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Abstract

The SYK model of Sachdev, Ye and Kitaev is a recent model of N Majorana
fermions coupled via quartic random interaction. It has the extraordinary properties
of being exactly solvable at largeN , having emergent conformal symmetry in the IR,
and exhibiting maximal quantum chaos. The confluence of these properties make
SYK a highly attractive candidate for a solvable AdS/CFT correspondence. What’s
more, it was found to capture elements of non-Fermi-liquid behavior in strange
metals. This thesis introduces the SYK model and discusses a recent variant, the
SYK∗ model of Marcus and Vandoren. In the latter, the effective action is derived
and branches of conformal solutions are discussed. The parameter space of SYK∗
is investigated for large and small MN . The former reveals a phase separation and a
critical point in the T − M

N plane is claimed to exist.



La nature est une sphère infinie dont le centre est
partout et la circonférence nulle part.

Nature is an infinite sphere whose center is every-
where and circumference nowhere.

Blaise PASCAL, Pensées
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Chapter 1

Introduction

Strongly coupled many-body systems are notorious in theoretical physics for
their unsolvability. These are systems in which the inter-species interactions are
strong enough that the standard perturbation theory approach is rendered ineffec-
tive. Such systems are prominent in many areas from high-Tc superconductors in
condensed matter to gauge theories in high-energy physics. While strongly coupled
systems remain for the large part synonymous with intractability, sometimes the
problem can be sidestepped.

This is the case of random spin systems, an agglomeration of quantum spins
with all-to-all randomized interactions. Physical realizations of such systems are
known as spin glassy phases of matter. Unlike crystalline-based spin models, glassy
phases consist of structurally disordered frustrated magnets. The unique property
of random quantum spin systems is that they are able to correlate nearby spins
weakly just as far-off ones strongly. As a result, spin glasses have been extensively
studied in the hope of elucidating the nature of their phase transitions.

This is specifically what Sachdev and Ye attempted to do in 1992 with the SY
model [1]. It is a model of randomly coupled quantum Heisenberg magnets with
infinite-range interaction described by

H =
1√
M

N∑
i, j=1

JijSi · Sj , (1.1)

whereN is the number of sites, the couplings Jij are independent Gaussian random
variables, and the spins are in some representation of SU(M). Previously it
was shown that for M = 2 the model exhibited a zero-temperature spin-glass-
order phase [2]. By promoting the spins to arbitrary representation SU(M),
Sachdev and Ye were able to acquire analytic control in the strong coupling and
dual limits N, M � 1. In these limits, while keeping N

M = κ fixed, they could
interpolate between deep within the magnetically ordered spin-glass phase to well
inside the spin-fluid phase. Some years later, Sachdev showed that a close parallel
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CHAPTER 1. INTRODUCTION

exists between holographic metals near Reissner-Nordström black holes and the
fractionalized Fermi-liquid phase of the lattice Anderson model, of which the
SY model is a specific case [3]. The correlation functions in SY were found by
representing the spin operators in terms of (Abrikosov) fermions,

Sαβi = (ψα†ψβ)i

where ψ is a fermionic annihilation operators and α, β = 1, . . . ,M are group
indices [1, 4]. Under such a mapping the SY Hamiltonian becomes one of four-
fermion interactions.

This led Kitaev to propose - in a series of lectures given as recently as 2015 - a
simpler yet nonetheless highly appealing variant of the SY model: the Sachdev-Ye-
Kitaev or SYK model [5, 6]. It is a 0 + 1 dimensional quantum mechanical model
of N fermions with all-to-all quartic Gaussian-randomized self-interaction. The
SYK Hamiltonian simplifies the four-fermion interactions in SY by using Majorana
fermions:

H = − 1

4!

N∑
i,j,k,l=1

Jijklψiψjψkψl. (1.2)

There are several immediate reasons for studying the SYKmodel over the SYmodel.
Replacing pairwise coupled spins by quartic interactions lessens the disorder effects
per interaction; it is simpler than the SY model in that only a single largeN limit is
required rather than a dual limit. In spite of its apparent simplicity, the SYK model
has garnered widespread research interest because it has been shown to possess
three remarkable properties:

1. Solvable at large N : In the limit of large N all Feynman diagrams of
order O(1/N) and higher vanish. The set of surviving diagrams acquire
an exceptionally simple form, known as “melon” diagrams. As a result of
this major simplification, the n-point correlation functions can be calculated
hence the theory is solvable.

2. Conformal symmetry: The SYKmodel enjoys emergent conformal symmetry
in the infrared or strong coupling limit. This enables the use of powerful tools
in conformal field theory such as the highly constrained form of the two- and
higher- point correlators.

3. Maximal chaos: The degree of stability/instability in finite-temperature dy-
namical systems is quantified by the Lyapunov exponent λ. SYK saturates
the instability bound of this exponent (λ ≤ 2π/β ≡ 2πkBT ) for large N
theories. What is intriguing is the symbiosis of solvability and maximal
chaos in the SYK model, a normally mutually exclusive pair of properties for
classical systems [7].

6



CHAPTER 1. INTRODUCTION

Both SY and SYK belong to a class of models called large-N models. The
purpose of such models is to simplify the pertubation theory expansion by us-
ing 1/N as the expansion parameter. This idea was initiated by ’t Hooft who
used a 1/N -expansion in the context of quantum chromodynamics (QCD), the
non-Abelian gauge theory underlying the strong interactions between quarks and
gluons [8]. QCD displays asymptotic freedom, which is to say that as the energy
scale increases the strength of a coupling constant g becomes asymptoticallyweaker.
Conversely as energy scales decrease g becomes strong, thereby confining quarks
and gluons into hadronic states. This is the reason why a standard perturbative
expansion in the coupling constant g is disallowed for low energy scales in QCD.
This limitation is partially overcome by augmenting the QCD gauge group from
SU(3) to SU(N). When N is taken to be large, the resultant Feynman diagrams
from the 1/N expansion acquired a greatly simplified topology: planar diagrams.

From a condensed-matter perspective, the SYK model has been shown to de-
scribe non-Fermi-liquid states of matter [9, 10]. Transport properties of many
materials are well described by the celebrated Fermi-liquid theory (FLT), in which
the quasi-particle idea plays an essential role. Yet the advent of progress in solid-
state experiments has given rise to many exotic states of matter ill-described by
FLT: cuprates, pnictides and heavy-fermion materials are some examples [11].
Their quasi-particles excitations are extremely short-lived, so much so that these
“strange metals” are often said not to have quasi-particle description at all. The
standard FLT toolkit can therefore not be used to understand non-Fermi liquids [12].

The fact that the SYK model exhibits maximal chaos suggests the presence of
an underlying holographic dual. By the second item, it is believed to be a black hole
in 1 + 1 dilaton (or Jackiw-Teitelboim) gravity [4]. Such a duality is an example of
what is more broadly coined an Anti-de Sitter/Conformal Field Theory correspon-
dence or AdS/CFT correspondence. It conjectures the equivalence of a quantum
field theory in flat spacetime to a string theory, the canonical example being the
AdS5/CFT4 correspondence: N = 4 super Yang-Mills theory in 3 + 1-dimensions
is dynamically equivalent to type IIB superstring theory on AdS5 × S5 [13]. Con-
sidered by many as being one of the most exciting discoveries in modern theoretical
physics, the AdS/CFT correspondence has important implications in condensed
matter as well: in some limit it becomes a strong-weak coupling duality. This
means that an otherwise intractable strongly coupled many-body theory may be
dual to a possibly amenable classical gravity theory [14].

There is one issue with interpreting the SYK model as being dual to black
holes: it is a model with quenched random disorder. This means that to compute
n-point correlators it is necessary to calculate the average over this disorder. This
is done by way of replicating the system under consideration so as to be able to
average those replicas. However, since real quantum systems do not have random
interactions that are later disorder averaged over a probability distribution [7], it is

7



CHAPTER 1. INTRODUCTION

unlikely that the SYK model can provide answers to subtle questions about black
holes [15]. Motivated by this reason, Witten proposed an SYK-like model without
quenched disorder. This model, referred to as the Gurau-Witten model, is one of
rank-3 tensor fields with O(N)3 symmetry group [15, 16]. It is SYK-like in the
sense that in the large N limit its two-point function is also dominated by melonic
diagrams. Furthermore, it exhibits the same thermodynamic behavior as the SYK
model. The hope is that such tensor models may provide insight on interpreting
their holographic dual sector [17].1

Besides the Gurau-Witten tensor model, many generalizations of the SYK
model have seen the light of day since Kitaev’s famous talks. The most natural
is the extension from quartic to q-fold interactions with q ∈ Z. Because it lends
itself well to other generalizations, many authors have adopted this extension ab ini-
tio [18]. Indeed, we will ourselves assume this extension throughout the majority of
this thesis. Perhaps the most studied SYK-like model is the supersymmetric SYK or
SUSY SYKmodel [19,20]. Numerous other generalizations exist: for example, ex-
tensions to higher dimensional SYK in field theory [21] or in lattice models [22,23];
a version with additional quadratic fermion hopping [24]; extensions that include
multiple flavors of fermions, pure scalars, or complex fermions [9, 18].

One very recent generalization will be central to this thesis; the SYK∗ model2
proposed by Marcus and Vandoren in 2018 [25]. In this version, to the existing N
real Majorana fermions are added M auxiliary bosonic degrees of freedom with
Yukawa-type interaction:

H =
1

2
φaφa − i

2!

M∑
a=1

N∑
i,j=1

Caijφ
aψiψj . (1.3)

The couplings Caij , which define the dimensionful quantity J , are disorder aver-
aged over a Gaussian distribution. The SYK∗ model too preserves the above-listed
properties of SYK: solubility at large N and M , emergent conformal symmetry
in the IR, and maximal saturation of chaotic behavior. Moreover the presence of
the new free parameterM in the theory naturally paves the way for a study of the
(potentially) rich parameter space. This was done in part by the original authors
who found two branches of solutions forM,N � 1 but MN fixed at strong coupling
J → ∞. For M

N → ∞ they found that the two branches converged to a unique
conformal solution. However, it is also interesting to ask what the solutions to the
Green’s functions are in the regimes M

N � 1 and M
N � 1 when J is kept fixed (at

finite coupling).

1Curiously, considering the SYK couplings Jijkl as being a slowly-varying dynamical field from
the start will produce the same diagrammatic structure [4], though as of yet this has not been found
to be a fruitful route.

2This is not the officially recognized name of this SYK-like model. It is a name attributed by the
author of this thesis.
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CHAPTER 1. INTRODUCTION

This thesis will answer this question. As a whole, the thesis outline is as fol-
lows: In chapter 2 we give a detailed introduction to the SYKmodel. We derive the
bare two-point function from the path-integral formalism. We then switch on the
interactions and describe the resulting perturbative Feynman diagrams in subsec-
tion 2.2.2. We use the fact that the SYK model is a melonic theory to write down
the self-energy. In the infrared limit the fermionic Green’s function is solvable by
virtue of conformal symmetry: we show this in subsection 2.2.4 and use it to find the
finite-temperature Green’s function in subsection 2.2.5. We discuss the q = 2 and
q → ∞ cases before briefly mentioning higher-point correlators (subsection 2.2.6
and section 2.3 respectively).

