
Extracting & Learning a
Dependency-Enhanced Type Lexicon for

Dutch

Submitted by

Konstantinos Kogkalidis

In partial fullfillment of the requirements

For the Master’s Degree in: Artificial Intelligence

Utrecht University

June 2019

Master’s Committee:
Project Supervisor: Michael Moortgat
Second Examiner: Tejaswini Deoskar
External Expert: Richard Moot

2

Abstract

This thesis is concerned with type-logical grammars and their practical appli-
cability as tools of reasoning about sentence syntax and semantics. The focal
point is narrowed to Dutch, a language exhibiting a large degree of word order
variability. In order to overcome difficulties arising as a result of that variability,
the thesis explores and expands upon a type grammar based on Multiplicative
Intuitionistic Linear Logic, agnostic to word order but enriched with decora-
tions that aim to reduce its proof-theoretic complexity. An algorithm for the
conversion of dependency-annotated sentences into type sequences is then im-
plemented, populating the type logic with concrete, data-driven lexical types.
Two experiments are ran on the resulting grammar instantiation. The first
pertains to the learnability of the type-assignment process by a neural archi-
tecture. A novel application of a self-attentive sequence transduction model is
proposed; contrary to established practices, it constructs types inductively by
internalizing the type-formation syntax, thus exhibiting generalizability beyond
a pre-specified type vocabulary. The second revolves around a deductive parsing
system that can resolve structural ambiguities by consulting both word and type
information; preliminary results suggest both excellent computational efficiency
and performance.

4

Acknowledgements

This thesis would not have been made possible without the ceaseless aid of my
support committee; Richard, who always took the time to listen to my ideas and
assist in any problems I would encounter, but also kept a watchful eye for over-
sights I would otherwise be oblivious to, and Tejaswini, who kept me motivated
despite early failures, and was keen to point out novelty in results I considered
trivial. I could not overstate my luck in being able to work under Michael’s
supervision. His expertise, resourcefulness and enthusiasm have inspired and
permeated through every aspect of this work.

I would like to also express my gratitude towards my family for their uncon-
ditional encouragement; my father, the most reliable tech support in all matters
imaginable, my mother, who willingly endures my complaining, and my sister,
who keeps finding new ways to tease and amuse me.

Parts of the thesis have benefitted from fruitful discussions with Vasilis Boun-
tris and Giorgos Tziafas, for which I am thankful.

This work has been financially supported by an NWO grant under the scope
of the project “A composition calculus for vector-based semantic modelling with
a localization for Dutch” (360-89-070).

6

Contents

1 Introduction 15

2 Grammar 17
2.1 Background . 17

2.1.1 Overview . 17
2.1.2 Type-Logical Grammars 18

2.2 A TLG for Semantic Compositionality 23
2.2.1 Intuitionistic Linear Logic 23
2.2.2 Dependency Refinement 25

2.3 Summary . 27

3 Extraction 31
3.1 Background . 31
3.2 Corpus . 32

3.2.1 Corpus Statistics . 33
3.3 Extraction Process . 33

3.3.1 Extraction Algorithm . 33
3.3.2 Transformations and Exceptions 39

3.4 Implementation Notes . 54
3.4.1 Type System . 55
3.4.2 Processing . 56

3.5 Summary . 57

4 Supertagging 59
4.1 Background . 59

4.1.1 Original Formulation . 59
4.1.2 Unbounded Domain . 60
4.1.3 Type Disambiguation . 61

4.2 Unbounded Codomain . 62
4.2.1 The Language of Types 64
4.2.2 Supertagging as Sequence Transduction 64

4.3 Implementation . 65
4.3.1 Self-Attention . 66
4.3.2 Transformers . 67

7

8 CONTENTS

4.3.3 Model . 69
4.3.4 Digram Encoding . 73
4.3.5 Experiments . 73
4.3.6 Analysis . 76

4.4 Summary . 78

5 Parsing 79
5.1 Background . 79
5.2 Framework . 79
5.3 Implementation . 81

5.3.1 Count Invariance . 81
5.3.2 Elimination as Binary Sequence Classification 82
5.3.3 Experiments . 83

5.4 Summary . 85

6 Conclusion 87

List of Tables

3.1 Extracted Atomic Types . 34
3.2 Extracted Dependency Labels . 35
3.3 Common Coordinator Types . 51

4.1 Supertagger Performance . 75
4.2 Supertagger Unseen Type Precision 75

5.1 Elimination Module Performance 84

9

10 LIST OF TABLES

List of Figures

2.1 English Lambek Derivations . 20
2.2 Structural Control Example . 22
2.3 Example MILL Derivations . 25
2.4 Example MILL Derivations with Dependency Modalities 28

3.1 Lassy-Small Sentence Lengths . 37
3.2 Dependency Role Obliqueness Ordering 41
3.3 Abstract Semantic Argument Removal 43
3.4 Noun-Phrase Head Swapping . 44
3.5 Numeral Determiner Relabeling 45
3.6 Multi-Word Unit Collapse . 47
3.7 Processed Phrase Sentence Lengths 49
3.8 Conjunction Modifier Reattachment 52
3.9 Head Coordination Schema . 53

4.1 Extracted Type Ambiguity . 63
4.2 Extracted Type Sparsity . 66
4.3 Transformer Architecture . 70
4.4 Supertagging Architecture and I/O Pair 71
4.5 Unseen Type Example . 76
4.6 tSNE of Atomic Symbol Embeddings 77

5.1 Neural Elimination Module . 84

11

12 LIST OF FIGURES

List of Algorithms

1 Type Assignment Utilities . 36
2 Type Assignment Process . 40
3 Parse Step . 80

13

14 LIST OF ALGORITHMS

Chapter 1

Introduction

This thesis is concerned with the parsing as deduction paradigm, as orchestrated
by type-logical grammars, perceived through the lens of a data-driven experi-
mental setting. It seeks to bridge the gap between formal theory and empirical
practice, integrating insights from half a century of progress in categorial type
logics with recent advances in neural networks and natural language processing.

The key theme and the underlying goal behind this work is the development
of a concrete, robust and widely applicable methodology for syntactic analysis
that naturally lends itself to semantic uses. The path towards this goal includes
many twists and turns, forcing study of semantics to assume a secondary role
throughout the thesis. What is primarily addressed instead are exactly these
twists and turns, the resolution of which brings us at an arm’s reach of semantics
by this thesis’ conclusion.

Even though the methods applied are language-agnostic and highly general,
the experiments performed focus on Dutch. Dutch is a particularly challenging
language to work with, owing to its many syntactic variations with respect to
word order. As such, it provides an excellent testing ground that puts our
designs and hypotheses under rigorous tests, while soliciting novel approaches
and creative solutions.

The thesis is organized in four major chapters. Each chapter is largely
autonomous, in the sense that it treats a different topic and seeks to answer a
different research question. However, there is a weak linear dependency between
chapters as each one progressively expands upon its predecessors’ results; thus,
an exhaustive reading should best follow the document in the sequential order
it is presented. Chapters all share a similar structure; they have their own brief
introductory overview and a summarizing conclusion which aims to concisely
break down its scope and contribution. A rapid but informative reading could
be done on the basis of these summaries.

We begin in Chapter 2 by providing a brief account of Type-Logical Gram-
mars and their most common varieties. In considering Dutch, we notice practical
issues caused by the language’s peculiarities and seek out ways to address them.
The chapter’s motif is the balance between formal rigor and pragmatic appli-

15

16 CHAPTER 1. INTRODUCTION

cability of type-logical grammars for large-scale use in a language like Dutch.
The chapter concludes with a heedful compromise that retains the best of both
worlds.

Having specified the grammar and its latent logic, Chapter 3 then sets out
to populate a data-driven type lexicon. The dependency-annotated sentences
of the written Dutch corpus, Lassy-Small, is used to extrapolate type-logical
derivations and phrasal type assignments. The algorithmic process of this con-
version is detailed, alongside the transformations necessitated by incompatibil-
ities between the corpus’ annotation philosophy and the grammar’s specifica-
tions.

Chapter 4 makes for a change of pace; it deals with supertagging, the statisti-
cal learning process through which type sequences may be assigned to sentences
not included in the source corpus. In reviewing the extracted type system, it
notes a distinction to prior supertagging applications, related to the significantly
larger size of the lexicon. The question then turns to designing a system capable
of overcoming this complication, accomplished through a simple reformulation
of the problem statement.

Finally, Chapter 5 seeks to alleviate the proof-theoretic concessions made
during the grammar’s specification. The topic revolves around the manipulation
of an ambiguous type-logical proof structure utilizing proof-external information
sources such as preferential biases exerted by semantic content.

A high-level synopsis plus a few concluding remarks are presented in Chap-
ter 6.

