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Abstract

There are a multitude of conjectures about the difference between the space of string
theory derivable QFTs – the Landscape – and its complement – the Swampland. One
of them, the Swampland Distance Conjecture, states that, upon approaching infinite
distance points in field space, an infinite tower of states becomes massless. We study
the premise and conclusion of this conjecture for the complex structure moduli space of
Calabi-Yau fourfolds. For analyzing infinite distance points we employ the technology of
mixed Hodge structures and their Deligne diamonds. With this we are able to give the
first known classification of infinite distance divisors for general fourfolds. Furthermore
we supplement this with rules for how these divisors can intersect and form an infinite
distance network in field space. Using the same technology, we are able to identify infinite
towers of states becoming massless for a big class of such intersection patterns. This
provides further evidence for the general Swampland Distance Conjecture.
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1 Introduction

1.1 The Swampland and the Distance Conjecture

String theory provides a possible theory of quantum gravity and particle physics at very
high energies. In the early stages of its development, physicists were hoping to find a small
set of consistent theories and so be able to calculate the free variables of the standard
model and other constants of nature from first principles. However, over the last decades
it got more and more clear, the number of consistent string vacua is not small, on the
contrary, it is truly vast. And each of these vacua produces a different effective quantum
field theory at low energies. Trying to find the correct string vacuum reproducing the
standard model by pure trial and error became an unfeasible task. So, in the early 2000s,
researchers started to pursue a new strategy. By studying which low energy theories can
possibly emerge from string theory (or quantum gravity in general) they hope to get a
better understanding of the theories as a whole. In the course of this program, a new
border in the space of quantum field theories was drawn, separating the Landscape from
the Swampland. The Landscape includes all field theories that are the low energy limit of
some string vacuum, whereas the Swampland contains all theories that do not come out
of such a limit. Cartographing this border turns out to be a complicated task and at the
moment there are a multitude of conjectures about it with varying degree of evidence.
Some examples are the weak gravity conjecture, the de Sitter conjecture or the distance
conjecture; a review of the latest research can be found in [11]. For the scope of this thesis
I am going to concentrate on the latter: the Swampland Distance Conjecture, SDC for
short, first proposed by Ooguri and Vafa [22]. In its general form it states:

Swampland Distance Conjecture. Consider a QFT, coupled to gravity, with field
space M, i.e. the space that the fields take their value in. Suppose that there exists a
point P ∈M such that for any point other point Q ∈M their geodesic distance, denoted
d(Q,P ), is infinite. Then there exists an infinite tower of states, with an associated
mass m depending on the point in field space, such that for P ′ ∈M approaching P , i.e.
P ′ → P ,

m(P ′) ∼ m(Q)e−αd(P ′,Q) , (1.1)

where α is some positive constant.

The conjecture received a lot of attention recently [33–1414]. It seems to be interconnected
with other Swampland conjectures, for example, the weak gravity conjecture [33, 44] or
the de Sitter conjecture [55] and forms therefore an important building block in the
understanding of the swampland program and string theory as a whole. The insights
gained so far led for example to the proposal that infinite distances in field space and the
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1 Introduction

infrared dynamics of fields in general emerge from integrating out towers of states in the
ultraviolet [55, 66]. Further, on a more practical note, it gives us more information about
the difficulties of realizing large field inflation within string derived models [77]. This also
inspired the formulation of the Refined Swampland Distance Conjecture, which extends
the statement to super-Planckian, but still finite, field distances [88–1010].

The SDC was shown to hold for supergravity theories with more than 8 supercharges in
any dimension [1111]. In theories with less supercharges, for example Calabi-Yau threefold
compactifications of type IIB string theory, strong evidence was found by [66] using the
powerful mathematics of Hodge theory. This analysis was extended from one-parameter
approaches to infinite distance to multi-parameter approaches in [1212]. Building on this
work, I will in this thesis repeat the same analysis for Calabi-Yau fourfolds. Fourfolds
play an important role in connecting the twelve-dimensional physics of F-theory to our
apparently four-dimensional world. But because handling F-theory in the low energy
limit is difficult, we will only look at fourfold compactifications of type IIA string theory
from ten to two dimensions. The important details of this will be repeated in section 1.51.5.
However, the results of the analysis do only really depend on the properties of the
Calabi-Yau, so a generalization to other scenarios is easily possible.

Stated concretely, we will analyze and classify singular divisors in the complex structure
moduli space of fourfolds with the help of mixed Hodge structures in the first half of
chapter 22. The given classification can be used to state whether points on the divisors lie
at infinite distance or not. Further we provide criteria for which divisors can intersect
and form an infinite distance network in moduli space in the second half of chapter 22.
Following this we try to identify infinite and massless towers of states at infinite distance
points in chapter 33. We will look at arbitrary intersection patterns of different divisors
and successfully identify the towers in form of charge orbits of BPS D-branes for a big
family of patterns. This provides strong evidence for the SDC for Calabi-Yau fourfold
compactifications.

But first, in the rest of this chapter, we will discuss the compactification of a string on
a circle to provide a first example and evidence for the SDC, and after that introduce
Calabi-Yau manifolds and their compactification.

1.2 A brief reminder of superstring theory

Superstring theory describes the movement of a one-dimensional string with fermionic
degrees of freedom through spacetime. The excitations of this string are massless and
massive oscillator modes, which will correspond to massless and massive particles after
taking the low energy limit and connecting with ordinary particle physics. Because the
massive excitations are expected to have masses around the Planck scale, we only consider
the massless modes when taking this limit. There are only five types of superstrings,
denoted by type I, IIA, IIB and two different heterotic ones. All of these have to live in ten
dimensions. So, if we want to make a connection with our four-dimensional spacetime, we
need to follow a compactification procedure. The idea of this is that the extra dimensions
are compact, i.e. “curled up”, so that on big length scales they cannot be detected. There
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1 Introduction

are now two possibilities for when to compactify. On the one hand, we can first compactify
the ten-dimensional spacetime of the superstring and take the low energy limit after that.
This procedure gives more complete results, because it takes winding modes into account
(these will be explained further below). On the other hand, we can first take the low
energy limit and compactify spacetime only after that. This approach has the advantage
of being easier to calculate, but ignores stringy effects, like winding modes.

We will discuss in the next section the first case to find first evidence for the SDC. After
that we turn to the second case and introduce the main subject of this thesis: Calabi-Yau
compactifications.

1.3 Infinite massless towers from a string on M9 × S1

Let us discuss the compactification of a bosonic string on a circle as a first example
providing motivation for the SDC. The discussion is an abbreviated form of the one found
in [11]. We take spacetime to look like M10 = M9 × S1 with coordinates XM = (Xµ, X9),
where µ = 0, . . . , 8 and X9 ∼= X9 + 1. The metric takes the form

ds2 = e2αφ(Xµ)gµν(Xµ) dXµ dXν + e−2βφ(Xµ)
(
dX9

)2
, (1.2)

where α and β are positive constants and φ(Xµ) is a background scalar field that
parametrizes the radius R of the compact dimension at each point Xµ:

2πR(Xµ) ≡ eβφ(Xµ) . (1.3)

The field space of φ isMφ = (−∞,+∞).
Strings moving in this background get two extra quantum numbers. The first one

parametrizes the quantized momentum in the compact dimension X9:

p9 =
n

R
with n ∈ Z . (1.4)

The second quantum number appears because strings are extended objects and can
therefore wrap around the compact dimension w ∈ Z times; see fig. 1.11.1 for an illustration.
Taking both possibilities into account, the nine dimensional mass for the string ground
state, i.e. with no oscillators excited, is given by(

mn,w

)2
=
(

2πeγφn
)2

+
( 1

2πα′
e−γφw

)2
(1.5)

where γ = α+ β > 0.
If we look now at the nine dimensional effective theory, we can see that there are two

infinite towers of massive states. A tower of momentum modes, with masses given by
mn,0 and a tower of winding modes, with masses given by m0,w. Each tower has a mass
scale that multiplicates the integers n and w respectively:

mn ∼ eγφ mw ∼ e−γφ . (1.6)
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Figure 1.1: Two strings winding around the compactified dimension.

It is now easy to identify the Distance Conjecture: For any two values φ1, φ2 ∈ Mφ

there exists an infinite tower of states, with some mass scale m, which becomes light
exponentially in |φ1 − φ2|:

m(φ2) ∼ m(φ1)e−γ|φ1−φ2| . (1.7)

The tower of states becoming light is the momentum tower if φ1 − φ2 < 0 while it is
the winding tower if φ1 − φ2 > 0. So there is always some tower that becomes light,
even though the states it is composed of change. The winding modes (which are string-
theoretic) are very important for this fact; without them we would not have found the
conjectured behavior.

With this example we also see why the SDC is interesting. If we send one of the φi to
±∞, then an infinite number of states becomes massless, which means that the description
as a nine dimensional quantum field theory breaks down at these infinite distance points.
Lastly, note that the field φ approaching infinite distance is a moduli of the circle,

i.e. it parametrizes its geometry. The same will also happen later in our discussion of
Calabi-Yau compactifications. There too, it will be the moduli that approach infinite
distance.
With this example we are now having a first motivation and evidence for the SDC.

The behavior carries over to compactifications with products of circles, i.e. with tori, but
because these preserve a large number of supersymmetry (N = 8 for a T 6 compactification)
we need to look at more complicated manifolds if we want a more realistic scenario.

1.4 A brief introduction to Calabi-Yau manifolds

I present here a brief introduction to Calabi-Yau manifolds, closely following [1515]; more
details can be found there. We are interested in Calabi-Yau compactifications, because
we want to preserve a small amount of supersymmetry to keep some control in the
low dimensional theory. To find a supersymmetric vacuum state we need a covariantly
constant spinor η, i.e. ∇Mη = 0, on the internal manifold. This condition leads us exactly
to Calabi-Yau manifolds, which preserve N = 2 supersymmetry. In this section we will
present these, following however a different definition, namely as Kähler manifolds with
first Chern class equal to zero.
Let us start with introducing Kähler manifolds, which are complex and symplectic

manifolds.
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A complex manifold of (complex) dimension n (and real dimension 2n) is a manifold
that locally looks like Cn. We denote the coordinates of a chart by zi. The complexified
cotangent bundle splits into a holomorphic and antiholomorphic part with basis elements
dzi and dz̄ ̄ respectively. A differential form is then said to be of type (p, q) if it can be
written as

Ap,q =
1

p!q!
Ai1...ip ̄1...̄qdz

i1 ∧ · · · ∧ dzip ∧ dz̄ ̄1 ∧ · · · ∧ dz̄ ̄q . (1.8)

Similarly, the exterior derivative splits into a holomorphic and an antiholomorphic piece,
namely d = ∂ + ∂̄, where

∂ : (p, q)→ (p+ 1, q) , ∂̄ : (p, q)→ (p, q + 1) . (1.9)

A symplectic manifold has 2n real dimensions and exhibits a globally defined, nowhere
vanishing, closed two-form J , that is non-degenerate, i.e. the top-form Jn is nowhere
vanishing. Such manifolds exhibit so called Darboux coordinates (xi, yi) in which

J =
n∑
i=1

dxi ∧ dyi . (1.10)

A Kähler manifold is now a complex and symplectic manifold with compatible complex
and symplectic structure. This means that J is a (1, 1)-form, i.e. J = Jī dzi ∧ dz̄ ̄. With
this it is also possible to define a hermitian metric, derived from a real scalar function K,
called the Kähler potential:

gī = −iJī = ∂i∂̄̄K . (1.11)

Another important aspect of Kähler manifolds is their cohomology. On complex
manifolds we can define cohomology classes for (p, q)-forms, similar to the regular p-form
de Rham cohomology classes for normal manifolds. On Kähler manifolds now it doesn’t
matter which of the derivatives, d, ∂ or ∂̄, we use:

Hp,q
d = Hp,q

∂ = Hp,q

∂̄
. (1.12)

The dimensions of the cohomology classes are denoted by the Hodge numbers hp,q =
dimHp,q and satisfy the symmetry relation

hp,q = hq,p = hn−p,n−q . (1.13)

The numbers are usually arranged in the form of a Hodge diamond

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h4,0 h3,1 h2,2 h1,3 h0,4

h4,1 h3,2 h2,3 h1,4

h4,2 h3,3 h2,4

h4,3 h3,4

h4,4

, (1.14)
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which is symmetric under reflections along the horizontal and vertical axis (due to
eq. (1.131.13)).

