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Abstract

We explore several methods for calculating the two shear viscosities and three bulk viscosities of
magnetohydrodynamics for a quark-gluon plasma using improved holographic QCD. First we look
at a method based on fluctuation equations. We work both with UV expansions and with a method
based on the membrane paradigm. We calculate the shear viscosities, and describe some problems
you stumble upon when calculating the bulk viscosities. Then we look at methods based on dually
mimicking fluid equations, in this case Fick’s law and the entropy current equations, we manage to
extract several viscosities, but there seems to be a restriction on which viscosities you can extract
based on the zero temperature boost symmetry breaking. Lastly, we calculate the a magnetic field
dependent bulk viscosities for analytic two-dimensional model related to a gravity dual of the ABJM
model.
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Chapter 1

Introduction

1.1 Quark-gluon plasma
In nature we find baryons. These are subatomic particles composed of an odd number of quarks,
held together by the strong force. The medium of this strong force is a massless boson called a gluon.
The most prominent examples of baryons are neutrons and protons, which together compose the
atomic nuclei. The strong force has its name for a reason, and it is therefore very difficult to destroy
the bond that holds the quarks in neutrons and protons together. However, in the Relativistic
Heavy Ion Collider located at Brookhaven National Laboratory, USA as well as in the Large Hadron
Collider located at CERN, Switzerland, gold ions are accelerated to a point where the collision
temperature is so high, namely about 450-600MeV [45] (∼ 1012 K), that this bond is broken (see
figure 1.2). Again stressing how hot this is, this is a million times hotter than the core of the sun
[12]. Because the ‘pancake’-shaped ion clouds do not completely overlap, some baryons, which carry
electric charge when they are protons, move around the collision site in a uniform way (see figure
1.3). This generates a very large magnetic field (about 108-109 Gauss). When the bond is broken,
the quarks become deconfined and a quark-gluon plasma (QGP) is formed. Apart from being a
phenomenon that can be studied in a laboratory under bizarre artificial circumstances, a QGP may
have existed a few microseconds after the Big Bang and perhaps still is present in the inner core of
neutron stars [60]. Studying this plasma is therefore of great scientific value. When studying this
plasma, it is important to note that unlike baryonic matter, a quark gluon plasma can be treated as
a fluid [73], and thus its fluid properties, such as the bulk and shear viscosity, can be studied, which
is what will be done in this thesis. Lastly, both in the early universe and neutron stars, similar to
heavy ion collisions, the magnetic effect on QGP needs to be considered [91], [50].

1.2 Holography
Studying a QGP is a difficult task. The dynamics of this plasma is quantum chromodynamics
(QCD), which is the quantum field theory (QFT) which describes how gluons interact with quarks
and with themselves. Because this fluid is strongly coupled, we cannot rely on perturbative QCD.
Another route would be lattice QCD. However, because of the euclidean time nature of this method,
incorporating dynamic effects comes with many systematic and statistical errors [45]. Yet another
method would be holography, where we map a QFT to a higher dimensional semi-classical theory
of gravity [5]. But also this method comes with disadvantages. The main problem is that it is often

7



CHAPTER 1. INTRODUCTION 8

Figure 1.1: Venn diagram of subatomic particles in the Standard Model [88].

Figure 1.2: Schematic picture of a QGP formed by a heavy ion collision [45], because of deconfinement
the baryons (zero color charge) decompose into quarks with red, blue and yellow color charge. Before
the collision the ions have a ‘pancake’ shape due to special relativistic length contraction [22].

difficult to find a top down derivation of the gravitational theory. Such a top down derivation was
first found by Maldacena in [74] for N = 4 Supersymmetric Yang-Mills (SYM) Theory, a conformal
theory with gauge group SU(N). This theory is found to be dual, i.e. mathematically identical, to
critical type IIB superstring theory AdS5 × S5. Several constants of the two dual theories can be
related to eachother in the following way:

λ

N
= 2πgs (1.1)

2λ =
L4

l4s
(1.2)

Here λ and gs are the ‘t Hooft coupling and string coupling constant and L and ls are the radius
of curvature and the string length respectively. The ‘t Hooft coupling is given by: λ = g2

YMN ,
with gYM the Yang-Mills coupling constant. The duality of N = 4 SYM to IIB superstring theory
AdS5 × S5 follows from comparing the open- and closed-string perspective. These perspectives
become tractable in opposite limits for gsN . Specifically, N D3-branes can be described by by open
strings on a flat hyperplane (see figure 1.4) for gsN � 1. The low energy limit is N = 4 SYM. In
addition, N D3-branes can be described by closed strings in curved space-time for gsN � 1. In the
low energy limit this becomes type IIB superstring theory AdS5 × S5 [22].
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Figure 1.3: Schematic picture of a QGP formed by a heavy ion collision, during this collision a
strong magnetic field is produced [45]. This is denoted by the B-arrow

1.3 ‘t Hooft limit
From equation 1.1 it follows that if we take the weak coupling limit on the string theory side, but
keep L4

l4s
constant, we get that only the tree level diagrams of string perturbation theory matter, i.e.

we have removed the quantum degrees of freedom and the theory reduces to classical string theory.
For this to hold it follows from equation 1.1 and 1.2 that N needs to be large. This is called the ‘t
Hooft limit, and was first suggested by ‘t Hooft in [92]. Since λ is kept constant this means gYM
should be small. One could think that this means that we also work in the weak coupling limit for
the QFT, which means that we might as well use perturbative QFT. However, since the number of
components in the fields simultaneously becomes large [2], the significance of higher order diagrams
remains invariant in this limit. Proceeding, we can also assume the radius of curvature to be large
compared to the string length, which effectively turns strings into point-like particles, thus reducing
classical string theory to classical supergravity. Contrary to perturbative QFT, this requires the
coupling to be large on the field-theory side (but still small compared to N), which is the case for
the running coupling constant of QCD for a specific regime with an energy scale that is not too
far in the UV. Thus we conclude that when combining the ‘t Hooft limit with the strong coupling
limit, that N = 4 SYM, which is a conformal field theory, is dual to AdS5 classical supergravity.
It is also possible to use bottom up reasoning to arrive at this duality [22]. We do this by starting
from that N = 4 SYM is conformal, which means that the theory is unaffected by a change in the
energy scale. We then say that this energy scale is holographically dual to the r-coordinate, the
fifth dimension in the dual five-dimensional gravitational theory. From the requirement that this
five-dimensional theory should be invariant under a transformation of the r-coordinate follows that
the theory of gravity should be AdS5. Lastly, we note that dual theories have the same symmetries.
For example, AdS and the conformal group are both SO(2, d). Where d are the spatial dimensions.
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Figure 1.4: Excitations of the system in the open and closed string description [5]

1.4 Improved holographic QCD
There is no string theory which is proven to be dual to QCD and there are doubts whether such a
theory exists. For example, in [79] Ooguri conjectures that all vacua spaces known to be used for
holographic constructions, which are space that are asymptotically AdS and break supersymmetry,
are unstable. Avoiding this troublesome exercise, we instead use a bottom up theory, which assumes
that some ‘low-lying’ operators of QCD can be treated separately from the rest of the Hilbert space
[45], because the other operators are O(gs) and are therefore suppressed due to the ‘t Hooft limit.
We then build a bottom up theory with these operators and their dual sources which mimicks the
properties of QCD in a 5D gravitational theory. Whenever we now say ‘dual’ we no longer mean
that two things are mathematically equivalent, but instead mean that two things correspond to
each other based on the assumption that the bottom-up theory is a good holographic description
of our QFT. The properties we want to mimick are asymptotic freedom, chiral symmetry breaking
and confinement. With the holographic theory in place, we can use the Gubser-Klebanov-Polyakov-
Witten (GKPW) rule [42] to extract information about the operators of the field theory from the
sources at the boundary of the dual theory [58]:〈

exp
[
− i
∫
ddxφ0O

]〉
= e−iSgrav[φ(r→∞)=φ0 (1.3)

The model that describes QCD with this method is called Improved Holographic QCD (ihQCD).
This theory will be one of the main topics of this thesis. Table 1.1 shows all the operators and dual
sources that we will work with in this thesis [45]. In this context the ‘t Hooft limit means taking the
amount of colors Nc to be large [30]. Because the gluons transform in the adjoint representation,
this limit affects the glue sector of our model. However, since magnetic field couples not to gluon but
to quarks, which transform in the fundamental representation, we also need to consider the flavor
sector. The way we add flavor to the model is by also taking the the amount of flavors to be large,
but keep the ratio x = Nc/Nf at a fixed value. This limit is called the Veneziano limit and the
model that includes flavor this way is also called Veneziano QCD. This way of incorporating quarks
has the advantage that, unlike methods where quarks are studied in the probe limit (see for example
[35]), it considers the backreaction of the quarks and can therefore describe the behavior of quarks
at high densities. The downside is that, as explained in [3], in the Veneziano limit, unlike for the
‘t Hooft limit, not all string loops are suppressed, and these contributions are extremely difficult to
take into account, for one because the full string theory is unknown. When using ihQCD, we don‘t
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Table 1.1: Operators and their dual sources.

boundary: operator bulk: source
energy momentum tensor Tµν metric tensor gµν

current Jµ gauge field Aµ
scalar glueball operator trF 2 dilaton φ

axionic glueball operator trF ∧ F axion χ
quark condensate 〈qq〉 tachyon τ

have to rely on faith to know whether it is actually a quantitatively valid way of modeling QCD.
For example, we can look the glueball spectrum [45], which are the gluon eigenvalues of QCD in the
confined phase. We can compare the result that follows from ihQCD with results from lattice theory
(see figure 1.5). In [6] the meson and glueball spectra of ihQCD with the Veneziano limit are fully
analyzed. Since these methods are completely independent, it is a strong indication that ihQCD is
a quantitatively valid way of modeling QCD.

Figure 1.5: Comparison of glueball spectra as found via lattice QCD and via ihQCD (‘our model’)
[45].

1.5 Shear viscosity
Shear viscosity is the transport coefficient for the dissipation that occurs when two layers of fluid
slide over each other (see figure 1.6) [77]. Shear viscosity explains why honey, which is a more viscous
fluid than water, very slowly moves out of a jar when you hold it upside down, whereas water moves
out almost instantly. In figure a schematic figure 1.7 the shear viscosities of several very non-viscous
fluids, including a QGP, is given. In [82], Policastro, Son and Starinets (PSS) calculate the shear
viscosity of N = 4 SYM by assuming a large ‘t Hooft coupling, which allowed PSS to map the QFT
to AdS5. The result they find is:

η

s
=

1

4π
(1.4)

What is noteworthy is that this result is extremely low and temperature independent. Far from the
UV where holographic QCD is valid, this result has been confirmed experimentally (see [12] and
figure 7.2). Kovtun, Son and Starinets (KSS) then propose in [69] that this result could serve as a
lower bound for a wide class of systems, such as the QGP. They argue that this holds because lower
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Figure 1.6: Non-zero shear viscosity causes shear stress when there is a velocity gradient between
two layers of fluid [31]

values would violate Heisenberg’s uncertainty principle. In [19], Buchel and Liu (BL) make an even
stronger claim. They claim that this bound is saturated for any gauge field. The conjecture of both
BL and KSS are proven to not be generally true. For example, Cremonini, Gursoy and Szepietowski,
show in [26] that shear viscosities of theories with a non-trivial scalar profile no longer obey equation
1.4. Instead the shear viscosity becomes temperature dependent and can drop below the proposed
universal bound. Also, anisotropic QFTs do not adhere necessarily to this lower bound. Examples
of this are given in [34] and [84]. For the anistropic case, Rebhan and Steineder show that when the
zero temperature SO(3) rotational symmetry is broken in the z-direction by an axion linear in z the
shear viscosity is defined by the horizon geometry in the following way [84] :

ηχ‖

s
=

1

4π

gxx(rh)

gzz(rh)
(1.5)

Similarly, Critelli et al. show that when this is done by a magnetic field in the z-direction, we get
the flipped result:

ηB‖

s
=

1

4π

gzz(rh)

gxx(rh)
(1.6)

η⊥ is invariant under this symmetry breaking. In [23], In [59], Jain, Samanta and Trivedi gener-
alised this by proposing that anisotropic shear viscosities might be determined by looking at the
boost symmetry, which is the part of Lorentz group that relates time to the spatial dimensions.
This symmetry is present for the isotropic theory of gravity at zero temperature. We define z the
dimension for which the boost symmetry is left intact and x the dimension for which this symmetry
is broken. A general formula, consistent with the previous results, for the shear viscosity parallel to
the anisotropy direction would then be:

η‖

s
=

1

4π

gxx(rh)

gzz(rh)
(1.7)
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Figure 1.7: Schematic plotes of shear viscosities of several fluids [26], Tc means the temperature
where vaporization for H20 and He, superfluid transition for ultracold Fermi gas and deconfinement
for QGP occurs respectively

1.6 Lieb-Robinson bound
In [51], Hartman, Hartnoll and Mahajan (HHM) argue in favor of the conjectured KSS bound in a
more sophisticated way by deriving it from the Lieb-Robinson bound. The Lieb-Robinson bound
follows from the observation that operators spread linearly in time, which means for operators A
and B [64]:

||[A(x, t), B(0, 0)]||≤ ce−a(x−vt) (1.8)

Here v is the Lieb-Robinson velocity, which tells how fast an operator spreads. This bound establishes
an effective light-cone for relativistic as well as non-relativistic theories. Based on this requirement
HHM derive the following lower bound (see figure 1.8):

η

s
≥ v2Tτeq (1.9)

v is 1 in relativistic theories, T is the temperature and τeq is the local equilibration time, which
is time it takes till we are in the diffusive regime. Using values for Tτeq for tensorial fluctuations
calculated in [76], HHM find v2Tτeq ≈ 1

4π . The violation of the KSS bound can perhaps be explained
by looking at the way HHM formulated this bound. When you calculate η‖, you no longer look at
tensorial fluctuations when calculating τeqT . Instead you look at vectorial fluctuations, which couple
to other modes and therefore no longer give the universal 1

4π value. Because the imaginary frequency
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Figure 1.8: t−x diagram which shows allowed and disallowed diffusion based on the Lieb-Robinson
bound. Note that here diffusion is momentum diffusion, i.e. shear stress. From requiring that the
diffusive regime starting from τeq is in the lightcone a lower bound for the shear viscosity can be
derived [51]

. .

tells you how quickly a mode decays in time we have the following identity for τeq:

τeq =
1

Imωqnm
(1.10)

ωqnm is the frequency of the quasinormal mode lowest to the real axis. A quasinormal mode is a
solution to the holographic fluctuation equations. They are the holographic dual of the poles of
the retar In [29], the quasinormal modes for the shear modes for a QGP with magnetic field are
calculated as a function of magnetic field (see figure 1.9). From this it becomes clear that anisotropy
tightens the bound for η‖. It is plausible that for an action with an axion the quasinormal modes
would increase, leading to a relaxation of the Lieb-Robinson bound which would allow for a violation
of the KSS bound as is found by Rebhan and Steineder in [84].

1.7 Bulk viscosity
Bulk viscosity is the transport coefficient for the dissipation that occurs when a fluid is being
compressed. For molecular fluids, it is related to the vibrational energy of the molecules [25].
Monatomic fluids such as He therefore have no bulk viscosity. Bulk viscosity is also zero for N = 4
SYM, as well as all conformal field theories. In [43], GPR calculate the bulk viscosity for a theory
of gravity which is dual to a non-conformal field theory, and they find that:

ζ

s
∝ 1

V

dV

dr
(1.11)

More details are provided in chapter 4. Here V is the dilaton potential which is the term in the
gravitational action which causes deviation from AdS of the bulk, which is dual to non-conformality
in the field theory. As will be explained in chapter 3, V can be related to the beta function. Unlike
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Figure 1.9: Imaginary frequencies of quasinormal modes of the vectorial shear mode plotted as a
function of magnetic field [29]

. .

the isotropic shear viscosity, the isotropic bulk viscosity is temperature dependent. Also for the bulk
viscosity a lower bound for bulk viscosity is proposed:

ζ

η
≥ 2
(1

3
− v�

)
(1.12)

Here v� is the speed of sound of the fluid. This is called Buchel’s bound [16]. However, Buchel
himself shows that this bound can be violated in an anisotropic counterexample [17]. In [46], Gursoy
et al. apply the GPR method to the ihQCD model and derive a plot for the bulk viscosity given in
figure 1.10. Similarly, Critelli et al. also studied the bulk viscosity with a bottom-up model in [27],
the result is in figure 1.11

1.8 Relativistic magnetohydrodynamics
Using ihQCD, we can calculate the transport coefficients of our QFT. As mentioned, we can treat
the QGP as a fluid, and therefore we can use relativistic hydrodynamics to give an order by order
prediction of which transport coefficients should emerge from the holographic calculations. As
mentioned in section 1.1, a very strong magnetic field is produced during a heavy ion collision.
Furthermore, neutron stars are known to have strong magnetic fields [15], [50], [75]. This motivates
this thesis, which studies the viscosities of a QGP in a strong magnetic field. In [55], Hernandez and
Kovtun (HK) make a hydrodynamic expansion for the entropy current in the presence of a magnetic
field at first order. This result is elaborated on in chapter 2. KH find seven independent coefficients
(which are, following from the fact that they contribute to the entropy current, dissipative): two
conductivities, two shear viscosities and three bulk viscosities. There are two shear viscosities
because shear-stress is a two-dimensional phenomenon (see figure 1.6). Consistent with the remaining
zero temperature SO(2) symmetry of the theory, η⊥ describes shear stress where the x- and y-
dimension are involved and η⊥ describes shear stress where the z-direction and either the x- or y-
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Figure 1.10: Plot of ζs as a function of temperature as found in [46]. The squares represent lattice
data and the line comes from the GPR method applied to the ihQCD model

dimension is involved. For bulk viscosity the three bulk viscosities ζ‖,ζ⊥ and ζm relate to dissipation
due to compression in the z-direction, the x- or y-direction and two both direction simultaneously
respectively. As is be discussed in section 1.5, the values for the shear viscosities are very well
established. Our main focus in this thesis is therefore to calculate the three bulk viscosities. The
attempt made previously that comes closest to this goal is in the dissertation of Critelli [28], where
the bulk viscosity for an Einstein-Maxwell action, i.e. an action with non-conformality induced
by a magnetic field, is calculated. At this time it was not yet known that there where three bulk
viscosities, and Critelli find that the that the two anisotropic bulk viscosities vanish for this action.
From [43], we know that this does not happen when the non-conformality is induced by a dilaton
potential, which is the case we will study in this thesis, where we will look for all five viscosities.

1.9 Calculating viscosities
There are several holographic routes towards the shear and bulk viscosities. One way is by looking
at the dispersion relation of sound waves [83], [11], [61]. Hydrodynamics predicts the following
dispersion relations for the shear and sound mode:

ωs = −i η

ε+ P
k2 +O(k3) (1.13)

ω� = v�k − i
1

ε+ P
(ζ +

4

3
η)k2 +O(k3) (1.14)

v� =
dP

dε
(1.15)

Here v� is the speed of sound. Second, you can work with fluid-gravity correspondence [14], [56],
[13], which is a theory where you take a family of solutions to your holographic Einstein equations
and make an ultra-local expansion of the parameters belonging to that family for the space-time
dimensions. You then solve the Einstein equations at first order, that arise from this expansion
and calculate the stress-energy tensor at the boundary as is done in [8]. This stress energy tensor
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Figure 1.11: Several plots of the bulk viscosity [36] as a function of temperature using different
methods. The solid red line uses the GPR method, the dashed green line is an extrapolation
of perturbative QCD results [7], the blue squares come from parton-hadron-string dynamics (this
method is similar to the one disccued in section 7.2) model [80], and the black points are found using
the hadron resonance gas model [65].

is dual to the stress energy tensor of the fluid, which has the viscosities as coefficients of the first
order terms. Another method is a Green’s functions method where we look at the leading and sub-
leading term of a boundary expansion of the dual source corresponding to a field-theory operator
(in our case the energy-momentum tensor), which gives the transport coefficients of the relativistic
fluid via the GKPW rule [52], [66]. This method is discussed in chapter 4. Similar to this, there
is the Gubser-Pufu-Rocha (GPR) method which uses the membrane paradigm [58]. Specifically, it
considers a Green’s function at the horizon [43], instead of the boundary. For QCD this method can
only be used in the deconfined phase, as there is a thermal gas solution without a horizon in the
bulk when the field theory is confined [45]. This method is further explored in [46]. A method based
on the GPR method is also discussed in chapter 4. Lastly, a completely different method is the
Eling-Oz (EO) formula [33], which uses the Raychaudhuri equation. The Raychaudhuri equation,
or null focusing equation, describes the evolution of the horizon entropy. This is dual to the entropy
current equation of the fluid, and the coefficients of this equation give the viscosities. A new formula
based on the EO-formula is discussed in chapter 5. In this thesis we will only use method based
on the GPR method and the Eling-Oz formula to calculate the viscosities. We use both of these
methods because that way we can check for consistency, and also confirm that the Eling-Oz formula,
which is a relatively new and unexplored as well as a very simple formula, indeed can calculate the
bulk viscosity. Such a comparison has already been done in [18] for an isotropic QGP, i.e. without a
magnetic field. In chapter 3 we describe the gravitational method which is the basis for any attempt
at holographically calculating viscosities.
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1.10 Outside holography
We will compare the results in this thesis to methods that do not utilize holography as well. We will
look at experimental data in section 7.1 and at a computational non-holographic method based on
the lowest Landau level approximation, which is discussed in section 7.2.



Chapter 2

Relativistic magnetohydrodynamics

2.1 Introduction
In [55], HK make a hydrodynamic expansion of the entropy current for a fluid in a magnetic field,
which results in two conductivities, two shear viscosities and three bulk viscosities. In this chapter
the parts of this paper useful for this thesis are summarized.

2.2 Physics of fluids
Relativistic hydrodynamics studies the physics of relativistic fluids in a magnetic field. First, it is
useful to note what we mean when we talk about a fluid. A fluid is continuous system where every
infinitesimal volume can be seen as close to local thermal equilibrium [60], with only the averages
of the microscopic fluctuations affecting the macroscopic dynamics of zeroth order. Only the slowly
varying quantities such as the conserved quantities contribute in this case. Rapidly fluctuating
contributions, such as dissipative contributions, only affect the system at a perturbative level. This
is the hydrodynamic limit. The quantitative requirement for calling something a fluid is a small
Knudsen number [33].

2.3 Thermal equilibrium
As is consistent with our definition of a fluid, we start our expansion at zeroth order, where we require
that our fluid is in thermodynamic equilibrium. Thermodynamic equilibrium can be enforced by
requiring that there is a time-like Killing vector V , such that the Lie derivative of the thermodynamic
sources and quantities with respect to V vanishes [63]. Phrased more simply, we have a time-
independent system. This requirement yields the following equations:

T∂λ(
µ

T
) + aλµ− Eλ = 0 (2.1)

aλ +
1

T
∂λT = 0 (2.2)

∇µuν + uµaν +
1

2
εµναβu

αΩβ = 0 (2.3)
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Here uµ is the fluid velocity, aµ is the fluid acceleration, Ωµ is the fluid vorticity, T is the temperature
and µ is the chemical potential. The external fields are the electric field Eµ and magnetic field Bµ,
given by the following equations, in the fluid rest frame:

Eµ = Fµνu
ν (2.4)

Bµ =
1

2
εµνργu

νF ργ (2.5)

Here Fµν is the electromagnetic tensor. In this thesis we will always consider a strong electromagnetic
field, i.e. Fµν is a zeroth order tensor. However, Eµ does not affect the zeroth order free energy,
because from equation 2.1 it follows that since Eµ is in an equation with the derivative of the zeroth
order term µ, it will be screened at first order. In this thesis µ and Eµ will be kept zero, but for
completeness it will be taken into account in this chapter. Whereas equation 2.1, 2.2 and 2.3 will no
longer hold once thermal equilibrium is broken, the following two conservation equations will remain
valid. They can be found by requiring gauge and diffeomorphism invariance of the free energy:

∇µJµ = 0 (2.6)

∇µTµν = F νλJλ (2.7)

The same holds for the Bianchi identity, which upholds current conservation of the magnetic field
lines [40].