In chapter 3 we dive into the SYK∗ model of Marcus and Vandoren. In sec-
tion 3.1, we describe its relation to the SYK model and the SUSY SYK model.
Interestingly, SYK∗ also shows an affinity to a seemingly unrelated model of semi-
holographic fermions. We will establish this later by comparing spectral functions
in section 3.3. In section 3.2 we derive the exact expressions for the fermionic
and bosonic self-energies by the saddle-point method. The conformal ansatz in
the IR is used to find the two branches of conformal solutions, the “rational” and
the “irrational” in subsection 3.2.4. In this section, we also discuss the spectral
functions in SYK∗. The saddle points will serve us in chapter 4 to explore the
parameter space of SYK∗. We present solutions to the Green’s functions in the
regimes where M

N � 1 and M
N � 1. The thesis concludes with a discussion and

an outlook on future research.
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Chapter 2

SYK model

In this chapter we review the SYK model and present several of its character-
istic features. We illustrate the dominance of melon diagrams in SYK and show
how the conformal symmetry arises in the infrared limit. We will not enter into
the unwieldy details of the holographic dual description, for which there are al-
ready many references like the overview in [26]. Originally, the SYK model was
incarnated as a theory of quartic interactions. In this chapter, however, we will
use the now-common extension to q-point interactions (except for when it is more
instructive to consider the case q = 4). There are two cogent reasons for doing this:
(i) qualitatively, the model has the same distinctive properties for arbitrary q, and
(ii) it allows for the study of special cases.

2.1 Introduction to the SYK model

The SYK Hamiltonian with q-fold interaction is given by

H =
iq/2

q!

N∑
i1,...iq=1

Ji1...iqψi1 · · ·ψiq , (2.1)

where the Majorana fermions obey the usual anti-commutation relation {ψi, ψj} =
δij and the couplings Ji1...iq are totally anti-symmetric upon interchange of two
indices (i.e. Ji1...imin...iq = −Ji1...inim...iq for 1 ≤ n,m ≤ q). The factor of iq/2
is required in order to preserve the Hermiticity of the Hamiltonian. For the same
reason, q is restricted to the even integers. The factor of 1/q! accounts for all
the ways of ordering the q operators in the summand. The sum over the indices
is written explicitly; this is usually implied for repeated indices so we henceforth
omit them. The couplings are seen as independent random variables drawn from a
Gaussian distribution with mean and variance given by

〈Ji1...iq〉 = 0 and 〈Ji1...iqJj1...jq〉 =
(q − 1)!J2

N q−1
δi1j1 · · · δiqjq . (2.2)
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CHAPTER 2. SYK MODEL 2.2. TWO-POINT FUNCTION

The factorial in the variance is chosen for later convenience while the scaling of
N is chosen to obtain a non-trivial N � 1 limit. As noted by [27], the choice of
this ensemble is not altogether arbitrary. While it is possible to retrieve the large
N diagrammatic structure using any probability density (e.g. the simple Bernoulli
distribution), non-Gaussian densities are not useful in finding the non-perturbative
effective action by saddle point approach (see section 3.2). The SYK action follows
as

S =

∫
dτ

(
1

2
ψiψ̇i −

iq/2

q!
Ji1...iqψi1 · · ·ψiq

)
≡ S0 + S1, (2.3)

where we are using the notation ψ̇i = ∂ψi/∂τ and have defined the non-interacting
and interacting parts of the action S0 and S1 respectively. By dimensional analysis
we see that the canonical scale dimensions are [ψi] = 0 while [Ji1...iq ] = [J ] = 1.
As we will shortly see in subsection 2.2.3, the fermions will flow towards an IR
fixed point with dimension ∆ = 1/q.

2.2 Two-point function

In this section we solve for the two-point function or Green’s function in the
SYK model. The procedure followed is identical to that standard in the functional
integral formulation of quantum field theory applied to 0 + 1 dimensions.

2.2.1 Free theory

We first consider the non-interacting SYK model, i.e., only S0 in eq. (2.3).
After supplementing the SYK action with a Grassmannian source term, the path
integral in the free theory is

Z0[J ] =

∫
D[ψ]e−S0−

∫
dτJiψi (2.4)

=

∫
D[ψ] exp

[
−
∫
dτ

(
1

2
ψiψ̇i + Jiψi

)]
, (2.5)

where for the measure we are using the shorthand notation

D[ψ] = D[ψi] D[ψ2] · · ·D[ψq]. (2.6)

Expanding the real anti-commuting fields in terms of fermionic (odd) Matsubara
frequencies ωn = nπ/β where n ∈ 2Z + 1,

ψi(τ) =
1

β

∑
n∈2Z+1

e−iωnτψi,n, (2.7)
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CHAPTER 2. SYK MODEL 2.2. TWO-POINT FUNCTION

the path integral becomes

Z0[J ] =

∫
D[ψ] exp

[
− 1

β

∑
n∈2Z+1

(
1

2
ψi,niωnψi,−n + Ji,nψi,−n

)]
, (2.8)

where we used that ω−n = −ωn. Next, by shifting the fields as ψi,n → ψi,n −
Ji,n/(iωn) we can easily complete the square:

Z0[J ] =

∫
D[ψ] exp

(
− 1

β

∑
n∈2Z+1

1

2
ψi,n(iωn)ψi,−n

)

exp

[
1

β

∑
n∈2Z+1

1

2
Ji,n

(
1

−iωn

)
Ji,−n

]
. (2.9)

The path integral over the fermions is Gaussian so it can be readily evaluated. The
proportionality constant coming from doing this is absorbed into the measure, as
usual. The result is then

Z0[J ] = exp

[
1

β

∑
n∈2Z+1

1

2
Ji,n

(
1

−iωn

)
Ji,−n

]
(2.10)

≡ exp

(
1

2

∫
dτ dτ ′Ji(τ)∆(τ − τ ′)Ji(τ ′)

)
(2.11)

where we defined the Euclidean time propagator as

∆(τ − τ ′) =
1

β

∑
n∈2Z+1

e−iωn(τ−τ ′)

−iωn
(2.12)

The Green’s function is defined as the expectation value of the time-ordered product
of creation and annihilation operators:

G(τ, τ ′) ≡ 〈T[ψi(τ)ψi(τ
′)]〉

= θ(τ − τ ′)〈ψi(τ)ψi(τ
′)〉 − θ(τ ′ − τ)〈ψi(τ ′)ψi(τ)〉

(2.13)

where T[· · · ] represents the time-ordering operator and 〈·〉 denotes the thermal
average. The Heaviside step function θ(x) is 1 for x ≥ 0 and 0 for x < 0. The
non-interacting Green’s function is then given by

G0(τ, τ ′) =
1

Z0[0]

δ

δJi(τ ′)

δ

δJi(τ)
Z0[J ]

∣∣∣∣∣
J=0

= ∆(τ − τ ′).
(2.14)

Therefore, in frequency space and in Euclidean time (at T = 0) we have

G0(iωn) =
1

−iωn
and G0(τ − τ ′) =

1

2
sgn(τ − τ ′), (2.15)

where sgn(x) is the sign-function: it equals 1 for x > 0, 0 for x = 0, and −1 for
x < 0. The bare fermionic Green’s functions in eq. (2.15) are seen to be odd in
frequency and imaginary time as required by their statistics.
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CHAPTER 2. SYK MODEL 2.2. TWO-POINT FUNCTION

Figure 2.1: Leading order correction to inter-replica interactions. The top and
bottom parts of the diagram have different replica indices. One can show that this
goes as ∼ 1

N .

2.2.2 Interacting theory

We now turn on the interaction and consider the full SYK model, i.e., both S0

and SI in eq. (2.3). As was alluded to in the introduction, in order to compute the
two-point function (or n-point function for that matter) it is necessary to perform the
disorder average over these correlators. This involves computing 〈logZ〉D (where
the chevron braces 〈·〉D represent the disorder average). The problem that arises
is that in general 〈logZ〉D 6= log〈Z〉D. To deal with this we use a common trick
called the “replica trick”. It is based on the simple formula,

〈logZ〉D = lim
n→0

1

n
log〈Zn〉D. (2.16)

This formula is handy because for integer n the right-hand side essentially repli-
cates the system n times with exactly the same disorder realization (quenched
disorder). This can easily be computed by integrating out the Gaussian-random
disorder. However, in general, the process of integrating over the disorder will
lead to couplings between different replicas [28]. But in SYK such couplings are
actually subdominant for N � 1 so that inter-replica diagrams do not contribute
(see fig. 2.1). This replica diagonal ansatz greatly facilitates the computation of
n-point functions. In this thesis, we will assume this symmetry and thereby avoid
writing out replica indices everywhere.

In this subsection, we privilege clarity over generality by setting q = 4: this
makes the Feynman diagrams more legible. Of course the entirety of the reasoning
below can be carried over to the case of arbitrary q. For q = 4 the Gaussian statistics
reduce to

〈Jijkl〉 = 0 and 〈JijklJmnop〉 =
3!J2

N3
δimδjnδkoδlp. (2.17)

Any diagram is created by joining propagators to vertices using the following Feyn-
man rules:

13



CHAPTER 2. SYK MODEL 2.2. TWO-POINT FUNCTION

∼ G0(τ, τ ′)
τ τ ′

∼ 1
4!Jijkl

∫
dτ

τ

i j

kl

The question now is, what kind of Feynman diagrams contribute to the 1-particle
irreducible (1PI) self-energy? In particular, how do they behave in the limit of
N � 1? To answer this we will look at a few elementary diagrams and calculate
their contributions. In the following we will avoid cluttering the expressions with
propagators and τ -integrals. As a first example, let us consider a very simple
diagram appearing in this theory shown in fig. 2.2. It is the simplest possible
correction to the two-point function and is expressed as

(4)(3)

4!

N∑
j=1

〈Jijji〉D = 0, (2.18)

where we denote the external lines with index i. Note the sum over the internal
loop index 1 ≤ j ≤ N in analogy with field theory integrals over internal loop
momenta. We write them explicitly. In this case, the result is zero because the
Gaussian distribution is 0-centered. This illustrates the fact that all diagrams with
an odd number of vertices vanish. That being said, let us consider 1PI diagrams
with two vertices; there are only two and they are shown in fig. 2.3. The expression
for the diagram in fig. 2.3a is

4232

4!2

∑
j, k, l

〈JijkiJljkl〉D =
4232

4!2
3!J2

N
=

3

2

J2

N
. (2.19)

Figure 2.2: The simplest correction admissible by this model.

(a) (b)

Figure 2.3: The only two J2 corrections to the self-energy. The dashed lines in the
figures are used to indicate which pairs of vertices are being disorder averaged.
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CHAPTER 2. SYK MODEL 2.2. TWO-POINT FUNCTION

Although this diagram survives the disorder averaging, it will not survive the large
N limit; it is a subdominant contribution. The diagram in fig. 2.3b is given by

423!

4!2

∑
j, k, l

〈JijklJijkl〉D =
423!