This brings us to the last ingredient for Calabi-Yau manifolds. We need the first Chern
class, which is the cohomology class of the Ricci two-form. This two-form is defined as

R = −i∂∂̄ log det(gī) (1.15)

and it is closed on Kähler manifolds, i.e. dR = 0. We can therefore take its cohomology
class and call it first Chern class

c1 =
1

2π
[R] . (1.16)

A Calabi-Yau n-fold can now be defined as an n complex dimensional Kähler manifold
with c1 = 0. Working out the Hodge numbers for, for example, a fourfold we get the
Hodge diamond

1
0 0

0 h1,1 0
0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1
0 h2,1 h2,1 0

0 h1,1 0
0 0

1

. (1.17)

Note that due to the symmetries from eq. (1.131.13) we are only left with four independent
variables. This number gets further reduced by the relation [1616]

h2,2 = 2(22 + 2h1,1 + 2h3,1 − h2,1) . (1.18)

Lastly, two more definitions that will play an important role later: Firstly, from
the cohomology class H4,0, which is one-dimensional, one picks a representative Ω
and calls it the holomorphic four-form. Secondly, on the middle cohomology H4 =
H4,0 + H3,1 + H2,2 + H1,3 + H0,4 we can define an antisymmetric product S (and its
matrix form η with respect to some basis)

S(v, w) =

∫
Y4

v ∧ w ≡ vTη w for v, w ∈ H4 (1.19)

and further the Hodge inner product

〈v|w〉 =

∫
Y4

v ∧ ?w for v, w ∈ H4 , (1.20)

where ? denotes the Hodge star.
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1.5 Compactifying type IIA theory on Calabi-Yau fourfolds

We are now going to discuss the fourfold compactification of type IIA string theory after
taking the low energy limit. This limit turns out to be type IIA supergravity in ten
dimensions. I want to remind that we are mainly interested in the general properties of
the fourfold and that the details of type IIA theory are of secondary importance. Because
of this, we will only be interested in the gravitational sector, i.e. in the behavior of the
metric under compactification. Its action is given by [1717]

S(10)
IIA,grav =

1

2

∫
M10

d10x

√
−g(10)e−2Φ(10)

R(10) (1.21)

where g(10)
MN is the ten-dimensional metric, R(10) its scalar curvature and Φ(10) the ten-

dimensional dilaton.
The recipe for a Kaluza-Klein compactification is now to make a product ansatz for

the spacetime manifold
M10 = M2 × Y4 , (1.22)

where for our purposes we picked a Calabi-Yau fourfold as the compact internal manifold.
Next, we expand the metric as a fluctuation around the ground state

g
(10)
MN =

(
g

(2)
µν

g
(8)
ab

)
(1.23)

with some arbitrary two-dimensional metric g(2)
µν and a fixed Calabi-Yau metric g(8)

ab . The
fluctuations are then expanded in eigenfunctions of the mass operator on the Calabi-Yau.
For the metric this looks for example like

δgab(x, y) =
∑
n

X(n)(x)Y
(n)
ab (y) , (1.24)

The x-dependent coefficient functions X(n) appear as fields in the two-dimensional theory
whose masses are given by the eigenvalues of the eigenfunctions Y (n). In the Kaluza-Klein
approximation we ignore now all the massive fields and consider only the massless ones.
In particular this means that the moduli of the metric of the internal manifold appear
as massless fields in the low-dimensional effective theory. With moduli we mean the
parameters of possible deformations that keep the general structure intact. For Calabi-Yau
fourfolds these are given by h3,1 complex variables Zα parametrizing the complex structure
and by h1,1 real variables MA parametrizing the Kähler structure. The moduli Zα and
MA form now the so called moduli space, which parametrizes the smooth deformations
of the ground state Calabi-Yau. For each point in this moduli space we get an associated
Calabi-Yau manifold.
Plugging the expansions into the ten-dimensional action of eq. (1.211.21) and performing

the integral over the Calabi-Yau we get the two-dimensional effective action [1717]

S(2)
IIA,grav =

∫
M2

d2x

√
−g(2)e−2Φ(2)

(
1

2
R(2) −Gαβ̄∂µZα∂µZ̄ β̄ −GAB∂µMA∂µMB

)
(1.25)
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with two dimensional scalar curvature R(2) and dilaton Φ(2). The main point to note
here are the two kinetic terms for the complex structure and Kähler moduli. The two
terms don’t mix, which means that the moduli space is a product space of the complex
structure moduli spaceMcs and the Kähler moduli spaceMK. For the rest of this thesis
we are going to concentrate on the complex structure moduli spaceM≡Mcs. It is h3,1

complex dimensional, comes equipped with a metric Gαβ̄ and even turns out to be Kähler
itself. This means the metric can be derived from a Kähler potential

Gαβ̄ = ∂Zα ∂̄Z̄β̄K (1.26)

K = − ln

(∫
Y4

Ω ∧ Ω

)
(1.27)

Scope of this thesis is now to provide further evidence for the SDC for these fourfold
compactifications. The fields and field space mentioned at the beginning will be the
complex structure and their moduli spaceM; the metric for measuring distances will be
the one from eq. (1.261.26). Our strategy will be to identify in the next chapter the infinite
distance points as singular points inM and after that try to construct infinite towers of
BPS D-brane states becoming massless in chapter 33.
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2 The singularity structure of Calabi-Yau
fourfold moduli space

The moduli space of Calabi-Yau manifolds has singular points at which the corresponding
Calabi-Yau becomes degenerate. These singular points are the natural candidates for
the infinite distance points of the Distance Conjecture. Our goal in this chapter is
therefore to get a better understanding of the global picture of these singular points in
Calabi-Yau fourfold complex moduli space. In section 2.22.2 we will first start a classification
of individual points as a local analysis and later then, in section 2.42.4, we will look at how
different points are connected. There, a global structure starts to emerge. Thereby we
will make use of the middle cohomology H4(Y4) of the Calabi-Yau and the monodromy
in moduli space around the singular points. This helps us to analyze the degeneration
with tools from algebraic geometry, which we will introduce in section 2.12.1.

The middle cohomology H4 ≡ H4(Y4) splits due to the Hodge splitting by the complex
structure into smaller subspaces. This splitting defines a Hodge stucture, which varies
together with the Y4 over the moduli space and degenerates at the singular points.
However, it turns out that H4 splits into a finer splitting, a mixed Hodge structure, which
doesn’t become degenerate at these points.
With this avatar of our main character H4 we are equipped to answer the question:

What kind of singular points does the moduli space have? Are they all the same or can
we find a distinction?

Figure 2.1: The moduli space of a two-torus with a generic point Q and a singular
divisor ∆1.

12



2 The singularity structure of Calabi-Yau fourfold moduli space

2.1 Analyzing singularities with mixed Hodge structures

Our strategy for answering this question of the classification of singular points is to first
introduce the powerful technology of mixed Hodge structures (following [1818]) and then to
use it to transform the problem into one that is easier to solve.
The Hodge decomposition of the middle cohomology of a Calabi-Yau n-fold

Hn =
⊕
p+q=n

Hp,q such that Hp,q = Hq,p (2.1)

defines a Hodge structure of weight n on the vector space Hn(Yn). The bilinear form S
from eq. (1.191.19) gives a polarization on the Hodge structure, meaning that

S(Hp,q, Hr,s) = 0 for p 6= s, q 6= r (2.2)
ip−qS(v, v̄) > 0 for v ∈ Hp,q, v 6= 0 . (2.3)

As we move around in the complex structure moduli space, the complex structure and
therefore the Hodge structure it induces changes. This leads to a variation of Hodge
structure; the Hp,q from eq. (2.12.1) look different for each point in moduli space, even
though the total Hn stays the same. The complex structure moduli space of Calabi-
Yau manifolds is neither smooth nor compact; it can have singular points at which the
associated manifold becomes degenerate. We now want to find out what happens to
the Hodge structure as we approach such singular points. We already mentioned that it
becomes singular itself, but it turns out that this happens in a very predictable manner,
allowing us to recover a structure that is well defined at the singular point: a mixed Hodge
structure.

The singular points in moduli space form a locus ∆ which can be written as ∆ =
⋃
i ∆i,

where the ∆i are smaller normally intersecting loci. We will introduce a shorthand
notation for the intersection of these loci

∆i1...ik := ∆i1 ∪ · · · ∪∆ik (2.4)
∆(k) := ∆1...k (2.5)

∆◦i1...ik := ∆i1...ik −
⋃

m6=i1,...,ik

∆i1...ikm . (2.6)

We will use the notation with an index in parentheses also for other objects to indicate a
combination of objects with indices up to the enclosed index. The last definition denotes
the part of the locus that is not part of any higher intersection.