Chapter 2

Grammar

2.1 Background

The theoretical framework on top of which this thesis is built are type-logical
grammars, a particular family of categorial grammars. This chapter aims to
provide a brief introductory background on type-logical grammars and their
historical origins, positioning them within the broader context of categorial
grammars and exposing their distinguishing characteristics. Afterwards, an ac-
count of the specific grammar instantiation used for the current work will be
given, in terms of its logical and and computational bases, together with the
motivating reasons for its choice. Key references for this chapter are the Stan-
ford Encyclopedia of Philosophy entry for Type-Logical Grammars [Moo14] and
Moot and Retoré’s book on Categorial Type Logics [MR12].

2.1.1 Overview

Categorial Grammars Categorial grammar formalisms have their origins in
the works of Adjukiewicz [Ajd35] and Bar-Hillel [BH53]. At their core and ever
since their inception, they are defined on the basis of two simple components;
a type system and a set of rules dictating type interactions. The former is an
inductive scheme for category (or type) construction, that utilizes a set of atomic
types and a set of type-forming operators to provide the means for creating
complex types. The latter provides a number of schemata that describe what
kinds of type combinations are permitted, and what the productions of these
combinations are.

Categorial Grammars treat syntax as the formal process that dictates how
phrases are gradually built by their components, which combine with one-
another in terms of function-argument relations. They thus epitomize on the
principle of compositionality, which posits that the meaning of complex expres-
sions is a production of the meaning of their parts and the rules used to compose
them.

17

18 CHAPTER 2. GRAMMAR

Parsing as Deduction The key insight of Type-Logical Grammars and their
distinguishing feature is the logical take on the parsing process. Lambek was the
first to notice that categories may be perceived as logical formulas, and type-
forming operators as logical connectives [Lam58]. Parsing is then lifted from
arbitrary schematic rule application to a process of deductive inference, as driven
by an underlying logic. This yields a number of benefits which will be clarified
later; for now, it is worth noting the flexibility inherent to such an approach.
Altering the choice of logic gives rise to a different grammar instance, so one
may be designed for particular use-cases by a adopting an appropriate logic. As
such, Type-Logical Grammars form a wide landscape which encompasses many
formalisms which may differ in their properties but all share a proof-theoretic
perspective on parsing.

2.1.2 Type-Logical Grammars

Although a full exposition and comparison between the various incarnations of
Type-Logical Grammars escapes the purposes of this work, it is still worthwhile
to inspect their persistent aspects and their historical origins.

Lambek Calculus We begin with a brief description of what has come to
be known as the Lambek Calculus (L) [Lam58], which built upon AB Gram-
mars [BH53] in providing them with a logical formalization. In the implication-
only fragment which is of interest here, categories are defined as follows:

c := a | c1/c2 | c1\c2

This inductive scheme states that a valid category is either an atomic category
a ∈ A, where A a closed set of categories, or the result of either of the binary
operators /, \ (read as slash and backslash) on two valid categories. Intuitively,
an atomic element a corresponds to a complete category, whereas a complex
category a/b (a\b) correspond to an incomplete (or fractional) category that
misses a b to the right (left) to produce a full category a, with / and \ acting
as directional implications. The corresponding type-logic contains four logical
rules, presented here in Natural Deduction style:

Γ ` B/A ∆ ` A
Γ,∆ ` B (/E)

Γ, A ` B
Γ ` B/A (/I)

∆ ` A Γ ` A\B
∆,Γ ` B (\E)

A,Γ ` B
Γ ` A\B (\I)

plus the identity Axiom:

A ` A (Ax.)

where A, B are formulas (i.e. categories) and Γ, ∆ are non-empty sequences of
formulas. A statement of the form Γ ` A is a judgement, expressing that from
a sequence of assumptions Γ one can derive a conclusion formula A.

2.1. BACKGROUND 19

The first line presents the slash and backslash Elimination rules, where /E
(\E) states that if one has a proof of a formula B/A (A\B) from assumptions
Γ and a proof of a formula A from assumptions ∆, then from assumptions Γ, ∆
(∆, Γ) one can derive a formula B. Note that Γ, ∆ refers to the concatenation
of Γ to ∆ and is distinct from ∆, Γ — that is, the order of items within a
sequence plays a role in what constitutes a valid proof since our logical rules
are non-commutative. The second line presents the corresponding Introduction
rules. Now, /I (\I) state that if ones know a sequence Γ, A to derive a B,
then A may be withdrawn, allowing one to derive B/A (B\A) from Γ alone.
Elimination rules are dual to Introduction rules; the first allow the removal of
an implicational type by applying it to its argument, whereas the latter create
implicational types by abstracting arguments away, giving our logic access to
hypothetical reasoning.

To illustrate the linguistic relevance of such a grammar, we will take a second
to review how implication types may be used to convey information on sentence
structure. First off, atomic categories may be seen as structurally complete, in-
dependent phrases. Phrasal composition is coordinated by phrasal heads, which
are assigned complex categories. Heads are then functors which consume the
categories of their dependants, producing as a result the wider phrasal category.
At the bottom level, categories are provided by a lexicon, a binary relation which
associates lexical entries (i.e. words) with one or more potential categories.

To get the point across, we can devise a minimal grammar capable of mod-
eling the syntactic structure of a small set of example sentences. Let us first
initialize an atomic category set consisting of the elements n for noun, np for
noun-phrase and s for sentence, and a corresponding lexicon as follows:

Word Category
girl, apple n
children np
the, a(n) np/n
play(s) np\s

ate (np\s)/np
who (np\np)/(np\s)

which (np\np)/(s/np)

Equipped with the above lexicon, we can use the Lambek Calculus to provide
derivations for a number of simple examples as shown in Figure 2.1, involving
usage of our versions of intransitive “play” and transitive “ate” both in pri-
mary and embedded clauses. Notice how the introduction rules bypass the need
for explicit combinatory rules for peripheral extraction, as seen in the object-
relativisation example of 2.1e.

Going Stricter In our presentation of the Lambek calculus, we have treated
assumptions Γ, ∆ as sequences, i.e. ordered collections, of formulas. This can,
at times, offer the grammar too much creative liberty, resulting in logically
correct but linguistically wrong derivations. This limitation can be bypassed by

20 CHAPTER 2. GRAMMAR

children ` np
L

play ` np\s L

children,play ` s
\E

(a) Simple intransitive verb derivation.

the ` np/n
L

girl ` n
L

the, girl ` np
/E

ate ` (np\s)/np L
an ` np/n

L
apple ` n

L

an, apple ` np
/E

ate, an, apple ` np\s
/E

the, girl, ate, an, apple ` s
\E

(b) Simple transitive verb phrase derivation.

who ` (np\np)/(np\s) L
play ` np\s L

who,play ` np\np
/E

(c) Subject-relative intransitive verb derivation.

who ` (np\np)/(np\s) L
ate ` (np\s)/np L

. . .
an, apple ` np

/E

ate, an, apple ` np\s
/E

who, ate, an, apple ` np\np
/E

(d) Subject-relative transitive verb derivation.

which ` (np\np)/(s/np)
L

. . .
the, girl ` np

/E
ate ` (np\s)/np L

np ` np
Ax.

ate,np ` np\s
/E

the, girl, ate,np ` s
\E

the, girl, ate ` s/np
/I

which, the, girl, ate ` np\np
/E

(e) Object-relative transitive verb derivation.

Figure 2.1: Simple english sentences and their derivations using the Lambek
Calculus. L is used in place of Ax. for categories identified with lexical items.

2.1. BACKGROUND 21

enhancing the logic with a notion of structure and set of rules to manipulate
it, as originally proposed by Lambek [Lam61]. Under this new regime, called
the non-associative Lambek Calculus (NL), the logical rules are only applicable
under the condition of appropriately bracketed structures:

Γ ` B/A ∆ ` A
(Γ ◦∆) ` B (/E)

(Γ ◦A) ` B
Γ ` B/A (/I)

∆ ` A Γ ` A\B
(∆ ◦ Γ) ` B

\E
(\E)

(A ◦ Γ) ` B
Γ ` A\B

\I
(\I)

where ◦ is a binary structure-building operator.
If the Lambek Calculus is a language of strings, its non-associative version is

the language of binary branching trees; it respects (and requires) the constituent
structure of a phrase in providing its derivation.