4!2
3!J2 = J2. (2.20)

We see that the result is independent of N so that this will have a non-vanishing
contribution to the self-energy. We next consider diagrams with four vertices; two
(distinct) are shown in fig. 2.4. The diagrams in fig. 2.4b and fig. 2.4c are the same
as in fig. 2.4a except the disorder average “contractions” are different. The diagram
in fig. 2.4a is expressed as

443!2

4!4

∑
j, ..., p

〈JijopJinop〉D〈JjklmJnklm〉D =
443!2

4!4
3!2J4 = J4 (2.21)

We have found another nonzero contribution to the self energy at large N . One
can show that the diagrams in fig. 2.4b and fig. 2.4c are proportional to 1/N2 and
1/N5 respectively. Finally, we compute the diagram in fig. 2.4d:

443!2

4!4

∑
j, ..., p

〈JijkmJijlp〉D〈JklonJmpon〉D =
443!2

4!4
3!2J2

N2
=
J2

N2
, (2.22)

which is subdominant. From the above computations, observe that only a particular
subset of diagrams survive the large N limit. This is not a coincidence; all the
nonzero contributions to the two-point function in SYKbelong to a class of diagrams
known as melon diagrams (those in 2.3b and 2.4a are examples). Said differently,
the 1PI self-energy consists solely of iterated melonic diagrams. This means
substituting a propagatorG0 in a diagram by the combinationG0ΣG0. For example

(a) (b)

(c) (d)

Figure 2.4: Some order J4 corrections to the self energy.
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−−−−→

Figure 2.5: The iterative construction of melonic diagrams.

doing this with the upstairs propagator in fig. 2.3b yield the diagram in fig. 2.4a.
This process of iteration is shown in fig. 2.5; it is a defining property of melonic
diagrams. A diagram that cannot be reached by this process is necessarily non-
melonic. This essentially describes the Schwinger-Dyson (SD) recursion relation

G(τ, τ ′) = G0(τ, τ ′)+

∫
dτ̃dτ̃ ′G0(τ, τ̃)Σ(τ̃ , τ̃ ′)G(τ̃ ′, τ ′)

Σ(τ,τ ′) = J2G(τ, τ ′)3
(2.23)

as shown in fig. 2.6. The results can straightforwardly be generalized to q-fold
interaction: 1

Σ(τ, τ ′) = J2G(τ, τ ′)q−1. (2.24)

Melonic dominance is a characteristic feature of SYK and SYK-like models; the
self-energy is always of a considerably simple form, as in eq. (2.24). In the next
section, we exploit this trait and find a solution to eq. (2.23) by going to the infrared
limit. For a schematic introduction to the subject of Feynman diagrams in the
SYK model, the reader is directed to [7]. There, the vertex legs are labelled not
by indices but by colors and in the language of colored tensor models, Feynman
diagrams become 4-colored graphs. Lastly, for a rigorous proof using graph theory
of the large-N melonic dominance in SYK the reader is referred to [29].

= + Σ

Σ =

Figure 2.6: A graphical representation of the Schwinger-Dyson equation in the
SYK model for q = 4. The double and single lines denote the interacting and bare
Green’s function respectively.

1The origin of the fruity nomenclature should now be clear. The q − 1 propagators joining two
vertices can be likened to the lines joining the North and South of a melon’s surface.
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2.2.3 Infrared limit

In the infrared (IR), or equivalently, the strong-coupling or low-energy limit
(N � βJ � 1 and J � ωn) the full Green’s function can be exactly solved. As a
result of eq. (2.24), the bare Green’s function becomes negligible compared to the
self-energy so that the SD equation in frequency space reduces to

G(iωn) =
1

G0(iωn)−1 − Σ(iωn)

≈ −1

Σ(iωn)
.

(2.25)

Inserting the self-energy we found into the Euclidean-time version of the above we
get

− δ(τ − τ ′) = J2

∫
dτ̃G(τ, τ̃)G(τ̃ , τ ′)q−1. (2.26)

We now use the fact that the Green’s function has conformal symmetry (see subsec-
tion 2.2.4). Intuitively this follows from taking the IR limit, i.e., sending the only
dimensionful quantity in the model to be very large. In conformal field theories,
the high degree of symmetry completely constrain the form the two-point function
can have. For a fermionic bilocal at T = 0, this form is given by the conformal
ansatz:

G(τ, τ ′) = A
sgn(τ − τ ′)
| τ − τ ′ |2∆

, (2.27)

where A and ∆ (the conformal dimension) are constants to be determined. We do
so promptly by inserting the ansatz into eq. (2.26). This yields

− δ(τ − τ ′) = J2Aq
∫
dτ̃

sgn(τ − τ̃)

| τ − τ̃ |2∆

sgn(τ̃ − τ ′)
| τ̃ − τ ′ |2∆(q−1)

(2.28)

where we used that sgn(τ − τ ′)q−1 = sgn(τ − τ ′) since q is even. At zero-
temperature we can use the Fourier transform,

sgn(τ − τ ′)
| τ − τ ′ |2∆

=

∫
dω

2π
e−iω(τ−τ ′)i21−2∆√π Γ(1−∆)

Γ(1
2 + ∆)

| ω |2∆−1 sgn(ω), (2.29)

to write eq. (2.28) in Fourier space:

− 1 = −J2A422−2∆q | ω |2−2∆q Γ(1−∆)

Γ(1
2 + ∆)

Γ(1− (q − 1)∆)

Γ(1
2 + (q − 1)∆)

. (2.30)

By power counting we find the conformal dimension ∆ = 1/q and by using known
properties of the Γ-function we can solve for the constant A. Thus, we obtain the
exact conformal solution to the full Green’s function

Gc(τ, τ
′) =

(
1
2 −

1
q

J2π
tan

(
π

q

)) 1
q sgn(τ − τ ′)
| τ − τ ′ |2/q

, (2.31)

valid in the IR regime. This is one of the many solutions in the space of conformal
solutions related to each other at no cost by reparametrizations.
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2.2.4 Conformal symmetry

In the previous section we exploited the conformal invariance to obtain the IR
solution to the Green’s function eq. (2.31). We now justify this by showing that
eq. (2.26) is indeed invariant under an arbitrary reparametrization

τ −→ f(τ) and τ ′ −→ f(τ ′). (2.32)

It suffices to show that under such a transformation the Green’s function transforms
as

G(τ, τ ′) −→ G(f(τ), f(τ ′)) =

∣∣∣∣∣df(τ)

dτ

∣∣∣∣∣
−∆∣∣∣∣∣df(τ ′)

dτ ′

∣∣∣∣∣
−∆

G(τ, τ ′). (2.33)

We start by letting G(τ, τ ′) be a solution to eq. (2.26). Then we perform the
transformation prescribed in eq. (2.32):

− δ(f(τ)− f(τ ′)) = J2

∫ ∣∣∣∣∣df(τ̃)

dτ̃

∣∣∣∣∣dτ̃G(f(τ), f(τ̃))G(f(τ̃), f(τ ′))q−1. (2.34)

By the identity
δ(f(x)− f(x0)) =

1∣∣∣df(x0)
dx

∣∣∣δ(x− x0) (2.35)

we get

− δ(τ − τ ′) = J2

∫
dτ̃

(∣∣∣∣∣df(τ)

dτ

∣∣∣∣∣
1
q
∣∣∣∣∣df(τ̃)

dτ̃

∣∣∣∣∣
1
q

G(f(τ), f(τ̃))

)
(∣∣∣∣∣df(τ̃)

dτ̃

∣∣∣∣∣
1
q
∣∣∣∣∣df(τ ′)

dτ ′

∣∣∣∣∣
1
q

G(f(τ̃), f(τ ′))q−1

)q−1

, (2.36)

from which we see that eq. (2.26) is invariant provided the Green’s functions trans-
forms as in eq. (2.33).

Since we are in 0 + 1 dimensions, this is the same as invariance under diffeo-
morphisms because Conf1(R) ' Diff1(R).

2.2.5 Thermal Green’s function

The solution eq. (2.31) holds at zero temperature. Nonetheless, we can use the
reparametrization invariance proved in the previous section to define a mapping
from the imaginary strip to the thermal circle. This is achieved by the choice

τ −→ f(τ) = tan

(
πτ

β

)
and τ ′ −→ f(τ ′) = tan

(
πτ ′

β

)
. (2.37)
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The computation is straightforward. Letting T = πτ/β (likewise for T ′),

Gβ(τ, τ ′)

=

∣∣∣∣∣df(τ)

dτ

∣∣∣∣∣
∆∣∣∣∣∣df(τ ′)

dτ ′

∣∣∣∣∣
∆

Gc(f(τ), f(τ ′))

=

∣∣∣∣∣πβ 1

cos(T )2

∣∣∣∣∣
∆∣∣∣∣∣πβ 1

cos(T ′)2

∣∣∣∣∣
∆( 1

2 −∆

J2π
tan(π∆)

)∆
sgn

(
tan(T )− tan(T ′)

)∣∣∣ tan(T )− tan(T ′)
∣∣∣2∆

=

(
π

β

√
1
2 −∆

J2π
tan(π∆)

)2∆
sgn(τ − τ ′)∣∣∣ sin(πτβ − πτ ′

β

)∣∣∣2∆
.

(2.38)

where ∆ = 1/q, as before. Thus we have the nonzero temperature or thermal
Green’s function in SYK. This is an important quantity to know if one wishes to
better understand the connection with the thermodynamics of extremal black holes.

The explicit result eq. (2.38) reintroduces an energy scale into themodel, thereby
spontaneously breaking the conformal symmetry. This means that the two-point
function is not invariant under the whole conformal group Conf1(R) but only under
the smaller group SL2(R). It is this spontaneous symmetry breaking that gives rise
to low-temperature Nambu-Goldstone modes described by an effective Schwarzian
action.

2.2.6 q = 2 and q →∞

In this brief interlude we present the special cases when q = 2 and q →∞, for
which the two-point functions are analytically available. We begin with the former.
For q = 2 the SYK model reduces to a free random-mass matrix model. The self
energy becomes proportional to the Green’s function itself:

Σ(τ, τ ′) = J2G(τ, τ ′). (2.39)

The Schwinger-Dyson equation turns into a quadratic equation in the Green’s func-
tion, which is solved by

G(iωn) =
iωn
2J2

(
− 1 +

√
1 +

4J2

ω2
n

)
. (2.40)

In terms of a diagrammatic expansion, this corresponds to the sum of all diagrams
with non-crossing disorder-averaged dashed lines (see fig. 2.7) given by

G(iω) = G0

∞∑
n=0

Cn

[
JG0(iωn)

]2n
, (2.41)
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Σ =

(a)

(b)

Figure 2.7: “Rainbow” diagrams in the q = 2 SYK model. Solid lines denote
fermion, dashed lines denote disorder averaging. fig. 2.7a represents the 1PI self-
energy in eq. (2.39) graphically while fig. 2.7b shows an order J6 correction to the
two-point function.

where Cn is the nth Catalan number2,

Cn =
1

n+ 1

(
2n

n

)
. (2.42)

As an aside, we remark that although the sum above over rainbow diagrams holds
for N � 1, the random mass matrix model is also solvable for finite N . The
limiting behavior in the latter coincides with eq. (2.40) [18].

The two-point function also simplifies drastically in the limit of q → ∞.
Expanding the IR Green’s function eq. (2.31) to order 1/q we find

G(τ, 0) =
1

2
sgn(τ)

(
1 +

1

q
g(τ) + . . .

)
, (2.43)

where g(τ) is some function (independent of q) soon to be determined. Note
that time-translation invariance was used to set τ ′ = 0. Equally, we expand the
self-energy eq. (2.24):

Σ(τ, 0) = J2
(1

2

)q−1
sgn(τ)eg(τ)(1 + . . .). (2.44)

We now write eq. (2.43) in Matsubara frequency space as
1

G(iωn)
=

1
1
−iωn + 1

2qh(iωn)

=
−iωF

n

1− iωF
n

2q h(iωF
n)

= −iωn +
(iωF

n)2

2q
h(iωF

n),

(2.45)

2Catalan numbers are prominent in combinatorial mathematics. One interpretation casts Cn as
the number of ways n pairs of parentheses can be correctly ordered e.g. C3 = 5: ()()(), ((())),
(()()), ()(()), and (())(). In this sense, the disorder lines in fig. 2.7b are the parentheses.
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where h(iωn) denotes the Matsubara expansion of the product sgn(τ)g(τ). By the
SD equation this must be equal to −iωn − Σ(τ). Comparing this with eq. (2.45)
and using eq. (2.44) in frequency space we see that

∂2
τ

(
sgn(τ)g(τ)

)
= qJ2

(1

2

)q
sgn(τ)eg(τ), (2.46)

where the basic property of Fourier transformsF{d2f(τ)/dτ2} = (−iωn)2F{f(τ)}
was used. The solution to this differential equation determines the function g(τ).
To make this equation well-defined in the limit of large q, we can scale J such
that the combination qJ2

(
1
2

)q
is kept fixed. We impose the boundary conditions

g(0) = g(β) = 0 to ensure that at small time separations we recover free fermions.
Then, the boundary value problem is solved by

eg(τ) = 2 ln

(
cos
(
πν
2

)
cos
(
πν
2 −

|τ |
β

)) (2.47)

where ν is determined from πν/ cos
(
πν
2

)
=
√
q/2q−1Jβ.