We will denote the singular point we are concentrating on always with P . The number
of intersecting loci it lies on is denoted with nP , i.e. P ∈ ∆(nP ) after a suitable renaming of
the loci. Besides that, however, we allow a total of nE intersecting loci in the neighborhood
of P . For getting information about all singular points of ∆ we will analyze them using
a local perspective to get a general description. We choose a coordinate system on a
patch of the moduli space such that P lies at zi = 0 for i = 1, . . . , nP . The remaining zj ,
j = nP + 1, . . . , h3,1 = dim(M) can be arbitrary and won’t play any role in the following
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2 The singularity structure of Calabi-Yau fourfold moduli space

discussion. The coordinates can therefore be thought of coming from the product of
h3,1 − nP disks D = {z ∈ C | |z| < 1} and nP punctured disks D∗ = D− {0}. We have
(zi, zj) ∈ (D∗)nP × Dh3,1−nP . Each of the coordinates zi has a monodromy matrix Ti
associated to it. It describes how a differential form in Hn transforms as we go around
the origin in the respective complex plane once (by sending zi → e2πizi). It must not
necessarily be the unit matrix. One can show that the monodromy matrices are quasi
unipotent, i.e. they satisfy (Tm − 1)n+1 = 0 for some positive integers m and n. For the
following discussions we extract the relevant nilpotent part by defining the monodromy
logarithms

Ni =
1

mi
ln(Tmii ) , (2.7)

where mi and ni (used in the next equation) are the smallest integers satisfying (Tmii −
1)ni+1 = 0. From the definition it follows that the monodromy logarithms are nilpotent

Nni+1
i = 0 . (2.8)

With the information about the structure of the Calabi-Yau – in form of its Hodge
structure – and the information about the singularities – in form of the monodromy
logarithms – we can now try to simplify the problem of classification. A first step is to
use a theorem stating that the Hodge structure becomes a mixed Hodge structure at every
singular point. Such a mixed Hodge structure gives a finer splitting of Hn, not just into
spaces Hp,q with p+ q = n, but instead into spaces Ip,q with p, q ≤ n:

Hn =
⊕

0≤p,q≤n
Ip,q . (2.9)

For fourfolds (n = 4) this gives for example

H4,0 H3,1 H2,2 H1,3 H0,4 move to P−−−−−−→

I4,4

I4,3 I3,4

I4,2 I3,3 I2,4

I4,1 I3,2 I2,3 I1,4

I4,0 I3,1 I2,2 I1,3 I0,4

I3,0 I2,1 I1,2 I0,3

I2,0 I1,1 I0,2

I1,0 I0,1

I0,0

.

(2.10)
How are these Ip,q now defined? Of course they should depend on the two input data.

For their dependence on the Hodge structure, we first have to reassemble the spaces Hp,q

into more well behaved objects. We introduce the Hodge filtration,

F p =
⊕
p′≥p

Hp′,n−p′ , (2.11)
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2 The singularity structure of Calabi-Yau fourfold moduli space

which becomes for the case n = 4

F 4 = H4,0

∩
F 3 = H4,0 +H3,1

∩
F 2 = H4,0 +H3,1 +H2,2

∩
F 1 = H4,0 +H3,1 +H2,2 +H1,3

∩
F 0 = H4,0 +H3,1 +H2,2 +H1,3 +H0,4 .

(2.12)

These complex spaces vary holomorphically with the complex structure moduli zi. Nev-
ertheless, just like the Hp,q, the F p become degenerate as we move to ∆. It is possible
though to show that

F p(∆(nP )) = lim
t1,...,tnP→+i∞

exp(−
∑nP

i=1 tiNi)F
p (2.13)

is well behaved. Here we defined the coordinates

ti ≡ xi + iyi =
1

2πi
ln zi . (2.14)

Further the “orthogonality”11 property eq. (2.22.2) becomes

S(F p, Fn+1−p) = 0 . (2.15)

Lastly, note that Ω spans the one-dimensional Fn; we will denote the corresponding
limiting element spanning Fn(∆(nP )) with a0, i.e.

a0 = lim
t1,...,tnP→+i∞

exp(−
∑nP

i=1 tiNi)Ω . (2.16)

The limiting filtration F p(∆(nP )) is now our first input for the mixed Hodge structure.
The second input is another filtration, the monodromy filtration Wl, this time directly

extracted from the Ni. First, for the case that we want to move to the intersection
of multiple divisors ∆i, we need to combine the Ni into one object. We take a linear
combination

∑nP
i=1 ciNi and one can show that the wanted filtration Wl don’t depend on

the choice of the ci, as long as ci > 0. We thus pick the most convenient combination and
use

N(nP ) ≡ N1 + · · ·+NnP . (2.17)

The monodromy filtration Wl ≡W
(nP )
l is now obtained from the images and kernels of

N ≡ N(nP ) and its powers with the general formula

Wl =
⊕
k≥1

k≥l−n+1

kerNk ∩ imNk−l+n−1 (2.18)

1Note that S is symmetric (antisymmetric) for n even (odd).
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2 The singularity structure of Calabi-Yau fourfold moduli space

and the use of Nn+1 = 0. For n = 4 this becomes

W0 = imN4

∩
W1 = kerN ∩ imN3

∩
W2 = imN3 + kerN ∩ imN2

∩
W3 = kerN2 ∩ imN2 + kerN ∩ imN
∩
W4 = imN2 + kerN2 ∩ imN + kerN
∩
W5 = kerN3 ∩ imN + kerN2

∩
W6 = imN + kerN3

∩
W7 = kerN4

∩
W8 = H4 .

(2.19)

Again we have an “orthogonality” relation

S(Wn+l,Wn−l−1) = 0 . (2.20)

With F∆ ≡ F (∆(nP )) we have now all the data for defining the finer splitting of the
mixed Hodge structure:

Ip,q = F p∆ ∩Wp+q ∩
(
F̄ q∆ ∩Wp+q +

∑
j≥1

F̄ q−j∆ ∩Wp+q−j−1

)
. (2.21)

This definition is chosen because it has the unique properties

F p∆ =
⊕
r≥p

⊕
s

Ir,s , Wl =
⊕
p+q≤l

Ip,q , Īp,q = Iq,p mod
⊕
r<q
s<p

Ir,s . (2.22)

The first two relations are visualized in fig. 2.22.2. From the definition follows also the
crucial relation

NIp,q ⊂ Ip−1,q−1 (2.23)

and combining eqs. (2.152.15) and (2.202.20) gives

S(Ip,q, Ir,s) = 0 unless p+ r = q + s = n . (2.24)

For later use we define the graded spaces

Grn+l =
⊕

p+q=n+l

Ip,q . (2.25)

One can show that N l provides an isomorphism from Grn+l to Grn−l.
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2 The singularity structure of Calabi-Yau fourfold moduli space

Figure 2.2: Visualization of eq. (2.222.22) of how to recover F p
∆ andWl from the Deligne

splitting.

The last relation in eq. (2.222.22) is important to note; it marks a difference to Hodge
structures and complicates many calculations. There is however a special basis for Hn

in which Īp,q = Iq,p and the Ni become N−i which are members of mutually commuting
sl2triplets [1919]. For a detailed review and explicit example we refer to [1212]. We will
explain more properties of the N−i as soon as we need them.

For the last step in transforming our problem of the classification of singular points it
is important to stress that each singular point P ∈ ∆ has a potentially different Deligne
splitting assigned to it. The next step is now to only look at the dimensions of the spaces
Ip,q assigned to P . This gives us the so called Deligne diamonds and one can prove that
mixed Hodge structures are up to automorphisms classified by these diamonds.

2.2 Classifying singularities with Deligne diamonds

The Deligne diamond of a mixed Hodge structure is given by its Deligne numbers. For
n = 4 it looks like

i4,4

i4,3 i3,4

i4,2 i3,3 i2,4

i4,1 i3,2 i2,3 i1,4

i4,0 i3,1 i2,2 i1,3 i0,4

i3,0 i2,1 i1,2 i0,3

i2,0 i1,1 i0,2

i1,0 i0,1

i0,0

, ip,q = dimC I
p,q . (2.26)
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2 The singularity structure of Calabi-Yau fourfold moduli space

∑
= h4,0∑

= h3,1∑
= h2,2∑

= h1,3∑
= h0,4

(a) Equation (2.282.28)

b b

b b

(b) Equation (2.292.29)

a

a

d

0 ≤ a ≤ d, etc. . .

(c) Equation (2.302.30)

Figure 2.3: Visualization of the properties of Deligne diamonds: (a) rows sum to
Hodge numbers hp,q, (b) mirror symmetry along two axes, (c) the ip,q do not
increase when going away from the horizontal diagonal. A type IV diamond with
some indices suppressed is used for the examples.

For these diamonds we introduce a graphical notation, illustrated with the following
example

0
1 1

0 a 0
0 b b 0

0 c d c 0
0 b b 0

0 a 0
1 1

0

∼=
a

a

b b

b b
c cd

. (2.27)

Here, a label at a dot at (p, q) represents the value of ip,q, a dot without label represents
the value 1 and no dot represents 0.
Due to the way the Deligne splitting is constructed, the ip,q fulfill the properties

hp,n−p =

n∑
q=0

ip,q p = 0, . . . , n (2.28)

ip,q = iq,p = in−p,n−q for all p, q (2.29)

ip,q ≥ ip−1,q−1 for p+ q ≤ n , (2.30)

where hp,n−p are the Hodge numbers of Hn. Figure 2.32.3 visualizes these equations.
These very manageable properties give us now a way to classify all possible Deligne

diamonds. This, in turn, gives a classification of mixed Hodge structures and therefore
also of singular points. The way how we approach this classification is by exploiting that
fourfolds have h4,0 = 1, i.e. the Hodge numbers of H4 are just h = (1, h3,1, h2,2, h3,1, 1).
This simplifies the task considerably, because it means that eq. (2.282.28) with p = 4 becomes
just 1 =

∑4
q=0 i

4,q, i.e. the top-left row sums to 1. Due to the ip,q being non-negative it
follows that one of the i4,q is 1 and the rest is 0, i.e. there is only one dot in the top-left
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2 The singularity structure of Calabi-Yau fourfold moduli space

row. This results in five distinct cases, where respectively i4,q = δqd with d = 0, 1, 2, 3, 4.
We label these cases by Latin numerals I, II, III, IV, V (following the convention of [2020]).

By the symmetry of eq. (2.292.29) this fixes the outermost Deligne numbers for each type,
whereas the inner nine numbers stay undetermined by this but get reduced down to
four independent variables. We denote them by a, b, c and d and their arrangement can
be seen in eq. (2.272.27) with a type IV diamond as an example. However, the number of
independent variables gets further reduced down to two by the two relations coming from
eq. (2.282.28) with p = 1, 2. For type IV diamonds this means for example that

c = h3,1 − 1− a− b (2.31)

d = h2,2 − 2b , (2.32)

picking a and b as the independent variables. Similar relations hold for the other types,
so that in total a diamond is fully specified by its Latin numeral, a and b. We therefore
introduce the following notation for the Deligne diamonds of singularities in the complex
moduli space of Calabi-Yau fourfolds:

Ia,b IIa,b IIIa,b IVa,b Va,b (2.33)

Table 2.12.1 lists the form and the restrictions on a and b of each of these diamonds.
For easier identification of the types, the last column lists the rank of N and its powers

and the sign of the eigenvalues of ηN2 if needed. The ranks were determined by counting
the dimensions of the spaces that do not get mapped to zero by the respective operator.
Because this method is not able to distinguish type I, II and III, we also looked at the
eigenvalues of ηN l, where η is the matrix corresponding to S, see eq. (1.191.19). Let us
explain how to determine the sign of these eigenvalues. In section 2.42.4 we will introduce the
primitive spaces Pn+l which correspond roughly to the Grn+l. These Pn+l are polarized
by S(·, N l·), so from the analog of eq. (2.32.3) we can deduce the number and sign of
the eigenvalues of ηN l. For n + l odd, these are purely real with alternating sign; for
n+ l = 4 + 2 they can be used to distinguish type III diamonds from type I and II. If
n+ l even, the eigenvalues are purely imaginary and come in complex conjugate pairs.
Therefore they cannot be used for a further distinction. It is not possible to distinguish
type I and II with this method, also not with the eigenvalues of just η. It carries no
information about N and therefore has the same eigenvalues for all types.