∇νJµν = εµναβ∇νFαβ = 0 (2.8)

2.4 Hydrodynamic expansion
For the hydrodynamic expansion we start off by decomposing the energy-momentum tensor Tµν and
the current Jµ with respect to the fluid velocity.

Tµν = Euµuν + P∆µν +Qµuν +Qνuµ + Tµν (2.9)
Jµ = Nuµ + Jµ (2.10)

Here ∆µν is the projector orthogonal to the fluid velocity:

∆µν = γµν + uµν (2.11)

With γµν the metric tensor. The coefficients of this decomposition have zeroth and first order
component:

E = ε(T, µ,B2) + fE (2.12)

P = Π(T, µ,B2) + fP (2.13)

N = n(T, µ,B2) + fN (2.14)

Tµν = α(T, µ,B2)(BµBν −
1

3
∆µνB

2) + fT µν (2.15)

Thermodynamics tells us that ε = −p + T (∂p/∂µ), Π = p − 4
3∂p/∂B

2 and n = ∂p/∂µ. The only
vector that Qµ and Jµ could be composed of at zeroth order is Bµ, but because Bµ has even parity
(so it is actually a pseudovector) this is not allowed and therefore Qµ and Jµ don’t contribute at
zeroth order. Now that the zeroth order is fully established, we can go to first order, were there
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are, among other terms, dissipative terms. Unlike for ideal fluids, the definition of local rest frame
now becomes ambiguous [60]. We can choose to define the velocity by the flow of particles or by the
flow of energy. These two frame choices are called the Eckart frame and the Landau-Lifshitz frame
respectively. The Eckart frame leads to

Jµu
µ = 0 → Jµ = 0 (2.16)

The Landau-Lifshitz frame requires:

Tµνu
µ = ε(T, µ,B2)uν → Qµ = 0 (2.17)

We choose however yet another frame called the thermodynamic frame, which is introduced in [63].
For this frame choice, µ, T and uµ remain unchanged when thermal equilibrium is broken. This
requires:

T non-eq
µν uµ = 0 (2.18)

Jnon-eq
µ uµ = 0 (2.19)

So all non-equilibrium contributions, which can be but are not necessarily dissipative, are absorbed
by fP and fT µν and Jµ. We can then list all possible scalars, vectors and tensors that can appear in
E , P, Qµ, Tµν , Jµ and N at first order, and discard terms based on parity and because of dependence
that follows from equation 2.6, 2.7 and 2.8. This is described in detail by KH in [68]. The entropy
current is as follows:

∇µSµ = ∇µ
( p
T
uν
)

= Tµνnon-eq∇µ
uν
T

+ Jµnon-eq

(Eµ
T
− ∂µ

µ

T

)
(2.20)

Here non-equilibrium is explicitly stated because subtraction of equilibrium contributions is necessary
to make the entropy current well defined. We then find the following result:

T∇µSµ = σ⊥
(B · V )

B2
+ σ‖(BµνV

µ)2 +
1

2
η⊥(σµν)2 + η‖Σ

2

ζ‖S
2
‖ + 2ζmS‖S⊥ + ζ⊥S

2
⊥

(2.21)

With Bµν = ∆µν − BµBν
B2 , V µ − T∆µν∂ν(µ/T ), σ⊥µν = 1

2 (BµλBνρ + BνλBµρ − BµνBλρ)σλρ and
Σµ = Bµλσλρbρ. From this we can conclude that magnetohydrodynamics is characterized by two
conductivities, two shear viscosities and three bulk viscosities. Note that the result for the viscosities
is independent of Eµ or µ. This is consistent with linear response theory. In linear response theory,
viscosities are coefficients which tell us how source gives rise to an expectation value of the operator
[40] [52]. We can write this down in the following way:

〈δT12〉 = iωη⊥δg12 (2.22)
〈δT13〉 = iωη‖δg13 (2.23)(
〈δT11〉
〈δT33〉

)
= iω

(
ζ⊥ + η⊥ ζm
ζm ζ‖

)(
δg11

δg33

)
(2.24)

The η⊥ enters in the bulk matrix because when you break the SO(3) symmetry an ambiguity emerges
when you want to couple modes to transport coefficients, we will elaborate on this in chapter 4.



Chapter 3

Gravitational action

3.1 Introduction
In this section we will work out the theory of gravity which we will use to mimick QCD. We will
first work out the bulk geometry at zeroth order. At this order we have time independence, which is
required for the dual QFT to be thermodynamically stable at zeroth order, and thus fluid-like. The
starting point is writing out the action. The action that will be used in this thesis was constructed
in [62] and [4]. [45], [30], [6] and [48], among others, further explore this action. The action consists
of a glue sector and a flavor sector and gives the Einstein equations which fix the metric at zeroth
order. For this metric gµν the following Ansatz will be used:

ds2 = e2A(φ)(−f(φ)dt2 + dx2 + dy2 + e2W (φ)dz2) +
e2B(φ)

f(φ)
dφ2 (3.1)

This metric is written in the φ = r gauge or Gubser gauge, as will be clarified in Appendix A. φ here
roughly plays the role of the inverse energy scale [48]. e2A(r) incorporates the (non-)conformality
and e2A(r) incorporates the anisotropy of the field theory. f is the blackening factor, which is
characteristic for a theory of gravity dual to a deconfined fluid, because it means that the flux tubes
that confine quarks dissolve when the tip of the string reaches the horizon. In the next section the
glue and flavor sector of this action will be worked out.

3.2 Glue sector
The glue sector action is as follows:

Sg = M3N2
c

∫
dx5√−g(R− 1

2
(∂φ)2 + Vg) (3.2)

Here φ is the dilaton with its potential Vg. M is the five-dimensional Planck constant. We further
have a Ricci scalar in the action, which is always there in a theory of gravity. To constrain Vg, the
following mapping from the field theory to gravity is made [45]:√

8

3
lnλ = φ (3.3)

lnE = A (3.4)

22
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Here E is the energy scale and λ is the ’t Hooft coupling. The
√

8
3 is just convention. With this

identification, the equations of motion (EOM) can be used to constrain the UV asymptoptics of Vg
such that the renormalization group flow is QCD-like, i.e. shows asymptotic freedom. This means
we get the following requirement from the beta function of QCD:

β(λ) =
dλ

d lnE
=
dλ

dA
(3.5)

The IR asymptotics of Vg are found by requiring that A should have a minimum somehwere in the
bulk. This minimum makes sure that for low temperatures the field theory shows quark confinement,
which in the dual setting means that a gluon flux tube is formed from the quark to the anti-quark
at this minimum (see figure 3.1). Such a potential which satisfies these requirements, is one that
will be used for our numerical calculations.

Figure 3.1: Holographic representation of confinement of a quark-antiquark pair mediated by a gluon
flux tube [45].

3.3 Flavor sector
The flavor sector relates to quarks, and it should therefore mimic a phenomenon that is observed
for quarks: chiral symmetry breaking. This is done with the following action:

Sf = −xM3N2
c

∫
dx5Vf

√
det(gµν + wFµν + κ∂µτ∂ντ) (3.6)

Here Fµν is the electromagnetic tensor and τ is the tachyon. This action is called Sen’s action and
is essentially a DBI-action. The derivation of this action therefore originates from string theory,
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where it was observed that brane-antibrane systems encode several features which are related to
chiral symmetry breaking [57]. Specifically, when we take quarks to be massless they have a chiral
SU(Nf )L × SU(Nf )R symmetry which is broken to SU(Nf )L+R because of the non-trivial vacuum
expectation value of the quark condensate 〈qq〉 [45], which is the order parameter of chiral symmetry
breaking. This phenomenon is reproduced with Nf space-filling D4-D4 brane-antibrane pairs in the
theory of gravity. Dual to the quark-antiquark pair, the SU(Nf ) symmetry of the individual the
branes and antibranes will be broken in the IR, which is achieved by properly tuning Vf , w and
κ. Such tuned functions will be used for our numerical calculations. For magnetic field in the
z-direction, the electremagnetic tensor is given by:

Fµν = ∂[µAν] (3.7)

Aµ = {0,−1

2
Bmy,

1

2
Bmx, 0, 0} (3.8)

The magnetic susceptibility of our QGP is given by:

χB = − 1

V4

∂

∂B2

(
xM3N2

c

∫
dx5Vf

√
det(gµν + wFµν + κ∂µτ∂ντ)

)
(3.9)

= − ∂

∂B2

(
xM3N2

c

∫ rh

0

drVf

√
det(gµν + wFµν + κ∂µτ∂ντ)

)
(3.10)

Where we define V4 =
∫
dx4.

3.4 Phase diagram
In [62], three distinct phases were found for this model: the confined phase, and two deconfined
phases, one with chiral symmetry and one with broken chiral symmetry. The phase affects the UV
asymptotics of the tachyon [48]:

τ(r) ≈ mqr(− log Λ) + 〈qq〉r3(− log Λr)ρ (3.11)

In this thesis we set quark mass mq to zero. In the symmetric phase, which is the only phase we
will consider in this thesis, we have 〈qq〉 = 0. From the tachyon EOM we know that if τh = 0,
τ ′h and τ ′′h are also zero. Combining this with that we have a zero mq and 〈qq〉 and that τ = 0
everywhere is allowed we conclude that it is the only allowed solution. The phase diagram is given
in figure 3.2. For x = 0.1 there is a fourth phase, but since we will not come close this this value for
x it is not worth discussing in this thesis. As explained in [5], the field theory entropy is dual the
Bekenstein-Hawking entropy, which is found integrating the extrinsic curvature over the boundary
and regularizing by subtracting the entropy of the Minkowski vacuum. This leads to:

s = sBH = 4πM3N2
c

√
−g

g00g55

∣∣∣
φ=φh

= 4πM3N2
c e

3A(φh)+W (φh) (3.12)

Similarly, temperature is dual to the Hawking temperature of the black hole of our dual theory [43]:

T = TH = −f
′(φh)

4π
eA(φh)−B(φh) (3.13)

3.5 Background equations
With this action, and the Ansatz given by equation 3.1, we can find the background equations of
our theory of gravity. This is done in Appendix A.
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Figure 3.2: Phase diagram for QCD with magnetic field calculated by Gursoy, Iatrakis, Nijs and
Jarvinen in [48]

3.6 Axion
In this thesis we will look at anisotropy induced by a magnetic field. However, a anisotropy can also
be induced by an axion, and we will use this example several times for comparison. An axion is a
source term for the axionic glueball operator on the field theory side. This term needs to be added
if want to describe CP-odd phenomena [30] [47]. In its simplest form, the following term needs to
be added to the action to include the axion:

Sa = −M3N2
c

∫
dx5√−g 1

2
Z(φ)(∂χ)2 (3.14)

χ = az (3.15)

We have an ’anisotropic susceptibility’ [49] (the axion equivalent of a magnetization), is given by:

χa = − 1

V4

∂

∂a2
M3N2

c

∫
dx5√−g 1

2
Z(φ)(∂χ)2 = −M3N2

c

∫ rh

0

dx
√
−gZ(φ)(g33)−1 (3.16)

This is not entirely true as this term is still UV divergent but since we won’t calculate the suscepti-
bility we won’t elaborate on this here. The important difference between an axion and a magnetic
field is that when SO(3) symmetry is broken to an SO(2) symmetry for the x- and y-direction, an
axion breaks zero temperature boost symmetry for the z−direction, whereas a magnetic field breaks
it for the x- and y-direction [59]. This difference will turn out to be very important and we will
mainly use the axion as a method for comparison so that we can better understand magnetic field
induced anisotropy.



Chapter 4

Calculating viscosities: fluctuation
equation

4.1 Introduction
In [43], Gubser, Pufu and Rocha (GPR) calculate the shear and bulk viscosity for an isotropic
background. They do this by introducing time dependent fluctuations at first order. They then
solve the fluctuation equations and find the Green’s function located at the horizon which give the
desired transport coefficients. This method is considerably more difficult for the bulk viscosity than
for the shear viscosity, because the transformation properties of the shear modes under the SO(2)
symmetry guarantee that these modes do not couple to other modes, and we get massless EOM,
which give trivial flow. In this chapter we will employ this method to calculate the viscosity for an
anisotropic fluid with a magnetic field.

4.2 Green’s function
To find a Green’s function (or correlator, propagator or two-point function) for an operator O, you
need to take the functional derivative for our path integral

〈
exp

[
i
∫
d4xφ0O

]〉
with respect to its

source φ0 twice [89]. For viscosities, the operator we are interested in is the energy momentum
tensor 1

2Tij , and at first order, the corresponding source is the metric fluctuation hij . In Minkowski
space-time, we can choose from the following Green’s functions and all their linear combinations
[87]:

GR(k) = −i
∫
dx4e−ik·xθ(t)〈[O(x),O(0)]〉 (4.1)

GA(k) = i

∫
dx4e−ik·xθ(−t)〈[O(x),O(0)]〉 (4.2)

G(k) =

∫
dx4e−ik·x〈{O(x),O(0)}〉 (4.3)

With {...} being anti-commutators. θ(t) is the Heaviside step function. As will be explained later, we
will work with a Minkowski retarded function (equation 4.1). This is consistent with [43], where it
is shown that this Green’s function is mathematically equivalent to the Euclidean Green’s function,

26
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for which there is only the Matsubara Green’s function to choose from. Because work in the fluid
rest frame we have k = 0. The following definition of the thermal Green’s function is as general as
is necessary for our computations:

Gijkl(ω) = −i
∫
dtd3xeiωtθ(t)〈[ 1

2
Tij ,

1

2
Tkl]〉 (4.4)

This Green’s function can be related to the expectation value of the linear response of a perturbation
of the metric using a Kubo formula. In [43], GPR derive the following relation:

δ〈Tij(ω)〉 = −1

2
hkl(ω)Gklij (ω) (4.5)

We will only need the imaginary part of this linear response to calculate the viscosities. GPR find
the following equation for Im δTij .

Im δTij(ω) =
ω

2
hkl(ω)

(
η(δikδjl + δilδjk −

2

3
δijδkl) + ζδijδkl

)
(4.6)

However, this is equation no longer holds when the magnetic field breaks the SO(3) symmetry of
the QGP into an SO(2) symmetry. We can decompose δij into a part parallel to the magnetic field
bi and a part orthogonal to the magnetic field βij :

δij = βij + bibj (4.7)

We get the following more general equation for the linear response consistent with the current
symmetries:

Im δTij(ω) =
ω

2
hkl(ω)

(
η⊥(βkiβlj + βliβkj) + η‖(bkbiβlj + blbjβki + bkbjβli + blbiβkj)

+(ζ⊥ −
2

3
η⊥)βijβkl + (ζm −

2

3
η‖)(βijbkbl + βklbibj) + (ζ‖ +

4

3
η∗)bibjbkbl

) (4.8)

Considering the symmetries of our system, we could now turn the coefficients inside the brackets
into single coefficients to find that this is consistent with what was predicted by KH in [55]:

ζ⊥ −
2

3
η⊥ → ζ⊥ (4.9)

ζm −
2

3
η‖ → ζm (4.10)

ζ‖ +
4

3
η∗ → ζ‖ (4.11)

This is an arbitrary choice which is consistent with [40]. Note that the original definition of a bulk
viscosity, i.e. the trace part of the first order dissipation, no longer has any meaning, and we don’t
get that turning off magnetic field gives that the result reduces to the isotropic result. Instead,
we should think of these ‘bulk viscosities’ as the scalar or spin zero dissipative coefficients. ‘Shear
viscosities’, which were previously the traceless part of the first order dissipation of the are then
vectorial or tensorial dissipative coefficients. The extract transport coefficients can then be extracted
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in the following way:

− lim
ω→0

1

ω
ImGs⊥ = − lim

ω→0

1

ω
ImG1212 = lim

ω→0

1

ω

∫
dtd3xeiωtθ(t)〈[T12, T12]〉 = η⊥ (4.12)

− lim
ω→0

1

ω
ImGs‖ = − lim

ω→0

1

ω
ImG1313 = lim

ω→0

1

ω

∫
dtd3xeiωtθ(t)〈[T13, T13]〉 = η‖ (4.13)

− lim
ω→0

1

ω
ImGb⊥ = − lim

ω→0

1

ω
ImβµνβρσGµνρσ =

lim
ω→0

1

ω

∫
dtd3xeiωtθ(t)〈[βij 1

2
Tij , β

kl 1

2
Tkl]〉 = ζ⊥ + η⊥

(4.14)

− lim
ω→0

1

ω
ImGbm = −1

2
lim
ω→0

1

ω
ImbµbνβρσGµνρσ −

1

2
lim
ω→0

1

ω
ImβµνbρbσGµνρσ =

1

2
lim
ω→0

1

ω

∫
dtd3x(eiωtθ(t)〈[bibj 1

2
Tij , β

kl 1

2
Tkl]〉+ eiωtθ(t)〈[βij 1

2
Tij , b

kbl
1

2
Tkl]〉) =

1

2
ζm

(4.15)

− lim
ω→0

1

ω
ImGb‖ = − lim

ω→0

1

ω
ImbµbνbρbσGµνρσ

= lim
ω→0

1

ω

∫
dtd3xeiωtθ(t)〈[bibj 1

2
Tij , b

kbl
1

2
Tkl]〉 =

1

4
ζ‖

(4.16)

We have T12 and not 1
2T12, because we must treat h12 and h21 in a symmetric way (i.e. h21 ≡ h12)

which gives a factor two. These Green’s functions can be found using holography. According to
the GKPW rule, our four-dimensional path integral is equal to e−iS in the dual five-dimensional
theory of gravity if we move to the boundary. But we can use the membrane paradigm (see [58] and
Appendix D), to justify that we can also look at the horizon. We can therefore take a functional
derivatives on e−iS and arrive at the Green’s function this way. However, a functional derivative
meant for a four-dimensional path integral is not well defined for a five-dimensional integral. To
perform the functional differentiation properly we instead first solve the equations of motion and
substitute them back into the action, making it an on-shell action. The Lagrangian in an on-shell
action is a total derivative:

LOS = ∂rJ (4.17)

Using Gauss’ law we find that the action then becomes a boundary integral at the horizon. This
boundary integral has to be canceled [58], yielding a term which can be subjected to a functional
derivative in order to get our desired Green’s function. However, we don’t take the functional
derivative with respect to the entire mode hij , only the part which depends on the space-time
dimensions:

hij(r, t, ~x) = (h(r)ξ(t, ~x))ij (4.18)

In our case we have homogeneity for the spatial dimensions, so ξ(t, ~x) = ξ(t). Note that, from
the structure of the Ricci scalar it follows that the Lagrangian contains only terms with no more
than two derivatives. Furthermore, one can subtract the Euler-Lagrange equation from the original
Lagrangian to get the on-shell Lagrangian [43]:

LOS = ∂rJ = L − h∗ij(
∂L
∂h∗ij

− ∂r
∂L
∂h∗′ij

) (4.19)



CHAPTER 4. CALCULATING VISCOSITIES: FLUCTUATION EQUATION 29

Since all other terms in the Lagrangian are real, we can combine these two facts to find that Green’s
function must have the following form:

ImG(ω)ijkl = −Im δ

δξij(ω)

δ

δξkl(ω)
e−iSOS

= M3N2
cF

= M2N3
c P (r)(h∗ij(r, ω)h′kl(r, ω)− h∗′ij(r, ω)hkl(r, ω))

+ V (r)(h∗ij(r, ω)hkl(r, ω)− h∗ij(r, ω)hkl(r, ω))

(4.20)

P will follow from the holographic computations, and F is the graviton flux. As the GKPW rule
prescribes, the r-coordinate must be the boundary radius r = 0 in this computation, i.e. G(ω) =
G(ω, 0). However, because the graviton flux is conserved, we have [58]:

∂rF = 0 (4.21)

We can therefore choose any value for r we like. As will be shown in Appendix C, it turns out to
be very convenient to look at the Green’s function for r = rh, which is what is done in the GPR
method. As mentioned, the Green’s function gives us the linear response to a source, in our case the
metric perturbation. For our anisotropic case, these responses of the operators can be represented
in the following matrix form.(

〈T11〉
〈T33〉

)
= −i

(
ImGb⊥(ω) 2ImGbm(ω)

2ImGbm(ω) 4ImGb‖(ω)

)(
δg11

δg33

)
(4.22)

The can be related to the matrix in equation 2.24.

4.3 UV expansion
When we want to find the transport coefficients, we don’t have to go to the horizon. The more
conventional way is to look at the UV expansion of the perturbative modes. For example, in [39],
this method is used to find the shear and Hall viscosity for a 2+1-dimensional holographic model
for chiral superfluiditiy. To better understand this concept we will first work with a scalar field φ
dual to O, but this result for any p-form [5]. For φ, the bulk action is as follows:

Sbulk = −1

2

∫
drddx

√
−g(gµν∂µφ∂νφ+m2φ2 + interactions) (4.23)

At the boundary, we also have to include the Gibbon-Hawking term [45]:

SGH =− 1

2

∫
ddx4X

√
γXµφ∂µφ (4.24)

γµν =gαβ∂
αXµ∂

βXν (4.25)

γ is the induced metric at the boundary. X is space-time dependent only. This term is needed
to make sure that the boundary action only depends on first derivatives [37]. This term does not
contribute to the equations of motion, but does contribute to the Greens function. Near the boundary
our metric becomes AdS and looks as follows:

ds2 ≈ R2

r2
(ηµνdx

µdxν + dr2) (4.26)
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Here R is the AdS radius. The EOM that follows from this is:

rd+1∂r(r
1−d∂rΦ)− k2r2Φ−m2R2Φ = 0 (4.27)

φ(xµ, r) =

∫
ddk

(2π)d
eik·xΦ(xµ, r) (4.28)

This yields the following UV expansion for k2 → 0 (we will comment later on what happens when
you don’t work in this limit):

Φ(r, k) ≈ A(k)rd−∆ +B(k)r∆ (4.29)

∆ =
d

2
+

√
m2R2 +

d2

4
(4.30)

The two-point function or Green’s function can be found from the action, after counterterms have
been added to deal with UV divergences. We won’t go into detail here (for this see [95]), but the
result is:

〈O(ω, k)〉 = 2(∆− d

2
)A(k) (4.31)

〈O(−ω,−k)O(ω, k)〉 = 2(∆− d

2
)
B(k)

A(k)
(4.32)

We arrive at Green’s functions for the field theory operators because we are at the boundary, where
the GKPW rule (equation 1.3) holds. For a p-index function Γ, we can generalize this. At the bulk,
the action then has the following structure:

Sbulk ∝
∫
drddx

√
−g(gµνgαβ ...gρσ∂µΓα...ρ∂ν Γβ...σ +m2Γ2

α...ρ + interactions) (4.33)

The indices of Γ can also be anti-symmetrized like for the electromagnetic tensor but this would not
change this derivation and this therefore holds for any two-derivative kinetic term. With the same
method, this gives the following UV expansion [5]:

Ψµ1...µp ≈ Aµ1...µpr
d−p−∆ +Bµ1...µpr

∆−p (4.34)

m2R2 = (∆− p)(∆ + p− d) (4.35)

This works for the shear channel (i.e. the helicity one and two block), but as will become clear in
section ??, the situation for the scalar channel, or the helicity zero block, is more complicated than
this.