2.3 Higher-point correlators

The unique diagrammatic stucture of the SYK model is not only limited to the
two-point function. To leading order in 1/N , the four-point correlation functions
can be entirely described as a sum of so-called “ladder” diagrams. In this section,
we sketch an outline of the treatment of four-point functions in the SYK model for
q = 4 (based on [30]).

First we state that (2n+ 1)-point functions do not exist in the SYKmodel. This
is because it is impossible to create a connected Feynman graph having 2n + 1
external lines with only even vertices. So the SYK model only admits 2n-point
correlation functions. Notice that 2n-point function can actually be thought of as
the result of successively cutting internal propagators in melon diagrams.

Just as incoming and outgoing fields must have matching indices by disorder
averaging, so too must four-point functions come with paired indices. The most
general non-vanishing four-point function one can write down is

〈T[ψi(1)ψi(2)ψj(3)ψj(4)]〉 (2.48)

where we use the shorthand 1 = τ1, 2 = τ2, etc. It is then commonplace to average
over these indices by

1

N2

N∑
i,j=1

〈T[ψi(1)ψi(2)ψj(3)ψj(4)]〉 = G(1, 2)G(3, 4)+
1

N
F(1, 2, 3, 4)+O

( 1

N2

)
.

(2.49)
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1 3

2 4

+ + + . . .

Figure 2.8: The first few ladder diagrams contributing the the four-point function
at order 1/N . Every line denotes the full propagator, dressed by melons as we have
previously seen. The sum should also include minus the diagrams with 3↔ 4.

On the right-hand side is a power series in 1/N where the first term are two
disconnected propagators (essentially the free four-point function) while contained
inside F(1, 2, 3, 4) are all non-trivial leading order corrections. It can be shown
that F(1, 2, 3, 4) consist of a sum of ladder diagrams with arbitrary numbers of
rungs (see fig. 2.8); all other kinds of diagrams are of sub-leading order. Denoting
a ladder with n rungs as Fn(1, 2, 3, 4), the sum over all ladders is obviously

F(1, 2, 3, 4) =

∞∑
n=0

Fn(1, 2, 3, 4). (2.50)

The usual strategy to perform this sum is to introduce the kernel

K(1, 2, 3, 4) = −J2(q − 1)G(1, 3)G(2, 4)G(3, 4)q−2, (2.51)

whose action is to generate rungs on ladders (as the self-energy adds melons to
propagator) by

Fn+1(1, 2, 3, 4) =

∫
dτdτ ′K(1, 2, τ, τ ′)Fn(τ, τ ′, 3, 4), (2.52)

as shown in fig. 2.9. Using this, eq. (2.50) can be written as

F =
∞∑
n=0

KnF0 =
1

1−K
F0. (2.53)

The above involved using the geometric series on the kernel operator. However as
defined in eq. (2.51), the kernel is not symmetric under the exchange (1, 2)↔ (3, 4).
One can remedy this by conjugating it between powers of Green’s functions:

K̃(1, 2, 3, 4) = |G(1, 2)|
q−2
2 K(1, 2, 3, 4)|G(3, 4)|

2−q
2 . (2.54)

· =

Figure 2.9: The kernel generates a rung on a ladder by integrating over the rung-
endpoints.
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Because the kernel is now symmetric, we are sure that there is a complete eigen-
basis associated to K̃, which in turn facilitates the inversion. The next steps of
the calculation are more involved and in general the full derivation of four-point
correlation functions is rather lengthy. We will not delve into it here; instead we
comment on other higher-point functions.

All higher 2n-point correlation functions in the SYK model are made from
gluing together lower 2n-point functions. For example, the six-point function
is composed of three four-point functions. In eight-point functions the six-point
function plays the role of the interaction vertex such that the “tree level” diagram
is essentially the eight-point function. In this sense all point correlation functions
of the model are known; this is why the SYK model is often said to be exactly
solvable [17, 30, 31].
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Chapter 3

SYK∗ model

In this chapter we introduce a recent variant of the SYK model, the SYK*
model, due to Marcus and Vandoren [25]. It is qualitatively similar to the original
model in that it is dominated by melonic diagrams, enjoys near conformal symme-
try in the IR, and exhibits maximal chaos. As we will see however there are also
some important differences between the two models: (i) the SYK∗ model predicts
two families of conformal solutions in the IR whereas a single explicit solution was
found in the original SYK, and (ii) SYK∗ displays a phase transition in the M

N � 1
regime for fixed J . The second item is a novelty of the SYK∗ model; it results from
introducing the tunable parameterM into the theory.

The SYK∗ model consists of a system of N Majorana fermions coupled toM
auxiliary bosons through all-to-all Gaussian-random q-fold Yukawa-type interac-
tion, described by the following Hamiltonian1

H =
1

2
φaφa − i

(q − 1)!

M∑
a=1

N∑
j1=1

· · ·
N∑

jq−1=1

Caj1...jq−1
φaψj1 · · ·ψjq−1 , (3.1)

where again the fermionic anti-commutation relations hold: {ψi, ψj} = δij and
the coupling is now anti-symmetric upon interchange of its lower indices ,i.e.,
Cai1...inim...iq−1

= −Cai1...imin...iq−1
for i1 ≤ n < m ≤ iq−1. The factors i is

related to safe-guarding the Hermiticity of the Hamiltonian and the 1
(q−1)! cancels

the number of equivalent permutations of the fermions. Note that although we
still speak of q-point interaction (between 1 boson and q − 1 fermions), we should
remember that q must be taken odd as opposed to SYK where q was taken even.
Following the convention set by Marcus and Vandoren, the fermionic (bosonic)
indices are denoted by i, j, etc. (a, b, etc.), and sum toN (M ) as shown in eq. (3.1).
We will refrain from writing these sums out from now on. The couplings Cai1...iq−1

are once again drawn randomly from a Gaussian distribution with the following

1Marcus and Vandoren studied the case q = 3. Here we will mostly stick with arbitrary q, though
for pedagogical reasons we sometimes revert back to q = 3.
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mean and variance:

〈Cai1...iq−1
〉 = 0,

〈Cai1...iq−1
Cbj1...jq−1

〉 =
(q − 1)!J

N q−3/2M1/2
δabδi1j1 · · · δiq−1jq−1 .

(3.2)

The discussion of the free theory is unchanged from the SYKmodel except that
we now have a free boson propagator. It is easy to see that

G0
φ(iωB

n) = −1 and G0
φ(τ, τ ′) = −δ(τ − τ ′), (3.3)

where ωB
n = (2n)π/β denote bosonic (even) Matsubara frequencies. The bosons

are seen to be non-dynamical in SYK∗. A Legendre transform yields the SYK∗
Lagrangian:

L =
1

2
ψiψ̇i −

1

2
φaφa +

i

(q − 1)!
Caj1...jq−1

φaψj1 · · ·ψjq−1 . (3.4)

The SYK∗ model’s diagrams are also dominated by melons. In fig. 3.1 are the
first-order corrections to the 1PI bosonic and fermionic self-energies. Using the
Feynman rules in this theory, one can easily show that fig. 3.1a is proportional to√

N
M and fig. 3.1b is proportional to

√
M
N . Thus for large N , M , and keeping M

N

fixed, these diagrams give nonzero contributions. In section 3.2, we will confirm
this by deriving the exact self-energies using the saddle point method.

3.1 Relation to other models

When the number of fermions and bosons are the same (N = M ), the SYK∗
model is related to the N = 1 supersymmetric SYK model for N, M � Jτ � 1
[19]. The conditionN = M is necessary to have supersymmetry since fermions are
bosons’ superpartners and vice versa. That is, they transform into each other under

(a) (b)

Figure 3.1: The only J2-order corrections to the bosonic and fermionic self energy
for the case of q = 3 with one wiggly boson line and two solid fermion line. The
dashed lines again denote which vertices are being disorder averaged with which.
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supersymmetry transformations. Under this condition the q = 3 supersymmetric
SYK model has Lagrangian

L =
N∑
i=1

(
1

2
ψiψ̇i −

1

2
φaφa +

∑
1≤i,j≤N

Caijφ
aψiψj

)
, (3.5)

where the sums over indices run from 1 to N (= M ). A thorough introduction of
the SUSY SYK model can be found in the authoritative study by Fu et al [19, 25].

The SYK∗ model can also simply be seen as a generalization of the SYK
model. This is done by integrating out the bosonic degrees of freedom in SYK∗
as follows. By the Euler-Lagrange equation the bosons’ EOM are given by φa =

i
(q−1)!C

a
j1...jq−1

ψj1 · · ·ψjq−1 . Inserting this into the SYK∗ Hamiltonian eq. (3.1)
one obtains

H =
1

2

1

(q − 1)!2
Cai1...iq−1

Caj1...jq−1
ψi1 · · ·ψiq−1ψj1 · · ·ψjq−1 . (3.6)

This is effectively the same as the SYK Hamiltonian eq. (2.1) but with a (2q − 2)-
point instead of a q-point interaction and with altered disorder-average statistics. In
fact, SYK∗ and SYK are related by a Hubbard-Stratonovich transformation on the
couplings given (for q = 3) by [25]

Jijkl = −1

8

M∑
a=1

Ca[ijC
a
kl], (3.7)

where [·] represents all possible anti-symmetric permutations. We have explicitly
written the sum over index a to avoid confusion. This implies that the couplings
Jijkl are no longer independent Gaussian random variables but are related by the
above transformation.

Although the SYK∗ model is able to nearly recreate the SYK model, it is in-
trinsically different from SYK as the following example illustrates. Consider the
diagrams in fig. 3.2a (q = 4, SYK) and fig. 3.2b (q = 3, SYK∗). These two

?

(a) (b)

Figure 3.2: A J3-order correction to the fermionic propagator in SYK and SYK∗.
Dashed lines in fig. 3.2a cannot connect vertices pairwise so the result vanishes.
By contrast, the “equivalent” SYK∗ diagram in fig. 3.2b is non-vanishing.
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diagrams are considered “equivalent” because after integrating away the bosons the
latter resembles the former. It is clear that the first is 0 due to disorder averaging
over an odd number of vertices. Meanwhile, the second is equal to 2J3

√
N
M , which

for large N and M but fixed N
M is a nonzero contribution to the 1PI fermionic

self-energy. This goes to show that the SYK∗ model consists of a broader class of
diagrams than the SYK model, and so are inherently distinct.

3.2 Effective action

In chapter 2 we deduced the SYK self-energy using that all non-vanishing
diagrams at large N were melons. In this section we will determine the fermionic
and bosonic self-energies of SYK∗ via an alternative, more formal approach: the
saddle point method. We reiterate that the following derivation heavily relies on
the assumption of replica diagonal matrices discussed in subsection 2.2.2.