Exerting Control Associativity and commutativity (in the form of permuta-
tion) may be added to the logic in the form of structural rules that enable them,
thus obtaining L and LP (for Lambek Calculus with permutations) [vB88]:

Γ[∆1 ◦ (∆2 ◦∆3)] ` C
Γ[(∆1 ◦∆2) ◦∆3] ` C (Associativity)

Γ[∆2 ◦∆1] ` C
Γ[∆1 ◦∆2] ` C (Commutativity)

Universally allowing associativity yields a grammar that loses track of con-
stituent structure, while universal commutativity corresponds to a grammar
that completely ignores word order. Disallowing them altogether, on the on
other hand, may be too harsh of a measure. Notice, for instance, that the ex-
ample on object-relativisation is no longer derivable without associativity, as
seen in Figure 2.2a. To benefit from associativity and/or commutativity while
restraining its applicability to only cases when it really is needed for a deriva-
tion, the logic may be expanded with unary modal operators that either allow or
block structural rules [KM97]. Structural control modalities improve the logic’s
proof-theoretic properties – maximally, the only choices made available during
proof search correspond to actual derivational (i.e. non spurious) ambiguity.
That is, if more than one proof may be devised for a single judgement, they
correspond to its different readings.

To briefly illustrate the point, we can consider a pair of unary operators ♦,
� forming a residual pair such that ♦�A ` A ` �♦A1, with associativity only
applicable on elements marked with ♦:

A ◦ (B ◦ ♦C)

(A ◦B) ◦ ♦C A♦

1N.D. rules for such modalities will be presented in the next section.

22 CHAPTER 2. GRAMMAR

which ` (np\np)/(s/np)
L

(((the ◦ girl) ◦ ate) ◦ np) ` s

((the ◦ girl) ◦ ate) ` s/np
/I

(which ◦ ((the ◦ girl) ◦ ate))) ` np\np
/E

(a) Non-derivable object-relative clause in NL.

which ` (np\np)/(s/♦�np)
L

. . .
the, girl

\E
ate ` (np\s)/np L ♦�np ` np

(ate ◦ ♦�np) ` np\s
\E

((the ◦ girl) ◦ (ate ◦ ♦�np)) ` s
/E

(((the ◦ girl) ◦ ate) ◦ ♦�np) ` s
A♦

((the ◦ girl) ◦ ate) ` s/♦�np
/I

(which ◦ ((the ◦ girl) ◦ ate))) ` np\np
/E

(b) ..now derivable using a residual pair of control operators.

Figure 2.2: Example of a structural control modality as a licensing feature for
limited associativity.

Then adding the type (np\np)/(s/♦�np) in our lexicon for the word “which”
re-enables the derivability of the running example in Figure 2.2b.

Lexical Ambiguity These proof-theoretic advantages do not come for free,
however. Even though a stricter type system mitigates the difficulty of proof
search, the burden is not removed but rather shifted onto the lexicon. As words
are assigned more potential types, the lexicon becomes increasingly ambiguous.
This ambiguity is further exacerbated for languages exhibiting higher degrees
of word order freedom, with Dutch being a prime example.

When concerned with relativisation, for instance, which in Dutch is verb-
final, we need to either include the second type np\(np\s) for transitive verbs, or
modal decorations for conditional commutativity and associativity that would
allow a hypothetical noun-phrase to move unhindered through the proof until
it finds its correct position. Other permutations are yet possible in the context
of inverted clauses, or wh- and yes/no-questions. The recurrence and variety
of these complications can vastly increase the complexity of the type system,
if we wish proof search to remain deterministic. This complexity can become
unwieldy when dealing with large-scale corpora, owing mostly to the potentially
immense size (and therefore ambiguity) of the lexicon, but also the considerable
difficulty of populating such a lexicon in the first place. Consequently, there is a
balance to be sought between the formal well-behavedness of the grammar and
its practical applicability.

2.2. A TLG FOR SEMANTIC COMPOSITIONALITY 23

2.2 A TLG for Semantic Compositionality

2.2.1 Intuitionistic Linear Logic

The above considerations, combined with our goal of constructing a wide-
coverage grammar for Dutch, draws our attention towards LP, otherwise known
as the Lambek-van Benthem Calculus [vB88]. LP coincides with the implication-
only fragment of Multiplicative Intuitionistic Linear Logic (MILL) [Gir87] the
notation of which is adopted for the purposes of this presentation. MILL is
closely related to the Lambek Calculus shown earlier; the two logical connec-
tives of / and \ are collapsed into a single, direction-agnostic implication→ (an
alternative notation is (). Similar approaches to syntactic analysis were fore-
boded by early proponents, as in [Cur61] and their contemporary incarnations
of Lambda Grammars [Mus01] and Abstract Categorial Grammars [DG01]; the
relation between these and the approach presented here will be briefly examined
in Chapter 5.

MILL implication types are inductively defined as:

t := a | t1 → t2

where again a is an atomic type and t1, t2 are types.
The implication rules and identity axiom of MILL are presented below:

A ` A (Ax.)

Γ ` A→ B ∆ ` A
Γ,∆ ` B (→ E)

Γ, A ` B
Γ ` A→ B (→ I)

Note that rather than the sequences of L or binary branching structures
of NL, the assumptions of a judgement in MILL are now multisets; Γ, ∆ is
then read as the multiset union of Γ with ∆ and is equivalent to ∆, Γ. In
practical terms, this means that both associativity and commutativity are ad-
mitted as holding universally; neither structure nor word order are taken into
account when deriving a sentence2. In other words, a single type may be used
to present multiple versions of functors that would previously differ depending
on the variations over their arguments’ positions.

The Curry-Howard Correspondence The Curry-Howard Correspondence
states that logical propositions are in a one-to-one relation with the types of a
functional program. MILL, in particular, is directly equivalent to the simply-
typed linear λ-calculus [BBDPH93, Abr93]. A proof then encodes a λ-term
which fully specifies the execution of a functional program, and vice-versa. Log-
ical connectives are identified with type constructors; specifically, implicational

2For non-native Dutch speakers, this may at times feel as less of a concession and more of
a postulate.

24 CHAPTER 2. GRAMMAR

formulas are the type signatures of function spaces. Assumptions are free vari-
ables, and the rules of introduction and elimination find their computational
analogues in function abstraction and function application, respectively, whereas
the identity axiom corresponds to variable instantiation.

The ramifications of this insight are far-reaching and their analysis falls
beyond the scope of this thesis; we rather want to focus on one particular aspect
of the correspondence, namely its significance for semantic compositionality.

Let’s begin by inspecting the logical rules decorated with their corresponding
λ-terms, and giving them an intuitive reading.

x : A ` x : A (Ax.)

Γ ` s : A→ B ∆ ` t : A
Γ,∆ ` s(t) : B (→ E)

Γ, x : A ` u : B

Γ ` λx.u : A→ B (→ I)

The identity axiom simply states that we may instantiate a free variable x
of type A. The elimination rule→ E states that if we have a program that from
a typing environment Γ (i.e. a set of type-specified variables) can produce a
function s of type A→ B, and a program that from another set ∆ can produce
a variable t of type A, then s may be applied to t yielding a variable of type
B. Dually, the introduction rule states that from a program that produces a
variable u of type B out of a set of variables Γ together with a variable x of type
A, we can construct a program for a function of type A → B by abstracting x
away.

Recalling that our variables are instantiated by a type lexicon, we can easily
shift from syntax to semantics via a homomorphic mapping. Concretely, for
each lexical type assignment we need also provide a corresponding semantic
assignment. Then, the process of meaning assembly for a phrase is identical with
the execution of the functional program dictated by its syntactic derivation; in
other words, we may use the semantic values of our lexicon, applying function-
words to their arguments in a hierarchical manner, guided by the λ-term that
encodes the proof structure.

As semantic compositionality is one of the planned applications of our gram-
mar, we will stress this point by providing an abstract example. First, let’s
return to the prior examples, now using an MILL-adapted lexicon3:

Word Category
meisje, appel n

het, een n→ np
at np→ np→ s

dat, die (np→ s)→ np→ np

3Throughout the remainder of this thesis, we will use a right-implicit parentheses notation
for MILL types; that is, A → B → C is read as A → (B → C) and is distinct from
(A → B) → C

2.2. A TLG FOR SEMANTIC COMPOSITIONALITY 25

at ` np→ np→ s
L

een ` n→ np
L

appel ` n
L

een, appel ` np
→ E

at, een, appel ` np→ s
→ E

het ` n→ np
L

meisje ` n
L

het,meisje ` np
→ E

het,meisje, at, een, appel ` s
→ E

(a) Simple transitive verb derivation, with λ-term (at(een appel))(het meisje)

dat ` (np→ s)→ np→ np
L

at ` np→ np→ s
L

een ` n→ np
L

appel ` n
L

een, appel ` np
→ E

een, appel, at ` np→ s
→ E

dat, een, appel, at ` np→ np
→ E

(b) Subject-relative transitive verb derivation, with λ-term dat(at (een appel))

die ` (np→ s)→ np→ np
L

at ` np→ np→ s
L

np→ np Ax.

at, np ` np→ s
→ E

het ` n→ np
L

meisje ` n
L

het,meisje ` np
→ E

het,meisje, at, np ` s
→ E

het,meisje, at ` np→ s
→ I

die, het,meisje, at ` np→ np
→ E

(c) Object-relative transitive verb derivation, with λ-term die(λx.((at x)(het meisje)))

Figure 2.3: Example derivations in MILL

Figure 2.3 presents derivations for a transitive verb phrase in primary and
embedded clauses. The corresponding λ-terms are obtained by following the
proof constructions top-down. Note that the embedded clause example that
gave us trouble earlier is now trivial to derive, while maintaining the subject-
relative reading.