2.3 On the classification of infinite distance points

We can use this classification now for a first result about points at infinite distance in
the complex structure moduli space of Calabi-Yau fourfolds. A point P is said to be at
infinite distance, if every path leading to it is infinitely long as measured with the Kähler
metric Gαβ̄, see eq. (1.261.26). In turn it is said to be at finite distance, if there is at least
one path being finitely long in Gαβ̄. We first note that any point away from a singular
divisor is at finite distance, because the Kähler potential and therefore also the metric
is regular in a neighborhood around these points. For the case that the point lies on a
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Type Deligne Diamond Restrictions rank(N,N2, N3, N4)

Ia,b

a

a

b b

b b
c cd

a, b ≥ 0

a+ b ≤ h3,1

a+ 2b ≤ h2,2

c = h3,1 − a− b
d = h2,2 − 2b

2a+ 2b
a
0
0

ηN2 has a posi-
tive eigenvalues

IIa,b

a

a

b b

b b
c cd

a, b ≥ 0

a+ b ≤ h3,1 − 1

a+ 2b ≤ h2,2

c = h3,1 − 1− a− b
d = h2,2 − 2b

2a+ 2b+ 2
a
0
0

ηN2 has a posi-
tive eigenvalues

IIIa,b

a

a

b b

b b
c cd

a, b ≥ 0

a+ b ≤ h3,1 − 1

a+ 2b ≤ h2,2 − 2

c = h3,1 − a− b
d = h2,2 − 2− 2b

2a+ 2b+ 4
a+ 2
0
0

ηN2 has a posi-
tive and 2 nega-
tive eigenvalues

IVa,b

a

a

b b

b b
c cd

a ≥ 0, b ≥ 1

a+ b ≤ h3,1 − 1

a+ 2b ≤ h2,2

c = h3,1 − 1− a− b
d = h2,2 − 2b

2a+ 2b+ 4
a+ 4
2
0

Va,b

a

a

b b

b b
c cd

a ≥ 1, b ≥ 0

a+ b ≤ h3,1

a+ 2b ≤ h2,2

c = h3,1 − a− b
d = h2,2 − 2b

2a+ 2b+ 2
a+ 2
2
1

Table 2.1: The five types of singularities in the complex structure moduli space
of a Y4 with Hodge numbers h4,0 = 1, h3,1 and h2,2. The different types are
distinguished by the form of their Deligne diamond for the limiting mixed Hodge
structure that gets assigned to H4(Y4) at the singularity. For each type there are
two free parameters, a and b, restricted by a system of inequalities. The form and
labels of the diamonds are restricted by the properties of eqs. (2.282.28) to (2.302.30). The
calculation of the ranks and eigenvalues is explained at the end of section 2.22.2. A
graphical notation was used for the diamonds: the label at a dot at (p, q) represents
the value of ip,q, a dot without label represents the value 1 and no dot represents 0.
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2 The singularity structure of Calabi-Yau fourfold moduli space

singular divisor, i.e. P ∈ ∆, one has to distinguish two cases. Either, P lies on a single
divisor, away from any intersections, i.e. P ∈ ∆◦i , or P lies on the intersection of two or
more divisors, i.e. P ∈ ∆i1...ik . We will discuss both cases in turn.
For P lying on a single divisor ∆◦i , it was shown by Wang [2121] that P is at finite

distance if NF 4(∆◦i ) = 0. Because of the location of F 4(∆◦i ) in the Deligne splitting (see
fig. 2.22.2) and the fact that NIp,q ⊂ Ip−1,q−1 we conclude that only points on divisors of
type I lie at finite distance:

P at finite distance ⇐⇒ ∆◦i of type I
P at infinite distance ⇐⇒ ∆◦i of type II, III, IV or V .

(2.34)

In the second case of P lying at an intersection of divisors ∆i1...ik the situation becomes
more involved. Because of the multi-parameter degeneration, the path dependence of
the distance can make a qualitative difference and it is more difficult to show infinite
length for all paths. Nevertheless Grimm, Li and Palti [1212] give a short argument for the
following result:

P at finite distance ⇐= ∆i1...ik of type I
P at infinite distance =⇒ ∆i1...ik of type II, III, IV or V .

(2.35)

Further, Wang [2222] conjectured that these statements are actually equivalences, similar
to eq. (2.342.34), which we will assume in the following.

2.4 Singularity enhancements and their classification

Consider a Calabi-Yau with multiple moduli and let us go to a singular locus in moduli
space, such that the Calabi-Yau is degenerate. It may happen that it is now possible
to make the manifold even more degenerate by tuning another moduli. This happens
when two singular loci, ∆1 and ∆2, are crossing; fig. 2.42.4 visualizes this. If we move from
∆◦1 to the intersection ∆◦12, the type of the singularity, as classified by their diamonds
from table 2.12.1, can change as well. This so called enhancement of the singularity type
will be denoted by A1 → A12, where A1 and A12 is the type of the singularity at ∆◦1 and
∆◦12 respectively. For these enhancements there are consistency conditions for the mixed
Hodge structures on the divisors [2020] and it turns out that there are constraints on the
types of singularities that can be part of an enhancement. To tackle the derivation of
these constraints in the following we will first introduce the notion of primitive spaces.
We are then able to transform the problem again into one of combinatorics. The results
are listed in table 2.22.2. Our exposition follows [1818].
The primitive spaces of a mixed Hodge structure (F,N) are the subspaces of the Ip,q

that are not generated by NIp+1,q+1 (remember NIp+1,q+1 ⊂ Ip,q, see eq. (2.232.23)). They
are defined by

P p,q = ker(Np+q−n+1 : Ip,q → In−q−1,n−p−1) for p+ q ≥ n . (2.36)
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2 The singularity structure of Calabi-Yau fourfold moduli space

Figure 2.4: Example degeneration of a double-torus at individual divisors in moduli
space and how it gets worse at their intersection. A similar worsening of the
degeneration happens to Calabi-Yau manifolds at their intersecting divisors.

The Ip,q of the Deligne splitting can now be expressed in terms of the primitive spaces
P p,q and their images under N . The splitting of Hn in eq. (2.102.10) then takes the form

P 4,4

P 4,3 P 3,4

P 4,2 P 3,3 ⊕NP 4,4 P 2,4

P 4,1 P 3,2 ⊕NP 4,3 P 2,3 ⊕NP 3,4 P 1,4

P 4,0 P 3,1 ⊕NP 4,2 P 2,2 ⊕NP 3,3 ⊕N2P 4,4 P 1,3 ⊕NP 2,4 P 0,4

NP 4,1 NP 3,2 ⊕N2P 4,3 NP 2,3 ⊕N2P 3,4 NP 1,4

N2P 4,2 N2P 3,3 ⊕N3P 4,4 N2P 2,4

N3P 4,3 N3P 3,4

N4P 4,4

.

(2.37)
Analogous to the Deligne diamond, listing the dimensions of the Ip,q (see eq. (2.262.26)),

we can also give a primitive diamond, listing the dimensions of the P p,q. With jp,q :=
dimC P

p,q this becomes

j4,4

j4,3 j3,4

j4,2 j3,3 j2,4

j4,1 j3,2 j2,3 j1,4

j4,0 j3,1 j2,2 j1,3 j0,4

0 0 0 0
0 0 0

0 0
0

= j4,0

j4,1

j3,1

j4,2

j3,2

j2,2

j4,3

j3,3

j2,3

j1,3

j4,4

j3,4

j2,4

j1,4

j0,4 (2.38)

We further combine the P p,q on the same horizontal line into horizontal primitive spaces
analogous to the Gr l:

Pn+l :=
⊕

p+q=n+l

P p,q . (2.39)
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And with this, the decomposition eq. (2.372.37) of the total space Hn can be compactly
written as

Hn =

n⊕
l=0

l⊕
a=0

NaPn+l . (2.40)

The horizontal primitive spaces are important because the primitive spaces determine
a Hodge structure on them: P p,q gives a Hodge structure of weight n+ l on Pn+l. The
Hodge numbers are jp,q and it is polarized by Sl := S(·, N l·) instead of just S(·, ·), see
eqs. (2.22.2) and (2.32.3).

We are coming now to the main step for the enhancement procedure, where we are going
to use the N−i of the commuting sl2-triplets. Because N−2 leaves the horizontal spaces
Grn+l (by construction) invariant and commutes with N−1 it also leaves the primitive
horizontal spaces Pn+l invariant. This means that something similar to the original
situation where N left Hn invariant happens. There, as we approached the divisor ∆1,
N turned the Hodge structure on Hn into a mixed Hodge structure. In the same spirit,
as we approach the intersection of divisors ∆12, N−2 turns the Hodge structures on Pn+l

into mixed Hodge structures. As we add up these mixed Hodge structures according
to eq. (2.402.40) we get the total limiting mixed Hodge structure assigned to ∆12. Turning
this argument around, this means that an enhancement A1 → A12 is possible, if there
exist mixed Hodge structures for the horizontal primitive spaces Pn+l of the mixed Hodge
structure of type A1 (assigned to ∆1) that, when added up, give the mixed Hodge structure
of type A12 (assigned to ∆12).
The last step is now to make this condition more manageable and translate it to the

level of Deligne diamonds. For this denote the diamonds of A1 and A12 by ♦1 and ♦12

respectively and the diamonds for the Pn+l by ♦′n+l. With this eq. (2.402.40) translates into

♦12 =

n∑
l=0

l∑
a=0

♦′n+l[a] (2.41)

where ♦[a] is the diamond ♦ offset by a steps downwards. This means an enhancement is
possible if there are diamonds ♦′n+l for the mixed Hodge structures on Pn+l such that
their sum according to the above equation gives ♦12.
The possible enhancements according to this condition are listed in table 2.22.2. To get

a better understanding of how to derive these we will however first discuss an example,
though.

Example: the enhancement IIa,b → IVã,b̃. For n = 4, we will look at the enhancement
IIa,b → IVã,b̃ with diamonds from table 2.12.1. The primitive diamond of type IIa,b is given
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by

a

b b

c c

d− a
(2.42)

This means we must find three diamonds (restricted through eqs. (2.282.28) to (2.302.30) by the
Hodge numbers h′4+l of the horizontal primitive spaces P4+l)

• ♦′4 with Hodge numbers h′4 = (0, c, d− a, c, 0)

• ♦′4+1 with Hodge numbers h′4+1 = (0, 1, b, b, 1, 0)

• ♦′4+2 with Hodge numbers h′4+2 = (0, 0, 0, a, 0, 0, 0)

such that their sum gives

♦12
!