3.2.1 Integral over the disorder

In this subsection we denote the indices i1 . . . iq−1 as one collective index I in
the interest of legibility. The first step is to integrate the partition function over the
random disorder. That is, we must calculate

〈Z〉D =

∫
D[ψ] D[φ] D[CaI ]P (CaI )e−Sψ−Sφ−S1 , (3.8)

Sψ =

∫
dτ
(1

2
ψiψ̇i

)
, Sφ =

∫
dτ
(
− 1

2
φaφa

)
, (3.9)

S1 =

∫
dτ

i

(q − 1)!
CaI φ

aψI , (3.10)

where ψI is short for ψi1 · · ·ψiq−1 . The normalized Gaussian probability density
function is of course

P (CaI ) =
1√

2πσ2
e−

(CaI )
2

2σ2 with σ2 =
(q − 1)!J

N q−3/2M1/2
. (3.11)

We can then write eq. (3.8) as

〈Z〉D =

∫
D[ψ] D[φ] D[CaI ]

1√
2πσ2

exp

[
− 1

2σ2
(CaI )2 +Ba

IC
a
I − Sψ − Sφ

]
(3.12)

where we have defined

Ba
I =

−i
(q − 1)!

∫
dτ
(
φaψI

)
, (3.13)
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Since eq. (3.12) is Gaussian inCaI we can readily integrate over the disorder average
through a generalized version of the famous identity∫

R
dxe−ax

2+bx+c =

√
π

a
e
b2

4a
+c. (3.14)

This yields

〈Z〉D =

∫
D[ψ] D[φ] exp

[
σ2

2
Ba
IB

a
I − Sψ − Sφ

]
. (3.15)

Using that

Ba
IB

a
I ≡

M∑
a=1

N∑
I=1

Ba
IB

a
I = (q − 1)!

M∑
a=1

∑
1≤i1<...<iq−1≤N

Ba
IB

a
I ,

and anti-commuting the fermions, we can write out eq. (3.15) as

〈Z〉D =

∫
D[ψ] D[φ] exp

[
−
∫

dτ
(1

2
ψiψ̇i −

1

2
φaφa

)]
exp

[
J/2

N q−3/2M1/2∫
dτ1 dτ2

(
φa(τ1)φa(τ2)ψi1(τ1)ψi1(τ2) · · ·ψiq−1(τ1)ψiq−1(τ2)

)]
. (3.16)

This is the effective action resulting from integrating out the disorder.

3.2.2 Bilocal fields

The effective action eq. (3.16) can be rewritten in terms of bilocal fields. This
is done by introducing the fermionic and bosonic ‘Green’s functions’,

Gψ(τ, τ ′) =
1

N
ψi(τ)ψi(τ

′),

Gφ(τ, τ ′) =
1

M
φa(τ)φa(τ ′),

(3.17)

and ‘self-energy’ bilocals (Lagrange multipliers setting eq. (3.17)),

1 =

∫
D[Gψ] D[Σψ]e

−N
2

Σψ(τ,τ ′)

[
Gψ(τ,τ ′)− 1

N
ψi(τ)ψi(τ

′)

]
, (3.18)

1 =

∫
D[Gφ] D[Σφ]e

−M
2

Σφ(τ,τ ′)

[
Gφ(τ,τ ′)− 1

M
φa(τ)φa(τ ′)

]
. (3.19)

Ultimately in the largeN andM limit, thesewill coincide exactly with the fermionic
and bosonic Green’s functions and self-energies. Inserting these into the path
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integral in eq. (3.16) gives

〈Z〉D =

∫
D[ψ] D[φ] D[Gψ] · · ·D[Σφ] exp

[
−
∫

dτ
(1

2
ψiψ̇i −

1

2
φaφa

)
+

J/2

N q−3/2M1/2

∫
dτ1 dτ2

(
φa(τ1)φa(τ2)ψi1(τ1)ψi1(τ2) · · ·ψiq−1(τ1)ψiq−1(τ2)

)
+

∫
dτ1 dτ2

(
− N

2
Σψ(τ1, τ2)Gψ(τ1, τ2) +

1

2
Σψ(τ1, τ2)ψi(τ1)ψi(τ2)

− M

2
Σφ(τ1, τ2)Gψ(τ1, τ2) +

1

2
Σφ(τ1, τ2)φa(τ1)φa(τ2)

)]
. (3.20)

Using eq. (3.17), the above can be written as

〈Z〉D =

∫
D[ψ] D[φ] D[Gψ] · · ·D[Σφ]

exp

{
−
∫

dτ1 dτ2

[
1

2
ψi(τ1)

(
δ(τ1 − τ2)∂τ − Σψ(τ1, τ2)

)
ψi(τ2)

]

−
∫

dτ1 dτ2

[
1

2
φa(τ1)

(
− δ(τ1 − τ2)− Σφ(τ1, τ2)

)
φa(τ2)

]

+

∫
dτ1 dτ2

[
J

2

√
NMGφ(τ1, τ2)Gψ(τ1, τ2)q−1 − N

2
Σψ(τ1, τ2)Gψ(τ1, τ2)

− M

2
Σφ(τ1, τ2)Gφ(τ1, τ2)

]}
. (3.21)

This leaves us with path integrals over local Gaussian fields ψ(τ) and φ(τ), and
over bilocal fields Gψ(τ, τ ′), Σψ(τ, τ ′), Gφ(τ, τ ′), and Σφ(τ, τ ′).

3.2.3 Integral over local fields

Equation (3.21) can be further simplified by integrating away the local Gaussian
functions. Doing this yields,

〈Z〉D =

∫
D[Gψ] · · ·D[Σφ]

√
det[δ(τ1 − τ2)∂τ − Σψ(τ1, τ2)]N

det[−δ(τ1 − τ2)− Σφ(τ1, τ2)]M

exp

{
N

∫
dτ1 dτ2

[
J

2

√
M

N
Gφ(τ1, τ2)Gψ(τ1, τ2)q−1 − 1

2
Σψ(τ1, τ2)Gψ(τ1, τ2)

− M

2N
Σφ(τ1, τ2)Gφ(τ1, τ2)

]}
. (3.22)
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The determinants are the result of evaluating Gaussian integrals over complex
and Grassmannian fields. Using that e

1
2
Tr[log(A)] = Pf(A), the Pfaffian of A, and

det(. . .)
1
2 = e

1
2

log[det(...)] to rewrite eq. (3.22) as

〈Z〉D =

∫
D[Gψ] · · ·D[Σφ]

exp

{
N

∫
dτ1 dτ2

[
J

2

√
M

N
Gφ(τ1, τ2)Gψ(τ1, τ2)q−1

− 1

2
Σψ(τ1, τ2)Gψ(τ1, τ2)− M

2N
Σφ(τ1, τ2)Gφ(τ1, τ2)

]}

exp

{
N log

[
Pf
(
δ(τ1 − τ2)∂τ − Σψ(τ1, τ2)

)]

− M

2
log

[
det
(
− δ(tan1− tan2)− Σφ(τ1, τ2)

)]}
. (3.23)

Thus we have found an effective action of SYK∗ solely in terms of the bilocal fields:

〈Z〉D =

∫
D[Gψ] · · ·D[Σφ]e−NSEff (3.24)

where

SEff = − log

[
Pf
(
δ(τ1 − τ2)∂τ − Σψ(τ1, τ2)

)]

+
M

2N
log

[
det
(
− δ(τ1 − τ2)− Σφ(τ1, τ2)

)]

−
∫

dτ1 dτ2

[
J

2

√
M

N
Gφ(τ1, τ2)Gψ(τ1, τ2)q−1

− 1

2
Σψ(τ1, τ2)Gψ(τ1, τ2)− M

2N
Σφ(τ1, τ2)Gφ(τ1, τ2)

]
. (3.25)

It is apparent that forN � 1, eq. (3.25) reduces to a classical action. By varying the
above effective action with respect to Gψ and Gφ yields the fermionic and bosonic
saddle point equations of SYK∗:

Σψ(τ, τ ′) = (q − 1)J

√
M

N
Gφ(τ, τ ′)Gψ(τ, τ ′)q−2, (3.26)

Σφ(τ, τ ′) = J

√
N

M
Gφ(τ, τ ′)q−1. (3.27)
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= + Σψ

Σψ =

(a)

= + Σφ

Σφ =

(b)

Figure 3.3: The Schwinger-Dyson recursion relation in SYK∗ for (a) fermions and
(b) bosons. The thick straight (wiggly) lines denotes the dressed fermion (boson)
propagators; the thin straight (wiggly) lines corresponds to the bare fermion (boson)
propagator. The dashed line, as before, is the disorder averaging between two
vertices.

These correctly reduce to the saddles initially found by Marcus and Vandoren for
q = 3. Figure 3.3 depict the graphical representation of the resultant SD recursion
relation. In the following section, we derive the SYK∗ conformal solutions in the
IR limit based on these saddles.

3.2.4 Two branches

An important difference between the original SYK and SYK∗ is that the latter
hosts two branches of conformal solutions, a rational and an irrational branch. We
now review this result initially found by Marcus and Vandoren [25]. The reasoning
will closely follow that of the original authors; we will work with q = 3 for sim-
plicity.

Varying the effective action eq. (3.25) with respect to Σψ and Σφ provides the
SD equations (here given in frequency space):

G−1
ψ = −iωn − Σψ and G−1

φ = −1− Σφ. (3.28)

As with the SYK model, these equations are solvable for the Green’s functions
in the strong coupling limit, N,M � βJ � 1. We see that the non-interacting
Green’s functions become negligible compared to the self-energies. We are there-
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fore entitled to write (in Euclidean time)

−δ(τ − τ ′) =

∫
dτ̃Gψ(τ, τ̃)Σψ(τ̃ , τ ′) (3.29)

= 2J

√
M

N

∫
dτ̃Gψ(τ, τ̃)Gφ(τ̃ , τ ′)Gψ(τ̃ , τ ′) (3.30)

and

−δ(τ − τ ′) =

∫
dτ̃Gφ(τ, τ̃)Σφ(τ̃ , τ ′) (3.31)

= J

√
N

M

∫
dτ̃Gφ(τ, τ̃)Gψ(τ̃ , τ ′)2. (3.32)

These integral equations are conformally invariant at T = 0 so that we can employ
the fermionic and bosonic conformal ansatz,

Gψ(τ, 0) = A
sgn(τ)

|τ |2∆ψ
and Gφ(τ, 0) = B

1

|τ |2∆φ
, (3.33)

where the sign function is absent in Gφ(τ, 0) to make it even. Time-translation
invariance was again used here. We can show that the SYK∗ conformal forms obey
the correct symmetry properties of the fermionic and bosonic Green’s functions in
frequency space. To see this, we first Fourier transform eq. (3.33). This gives

Gψ(iωn) = −2iA cos(π∆ψ)Γ(1− 2∆ψ) sgn(ωn)|ωn|2∆ψ−1 (3.34)

and
Gφ(iωn) = 2B sin(π∆φ)Γ(1− 2∆φ)|ωn|2∆φ−1 (3.35)

We can then rewrite eq. (3.34) as

Gψ(iωn) = AΓ(1− 2∆ψ)(eiπ∆ψ + e−iπ∆ψ)|ωn|2∆ψ(iωn)−1

= AΓ(1− 2∆ψ)[(e
iπ
2 |ωn|)2∆ψ + (e−i

π
2 |ωn|)2∆ψ ](iωn)−1

= AΓ(1− 2∆ψ)[(iωn)2∆ψ + (−iωn)2∆ψ ](iωn)−1,

(3.36)

wherewe consideredωn > 0 andωn < 0 separately to get the last line. It is clear that
the fermionic Green’s function is odd in frequency, i.e., Gψ(−iωn) = −Gψ(iωn).
Equation (3.35) can be rewritten as

Gφ(iωn) = BΓ(1− 2∆φ)(eiπ∆φ − e−iπ∆φ)|ωn|2∆φ(i|ωn|)−1

= BΓ(1− 2∆φ)[(e
iπ
2 |ωn|)2∆φ − (e−i

π
2 |ωn|)2∆φ ](i|ωn|)−1

= BΓ(1− 2∆φ)[(iωn)2∆φ − (−iωn)2∆φ ](iωn)−1,

(3.37)

where again the options ωn > 0 and ωn < 0 were considered separately in the last
line. It is plain to see that the bosonic Green’s function is even in frequency, i.e.,
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Gφ(−iωn) = Gφ(iωn).