4.4 Helicity blocks
With the magnetic field turned on, the SO(3) symmetry that was there for the isotropic case,
turns into an SO(2) symmetry. As explained in [34], the metric fluctuations are characterized by
their transformation properties under this symmetry. Based on this, we can divide 17 different
perturbative modes in blocks where perturbative modes are only coupled to the other modes in the
same block. Because of the SO(2) symmetry, we can take h1i = h2i, for any i, except for the h12

mode. The three blocks we get then look as follows.

helicity two : h12 (4.36)
helicity one : h01, h13, h15, δA1 (4.37)
helicity zero : h00, h05, h03, h11, h33, h35, h55, δφ, δτ, δA0, δA3, δA5 (4.38)
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However, not all fluctuations have to be considered. For the helicity zero block, δτ can be ignored
because we have τ = 0 in all of our calculations. Since τ only appears quadratically in the action it
doesn’t appear in the first order EOM. The same holds for all gauge fields (see Appendix B). This is
unlike the case where we have a non-zero baryon chemical potential, where coupling to the gauge field
perturbations does happen [34]. Proceeding, we can also use diffeomorphism and gauge invariance of
the perturbative modes to remove some fluctuations. The metric and dilaton fluctuations transform
as follows [43]:

δφ̃ = δφ+ ξµ∂µφ (4.39)

h̃µν = hµν +∇µξν (4.40)

For helicity two, there are no transformations possible, so the h12 mode stays. For helicity one, the
h01 mode can be gauged away (see Appendix B). The Einstein equation we will find for the h15

mode is h15 = 0, so we can ignore it as well. For helicity zero, we can gauge away three modes. We
choose to throw away h03, h05 and δφ. We are left with h00, h35, h33 and h55. As it turns out, one
of the Einstein equations when including the h35 mode we get is h35 = 0, so we can dispose of this
mode in advance also.

4.5 Shear viscosities
This section is about the helicity one and helicity two blocks of equation 4.38. These compuations are
relatively simple and analogous to the computations done by Critelli et al. in [27]. The reason that
it is simple is because the modes decouple from all the other modes and are massless. Formulated
differently, they satisfy a 5D-wave equation [44]. The perturbative modes introduce time dependence
to the EOM. Because this is the only time-dependence in the EOM and because the equation is
linear for these modes, we know that there is harmonic time dependence [43]. We can therefore say
hij(φ, t) = eiωthij(φ). The rest of the computations are performed in Appendix C. The end result
is:

η⊥
s

=
1

4π
(4.41)

η‖

s
=
e2W (φh)

4π
(4.42)

This is consistent with what Critelli et al. find in [27] for an Einstein-Maxwell-dilaton action.

4.6 Bulk viscosities
This section discusse the helicity zero block, which is the block with the bulk modes, we choose,
similar to [43], the following perturbative metric gµν + δgµν .

ds2 = e2A(φ)(−f(φ)(1 +
λh00(φ)eiωt

2
)2dt2 + (1 +

λh11(φ)eiωt

2
)2(dx2 + dy2)

+ (e2W (φ) +
λh33(φ)eiωt

2
)2dz2) + (1 +

λh55(φ)eiωt

2
)2 e

2B(φ)

f(φ)
dφ2

(4.43)

Unlike the shear modes we study in Appendix C, the bulk modes cannot be made massless with a
simple rescaling, which would give us trivial flow. As explained in Appendix D, the only requirement
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for this rescaling is that it becomes unity at the boundary. As a side note, one could think that
a new method for understanding the flow of the modes is by deriving the rescaling which would
make the mode massless. This concept is further elaborated in Appendix I, where it is also shown
that this is of no use. The EOM are derived in Appendix F. In Appendix G, we work out how we
the Green’s function method at the horizon outlined by GPR in [43], would work for magnetic field
induced anisotropy, though we will not use this method.

4.7 Scalar channel UV expansion
As mentioned in section 4.58, the UV expansion of the helicity zero fluctuation is more complicated
than equation 4.35 and will be worked out in this section. In the UV, boost symmetry breaking
induced by the black hole solution is undone. In the isotropic case, we therefore have three modes
in the helicity zero block: h55, ψ and δφ. In r-variables, the metric then becomes:

ds2 = e2A(r)
{

(1 + λψ(xµ, r))(−dt2 + dx2 + dy2 + dz2) + (1 + λh55(xµ, r))dr
2
}

(4.44)

In [67], a very simple fluctuation equation is found for this channel in the UV:

ζ ′′ +
(

3A′ + 2
X ′

X

)
ζ ′ + k2ζ = 0 (4.45)

X ≡ φ′

A′
(4.46)

ζ ≡ ψ − δφ

X
(4.47)

Here ζ is the gauge-invariant variable, which can be replaced by either δφ or ψ via a gauge trans-
formation. Note that this source corresponds to the scalar glueball operator and the trace of the
energy momentum tensor simultaneously, this follows from the fact that QCD has the following trace
anomaly [9]:

〈Tµµ 〉 =
β(λ)

2λ2
trF 2 (4.48)

In [6], the following UV asymptotics are found for φ′ and A:

φ′ ≈ − 1

r log(r)
(4.49)

A ≈ − log(r) (4.50)

From this it follows that:

X ≈ 1

log(r)
(4.51)

For k2 → 0, we can solve equation 4.44 to get:

ζ = C + f(r) (4.52)

ζ ′ = Ke
−
∫
dr′
{

3A′(r′)+2 log(X(r′))′
}

(4.53)

= Ke−3AX−2 = Kr3 log2(r) (4.54)
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Here C and K are constants. We thus conclude that at leading and sub-leading order, we have:

ζ ≈ A(k) +B(k)r4 log2(r) (4.55)

Specifically, for our anisotropic case where we look only at time dependence:

ζii ≈ n− i
ω

4πT
bni r

4 log2(r) +O(r5) (4.56)

GRTjjTii(0, ω) ∝ −i ω

4πT
bni (4.57)

ζni ∝
1

4πT
bni (4.58)

Here n ∈ {0, 1} depending on our boundary condition at the boundary, which follows from whether
this mode is a source or not (n = 1 (n = 0) for i = j (i 6= j)), so:

ζ‖ = ζ1
3 (4.59)

ζ⊥ = ζ1
1 (4.60)

ζm = ζ0
1 = ζ0

3 (4.61)

The particular choice for bn is for convenience as will become clear in Appendix H. Note that the
UV expansion for hij is actually more complicated than equation 4.58 suggests, because ζ is not
space-time homogeneous, which gives rise to terms in the UV expansion of O(r2) [49], this follows
from the k2 term in equation 4.27. When solving a decoupled fluctuation equation, these terms are
real when ω is real and since the bulk viscosities are found by looking at the imaginary part of the
UV expansion, it is still possible to extract them. For a coupled set of fluctuation equations, this is
not necessarily the case, but since the contribution is proportional to ω we can still extract the bulk
viscosities from the UV expansion in the ω → 0 limit as we will show in Appendix H. In equation
4.58 we only have a proportionality for the bulk viscosity, not an equality. We can find the precise
equality through an extremely tedious computation analogous to [8] and [86], but we don’t need it.
Instead, we can simply use ‘isotropic normalization’, meaning that we only look at the ratio of the
anisotropic bulk viscosities with respect to the isotropic one, which is very well establised [43]. This
works as follows:

ζ‖

ζI
=
b13
b1

3

,
ζ⊥
ζI

=
b11
b1

1

,
ζ⊥
ζI

=
b01
b1

1

=
b03
b1

3

(4.62)

Here ζI and bni are the bulk viscosity and the sub-leading term with magnetic field turned off
respectively. The particular choice for ζm is because in the isotropic case there is no notion of a mix
bulk viscosity to normalize with.



Chapter 5

Calculating viscosities: mimicking
fluid equations

5.1 Introduction
In this chapter we will discuss two methods to calculate viscosities. Here we don’t look at thermal
fluctuations flowing from the bouundary to the horizon like we did in chapter 4. Instead, the
underlying theme is to rewrite the Einstein equations at the horizon in a form so that the equation
can be dually equated to a fluid equation which describes our relativistic fluid. First, we will do this
by using a Kaluza Klein reduction to arrive at Fick’s law, from which we can extract the diffusion
equation. Second, we will do this by calculating the null Raychaudhuri equation and equating it to
the entropy current equation, from which we can calculate all viscosities.

5.2 Fick’s law
One way to obtain the anisotropic shear viscosities is to mimick Fick’s law. In [84], Rebhan and
Steineder (RH) do this for a QGP with anisotropy induced by an axion with a method derived in
[69]. Steineder provides more details in his dissertation [90]. Anisotropy due to an axion means
that flavor sector studied in this thesis is replaced by an kinetic axion term like in section 3.6.
The computation they perform is worked out in Appendix E. This eventually leads to the following
formula for the shear viscosities:

η⊥
s

= T
s

4πM2N3
c

∫ rh

0

dr′
g00(r′)g55(r′)

g11(r′)
√
−g(r′)

(5.1)

η‖

s
= T

s

4πM2N3
c

g11

g33

∣∣∣
r=rh

∫ rh

0

dr′
g00(r′)g55(r′)

g11(r′)
√
−g(r′)

(5.2)

This method works because when you perform the Kaluza Klein reduction in the x-direction, there
is no coupling of the axion term to the Maxwell equations, unlike for a Kaluza Klein reduction in
the z-direction which would yield a mass term. When you have anisotropy due to a magnetic field,
we cannot use this method because the flavor action will couple to the Maxwell equations, yielding
a mass term. We should therefore instead perform a Kaluza Klein reduction in the z-direction,
because in this direction the magnetic field does not give a mass term. However, in this case it is

34
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only possible to acces the parallel shear viscosity, yielding:

η‖

ε+ P‖
=

√
−g

g11
√
g00g55g2

eff

∣∣∣
r=rh

∫ rh

0

dr′
g00(r′)g55(r′)g2

eff (r′)√
−g(r′)

(5.3)

Our anisotropy is given by:

P‖ − P⊥ =
1

2
χBB

2
m (5.4)

and the following thermodynamic identities [93]:

g = −P⊥ (5.5)
f = −P‖ (5.6)

ε = g + Ts− 1

2
χBB

2
m (5.7)

= f + Ts (5.8)

So we have: P‖ = ε− Ts. Concluding:

η‖

s
= T

s

4πM2N3
c

g33

g11

∣∣∣
r=rh

∫ rh

0

dr′
g00(r′)g55(r′)

g33(r′)
√
−g(r′)

(5.9)

We also have:

T =
M2N3

c

s

(∫ rh

0

dr′
g00(r′)g55(r′)

g33(r′)
√
−g(r′)

)−1

(5.10)

=
M2N3

c

s

(∫ φh

−∞
dφ′

g00(φ′)g55(φ′)

g33(φ′)
√
−g(φ′)

)−1

(5.11)

=
e−3A−W

4π

∣∣∣
φ=φh

(∫ φh

−∞
dφ′

e2A+2B

e2A+2W
√
e8A+2W+2B

)−1

(5.12)

=
e−3A−W

4π

∣∣∣
φ=φh

(∫ φh

−∞
dφ′eB−3W−4A

)−1

(5.13)

We have confirmed this result numerically. For η⊥ there’s seems to not be a simple way to calculate
it with a Kaluza Klein reduction, we would have to perform the Kaluza Klein-reduction from scratch
and consider the presence of mass terms to see what the new Fick’s law would look like. It is likely
that similar to the shear computations in chapter 1.6 we can rescale the gauge fields to remove the
mass term, but at the moment of making this thesis the computational power to perform such an
analytical computation was not available. It is also unclear whether we can use a Kaluza Klein
reduction to find the bulk viscosity.

5.3 Null Raychaudhuri equation
In [33], an equation is found for the null Raychaudhuri equation expanded hydrodynamically at
second order, which is dual to the entropy current equation on the fluid side. By reading off the
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coefficients Eling and Oz (EO) find the famous η
s = 1

4π for the isotropic shear viscosity. More
importantly, they find a very simple formula for the isotropic bulk viscosity, the EO-formula:

ζ

s
=
∑
i

(
s
dφhi
ds

+ ρα
dφhi
dρα

)2

(5.14)

This is a result for multiple scalar fields φi and a gauge field Aαµ . This equation is an applied form
of the null Raychaudhuri equation, which is an equation which describes the trace of the deviation
of the null geodesic uµ. In their article it is suggested that this equation can accurately describe the
bulk viscosity in the high temperature limit and for an adiabatic approximation. However Buchel,
Gursoy and Kritsitis (BGK) show that the result holds much more generally, because with this
formula you don’t need to look at the variation of φ at φh to get the bulk viscosity, but instead
look at the variation of the constant φh which is a free parameter of your black hole solution. BGK
find that the EO formula perfectly matches the GPR result, which unlike the EO-formula involves
a numerically calculated constant cb11. Ignoring charge and working with a single scalar field, they
found the following match:

ζEO
s

=
1

36π(A(φ)
dφh

)
2

∣∣∣
φ=φh

=
ζGPR
s

=
1

36π(A(φ)
dφ )

2
|cb11|2

∣∣∣
φ=φh

(5.15)

The EO formula is also confirmed for using fluid gravity [94] for the Sakai-Sugimoto model, which
is a holographic QCD model that includes flavours [85]. For this model the ratio between shear and
bulk viscosity that is found with both methods is:

ζSS
ηSS

=
4

15
(5.16)

In this chapter we will repeat Eling and Oz’ computation, but now with an Ansatz which considers
symmetry breaking caused by an external magnetic field.

5.4 Isotropic boosting
We have a bulk metric gAB , and the metric associated with the dual hydrodynamic theory, which
we call γµν . The indices are defined in the following way: xA = (r, xµ), i.e. capital letters are bulk
indices and Greek letters are hypersurface or horizon indices. In regular coordinates, this metric is
as follows:

ds2 = e2A(−fdt2 +
1

f
dr2 + dx2) (5.17)

dx2 = dx2 + dy2 + e2W dz2 (5.18)

For mathematical convenience we chose a different gauge for the fifth dimension coordinate:

ds2 = −e2Afdt2 + e−2A 1

f
du2 + e2Adx2 (5.19)

Define u∗ such that du∗ = e−2A

f du We get:

ds2 = −e2Afdt2 + dudu∗ + e2Adx2
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To get to Eddington Finkelstein coordinates, we make the following changes of variables:

du∗ = dv − dt
dt = dv − du∗

We get:

ds2 = 2dvdu+ dudu∗ + e2A(−fdv2 + dx2 − fdu2∗)

= 2dvdu+ e2A(−fdv2 + dx2)

We then proceed to boosting our metric. In the isotropic case, the solution to the gravity action
has four degrees of freedom. Firstly, we can choose the horizon radius, which is dual to choosing
the temperature of the QFT. Secondly, we can go to a boosted frame for the space-time dimensions,
which is, not unexpectedly, dual to considering a boosted frame for the fluid. For the isotropic case,
we have the following identities for boosting [94]:

dv → −uµdxµ (5.20)

xix
i → ∆µνx

µxν (5.21)

Boosting like this is not valid for the anisotropic case, but we will will first work this out before we
comment on how things change for the anisotropic case. We end up with:

ds2
EF = −2dxµuµdu+ e2A(−f(dxµu

µ)2 + ∆µνdx
µdxν)

Here ∆µν = γµν + uµuν is the projector, which projects to the subspace orthogonal to the fluid
four-velocity uµ. We have:

uµ = γ

(
−1
βi

)
(5.22)

γ =
1√

1− β2
(5.23)

With βi the fluid velocity and γ is the Lorentz factor. This is what we raise and lower our indices
with in a boosted frame. Because we have a boosted black brane, which means we have to use
projectors instead of metric tensors to raise and lower our hypersurface indices. Since we work with
a Minkowski signature, we have the following constraint for the four-velocity magnitude:

γµνuµuν = −1 (5.24)

Using this, we find that the projector satisfies the following identities:

∆µνuν = 0 ∆µρ∆ρν = ∆µργρν = ∆µ
ν ∆µν∆µν = 3 (5.25)

5.5 Four-dimensional metric
In the isotropic case, which is described in [33], γµν is the Minkowski metric, but we will consider
an anisotropic metric, which, as will become clear in section 5.8 gives some complications. When
we have anisotropy induced by a magnetic field or an axion, one would assume that we have:

ds2
z = −dt2 + dx2 + dy2 + e2W (φh)dz2 (5.26)
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However, using the freedom to choose our five-dimensional coordinate, we can also have:

ds2
xy = −dt2 + (dx2 + dy2)e−2W (φh) + dz2 (5.27)

To prove this, we start from:

ds2 = e2A(−fdt2 + dx2) +
e−2A

f
du2 (5.28)

dx2 = dx2 + dy2 + e2W dz2 (5.29)

We perform the following transformations:

e2A → e2A∗−2W (5.30)

f → f∗e2W (5.31)

du→ e−2W du∗ (5.32)

And then redefine A∗ ≡ A, f∗ ≡ f and u∗ ≡ u.

5.6 Null geodesics
We have the fluid velocity of uA (capital letters are five-dimensional indices, Greek letters are four-
dimensional indices), which is null in five dimensions. We define lA = δ5

A = dr, which is also null.
We change variables to the Eddington-Finkelstein metric and we boost:

ds2 = −2dxµuµdu− e2Af(duµx
µ)2 + e2A∆µνdx

µdxν (5.33)

Note again that this boosting is not actually necessarily allowed for an anisotropic bulk metric, we
will ignore this for now and comment on this later. We have the following identities:

gABlAuB = guµuµ = uµuµ = −1 (5.34)

gABlAlB = 0 (5.35)

gABuAuB = 0 (5.36)

This first identity is necessary for the projector we want to define later on. It is important to note
that uµuν 6= uAu

A. Furthermore we have:

lB∇AuB = uB∇AuB = lB∇AlB
lB∇BuA = −lB∇AuB +O(∂) = 0 +O(∂)

(5.37)

Here we used Killing’s equation, which holds for uµ at first order and equation 5.34. We further
have:

uB∇BlA
∣∣∣
u=uh

= −uBΓCBAlC

∣∣∣
u=uh

= −1

2
uBgCD(−∂DgAB + ∂AgBD + ∂BgAD)lC

∣∣∣
u=uh

=
1

2
uBuC(∂AgBC)

∣∣∣
u=uh

= −1

2
e2A(uh)f ′(uh)lA = 2πT lA

(5.38)

We define the projector which projects to the subspace T⊥ orthogonal to uA and lA:

QAB = e−2A(uh)gAB + uAlB + uBlA (5.39)



CHAPTER 5. CALCULATING VISCOSITIES: MIMICKING FLUID EQUATIONS 39

Since this projector is orthogonal to the r-direction we can also talk about Qµα Looking at equation
5.33, we find that at the horizon this precisely becomes:

ds2
Qh

= ∆µνdx
µdxν (5.40)

i.e. Qµν(uh) = ∆µν . Unlike in [21], we have:

uA∇AuB
∣∣∣
u=uh

6= 0 (5.41)

As would be required due to the geodesic equation. This is because the uB is not an affine parameter
at the horizon. We instead have:

uA∇AuB
∣∣∣
u=uh

= κuB (5.42)

Here κ is the the surface gravity, which is the acceleration that is experienced at the horizon from
a point of view at the boundary (from a point of view at the horizon this acceleration would be
infinite). It measures the extent to which uµ is not affinely parametrized at the horizon [10]. We
can find κ(0) by using that uµ is a Killing vector at zeroth order, and Killing’s equation therefore
holds [21]:

∇(AuB) = O(∂) (5.43)

uA∇BuA
∣∣∣
u=uh

= −κ(0)uB (5.44)

−uAΓCBAuC

∣∣∣
u=uh

= (5.45)

−uAgCD(−∂DgAB + ∂AgBD + ∂BgAD)uC

∣∣∣
u=uh

= (5.46)

−uAgrC(−∂rgAB)uC

∣∣∣
u=uh

= (5.47)

We conclude:

κ(0) =− (−1)2 1

2
e2A(uh)f ′(uh) = 2πT (5.48)

We find, for a vector Vµ in the subspace T⊥ orthogonal to uµ and lµ:

LuV A = uB∇BV A

uB∇B(QAµV
µ)

(5.49)

5.7 Deviation equation
Having defined the projectors, we will now define the second rank tensor BAB , which is the failure
of the deviation of a geodesic to be parallel transported [21] (see figure 5.1). If the geodesic is uA
and the deviation is VA, this means:

LuV A = uB∇BV A = BABV
B (5.50)

BAB = ∇BuA (5.51)
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Figure 5.1: A geodesic uµ (fluid velocity) and the deviation Vµ from this geodesic [21]

Here we used:

[u, V ] = ∇BuBV A − uB∇BV A = 0 (5.52)

This follows from the fact that VA has a constant orientation with respect to uA (which is orthogonal,
see figure 5.1). Use equation 5.38, and 5.42:

LuV A = uB∇BV A

= uB∇B(QµAV
A)

= uBQµA∇BV
A + uBV A∇B(uµlA) + uBV A∇B(lµuA)

= QνBu
BQµA∇BV

A

= B̂µν V
ν

(5.53)

We thus know that B̂µν = QAµQ
B
ν BAB . We can make the following decomposition for B̂µν :

B̂µν =
1

2
σµν +

1

3
θ∆µν + ωµν (5.54)

Here ωµν describes the rotation, which is zero in this system. σµν and θ describe the traceless and
trace part respectively:

σµν = ∆ρ
µ∆σ

ν∇(ρuσ) −
2

3
∆ρσ∇ρuσ (5.55)

θ = ∆ρσ∇ρuσ (5.56)

. Then we write down an equation for the evolution of B̂µν :

LuB̂µν = QBµQ
C
ν (uA∇ABBC) = QBµQ

C
ν (uA∇A∇BuC)

= QBµQ
C
ν (uA∇B∇AuC −RABCDuDuA)

= QBµQ
C
ν (∇B(uA∇AuC)− (∇BuA)(∇AuC)−RABCDuDuA)

(5.57)
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We use equation 5.42:

= QBµQ
C
ν (κBBC −BABBCA −RABCDuDuA)

= κB̂µν − B̂ρµB̂νρ −QBµQCν RABCDuDuA
(5.58)

Taking the trace of this equation, the null Raychaudhuri equation becomes:

dθ

dτ
= Luθ = κθ − B̂ρσB̂ρσ −RDAuDuA (5.59)

In B̂ you can now substitute equation 5.54. We are allowed to ignore the projectors on the Riemann
tensor because we take the trace with Qµν . We can substitute the following identity for the Ricci
tensor using the Einstein equation:

RAB =
1

2
gAB(R− 1

2
(∂φ)2 + V − Vf

√
D)− Vf

1√
D

dD

dgAB
+

1

2
∂Aφ∂Bφ (5.60)

D = 1 + w2 1

2
FABFAB (5.61)

Because gABuAuB = 0 the terms proportional to gAB don’t enter the null focusing equation. Fur-
thermore, we have:

uAuB
dD

dgAB
∝ E2 (5.62)

This part relates to conductivities, and therefore will not be considered. The Raychaudhuri equation
is as follows as first order:

θ(1) = O(∂2) (5.63)

We use [21]:

θ = ∇µuµ =
1√
−g

∂µ(
√
−guµ) =

1

a
∂µ(auµ) =

1

s
∂µ(uµs) (5.64)

Where a is the area density. We have the following identity at second order [33]:

−Luθ(1) −
1

3
θ2

(1) + κ(0)θ(2) +
1

4
∆µα∆νβσµνσαβ =

2πT

s
∂µ(uµs) +O(∂3) (5.65)

The null focusing equation is now given by:

∂µ(uµs) =
s

8πT
∆µα∆νβσµνσαβ +

s

4πT
(Luφh)2 (5.66)

We then use the ideal entropy conservation law:

∂µ(suµ) = 0→ uµ∂µs = −s∂µuµ (5.67)

For magnetic field we use the zeroth order definition of the flux of the magnetic field lines found by
Iqbal, Grozdanov and Hofman in [40] and in equation 2.8:

J(0)
µν = 2ρu[µbν] (5.68)
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Here ρ is the conserved flux density. The Bianchi identity, i.e. equation 2.8, tells us that:

∂µJ (0)
µν = (bνLu − uνLb)ρ+ ρu[µ∂

µbν] − ρb[µ∂µuν] = 0 (5.69)

We use ρbµ = Bµ:

uµ∂µBν = −Bν∂µuµ +Bµ∂µuν + uν∂µB
µ

= −Bν∂µuµ +Bµ∂µuν
(5.70)

This is the ‘ideal conservation law for magnetic field’. The last step is because rightmost term
vanishes due to Gauss’s law for magnetism. Unlike the example that EO considers where φh depends
on charge and entropy, it now depends on magnetic field and entropy. We can therefore rewrite the
Lie derivative on φh in the following way:

Luφ = uµ((∂µs)
∂φh
∂s

+ (∂µBν)
∂φh
∂Bν

) = −(s
∂φh
∂s

+Bν
∂φh
∂Bν

)∆αβ∂αuβ +Bβ
∂φh
∂Bν

∆αβ∂αuν

= −(s
∂φh
∂s

+Bν
∂φh
∂Bν

)∆αβ∂αuβ +Bν
∂φh
∂Bν

S‖

(5.71)

= −(s
∂φh
∂s

∆αβ∂αuβ +Bν
∂φh
∂Bν

S⊥) (5.72)

We we have used that:

S‖ =
BµBν

B2
∂µuν (5.73)

S⊥ = (∆µν − BµBν

B2
)∂µuν (5.74)

For a system with only uµ as a vector available at zeroth order, it follows that when φh depends on
the parameters pi, we always have the following ideal conservation law:

∂µJ (0)
µ ∝ ∂µ(uµpi) = 0 (5.75)

We thus have, for φh depending on any set of scalars, similar to the original result of EO:

∂µ(uµs) =
s

8πT
∆µα∆νβσµνσαβ +

s

4πT
(
∑
i

pi
∂φh
∂pi

)
2
(

∆αβ∂αuβ

)2

(5.76)

For the parameter χ it is unclear what the ideal conservation law is and thus we cannot find the bulk
viscosities. In Appendix J we comment on how the anisotropic shear term in the entropy current
would give new ‘bulk viscosity terms’. An analogous derivation holds for magnetic field induced
anisotropy.