Now, given a mapping d.e from words to semantic objects, we may obtain
a compositionally driven semantic interpretation over larger linguistic units by
recursively applying the mapping on the proofs’ λ-terms, e.g.:

ddie het meisje ate = ddiee(λx.((date x)(dhetedmeisjee))

The exact semantic spaces operated on are still open to our creative libery;
specifying those escapes the context of this thesis, but the grammar’s ability to
accommodate a multitude of such spaces is still an important point to consider.

2.2.2 Dependency Refinement

Earlier, we saw how MILL simplifies the derivation process for cases that would
otherwise require involved structural reasoning. The observant reader will, how-
ever, have noticed that this laxity can result in erroneous analyses. Returning,
for instance, to the relativisation examples of Figure 2.3, there is no restric-
tion enforcing us to derive the particular proofs presented. The proof structure

26 CHAPTER 2. GRAMMAR

of 2.3b could be used in 2.3c (and vice-versa), resulting in linguistically in-
accurate readings. Even though associativity and commutativity mitigate the
problem of resolving long-distance or crossing dependencies, they vastly increase
the proof-search space and permit derivations that are completely off-point.

This is a compromise consciously made; even though the types will not suffice
for deductive parsing, they may be used as an auxiliary information source on
top of the words themselves. The assumption made here is that the combination
of lexical-level preferences and type-level information will prove adequate in
the selection of the most plausible reading and its proof; for example, when
concerned with the sentence “het meisje at een appel” (the girl ate an apple),
we know with a degree of certainty that apples are much more plausible as
objects of eating compared to girls.

The crucial insight is that even though the position of phrasal dependants
(and thus functor arguments) may be variable, their syntactic role remains
constant. These roles are left implicit for non-permuting calculi (for example
the inner-most argument of the np\(s/np) refers to the object of the transitive
verb), but can be explicitly defined in the current setting. To imlement this
refinement, we subclass the implication arrow into several named variants, each
(roughly) corresponding to a particular dependency label. Functor types now
also specify the syntactic slot occupied by their arguments, denoted by the
name decoration of their corresponding implication. A transitive verb then gets

typed as np
su−→ np

obj−→ s; a curried function that consumes first a noun-phrase
in subject position and then a noun-phrase in object position before producing
a sentence.

Such an enrichment of the type system has multifold benefits; functor types
gain a more intuitive reading, which also greatly increases their informational
content. They no longer encode just the local phrase structure, but also the
dependencies enacted by the structure; functors that share the same arguments
but have them occupy different syntactic slots are now distinguishable from one
another. Further, lexical preferences can now be canonically shared across types
rather than being tied to argument positions over individual types. Last but
not least, novel usecases for dependency decorations are likely to arise in the
context of semantic interpretations.

Of course, this addition is expected to significantly increase the lexicon size.
However, differently decorated types arising from a single MILL type will really
be functionally distinct (both syntactically and semantically), as opposed to
simply an artifact of permutation (as would be the case in a directional system).
Consider, for instance, the case of the relativiser “die”, which would get the two

different types4 (np
su−→ s)

body−→ np
mod−→ np and (np

obj−→ s)
body−→ np

mod−→ np, the
first for subject- and the second for object-relativisation. The size increase is
anyway modest compared to what a directional grammar would yield; therefore,
the decorations are cost-efficient, in the sense that they offer the most advantages
for the least added complexity and lexical ambiguity.

It is noteworthy to point out that not all implication instances need be

4The dependency label body refers to relative clause body.

2.3. SUMMARY 27

decorated; higher-order types might involve hypothetical reasoning over objects
which do not project dependency information.

A Formal Treatment Throughout the rest of the thesis, we will be using
the decsribed dependency decorations in a informal manner, as a meta-logical
notation that is simply used to convey useful auxiliary information. However,
such decorations can be properly included in the logic in the form of modal
operators. First, consider that the arrow decoration is a characterization of the
means of argument consumption; as such, it can be shifted onto the argument
itself. With this in mind, we can insert a unary logical connective ♦d for each
dependency label d, together with its corresponding structural counterpart 〈〉d.

The logic then requires two extra rules for ♦d Introduction and Elimination:

Γ ` A
〈Γ〉d ` ♦dA (♦dI)

∆ ` ♦dA Γ[〈A〉d] ` B
Γ[∆] ` B (♦dE)

The first states that a proof of A from assumptions Γ can be converted into a
proof a d-decorated A from a d-bracketed Γ. The second says that given a proof
for ♦dA from structure ∆ and a proof of B from a structure ∆ that contains a d-
bracketed A as a sub-structure, the latter may be replaced by a Γ and still yield
a B. Figure 2.4 presents another relativisation example, showcasing the effect
of dependency decorations in the proof. Note that the modalities do not alter
proof-search when performed in a forward manner, but require the dependency
bracketing when done in a backward manner. A two-step backward-forward
strategy may be used to first construct a standard MILL proof, then insert the
modal decorations.

2.3 Summary

This chapter examined Type-Logical Grammars and some of the major steps
throughout their evolution. We saw how parsing may be understood as a formal
deduction process, and how stricter logics can regulate this process so as to keep
it linguistically grammatical. Using a few examples, we recognized that stricter
logics come at the cost of increased lexical ambiguity, further emphasized for
a language with large word order variety like Dutch. With this in mind, we
considered a laxer grammar based on Intuitionistic Linear Logic.

A MILL-based grammar boasts simplicity, ease of dealing with discontinu-
ous or long-range dependencies and a clear and direct correspondence with the
simply typed linear λ-calculus, making it an ideal driving force for semantic
compositionality. On the other hand, the axiomatic treatment of associativ-
ity and commutativity permits more proofs than desired and increases parsing
complexity. To address this issue, we enriched the grammar by subclassing
the linear implication to a set of named versions, each one suggesting a unique
“means of consumption” as specified by a corresponding syntactic dependency.

28 CHAPTER 2. GRAMMAR

d
ie
`
♦

b
o
d
y
(♦

s
u
n
p
→

s)
→

(♦
m

o
d
n
p
→

n
p
)
L

♦
s
u
n
p
`
♦

s
u
n
p
A
x
.

le
g
g
e
n
`
♦

s
u
n
p
→
♦

o
b
j
n
p
→

s
L
♦

s
u
n
p
`
♦

s
u
n
p
A
x
.

le
g
g
e
n
,
♦

s
u
`
♦

o
b
j
n
p
→

s
→
E

k
ip
p
e
n
`

n
p
L

〈k
ip
p
e
n
〉o

b
j
`
♦

o
b
j
n
p
♦

o
b
j
I

〈k
ip
p
e
n
〉o

b
j
,
le
g
g
e
n
,
〈n

p
〉s

u
`

s
→
E

〈k
ip
p
e
n
〉o

b
j
,
le
g
g
e
n
,
♦

s
u
n
p
`

s
♦

s
u
E

〈k
ip
p
e
n
〉o

b
j
,
le
g
g
e
n
`
♦

s
u
n
p
→

s
→
I

〈〈
k
ip
p
e
n
〉o

b
j
,
le
g
g
e
n
〉b

o
d
y
`
♦

b
o
d
y
(♦

s
u
n
p
→

s)
♦

b
o
d
y
I

d
ie
,
〈〈
k
ip
p
e
n
〉o

b
j
,
le
g
g
e
n
〉b

o
d
y
`
♦

m
o
d
n
p
→

n
p

→
E

e
ie
re
n
`

n
p
L

〈e
ie
re
n
〉m

o
d
`
♦

m
o
d
n
p
�m

o
d
I

〈e
ie
re
n
〉m

o
d
,
d
ie
,
〈〈
k
ip
p
e
n
〉o

b
j
,
le
g
g
e
n
〉b

o
d
y
`

n
p

(a
)

S
u
b

je
ct

-r
el

a
ti

v
e

d
er

iv
a
ti

o
n
.

d
ie
`
♦

b
o
d
y
(♦

o
b
j
n
p
→

s)
→

(♦
m

o
d
n
p
→

n
p
)
L

le
g
g
e
n
`
♦

s
u
n
p
→
♦

o
b
j
n
p
→

s
L

k
ip
p
e
n
`

n
p
L

〈k
ip
p
e
n
〉s

u
`
♦

s
u
n
p
♦

s
u
I

〈k
ip
p
e
n
〉s

u
,
le
g
g
e
n
`
♦

o
b
j
n
p
→

s
→
E

〈〈
k
ip
p
e
n
〉s

u
,
le
g
g
e
n
〉b

o
d
y
`
♦

b
o
d
y
(♦

o
b
j
n
p
→

s)
♦

b
o
d
y
I

d
ie
,
〈〈
k
ip
p
e
n
〉s

u
,
le
g
g
e
n
〉b

o
d
y
`
♦

m
o
d
n
p
→

n
p

→
E

e
ie
re
n
`

n
p
L

〈e
ie
re
n
〉m

o
d
`
♦

m
o
d
n
p
�m

o
d
I

〈e
ie
re
n
〉m

o
d
,
d
ie
,
〈〈
k
ip
p
e
n
〉s

u
,
le
g
g
e
n
〉b

o
d
y
`

n
p

(b
)

O
b

je
ct

-r
el

a
ti

v
e

d
er

iv
a
ti

o
n
.