= ♦′4 + ♦′4+1 + ♦′4+1[1] + ♦′4+2 + ♦′4+2[1] + ♦′4+2[2] . (2.43)

The possible diamonds for the ♦′4+l can be found (after ignoring the surrounding zeros)
in [1212, 2020]. The full enhancement with the right type of diamonds is displayed in fig. 2.52.5.
The choice of diamond for ♦′4 leaves us with the free variables a′, b′, c′ and d′. Through
the properties of Deligne diamonds eqs. (2.282.28) to (2.302.30), these are related and constrained
by

0 ≤ a′ 0 ≤ c′ = c− a′ − b′ (2.44)
0 ≤ b′ a′ ≤ d′ = d− a− 2b′ . (2.45)

For ♦′4+1 we have the variable e′ with constraints

0 ≤ e′ 1 ≤ b− 1− e′ . (2.46)

In total, with the expressions for c and d for type IIa,b from table 2.12.1 filled in, we are left
with the free variables a′, b′ and e′ constrained by

0 ≤ a′ 0 ≤ h3,1 − 1− a− b− a′ − b′ (2.47)

0 ≤ b′ 0 ≤ h2,2 − a− 2b− a′ − 2b′ (2.48)
0 ≤ e′ ≤ b− 2 . (2.49)
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a

a

b b

b b
c c
d− a

a

IIa,b

→

a′

a′

b′ b′

b′ b′

c′ c′d′

P4

+ e′
b− 1− e′ b− 1− e′

e′

P4+1

+

e′
b− 1− e′ b− 1− e′

e′

N−
1 P4+1

+

P4+2 +N−
1 P4+2 + (N−

1 )2P4+2

=

ã

ã

b̃ b̃

b̃ b̃
c̃ c̃d̃

IVã,b̃

Figure 2.5: The enhancement IIa,b → IVã,b̃ with the Deligne diamonds for the
horizontal primitive space P4+l allowing for it. The colors signal which diamonds
are associated to the respective horizontal primitive spaces of the type IIa,b mixed
Hodge structure. A more detailed explanation how to assign these can be found in
the text.
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Adding now all diamonds according to eq. (2.432.43) together and equating them with ♦12

gives the following condition for the enhancement:

ã
!

= a+ a′ + e′ (2.50)

b̃
!

= b+ b′ − e′ (2.51)

c̃ = h3,1 − 1− ã− b̃ !
= h3,1 − 1− a− b− a′ − b′ (2.52)

d̃ = h2,2 − 2b̃
!

= h2,2 − 2b− 2b′ + 2e′ . (2.53)

In the last two lines the expressions for c̃ and d̃ for type IVã,b̃ diamonds from table 2.12.1
were used. With this, it is easy to see that these last two equations are trivially fulfilled
by the first two equations for ã and b̃. The question is now, is it always possible to pick
a′, b′ and e′ such that these first two are fulfilled? Using a bit of algebra or the more
systematic Fourier-Motzkin elimination we can show that this is only possible if a, b, ã
and b̃ satisfy

a ≤ ã 2 ≤ b 2 ≤ b̃ (2.54)

a+ b ≤ ã+ b̃ ≤ h2,2 − b (2.55)

in addition to the conditions for a and b for type II and for ã and b̃ for type IV from
table 2.12.1.

The same procedure can be followed for all combinations of initial and enhanced type;
the resulting allowed enhancements and their respective constraints can be found in
table 2.22.2. The main feature to note there is that for enhancements with the second type
smaller than the first type, it is not possible to pick suiting diamonds ♦′4+l and therefore
no enhancement is possible. For the other cases we find similar constraints as for the
example discussed.
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Initial Type Enhanced Type Constraints

Iã,b̃
a ≤ ã

a+ b ≤ ã+ b̃ ≤ h2,2 − b

IIã,b̃
a ≤ ã

a+ b ≤ ã+ b̃ ≤ h2,2 − b

Ia,b IIIã,b̃
a ≤ ã

a+ b ≤ ã+ b̃ ≤ h2,2 − b− 2

IVã,b̃
a ≤ ã

a+ b+ 1 ≤ ã+ b̃ ≤ h2,2 − b− 2

Ṽa,b̃
a+ 1 ≤ ã

a+ b+ 1 ≤ ã+ b̃ ≤ h2,2 − b

IIa,b

IIã,b̃
a ≤ ã

a+ b ≤ ã+ b̃ ≤ h2,2 − b

IIIã,b̃

a ≤ ã 1 ≤ b
a+ b− 1 ≤ ã+ b̃ ≤ h2,2 − b− 1

ã+ b̃ ≤ h3,1 − 2

IVã,b̃
a ≤ ã 2 ≤ b, b̃

a+ b ≤ ã+ b̃ ≤ h2,2 − b

Ṽa,b̃
a+ 2 ≤ ã 1 ≤ b

a+ b+ 1 ≤ ã+ b̃ ≤ h2,2 − b+ 1

IIIa,b

IIIã,b̃
a ≤ ã

a+ b ≤ ã+ b̃ ≤ h2,2 − b− 2

IVã,b̃
a− 2 ≤ ã 2 ≤ a, b̃
a+ b ≤ ã+ b̃ ≤ h2,2 − b− 2

Ṽa,b̃

a+ 2 ≤ ã 1 ≤ a
a+ b+ 1 ≤ ã+ b̃ ≤ h2,2 − b− 1

ã+ 2b̃ ≤ h2,2 − 1

IVa,b

IVã,b̃
a ≤ ã

a+ b ≤ ã+ b̃ ≤ h2,2 − b

Ṽa,b̃
a+ 2 ≤ ã

a+ b+ 1 ≤ ã+ b̃ ≤ h2,2 − b+ 1

Va,b Ṽa,b̃
a ≤ ã

a+ b ≤ ã+ b̃ ≤ h2,2 − b

Table 2.2: Allowed enhancements between the singularities in the complex moduli
space of a Y4 with Hodge numbers h4,0 = 1, h3,1 and h2,2 listed in table 2.12.1. An
enhancement occurs when we make an already degenerate Y4 even more degenerate.
See the text for a mathematical definition and fig. 2.42.4 for an intuitive picture. The
third column lists a system of inequalities that needs to be fulfilled by a, b, ã and
b̃ besides the conditions in table 2.12.1. The allowed enhancements were derived by
imposing consistency conditions that are explained in detail in section 2.42.4.
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3 Infinite and massless towers of states
on singular Calabi-Yau fourfolds

3.1 Definition of the general charge orbit

In the following discussion, we try to find the, by the Swampland Distance Conjecture
predicted, tower of states that becomes infinite and massless as we approach a singular
point P at infinite distance. According to section 2.32.3 we expect this to be only possible
for points of type II to V.
We consider such a P that lies in a neighborhood E of nE crossing divisors, i.e. E is a

neighborhood of ∆(nE). In contrast, nP denotes the number of divisors that cross at P
itself. With a suiting labeling of the divisors we therefore have P ∈ ∆◦(nP ) ⊂ E .

This gives us an enhancement chain of the different types of the divisors in E . If A(i) is
the singularity type of ∆◦(i), then we denote this enhancement chain by

A(1) → A(2) → · · · → A(nP ) → · · · → A(nE) , (3.1)

where we indicated the location of P with boldface. Of course, each of these enhancements
has to be allowed according to table 2.22.2. We fix the labels of the first nP − 1 divisors in
such a way that the path of approach we are interested in, fulfills the requirements of the
growth theorem; the details of this will be explained below.

As the main character in this analysis we have D4-branes wrapping the internal fourfold.
In a single divisor scenario it was argued in [66] that on threefolds these are BPS states.
We assume that this property carries over to the multi divisor case and fourfolds. The
BPS property allows us to calculate the mass of the states in terms of their central charge,
as will be explained in a moment.

Following the construction of [1212], we define now a tower of such BPS states, where each
state is expressed as an element in H4 representing the Poincaré dual of the D4-brane.
We call this tower charge orbit

Q(q0|{mi}) = exp

(
nE∑
i

miN
−
i

)
q0 (3.2)

and it is derived from a seed charge q0 ∈ H4 by acting with the monodromy logarithms
N−i multiplied by some mi ∈ Z. Here the N−i are part of commuting sl2-triplets that can
be constructed from the Ni; again we refer to [1212] for a review. The construction can be
seen as switching to a special basis that has a number of nice properties. These will be
explained later. How to pick the seed charge q0 will be the content of the major part of
this chapter.
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3 Infinite and massless towers of states on singular Calabi-Yau fourfolds

When does Q fulfill now the conditions of the SDC of being infinite and massless? The
first condition holds if N−i q0 6= 0, for some i, as can easily be seen by noting that the
N−i are nilpotent. This means that their eigenvectors have all zero eigenvalue. So our
requirement means that q0 is not an eigenvector and therefore already the first term of
the expanded exponential,

(
1 +miN

−
i

)
q0, gives different states for each mi. It follows

that the orbit is infinite.
When is it massless? To answer this we have to do some calculations first. As stated

earlier, the mass of a BPS state is given in terms of its central charge. Explicitly it is
M(Q) = |Z(Q)|. The central charge for a D4-brane BPS state is in turn given by

Z(Q) = e
K
2

∫
Y4

Q ∧ Ω , (3.3)

where K = − ln ‖Ω‖2 is the Kähler potential given by eq. (1.271.27) and Ω is the holomorphic
Calabi-Yau (4, 0)-form. Because for such a (4, 0)-form we have ?Ω = Ω, we can rewrite
this with the Hodge inner product from eq. (1.201.20) and insert K:

Z(Q) =
〈Q|Ω〉
‖Ω‖

. (3.4)

For the mass of Q follows with help of the Cauchy-Schwarz inequality

M(Q) = |Z(Q)| = |〈Q|Ω〉|
‖Ω‖

≤ ‖Q‖‖Ω‖
‖Ω‖

= ‖Q‖ . (3.5)

We see that if ‖Q‖ goes to zero,M goes to zero as well. As will become clear in section 3.53.5,
we can replace ‖Q‖ with ‖q0‖ in this statement with out altering its validity.

In summary we have two properties that the seed charge q0 needs to satisfy for the
charge orbit Q(q0|{mi}) to be infinite and massless. Firstly, it needs to fulfill N−i q0 6= 0
for at least one i and secondly, ‖q0‖ needs to go to zero as we approach the singular point.
Candidates fulfilling these two properties can be easily identified using the technology
of mixed Hodge structures defined in the previous chapter and a detailed explanation
of how to do this will follow. We will in turn discuss the cases where nE is 1, 2 or an
arbitrary number.

3.2 Analysis for a one divisor neighborhood

In the case of only one divisor, i.e. nE = 1, we simply have N−1 ≡ N1. The charge orbit is
therefore

Q(q0;m1) = exp(m1N1)q0 . (3.6)

We further know that N1 acts like N1I
p,q ⊂ Ip−1,q−1; a graphical representation of this

can be seen in fig. 3.13.1. With this we can use the Deligne diamonds to easily read off
which subspaces Ip,q have elements q0 fulfilling N1q0 6= 0. 11

1 Note that q0 has to be picked from a fitting primitive part of Ip,q (see eq. (2.372.37)) to ensure that it
actually gets mapped to a non-zero value. One way to guarantee this, is to express q0 in terms of
ã

(nE )
0 .
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3 Infinite and massless towers of states on singular Calabi-Yau fourfolds

Figure 3.1: Graphical representation of the action N1I
p,q ⊂ Ip−1,q−1 of the mon-

odromy logarithm N1 on the spaces Ip,q of a type IVa,b mixed Hodge structure. As
explained in section 2.22.2, a dot denotes a space of dimension one or greater (labels
are omitted). No dot denotes a null space. The arrows indicate the action of N1.
The solid arrows represent faithful mappings and dotted arrows zero mappings.