5.8 Anisotropic boosting
As mentioned many times now in this thesis, anisotropy induced by an axion or a magnetic field
breaks the zero temperature space-time boost symmetry for the theory of gravity in the x- and
y-direction and the z-direction respectively. This means that not all boosts that previously were
valid solutions to the Einstein equations still are. Therefore the projector we worked with ∆µν can
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only take specific forms in order to still represent a valid result. For an axion, we can still boost
with βi = {βx, βx, 0}. For magnetic field, we can still boost with βi = {0, 0, βz}. From this we can
immediately conclude for the shear viscosity that:

ηχ⊥ =
1

4π
(5.77)

ηχ‖ =
e−2W (uh)

4π
(5.78)

ηB‖ =
e2W (uh)

4π
(5.79)

This is consistent with [59]. The reason that we can find η⊥ for the axion case because it doesn’t
require boosting with βz, but for finding η‖ we do need to boost with βx or βy. Note that this
situation is analogous to the one we had for Kaluza Klein reduction discussed in section 5.2 For the
helicity zero sector, we can only conclude:

ζB‖ =
1

4π
s
∂φh
∂s

(5.80)

This result is consistent with [28], where it was shown that a magnetic field induced breaking of
conformal symmetry does not imply a non-zero bulk viscosity. To get a non-zero bulk viscosity you
need a non-trivial dilaton profile. Clearly, we have not been able to extract all viscosities with this
method.



Chapter 6

Bulk viscosity for 2+1 dimensional
analytic model

6.1 Introduction
In [38], Gnecchi, Gursoy, Papadoulaki and Toldo (GGPT) find an analytic solution for a gravity
dual based on 4D N = 2 Fayet-Iloupolos gauged supergravity. This gravitational theory is dually
related to the ABJM model [1]. This is a strongly coupled field theory, which is dual to AdS4 × S7.
4D N = 2 Fayet-Iloupolos gauged supergravity is used to understand quantum phase transitions
at strong coupling in condensed matter systems and is therefore not related to a QGP, which is a
high energy physics phenomenon. However, the same methods used to calculate the viscosities of a
QGP can also be used to calculate the bulk viscosity of this system. In this thesis the conventions
of GGPT are changed to ours, how this is done is shown in Appendix L.

6.2 The analytical solution
We work with the following action:

S =
1

κ2

∫ √
−gd4x

(
R− (∂φ)2

2
− V (φ)− Vb(φ)FµνF

µν

4

)
(6.1)

This is a version of the Einstein Maxwell dilaton action, as described in [30]. In order to use this
solution, we cannot work in the φ = r-gauge, because this would require us to analytically solve u
as a function of φ which is not possible for this analytic solution. To be consistent with GGPT, we
therefore work instead with u which satisfies: e2Adr = e−2Adu. We get the following analytic results
for gµν , Vb and V :

44
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ds2 = − g√
H0H3

1

dt2 +
√
H0H3

1 (
du2

g
+ u2(dx2 + dy2)) (6.2)

H0 = 1− 3b

u
(6.3)

H1 = 1 +
b

u
(6.4)

g = −B
2
m

2bu
+ 3

B2
m

2u2
+ u2(1− 3b

u
)(1 +

b

u
)3 (6.5)

φ =

√
3

4
log

(
b+ u

u− 3b

)
(6.6)

V = 6
b− u
b+ u

√
4b

u− 3b
+ 1 (6.7)

Vb = 6

√
u− 3b

u+ b
(6.8)

6.3 EOM
Similar to Chapter 3, we have to start with the background equations. From the choice of the
u-coordinate it follows that we have the following Ansatz:

ds2 = e2A(−fdt2 + dx2 + dy2) +
e−2Adu2

f
(6.9)

For the GPR method, the Green’s function calculation is slightly different with respect to [43], we
now have the following matrix:

Mφφ = e3A−Bf

0 1 0
1 1 0
0 0 0

 (6.10)

Mφ
5 = −e3A−B

 A′f
1
2f
′ + 2A′f

0

 (6.11)

We use:

h′00 =
2fh′11

(
2A′f ′ + f

(
4A′2 − 1

))
8f2A′2

+ non-contributing terms (6.12)

h55 =
h′11

A′
+ non-contributing terms (6.13)

Our Green’s function is given by:

− lim
ω→0

1

ω
ImG = − lim

ω→0

1

ω
ImηµνηρσGµνρσ = lim

ω→0

1

ω

∫
dtd3xeiωtθ(t)〈[ηij 1

2
Tij , η

kl 1

2
Tkl]〉 = ζ (6.14)

This part is still in the φ = r gauge. We get: F = − ie
3A−Bf
8A′2 (h∗11h

′
11 − h∗′11h11), and s = 4π

κ2 e
3A−B .

We have the following EOM at the horizon:

{e4Afh′′11 + e4Af ′h′11 +
ω2h11

f
}u→uh = 0 (6.15)
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Solving for h11 = C(u− uh)ρ, we again find the same boundary expansion:

ρ =
iω

f ′(uh)
e−2A(uh) =

iω

4πT
(6.16)

h11 ≈ c11

(
1 +

iω

4πT
log(u− uh)

)
(6.17)

This leads to:

ζ

s
= −1

s
lim
ω→0

1

ω
ImG(ω) =

1

s
lim
ω→0

1

κ2
F =

1

s
lim
ω→0

1

4κ2(A(φ)
dφ )

2
|cb11|2

∣∣∣
φ=φh

=
1

16π(A(φ)
dφ )

2
|cb11|2

∣∣∣
φ=φh

(6.18)

6.4 Result
In Appendix L and M the details of the compuation are worked out. The result is given in figure 6.1.
We see that the bulk viscosity increases as a function of magnetic field and decreases as a function
of temperature (from Appendix M we know that larger b means smaller T ). The temperature
dependence is similar to results found by GPR in [43]. Also, we can conclude that for b ∈ [1,∞),
i.e. for low temperatures, the ‘fluid’ is not in the hydrodynamic limit because the bulk viscosity is
∼ 1. For b = 0.5, the influence of magnetic field is very small.

Figure 6.1: ζ
s found as a function of Bm for b = 0.5 (blue), b = 1 (yellow) and b = 2 (green)



Chapter 7

Comparison of results with literature

7.1 Experimental data
Experimental data on the transport properties can only come from the LHC and RHIC, as these are
the only places on earth where a temperature can be reached that is high enough to produce a QGP.
In the past decade, the main focus of research has been on the shear viscosity [81] as this transport
property is strongly related to other measurements such as the azimuthal momentum distributions
of charged hadrons. For the isotropic shear viscosity, holography and experimental physics are
consistent and a value of η/s ≈ 1/4π is found [12]. Unfortunately, there is no data available on the
magnetic field dependence of the shear viscosity. As for the bulk viscosity, one thing that is known
is that for high temperatures (larger than 1 GeV), the bulk viscosity vanishes. This is consistent
with theory as QCD becomes conformal in the high temperature limit. For temperatures near the
deconfinement temperature, large bulk viscosities are possible. In a statistical analysis of data from
both the LHC and the RHIC, Paquet et al. find that the peak bulk viscosity is ≈ 0.2. The LHC and
the RHIC give mixed signals on this, but the temperature at which this maximum occurs is at around
0.2 GeV (see figure 7.1). In [12], using a Bayesian method for estimating the isotropic viscosities of

Figure 7.1: Probability density of the location of the maximum of bulk viscosity as a function of
temperature for both ion accelerators [81].
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a QGP, Bernhard finds the graphs of figure 7.2. This is the best experimental data available on bulk

Figure 7.2: Estimations of bulk and shear viscosity of a QGP as a function of temperature as found
in [12]

viscosity. Unfortunately, there is no data available on the magnetic field dependence of the bulk
viscosity. As a last note, in a not yet published work [32], Nijs uses holographic QCD to describe the
merging of neutron stars. The data that comes out of this computations could perhaps be compared
to gravitational wave data. This link between holography and experiment could then possibly allows
us to also learn more about the transport coefficients of QGP.

7.2 Lowest Landau level approximations
There is a method for calculating the bulk viscosities in a magnetic field that does not use holography,
but instead uses a lowest Landau level (LLL) approximation. As shown by Landau [72], a uniform
magnetic field induces harmonic oscillator-like quantization for charged particles. This is called
Landau quantization. The LLL approximation means assuming that the magnetic field is so large
that compared to temperature, i.e. T 2 � eB, that all charged particles, in our case quarks, are in
the LLL because higher Landau levels are surpressed by a factor e−

√
eB/T . The Landau levels are

as follows [71]:

En = h̄ωc(
1

2
+ n) +

h̄2k2
z

2m
(7.1)

Here ωc = |e|B/m is the cyclotron frequency. The LLL approximation is different from Bose-
Einstein condensation (and therefore does not violate the Pauli exclusion principle), because the
system is highly degenerate due to the fact that the lowest Landau levels and thus also the LLL, are
independent of kx and ky. Moving on from the LLL approximation, this method also requires that
the quark self-energy does not affect the bulk viscosity, which requires αseB/T 2 � 1. Combining
these limits, we thus are allowed to use this approximation in the following limit [54]:

αseB � T 2 � eB (7.2)

As can be seen from equation 7.1, when all quarks are in the LLL, the quarks have a 1+1 dimensional
dispersion relation, i.e. only movement parallel to the magnetic field is allowed. This means that
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the magnetic field induced contribution to the bulk viscosity will be to the parallel bulk viscosity.
Using the Kubo formula, Hattori et al. analytically find the following result for the bulk viscosity:

ζ ≈ 0.12
m4
f

T
→ ζ‖ ≈ 0.031

|eB|m2
f

T ln(T/Mg)
(7.3)

In figure 7.3 the result of Hattori et al. is given. In the blue (red) region the LLL approximation is not
valid because the left (right) part of equation 7.2 is violated. In [70] Kurian and Chandra (KC) also

Figure 7.3: Temperature dependence of the longitudinal bulk viscosity as found in [53].

calculate the bulk viscosity using the LLL approximation. However, instead of the Kubo formula,
the Boltzmann equation is used. Furthermore, a more general hot QCD medium is considered,
with a numerical quark fugacity which serves as an input for the quark distribution function, this is
called the effective fugacity quasiparticle model. This quark fugacity that comes from a lattice QCD
equation of state (EoS). At high temperatures, the result is similar to Hattori et al. (see figure 7.4),
as expected.
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Figure 7.4: Temperature dependence of the longitudinal bulk viscosity for different lattice QCD EoS
for |eB|= 0.3 GeV as found in [70].



Chapter 8

Conclusion

8.1 Results
In this thesis we used holography to study the viscosities an anisotropic relativistic fluid, in particular
a QGP with anisotropy induced by a magnetic field. In chapter 1.1, we briefly walked through topics
like QGP, holography, ihQCD and hydrodynamics. In chapter 2 we summarized [55] and explained
how there for relativistic magnetohydrodynamics there are three bulk viscosities and two shear
viscosities. In chapter 3, we described the gravity setup that is mainly used in this thesis and which
is based on [62] and [4]. The results of our thesis are as follows:

1. We showed in chapter 4, that everything we know about shear viscosities for an EMD-action
also holds for more complicated ihQCD actions which include magnetic field

2. We showed in chapter 5 how to compute ηB‖ using a Kaluza Klein-reduction

3. We showed in chapter 4 how to compute ηχ⊥, η
χ
‖ and ζB‖ using the EO formula

4. We found consistency with [28], were it was found that conformal symmetry breaking (in this
case caused by a magnetic field) does not imply a non-zero bulk viscosity

5. In chapter 6, we calculated magnetic field dependent ζ for an analytic two-dimensional ABJM
model

6. We made progress in calculating the three viscosities of relativistic magnetohydrodynamics in
chapter 4 and 5.

In chapter 7 we looked at experimental data and predictions based on the lowest Landau level
approximation relating to bulk viscosities in a magnetic field. Unfortunately, we did not get to the
point where we could compare this to holographic predictions.

8.2 Outlook

8.2.1 Introduction
In this section we will discuss several things that could be studied proceeding the research that was
done in this thesis. In the first paragraph we discuss some open problems in this thesis which could
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be studied further and then after that we will go through some more general topics related to this
thesis which could be studied in the future.

8.2.2 Follow-up
There are several things discussed in this thesis on which the book is not completely closed. In
particular, we did not finish the computation of the bulk viscosities in chapter 4. Here we described
how we could find the three bulk viscosities of magnetohydrodynamics for a QGP by looking at the
fluctuation equations. This can be done by looking either at the horizon or at the boundary. Both
methods have problems. For the UV expansion, it seems plausible that we should look at the ratio
of the sub-leading over leading term, but it is not entirely clear what the right proportionality factor
should be. In the membrane paradigm, the problem is that for ζm the term ∝ (h∗11h33−h11h

∗
33)φ→φh

is present in the Green’s function, which is divergent when using the Green-Kubo relations to find
the bulk viscosity. Furthermore, in chapter 5, we looked at ways to mimic fluid equations so that
viscosities can be extracted from it, but we encountered problems related to zero-temperature boost
symmetry violation, which prevented us from looking at certain viscosities. It would be nice if
these problem could be better understood so that we know how to get around this problem and
still manage to extract all viscosities. In particular, we should find how we can boost our solution
when magnetic field is introduced. We would also like to calculate the bulk viscosities with the
EO formula for the axion, and for this we would need some ideal conservation law, more on this
8.2. Then there is also the problem, which holds generally for both chapter 4 and 5 (and is also
elaborated in Appendix J), which is that it is hard to have one well-defined notion of anisotropic
bulk viscosities. This will be needed if we eventually wish to find consistency between the results
that could follow the methods described in chapter 5 and 4.

8.2.3 Relativistic hydrodynamics
Relativistic hydrodynamics is a very hot field in physics. New tools are made available to analyze
the behavior of fluid, which uset he quasinormal modes as input [61], [41]. If we include momentum
dependence, these methods can be applied to the fluctuation equations of this thesis. Furthermore, as
disccused in section 1.6, we can learn more about hydrodynamics by seeing how [51] different forms of
diffusion are related to eachother. In particular, it would be interesting to see how bulk viscosity fits
into this picture of diffusion. Lastly, in chapter 2, we discussed in great detail a paper from Hernandez
and Kovtun of all first order transport coefficients of magnetohydrodynamics. Something similar
could perhaps be done for ‘axiohydrodynamics’, and this would help us understand how to deal with
bulk viscosity in the case of axion. We assumed in this thesis that just like magnetohydrodynamics
that there are three bulk viscosities for axiohydrodynamics, even though the steps decribed in section
2 and [55] clearly do not assume a general form a rotational symmetry breaking. Considering [84]
it is extremely plausible that there are only two shear viscosities in a system with axion induced
anisotropy, but perhaps there are more or less than three helicity zero transport coefficients.

8.2.4 Complications of the gravity background
One of the strengths of improved holographic QCD is that it is very easy to see how other physical
phenomena can be included so that more phenomena of QCD can be studied. For example it is very
clear how we could take chemical potential, conductivity (equation 5.62), Chern-Simons diffusion
rate, quark mass and the chirally non-symmetric deconfined phase (section 3.2). Furthermore, it is
also possible to get a more accurate holographic prediction by doing some more work. For example,
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you can get a more realistic temperature dependent prediction for shear viscosity by including a
Gauss-Bonnet term [26] and, though very difficult, try to look at string loop contributions for the
dual theory [3].

8.2.5 Expansion of the framework
Apart from improving the dual theory of gravity, it would also be nice to better understand the
tools with which we can extract information from this dual theory. This is what this thesis was
mainly about, but the work done here can be proceeded and other things can be looked at. As
mentioned section 8.1, we could for look into Kaluza Klein reduction and how we could find all
diffusion constants using this method. We could, similar to what was discussed in section 8.2, look
at whether we could fit bulk viscosity into this picture. Furthermore, in Appendix N, we briefly
discuss how could find general consistency with the EO formula and fluid gravity, something that
has already been achieved for the Sagai-Sugimoto model, The reason this was not done in this thesis
is because the computations were too heavy for Mathematica, but perhaps there is a way to simplify
these computations.

8.2.6 Statistical analysis of experimental data
In [12], Bernhard uses a Bayesian method for finding the isotropic viscosities of quark-gluon plasma
as a function of temperature (see figure 7.2). The method involves modelling the fluid behavior of
a QGP and tuning the parameters of this model so that the output is consistent with data from
the LHC and RHIC. A similar analysis where magnetic field dependence instead of temperature
dependence is considered would be extremely useful to check the holographic predictions presented
in this thesis and in previous works.



Appendix A

Zeroth order EOM

We work with the following Lagrangian:

L =
√
−g(R− 1

2
(∂φ)2 + Vg − xVf

√
D) (A.1)

With:

D = det(δνµ + wFµαg
αν) (A.2)

Fµν = ∂[µAν] (A.3)

Aµ = {0,−1

2
Bmy,

1

2
Bmx, 0, 0} (A.4)

This yields the following Einstein equations:

Rµν −
1

2
gµνR−

1

2
∂µφ∂νφ+

1

4
gµν(∂φ)2 − 1

2
gµνVg + x

Vf
2

(gµν
√
D − 1√

D

dD

dgµν
) (A.5)

For τ = 0, D becomes:

D = det


1 0 0 0 0
0 1 −e−2ABm 0 0
0 e−2ABm 1 0 0
0 0 0 1 0
0 0 0 0 1

 (A.6)

= 1 + w2B2
mg

11g22 = 1 + w2B2
me
−4A = 1 + w2 1

2
FµνFµν ≡ Q2 (A.7)

We also have the dilaton EOM which is redundant but is useful as a check for possible errors in your
calculations:

1√
−g

∂r

(√
−ggrr∂rφ

)
+ ∂φVg − x∂φVf

√
D − xVf

∂φD

2
√
D

= 0 (A.8)

The Einstein equations consist of an Einstein tensor Gµν and an energy-momentum tensor Tµν :

Gµν + Tµν = 0 (A.9)
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Because it is easier to work with our convention of stress-energy tensor Tµν has a sign difference
with respect to the standard energy-momentum tensor. Since the φ monotonously increases as a
function of r, we can redefine our fifth dimension to be φ. This is called the φ = r gauge, also called
the Gubser gauge [43]. From this follows an equation constraining B:

eAdr = eBdφ (A.10)

With this gauge, we get the following energy momentum tensors (i.e. the part of the Einstein
equations that does not come from the Einstein Hilbert action):

T00 = −fe2Ax
Vf
2
Q+ fe2AVg −

f2e2A−2B

4
(A.11)

T11 = x
Vf
2

e2A

Q
− e2AVg +

fe2A−2B

4
(A.12)

T33 = e2A+2Wx
Vf
2
Q− e2A+2WVg +

fe2A+2W−2B

4
(A.13)

T55 =
e2B

f
x
Vf
2
Q− e2B

f
Vg −

1

4
(A.14)

We then get five EOM, with one being redundant:

A′′ = A′ (B′ +W ′)

+
1

f

(1

3
f ′W ′ − B2

mxe
2B−4AVfw

2

6Q

)
− 1

6

(A.15)

W ′′ = W ′ (−4A′ +B′ −W ′)

+
1

f

(B2
mxe

2B−4AVfw
2

2Q
− f ′W ′

) (A.16)

f ′′ =f ′ (−4A′ +B′ −W ′) +
B2
mxe

2B−4AVfw
2

Q
(A.17)

V =e−2Bf ′ (3A′ +W ′) +
1

2
e−2Bf

(
12A′W ′ + 24A′2 − 1

)
+

xVfQ
(A.18)

0 =(4A′ +W ′ −B′ + f ′

f
)fe−2B + V ′ − xV ′fQ

− xVfe−4Aww
′B2
m

Q

(A.19)

At the horizon we find:

B2
mxe

2B(φh)−4A(φh)Vf (φh)w2(φh)

2Q(φh)
= f ′(φh)W ′(φh) (A.20)

1

3A′(φh) +W ′(φh)
= −

V ′(φh)− xV ′f (φh)Q− xVf (φh)e−4A(φh)w(φh)w′(φh)B2
m

Q(φh)

V (φh)− xVf (φh)Q(φh)
(A.21)



Appendix B

Transformations of perturbative
modes

~ξ = {ξ1, ξ2, ξ3, ξ4, ξ5} is the vector with which modes can be removed using gauge and diffeomorphism
invariance. Because the modes depend only on r and t, ~ξ can only depend on these variables as well.
For the helicity one block the modes transform in the following way:

h̃01(t, r) =h01(t, r)− iωξ1(r, t) (B.1)

So we can fix ξ1 to put h01 to zero. For the helicity zero block the modes transform the following
way:

h̃03(t, r) = h03(t, r)− iωξ3(r, t) (B.2)

h̃05(t, r) = h05(t, r) + ∂rξ0(t, r)− iωξ5(r, t)− Γ0
05

= h05(t, r) + ∂rξ0(t, r)− iωξ5(r, t) +
1

2
f2e2A−2B(2A′ +

f ′

f
)ξ0(r, t)

(B.3)

δφ̃(t, r) =δφ(t, r) + fe−2Bξ5∂rφ(r) (B.4)

We fix ξ5 to put δφ to zero. We then have ξ0 and ξ3 left to put h03 and h05 to zero. Consider the
Einstein equations at zeroth order:

The only way δAi could affect the Einstein equations is via D. For helicity 1, D+ δD0 becomes:

D + δD0 = det


1 0 0 −δȦ3(r, t) −δA′0(r, t)
0 1 −e−2ABm 0 0
0 e−2ABm 1 0 0

δȦ3(r, t) 0 0 1 −δA′3(r, t)
δA′0(r, t) 0 0 δA′3(r, t) 1

 (B.5)

For helicity 0, D + δD1 becomes:

D + δD1 = det


1 −δȦ1(r, t) 0 0 0

δȦ1(r, t) 1 −e−2ABm 0 −δA′1(r, t)
0 e−2ABm 1 0 0
0 0 0 1 0
0 δA′1(r, t) 0 0 1

 (B.6)
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From this it follows that gauge field perturbations do not give first order contribution to the pertur-
bative Einstein equations.



