dilaton in string frame

e−2φ(D) =

√
g
(D ′)
DD . . . g

(D ′)
D ′−1 D ′−1e

−2φ(D ′) . (E.8)



F
M O R E P R O P E RT I E S O F T H E S Y M P L E C T I C G R O U P

f.1 conjugacy classes

As our aim is to classify solutions obtained through transformations of solutions
by acting with elements of the group Sp(6, R). As such, one can wonder if any
vector can be obtained from any other vector through a transformation in the
symplectic group, or whether there are certain non-overlapping ‘orbits’. Here the
concept of a conjugacy class will be usefull:

Definition: Conjugacy Class.
Let G be a group. Two elements g1,g2 ∈ G are conjugate, if there exists an element
h ∈ G such that hg1h−1 = g2. A conjugacy class of the element g1 is defined as

Cl(g1) =
{
g2 ∈ G : ∃h ∈ G, g1 = hg2h

−1
}

. (F.1)

The class number of G is the number of nonequivalent conjugacy classes, this
might prove useful in determining the number of orbits of the BPS solutions
discussed in these notes.

Using the definition of conjugacy one can observe that trace of all elements in a
conjugacy class should be equal

Trg1 = Trhg2h−1 = Trg2. (F.2)

Since F-theory is quantized in the microscopic theory we might limit ourselves
to conjugacy classes of Sp(6, Z) instead of Sp(6, R).

Thus for 0 trace we find matrices of the form(
0 A

−A−1 0

)
, (F.3)

where A ∈ SL(3, Z). Elements of Sp(6, Z) with nonzero trace contain group
elements of the following form (

0 I3

−I3 A

)
, (F.4)

where A = AT . Since A can be any symmetric matrix, it can be concluded that an
infinite number of conjugacy classes exists for the group Sp(6, Z).

f.2 derivation of the generators

The symplectic group is defined in (5.8): MTΩM = Ω. Defining M = eX, it can
be shown that elements X of the algebra should obey (5.24): (ΩX)T = ΩX.

MTΩM =Ω (F.5)

exp (X)TΩ exp (X) =Ω (F.6)

exp (XT )Ω =Ω exp (−X) (F.7)

(I+XT + · · ·+ (XT )n

n!
+ . . . )Ω =Ω(I−X+ · · ·+ (−1)nXn

n!
+ . . . ) (F.8)
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82 more properties of the symplectic group

For the first order of both sides to satisfy the equality,

(ΩX)T = ΩX (F.9)

is required. This leaves the algebra with dimension 12n(n+1), which is the same as
the dimension as the group, thus this equality should fully specify the generators.
Thus if (F.9) indeed fully defines the algebra, this means that it should generalize
for the higher order terms to

(XT )n

n!
Ω = (−1)n

ΩXn

n!
. (F.10)

Which can be shown to hold as follows

(XT )n

n!
Ω =

(XT )n−1

n!
XTΩ = −

(XT )n−1

n!
ΩX = −

(XT )n−2

n!
XTΩX (F.11)

=−
(XT )n−2

n!
ΩX2 = · · · = (−1)n

ΩXn

n!
. (F.12)

It can thus be concluded that the set of matrices X which obey (F.9), form the
generators of the symplectic group.



B I B L I O G R A P H Y

[1] R. Penrose. “Gravitational collapse and space-time singularities.” In:
Physical Review Letters 14.3 (1965), p. 57.

[2] R. Geroch and G. T. Horowitz. “Global structure of spacetimes.” In:
General relativity. 1979.

[3] R. Penrose. “Singularities and time-asymmetry.” In: General relativity.
1979.

[4] J. B. Gutowski, D. Martelli, and H. S. Reall. “All supersymmetric
solutions of minimal supergravity in six dimensions.” In: Classical
and Quantum Gravity 20.23 (2003), p. 5049.

[5] P. M. Crichigno, F. Porri, and S. Vandoren. “Bound states of spinning
black holes in five dimensions.” In: Journal of High Energy Physics
2017.5 (2017), p. 101.

[6] F. Porri. Symplectic orbits of BPS solutions. Unpublished notes.

[7] C. Duaso Pueyo. “Black holes and the phase space of supersymmetric
solutions.” MA thesis. 2018.

[8] S. M. Carroll. Spacetime and geometry: An introduction to general relativ-
ity. Addison-Wesley, 2004. isbn: 0805387323, 9780805387322.

[9] B. Schutz. A first course in general relativity. Cambridge university
press, 2009.

[10] R. M. Wald. “General relativity.” In: Chicago, University of Chicago
Press, 1984, 504 p (1984).

[11] C. W. Misner, K. S. Thorne, J. A. Wheeler, and D. I. Kaiser. Gravitation.
Princeton University Press, 2017.