To estimate the mass of the states we use the growth theorem for flat sections around a
singularity from [1919]: if we’re given a vector v ∈ Gr4+l1 then the norm of the by parallel
transport derived section behaves to leading order like

‖v‖2 ∼ yl11 , (3.7)

for y1 > λ, where y1 = Im t1 and λ is a sufficiently large constant. The singular point lies
at t1 → +i∞ and therefore y1 →∞.

Because M(Q) ≤ ‖q0‖ we want q0 → 0 to guarantee that the mass M(Q) goes to zero
as well. From this we deduce that we need q0 ∈ Gr4+l1 with l1 < 0.

We can now look at the Hodge diamonds of the different singularity types in table 2.12.1
and try to identify a q0 fulfilling the two conditions for each of them. As seen in fig. 3.23.2
it is only possible for type IV and V to find a Ip,q that lies below the diagonal and is
not mapped to zero by N1. The elements of its subspace that don’t get mapped to zero
are generated by N2

1a0 for type IV and by N3
1a0 for type V. Remember a0 is the vector

spanning F 4
∆ , see eq. (2.162.16), which in turn is composed of the top-left most spaces in the

Deligne splitting, see fig. 2.22.2. It is thus natural to pick

q0 = N2
1a0 for type IVa,b , (3.8)

q0 = N3
1a0 for type Va,b . (3.9)

3.3 Analysis for a two divisor neighborhood

We turn now to the case nE = 2, i.e. the singular point P is located in a neighborhood E
of two intersecting divisors ∆1 and ∆2. If P lies away from the intersection, we pick the
indices of the two divisors such that P ∈ ∆◦1. Denoting the singularity type of ∆◦1 ≡ ∆◦(1)
with A(1) and the type of ∆12 ≡ ∆(2) with A(2), then the enhancement pattern is given
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Gr4

Gr3

Gr2

q0

a0

N1

Gr4

Gr3

Gr2q0

a0

N1

Figure 3.2: Hodge diamonds for type IV and V singularities with the location of
q0 and a0 indicated. q0 lies below the diagonal and therefore fulfills q0 ∈ Gr4+l1

with l1 < 0. Further they get mapped to a value in a non-zero vector space by N1,
as indicated by the arrows. This shows the existence of an infinite charge orbit for
type IV and V singularities; for type I, II and III such a choice does not exist.

by A(1) → A(2). In case P lies on the intersection, i.e. P ∈ ∆(2), we pick the ordering
of the indices of ∆1 and ∆2 such that the path on which we are approaching P lies in
the growth sector eq. (3.133.13) that is part of the growth theorem (we will explain this in a
second). The enhancement pattern is then given by A(1) → A(2). Both situations are
displayed in fig. 3.33.3.
The charge orbit, we are trying to identify, is now defined by

Q(q0;m1,m2) = exp
(
m1N

−
1 +m2N

−
2

)
q0 . (3.10)

Here, the N−i are part of commuting sl2-triplets that can be constructed from the Ni;
again we refer to [1212] for a review.

The important point is how they act on the spaces Ip,q across an enhancement A(1) →
A(2). As exemplified in fig. 3.43.4, they have a well-defined mapping behavior respecting the
decomposition in primitive spaces and their diamonds. N−1 maps between the primitive
spaces P (1)

4+l of A(1), before as well as after the enhancement. Because it commutes with
N−2 it does not alter the structure of the mixed Hodge structures induced by N−2 after
the enhancement. In turn, because N−2 leaves the primitive spaces P (1)

4+l invariant, it maps
only within these after the enhancement. This well-defined mapping behavior gives us
therefore an easy way of reading of the infiniteness condition from the diagrams of the
enhancement:

N−1 q0 6= 0 or N−2 q0 6= 0 . (3.11)

For the masslessness condition ‖q0‖ → 0 we use again the growth theorem. In case that
P lies on the intersection ∆(2) we need to use the two variable version, which, however,
features a path dependence. The theorem states that a vector v ∈ Gr

(1)
4+l1
∩Gr

(2)
4+l2

(where

Gr
(i)
4+li

are the graded spaces eq. (2.252.25) of A(i)) has the leading order growth

‖v‖2 ∼
(
y1

y2

)l1
(y2)l2 (3.12)
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3 Infinite and massless towers of states on singular Calabi-Yau fourfolds

Figure 3.3: Moduli space with two intersecting divisors. The singular point P can
either lie away or on the intersection ∆(2); its location is indicated by boldface in
the enhancement chain. A(2) denotes the singularity type of the intersection. The
dotted line gives the path of approach γ; the numbering of divisors ∆1 and ∆2 is
chosen such that γ lies within the growth sector of eq. (3.133.13).

Ia,b

N−1N−1 →

P
(1)
n

+

P
(1)
n+1

N−2

+

N−
1 P

(1)
n+1

N−2

N−1

N−1

+

P
(1)
n+2 +N−

1 P
(1)
n+2 + (N−

1 )2P
(1)
n+2

=

Iã,b̃

Figure 3.4: The example enhancement Ia,b → Iã,b̃ with the subdiamonds induced

by the primitive space P (1)
4+l. The actions of N−

1 and N−
2 across an enhancement

are indicated by arrows. N−
1 maps Ip,q(1) to Ip−1,q−1

(1) in the splitting at ∆◦
(1) before

and after the enhancement. On the other hand N−
2 maps Ip,q(2) to Ip−1,q−1

(2) in the
splitting at ∆◦

(2) after the enhancement, staying within the subdiamonds induced
by the primitive spaces. The particular definition of the N−

i ensures this well
defined behavior.
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for a path in the growth sector

y1

y2
, y2 > λ , x1, x2 < δ , (3.13)

for some constants λ and δ. We pick the ordering of the indices of ∆1 and ∆2 such that
the path on which we are approaching P lies within this sector. That means we eventually
have to exchange the indices 1 and 2.

Because of the bound y1

y2
> λ the condition for ‖q0‖ → 0 and therefore masslessness as

yi →∞ (within the growth sector) is for the two variable case A(1) → A(2)

l1 ≤ 0 and l2 < 0 . (3.14)

For the one variable case A(1) → A(2) the condition is the same as in the previous section:

l1 < 0 . (3.15)

We will now look at a few examples of divisor structures and enhancements to demon-
strate how we determine the existence of a suitable seed charge q0 fulfilling the infiniteness
and masslessness condition.

The enhancement IIa,b → IVã,b̃

The Hodge diamond of type II singularities splits into primitive spaces as indicated on
the left side in fig. 3.53.5. On each of these spaces N−2 induces a new mixed Hodge structure,
whose Hodge diamonds are depicted on the right side of the arrow. As describes earlier,
an enhancement is possible if the diamonds of these mixed Hodge structures give, when
added together, the target type IV diamond. In the diamonds after the enhancement
we identified and marked a seed charge q0 fulfilling the properties eqs. (3.113.11), (3.143.14)
and (3.153.15).

• The requirement for infiniteness eq. (3.113.11) can be easily checked by noting how
the two monodromy logarithms act: N−1 maps between the splittings of associated
primitive spaces; N−2 maps within the splitting of each individual primitive space.
We see that q0 gets mapped to a non-zero value by N−2 .

• The two criteria for masslessness eqs. (3.143.14) and (3.153.15) can be translated into: For
the enhancement pattern A(1) → A(2) the seed charge must be on or below the
diagonal on the left hand side and strictly below the diagonal on the right hand
side of the enhancement. For the pattern A(1) → A(2) it must be strictly below the
diagonal on the left hand side of the enhancement. The location on the right hand
side does not matter. We see that our q0 fulfills this condition for both cases.

Therefore, for both cases, A(1) → A(2) and A(1) → A(2), the marked q0 in fig. 3.53.5 indeed
generates an infinite and massless charge orbit.
To ensure the first condition actually holds, we want to express q0 through a0 again.

However, because we were working in the sl2-triplet basis, we have to use ã
(2)
0 , which
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l1 = 0

l1 = −1

IIa,b

N−1→

P
(1)
n

+

P
(1)
n+1

ã
(2)
0

+
l2 = 0

l2 = −1

N−
1 P

(1)
n+1

q0

N−2

N−2

N−1

+

P
(1)
n+2 +N−

1 P
(1)
n+2 + (N−

1 )2P
(1)
n+2

=

IVã,b̃

Figure 3.5: Hodge diamonds of a type II singularity and its primitive spaces,
enhancing to a type IV singularity. The primitive spaces and their by N−

2 induced
mixed Hodge structures are distinguished by color. See section 2.42.4 for a detailed
explanation. The location of the seed charge q0 for the charge orbit is marked. As
indicated, N−

2 sends it to a non-zero space; the charge orbit is therefore infinite.
Further the location in the diamonds before and after the enhancement gives
l1 = −1 and l2 = −1, which, according to eq. (3.143.14), makes the charge orbit
massless. It is further indicated how to retrieve q0 from ã

(2)
0 .

is a0 expressed in this basis. It spans the (one-dimensional) top-left-most space on the
enhanced side and q0 can be written as

q0 = N−2 N
−
1 ã

(2)
0 . (3.16)

3.4 Analysis for an arbitrary number of divisors

The singular point P is now assumed to be on the intersection of nP singular divisors
P ∈ ∆◦(nP ). Further it is located in a neighborhood E of in total nE singular divisors. The
ordering of the divisors ∆i, i < nP is chosen such that the path on which we approach P
lies in the growth sector eq. (3.213.21). The location of the singularity in the enhancement
chain is again indicated by boldface:

A1 → · · · → A(nP ) → · · · → A(nE) (3.17)
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Enhancement Tower Remark

Ia,b → Iã,b̃ − Ṽa,b̃ c type F state
Ia,b → Iã,b̃ x
Ia,b → IIã,b̃ x
Ia,b → IIIã,b̃ x
Ia,b → IVã,b̃ X
Ia,b → Vã,b̃ X

IIa,b → IIã,b̃ c maybe type F state
IIa,b → IIã,b̃ x
IIa,b → IIIã,b̃ X
IIa,b → IIIã,b̃ x
IIa,b → IVã,b̃ X
IIa,b → Ṽa,b̃ X

IIIa,b → IIIã,b̃ c maybe type F state
IIIa,b → IIIã,b̃ x
IIIa,b → IVã,b̃ X
IIIa,b → Ṽa,b̃ X