Appendix C

First order EOM for shear modes

C.1 Fluctuation equations
We start off with the following Ansätze:

ds2 = e2A(φ)(−f(φ)dt2 + dx2 + dy2 + e2W (φ)dz2 + 2λh12(φ)eiωtdxdy)) +
e2B(φ)

f(φ)
dφ2 (C.1)

ds2 = e2A(φ)(−f(φ)dt2 + dx2 + dy2 + e2W (φ)dz2 + 2λh13(φ)eiωtdxdz)) +
e2B(φ)

f(φ)
dφ2 (C.2)

Formulated differently, when considering a metric perturbation of gµν + δgµν , we work with the
mode: hµν = g11δgµν . The EOM have the following structure:

δGµν + δTµν = 0 (C.3)

The first order contribution from the energy-momentum tensor δTµν to the first order EOM is as
follows:

δT12 =
1

4
e2Aλh12(

2xVf
Q

+ e−2Bf − 2Vg) (C.4)

δT13 =
1

4
e2Aλh13(2xVfQ+ e−2Bf − 2Vg) (C.5)

Note that the Vf term is different because for h12 you also have to consider functional differentiation
of the term g12g21F12F21.

−fe2A−2B(4A′h′12 −B′h′12 + h′′12 + h′12W
′)− e2A−2Bf ′h′12 −

ω2h12

f
= 0 (C.6)

−fe2A−2B(4A′h′13 −B′h′13 + h′′13 − h′13W
′)− e2A−2Bf ′h′13 + e2AVf

Q2 − 1

Q
h13 −

ω2h13

2f
= 0 (C.7)

This result is consistent with [29].
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C.2 Perpendicular shear viscosity
We will first calculate the shear viscosity η⊥, which corresponds to the mode h12, as the EOM for
this mode are already massless. At the horizon the EOM reduce to:

fh′′12 + f ′h′12 +
ω2h12e

−2A+2B

f
≈ 0 (C.8)

This can be solved by plugging in the trial solutions h12 = c±12(φh − φ)±ρ. Which gives: ρ = iω
4πT .

This is a universal result for any perturbative mode breaking thermodynamic equilibrium [52]. We
will therefore find the following solution to the EOM at the horizon for all the metric perturbations.

hij ≈ c+ij(φh − φ)
iω

4πT + c−ij(φh − φ)−
iω
4π (C.9)

Before we solve this EOM we will first write down the boundary conditions. Our horizon is a future
horizon, dual to positive temperature, which requires in-falling boundary conditions for regularity
at the horizon. This means that c+12 = 0. For convenience we will now define c−12 ≡ c12. Our second
boundary is simply the requirement that the mode converges to one near the boundary. For the h12

mode we can work this out analytically. We do this by solving the EOM twice. We solve it once for
an infinitesimal distance from the horizon for ω 6= 0, as we have already done. Then we solve it for
the entire bulk for ω = 0, which gives:

h12 = a12 + b12

∫ φ

0

dφ′
e−4A−W+B

f
(C.10)

If we take the limit ω → 0, we can equate these two solutions near the horizon:

h12 ≈ a12 +
b12

f ′(φh)
e−4A(φh)+B(φh)−W (φh) log(φh − φ) ≈ c12

(
1− iω

4πT
log(φh − φ)

)
(C.11)

From our boundary condition at the boundary we then know that a12 = c12 = 1. As explained in
section 4.2, to get to the Green’s function, we also need to find the flux. We can do this by expanding
the Lagrangian up to second order:

L2 =
1

2

∂2

∂λ2
e4A+B+WR(λ) , λ→ 0 (C.12)

From equation 4.20 we know that we only need to look at double derivative terms, from the other
terms do not contribute to the end result.

L12 =
1

2f
e−B+5W (e2(A+B(3ḣ2

12 + 4h12ḧ12) + e4Af2(−3h′212 − 4h12h
′′
12)) + non-contributing terms

(C.13)

We subtract total derivatives:

L̂12 =
1

2f
e−B+5W (−e4Af2h′212 + e2(A+B)ḣ2

12) + non-contributing terms (C.14)

We thus get:

F12 = − i
2
fe4A−B+3W (h∗12h

′
12 − h∗′12h12) (C.15)



APPENDIX C. FIRST ORDER EOM FOR SHEAR MODES 60

We can confirm that this is the correct result by looking at whether the flux is conserved (see
equation 4.21). At the horizon we can simplify in the following way:

F12 = − i
2
fe4A−B+3W (h∗12h

′
12 − h∗′12h12)

= − i
2
fe4A−B+3W

(
c∗12

(
1 +

iω

4πT
log(φh − φ)

))
∂φ

(
c12

(
1− iω

4πT
log(φh − φ)

))
+
i

2
∂φ

(
c∗12

(
1 +

iω

4πT
log(φh − φ)

))(
c12

(
1− iω

4πT
log(φh − φ)

))
= − i

2
fe4A−B+3W

(
c∗12

(
1 +

iω

4πT
log(φh − φ)

))(
c12

iω

4πT

1

φh − φ

)
− i

2

(
c∗12

iω

4πT

1

φh − φ

)(
c12

(
1− iω

4πT
log(φh − φ)

))
= |c12|2ωe3A+W

(C.16)

We conclude:

− lim
ω→0

Im
1

ω
G⊥ = M2N3

cF12 →
η⊥
s

=
1

4π
(C.17)

As expected, the shear viscosity perpendicular to the magnetic field is unaffected by the symmetry
breaking. We can also derive this result, as is done in [59], [58], by writing equation C.6 in the
following way:

∂φ(
√
−gPg55∂φh13)−

√
−gNω2g00h12 = 0 (C.18)

With P and N functions that depend on φ only, in this case we have P = 1 and N = −1. EOM
that have this structure have a corresponding action that looks like this:

S = −M3N2
c

∫
dx5√−g

(1

2
Pgrr(∂φh12)2 − 1

2
Ngtt(∂th12)2

)
(C.19)

From this Lagrangian, you can immediately extract the shear viscosity via a Green’s function the
following way:

η⊥ = − lim
ω→0

G⊥
iω

= lim
ω→0

Π

iωh12

∣∣∣
φ→−∞

(C.20)

Because of the way the action is written down you don’t have to filter out the real part as is done
in equation C.17. Π is the canonical momentum given by:

Π =
δS

δ∂rh12
= −M3N2

c

√
−gg55∂φh12 (C.21)

From equation C.18, we also find:

∂φΠ =

√
−g

M3N2
c

ω2g00h12 (C.22)

Equivalent to using the masslessness of our EOM in the previous method, we now use that from
equation C.18 it follows that that ∂φΠ = 0, so we also have:

η⊥ = lim
ω→0

Π(φh)

iωh12(φh)
= i

M3N2
c

√
−gPg55∂φh12

ωh12

∣∣∣
φ=φh

(C.23)
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We can now write down a differential equation for η⊥:

∂φη⊥ = i lim
ω→0

(
− ∂φΠ(φh)

ωh12(φh)
+

Π(φh)∂φh12(φh)

ωh2
12(φh)

)
(C.24)

Substituting equation C.21 and C.22 gives:

∂φη⊥ = i lim
ω→0

(
−
√
−g

M3N2
c

ωg00 − M3N2
c

√
−gg55(∂φh12)2

ωh2
12

)∣∣∣
φ=φh

(C.25)

∂φη⊥ = iω

√
g55

g00

(
−
√
−g

√
g00g55

M3N2
c +

√
g00g55

−g
η2
⊥

M3N2
c

)∣∣∣
φ=φh

(C.26)

At the horizon, regularity requires that the part inside that brackets is zero, which gives:

η⊥ =

√
−g

g00g55
M3N2

c

∣∣∣
φ=φh

→ η⊥
s

=
1

4π
(C.27)

C.3 Parallel shear viscosity
For the η‖, we can choose a new perturbative mode so that the same trick can be used as was

used for the h12 mode:

h13 → e2WZ13 (C.28)

As explained in Appendix D, because e2W converges to unity at the boundary this does not change
the end result. From this rescaling it follows that we work with the following Ansatz:

ds2 = e2A(φ)(−f(φ)dt2 + dx2 + dy2 + e2W (φ)dz2 + 2λZ13(φ)eiωtdxdz)) +
e2B(φ)

f(φ)
dφ2 (C.29)

So we have: Z13 = δg13g
33. This gives the following EOM:

−e2A−2B(f(4A′Z ′13 −B′Z ′13 + Z ′′13 + 3Z ′13W
′) + f ′Z ′13)− ω2Z13

f
(C.30)

The second order expanded Lagrangian is as follows:

L̂13 =
1

2f
e4A−B+3W (−f2Z ′213 + e2B−2AŻ2

13) + non-contributing terms (C.31)

So we find:

F13 = ωc213e
3A(φh)+3W (φh) →

η‖

s
=
e2W (φh)

4π
(C.32)

We could define this result in terms of the horizon geometry in the following way:

η‖

s
=

1

4π

gzz
gxx

∣∣∣
φ=φh

(C.33)

When writing the EOM of equation C.30 in the form of equation C.18, we get P = e2W (φh) and we
get the identical result.



Appendix D

Rescaling invariance of perturbative
modes

Consider the mode ψ and the rescaled mode ψ∗ = ρψ, with ρ being a factor that converges to unity
at the boundary. ψ and ψ∗ is dual to O and O∗. At the boundary we have ψ(rb) = ψ∗(rb), so using
the GKPW rule:

− δ

δψ

δ

δψ
e−iSgrav

∣∣∣
r→rb

= GOO = − δ

δψ∗
δ

δψ∗
e−iSgrav

∣∣∣
r→rb

= GO∗O∗ (D.1)

The transport coefficient σ that relates ψ to 〈O〉 is given by:

σ = − lim
ω→0

1

ω
ImGOO = i lim

ω→0

1

ω
KF(rb) = − lim

ω→0

1

ω
ImGO∗O∗ = lim

ω→0

1

ω
K∗F∗(rb) (D.2)

K and K∗ are constants. For the dual operator we can also conclude O = O∗. Because the flux is
conserved, we have:

dF
dr

=
dF∗

dr
= 0 (D.3)

So:

lim
ω→0

1

ω
KF(rh) = lim

ω→0

1

ω
K∗F∗(rh) (D.4)

So we can rescale our modes with any factor that becomes unity at the boundary, without it changing
the result for the transport coefficient we wish to calculate.
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Appendix E

Kaluza-Klein reduction

In [84], Rebhan and Steineder use a Kaluza Klein reduction of an gravitational background with
anisotropy caused by an axion, similar to section 3.6. In this Appendix we summarize computations
similar to [69] that leads to this result. With Gµν being the non-compactified metric of our 5-
dimensional theory, we perform the following Kaluza-Klein reduction:

ds2 = −G00dt
2 +G11(dx2 + dy2) +G33dz

2 +Grrdr
2

→ −g00dt
2 + g11dx

2 + g33dz
2 + g55dr

2
(E.1)

After this dimensional reduction, small metric perturbations now are gauge fields:

Ai = g11hyi i ∈ {0, 1, 3, 5} (E.2)

The Maxwell equations that will be used in this derivation, are the ones that follow from variation
with respect to A0 and A5, components of the gauge fields are not coupled to the matter terms.
This gauge field is also called a graviphoton, whose dynamics is governed by the Maxwell action:

Sgauge ∝
∫
d5x
√
−g
( 1

g2
eff

FµνFµν

)
(E.3)

geff is an r-dependent factor that follows from y-dependant part of the metric. This yields the
following Maxwell equations:

∂µ

( 1

g2
eff

√
−gFµν

)
= 0 (E.4)

Because the background metric only depends on r, we can work with a plane wave solution with
momentum oriented towards the x-direction: Aµ = Aµ(t, r)eikx. We also work with the radial gauge
Ar = 0. From the Maxwell action the Poisson equation (variation with respect to A5) follows. Using
the Maxwell equation that follows from variation with respect to A0 KSS show that if the distance
from the horizon is not exponentially small compared to T 2

k2 we have:

F01 = ∂0A1 − ∂1A0 ≈ −∂1A0 (E.5)

For k → 0, the adiabatic approximation becomes exact and the Poisson equation then becomes:

∂r(

√
−ggrrg00

g2
eff

∂rA0) = 0 (E.6)

63



APPENDIX E. KALUZA-KLEIN REDUCTION 64

This equation has the following solution:

A0(r) = C0

∫ rh

0

dr′
g00(r′)grr(r

′)g2
eff (r′)√

−g(r′)
(E.7)

For the same limit as used in equation E.5, KSS show that at zeroth order a momentum dependent
A0 has the same form:

A0(r, t, x) = C0(t)eikx
∫ rh

0

dr′
g00(r′)grr(r

′)g2
eff (r′)√

−g(r′)
+O

(T 2

k2

)
(E.8)

We also find that:

F05 = −∂rA0 ≈ C0(t)eikx
g00grrg

2
eff (r′)

√
−g

∣∣∣
r=rh

(E.9)

We thus get:

A0

F05

∣∣∣∣∣
r≈rh

≈
√
−g

g00g55g2
eff

∣∣∣
r=rh

∫ rh

0

dr′
g00(r′)g55(r′)g2

eff (r′)√
−g(r′)

(E.10)

Going back to the Maxwell action, we can require gauge invariance and find that the membrane
current at the horizon is given by [58]:

J1
mb = −

√
−g

g2
eff

√
g55g

55g11F51

∣∣∣
r=rh

(E.11)

J0
mb = −

√
−g

g2
eff

√
g55g

55g00F50

∣∣∣
r=rh

(E.12)

At the horizon, we require regularity, which means that there can be no divergences in the metric.
Going to the Eddington-Finkelstein coordinates, one finds that this means that we want the following
to hold for the Eddington-Finkelstein coordinate dv:

dv = dt+

√
g55(rh)

g00(rh)
dr = 0 (E.13)

From this we get:

J1
mb = −

√
−g√g55g

11g55F51 ≈
√
−g√g00g

11g55∂1A0 (E.14)

Using equation E.10:

J1
mb ≈ −

√
−g 1
√
g00

g11
( A0

F05

)
∂1F05

∣∣∣
r=rh

(E.15)

Using, equation E.12 We then get get the following equation for our membrane current, which is
dual to Fick’s law for the fluid:

J1
mb = −Dx∂xJ

0
mb

Dx =

√
−g

g11
√
g00g55g2

eff

∣∣∣
r=rh

∫ rh

0

dr′
g00(r′)g55(r′)g2

eff (r′)√
−g(r′)

=
η⊥

ε+ P⊥

(E.16)
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Here ε is the energy density and P⊥ is the pressure orthogonal to the magnetic field. Since it this
result is k independent, it is exact. For a perfect fluid, i.e. at zeroth order, we have:

〈Tµν〉 = diag(ε, P⊥, P⊥, P‖) (E.17)

In units of energy density, the anisotropy is given by:

P⊥ − P‖ = χaa
2 (E.18)

Here χa is the anisotropic susceptibility [49]. We also have the following thermodynamic identities
for an anisotropic fluid with zero chemical potential [20] [24]:

f = −P⊥ (E.19)
g = −P‖ (E.20)
ε = f + Ts (E.21)

= g + Ts− χaa2 (E.22)

Here f and g are the Helmholtz and Gibbs free energy density respectively. This leads to: ε+P⊥ =
Ts.

η⊥
Ts

=

√
−g

g11
√
g00g55g2

eff

∣∣∣
r=rh

∫ rh

0

dr′
g00(r′)g55(r′)g2

eff (r′)√
−g(r′)

(E.23)

Taking k in the z-direction, we find similarly:

Jzmb = −Dz∂xJ
0
mb

Dz =

√
−g

g33
√
g00g55g2

eff

∣∣∣
r=rh

∫ rh

0

dr′
g00(r′)g55(r′)g2

eff (r′)√
−g(r′)

=
η‖

ε+ P⊥

(E.24)

Which yields:

η‖

Ts
=

√
−g

g33
√
g00g55g2

eff

∣∣∣
r=rh

∫ rh

0

dr′
g00(r′)g55(r′)g2

eff (r′)√
−g(r′)

(E.25)

One can find geff , by expanding the non-Kaluza Klein reduced Einstein Hilbert action at at first
order for Ai = G11h0i. KSS find:

√
−GR → −1

4

1

g2
eff

√
−gFµνFµν + tensor and scalar terms (E.26)

Defining the result for geff and rescaling to the non-reduced metric and using equation 3.12, we
find:

η⊥
s

=
Ts

4πM2N3
c

∫ rh

0

dr′
G00(r′)G55(r′)

G11(r′)
√
−G(r′)

(E.27)

η‖

s
=

Ts

4πM2N3
c

G11

G33

∣∣∣
r=rh

∫ rh

0

dr′
G00(r′)G55(r′)

G11(r′)
√
−G(r′)

(E.28)

Rebhan and Steineder confirm in [84] that these results are consistent with the results given in
section 1.6. Using these results, we then have the following identity for the temperature:

T =
M2N3

c

s

(∫ rh

0

dr′
G00(r′)G55(r′)

G11(r′)
√
−G(r′)

)−1

(E.29)



Appendix F

First order EOM for bulk modes

Since only the first order of gµν + δgµν is relevant, it can also be written in a form that is simpler
for these calculations:

ds2 = e2A(φ)(−f(φ)(1 + λh00(φ)eiωt)dt2 + (1 + λh11(φ)eiωt)(dx2 + dy2)

+ (1 + λh33(φ)eiωt)2e2W (φ)dz2) + (1 + λh55(φ)eiωt)
e2B(φ)

f(φ)
dφ2

(F.1)

Now we look at the contributions from the energy-momentum tensor. For this, we first focus on the
flavor part δT fµν , i.e. the part of the perturbative energy-momentum tensor that comes from the
flavor sector:

δGµν + δT fµν + δT gµν = 0 (F.2)

To keep it simple we will take g11 = g22 for parts where there is no derivative with respect to g11:
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T fµν + δT fµν = x
Vf
2

(
(gµν + δgµν)(

√
D + δ

√
D)− 1√

D + δ
√
D

∂(
√
D + δ

√
D)

∂gµν

)
= x

Vf
2

(
(gµν + δgµν)

√
1 + w2B2

mg
11g11 + 2w2B2

mδg
11g11

− 1√
1 + w2B2

mg
11g11 + 2w2B2

mδg
11g11

· d(w2B2
mg

11g22 + w2B2
mδg

11g22 + w2B2
mδg

22g11)

dgµν

)
= x

Vf
2

(
(gµν + δgµν)(

√
1 + w2B2

mg
11g11 +

w2B2
mδg

11g11√
1 + w2B2

mg
11g11

)

−
( 1√

1 + w2B2
mg

11g11
− w2B2

mδg
11g11√

(1 + w2B2
mg

11g11)3

)
· (w2B2

mg
11 + w2B2

mδg
11)(δ1

µδ
1
ν + δ2

µδ
2
ν)
)

= x
Vf
2

(
δgµν

√
1 + w2B2

mg
11g11 + gµν

w2B2
mδg

11g11√
1 + w2B2

mg
11g11

−
( 1√

1 + w2B2
mg

11g11
w2B2

mδg
11

− w2B2
mδg

11g11√
(1 + w2B2

mg
11g11)3

w2B2
mg

11
)

(δ1
µδ

1
ν + δ2

µδ
2
ν)
)

(F.3)

Now we use δg11 = −h11e
−2A to write out the individual contributions to the Einstein equations at

first order:

δT f00 = −xVf
2

(h00fe
2A
√

1 + w2B2
me
−4A − fe−2A w2B2

mh11√
1 + w2B2

me
−4A

) (F.4)

δT f11 = x
Vf
2

(h11e
2A
√

1 + w2B2
me
−4A − e−2A w2B2

mh11√
1 + w2B2

me
−4A

− (
1√

1 + w2B2
me
−4A

(−w2B2
mh11)e−2A +

w2B2
mh11√

(1 + w2B2
me
−4A)3

(w2B2
me
−6A)))

(F.5)

δT f33 = x
Vf
2

(h33e
2A+2W

√
1 + w2B2

me
−4A − e−2A+2W w2B2

mh11√
1 + w2B2

me
−4A

) (F.6)

δT f55 = x
Vf
2

(
1

f
h55e

2B
√

1 + w2B2
me
−4A − 1

f
e2B−4A w2B2

mh11√
1 + w2B2

me
−4A

) (F.7)

Simplifying:
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δT f00 = −xVf
2

(fe2Ah00Q− fe−2Aw
2B2

mh11

Q
) (F.8)

δT f11 = x
Vf
2

h11e
2A(2Q2 − 1)

Q3
(F.9)

δT f33 = x
Vf
2

(h33e
2A+2WQ− e−2A+2W w2B2

mh11

Q
) (F.10)

δT f55 = x
Vf
2f

(h55e
2BQ− e2B−4Aw

2B2
mh11

Q
) (F.11)

From the glue sector we get:

δT g00 =
f

2
e2AVg −

f2

4
e2A−2B(h00 − h55)

δT g11 = −1

2
e2AVg +

f

4
e2A−2B(h11 − h55)

δT g33 = −1

2
e2A+2WVg +

f

4
e2A+2W−2B(h33 − h55)

δT g55 = −1

2
e2BVg

Now we can derive the fluctuation equations, the procedure is as follows: use the 05 Einstein equation
to derive and expression for h55, then use the 55 Einstein equation to get an expression for h′00, and
then use this to get two coupled differential equations with only h11 and h33 in it from the 11 and
33 Einstein equations. We solve for g′′11 and g′′33. The 00 Einstein equation becomes trivial upon
substitution of the equation for the h55 mode and the background equations. What we get is:

h55 =
−2h11f

′ − h33f
′ + 4fh′11 + 2fh′33 + 2fh33W

′

2f (3A′ +W ′)
(F.12)

h′00 =
2

3A′ +W ′
(− 1

8f2(3A′ +W ′)
(2f ′(3A′ +W ′) + f(12A′W ′ + 24A′2 − 1))(2h11f

′

+ h33(f ′ − 2fW ′)− 2f(2h′11 + h′33))

− 4B2
mxfh11Vfw

2e2B−4A√
B2
me
−4Aw2 + 1

+ 2ff ′(2h′11 + h′33)− 3A′h′11

− 3

2
A′h′33 −

ω2e2B−2A(2h11 + h33)

2f2
− h′11W

′)

(F.13)

This is the g′′33 equation:
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(F.14)
1