Inserting eq. (3.34) and eq. (3.35) into the frequency space versions of eq. (3.29)
and eq. (3.31) respectively and using properties of the Γ-function as we did previ-
ously, we obtain the following set of equations

1 = A2B

√
M

N

4πJ

1− 2∆ψ

cos(π∆ψ)

sin(π∆ψ)
|ω|2(2∆ψ+∆φ)−2

1 = A2B

√
N

M

2πJ

1− 4∆ψ
tan(2π∆ψ)|ω|2(2∆ψ+∆φ)−2.

(3.38)

By power counting the frequency in both sides of the equation, we get a constraint
on the conformal dimensions:

2∆ψ + ∆φ = 1. (3.39)

Another constraint is found if we divide the second equation in eq. (3.38) by the
first:

N

M
tan(π∆ψ) tan(2π∆ψ) =

2(1− 4∆ψ)

1− 2∆ψ
. (3.40)

By setting M
N = 1, we can plot both sides of the above constraint with the hope

of finding values of ∆ψ at which these two functions intersect (see fig. 3.4). There
are two such points of intersection. Numerically, they are found to be ∆ψ = 1

6
and ∆ψ ≈ 0.350585, so there are two values of ∆ψ that satisfy the constraint
eq. (3.40). Therefore two conformal solutions arise when M = N . Using the

0 0.1 0.2 0.3 0.4

−10

0

10

∆ψ

tan(2π∆ψ) tan(π∆ψ)
2(1−∆ψ)
1−2∆ψ

Figure 3.4: A plot showing both sides of the transcendental equation, eq. (3.40).
There are two clear intersection points, at ∆ψ = 1

6 and ∆ψ ≈ 0.350585.
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Figure 3.5: The conformal dimensions as a function of the ratio M
N . The figure is

taken from section 3.1.2 of [25].

constraint eq. (3.39), we identify the first solution:

∆ψ =
1

6
, ∆φ =

2

3
, A2B =

1

6πJ
√

3
,. (3.41)

This was referred to as the “rational” solution by the original authors. The other
solution, called the “irrational” solution, is approximately given by

∆ψ ≈ 0.350585, ∆φ ≈ 0.29881, A2B ≈ 0.589161

4πJ
. (3.42)

One issue with the SYK∗ conformal solutions is that there is as of yet no way of
determining the constants A and B independently: only the combination A2B is
known. By letting the ratio M

N vary, Marcus and Vandoren numerically found the
conformal dimensions as a function of this parameter, shown in fig. 3.5. They
showed that two branches or families of solutions arose for each conformal dimen-
sion, characterized by their “rationality” atM = N . By sending M

N � 1, it is seen
(both from the figure and from eq. (3.40)) that the rational and irrational branches
tend to the same solution, namely

∆ψ =
1

4
, ∆φ =

1

2
, A2B =

1

8πJ
√

M
N

. (3.43)

This is a significant limiting behavior since ∆ψ = 1/4 corresponds exactly to the
IR conformal dimension in SYK.

3.2.5 Spectral functions

Given eq. (3.36) and eq. (3.37), it is not difficult to plot the fermionic and
bosonic spectral functions for different conformal dimensions. These are simply
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Aψ(ω) Aϕ(ω)

(a)

Aψ(ω) Aϕ(ω)

(b)
Aψ(ω) Aϕ(ω)

(c)

Aψ(ω) Aϕ(ω)

(d)
Aψ(ω) Aϕ(ω)

(e)

Aψ(ω) Aϕ(ω)

(f)

Figure 3.6: Fermionic (blue) and bosonic (orange) spectral functions for different
conformal dimensions ∆ψ and ∆φ. Figures (a) through (f) have fermionic con-
formal dimension ∆ψ ranging form (approximately) 0 to 1/2 (see table 3.1). The
bosonic conformal dimension follows from eq. (3.39). To produce the above plots,
we needed to set values for the constants A and B. For simplicity we have set
A = B = 1 though in general this may not be the case.

given by Aψ, φ(ω) ≡ −2Im[GR
ψ, φ(ω)] where GR

ψ, φ(ω) = Gψ, φ(ω + iε) denotes
the retarded fermionic/bosonic Green’s function. The spectral functions for various
conformal dimensions are shown in fig. 3.6 (see table 3.1 for the association). In a
non-interacting theory the spectral function is a δ-function, while in an interacting
theory the nonzero imaginary part of the self-energy broadens the spectral func-
tion into a Gaussian bump. Here, however, we see that the fermionic and bosonic
spectral weights are spread across all frequencies. Since the width of the spectra
correspond to the inverse quasi-particle lifetime, the infinite width spectra shown
have extremely short-lived quasi-particles. This supports the claim that SYK and
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Subfigure Conformal dimension
(a) ∆ψ ≈ 0 ∆φ ≈ 1
(b) ∆ψ = 1/6 ∆φ = 2/3
(c) ∆ψ = 1/4 ∆φ = 1/2
(d) ∆ψ = 1/3 ∆φ = 1/3
(e) ∆ψ ≈ 0.351 ∆φ ≈ 0.299
(f) ∆ψ ≈ 1/2 ∆φ ≈ 0

Table 3.1: Conformal dimensions associated to the subfigures in fig. 3.6.

SYK-like models are “unparticle” theories; they do not exhibit quasi-particle exci-
tations.2

The above families of conformal solution hold true in the limit of strong cou-
pling, N � βJ � 1, in which the conformal ansatz played a crucial role. One
can, however, pose a similar but different question: what do we find if we consider
the M

N � 1 and M
N � 1 regimes at fixed coupling constant J? While we cannot

use the conformal form of the Green’s functions, the saddle point equations found
in section 3.2 simplify in the large and small MN regimes. We will explore this pa-
rameter space in chapter 4. Before that though, we shortly comment on the strange
affinity between SYK∗ and a theory of holographic fermions.

3.3 SYK∗ and holographic fermions

In this section, we briefly draw a passing resemblance between the SYK∗ model
and a model of semi-holographic fermions (SHF) [32]. At first sight, there is no
evidence to suggest a connection between these two models. The SHF theory is
a theory of Dirac fermions living in 3 + 1 dimensions coupled to a CFT. They
originate as chiral Dirac fermions in 4 + 1 dimensional AdS spacetime with a
planar Schwarzchild black hole. After integrating out the CFT (inter alias), one
finds a retarded Green’s function for Dirac fermions with self-energy representing
the interaction with the strongly coupled CFT:

GR
SHF(ω) ∝ [−(ω + iε)2]

1
2
−M (ω + iε)−1, (3.44)

where −1
2 < M < 1

2 is the dimensionless bulk Dirac mass. In the boundary field
theory, this becomes a model parameter (the conformal dimension). Meanwhile
the (fermionic) retarded Green’s function in SYK∗ was found above to be:

GR
SYK∗(ω) ∝ [(ω + iε)2∆ + (−ω − iε)2∆](ω + iε)−1. (3.45)

2In the exceptional case ∆ψ = 0, the fermions are free: the fermionic spectral function becomes
a δ-function. Similarly, ∆φ = 0 means the bosons are non-interacting so their spectral functions also
become a well-localized peaks.
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ASYK*(ω) ASHF(ω)

(a)

ASYK*(ω) ASHF(ω)

(b)

Figure 3.7: Comparison of fermionic spectra in SYK∗ and SHF. The solid purple
line denotes the fermionic spectral function in SYK∗, ASYK∗(ω); the dashed green
line is that of SHF, ASHF(ω). In (b), ASHF(ω) was rescaled by eq. (3.49).

In order to compare eq. (3.44) and eq. (3.45), we must identify their conformal
dimensions. This is done by seeing how the respective Green’s functions transform
under the rescaling ω → λω. We get that

GSYK∗(ω) −→ λ2∆ψ−1GSYK∗(ω) (3.46)

while
GSHF(ω) −→ λ−2MGSHF(ω). (3.47)

By matching the scaling behavior, we obtain the relation 2∆ψ − 1 = −2M , or,

∆ψ +M =
1

2
, (3.48)

implying that 0 < ∆ψ < 1. Let us select ∆ψ = 1
8 andM = 3

8 , for instance. The
two models’ spectral functions are plotted in fig. 3.7, from which we see a striking
resemblance: the fermionic spectra of SYK∗ and of SHF (fig. 3.7a) are equal to
each other (fig. 3.7b) up to a factor. By writing±(ω+iε) in eq. (3.44) and eq. (3.45)
in polar form, the factor can be found exactly:

GR
SYK∗

GR
SHF

=
sin
(
π
4

)
sin
(
π
8

) . (3.49)

This project did not succeed in elucidating the nature of this unexpected connection.
In retrospect the perfect coincidence of the SYK∗ and SHF spectra is a direct result
of fixing the conformal dimensions ∆ψ and M through eq. (3.48). However at a
more fundamental level, it is not understood how a model of 0 + 1 dimensional
highly entangledMajorana fermions and a 3+1 dimensional theory of Dirac spinors
in curved spacetime can describe the same underlying physics.
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Chapter 4

M
N Parameter space

In this chapter we discuss the possible self-consistent solutions to the Green’s
functions and self energies that arise in the regimes M

N � 1 and M
N � 1 of the

SYK∗ model. Here the coupling strength J is kept fixed at finite value, unlike in
the SYK model where the J → ∞ limit was needed to proceed analytically. In
studying these regimes we will encounter an intriguing result: a critical boundary
in the phase space of the T − M

N plane arises. As the fermionic and bosonic self
energies previously found in section 3.2 are the starting point of this analysis, we
remind them here:

Σψ(τ, τ ′) = (q − 1)J

√
M

N
Gφ(τ, τ ′)Gψ(τ, τ ′)q−2

Σφ(τ, τ ′) = J

√
N

M
Gψ(τ, τ ′)q−1.

(4.1)

In what follows, we will use superscripts B and F to differentiate between even and
odd Matsubara frequencies.