IVa,b → IVã,b̃ X
IVa,b → Ṽa,b̃ X

Va,b → Ṽa,b̃ X

Table 3.1: Singularity enhancement patterns and whether it is possible to identify
an infinite, massless tower of BPS-D4-branes for them. How to construct the
towers and which conditions they need to fulfill is described in section 3.33.3. Boldface
indicates on which side of the enhancement the singular point lies; if there is no
boldface, both cases are possible. ‘X’ indicates that it was possible to identify a
tower, ‘x’ that it was not possible and ‘c’ that there are further conditions on the
subindices of the types for the identification to be possible. For the first conditional
seed charge it was possible to show that it is a type F state and therefore not
suitable for the construction of the infinite tower (see the text for mote details).
The other two conditional states as also suspected to be type F states, mainly
because they are not expressible through ã

(2)
0 . The results match the ones of the

general divisor analysis of section 3.43.4 and table 3.23.2; expressions for the q0s can be
read off from there.
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A general enhancement chain is now given by

Ia1,b1 → · · · → Iak,bk → IIak+1,bk+1
→ · · · → IIam,bm → IIIam+1,bm+1 → · · · → IIIan,bn →

IVan+1,bn+1 → · · · → IVao,bo → Vao+1,bo+1 → · · · → Vap,bp
(3.18)

with P located at any of the divisors. It will turn out that the indices a and b of the
divisor types are not required in the following and it suffices to focus on the numerical
types I–V. Furthermore we combine multiple consecutive divisors of the same numerical
type into the shorthand notation

I ≡ Ia1,b1 → · · · → Iak,bk
II ≡ IIak+1,bk+1

→ · · · → IIam,bm

III ≡ IIIam+1,bm+1 → · · · → IIIan,bn

IV≡ IVan+1,bn+1 → · · · → IVao,bo

V≡ Vao+1,bo+1 → · · · → Vap,bp

(3.19)

Similar to as before, the general charge orbit is now defined as

Q(q0;m1, . . . ,mnE ) = exp

 nE∑
j=1

mjN
−
j

q0 (3.20)

for some seed charge q0. For the orbit to be infinite, one of the terms N−i q0 has to be
non-zero. In this section, we will show however the equivalent condition N−(i)q0 6= 0 for
some i ∈ {1, . . . , nE}, with N−(i) = N−1 + · · ·+N−i .
As stated, the ordering of the divisors is chosen in such a way that the path we are

approaching P on lies within the growth sector

y1

y2
,
y2

y3
, . . . ,

ynP−1

ynP
, ynP > λ and x1, . . . , xnP < δ , (3.21)

where λ and δ are fittingly chosen constants.
For a path in this sector we can now estimate the growth of a flat section v as we

approach the singularity. If v ∈ Gr
(1)
4+l1
∩ · · · ∩Gr

(nP )
4+lnP

then its leading order growth as
yi →∞ is

‖v‖2 ∼
(
y1

y2

)l1(y2

y3

)l2
. . . (ynP )lnP (3.22)

In summary, a suitable seed charge q0 has to fulfill the properties

N−i q0 6= 0 for at least one i ∈ {1, . . . , nE} (3.23)
l1, . . . , lnP−1 ≤ 0 and lnP < 0 (3.24)

Table 3.23.2 lists the suiting seed charges for all enhancement chains where this is possible.
We will now discuss in turn that these are indeed satisfying the infiniteness and masslessness
condition.
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Enhancement Chain q0

· · · → II → III/IV/V→ . . . N(nP )ã
(nE)
0

· · · → III → IV/V→ . . . (N(nP ))
2ã

(nE)
0

(I →) IV→ . . . (N(nP ))
2ã

(nE)
0

· · · → II → IV→ . . . N(nP )N
−
(m)ã

(nE)
0

· · · → III → IV→ . . . (N−(n))
2ã

(nE)
0

(I →) (IV→) V (N(nP ))
3ã

(nE)
0

· · · → II → (IV→) V (N(nP ))
2N−(m)ã

(nE)
0

· · · → III → (IV→) V N(nP )(N
−
(n))

2ã
(nE)
0

Table 3.2: Enhancement chains, with location of the singular point indicated by
boldface, for which an infinite, massless tower can be constructed. In the enhance-
ment chains the shorthand notation of eq. (3.193.19) was used. Singularity types in
parentheses can be present in the chain but do not have to. The seed charge q0

for the construction of section 3.43.4 is expressed in terms of ã(nE)
0 where possible.

N−
(m) denotes the N

− assigned to the last type II divisor and N−
(n) denotes the N

−

assigned to the last type III divisor, see eq. (3.183.18).

Infiniteness of the general charge orbit. For the cases where P lies on a type II divisor,
there has to be a type III, IV or V divisor higher up in the enhancement chain. Let
us say the first of these is at position j. Then the N−(j) associated to this divisor is not
annihilating the proposed q0. This can be seen by noting that for III, IV and V we have
(N−)2ã

(nE)
0 6= 0 as can be read of from the prospective diamonds (see table 2.12.1). From

this it follows that N−(j)q0 6= 0 and therefore that the orbit is infinite.
A similar argument holds for the case that P lies on a type III divisor. Denote the

position of the first IV or V divisor higher up in the chain again by j. Then, because for
these two types we have (N−)3ã

(nE)
0 6= 0, it follows that N−(j)q0 6= 0 and in turn that the

orbit is infinite.
For the type IV case, it immediately follows from (N(nP ))

3ã
(nE)
0 6= 0 that N(nP )q0 6= 0

and similarly, for the V case, (N(nP ))
4ã

(nE)
0 6= 0 implies likewise N(nP )q0 6= 0. Both cases

have therefore infinite orbits.

Masslessness of the general charge orbit. The condition for masslessness from eq. (3.243.24)
can be shown by tracking the location of the respective q0s through the enhancement
chains. We do this by looking at the evolution of the primitive spaces P (i)

n+l across
enhancements, using their definition eq. (2.362.36), the fact that N−(i+1) = N−(i) +N−i+1 and
the well defined mapping behavior of N−i+1. With this we can for example deduce that for
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all enhancements A(i) → A(i+1) we have

P (i+1)
n +N−(i+1)P

(i+1)
n+1 + (N−(i+1))

2P
(i+1)
n+2 ⊂ P

(i)
n +N−(i)P

(i)
n+1 + (N−(i))

2P
(i)
n+2 . (3.25)

Theses three spaces lie furthermore all on or below the diagonal, i.e.

P (i)
n +N−(i)P

(i)
n+1 + (N−(i))

2P
(i)
n+2 ⊂ Gr (i)

n + Gr
(i)
n−1 + Gr

(i)
n−2 . (3.26)

We can now make direct use of this for P on a type II divisor. There q0 ∈ N−(nP )P
(nP )
n+1

and therefore lnP = −1. Additionally, because of eq. (3.253.25), we also have q0 ∈ P (i)
n +

N−(i)P
(i)
n+1 +(N−(i))

2P
(i)
n+2 and hence li ≤ 0 with i < nP . This shows that q0 fulfills eq. (3.243.24)

and that the orbit is massless.
Similarly, for P on a type III divisor, we have q0 ∈ (N−(nP ))

2P
(nP )
n+2 and hence lnP = −2.

Again eq. (3.253.25) tells us then that li ≤ 0 with i < nP and hence that the orbit is massless.
For type IV and V singular points the discussion gets more involved. For P on a IV

divisor, in all three cases of table 3.23.2 we have q0 ∈ (N−(nP ))
2P

(nP )
n+3 and lnP = −1. q0 stays

below the diagonal in type IV diamonds further down the chain because for IV(i) → IV(i+1)

enhancements we have the invariance

(N−(i+1))
2P

(i+1)
n+3 ⊂ (N−(i))

2P
(i)
n+3 . (3.27)

In the first case of table 3.23.2 either there is no divisor with type smaller than IV. Then
the masslessness condition is satisfied. If there is a type I divisor then we have for the
I(i) → IV(i+1) enhancement

(N−(i+1))
2P

(i+1)
n+3 ⊂ P

(i)
n (3.28)

which gives li = 0 and together with eq. (3.253.25) likewise the masslessness of the orbit. In
the second case we have at the II(i) → IV(i+1) enhancement

(N−(i+1))
2P

(i+1)
n+3 ⊂ P

(i)
n+1 +N−(i)P

(i)
n+1 . (3.29)

P
(i)
n+1 would pose now a problem. However, the particular construction of q0 for this case

ensures that q0 ∈ N−(i)P
(i)
n+1. And again, eq. (3.253.25) guarantees that q0 stays on or below

the diagonal and hence that the orbit is massless. Similarly, in the third case we have at
the III(i) → IV(i+1) enhancement

(N−(i+1))
2P

(i+1)
n+3 ⊂ N

−
(i)P

(i)
n+2 + (N−(i))

2P
(i)
n+2 , (3.30)

where the first term on the right side poses a problem which is however fixed by the
particular construction of q0. It keeps q0 ∈ (N−(i))

2P
(i)
n+2 and together with eq. (3.253.25) this

gives the masslessness of the orbit.
Lastly, for P on a type V divisor, we have in all three cases q0 ∈ (N−(nP ))

3P
(nP )
n+4 giving

lnP = −2. If there is no type IV divisor in the chain then the discussion is exactly the
one for P on a type IV divisor with every occurrence of type IV replaced by type V
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and (N−(i))
2P

(i)
n+3 replaced by (N−(i))

3P
(i)
n+4. If there is however a type IV divisor in the

chain then, due to (N−(i))
3P

(i+1)
n+4 ⊂ (N−(i))

2P
(i)
n+3 at the IV(i) → V(i+1) enhancement, the

discussion for the type IV divisor can be repeated again. For brevity we will not do this.
This concludes the prove that indeed all seed charges in table 3.23.2 produce infinite and

massless orbits.

3.5 Replacing N− with N in the charge orbit

We were able to construct charge orbits for a variety of general enhancement patterns.
However, for this we were making use of the special sl2 basis, which is quite difficult to
compute for explicit examples. It is desirable to express the charge orbit in terms of the
original basis, i.e. in terms of the Ni and a0 instead of N−i and ã

(nE)
0 . In this section I

want to show that this is at least possible for the exponential factor in the charge orbit.
Explicitly the claim is that the modified charge orbit (compare the use of Nj with

eq. (3.203.20))

Q′(q0;m1, . . . ,mnE ) = exp

( nE∑
j=1

mjNj

)
q0 (3.31)

is still infinite and massless for each of the q0s from table 3.23.2.
To show this we first decompose each Ni as

Ni =
∑
s∈Z

N
[s]
i with N

[s]
i Gr

(i−1)
l ⊂ Gr

(i−1)
l+s . (3.32)

This is a crucial step in the construction of the sl2 basis of [1919] and it is shown there that
it is always well defined. Actually the N−i are defined as N−i ≡ N

[0]
i . As a first corollary

from this it follows that if N−i q0 6= 0 then Niq0 6= 0, showing the claimed infiniteness of
the modified charge orbit.