Figure 2.4: Example derivations in MILL, using dependency modalities, for the
sentence “eieren die kippen leggen”. Subfigure 2.4a presents the subject-relative
reading (eggs that lay chickens), while subfigure 2.4b presents the object-relative
reading (eggs that chickens lay). The combination of semantic preferences and
dependency annotations should select the second derivation as the most plausi-
ble one.

2.3. SUMMARY 29

The novel contribution of this chapter lies in this enrichment, which can facili-
tate a preferential lexical bias, thus aiding in the reduction of the search space
ambiguity.

30 CHAPTER 2. GRAMMAR

Chapter 3

Extraction

3.1 Background

Categorial grammars rely on lexical categories, in our case types, to provide
meaningful syntactic derivations for phrases and sentences. They thus differ
from standard dependency or phrase-structure formalisms in the sense that
most of the information necessary for parsing is located within the words and
their types rather than the syntactic structure built on top of them. This makes
it evident that the most crucial component of a categorial grammar treebank are
the type assignments themselves. Constructing such a treebank from scratch is
impractical; the annotation process is a costly and time-demanding endeavour.
Instead, it is easier to utilize pre-annotated corpora, converting them into a
categorial format. The conversion could be performed manually, in the case
of smaller corpora, but a degree of automation becomes imperative for larger
ones, which are a prerequisite for building statistical models. The process of
automatically transforming a syntactically annotated corpus into a categorial
grammar treebank is hereon referred to as grammar extraction. It involves
the design and application of an algorithm which manipulates the sentential
syntactic structure and projects it into categories for each of its parts, as well as a
number of preprocessing steps. Depending on the grammar and its type system,
these categories and their rules of interaction encode the collapsed structure,
allowing its full or partial reconstruction.

No universal algorithm exists for grammar extraction; the process may vary
significantly depending on factors such as the source corpus to be converted,
the syntactic formalism it abides by, the language and its particularities, and
the target grammar and its specification. Despite their distinguishing points,
all works on grammar extraction share a common core in the underlying algo-
rithmic process. Phrases are analyzed as binary branching structures, with one
branch corresponding to a word that acts as the phrasal head and a branch
that corresponds to a phrase or word that plays the role of the phrasal depen-
dent. The distinction between the two is made on the basis of the dependencies

31

32 CHAPTER 3. EXTRACTION

and/or syntactic tags provided by the original annotation. The head is then
treated as a functor from the category of the dependant to the category of their
common root, where these are provided by means of some translation from the
annotation’s tags and dependencies to a closed set of atomic formulae.

Significant work has been carried out for a wide range of corpora of dif-
ferent languages in the context of various categorial frameworks. Pioneering
research provided the groundwork for converting constituency-based corpora to
CCG [SB11] derivations, in languages like English [HS07] and German [Hoc06],
with later expansions for languages like Hindi [ADS18] and Japanese [UMH+15]
adapted to dependency-based corpora.

The main point of reference for this chapter is Moortgat and Moot’s extrac-
tion algorithm [MM02] (for an updated version, refer to [Moo10]), proposed for
the extraction of type-logical supertags from the spoken dutch corpus. It is
in many ways similar to the current endeavor, owing to the affinities between
the source corpora and the common language. Albeit being the work most re-
lated to ours, the proposed algorithm still had to be adapted in many ways.
Although the annotations of CGN [HMSVDW01], the spoken dutch corpus, are
largely the same as Lassy, the corpus employed in the current work (see Sec-
tion 3.2), a few key differences occur between the two. As many of these are
incompatible with the originally proposed algorithm, considerable extra effort is
necessitated in terms of preprocessing steps. The algorithm itself also differs, as
our target type-logical grammar is largely divergent from established practices,
as described in Chapter 2.

The rest of this chapter is aimed towards providing a functional overview
of the extraction process, including abstract algorithmic descriptions, linguistic
justifications for the design decisions made and motivating examples. As the
extraction is closely tied to the input corpus and its annotations, we will begin
by providing a brief overview of it first, using it as a constant point of reference
afterwards.

3.2 Corpus

Our core corpus for this endeavor is Lassy-Small [vNSV06]. Lassy consists
of 65 200 sentences of written Dutch, originating from various sources such as
newspaper articles, wikipedia crawls, books and magazines, etc. In total, it
contains approximately 1.1 million words and 78 570 unique tokens.

The sentences have been automatically parsed by the Alpino parser [BVNM01],
producing annotations in the form of directed acyclic graphs (DAGs)1. The
graphs’ nodes represent complete words and phrases, the former in the case
of leaves (terminal nodes) and the latter otherwise, associated with a part-of-
speech tag or phrasal category respectively. Nodes are connected with one-
another through labeled, directed edges, connecting phrasal nodes to their con-
stituents, with the labels denoting the dependency relation between two items.

1A detailed overview of Lassy’s annotations is provided by the corresponding manual
at https://www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf.

https://www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf

3.3. EXTRACTION PROCESS 33

Reentrancy is used to model phenomena such as embedded clauses, ellipses and
abstract semantic relations. It is implemented via the insertion of “phantom”
nodes, i.e. nodes which are not lexically grounded, but share a mutual index
with their material counterparts allowing them to be identified.

The tree structures, dependency labels, and part-of-speech and phrasal tags
within Lassy-Small have been manually verified and corrected. The resulting
corpus boasts both high quality and adequate size, making it an ideal test bed
for our experimentation.

Aside from Lassy-Small, an additional resource that is available is Lassy-
Large. Lassy-Large is a silver-standard corpus of considerable size (almost 700
times that of Lassy-Small), also automatically annotated by the Alpino parser
but not manually verified. As the annotation format and conventions followed by
Lassy-Small is in near perfect agreement with that of Lassy-Large, the extraction
process is also applicable on the latter. Even though preliminary tests have been
carried out successfully, we refrain from utilizing it in the current work, as its
noisy nature makes it a lower-grade resource for grammar induction.

3.2.1 Corpus Statistics

Tag Sets Tables 3.1 and 3.2 depict the sets of part-of-speech tags and phrasal
categories and dependency relations, respectively, as used in the corpus. A short
description is provided for each item, as well as its relative frequency within its
domain. Auxiliary items serving meta-annotation purposes have been excluded.

Sentence Lengths Figure 3.1 displays the cumulative distribution of sentence
lengths in the corpus.

3.3 Extraction Process

3.3.1 Extraction Algorithm

Algorithms 1 and 2 summarize the type-assignment process, subdivided into
components. The first revolves around utility functions that implement contex-
tual assignment of phrasal arguments, root nodes and modifiers, as well as a
method that concerns the binarization of multi-argument functors. The second
presents a method for iterating over a DAG. During the iteration, the DAG’s
nodes are decorated with types by calling the prior functions as needed. The
goal here is to draw a rough sketch of the overall process rather than delve into
a detailed description. In that sense, the presentation abstracts away from the
minutiae of the implementation, but also makes a few simplifying assumptions,
namely the full compatibility between the system’s routines and its input, as
well as an absence of exceptional cases. These simplifications will be easier to
address after the extraction’s core has been exposed.