[12] W. Israel. “Event horizons in static vacuum space-times.” In: Physical
review 164.5 (1967), p. 1776.

[13] W. Israel. “Event horizons in static electrovac space-times.” In: Com-
munications in Mathematical Physics 8.3 (1968), pp. 245–260.

[14] B. Carter. “Axisymmetric black hole has only two degrees of free-
dom.” In: Physical Review Letters 26.6 (1971), p. 331.

[15] S. W. Hawking and G. F. R. Ellis. The large scale structure of space-time.
Vol. 1. Cambridge university press, 1973.

[16] K. Schwarzschild. “Über das gravitationsfeld eines massenpunktes
nach der einsteinschen theorie.” In: Sitzungsberichte der Königlich
Preußischen Akademie der Wissenschaften (Berlin), 1916, Seite 189-196
(1916).

[17] I. Robinson. “A solution of the Maxwell-Einstein equations.” In: Bull.
Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 7 (1959), pp. 351–352.

[18] B. Bertotti. “Uniform electromagnetic field in the theory of general
relativity.” In: Physical Review 116.5 (1959), p. 1331.

83



84 bibliography

[19] P. A. M. Dirac. “Quantised singularities in the electromagnetic field.”
In: Proceedings of the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character 133.821 (1931), pp. 60–72.

[20] D. Z. Freedman and A. Van Proeyen. Supergravity. Cambridge Uni-
versity Press, 2012.

[21] R. P. Kerr. “Gravitational field of a spinning mass as an example of
algebraically special metrics.” In: Physical review letters 11.5 (1963),
p. 237.

[22] E. T. Newman, E Couch, K Chinnapared, A Exton, A Prakash, and
R Torrence. “Metric of a rotating, charged mass.” In: Journal of mathe-
matical physics 6.6 (1965), pp. 918–919.

[23] R. H. Boyer and R. W. Lindquist. “Maximal analytic extension of the
Kerr metric.” In: Journal of mathematical physics 8.2 (1967), pp. 265–281.

[24] R. Emparan and H. S. Reall. “Black holes in higher dimensions.” In:
Living Reviews in Relativity 11.1 (2008), p. 6.

[25] H. S. Reall. “Higher dimensional black holes.” In: arXiv preprint
arXiv:1210.1402 (2012).

[26] R. C. Myers and M. J. Perry. “Black holes in higher dimensional
space-times.” In: Annals of Physics 172.2 (1986), pp. 304–347.

[27] R. C. Myers. “Myers-Perry black holes.” In: arXiv preprint arXiv:1111.1903
(2011).

[28] R. Emparan and H. S. Reall. “A rotating black ring solution in five
dimensions.” In: Physical Review Letters 88.10 (2002), p. 101101.

[29] T. Mohaupt. “Black holes in supergravity and string theory.” In:
Classical and Quantum Gravity 17.17 (2000), p. 3429.

[30] M. Banados, C. Teitelboim, and J. Zanelli. “Black hole in three-
dimensional spacetime.” In: Physical Review Letters 69.13 (1992), p. 1849.

[31] M. Banados, M. Henneaux, C. Teitelboim, and J. Zanelli. “Geometry
of the 2+ 1 black hole.” In: Physical Review D 48.4 (1993), p. 1506.

[32] S. Carlip. “The (2+ 1)-dimensional black hole.” In: Classical and Quan-
tum Gravity 12.12 (1995), p. 2853.

[33] S. Carlip. “Black hole thermodynamics.” In: International Journal of
Modern Physics D 23.11 (2014), p. 1430023.

[34] J. M. Bardeen, B. Carter, and S. W. Hawking. “The four laws of
black hole mechanics.” In: Communications in mathematical physics
31.2 (1973), pp. 161–170.

[35] S. W. Hawking. “Particle creation by black holes.” In: Communications
in mathematical physics 43.3 (1975), pp. 199–220.

[36] J. D. Bekenstein. “Black holes and entropy.” In: Physical Review D 7.8
(1973), p. 2333.

[37] A. Strominger and C. Vafa. “Microscopic origin of the Bekenstein-
Hawking entropy.” In: Physics Letters B 379.1-4 (1996), pp. 99–104.

[38] J. Ehlers and W. Kundt. “Exact solutions of the gravitational field
equations.” In: (1962).



bibliography 85

[39] J. Wess and J. Bagger. Supersymmetry and supergravity. Princeton
university press, 1992.

[40] S. Weinberg. The quantum theory of fields: volume 3, supersymmetry.
Cambridge university press, 2005.

[41] S. Coleman and J. Mandula. “All possible symmetries of the S ma-
trix.” In: Physical Review 159.5 (1967), p. 1251.
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