4.1 The M
N � 1 regime

Let us begin by considering the M
N � 1 regime (see fig. 4.1). In it, the

bosonic self energy in eq. (4.1) becomes negligible while the fermionic self-energy
dominates. As a result, the dressed bosonic propagator may be approximated by

Gφ =
1

(G0
φ)−1 − Σφ

≈ G0
φ. (4.2)

Based on this observation, we consider an effective theory in which bosons are
free. Under this assumption we can self-consistently solve for the fermionic Green’s
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M

N

Figure 4.1: A compactified depiction of the parameter space of SYK* forM bosons
andN fermions. The dashed line denotes the largeM andN limits. In this section
we probe the M

N � 1 regime indicated by the red dot.

function. To do so, we begin by expanding eq. (4.1) in Matsubara frequencies as

Σψ(iΩF
n) = (q − 1)J

√
M

N

1

βq−2

∑
n′∈Z

∑
n′′2∈Z

· · ·
∑

n′′q−2∈Z

Gφ(iωB
n′)

Gψ(iΩF
n − iωF

n′′2
− . . .− iωF

n′′q−2
− iωB

n′)Gψ(iωF
n′′2

) · · ·Gψ(iωF
n′′q−2

). (4.3)

By our assumption, we have that Gφ = G0
φ = −1 so by substituting in the SD

equation for the fermionic Green’s functions we get

Σψ(iΩF
n) = −(q − 1)J

√
M

N

1

βq−2

∑
n′∈Z

∑
n′′2∈Z

· · ·
∑

n′′q−2∈Z

1

−iΩF
n + iωF

n′′2
+ . . .+ iωF

n′′q−2
+ iωB

n′ − Σψ(iΩF
n − iωF

n′′2
− . . .− iωF

n′′q−2
− iωB

n′)

1

−iωF
n′′2
− Σψ(iωF

n′′2
)
· · · 1

−iωF
n′′q−2
− Σψ(iωF

n′′q−2
)
. (4.4)

As it stands, the above equation is intractable since we do not a priori know the
explicit frequency dependence of Σψ. However one can show that

Σψ(iΩF
n − iωF

m′′2
− . . .− iωF

m′′q−2
− iωB

m′) = Σψ(iΩF
n) (4.5)

for any fermionic and bosonic Matsubara frequencies indexed by m′′2 , . . ., m′′q−2

and m′, respectively. We can easily demonstrate this by writing out the left-hand
side of eq. (4.5) using eq. (4.4):

Σψ(iΩF
n− iωF

m′′2
− . . .− iωF

m′′q−2
− iωB

m′) = −(q− 1)J

√
M

N

1

βq−2

∑
n′∈Z

∑
n′′2∈Z

· · ·

∑
n′′q−2∈Z

1

−iΩ− Σψ(iΩ)

1

−iωF
n′′2
− Σψ(iωF

n′′2
)
· · · 1

−iωF
n′′q−2
− Σψ(iωF

n′′q−2
)
, (4.6)
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where we have introduced the shorthand Ω = ΩF
n − ωF

m′′2
− . . .− ωF

m′′q−2
− ωB

m′ −
ωF
n′′2
− . . .−ωF

n′′q−2
−ωB

n′ . Since q must be odd, we have that ωF
m′′2

+ . . .+ωF
m′′q−2

is
a sum of an even number of fermionic Matsubara frequencies. This is necessarily
equal to a bosonic Matsubara frequency. Therefore we can write our shorthand as

Ω = ΩF
n − ωB

m − ωB
m′ − ωF

n′′2
− . . .− ωF

n′′q−2
− ωB

n′ .

Now we use that the sum of two bosonic Matsubara frequencies is another bosonic
Matsubara frequency to write

Ω = ΩF
n − ωF

n′′2
− . . .− ωF

n′′q−2
− ωB

s

where we have relabeled the sum over n′ to one over s. Our shorthand has been
reduced to precisely the terms appearing in eq. (4.4), thus it follows that eq. (4.5) is
true.1 So eq. (4.4) now reads

Σψ(iΩF
n) = −(q − 1)J

√
M

N

1

βq−2

∑
n′∈Z

∑
n′′2∈Z

· · ·
∑

n′′q−2∈Z

1

−iΩF
n + iωF

n′′2
+ . . .+ iωF

n′′q−2
+ iωB

n′ − Σψ(iΩF
n)

1

−iωF
n′′2
− Σψ(iωF

n′′2
)
· · · 1

−iωF
n′′q−2
− Σψ(iωF

n′′q−2
)
. (4.7)

Next, we can freely shift the frequencies ωF
n′′i

to ωB
n′′i

+ ΩF
n since they are summed

over. This will produce q − 3 additional occurences of +iΩF
n in the denominator

of the larger fraction, and one occurence of −iΩF
n for each of the smaller fractions

(with Σψ(iωF
n′′i

) going to Σψ(iωB
n′′i

+ΩF
n). By using a simpler analogue of eq. (4.5),

we rewrite eq. (4.7) as

Σψ(iΩF
n) = −(q − 1)J

√
M

N

1

βq−2

∑
n′∈Z

∑
n′′2∈Z

· · ·
∑

n′′q−2∈Z

1

−iΩF
n + iωB

n′′2
+ . . .+ iωB

n′′q−2
+ iωB

n′ − Σψ(iΩF
n)

1

−iωB
n′′2
− iΩF

n − Σψ(iΩF
n)
· · · 1

−iωB
n′′q−2
− iΩF

n − Σψ(iΩF
n)
. (4.8)

We are now in a position to evaluate the multiple Matsubara sums. Note that
although the sums can be performed in any order, it is more straightforward to sum

1This identity can also be viewed simply as the result of shifting the momentum of virtual
particles in loops.
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over n′ first since then the other sums will completely decouple. The main identity
used in evaluation a Matsubara sum is

1

β

∑
n∈Z

−1

iωB
n −A

=
1

eβA − 1
+

1

2
(4.9)

where Re(A) > 0 (consult appendix A for details). Repeated use of eq. (4.9) in
eq. (4.8) yields

Σψ(iΩF
n) = −(q − 1)J

√
M

N

(
1

eβΣψ(iΩF
n) + 1

− 1

2

)(
1

e−βΣψ(iΩF
n) + 1

− 1

2

)q−3

= −(q − 1)J

√
M

N

(
1

eβΣψ(iΩF
n) + 1

− 1

2

)q−2

,

(4.10)

where in the second line we used the fact that eq. (4.9) is odd under A→ −A and
that q − 3 is even for odd q. By rescaling as Σψ → J

√
M
N Σψ and introducing the

dimensionless variables λ = βJ
√

M
N , we can write eq. (4.10) as

Σψ(iΩF
n) = −(q − 1)

(
1

eλΣψ(iΩF
n) + 1

− 1

2

)q−2

. (4.11)

This form is practical since we can now plot both sides of eq. (4.11) as functions
of Σψ for different values of λ. This is shown in fig. 4.2. Solutions to eq. (4.11)
correspond to the intersections between the solid line and dashed line in the figure.
We see that there are essentially three such non-negative intersections. One of them
is the trivial solution Σψ = 0; then there are two others, the greater solution and
the smaller solution.

The non-trivial solutions to eq. (4.10) (greater one and smaller one in fig. 4.2)
can straightforwardly be found. For a fixed non-zero temperature and for large M

N
the greater one is

Σψ(iΩF
n) = (q − 1)J

√
M

N

(1

2

)q−2
sgn(ΩF

n). (4.12)

Note that this is coincident with the zero-temperature (β →∞) limit of eq. (4.11).
The smaller one can be found by expanding the right hand side of eq. (4.11) around
the point Σψ = 0. Doing this yields

Σψ(iΩF
n) = (q − 1)J

√
M

N

(β
4

)q−2
Σψ(iΩF

n)q−2. (4.13)
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Figure 4.2: The self consistency equation eq. (4.11) plotted for q = 5. The
dotted line depicts the curve y = Σψ while the solid line depicts the curve y =

−4[(eλΣψ + 1)−1 − 1/2]3 for different values of λ = βJ
√

M
N (λ = 20, 10, and 5

from left to right). The dashed line corresponds to the largeM/N limit.

This is solved by

Σψ(iΩF
n) =

[
(q − 1)J

√
M

N

(β
4

)q−2
]− 1

q−3

, (4.14)

which is sensible because in the limit of large M
N , the smaller solutions tends to

Σψ = 0.

At this point, let us pause the MN analysis to make a remark. An interesting ques-
tion to ask is whether we observe any qualitative differences in SYK∗ if we consider
the same model but with the sign-inverse coupling. This is a very relevant question
in, for example, the Ising model of magnetism where the sign of the coupling J
determines the system’s ground state configuration (a ferromagnet when J < 0, an
anti-ferromagnet when J > 0). In SYK∗ we cannot naively perform the change
J → −J because this would tamper with the Gaussian disorder. Instead, we can
change the sign of the bosons’ mass, i.e., φaφa → −φaφa. This effectively changes
the sign of the interaction term in SYK∗ when the bosons are integrated out, as
one can easily check. However, the consequence of this change is that the SYK∗
fermions become trivial in the M

N � 1 regime. This can be seen from fig. 4.3: the
sign-change of the boson mass leads directly to the change G0

φ = −1 → 1 such
that in the large M

N limit only the trivial solution solves the altered eq. (4.11). That
is, only Σψ = 0 solves the sign-changed eq. (4.11).
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Figure 4.3: Upon changing the boson mass from φaφa to −φaφa, SYK∗ becomes
trivial in the large M

N limit. The figure shows eq. (4.11) for q = 5: y = 4[(eλΣψ +
1)−1 − 1/2]3 (note the overall sign change) with λ = 10.

Let us now return to the M
N � 1 analysis. To validate eq. (4.10) and eq. (4.12)

we must compute the boson self-energy using eq. (4.12) and ensure, as we have
assumed in the above derivation, that it vanishes for large MN . The boson self-energy
is,

Σφ(iωB
n) = J

√
N

M

1

βq−2

∑
n′′2∈Z

· · ·
∑

n′′q−1∈Z

Gψ(iωB
n − iωF

n′′2
− . . .− iωF

n′′q−1
)

Gψ(iωF
n′′2

) · · ·Gψ(iωF
n′′q−1

). (4.15)

The main identity we use now to evaluate the Matsubara sums is

1

β

∑
n∈Z

1

iωB
n −A1

−1

iωB
n +A2

=

(
1

eβA1 − 1
− 1

e−βA2 − 1

)
1

A1 +A2
, (4.16)

whereRe(A1),Re(A2) > 0 (see appendix A). The boson self-energy is then given
by

Σφ(iωB
n) = 2J

√
N

M

1

(q − 1)!

1

iωB
n + (q − 1)Σψ(iωF

n)
q−3∏
k=0

(
1

e−βΣψ(iωFn ) + 1
+

(−1)k+1

e(k+1)βΣψ(iωF
n) + (−1)k

)
, (4.17)
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from which we see that for fixed temperature and in the limit of large M
N , Σφ → 0

as it should.
To further verify the above results we can check that they are consistent with the

saddles eq. (4.1) by transforming everything back to Euclidean time. This involves
evaluating the Matsubara expansion

Gψ(τ) =
1

β

∑
n

e−iω
F
nτGψ(iωF

n)

=
1

β

∑
n

e−iω
F
nτ

−iωF
n − Σψ(iωF

n)
,

(4.18)

whereΣψ(iωF
n) is as in eq. (4.12). This requires performing a contour integral in the

presence of a branch cut along the R− line. This integral has yet to be analytically
worked out in full.

Besides the finite coupling solutions to the Green’s function in the M
N � 1

regime, fig. 4.2 suggests something intriguing: there is a critical λ = βJ
√

M
N ,

λc, at which the fermionic self energy goes from being zero-valued (λc > λ) to
finite valued (λc < λ). We can attribute this to there being a critical temperature
T within λ, Tc, signaling the presence of a phase transition. For q = 3, the critical
temperature is analytically solvable and given by

Tc =
J

2

√
M

N
. (4.19)

For q > 3, eq. (4.11) acquires an inflection point (as attested in fig. 4.2). This
makes it difficult to find the critical temperature analytically. Numerically we can
estimate Tc for given q:

q = 5 Tc ≈ 0.124069J
√

M
N

q = 7 Tc ≈ 0.039683J
√

M
N

q = 9 Tc ≈ 0.012136J
√

M
N

Thus far, it is not immediately clear what two phases this transition is meant to be
separating, nor the interpretation of the self energy as an order parameter governing
the transition. To gain more insight on this transition we next explore the other
corner of parameter space, the M

N � 1 regime.