34 CHAPTER 3. EXTRACTION

Tag Description Frequency (%) Assigned Type

Short POS Tags

adj Adjective 7.3 adj
bw Adverb 4.5 bw
let Punctuation 11.2 let
lid Article 10.7 lid
n Noun 22.5 n
spec Special Token 3.5 spec
tsw Interjection <0.1 tsw
tw Numeral 2.4 tw
vg Conjunction 4.2 vg
vnw Pronoun 6.5 vnw
vz Preposition 13.7 vz
ww Verb 13.2 ww

Phrasal Category Tags

advp Adverbial Phrase 0.6 adv
ahi Aan-Het Infinitive <0.1 ahi
ap Adjectival Phrase 2.1 ap
cp Complementizer Phrase 3.3 cp
detp Determiner Phrase 0.2 detp
inf Bare Infinitival Phrase 4.7 inf
np Noun Phrase 36.7 np
oti Om-Te Infinitive 0.8 oti
pp Prepositional Phrase 23.2 pp
ppart Past Participial Phrase 4.2 ppart
ppres Present Participial Phrase 0.1 ppres
rel Relative Clause 1.9 rel
smain SVO Clause 4.7 smain
ssub SOV Clause 0.8 ssub
sv1 VSO Clause <0.1 sv1
svan Van Clause <0.1 svan
ti Te Infinitive 1.8 ti
whq Main WH-Q 0.1 whq
whrel Free Relative 0.2 whrel
whsub Subordinate WH-Q 0.2 whsub
du Discourse Unit 2.6 N/A*
mwu Multi-Word Unit 5.9 N/A*
conj Conjunct 5.7 N/A*

Table 3.1: Part-of-speech tags and phrasal categories, and their corresponding
type translations.
(*): Not used as a type.

3.3. EXTRACTION PROCESS 35

Dep Description Frequency (%) Implication
Label

app Apposition 0.8 app
whd-body WH-question body* 0.1 whd body
rhd-body Relative clause body* 0.1 rhd body
body Complementizer body* 2 body
cmp Complementizer 2 cmp
cnj Conjunct 4.3 cnj
crd Coordinator 1.9 crd
invdet Syntactic head of a noun phrase 9.7 invdet
dlink Discourse link 0.2 N/A**
dp Discourse part 0.8 N/A**
hd Phrasal Head 27.8 N/A***
hdf Final part of circumposition <0.1 hdf
ld Locative Complement 0.5 ld
me Measure Complement 0.1 me
mod Modifier 16.4 mod
mwu Multi-word part 5.1 N/A**
nucl Nuclear Clause 0.5 N/A**
obcomp Comparison Complement 0.1 obcomp
obj1 Direct Object 10.8 obj1
obj2 Secondary Object 0.2 obj2
pc Prepositional Complement 10.6 pc
pobj1 Preliminary Direct Object <0.1 pobj1
predc Predicative Complement 1.3 predc
predm Predicative Modifier 0.1 predm
sat Satellite 0.2 N/A**
se Obligatory Reflexive Object 0.7 se
su Subject 6.9 su
sup Preliminary Subject <0.1 sup
svp Separable Verbal Participle 0.7 svp
vc Verbal Complement 2.8 vc
tag Appendix 0.1 tag
whd WH-question head 0.1 N/A***
rhd Relative clause head 0.1 N/A***

Table 3.2: Dependency relations and their corresponding implication labels.
(*): No distinction between the three subtypes of body is made in the original
annotation.
(**): Not used as an implication or not covered by the extraction.
(***): Head types not projecting an implication label.

36 CHAPTER 3. EXTRACTION

Algorithm 1 Type Assignment Utilities

1: procedure Trans(node N)
2: . Translates independent nodes to atomic types
3: if is terminal(N) then
4: return pos table[N .part of speech]
5: else
6: return cat table[N .syntactic category]
7: end if
8: end procedure
9:

10: procedure TypeAssign(node N , dependency dep, parent type p)
11: . Assigns contextually-informed types to modifiers and arguments
12: if dep ∈ mod labels then
13: d ← dep table[dep]

14: return p
d−→ p

15: else
16: return Trans(N)
17: end if
18: end procedure
19:

20: procedure MakeComplex(Arguments A, Result r)
21: . Converts a list of type & dependency pairs and a result into a binarized

functor
22: A ← sort(A)
23: D ← map(snd, A)
24: d1, . . . , dn ← map(dep table, D)

25: return a1
d1−→ a2 . . .aN

dN−→ r
26: end procedure

3.3. EXTRACTION PROCESS 37

0 20 40 60 80
Sentence Length

13040 (20)

26080 (40)

39120 (60)

52160 (80)

65200 (100)

#
 o

f S
en

te
nc

es
 (%

)

Figure 3.1: Cumulative sentence lengths in the original corpus, including punc-
tuation.

Arguments and Modifiers The simplest, primitive component is a func-
tion Trans (1-8). It simply distinguishes between leaves and non-terminals,
extracts the part-of-speech or syntactic category tag respectively, and uses the
corresponding translation table to map it to an atomic type. The instantiation
of the type translation tables is presented in Table 3.1. Trans is a context-
agnostic type-assignment function; it is used to assign direct phrasal dependents
and root nodes, the typing of which depends neither on their ancestors nor their
descendants.

Modifiers require different treatment; their types are instances of the para-
metrically polymorphic scheme:

t
d−→ t

where t the type of the phrase being modified and d the dependency label en-
acted by the modifier (an element of closed set). In the current implementation,
aside from plain modifiers (mod), appositions (app) and predicate modifiers
(predm) are also treated as modifying labels. To correctly instantiate modifier
types, we implement a minimally context-aware typing function, TypeAssign
(11-18). Given a node, the type of the node’s parent and the dependency linking
the two, it either assigns a type according to the above scheme, if the depen-
dency is modifying, or defaults to Trans otherwise. In the former case, the
dependency is translated into an implication name through a translation table;
its running instantiation is presented in Table 3.2.

38 CHAPTER 3. EXTRACTION

Head Types At this point we need to recall that our complex types are unary
functors, i.e. they have a single argument and produce a single result. Yet the
DAGs’ branchings are not binary, and the pervasiveness of word-order freedom
in the language means that a large degree of argument permutation is to be
anticipated within multi-argument types. Acknowledging these permutations is
meaningful for parsing, but less so for semantic tasks; the order of words mat-
ters little if their dependencies are already specified. Additionally, permitting
multiple different representations for types that are functionally equal has the
negative side-effect of enlarging the size of our extracted type lexicon. As a
counter-measure, we may enforce unary functor types by setting up an order
over types, dictating their proximity to the end-result when they participate
as arguments in the construction of a complex type. Function MakeComplex
(21-26) utilizes such an order, implemented as a sorting of a list of pairs of types
& dependencies. The concrete implementation may remain unspecified for now;
we will return to it at a later stage. The main functionality is generally inde-
pendent of the sorting criterion; the type-dependency pairs are sorted, and their
dependencies are translated into implication names. Then, a unary functor is
built up by folding over the sequence in reverse order, using the result type as
the initial argument and the next sequence item as the new outer argument
(25).

Recursive Type Assignment Finally, the bulk of the work is carried out by
RecursiveAssignment (2-27). Given a parent node, its type, and a partially
filled dictionary mapping nodes to types, it is responsible for carrying out the
type-assignment for the part of the DAG that lies below. First, it inspects
whether the parent node is a leaf, in which case the current call terminates.
Otherwise, it inspects the node’s daughters and their corresponding edges, and
selects for the head (6). Note that for this to work, a deterministic process
for selecting a head is necessary; in other words, all structures are considered
headed. Head-daughters can be told apart by their incoming dependency label,
which is either of head (hd), relative-clause head (rhd), wh-clause head (whd),
comparative (comp) or coordinator (crd). An empty list is then instantiated for
arguments to be filled by type & dependency pairs. Next, the algorithm iterates
over the node’s daughters, deciding the type of each via TypeAssign. For each
daughter, an empty list of embedded arguments, also being type & dependency
pairs, is also instantiated. A full downwards iteration of the DAG, starting from
that daughter is carried out. If at any time a descendant node is identified with
the current call’s head, its type, as inferred by TypeAssign called with the
new-found inner dependency and the current daughter as arguments, is added
to the embedded argument list. After this iteration is complete, the dependency
between the daughter and the current parent node is inspected; if it bears no
secondary marking, the type dictionary is updated and RecursiveAssigment
is called anew on the daughter using its inferred type. Recursive calls of this
function essentially fill in types for the DAGs’ elements in a depth-first, left-
biased manner.

3.3. EXTRACTION PROCESS 39

When the control returns to the caller function, the daughter’s type is up-
dated by applying MakeComplex using the embedded argument list and the
previous daughter type. If the embedded argument list is populated, one of
the daughter’s (not necessarily immediate) descendants is also its sibling. The
updated type then reflects the incomplete nature of the DAG rooted at this
daughter, and the need for hypothetical reasoning to resolve the lexically im-
material arguments. Finally, if the main dependency between the parent node
and the daughter currently examined is not a modifier, the daughter’s type is
added into the argument list.

After all daughters have been processed, iterated through and their types
assigned, the next step is to construct the head’s type. Since the embedded
arguments already account for gaps, the head is simply the functor from the
argument types (as collected in the arguments list) to the parent’s type.