8fQ3w(3A′ +W ′)3
(e−2B(−72e2A+2B+2Wxfg11VfwA

′3Q4 + 72e2A+2Bxfg33VfwA
′3Q4

− 24e2A+2B+2Wxfg11VfwA
′W ′2Q4 − 8e2A+2Bxfg33VfwA

′W ′2Q4

+ 4e2A+2B+2Wxfg11wV
′
fW

′2Q4 + 4e2A+2B+2Wxfg11Vfw
′W ′2Q4

+ 12e2A+2B+2Wxfg11VfwA
′Q4 + 6e2A+2Bxfg33VfwA

′Q4 − 24e2A+2B+2Wxg11VfwA
′2f ′Q4

− 12e2A+2Bxg33VfwA
′2f ′Q4 + 48e2A+2B+2WxfVfwA

′2g′11Q
4 + 24e2A+2BxfVfwA

′2g′33Q
4

+ 36e2A+2B+2Wxfg11wA
′2V ′fQ

4 + 36e2A+2B+2Wxfg11VfA
′2w′Q4

− 96e2A+2B+2Wxfg11VfwA
′2W ′Q4 + 4e2A+2B+2Wxfg11VfwW

′Q4

+ 2e2A+2Bxfg33VfwW
′Q4 − 8e2A+2B+2Wxg11VfwA

′f ′W ′Q4 − 4e2A+2Bxg33VfwA
′f ′W ′Q4

+ 16e2A+2B+2WxfVfwA
′g′11W

′Q4 + 8e2A+2BxfVfwA
′g′33W

′Q4

+ 24e2A+2B+2Wxfg11wA
′V ′fW

′Q4 + 24e2A+2B+2Wxfg11VfA
′w′W ′Q4

+ 72e2B+2Wω2g11wA
′3Q3 − 72e2Bω2g33wA

′3Q3 − 4e2Af2g33wW
′3Q3

+16e2Afg33wA
′f ′W ′3Q3+24e2A+2W f2wA′g′11W

′3Q3−96e2Af2g33wA
′3W ′2Q3+16e2A+2W g11wA

′f ′2W ′2Q3

+8e2Ag33wA
′f ′2W ′2Q3+24e2B+2Wω2g11wA

′W ′2Q3−28e2Af2g33wA
′W ′2Q3−4e2Af2g33wB

′W ′2Q3

+96e2A+2W fg11wA
′2f ′W ′2Q3+96e2Afg33wA

′2f ′W ′2Q3+4e2A+2W fg11wf
′W ′2Q3+2e2Afg33wf

′W ′2Q3

−12e2A+2W f2wg′11W
′2Q3−24e2A+2W f2wA′B′g′11W

′2Q3−8e2A+2W fwA′f ′g′11W
′2Q3−24e2Af2wA′2g′33W

′2Q3

+2e2Af2wg′33W
′2Q3−16e2AfwA′f ′g′33W

′2Q3−12e2B+2Wω2g11wA
′Q3−6e2Bω2g33wA

′Q3+2e2A+2W fg11wf
′Q3

+e2Afg33wf
′Q3−12e2A+2W fg11wA

′B′f ′Q3−6e2Afg33wA
′B′f ′Q3+288e2A+2W f2wA′4g′11Q

3

−48e2A+2W f2wA′2g′11Q
3−4e2A+2W f2wg′11Q

3−72e2A+2W f2wA′3B′g′11Q
3+36e2A+2W f2wA′B′g′11Q

3

+72e2A+2W fwA′3f ′g′11Q
3−12e2A+2W fwA′f ′g′11Q

3−288e2Af2wA′4g′33Q
3−24e2Af2wA′2g′33Q

3

−2e2Af2wg′33Q
3+72e2Af2wA′3B′g′33Q

3+18e2Af2wA′B′g′33Q
3−72e2AfwA′3f ′g′33Q

3−6e2AfwA′f ′g′33Q
3

+96e2B+2Wω2g11wA
′2W ′Q3−24e2Bω2g33wA

′2W ′Q3+48e2A+2W g11wA
′2f ′2W ′Q3+24e2Ag33wA

′2f ′2W ′Q3

−4e2B+2Wω2g11wW
′Q3−2e2Bω2g33wW

′Q3 +2e2Af2g33wW
′Q3−12e2Af2g33wA

′B′W ′Q3

+192e2A+2W fg11wA
′3f ′W ′Q3+96e2Afg33wA

′3f ′W ′Q3−4e2A+2W fg11wA
′f ′W ′Q3−2e2Afg33wA

′f ′W ′Q3

−4e2A+2W fg11wB
′f ′W ′Q3−2e2Afg33wB

′f ′W ′Q3+72e2A+2W f2wA′3g′11W
′Q3−20e2A+2W f2wA′g′11W

′Q3

−96e2A+2W f2wA′2B′g′11W
′Q3+12e2A+2W f2wB′g′11W

′Q3−4e2A+2W fwf ′g′11W
′Q3−72e2Af2wA′3g′33W

′Q3

+14e2Af2wA′g′33W
′Q3+24e2Af2wA′2B′g′33W

′Q3+6e2Af2wB′g′33W
′Q3−72e2AfwA′2f ′g′33W

′Q3

−2e2Afwf ′g′33W
′Q3+72e2A+2W f2wA′3g′′11Q

3+24e2A+2W f2wA′W ′2g′′11Q
3−12e2A+2W f2wA′g′′11Q

3

+96e2A+2W f2wA′2W ′g′′11Q
3−4e2A+2W f2wW ′g′′11Q

3−72e2Af2wA′3g′′33Q
3−6e2Af2wA′g′′33Q

3

−24e2Af2wA′2W ′g′′33Q
3−2e2Af2wW ′g′′33Q

3−72e2A+2Bxfg33VfwA
′3Q2+16e2A+2B+2Wxfg11VfwA

′W ′2Q2

+8e2A+2Bxfg33VfwA
′W ′2Q2−4e2A+2B+2Wxfg11wV

′
fW

′2Q2−12e2A+2B+2Wxfg11VfwA
′Q2

− 6e2A+2Bxfg33VfwA
′Q2 + 24e2A+2B+2Wxg11VfwA

′2f ′Q2 + 12e2A+2Bxg33VfwA
′2f ′Q2

−48e2A+2B+2WxfVfwA
′2g′11Q

2−24e2A+2BxfVfwA
′2g′33Q

2−36e2A+2B+2Wxfg11wA
′2V ′fQ

2

+48e2A+2B+2Wxfg11VfwA
′2W ′Q2−4e2A+2B+2Wxfg11VfwW

′Q2−2e2A+2Bxfg33VfwW
′Q2

+8e2A+2B+2Wxg11VfwA
′f ′W ′Q2+4e2A+2Bxg33VfwA

′f ′W ′Q2−16e2A+2B+2WxfVfwA
′g′11W

′Q2

−8e2A+2BxfVfwA
′g′33W

′Q2−24e2A+2B+2Wxfg11wA
′V ′fW

′Q2+72e2A+2B+2Wxfg11VfwA
′3

+8e2A+2B+2Wxfg11VfwA
′W ′2−4e2A+2B+2Wxfg11Vfw

′W ′2−36e2A+2B+2Wxfg11VfA
′2w′

+ 48e2A+2B+2Wxfg11VfwA
′2W ′ − 24e2A+2B+2Wxfg11VfA

′w′W ′)) = 0
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The g′′11 equation:

(F.15)
1

8fQ3w(3A′ +W ′)3
(e−2B−2W (36e2A+2B+2Wxfg11VfwA

′3Q4

− 36e2A+2Bxfg33VfwA
′3Q4 + 12e2A+2B+2Wxfg11VfwW

′3Q4

+ 4e2A+2Bxfg33VfwW
′3Q4 + 60e2A+2B+2Wxfg11VfwA

′W ′2Q4

+ 4e2A+2Bxfg33VfwA
′W ′2Q4 + 4e2A+2B+2Wxg11Vfwf

′W ′2Q4

+ 2e2A+2Bxg33Vfwf
′W ′2Q4 − 8e2A+2B+2WxfVfwg

′
11W

′2Q4 − 4e2A+2BxfVfwg
′
33W

′2Q4

+ 4e2A+2B+2Wxfg11wV
′
fW

′2Q4 + 4e2A+2B+2Wxfg11Vfw
′W ′2Q4

+ 12e2A+2B+2Wxfg11VfwA
′Q4 + 6e2A+2Bxfg33VfwA

′Q4 + 12e2A+2B+2Wxg11VfwA
′2f ′Q4

+ 6e2A+2Bxg33VfwA
′2f ′Q4 − 24e2A+2B+2WxfVfwA

′2g′11Q
4 − 12e2A+2BxfVfwA

′2g′33Q
4

+ 36e2A+2B+2Wxfg11wA
′2V ′fQ

4 + 36e2A+2B+2Wxfg11VfA
′2w′Q4

+ 84e2A+2B+2Wxfg11VfwA
′2W ′Q4 − 36e2A+2Bxfg33VfwA

′2W ′Q4

+ 4e2A+2B+2Wxfg11VfwW
′Q4 + 2e2A+2Bxfg33VfwW

′Q4

+16e2A+2B+2Wxg11VfwA
′f ′W ′Q4+8e2A+2Bxg33VfwA

′f ′W ′Q4−32e2A+2B+2WxfVfwA
′g′11W

′Q4

−16e2A+2BxfVfwA
′g′33W

′Q4+24e2A+2B+2Wxfg11wA
′V ′fW

′Q4+24e2A+2B+2Wxfg11VfA
′w′W ′Q4

−8e2Afg33wf
′W ′4Q3−12e2A+2W f2wg′11W

′4Q3−36e2B+2Wω2g11wA
′3Q3+36e2Bω2g33wA

′3Q3

+48e2Af2g33wA
′2W ′3Q3−8e2A+2W g11wf

′2W ′3Q3−4e2Ag33wf
′2W ′3Q3−12e2B+2Wω2g11wW

′3Q3

−48e2A+2W fg11wA
′f ′W ′3Q3−56e2Afg33wA

′f ′W ′3Q3−12e2A+2W f2wA′g′11W
′3Q3+12e2A+2W f2wB′g′11W

′3Q3

+4e2A+2W fwf ′g′11W
′3Q3+12e2Af2wA′g′33W

′3Q3+8e2Afwf ′g′33W
′3Q3+48e2Af2g33wA

′3W ′2Q3

−32e2A+2W g11wA
′f ′2W ′2Q3−16e2Ag33wA

′f ′2W ′2Q3−60e2B+2Wω2g11wA
′W ′2Q3+12e2Bω2g33wA

′W ′2Q3

− 16e2Af2g33wA
′W ′2Q3 − 4e2Af2g33wB

′W ′2Q3 − 144e2A+2W fg11wA
′2f ′W ′2Q3

−96e2Afg33wA
′2f ′W ′2Q3+8e2A+2W fg11wf

′W ′2Q3+4e2Afg33wf
′W ′2Q3−36e2A+2W f2wA′2g′11W

′2Q3

−20e2A+2W f2wg′11W
′2Q3+60e2A+2W f2wA′B′g′11W

′2Q3+4e2A+2W fwA′f ′g′11W
′2Q3+48e2Af2wA′2g′33W

′2Q3

−2e2Af2wg′33W
′2Q3−12e2Af2wA′B′g′33W

′2Q3+44e2AfwA′f ′g′33W
′2Q3−12e2B+2Wω2g11wA

′Q3

−6e2Bω2g33wA
′Q3+2e2A+2W fg11wf

′Q3+e2Afg33wf
′Q3−12e2A+2W fg11wA

′B′f ′Q3−6e2Afg33wA
′B′f ′Q3

−144e2A+2W f2wA′4g′11Q
3−48e2A+2W f2wA′2g′11Q

3−4e2A+2W f2wg′11Q
3+36e2A+2W f2wA′3B′g′11Q

3

+36e2A+2W f2wA′B′g′11Q
3−36e2A+2W fwA′3f ′g′11Q

3−12e2A+2W fwA′f ′g′11Q
3+144e2Af2wA′4g′33Q

3

−24e2Af2wA′2g′33Q
3−2e2Af2wg′33Q

3−36e2Af2wA′3B′g′33Q
3+18e2Af2wA′B′g′33Q

3+36e2AfwA′3f ′g′33Q
3

−6e2AfwA′f ′g′33Q
3−84e2B+2Wω2g11wA

′2W ′Q3+48e2Bω2g33wA
′2W ′Q3−24e2A+2W g11wA

′2f ′2W ′Q3

−12e2Ag33wA
′2f ′2W ′Q3−4e2B+2Wω2g11wW

′Q3−2e2Bω2g33wW
′Q3+2e2Af2g33wW

′Q3−12e2Af2g33wA
′B′W ′Q3

−96e2A+2W fg11wA
′3f ′W ′Q3−48e2Afg33wA

′3f ′W ′Q3+8e2A+2W fg11wA
′f ′W ′Q3+4e2Afg33wA

′f ′W ′Q3

−4e2A+2W fg11wB
′f ′W ′Q3−2e2Afg33wB

′f ′W ′Q3−180e2A+2W f2wA′3g′11W
′Q3−44e2A+2W f2wA′g′11W

′Q3

+84e2A+2W f2wA′2B′g′11W
′Q3+12e2A+2W f2wB′g′11W

′Q3−36e2A+2W fwA′2f ′g′11W
′Q3−4e2A+2W fwf ′g′11W

′Q3

+180e2Af2wA′3g′33W
′Q3+2e2Af2wA′g′33W

′Q3−48e2Af2wA′2B′g′33W
′Q3+6e2Af2wB′g′33W

′Q3

+72e2AfwA′2f ′g′33W
′Q3−2e2Afwf ′g′33W

′Q3−36e2A+2W f2wA′3g′′11Q
3−12e2A+2W f2wW ′3g′′11Q

3

−60e2A+2W f2wA′W ′2g′′11Q
3−12e2A+2W f2wA′g′′11Q

3−84e2A+2W f2wA′2W ′g′′11Q
3−4e2A+2W f2wW ′g′′11Q

3

+36e2Af2wA′3g′′33Q
3+12e2Af2wA′W ′2g′′33Q

3−6e2Af2wA′g′′33Q
3+48e2Af2wA′2W ′g′′33Q

3−2e2Af2wW ′g′′33Q
3

+ 36e2A+2Bxfg33VfwA
′3Q2 − 8e2A+2B+2Wxfg11VfwW

′3Q2 − 4e2A+2Bxfg33VfwW
′3Q2

− 32e2A+2B+2Wxfg11VfwA
′W ′2Q2 − 4e2A+2Bxfg33VfwA

′W ′2Q2

−4e2A+2B+2Wxg11Vfwf
′W ′2Q2−2e2A+2Bxg33Vfwf

′W ′2Q2+8e2A+2B+2WxfVfwg
′
11W

′2Q2

+4e2A+2BxfVfwg
′
33W

′2Q2−4e2A+2B+2Wxfg11wV
′
fW

′2Q2−12e2A+2B+2Wxfg11VfwA
′Q2−6e2A+2Bxfg33VfwA

′Q2

−12e2A+2B+2Wxg11VfwA
′2f ′Q2−6e2A+2Bxg33VfwA

′2f ′Q2+24e2A+2B+2WxfVfwA
′2g′11Q

2

+12e2A+2BxfVfwA
′2g′33Q

2−36e2A+2B+2Wxfg11wA
′2V ′fQ

2−24e2A+2B+2Wxfg11VfwA
′2W ′Q2

+ 36e2A+2Bxfg33VfwA
′2W ′Q2 − 4e2A+2B+2Wxfg11VfwW

′Q2 − 2e2A+2Bxfg33VfwW
′Q2

−16e2A+2B+2Wxg11VfwA
′f ′W ′Q2−8e2A+2Bxg33VfwA

′f ′W ′Q2+32e2A+2B+2WxfVfwA
′g′11W

′Q2

+16e2A+2BxfVfwA
′g′33W

′Q2−24e2A+2B+2Wxfg11wA
′V ′fW

′Q2−36e2A+2B+2Wxfg11VfwA
′3

−4e2A+2B+2Wxfg11VfwW
′3−28e2A+2B+2Wxfg11VfwA

′W ′2−4e2A+2B+2Wxfg11Vfw
′W ′2

−36e2A+2B+2Wxfg11VfA
′2w′−60e2A+2B+2Wxfg11VfwA

′2W ′−24e2A+2B+2Wxfg11VfA
′w′W ′))

= 0
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At the horizon we have:

e2A−2B

2
(6A′W ′ + 6A′2 − 1)fh′′11 +

e2A−2B

2
(−2A′W ′ + 6A′2 − 1)f ′h′11 + (6A′W ′ + 6A′2 − 1)

ω2h11

2f

−e
2A−2B

4
(12A′2 + 1)fh′′33 −

e2A−2B

4
(8A′W ′ + 12A′2 + 1)f ′h′33 − (12A′2 + 1)

ω2h33

4f

+
B2
mxe

−2AVfw
2A′(2h′11 + h′33)

Q

+
e−2(A+B)

f
(2W ′f ′A′e4A +

B2
mxe

2BVff
′w2A′

Q
)(2h11 + h33) ≈ 0

(F.16)

Using equation A.20, this reduces to the following simple form:

e2A−2Bfh′′11 + e2A−2Bf ′h′11 +
ω2h11

2f

− 12A′2 + 1

(6A′W ′ + 6A′2 − 1)
(fe2A−2Bh′′33 + e2A−2Bf ′h′33 +

ω2h33

4f
) ≈ 0

(F.17)

If you split this calculation up into two calculations, for which we take the boundary condition
g11(φh) = 0 and g33(φh) = 0 respectively it reduces to the same simple horizon EOM for a fluctuation.
For the 11 equation at the horizon we get same thing:

−(6A′W ′ + 3A′2 + 3W ′2 + 1)
e2A−2B

2
fh′′11 +

e2A−2B

2

−1

2
(2A′W ′ + 3A′2 −W ′(r)2 + 1)f ′h′11 − (6A′W ′ + 3A′2 + 3W ′2 + 1)

ω2h11

2f

(6A′W ′ + 6A′2 − 1)
e2A−2B

4
(12A′2 + 1)fh′′33+

e2A−2B

4
(10A′W ′ + 6A′2 + 4W ′2 − 1)f ′h′33 + (6A′W ′ + 6A′2 − 1)

ω2h33

4f

−B
2
mxe

−2AVfw
2A′(2h′11 + h′33)

2Q

+
e−2(A+B)

f
(2W ′f ′A′e4A +

B2
mxe

2BVff
′w2A′

Q
)(2h11 + h33) ≈ 0

(F.18)

Again we get that using equation A.20, this reduces to a very simple form:

e2A−2Bfh′′11 + e2A−2Bf ′h′11 +
ω2h11

2f

− 6A′W ′ + 6A′2 − 1

6A′W ′ + 3A′2 + 3W ′2 + 1
(fe2A−2Bh′′33 + e2A−2Bf ′h′33 +

ω2h33

4f
) ≈ 0

(F.19)



Appendix G

Green’s function

G.1 Introduction
The way we calculate the Green’s function is similar to the way GPR do it [43]. We introduce the
following vector: ~hT =

(
h00 h11 h33 h55

)
, and decompose the second order expansion as follows:

S =M3N2
c

∫
d5xL (G.1)

L =L̂+ ∂tL̂t + ∂φL̂φ (G.2)

L̂ =
1

2
~̇
hTM tt~̇h+

1

2
~h′TMφφ~h′ + ~h′TMφ~h+

1

2
~hTM~h (G.3)

It follows from section 4.2, we get the following equation for the flux F :

F = − ImJ =
i

2

(
~h′∗T (Mφφ~h+Mφ~h)− (~h′∗TMφφT~h+ ~h∗MφT )~h

)
(G.4)

F is related to the Green’s function in the following way:

M3N2
cF = − lim

ω→0

1

ω
Im δijδklGRij,kl(ω) (G.5)

Where i is a spatial index. So F is the total flux, i.e. the sum over all possible Green’s function
contributions that are part of the helicity zero sector. For an isotropic fluid F is proportional to a
Wronskian: Fiso ∝ h∗11h11 − h11h

∗
11. For a coupled set of differential equations a Wronskian does

not exist so the structure of F will be more complicated. We won’t calculate all matrix elements for
all matrices, but just the terms that contribute to the Green’s function, this follows from equation
4.20 in section 4.2. We see that for fluxes relating to ζ⊥ and ζ‖, we have:

F⊥ ∝ h′∗11h11 − h′11h
∗
11|φ=φh

(G.6)

F‖ ∝ h′∗33h33 − h′33h
∗
33|φ=φh

(G.7)

We can thus use a method very similar to the GPR method. For ζm it becomes a lot more messy
because we also have a contribution to the flux ∝ h11h33 − h11h

∗
33. Furthermore, cb11c

∗
b33 is not

necessarily real, meaning that the expansion that was done earlier for shear in equation C.16, which

72
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allowed us to decompose the product of perturbative modes into real part constant for ω and an
imaginary part linear for ω now looks as follows for the one-derivative part of the mixed flux:

Fm1d ∝ −
i

2
eA−Bf(h′∗11h33 − h′11h

∗
33) + 1↔ 3

= − i
2

(
c∗11

(
1 +

iω

4πT
log(φh − φ)

))
∂φ

(
c33

(
1− iω

4πT
log(φh − φ)

))
+
i

2
∂φ

(
c∗33

(
1 +

iω

4πT
log(φh − φ)

))(
c11

(
1− iω

4πT
log(φh − φ)

))
+ 1↔ 3

= − i
2

(
c∗11

(
1 +

iω

4πT
log(φh − φ)

))(
c33

iω

4πT

1

φh − φ

)
− i

2

(
c∗33

iω

4πT

1

φh − φ

)(
c11

(
1− iω

4πT
log(φh − φ)

))
+ 1↔ 3

=
1

2
(c∗11c33 + c11c

∗
33)ω +

iω2

4πT
(c∗11c33 − c11c

∗
33) log(φh − φ) + 1↔ 3

= 2Re(c∗11c33)ω

(G.8)

For ζm a much larger fraction of the work needs to be done numerically, we will comment on this
later. For now we will will focus on ζ⊥ and ζ‖.

G.2 Orthogonal and parallel term

We can then write the L̂ with the terms that contribute for these bulk viscosities:

L̂ =
1

2
~h′TMφφ~h′ + ~h′TMφ

5 h55 + non-contributing terms (G.9)

The second order Lagrangian is calculated as follows:

L =
1

2

∂2

∂λ2

(
e4A+W+BR(λ)(1 +

λh00

2
)(1 +

λh11

2
)2(1 +

λh33

2
)(1 +

λh55

2
)
)
, λ→ 0

We perform the computations in the φ = r-gauge or Gubser gauge, however the end result will be
independent of the gauge choice. We work with the following Ansatz:

ds2 = e2A(φ)(−f(φ)(1 + λh00(φ, t))dt2 + (1 + λh11(φ, t))(dx2 + dy2)

+ (e2W (φ) + λh33(φ, t))2dz2) + (1 + λh55(φ, t)
e2B(φ)

f(φ)
dφ2

(G.10)

However it turns out that harmonic time dependence allows us to immediately discard all the terms
which involve derivatives with respect to time. For the double derivative sector we get:

Lφφ = −e
2A−B−W

4f
(2e2Af2(2h11(e2Wh′′00 + e2Wh′′11 + h′′33)

+ 2e2Wh′00h
′
11 + h′00h

′
33 + h′′00h33 − e2Wh′00h

′
55 − e2Wh′′00h55

+ h00(2e2Wh′′11 + h′′33) + 2h′11h
′
33 + 2h′′11h33 − 2e2Wh′11h

′
55

− 2e2Wh′′11h55 + e2Wh′211 − h′33h
′
55 − h′′33h55))

(G.11)
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Subtracting total derivatives yields:

(G.12)L̂φφ =
1

2
fe4A−B−W (h′00(2e2Wh′11 + h′33) + h′11(e2Wh′11 + 2h′33))

For the 55 sector So:

Mφφ = −fe4A+B+W


0 1 1

2e
−2W 0

1 1 e−2W 0
1
2e
−2W e−2W 0 0
0 0 0 0

 (G.13)

There is a factor −1 because as explained in section 4.2, we don’t look to for the boundary term
itself, but instead for the current that is induced at the horizon due to this boundary term so that
this boundary term is canceled. The result is identical to what Critelli finds in [28]. Similarly, for
the 55 sector:

L55 = − 1

4f
(h′55e

2A−B−W (−8f2e2A+2WA′h00 − 16f2e2A+2WA′h11 − 8e2Af2A′h33 − fe2A+2W f ′h00

− 2fe2A+2W f ′h11 − e2Aff ′h33 − 2f2e2A+2WW ′h00 − 4f2e2A+2WW ′h11 + 2e2Af2W ′h33))

− 1

4f
(h′55e

2A−B−W (−8f2e2A+2WA′h00 − 16f2e2A+2WA′h11 − 8e2Af2A′h33 − fe2A+2W f ′h00

− 2fe2A+2W f ′h11 − e2Aff ′h33 − 2f2e2A+2WW ′h00 − 4f2e2A+2WW ′h11 + 2e2Af2W ′h33))

(G.14)

Subtraction of the total derivatives gives:

L̂55 = − 1

4f
h′55e

2A−B−W (−8f2e2A+2WA′h00 − 16f2e2A+2WA′h11 − 8e2Af2A′h33 − fe2A+2W f ′h00

− 2fe2A+2W f ′h11 − e2Aff ′h33 − 2f2e2A+2WW ′h00 − 4f2e2A+2WW ′h11 + 2e2Af2W ′h33)

(G.15)

This term is different but the total derivative from the double derivative sector also changes:

(G.16)
LTD =

1

4
f(4A′ −B′ + f ′

f
+W ′)(e2A−B+W (2e2A(h00(−h55)− 2h11h55)))

− 1

4
(4A′ −B′ + f ′

f
−W ′)f(2e4A−B+W )(e−2Wh33h55)

So we find:

Mφ
5 = −e

2A+B+W

4


6A′h+ 2W ′h

12A′h+ 4W ′h+ 2h′

(6A′h+ h′)e−2W

0

 (G.17)

We now have:

h55 =
4fh′11 + 2fe−2Wh′33

2f (3A′ +W ′)
+ non-contributing terms (G.18)

h′00 =
f ′(3A′ +W ′)(2h′11 + e−2Wh′33) + f(2h′11(6A′2 − 2W ′2 − 1) + e−2Wh′33(6A′W ′ + 6A′2 − 1))

2f(3A′ +W ′)2

+ non-contributing terms
(G.19)
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Yielding:

F = { fe4A−B+W

4(3A′ +W ′)2

(
h33e

−2W ((12A′2 + 1)h′33e
−2W − 2h′11(6A′W ′ + 6A′2 − 1))

+2h11(2h′11(6A′W ′ + 3A′2 + 3W ′2 + 1) + h′33e
−2W (−6A′W ′ − 6A′2 + 1))

)
}φ→φh

(G.20)

Similar to Appendix C, we find:

η⊥ + ζ⊥
s

=
|c2b11|(6A′2 + 3A′W ′ + 3W ′2 + 1)

4π(3A′ +W ′)2

∣∣∣
φ=φh

(G.21)

ζ‖

s
=
|c2b33|

(
12A′2 + 1

)
4π (3A′ +W ′)

2

∣∣∣
φ=φh

(G.22)

As explained in section 4.2, this does not reduce to GPR’s result in the zero magnetic field limit.