4.2 The M
N � 1 regime

In this section we can probe the M
N � 1 regime (see fig. 4.4). Now the

opposite happens: the bosonic self energy dominates while the fermionic self
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M

N

Figure 4.4: The regime of interest in the theory space of SYK∗ is now M
N � 1 for

M � 1 and N � 1. This is indicated by the red point.

energy becomes negligible, i.e.,

Gψ =
1

(G0
ψ)−1 − Σψ

≈ G0
ψ. (4.20)

In analogy with the previous section, we therefore assume an effective theory of
free fermions and seek the self-consistent solution to the bosonic Green’s function
in this regime. We proceed in a similar way: performing a Matsubara expansion
and using that Gψ = G0

ψ = 1
−iωF

n
in the SD equation. This gives

Σφ(iωB
n) = J

√
N

M

1

βq−2

∑
n′′2

· · ·
∑
n′′q−1

1

−iωB
n + iωF

n′′2
+ . . .+ iωF

n′′q−1

1

−iωF
n′′2

· · · 1

−iωF
n′′q−1

. (4.21)

There is a problem here however: the above Matsubara sums evaluate to 0 for finite
ωB
n (see appendix A). This is problematic if it is true for general ωB

n because then
SYK∗ would reduce to a trivial theory in the small MN limit. So let us check the
result at zero-frequency: eq. (4.21) with ωB

n = 0 is

Σφ(0) = J

√
N

M

1

βq−2

∑
n′′2

· · ·
∑
n′′q−1

1

iωF
n′′2

+ . . .+ iωF
n′′q−1

1

−iωF
n′′2

· · · 1

−iωF
n′′q−1

. (4.22)

There is only one case for which the above Matsubara sum doesn’t vanish, when
q = 3. 2 In this case, the Matsubara sum has a second-order pole at the origin:

Σφ(0) = J

√
N

M

1

β

∑
n′′2

1

iωF
n′′2

1

−iωF
n′′2

. (4.23)

2Remark that this is the only time in this thesis that we observe a qualitative difference depending
on the choice of q.
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Tc ∼ J
√
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N

Figure 4.5: The T − M
N plane for a given q. For large M

N the critical temperature
scales as a square root, while for small MN there is no critical temperature.

By using the residue theorem for second-order poles (see appendix A for details),
eq. (4.23) becomes

Σφ(0) = J

√
N

M

β

4
. (4.24)

In Euclidean time, eq. (4.24) is simply

Σφ(τ) =
J

4

√
N

M
. (4.25)

Since the fermionic Green’s function is non-interacting in the M
N � 1 regime, it is

Gψ(τ) = (1/2) sgn(τ). From this we see that the solution eq. (4.25) is consistent
with the q = 3 bosonic saddle point equation eq. (4.1).
Observe that eq. (4.25) is independent of temperature. So, there cannot be a phase
transition of any kind in this regime of SYK∗. This implies that there is no critical
temperature either, meaning that the critical line we found in section 4.1 will end
abruptly as shown in fig. 4.5. The appearance of such a critical point suggests
that the phase transition at large M

N is one in which no symmetries are broken,
since we can “walk around” the critical line to the new phase without breaking any
symmetries along the way.

4.3 Discussion and outlook

In this thesis, we introduced the SYK model and demonstrated several of
its distinguishing properties. We saw how in the large-N limit the perturbative
expansion was dominated by melonic diagrams which characterized the two-point
function. We also saw that the four-point functionwere governed by ladder diagrams
and learned that higher-point functions were constructed from four- and six- point
functions. The infrared limit of SYK was exploited to find a conformal solution
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to the Green’s function before conformal symmetry was shown to indeed exist in
the IR. We briefly discussed the special cases q = 2, which summed rainbows
diagrams, and q very large, both of which yielded analytic solutions. In chapter
3 the SYK∗ model, which introduced an additional free parameter M (number of
bosons), was presented. The model was shortly related to prior SYK models, SYK
and SUSY SYK. In addition, a line was drawn between SYK∗ and a theory of 3 + 1
dimensional SHF.We found the fermionic and bosonic self energies of SYK∗ by the
saddle point method: integrating over the Gaussian disorder, introducing the bilocal
‘Green’s functions’ and ’self energies’ before deriving the bilocal effective action.
We also reviewed the two families of conformal solutions found by Marcus and
Vandoren, presenting the rational and irrational solutions. We plotted the fermionic
and bosonic spectral functions: they agreed with the claim that SYK-like models do
not have quasi-particle description. Finally, we proceeded to explore the parameter
space of SYK∗. Using the saddle point equations, the two “corners” of the M

N
parameter space were discussed, namely, MN � 1 and M

N � 1. In the former case,
a phase transition was found to occur, for which the critical temperature was given
for various values of q. The latter case was found to have temperature-independent
solution, implying the absence of a classical phase transition. This suggested the
presence of a critical point in the T−M

N plane. The nature of this phase transition in
SYK∗ has yet to be fully understood, with many questions remaining unanswered:
for example, what is the interpretation of the fermionic self-energy playing the
role of the order-parameter governing this phase transition? What two phases is
the critical boundary meant to be separating? It is conceivable that the critical
point is really a tri-critical point? Because the critical point is presumably to be
found somewhere in the intermediate region of large and small MN , the presented
analysis was not suited to address this further as only zeroth-order corrections were
considered. One may better probe the intermediate region by considering next-to-
leading order corrections in the expansion parameter

√
M
N . This can be achieved

by including corrections to the Green’s functions and self-energies as

G = G(0) +G(1) and Σ = Σ(0) + Σ(1),

where the superscripts (0) and (1) denote the zeroth and linear order corrections
respectively. In so doing, one may be able to find these correction self-consistently
by neglecting quadratic-order fluctuations. It is very likely that temperature-
dependence will arise on the M

N � 1 side and phase-separate that regime. Such
are the open questions on the SYK∗ model that we hope can be addressed in future
research.

47



Appendix A

Matsubara sums

This appendix is devoted to proving the various Matsubara identities used
throughout chapter 4. We begin by showing eq. (4.9), the well known relation that

1

β

∑
n∈Z

−1

iωB
n −A

=
1

eβA − 1
+

1

2
(A.1)

where we take Re(A) > 0 without loss of generality. By the residue theorem, we
can write

1

β

∑
n∈Z

−1

iωB
n −A

=
1

2πi

∮
C

−1

z −A
1

eβz − 1︸ ︷︷ ︸
f(z)

dz, (A.2)

Im(z)

Re(z)

z = A

z = iωB
n

C C ′C ′′

Figure A.1: Illustration of contours to perform the Matsubara sum eq. (A.1). There
are poles at even Matsubara frequencies and a pole sitting at z = A, where we take
Re(A) > 0.
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where C fully encloses the imaginary axis counter-clockwise as shown in fig. A.1.
We now consider the contribution of the infinite arcs C ′ and C ′′. For Re(z)→∞,
the integrand of eq. (A.2), f(z), decays exponential such that the arc C ′ does not
cost anything. For Re(z) → −∞ however, the situation is different. In this limit,
the integrand neither decays exponentially nor algebraically so we must consider
the contribution of the line integral alongC ′′. Parametrizing the curve by z = Reiθ

with −3π
2 ≤ θ ≤ −

π
2 , we find∫
C′′
f(z)dz

R�1
=

∫
C′′

1

z
dz = i

∫ π
2

−π
2

dθ = iπ.

Thus, we add and subtract an iπ in eq. (A.2) such that

1

2πi

∮
C
f(z)dz =

1

2πi

(∮
C+C′

f(z)dz +

∮
C+C′′

f(z)dz + iπ

)
. (A.3)

Since the function is analytic everywhere inside the contour C + C ′′, the integral
over it vanishes by Cauchy’s integral theorem. The contour integral over C + C ′

can be evaluated by the residue theorem. Accounting for the factor −1 coming
from clockwise integration, eq. (A.1) follows immediately.

We now validate the more complicated looking eq. (4.16),

1

β

∑
n∈Z

−1

iωB
n −A1

1

iωB
n −A2

=

(
1

eβA1 − 1
− 1

eβA2 − 1

)
1

A1 −A2
(A.4)

Im(z)

Re(z)

z = A1

z = A2

z = iωB
n

C C ′C ′′

Figure A.2: Contour to evaluate Matsubara sum eq. (A.4). In addition to the pole
at z = A1 there is a pole at z = A2. We take Re(A1),Re(A2) > 0.
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By the residue theorem we can write

1

β

∑
n∈Z

−1

iωB
n −A1

1

iωB
n −A2

=
1

2πi

∮
C

−1

z −A1

1

z −A2

1

eβz − 1︸ ︷︷ ︸
f(z)

dz, (A.5)

where C fully encloses the imaginary axis counter-clockwise (as before). Notice
now that as Re(z)→ ±∞, f(z)→ 0 (exponentially and algebraically respectively).
So the arcs C ′ and C ′′ (see fig. A.2) do not cost anything to add such that we can
write

1

2πi

∮
C
f(z)dz =

1

2πi

(∮
C+C′

f(z)dz +

∮
C+C′′

f(z)dz

)
. (A.6)

Similar to before, the contour integral over C +C ′′ vanishes by virtue of Cauchy’s
theorem. This leaves the integral overC+C ′; using the residue theorem this yields

1

2πi

∮
C+C′′

f(z)dz =

(
1

eβA1 − 1
− 1

eβA2 − 1

)
1

A1 −A2
, (A.7)

where we included a −1 factor from the contour orientation. This concludes the
proof of eq. (4.16).

We now verify the statements in section 4.2 that eq. (4.21) vanishes when
ωB
n 6= 0 and derive the zero-frequency q = 3 result eq. (4.24). The first consists in

showing that
1

β

∑
n∈Z

1

iωF
n −A

−1

iωnF
= 0 , (A.8)

where A = iωB
m 6= 0. Using the residue theorem the left hand side becomes

1

β

∑
n∈Z

1

iωF
n −A

−1

iωF
n

=
1

2πi

∮
C

dz
1

z −A
−1

z

−1

eβz + 1︸ ︷︷ ︸
f(z)

, (A.9)

whereC encloses the entire imaginary axis counter-clockwise except at the location
of the poles z1 = A and z2 = 0 as shown in fig. A.3. The integrand is analytic in
the rest of the complex plane such that we can deform (inflate) the contours so as
to only enclose the two pole z1 and z2 clockwise such that

1

2πi

∮
C

dz
1

z −A
−1

z

−1

eβz + 1
=

1

2πi

[ ∮
C1

dzf(z) +

∮
C2

dzf(z)
]
, (A.10)

where C1 and C2 encloses z1 and z2 respectively. Using the residue theorem on
these integrals yields

1

2πi

[ ∮
C1

dzf(z) +

∮
C2

dzf(z)
]

=
1

A

−1

eβA + 1
− 1

A

−1

2
. (A.11)
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Im(z)

Re(z)

×

×

z = A

z = 0

z = iωF
n

C

Figure A.3: Contours used to evaluate the Matsubara sum eq. (A.8). There are
poles located at each fermionic (odd) Matsubara frequency and two more at z = A
and z = 0. Here A is a bosonic Matsubara frequency.

This is 0 by the fact that eβA = eβiω
B
n = 1 (even Matsubara frequency).

Next we prove that at zero-frequency we have,

1

β

∑
n∈Z

1

iωF
n

−1

iωF
n

=
β

4
(A.12)

The procedure is analogous to the previous eq. (A.8) but with A = 0. Rewriting
the left-hand side of eq. (A.12) as

1

β

∑
n∈Z

1

iωF
n

−1

iωF
n

=
1

2πi

∮
C

dz
1

z

−1

z

−1

eβz + 1︸ ︷︷ ︸
f(z)

, (A.13)

where C is the same as previously. The difference occurs when we deform the
contour. Now there is only one degree-two pole at the origin z = 0. Thus we need
to use the generalization of the residue theorem to higher-order poles: the residue
of f(z) around an order n pole is

Res(f, z0) =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
[(z − z0)nf(z)]. (A.14)

Then, by straightforward application of eq. (A.14) for n = 2, we find

1

2πi

∮
C′

dzf(z) =
β

4
, (A.15)

where C ′ encloses the origin clockwise. Equation (A.12) is thus proved.
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