It is now straightforward to annotate a full DAG by simply selecting its root
node, finding its type via a direct translation, initializing an empty dictionary,
and filling it via RecursiveAssignment which is simply called with the prior
arguments (30-36).

Argument Ordering To consistently binarize multi-argument complex types,
we establish a strict partial order over the set of dependency relations. The or-
der is motivated by the obliqueness hierarchy present within verbal arguments,
loosely inspired by [Dow82]2. The sorting algorithm then arranges a sequence
of type & dependency pairs based solely on the latter. Figure 3.2 depicts the
Hasse diagram of the poset, where incomparable items are collapsed into a single
set. These either never co-exist as arguments to the same functor due to being
subclasses of the same dependency (such as the various instances of clause bod-
ies) or occupying mutually exclusive positions (as in the complemental verbal
arguments), or when they do their order is irrelevant (e.g. modifiers). In the
case of incomparable items appearing simultaneously, an alphabetical default
is applied. Even though conjuncts and modifiers do not directly belong in the
obliqueness hierarchy, they are positioned in the poset in a way that ensures
type readability and sanity; for instance, modifiers are always placed last, so
if a functor corresponds to a modifier construction, the resulting modifier type
will always appear last. Similarly, coordinators are not derived but may still
partake in higher-order types; as such, conjunction dependencies always appear
first.

3.3.2 Transformations and Exceptions

The extraction algorithm, as specified earlier, makes a few assumptions pertain-
ing to the DAGs’ structure, which are not always valid. In order to bring the
corpus to a format that is maximally compatible with the algorithm, a series of

2Even though this ordering is normally established relative to the result category, we can
simplify the process by considering that incompatible arguments will not compete for hierarchy
within a single functor — thus, no more than one partial order is necessary.

40 CHAPTER 3. EXTRACTION

Algorithm 2 Type Assignment Process

1: procedure RecursiveAssignment(node N , node type p, type dict D)
2: . Depth-first recursion over a partial DAG
3: if is terminal(N) then
4: exit
5: end if
6: head← select head(N .daughters)
7: arguments← []
8: for (daughter d, dependency dep) in N .daughters ∧ {head} do
9: daughter type← TypeAssign(d, dep, p)

10: embedded args← []
11: for (descendant f , dependency inner dep) in d.descendants do
12: if f == head then
13: inner type← TypeAssign(f , inner dep, daughter type)
14: embedded args.append([inner type, inner dep])
15: end if
16: end for
17: if is primary(dep) then
18: D[d]← daughter type
19: RecursiveAssignment(d, daughter type, D)
20: end if
21: daughter type← MakeComplex(embedded args, daughter type)
22: if dep /∈ mod labels then
23: arguments.append([daughter type ⊗ dep])
24: end if
25: end for
26: D[head] ← MakeComplex(arguments, p)
27: end procedure
28:

29: procedure AnnotateDAG(DAG G)
30: . Type annotates a full parse DAG
31: r ← G.root
32: D ← {}
33: t ← Trans(r)
34: RecursiveAssignment(r, t, D)
35: return D
36: end procedure

3.3. EXTRACTION PROCESS 41

{cnj}

{invdet}

{su}

{pobj}

{obj1}

{predc, obj2, se, pc, hdf}

{ld, me, vc}

{svp}

{whd body, rhd body, body}

{app, predm, mod}

Figure 3.2: Dependency role obliqueness ordering. Lower roles take precedence
in priority over higher ones (appear closer to the result)

42 CHAPTER 3. EXTRACTION

preprocessing steps, in the form of conversions of the original annotation, be-
come necessary. In addition, on several occasions correct type inference requires
a few alterations to the general algorithm flow, implemented in the form of con-
ditional case management. The paragraphs below detail these transformations
and exceptions. Most transformations are accompanied by an example of their
application on an actual corpus sample (identified by its filename), visualizing
their effect on the parse DAG.

From Trees to DAGs To begin with, “phantom” nodes are useful for main-
taining a tree-like view of the DAG, but are otherwise hard to utilize. In only
being linked to a subset of the lexical item’s ancestors, they obfuscate the overall
parse structure, necessitating multiple iterations to distinguish and type-assign.
For that reason, we remove node copies by allowing multiple incoming edges onto
a single node. To distinguish between edges provided by the original treebank
and edges inserted by the transformation, we refer to the former as primary and
the latter as secondary. Any non-root node is always associated with exactly
one incoming primary edge, and zero or more secondary edges. This invert-
ible transformation serves mostly representational and algorithmic needs, in the
sense that it permits us to refer to a node as a single unit regardless of the
multiplicity of roles it assumes within the parse structure.

Abstact Semantic Arguments Lassy’s annotation scheme includes sec-
ondary edges for verbs’ abstract semantic arguments embedded under past par-
ticipial phrases and infinitival clauses. These dependencies account for semantic
flows within sentences, but in doing so escape from the boundaries imposed by
the phrase-local syntax. Furthermore, the distinction between primary and
secondary edge labeling in the case of abstract arguments is not structurally
consistent, injecting a source of unnecessary ambiguity for the type extraction.
In light of the above, we first homogenize the labeling by setting the node that
resides at the higher level of the graph as the primary one in all ambiguous
constructions. Since embedded clauses are systematically dependents of pri-
mary clauses, this may be viewed as equating between sentence-primary roles
and primary edges. We can then consistently remove all abstract arguments by
simply filtering out secondary links with a subject or object label that occur
between past participles/infinitives and their daughters, if the latter have a pri-
mary subject or object link with an (immediate or otherwise) ancestor of their
direct parents. An example of the transformation is presented in Figure 3.3.

Noun-Phrase Headedness When determiners and nouns are participating
in the formation of a phrase, nouns are assigned the head-role to which deter-
miners act as dependents. Without making any argument for determiner-headed
phrases, we acknowledge two problems with treating nouns as functors.

First, for the type grammar itself, it would mean that nouns are contextually-
typed — a noun in isolation might act as an independent noun-phrase, whereas
a noun paired with a determiner is a functor type from determiners to noun-

3.3. EXTRACTION PROCESS 43

4
smain

5
np
1

su primary

8
wordt
verb
ww

hd

9
ppart

vc

6
het
det
lid

det

7
schilderij

noun
n

hd

obj1 secondary

11
verstopt

verb
ww

hd

(a) Before removal

4
smain

5
np
1

su primary

8
wordt
verb
ww

hd

9
ppart

vc

6
het
det
lid

det

7
schilderij

noun
n

hd

11
verstopt

verb
ww

hd

(b) After removal

Figure 3.3: Derivation structure before (a) and after (b) abstract semantic argu-
ment removal for the sentence “het schilderij wordt verstopt” (The painting was
hidden) [wiki-9720.p.23.s.1]. The phrase “het schilderij” acts as both a sub-
ject argument for the main sentence verb “is” and the understood object for the
participial head “verstopt”. After the transformation, the second dependency
is erased.

phrases. Secondarily, anticipating a future semantic interpretation of our type
system, we would like nouns to be viewed as atomic, individual objects rather
than functions, for reasons both practical and conceptual. To avoid the lin-
guistic repercussions of considering determiners as heads, we opt to make a
distinction between headedness and functoriality in this particular case. Treat-
ing determiners as the phrasal functors resolves both of the above problems,
as they consistently appear paired to a nominal (which may be seen as their
argument), and can be trivially interpreted into identity maps in the semantic
space (thus preserving the content of their arguments).

For these reasons, we choose to alter the dependency labels internal to noun-
phrases as follows; determiner labels are set to head labels (for compatibility
purposes) and head labels occupied by nouns are set to a dual of the determiner,

44 CHAPTER 3. EXTRACTION

1
smain

2
Vet

noun
n

su

3
heeft
verb
ww

hd

4
np

obj1

5
geen
det
vnw

det

6
smaak
noun

n

hd

(a) Before swapping

1
smain

2
Vet

noun
n

su

3
heeft
verb
ww

hd

4
np

obj1

5
geen
det
vnw

hd

6
smaak
noun

n

invdet

(b) After swapping

Figure 3.4: Dependency relation naming before (a) and after (b) swapping noun-
phrase heads for the example sentence “Vet heeft geen smaak’ (Fat has no taste)
[WR-P-P-I-0000000130.p.1.s.1]. The pronoun “geen” acts as a determiner to
the noun-phrase “geen smaak”. After the transformation, it is assigned the head
role, with the noun-phrase being assigned the dual label invdet.

which we name invdet. An example of the transformation is shown in Figure 3.4.

Numerals and Multiple Determiners The transformation described above
is not always as straightforward. Although it is the case that each noun-phrase
has a single head-noun, it is not the case that it has a single determiner. The
most common instance of a noun-phrase with more than one determiner are
phrases that contain numerals and count-words, the dependencies of which
are also labeled as determiners. Examples of such phrases include “de twaalf
profeten” (the twelve prophets), “de beide zijluiken” (the two side-panels) etc.
These cases are easy to solve by simply adjusting the numerals’ dependency
label into modifier (mod), when they co-exist with a real determiner. If a nu-
meral is the sole companion of a nominal, we allow it to retain its determiner
role, meaning it later gets converted into the phrasal functor. An example of
the transformation is depicted in Figure 3.5.