G.3 Mix term
As mentioned, for ζm the situation is more complicated. We will need the full matrix Mφ:

L̂ =
1

2
~h′TMφφ~h′ + ~h′TMφ~h+ non-contributing terms (G.23)

With F given by [43]:

F = −Im J = − Im
(1

2
~h′∗TMφφ~h+

1

2
~h∗TMφφ ~h′ + ~h∗TMφ~h

)
(G.24)

=
i

2

(
~h∗TMφφ ~h′ + ~h′∗TMφφ~h+ ~h∗TMφ ~h′ + ~h′∗TMφ~h

)
(G.25)

With steps similar to the ones shown previously in this Appendix, we find:

Mφ = e4A−B+W


0 − 1

2f
′ − 1

4 (f ′ + 2fW ′) e−2W − 1
2f (3A′ +W ′)

0 0 −fW ′e−2W − 1
2 (6fA′ + f ′ + 2fW ′)

0 0 0 − 1
4 (6fA′ + f ′) e−2W

0 0 0 0

 (G.26)

If we perform the same operation of adding total derivatives to the result in [28], we again find
consistency for the upperleft 3× 3 matrix (Critelli only considers this part). Here we have used the
fact that for a Lagrangian you can add total derivatives to eliminate all terms on the main diagonal
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as well as the lower triangle. We use the EOM:

h55 = −
e−2W

(
2h11e

2W f ′ + h33f
′ − 4fe2Wh′11 − 2fh′33 + 2fh33W

′)
2f (3A′ +W ′)

(G.27)

h′00 =
e−2(A+W )

4f2Q(3A′ +W ′)2
(Q(2e2Af(f ′(3A′ +W ′)(2e2Wh′11 + h′33)

+ f(2e2Wh′11(6A′2 − 2W ′2 − 1)+

h′33(6A′W ′ + 6A′2 − 1)))− h33(6A′(2e2Aff ′W ′ + e2Af ′2 + 2ω2e2B)

− 24e2AfA′2(fW ′ − f ′) + 2W ′(e2Af ′2 + 2ω2e2B)− e2Aff ′ − 2e2Af2W ′))

− 2h11e
2W (Q(6A′(2e2Aff ′W ′ + e2Af ′2 + 2ω2e2B)

+ 24e2AfA′2f ′ + 2W ′(e2Af ′2 + 2ω2e2B)− e2Aff ′)

− 2xfQ2Vfe
2(A+B)(3A′ +W ′) + 2xfVfe

2(A+B)(3A′ +W ′)))

(G.28)

This leads to:

Fm = { i
2
P (h∗11h33 − h11h

∗
33)}φ→φh + derivative term (G.29)

P =
e2A−B−W

2fQ2(3A′ +W ′)2
(Q2(A′(−3e2Af ′2 + 20e2Af2W ′2 − 12ω2e2B)

+ 6e2AfA′2(4fW ′ − f ′)− 36e2Af2A′3 −W ′(e2Af ′2 + 4ω2e2B)

+ e2Aff ′(2W ′2 + 1) + e2Af2W ′(4W ′2 + 1)) + xf(Q2 − 1)QVfe
2(A+B)(3A′ +W ′))

(G.30)

Because we won’t use this result anyway it has not been subjected to extensive checks (one such
check would be flux conservation, see equation 4.21) but it gives some confidence that h00 precisely
cancels as it should. However, there is an 1

f term in the result which suggests that there may be
some error, it could also be because h∗11h33 − h11h

∗
33 ∝ f ′(φh)(φ − φh). When you turn off the

magnetic field, the result trivially reduces to GPR’s result because then the imaginary part of the
non-derivative term vanishes. If we were to use this method to obtain the bulk viscosity, we would
have to take a ω → 0 limit for the entire thing, i.e. we would have to solve the perturbative EOM
for many different ω values near ω = 0 and look for the linear part of Fm as a function of ω, as is
done by Critelli in [28]. In Appendix H we explain how we could have calculated cb11 and cb33 using
linearity if we would have used this method.



Appendix H

Numerical method

Because this is the way the C++ code used works, we will work in A-coordinates, with A being the
term in the exponential term of our Ansatz. At the horizon our equations of motion now become:

{g′′33 +
f ′

f
g′33 +

ω2

f2
e−2Aq2(A)g33}r→0 ≈ 0 (H.1)

So the BC are:

g33 ≈ (A−Ah)
−i qω

f′eA A→ Ah (H.2)

g′33 ≈
d(A−Ah)

−i qω

f′eA

dA
A→ Ah (H.3)

f ′eA

q

∣∣∣
A→Ah

=
df

dr

∣∣∣
A→Ah

= 4πT (H.4)

Same for g11. In order to calculate cb we use the NDSolve tool from Mathematica and the numerically
calculated background described in section 3. We have a linear second order differential equation
with two boundary conditions, which follow from regularity at the horizon and normalization to
unity at the boundary. Regularity at the horizon is imposed in the following approximate way:

hij(φh − δφh) = Cijδφ
− iω

4πT

h (H.5)

h′ij(φh − δφh) = −Cij
∂δφ

− iω
4πT

h

∂δφh
(H.6)

Here Cij is a numerical constant and δφh is a small offset from the horizon; The second boundary
condition will be imposed after solved the numerical calculation by rescaling, i.e. replacing Cij
with the properly fixed cij , for our numerical solution. For the bulk viscosity, we have two coupled
differential equations, which, similar to [66], we solve twice, once for C11 = 1, C33 = 0 and once
for C11 = 0, C33 = 1. After solving we can use linear algebra to make sure that the boundary
conditions are satisfied. We require: (

α1 α̃1

α3 α̃3

)−1(
1
1

)
=

(
c
c̃

)
(H.7)
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Where αi, α̃i are the values at the boundary for the mode hii for the respective initial boundary
conditions and c, c̃ are the constants for the linear combination of these two solutions. We then
finally get: (

c
c̃

)
=

1

α̃3α1 − α̃1α3

(
α̃3 − α̃1

−α3 + α1

)
(H.8)

However, we will extract the transport coefficients by using a method which is different from the
GPR method, instead we will use a method similar to the one described in [52], where we will study
the boundary expansion the follows from numerically solving the fluctuations. As explained in 4.2,
we have the following UV expansion for the perturbative modes:

hij ≈ aij + κr2ω2 − i bijωr
4 log2(r)

4πT
(H.9)

The bulk viscosity is given by bij/aij . Here all coefficients are real. We can find transport coefficient
by looking at how operators respond linearly to sources. A source of a metric perturbation is switched
on when aij = 1, it is switched off when aij = 0. This is different from the GPR method where all
sources are put on. When all sources are put off except for one, the Green’s function follows from
looking at the linear response, which is given by:

− 1

ω
ImGijkl ∝ − lim

ω→0
Im

∂hij
∂ω

=
bij
akl

(H.10)

For one differential equation, we could just solve numerically and rescale afterwards so that aij = 0,
and we would be sure that bij and κ were real. However, as mentioned, when we solve set of
coupled differential equation we have to solve the differential equation multiple times and make
linear combinations afterwards, which could cause mixing of real and imaginary terms. Therefore,
we instead explicitly expand in ω order by order [78] so that contributions from the κ term as well
as contributions from ω in the EOM are second order. We do this in the following way: we first
solve the EOM twice for zeroth order, once for C11 = 1, C33 = 0 and once for C11 = 0, C33 = 1. The
horizon boundary conditions also has to be expanded in ω:

hij(φh − δφh) = Cij(1−
iω

4πT
log(δφh)) +O(ω2) (H.11)

Our horizon boundary conditions then become:

aij(φh − δφh) = Cij (H.12)
a′ij(φh − δφh) = 0 (H.13)

Regardless of what kind of boundary conditions you take at the horizon, the EOM will always have
the structure of equation H.9 at the boundary. Because we look at zeroth order in ω, the expansion
reduces to:

a11 = a
(0)
11 + a

(1)
11 r

4 log2(r) (H.14)

ã11 = ã
(0)
11 + ã

(1)
11 r

4 log2(r) (H.15)

We do it again for first order. Because we don’t want to deal with divergences we define ebij = Bij .
We then have the following boundary conditions:

Bij(φh − δφh) = Cijδφh (H.16)
B′ij(φh − δφh) = −Cij (H.17)
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The boundary expansion for b11 is identical to the one for a11 because dependence of ω only comes
in at second order:

b11 = b
(0)
11 + b

(1)
11 r

4 log2(r) (H.18)

b̃11 = b̃
(0)
11 + b̃

(1)
11 r

4 log2(r) (H.19)

We fix the appropriate boundary conditions at the boundary as follows. When we look at the
response of a h11 source we have:(

1
0

)
=

(
a

(0)
11 − i ω

4πT b
(0)
11 ã

(0)
11 − i ω

4πT b̃
(0)
11

a
(0)
33 − i ω

4πT b
(0)
33 ã

(0)
33 − i ω

4πT b̃
(0)
33

)(
c11(ω)
c33(ω)

)
(H.20)

When we look at the response of a h33 source we have:(
0
1

)
=

(
a

(0)
11 − i ω

4πT b
(0)
11 ã

(0)
11 − i ω

4πT b̃
(0)
11

a
(0)
33 − i ω

4πT b
(0)
33 ã

(0)
33 − i ω

4πT b̃
(0)
33

)(
c11(ω)
c33(ω)

)
(H.21)

We note that ζ⊥ is the response of 〈T11〉 to a h11 source, ζ‖ is the response of 〈T33〉 to a h33 source
and ζm is the response of 〈T11〉 to a h33 source or the response of 〈T33〉 to a h11 source. We then
extract the transport coefficients in the following way:(
ζ⊥ + η⊥ ζm
ζm ζ‖

)
= −Im d

dω

((
a

(1)
11 − i ω

4πT b
(1)
11 ã

(1)
11 − i ω

4πT b̃
(1)
11

a
(1)
33 − i ω

4πT b
(1)
33 ã

(1)
33 − i ω

4πT b̃
(1)
33

)(
a

(0)
11 − i ω

4πT b
(0)
11 ã

(0)
11 − i ω

4πT b̃
(0)
11

a
(0)
33 − i ω

4πT b
(0)
33 ã

(0)
33 − i ω

4πT b̃
(0)
33

)−1

1

)
ω → 0

(H.22)

Checking that the off-diagonal bulk viscosity results match is a useful way to check that the calcu-
lations are done working properly.



Appendix I

Finding the massless bulk mode

GPR find the constant cb by solving the equation of motion for the bulk mode h11 numerically:

h′′11 = − e−2A

6f2A′
(6e2Afh11A

′B′f ′ − 18e2Af2A′B′h′11 + 6w2e2Bh11A
′

+ 6e2AfA′f ′h′11 + 24e2Af2A′2h′11 − e2Afh11f
′ + 2e2Af2h′11)

(I.1)

They do this by using in-falling boundary conditions at the horizon and convergence to unity at the
boundary. It is also possible to again use a method similar to section 4.5, where we looked at the
mode choice which gave massless EOM, by performing the transformation:

h11 → kZ11 (I.2)

We can now fix k so that the EOM become massless for the mode Z11, which we know gives trivial
flow. We can prove analytically that this method is correct because the EOM for k that follows
from that requirement rather trivially gives us the EOM we started with but with h11 replaced
by k, which proves that the two approaches are identical and we thus do not gain anything. One
could think that perhaps we could also use the same trick as a different and perhaps simpler way
to calculate viscosities in the anisotropic case. However, in this case the EOM have the following
structure when the modes have not been redefined yet to require masslessness:

Mv = 0

M =

(
A11 0 C11 D11 (E11 +A11

e−2A+2B

f2 ω2) F11

0 A33 C33 D33 E33 (F33 +A33
e−2A+2B

f2 ω2)

)
v =

(
h′′11 h′′33 h′11 h′33 h11 h33

) (I.3)

With every term φ or r dependent. We then rescale as follows:

h11 →kZ11 (I.4)
h33 →lZ33 (I.5)

However, in order to get trivial flow one would have to fix k and l such that E11, E33, F11 and F33

vanish simultaneously, which is not always possible.
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Appendix J

Anisotropic dissipative shear term for
axion

We can decompose our projector in the following way, with bu oriented parallel to the anisotropy
direction (so in the z-direction for our metric Ansatz), and Bµν a tensor which projects to all
directions apart from the anisotropy field direction:

∆µν = Bµν + bµbνe
2W (φh) (J.1)

Using what we know from chapter 5, we have the following fluid entropy balance law:

∂µ(uµs) =
s

8πT
∆µα∆νβσµνσαβ + bulk terms (J.2)

σµν = ∆ρ
µ∆σ

ν∂(ρuσ) −
2

3
∆µν∆ρσ∂ρuσ (J.3)

Defining S⊥ = Bρσ∂ρuσ and S‖ = bρbσ∂ρuσ, we use the a decomposition of the shear tensor from
[55], which is derived in Appendix K for an isotropic tensor. With the projector we use this shear
tensor has the following form

σµν = σ⊥µν + bµΣν + bνΣµ+

bµbν

(4S‖

3
− 2

3
S⊥e

2W (φh)
)

+
(
− 2

3
BµνS‖e

−2W (φh) +
BµνS⊥

3

) (J.4)

Before we calculate ∆µα∆νβσµνσαβ , it will be useful to note that the following holds:

BµνBµν = 2 (J.5)
Bµνσ⊥µν = 0 (J.6)

The symmetry broken squared shear tensor looks as follows:

∆µα∆νβσµνσαβ =σµνσαβ(Bµα + bµbαe−2W (φh))(Bνβ + bνbβe−2W (φh))

=σµνσαβ(BµαBνβ + 2Bνβbµbαe−2W (φh) + bµbαbνbβe−4W (φh))
(J.7)
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The squared scalar terms are given by:(
− 2

3
BµνS‖e

−2W (φh) +
BµνS⊥

3

)2

=
8

9
S2
‖e
−4W (φh) − 8

9
S‖S⊥e

−2W (φh) +
2

9
S2
⊥

(J.8)

And: (4bµbνS‖

3
− 2

3
bµbνS⊥e

2W (φh)
)2

=
16S2

‖

9
− 16

9
S‖S⊥e

2W (φh) +
4

9
S2
⊥e

4W (φh)

(J.9)

We finally arrive at:

∆µα∆νβσµνσαβ = σ2
⊥ + 2Σ2e−2W (φh) +

2S2
⊥

3
+ (J.10)

8

3
S2
‖e
−4W (φh) − 8

9
S‖S⊥e

−2W (φh) (J.11)

Now we go back to the fluid entropy balance law:

∂µ(uµs) =
s

8πT
(σ2
⊥ + 2Σ2e−2W (φh)+

8

3
S2
‖e
−4W (φh) − 8

9
S‖S⊥e

−2W (φh) +
2S2
⊥

3
)

+bulk terms ∝ {S2
‖ , S⊥S‖, S

2
⊥}

(J.12)

Similar to [55], we could now just read off the coefficients with the following general fluid entropy
balance law.

∂µ(uµs) =
1

T
(
1

2
η⊥σ

2
⊥ + η‖Σ

2) +
1

T
(ζ⊥S

2
⊥ + ζ‖S

2
‖ + 2ζmS‖S⊥)

However, the new ’bulk viscosity terms’ that come from decomposing the shear tensor are merely a
product of the decomposition which was necessary for showing how the different terms are affected
by anisotropy due to the magnetic field, they are not the product of the magnetic field itself because
these terms are there without a magnetic field if you decompose the shear tensor for any direction
(this is what is done in Appendix K). This again shows that, similar to what was described in
section 4.2, there is not a clear map from the isotropic trace transport coefficient to the more three
anisotropic helicity zero viscosities.



Appendix K

Decomposition of shear tensor

To get the decomposition given in [55], start off by writing the shear tensor as follows (i.e. project
the shear tensor to everything, with the proper normalization):

σµν = (
1

2
(∆µα∆νβ + ∆να∆µβ −∆µν∆αβ) +

1

2
∆µν∆αβ)σαβ (K.1)

Decompose the projector in a part that is parallel and orthogonal to the magnetic field:

σµν = (
1

2
((Bµα + bµbα)(Bνβ + bνbβ) + (Bνα + bνbα)(Bµβ + bµbβ)

−(Bµν + bµbν)(Bαβ + bαbβ)) +
1

2
(Bµν + bµbν)(Bαβ + bαbβ))σαβ

(K.2)

Extract from this the identities σ⊥µν = 1
2 (BµλBνρ + BνλBµρ − BµνBλρ)σλρ and Σµ = Bµλσλρbρ:

σµν = σ⊥µν + Σµbν + Σνbµ + (
1

2
(bµbαbνbβ + bνbαbµbβ) +

1

2
BµνBαβ)σαβ (K.3)

No we use σµν = ∆ρ
µ∆σ

ν∂(ρuσ) − 2
3∆µν∆ρσ∂ρuσ to decompose the last part of the tensor.

σαβ = BραBσβ∂(ρuσ) + 2bαbβS‖ −
2

3
(Bαβ + bαbβ)(S⊥ + S‖) (K.4)

We then get:

σµν = σ⊥µν + Σµbν + Σνbµ + Bµν(
1

3
S⊥ −

2

3
S‖) + bµbν(

4

3
S‖ −

2

3
S⊥)) (K.5)
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Appendix L

Bulk viscosity for analytical GGPT
solution

GGPT work with the following Lagrangian:

L =
√
−g
(R

2
− (∂φ∗)2

2
− V ∗(φ∗)− 3e−

√
2
3φ
∗
F ∗µνF

∗µν
)

=
1

2

√
−g
(
R− (∂φ∗)2 − 2V ∗(φ∗)− 6e−

√
2
3φ
∗
F ∗µνF

∗µν
) (L.1)

F ∗µν =
1

2
Bmdx ∧ dy (L.2)

∗ indicates a different convention. They give the following analytic result:

ds2 = − g√
H0H3

1

dt2 +
√
H0H3

1 (
du2

g
+ u2(dx2 + dy2)) (L.3)

H0 = 1− 3b

u
(L.4)

H1 = 1 +
b

u
(L.5)

g = − (p1)2

2bu
+ 3

(p1)2

2u2
+ u2(1− 3b

u
)(1 +

b

u
)3 (L.6)

φ∗ =

√
3

8
log

b+ u

u− 3b
(L.7)

V ∗ = −3 cosh(

√
2

3
φ∗) (L.8)

The Lagrangian we want to work with:

L =
√
−g
(
R− (∂φ)2

2
− V (φ)− Vb(φ)FµνF

µν

4

)
(L.9)

Fµν = Bmdx ∧ dy (L.10)
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The different conventions are therefore related in the following way:

φ∗ =

√
1

2
φ (L.11)

V ∗ =
1

2
V (L.12)

So in our convention, we have the following analytic result:

φ =

√
3

4
log

(
b+ u

u− 3b

)
(L.13)

V = −6 cosh(

√
1

3
φ) = −3(e

1√
3
φ

+ e
− 1√

3
φ
) (L.14)

= 6
b− u
b+ u

√
4b

u− 3b
+ 1 (L.15)

Vb = 6B2
me
−
√

1
3φ = 6B2

m

√
u− 3b

u+ b
(L.16)

To be consistent with GGPT we work with the following metric:

ds2 = −fe2Adt2 +
e−2Adu2

f
+ e2A(dx2 + dy2) (L.17)

Now we match the metric terms of the GPR convention and the GGPT solution:

fe2Adt2 =
g√
H0H3

1

dt2 (L.18)

e2Adx2 =
√
H0H3

1u
2dx2 (L.19)

From this we get:

f =
g

H0H3
1u

2
(L.20)

A =
1

2
log
√
H0H3

1u
2 (L.21)

We can find uh in the following way:

f(rh) =
g

H0(uh)H3
1 (uh)u2

h

= 1− B2
m

2b(b+ uh)3
= 0 (L.22)

uh = −b+
3

√
B2
m

2b
(L.23)

With the same method we used in Appendix C, we get the following temperature:

T = |f
′(uh)

4π
e2A(uh)| (L.24)

For the entropy we have:

s =
√
H0H3

1u
2
∣∣∣
u=uh

(L.25)



Appendix M

Numerical calculations for analytical
model

We start off with the following Ansatz:

ds2 = e2A(u)(−f(u)(1 + λh00(u)eiωt)dt2 + (1 + λh11(u)eiωt)(dx2 + dy2)

+ (1 + λh55(u)eiωt)
e−2A(u)

f(u)
du2

(M.1)

We define our perturbative Einstein equations as follows:

δGµν + δTµν = 0 (M.2)

We then have:

δT00 =(h55 − h00)f2φ′2
e4A

4
− h00

fe2A

2
V + (2h11 − h00)B2

mVb
fe−2A

4
(M.3)

δT11 =f
e4A

4
(h11 − h55)φ′2 +

e2A

2
V h11 +B2

mVb
e−2A

4
h11 (M.4)

δT55 =h55
e−2A

2f
V + (h55 − 2h11)B2

mVb
e−6A

4f
) (M.5)

This leads to the following EOM.

h55 =
2fh′11 − h11f

′

2fA′
(M.6)

h′00 = −
e−6A

(
8e6Af2A′h′11 + 2e6Aff ′h′11 + 2e4Afh55V + 4ω2e2Ah11 − 2fh11Bm

2Vb + fh55B
2
mVb

)
4f2A′

(M.7)

h′′11 = − e−6A

4f2A′φ′2
(4e6AfA′f ′h′11φ

′2 − 4e6Afh11A
′2f ′φ′2 − 4e6Afh11A

′f ′φ′φ′′

+ 24e6Af2A′2h′11φ
′2 + 8e6Af2A′h′11φ

′φ′′ − 8fh11A
′2V ′b

− 4fh11VbA
′φ′2 + 4w2e2Ah11A

′φ′2 − e6Afh11f
′φ′4 + 2e6Af2h′11φ

′4)

(M.8)
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At the horizon, the fluctuation equation gets the following familiar form, yielding the boundary
condition which follows from the requirement of regularity at the horizon:

{ω2h11
e−4A

f2
+ h′11

f ′

f
+ h′′11}u→uh ≈ 0 (M.9)