We can furthermore deduce that in the expansion eq. (3.323.32) only the terms with s ≤ 0
are non-zero. To see this, note that all Ni are commuting and leave thus the image and
kernel of each other invariant. From the definition of the W (i)

l in terms of these spaces
(see eq. (2.192.19)) it follows that NiW

(j)
l ⊂ W

(j)
l and hence that NiGr

(j)
l ⊂

⊕
s≤0 Gr

(j)
l+s.

This means that the Ni can only keep the value of each lj the same or reduce it, but
cannot increase it. Hence if a seed charge fulfills the masslessness condition eq. (3.243.24)
then the modified charge orbit fulfills the condition as well and the claim is proven.
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4 Conclusion

In this thesis we analyzed the Swampland Distance Conjecture in the complex structure
moduli space of Calabi-Yau fourfolds. The conjecture (see section 1.11.1) states that at
infinite distance points in moduli space an infinite tower of massless states emerges. We
studied in turn the two ingredients of this statement, the infinite distance points and the
tower of states, for fourfold compactifications.

Firstly, a very general analysis of degeneration points of fourfolds was done within the
powerful framework of Hodge theory. A classification of these points was simplified greatly
by assigning mixed Hodge structures to them, which depend on the complex structure
and monodromy transformations associated to the degeneration points. The mixed Hodge
structures are represented by their Deligne splitting which could be classified by looking
at their corresponding Deligne diamonds. This classification results in five different main
types, enumerated by Roman numerals I–V, each further supplemented by two numeric
indices; table 2.12.1 lists the full result, including the constraints on the numeric indices.
Together with results of [2121], it was then possible to identify the infinite distance points
among the degeneration points. Besides classifying the degeneration points into different
types, we also looked at how these local structures are connected and what types can occur
when two degenerations combine and enhance to a multi parameter degeneration. The
conditions on the types before and after such an enhancement can be found in table 2.22.2.
With this we started to unravel a global picture of an infinite distance network in moduli
space.
The second ingredient for showing the Swampland Distance Conjecture was then to

construct infinite towers of massless states in the form of what we termed charge orbits.
In [66] the authors argued that for Calabi-Yau threefolds and one parameter degenerations
such charge orbits are populated by BPS D-brane states. We assumed that this also
holds for fourfolds and the multi parameter case; the proof will be left for future work.
At first, we then looked at one parameter degenerations, where it was possible to identify
fitting charge orbits for type IV and type V degenerations. Next, we analyzed respectively
two parameter and arbitrary multi parameter degenerations. In both cases it was again
possible to find a charge orbit if the degeneration was of type IV or V, whereas for type
II and III this was only possible if somewhere in the neighborhood the degeneration
further enhances into one with a greater numerical type. A desirable continuation of this
work would be to identify fitting charge orbits without this constraint. In summary, we
succeeded however in providing further evidence for the Swampland Distance Conjecture
for Calabi-Yau fourfold compactifications of type IIA string theory.

In the derivations leading to the aforementioned results we used a special sl2-basis that
was introduced by [1919] and reviewed in [1212]. Because this basis is difficult to construct,
we gave an argument in section 3.53.5 that it is also possible to define a modified charge
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orbit using the original basis. However, we were not able to remove the dependence on
the sl2-basis completely; it is still needed for the identification of the seed charges, even
for the modified charge orbits.
Even though the main goal of this thesis was to provide the mentioned evidence for

the SDC, the presented classification of singular fourfolds and enhancements between
them is an important result on its own. It depends only on general properties of Calabi-
Yau manifolds and is therefore expected to be transferable to scenarios other than
compactifications of type IIA theory. One such scenario of interest would be, for example,
F-theory compactified on a fourfold. Another aspect to be noted is that even though we
only looked at the complex structure moduli space we can use mirror symmetry between
Calabi-Yaus manifolds to map the results to the Kähler moduli space. Lastly, a second
application of the developed tools and results could be to estimate the number and
distribution of flux vacua around infinite distance points as a continuation of the work of
Denef and Douglas [2323].

41



Bibliography

[1] E. Palti. “The Swampland: Introduction and Review”. In: (Mar. 14, 2019) (cit. on
pp. 44, 66).

[2] H. Ooguri and C. Vafa. “On the Geometry of the String Landscape and the Swamp-
land”. In: Nuclear Physics B 766.1-3 (Mar. 2007), pp. 21–33. arXiv: hep-th/0605264hep-th/0605264
(cit. on p. 44).

[3] S. Brahma and M. W. Hossain. “Relating the Scalar Weak Gravity Conjecture
and the Swampland Distance Conjecture for an Accelerating Universe”. In: (Apr. 11,
2019). arXiv: 1904.05810 [gr-qc, physics:hep-th]1904.05810 [gr-qc, physics:hep-th] (cit. on p. 44).

[4] T. W. Grimm and D. van de Heisteeg. “Infinite Distances and the Axion Weak
Gravity Conjecture”. In: (May 2, 2019). arXiv: 1905.00901 [hep-th]1905.00901 [hep-th] (cit. on p. 44).

[5] H. Ooguri et al. “Distance and de Sitter Conjectures on the Swampland”. In:
Physics Letters B 788 (Jan. 2019), pp. 180–184. arXiv: 1810.055061810.05506 (cit. on pp. 44,
55).

[6] T. W. Grimm, E. Palti, and I. Valenzuela. “Infinite Distances in Field Space
and Massless Towers of States”. In: Journal of High Energy Physics 2018.8 (Aug.
2018). arXiv: 1802.082641802.08264 (cit. on pp. 44, 55, 2828, 4040).

[7] R. Blumenhagen. “Quantum Gravity Constraints on Large Field Inflation”. In:
Proceedings of Corfu Summer Institute 2017 "Schools and Workshops on Elementary
Particle Physics and Gravity" — PoS(CORFU2017). Corfu Summer Institute 2017
"Schools and Workshops on Elementary Particle Physics and Gravity". Vol. 318.
SISSA Medialab, Aug. 24, 2018, p. 175 (cit. on pp. 44, 55).

[8] F. Baume and E. Palti. “Backreacted Axion Field Ranges in String Theory”. In: J.
High Energ. Phys. 2016.8 (Aug. 2016), p. 43. arXiv: 1602.065171602.06517 (cit. on pp. 44, 55).

[9] D. Klaewer and E. Palti. “Super-Planckian Spatial Field Variations and Quantum
Gravity”. In: J. High Energ. Phys. 2017.1 (Jan. 2017), p. 88. arXiv: 1610.000101610.00010
(cit. on pp. 44, 55).

[10] R. Blumenhagen et al. “The Refined Swampland Distance Conjecture in Calabi-
Yau Moduli Spaces”. In: J. High Energ. Phys. 2018.6 (June 2018), p. 52. arXiv:
1803.049891803.04989 (cit. on pp. 44, 55).

[11] S. Cecotti. Supersymmetric Field Theories: Geometric Structures and Dualities.
Cambridge: Cambridge University Press, 2015 (cit. on pp. 44, 55).

[12] T. W. Grimm, C. Li, and E. Palti. “Infinite Distance Networks in Field Space and
Charge Orbits”. In: (Nov. 6, 2018). arXiv: 1811.02571 [hep-th]1811.02571 [hep-th] (cit. on pp. 44, 55,
1717, 2121, 2424, 2828, 3131, 4040).

42

https://arxiv.org/abs/hep-th/0605264
https://arxiv.org/abs/1904.05810
https://arxiv.org/abs/1905.00901
https://arxiv.org/abs/1810.05506
https://arxiv.org/abs/1802.08264
https://arxiv.org/abs/1602.06517
https://arxiv.org/abs/1610.00010
https://arxiv.org/abs/1803.04989
https://arxiv.org/abs/1811.02571


Bibliography

[13] P. Corvilain, T. W. Grimm, and I. Valenzuela. “The Swampland Distance
Conjecture for Kähler Moduli”. In: (Dec. 18, 2018). arXiv: 1812.07548 [hep-th]1812.07548 [hep-th]
(cit. on p. 44).

[14] R. Blumenhagen, I. Valenzuela, and F. Wolf. “The Swampland Conjecture
and F-Term Axion Monodromy Inflation”. In: J. High Energ. Phys. 2017.7 (July
2017), p. 145. arXiv: 1703.057761703.05776 (cit. on p. 44).

[15] M. Graña and H. Triendl. String Theory Compactifications. New York, NY:
Springer Berlin Heidelberg, 2017 (cit. on p. 77).

[16] A. Klemm et al. “Calabi-Yau Fourfolds for M- and F-Theory Compactifications”. In:
Nuclear Physics B 518.3 (May 1998), pp. 515–574. arXiv: hep-th/9701023hep-th/9701023 (cit. on
p. 99).

[17] M. Haack. “Calabi-Yau Fourfold Compactifications in String Theory” (cit. on
p. 1010).

[18] C. Robles. “Degenerations of Hodge Structure”. In: (July 4, 2016) (cit. on pp. 1313,
2121).

[19] E. Cattani, A. Kaplan, and W. Schmid. “Degeneration of Hodge Structures”. In:
Annals of Mathematics 123.3 (1986), pp. 457–535 (cit. on pp. 1717, 3030, 3939, 4040).

[20] M. Kerr, G. Pearlstein, and C. Robles. “Polarized Relations on Horizontal
SL(2)s”. In: (May 8, 2017). arXiv: 1705.03117 [math]1705.03117 [math] (cit. on pp. 1919, 2121, 2424).

[21] C.-L. Wang. “On the Incompleteness of the Weil-Petersson Metric along Degenera-
tions of Calabi-Yau Manifolds”. In: Math. Res. Lett. 4.1 (Jan. 1997), pp. 157–171
(cit. on pp. 2121, 4040).

[22] C.-L. Wang. “Aspects on Calabi-Yau Moduli”. In: Uniformization, Riemann-Hilbert
Correspondence, Calabi-Yau Manifolds & Picard-Fuchs Equations. International
Press, 2018 (cit. on p. 2121).

[23] F. Denef and M. R. Douglas. “Distributions of Flux Vacua”. In: J. High Energy
Phys. 2004.05 (May 28, 2004), pp. 072–072. arXiv: hep-th/0404116hep-th/0404116 (cit. on p. 4141).

43

https://arxiv.org/abs/1812.07548
https://arxiv.org/abs/1703.05776
https://arxiv.org/abs/hep-th/9701023
https://arxiv.org/abs/1705.03117
https://arxiv.org/abs/hep-th/0404116

	Contents
	Introduction
	The Swampland and the Distance Conjecture
	A brief reminder of superstring theory
	Infinite massless towers from a string on M9 S1
	A brief introduction to Calabi-Yau manifolds
	Compactifying type IIA theory on Calabi-Yau fourfolds

	The singularity structure of Calabi-Yau fourfold moduli space
	Analyzing singularities with mixed Hodge structures
	Classifying singularities with Deligne diamonds
	On the classification of infinite distance points
	Singularity enhancements and their classification

	Infinite and massless towers of states on singular Calabi-Yau fourfolds
	Definition of the general charge orbit
	Analysis for a one divisor neighborhood
	Analysis for a two divisor neighborhood
	Analysis for an arbitrary number of divisors
	Replacing N- with N in the charge orbit

	Conclusion
	Bibliography