We can also check whether the following background equations vanish to confirm that there are no
errors in the computation:

A′′ =
1

4

(
−4A′2 − φ′2

)
(M.10)

f ′′ = e−6AB2
mVb − 4A′f ′ (M.11)

V =
1

2
e−4A

(
−e6A

(
4A′f ′ + f

(
12A′2 − φ′2

))
−B2

mVb
)

(M.12)

V ′

φ′
= e2Aφ′ (4fA′ + f ′) + fe2Aφ′′ − e−4AB2

mV
′
b

2φ′
(M.13)

The near horizon solution is:

h11 ≈ Ce−iω
log(u−uh)

4πT (M.14)

T = | f
′

4π
e2A|= 1

4π

3B2
m

√
u−3b

(b+u)5

2b
(M.15)

Before rescaling, we have the following boundary conditions:

h11(uh + δuh) = δu
− iω

4πT

h (M.16)

h′11(uh + δuh) =
∂δu

− iω
4πT

h

∂δuh
(M.17)

δuh is a small offset with respect to the horizon. In figure M.1 the numerical result found for cb is
given. It is important to note that the range in which we can compute cb is bounded from below
because the solution is not well defined when rh < 3b, because in this case there is naked singularity.
Physically this means that the black hole solution is unstable at low temperatures. In figure 6.1 the
bulk viscosity result is given.
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Figure M.1: The numerical constant cb found as a function of Bm for b = 0.5 (blue), b = 1 (yellow)
and b = 2 (green)



Appendix N

Fluid Gravity

N.1 Ansatz
In this Appendix we work out what a calculation of the isotropic shear and bulk viscosity for a
general non-conformal non-zero temperature strongly coupled relativistic fluid roughly should look
like, this is mainly based on a paper of Wu, Chen and Huang (WCH) [94], where WCH computation is
performed for a non-conformal computation for compactified D4-branes. We work with the following
boosted Eddington Finkelstein metric Ansatz:

ds2 = −2dxµuµdr + e2A(−f(duµx
µ)2 + Pµνdx

µdxν) (N.1)

At zeroth order, we start with the following ultra-local expansion:

ds2
(0) = 2eB−A(dvdr − λxµ∂µβ0

i dx
idr) + e2A

(
− f (0)dv2 + dxidx

i

+2λxµ∂µβ
(0)(1− f (0))dxidv − λxµ∂µrh

∂f (0)(r, rh)

∂rh
dv2
) (N.2)

λ gives the order of expansion. Where we performed the following expansion:

uµ = −δ0
µ + λxµ∂νβ

0
i δ
i
µ (N.3)

f = f (0) + λxν∂µrh
∂f (0)

∂rh
(N.4)

For the energy momentum tensor we have the following identity:

Tµν =
1

2
gµνVg(r)−

1

4
gµν(∂r)2 +

1

2
∂µr∂νr (N.5)

We can split up our Ansatz into three sectors [94], the scalar, vector and tensor sector. Our boundary
conditions are: convergence to zero at the boundary and regularity at the horizon. Also we work in
the Landau frame:

T (1)
µν u

µ = 0 (N.6)

Our gauge is: g(1)
µr = 0 and g(1)

rr = 0. All these choices fully constrain our solution.
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N.2 Scalar sector
We work with the following very general Ansatz:

ds2
(1) = k(r)dv2 + h(r)dxidx

i + j(r)dvdr (N.7)

Constraint equations:

grr(Erv − Trv) + grv(Evv − Tvv) = 0 (N.8)
grr(Err − Trr) + grv(Erv − Trv) = 0 (N.9)

Dynamical equations:

Err = Trr (N.10)
Erv = Trv (N.11)
Eii = Tii , i ∈ {1, 2, 3} (N.12)
Evv = Tvv (N.13)

∂φVg = − 1√
−g

∂r

(√
−ggrr∂rφ

)
(N.14)

N.3 Vector sector
We work with the following very general Ansatz:

ds2
(1) = wi(r)dx

idv (N.15)

The constraint equation:

grv(Evi − Tvi) + grr(Eri − Tri) = 0 (N.16)

The dynamical equation:

Eri − Tri = 0 (N.17)

N.4 Tensor sector
We work with the following very general Ansatz:

ds2
(1) = αij(r)dx

idri (N.18)

The dynamical equation:

Eij −
1

3
δijδ

klEkl = Tij −
1

3
δijδ

klTkl (N.19)

Solution
Having determined the first order metric, we calculate the boundary action:

S = Sbulk + SGH + Sct (N.20)
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Sct is the counterterm action which removes UV divergences and SGH is the Gibbon Hawking action
which makes sure that the boundary action only depends on first order derivatives, as is required
for the path-integral approach [37]. We then take the variation with the boundary metric to get the
boundary stress-energy tensor from which we can extract the shear and bulk viscosities as follows:

T bµν = pPµν + εuµuν − 2ησµν − ζ∂ρuρPµν (N.21)

As mentioned in section 5.3, WCH already succesfully calculated the bulk viscosity for the Sakai-
Sugimoto model in [94] which was found to be consistent with the Eling-Oz formula [33].



Bibliography

[1] Ofer Aharony, Oren Bergman, Daniel Louis Jafferis, and Juan Maldacena. N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals. JHEP, 10:091, 2008.

[2] Ofer Aharony, Steven S. Gubser, Juan Martin Maldacena, Hirosi Ooguri, and Yaron Oz. Large
N field theories, string theory and gravity. Phys. Rept., 323:183–386, 2000.

[3] T. Alho, M. Jarvinen, K. Kajantie, E. Kiritsis, and K. Tuominen. Quantum and stringy
corrections to the equation of state of holographic QCD matter and the nature of the chiral
transition. Phys. Rev., D91(5):055017, 2015.

[4] T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis, and K. Tuominen. On finite-temperature holo-
graphic QCD in the Veneziano limit. JHEP, 01:093, 2013.

[5] Martin Ammon and Johanna Erdmenger. Gauge/gravity duality. Cambridge University Press,
Cambridge, 2015.

[6] Daniel Areán, Ioannis Iatrakis, Matti Järvinen, and Elias Kiritsis. The discontinuities of con-
formal transitions and mass spectra of V-QCD. JHEP, 11:068, 2013.

[7] Peter Brockway Arnold, Caglar Dogan, and Guy D. Moore. The Bulk Viscosity of High-
Temperature QCD. Phys. Rev., D74:085021, 2006.

[8] Vijay Balasubramanian and Per Kraus. A Stress tensor for Anti-de Sitter gravity. Commun.
Math. Phys., 208:413–428, 1999.

[9] Alfonso Ballon-Bayona, Henrique Boschi-Filho, Luis A. H. Mamani, Alex S. Miranda, and
Vilson T. Zanchin. Effective holographic models for QCD: glueball spectrum and trace anomaly.
Phys. Rev., D97(4):046001, 2018.

[10] J. M. Bardeen, B. Carter, and S. W. Hawking. The four laws of black hole mechanics.
Communications in Mathematical Physics, 31(2):161–170, Jun 1973.

[11] Paolo Benincasa, Alex Buchel, and Andrei O. Starinets. Sound waves in strongly coupled
non-conformal gauge theory plasma. Nucl. Phys., B733:160–187, 2006.

[12] Jonah E. Bernhard. Bayesian parameter estimation for relativistic heavy-ion collisions. PhD
thesis, Duke U., 2018-04-19.

[13] Sayantani Bhattacharyya, Veronika E. Hubeny, R. Loganayagam, Gautam Mandal, Shiraz Min-
walla, Takeshi Morita, Mukund Rangamani, and Harvey S. Reall. Local Fluid Dynamical
Entropy from Gravity. JHEP, 06:055, 2008.

92



BIBLIOGRAPHY 93

[14] Sayantani Bhattacharyya, Veronika E Hubeny, Shiraz Minwalla, and Mukund Rangamani. Non-
linear Fluid Dynamics from Gravity. JHEP, 02:045, 2008.

[15] M. Bocquet, S. Bonazzola, E. Gourgoulhon, and J. Novak. Rotating neutron star models with
magnetic field. Astron. Astrophys., 301:757, 1995.

[16] Alex Buchel. Bulk viscosity of gauge theory plasma at strong coupling. Phys. Lett., B663:286–
289, 2008.

[17] Alex Buchel. Violation of the holographic bulk viscosity bound. Phys. Rev., D85:066004, 2012.

[18] Alex Buchel, Umut Gursoy, and Elias Kiritsis. Holographic bulk viscosity: GPR versus EO.
JHEP, 09:095, 2011.

[19] Alex Buchel and James T. Liu. Universality of the shear viscosity in supergravity. Phys. Rev.
Lett., 93:090602, 2004.

[20] Marco M. Caldarelli, Roberto Emparan, and Bert Van Pol. Higher-dimensional Rotating
Charged Black Holes. JHEP, 04:013, 2011.

[21] Sean M. Carroll. Spacetime and geometry: An introduction to general relativity. 2004.

[22] Jorge Casalderrey-Solana, Hong Liu, David Mateos, Krishna Rajagopal, and Urs Achim Wiede-
mann. Gauge/String Duality, Hot QCD and Heavy Ion Collisions. 2011.

[23] Soumangsu Chakraborty and Rickmoy Samanta. Viscosity for anisotropic Reissner-Nordström
black branes. Phys. Rev., D95(10):106012, 2017.

[24] Long Cheng, Xian-Hui Ge, and Sang-Jin Sin. Anisotropic plasma at finite U(1) chemical
potential. JHEP, 07:083, 2014.

[25] M. S. Cramer. Numerical estimates for the bulk viscosity of ideal gases . Physics of Fluids,
25(9):052001, 2013.

[26] Sera Cremonini, Umut Gursoy, and Phillip Szepietowski. On the Temperature Dependence of
the Shear Viscosity and Holography. JHEP, 08:167, 2012.

[27] R. Critelli, S. I. Finazzo, M. Zaniboni, and J. Noronha. Anisotropic shear viscosity of a strongly
coupled non-Abelian plasma from magnetic branes. Phys. Rev., D90(6):066006, 2014.

[28] Renato Anselmo Judica Critelli. Strongly coupled non-Abelian plasmas in a magnetic field.
PhD thesis, Sao Paulo U., 2016.

[29] Tuna Demircik and Umut Gursoy. Holographic equilibration in confining gauge theories under
external magnetic fields. Nucl. Phys., B919:384–403, 2017.

[30] Tara Drwenski, Umut Gursoy, and Ioannis Iatrakis. Thermodynamics and CP-odd transport
in Holographic QCD with Finite Magnetic Field. JHEP, 12:049, 2016.

[31] Duk. https://en.wikipedia.org/wiki/viscosity.

[32] Christian Ecker, Matti Jarvinen, Govert Nijs, and Wilke van Schee. Not yet published. 2019.

[33] Christopher Eling and Yaron Oz. A Novel Formula for Bulk Viscosity from the Null Horizon
Focusing Equation. JHEP, 06:007, 2011.



BIBLIOGRAPHY 94

[34] Johanna Erdmenger, Patrick Kerner, and Hansjorg Zeller. Non-universal shear viscosity from
Einstein gravity. Phys. Lett., B699:301–304, 2011.

[35] Carlo Ewerz, Ling Lin, Andreas Samberg, and Konrad Schade. Holography for Heavy Quarks
and Mesons at Finite Chemical Potential. PoS, CPOD2014:037, 2015.

[36] Stefano I. Finazzo, Romulo Rougemont, Hugo Marrochio, and Jorge Noronha. Hydrodynamic
transport coefficients for the non-conformal quark-gluon plasma from holography. JHEP, 02:051,
2015.

[37] G. W. Gibbons and S. W. Hawking. Action integrals and partition functions in quantum gravity.
Phys. Rev. D, 15:2752–2756, May 1977.

[38] A. Gnecchi, U. Gursoy, O. Papadoulaki, and C. Toldo. A magnetically induced quantum critical
point in holography. Journal of High Energy Physics, 2016(9):90, Sep 2016.

[39] Siavash Golkar and Matthew M. Roberts. Viscosities and shift in a chiral superfluid: a holo-
graphic study. 2015.

[40] Sašo Grozdanov, Diego M. Hofman, and Nabil Iqbal. Generalized global symmetries and dissi-
pative magnetohydrodynamics. Phys. Rev., D95(9):096003, 2017.

[41] Sašo Grozdanov, Pavel K. Kovtun, Andrei O. Starinets, and Petar Tadić. The complex life of
hydrodynamic modes. 2019.

[42] S. S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov. Gauge theory correlators from
noncritical string theory. Phys. Lett., B428:105–114, 1998.

[43] Steven S. Gubser, Silviu S. Pufu, and Fabio D. Rocha. Bulk viscosity of strongly coupled
plasmas with holographic duals. JHEP, 08:085, 2008.

[44] U. Gursoy and E. Kiritsis. Exploring improved holographic theories for QCD: Part I. JHEP,
02:032, 2008.

[45] Umut Gursoy. Improved Holographic QCD and the Quark-gluon Plasma. Acta Phys. Polon.,
B47:2509, 2016.

[46] Umut Gursoy, Elias Kiritsis, Georgios Michalogiorgakis, and Francesco Nitti. Thermal Trans-
port and Drag Force in Improved Holographic QCD. JHEP, 12:056, 2009.

[47] U. Gürsoy, I. Iatrakis, E. Kiritsis, F. Nitti, and A. O’Bannon. The Chern-Simons Diffusion
Rate in Improved Holographic QCD. JHEP, 02:119, 2013.

[48] Umut Gürsoy, Ioannis Iatrakis, Matti Järvinen, and Govert Nijs. Inverse Magnetic Catalysis
from improved Holographic QCD in the Veneziano limit. JHEP, 03:053, 2017.

[49] Umut Gürsoy, Matti Järvinen, Govert Nijs, and Juan F. Pedraza. Inverse Anisotropic Catalysis
in Holographic QCD. 2018.

[50] Alice K. Harding and Dong Lai. Physics of Strongly Magnetized Neutron Stars. Rept. Prog.
Phys., 69:2631, 2006.

[51] Thomas Hartman, Sean A. Hartnoll, and Raghu Mahajan. Upper Bound on Diffusivity. Phys.
Rev. Lett., 119(14):141601, 2017.



BIBLIOGRAPHY 95

[52] Sean A. Hartnoll. Lectures on holographic methods for condensed matter physics. Class. Quant.
Grav., 26:224002, 2009.

[53] Koichi Hattori, Xu-Guang Huang, Dirk H. Rischke, and Daisuke Satow. Bulk Viscosity of
Quark-Gluon Plasma in Strong Magnetic Fields. Phys. Rev., D96(9):094009, 2017.

[54] Koichi Hattori, Shiyong Li, Daisuke Satow, and Ho-Ung Yee. Longitudinal conductivity in
strong magnetic field in perturbative qcd: Complete leading order. Phys. Rev. D, 95:076008,
Apr 2017.

[55] Juan Hernandez and Pavel Kovtun. Relativistic magnetohydrodynamics. JHEP, 05:001, 2017.

[56] Veronika E. Hubeny, Shiraz Minwalla, and Mukund Rangamani. The fluid/gravity correspon-
dence. In Black holes in higher dimensions, pages 348–383, 2012. [,817(2011)].

[57] Ioannis Iatrakis, Elias Kiritsis, and Angel Paredes. An AdS/QCD model from Sen’s tachyon
action. Phys. Rev., D81:115004, 2010.

[58] Nabil Iqbal and Hong Liu. Universality of the hydrodynamic limit in AdS/CFT and the mem-
brane paradigm. Phys. Rev., D79:025023, 2009.

[59] Sachin Jain, Rickmoy Samanta, and Sandip P. Trivedi. The Shear Viscosity in Anisotropic
Phases. JHEP, 10:028, 2015.

[60] Amaresh Jaiswal and Victor Roy. Relativistic hydrodynamics in heavy-ion collisions: general
aspects and recent developments. Adv. High Energy Phys., 2016:9623034, 2016.

[61] Romuald A. Janik, Jakub Jankowski, and Hesam Soltanpanahi. Quasinormal modes and the
phase structure of strongly coupled matter. JHEP, 06:047, 2016.

[62] Matti Jarvinen and Elias Kiritsis. Holographic Models for QCD in the Veneziano Limit. JHEP,
03:002, 2012.

[63] Kristan Jensen, Matthias Kaminski, Pavel Kovtun, Rene Meyer, Adam Ritz, and Amos Yarom.
Towards hydrodynamics without an entropy current. Phys. Rev. Lett., 109:101601, 2012.

[64] Johannes Jünemann, Andrea Cadarso, D Pérez-García, Alejandro Bermudez, and Juan García-
Ripoll. Lieb-robinson bounds for spin-boson lattice models and trapped ions. Physical review
letters, 111:230404, 12 2013.

[65] Guru Prakash Kadam and Hiranmaya Mishra. Bulk and shear viscosities of hot and dense
hadron gas. Nucl. Phys., A934:133–147, 2014.

[66] Matthias Kaminski, Karl Landsteiner, Javier Mas, Jonathan P. Shock, and Javier Tarrío. Holo-
graphic operator mixing and quasinormal modes on the brane. Journal of High Energy Physics,
2010(2):21, Feb 2010.

[67] Elias Kiritsis and F. Nitti. On massless 4D gravitons from asymptotically AdS(5) space-times.
Nucl. Phys., B772:67–102, 2007.

[68] Pavel Kovtun. Thermodynamics of polarized relativistic matter. JHEP, 07:028, 2016.

[69] Pavel Kovtun, Dam T. Son, and Andrei O. Starinets. Holography and hydrodynamics: Diffusion
on stretched horizons. JHEP, 10:064, 2003.



BIBLIOGRAPHY 96

[70] Manu Kurian and Vinod Chandra. Bulk viscosity of a hot QCD medium in a strong magnetic
field within the relaxation-time approximation. Phys. Rev., D97(11):116008, 2018.

[71] L.D. LANDAU and E.M. LIFSHITZ. Chapter xv - motion in a magnetic field. In L.D. LANDAU
and E.M. LIFSHITZ, editors, Quantum Mechanics (Third Edition), pages 453 – 471. Pergamon,
third edition edition, 1977.

[72] L.D. Landau and E.M. Lifshitz. Quantum Mechanics: Non-Relativistic Theory. Course of
Theoretical Physics. Elsevier Science, 1981.

[73] Matthew Luzum and Paul Romatschke. Conformal Relativistic Viscous Hydrodynamics: Appli-
cations to RHIC results at s(NN)**(1/2) = 200-GeV. Phys. Rev., C78:034915, 2008. [Erratum:
Phys. Rev.C79,039903(2009)].

[74] Juan Martin Maldacena. The Large N limit of superconformal field theories and supergravity.
Int. J. Theor. Phys., 38:1113–1133, 1999. [Adv. Theor. Math. Phys.2,231(1998)].

[75] Vladimir A. Miransky and Igor A. Shovkovy. Quantum field theory in a magnetic field: From
quantum chromodynamics to graphene and Dirac semimetals. Phys. Rept., 576:1–209, 2015.

[76] Jaqueline Morgan, Vitor Cardoso, Alex S Miranda, C Molina, and Vilson T Zanchin. Grav-
itational quasinormal modes of AdS black branes indspacetime dimensions. Journal of High
Energy Physics, 2009(09):117–117, sep 2009.

[77] Y. Nakayama and R.F. Boucher. Introduction to Fluid Mechanics. Wiley, 1997.

[78] Govert Nijs. Private correspondence.

[79] Hirosi Ooguri and Cumrun Vafa. Non-supersymmetric AdS and the Swampland. Adv. Theor.
Math. Phys., 21:1787–1801, 2017.

[80] V. Ozvenchuk, O. Linnyk, M. I. Gorenstein, E. L. Bratkovskaya, and W. Cassing. Dynamical
equilibration of strongly interacting “infinite” parton matter within the parton-hadron-string
dynamics transport approach. Phys. Rev., C87(2):024901, 2013.

[81] Jean-François Paquet, Chun Shen, Gabriel Denicol, Soung Jeon, and Charles Gale. Phenomeno-
logical constraints on the bulk viscosity of qcd. Nuclear Physics A, 967:429–432, 11 2017.

[82] G. Policastro, Dan T. Son, and Andrei O. Starinets. The Shear viscosity of strongly coupled
N=4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett., 87:081601, 2001.

[83] Giuseppe Policastro, Dam T. Son, and Andrei O. Starinets. From AdS / CFT correspondence
to hydrodynamics. 2. Sound waves. JHEP, 12:054, 2002.

[84] Anton Rebhan and Dominik Steineder. Violation of the Holographic Viscosity Bound in a
Strongly Coupled Anisotropic Plasma. Phys. Rev. Lett., 108:021601, 2012.

[85] Tadakatsu Sakai and Shigeki Sugimoto. Low energy hadron physics in holographic QCD. Prog.
Theor. Phys., 113:843–882, 2005.

[86] Kostas Skenderis. Lecture notes on holographic renormalization. Class. Quant. Grav., 19:5849–
5876, 2002.



BIBLIOGRAPHY 97

[87] Dam T. Son and Andrei O. Starinets. Minkowski space correlators in AdS / CFT correspon-
dence: Recipe and applications. JHEP, 09:042, 2002.

[88] Hugo Spinelli. https://en.wikipedia.org/wiki/hadron.

[89] Mark Srednicki. Quantum Field Theory. Cambridge Univ. Press, Cambridge, 2007.

[90] Dominik Steineder. Holographic descriptions of anisotropic plasma. PhD thesis, Wien, Techn.
Univ., 2012.

[91] Kandaswamy Subramanian. The origin, evolution and signatures of primordial magnetic fields.
Rept. Prog. Phys., 79(7):076901, 2016.

[92] Gerard ’t Hooft. A Planar Diagram Theory for Strong Interactions. Nucl. Phys., B72:461, 1974.
[,337(1973)].

[93] Allen L. Wasserman. Magnetic thermodynamics, page 154–174. Cambridge University Press,
2011.

[94] Chao Wu, Yidian Chen, and Mei Huang. Fluid/gravity correspondence: A nonconformal real-
ization in compactified D4 branes. Phys. Rev., D93(6):066005, 2016.

[95] Jan Zaanen, Yan Liu, Ya-Wen Sun, and Koenraad Schalm. Holographic Duality in Condensed
Matter Physics. Cambridge University Press, 2015.


	Acknowledgements
	Introduction
	Quark-gluon plasma
	Holography
	‘t Hooft limit
	Improved holographic QCD
	Shear viscosity
	Lieb-Robinson bound
	Bulk viscosity
	Relativistic magnetohydrodynamics
	Calculating viscosities
	Outside holography

	Relativistic magnetohydrodynamics
	Introduction
	Physics of fluids
	Thermal equilibrium
	Hydrodynamic expansion

	Gravitational action
	Introduction
	Glue sector
	Flavor sector
	Phase diagram
	Background equations
	Axion

	Calculating viscosities: fluctuation equation
	Introduction
	Green's function
	UV expansion
	Helicity blocks
	Shear viscosities
	Bulk viscosities
	Scalar channel UV expansion

	Calculating viscosities: mimicking fluid equations
	Introduction
	Fick's law
	Null Raychaudhuri equation
	Isotropic boosting
	Four-dimensional metric
	Null geodesics
	Deviation equation
	Anisotropic boosting

	Bulk viscosity for 2+1 dimensional analytic model
	Introduction
	The analytical solution
	EOM
	Result

	Comparison of results with literature
	Experimental data
	Lowest Landau level approximations

	Conclusion
	Results
	Outlook

	Appendices
	Zeroth order EOM
	Transformations of perturbative modes
	First order EOM for shear modes
	Rescaling invariance of perturbative modes
	Kaluza-Klein reduction
	First order EOM for bulk modes
	Green's function
	Numerical method
	Finding the massless bulk mode
	Anisotropic dissipative shear term for axion
	Decomposition of shear tensor
	Bulk viscosity for analytical GGPT solution
	Numerical calculations for analytical model
	Fluid Gravity
	Bibliography