A less frequent but more problematic instance is that of determiner pairs,
i.e. words that jointly form a determiner when occurring one next to the other,
such as for example “geen enkele” (not a single one), “een enkele” (one), etc. As
hierarchy is not present on such expressions (no word dominates the phrase over
the other), it is ill-advised to insert makeshift structure in the form of a binary

3.3. EXTRACTION PROCESS 45

11
np

12
de
det
lid

det

13
drie
num
tw

det

14
geheimen

noun
n

hd

8
sv1

obj1

9
kennen

verb
ww

hd

10
jullie
pron
vnw

su

(a) Before renaming

11
np

12
de
det
lid

det

14
geheimen

noun
n

hd

13
drie
num
tw

mod

8
sv1

obj1

9
kennen

verb
ww

hd

10
jullie
pron
vnw

su

(b) After renaming

Figure 3.5: Dependency relation naming before (a) and after (b) the
transformation of numeral determiners into modifiers for the example sen-
tence “kennen jullie de drie geheimen” (do you know the three secrets)
[WR-P-P-B-0000000001.p.90.s.1]. Before the renaming, the numeral “drie”
acts as an additional determiner for the noun-phrase “de drie geheimen”. After
the transformation, its dependency is altered to a modifier.

branching determiner phrase. To bypass this issue, we set the first item’s label
to head, and assign a placeholder label det to the second one. During the type
assignment process, leaves carrying the special label default to the det type,
to be read as second item of a determiner pair. Functionally, it is as a marking
above the logical language, denoting that this word needs to be collapsed with
its immediately proximal neighbour to the left, forming a multi-word phrase
that inherits the neighbour’s type.

Head-Body Pairs A common construction in Lassy-Small is that of head-
body pairs, which is used to annotate relative clauses, wh-questions and phrases,
complementizers and comparisons. To distinguish between the above, the head
label is subclassed into three different instances; rhd (for relative clause heads),
whd (for wh-question- and phrase-heads) and hd (for all remaining scenarios).
Seeing as head labels do not come out in the type system (being that these are
indicators of functoriality rather than refinements of implications), we transfer
the refinement from the heads onto their respective body labels, replacing body
with rhd body or whd body according to the context.

46 CHAPTER 3. EXTRACTION

Unheaded and Multi-Headed Structures An operational assumption for
the algorithm is that all complex phrases have exactly one head. This assump-
tion is not a product of the algorithm’s design, but rather the distinguishing
feature of phrase structure grammars, and the driving force behind composition-
ality in the case of categorial grammars. Lassy’s annotation scheme abides by
a dependency-based formalism; that means that not all of the analyses satisfy
this assumption. The problem is manifested in two distinct ways; in unheaded
structures, i.e. branchings where no clear distinction between functor and argu-
ment(s) can be made between a node’s daughters, and multi-headed structures,
i.e. branchings where more than one head candidates co-exist.

Examples of the first include multi-word phrases, conjunctions and discourse-
level annotations. Multi-headed structures occur indirectly in the context of
determiner pairs as described earlier, but also directly in coordinator pairing
and discourse-level annotations. As no universal, algorithmic solution can be
designed to account for all incompatible analyses, the following paragraphs are
concerned with specific solutions targeted at particular problematic instances.

Multi-Word Phrases The original annotation usually refrains from spec-
ifying the structure of multi-word phrases, but not consistently. Multi-word
phrases are for the most part depicted as a node with the syntactic category
tag mwu (for multi-word unit), all daughters of which are leaves with their
edges marked as mwp. This approach detracts from the quality of the types
that could be assigned in two ways; first and foremost, the absence of specified
functor-argument relations in combination with the lack of an algorithmic way
to construct them disallows us from providing precise types at the word level.
Furthermore, the category label of mwp corrupts type assignments for words
and phrases outside the multi-word phrase, whenever it partakes as an argument
to the formation of wider phrases.

To treat the first problem, we opt for the least drastic solution; multi-word
phrases are collapsed into a single node, their outgoing edges are cut-off, and
their corresponding lexical item becomes a contiguous span of the sentence
rather than discrete items of it. The purpose of this transformation is to sim-
ply hide the uninformative edges. In practical terms, no real information is
erased (seeing as the edges may be re-introduced at any point with no extra
knowledge). The impact of this transformation on later applications (e.g. su-
pertagging) is also relatively minor; all it requires is an extra component that
identifies multi-word phrases and collapses them into a single element to be later
used by the type-assignment process, which can be implemented as a chunking
algorithm.

To avoid explicitly defining a type for multi-word phrases (thus also the
consequences of such a type), we implement a majority voting scheme with
biased priorities that consistently converts the mwu tag onto other tags. The
scheme relies on a simple but intuitive and general rule; the syntactic category
of the multi-word phrase may be almost perfectly inferred by the categories
of its daughters. Therefore, we simply sum the occurrences of each part-of-

3.3. EXTRACTION PROCESS 47

6
mwu

7
shared
name
spec

mwp

8
service
name

n

mwp

9
centers
name

n

mwp

4
np

hd

5
zogenaamde

adj
adj

mod

1
smain

predc

2
Dit

noun
vnw

su

3
zijn
verb
ww

hd

(a) Before collapse

4
np

5
zogenaamde

adj
adj

mod

6
shared service centers

np

hd

1
smain

predc

2
Dit

noun
vnw

su

3
zijn
verb
ww

hd

(b) After collapse

Figure 3.6: Derivation structure before (a) and after (b) the collapse of a
mwu sub-DAG into a single phrase for the example sentence “Dit zijn zoge-
naamde shared service centers” (These are so-called shared service centers)
[dpc-ibm-001315-nl-sen.p.85.s.1]. Prior to the transformation, the phrase
“shared service centers” is annotated as a sequence of nodes, rooted to a com-
mon ancestor. After the transformation, the three nodes are chunked into a
single node that spans all three lexical items. The phrasal category of the new
node is inferred by majority voting over its original children.

speech tag exhibited by its daughters. Most of the time, the set of these tags
is singular, containing either the noun (n) or the special (spec) tag as its sole
item, the latter being used as a catch-all tag. If at least one of the above tags
is present (possibly accompanied by a number of adjective sisters), we simply
promote the multi-word unit to the noun phrase category. Otherwise, if there
is a significant difference between the occurrence ratios between tag pairs, we
promote the major tag to its corresponding phrasal category. An example of
the transformation is presented in Figure 3.6.

Conjunction Phrases Conjunction annotations may pose problems in
three different ways.

Quite like multi-word phrases, conjunction nodes are always assigned the
syntactic category tag conj, which is uninformative with respect to the con-

48 CHAPTER 3. EXTRACTION

junction’s role or its contents. The solution prescribed earlier in the form of a
majority voting scheme is applicable in this case as well, modulo a minor differ-
ence. Conjunctions are more general than multi-word units, in the sense that
their constituents may carry a wider variety of tags. When multiple daughter
categories exist and their occurrence counts match, the decision on what tag to
assign is not clear-cut; to account for conjunctions of uneven parts, we therefore
expand upon the scheme by adding further biases. The most informed deci-
sion we can make is to insert a preferential treatment towards sentential types,
followed by nouns (assuming that all non-noun daughters are nominalized), fol-
lowed by adjectives (assuming that participial phrases are used as adjectival
phrases). If neither of these preferences are satisfied, we default to the first item
of the most highly occurring tag in the phrase. We find this heuristic to be
adequately performing; the uncertainty introduced, when it is not, is a minimal
compromise.

Just like determiner pairs, conjunctions are sometimes coordinated not by a
single head, but rather a pair of coordinators; for instance “zowel.. als” (such..
as), “respectievelijk ..en” (respectively.. and), etc. These pairs are again treated
via a special type, crd, read as second item of a coordinator pair, which looks
for a coordinator type to its left (not necessarily adjacent) and collapses with it
inheriting its type.

Finally, a major issue arises when a conjunction is unheaded. This is a
by-product of the annotation philosophy, which abstains from analyzing punc-
tuation symbols, pushing them to the top of the parse with a default dependency
under the root node. Then conjunctions coordinated by comma(s) appear as
simply an arrangement of sisters with no common head. This lack of inter-
nal structure is not as easy to circumvent as in multi-word units. Conjunction
phrases can not be collapsed into a single item, as their daughters are not
necessarily leaves; they may be phrasal nodes, themselves containing a lot of
important structure that cannot be ignored. A considered solution would be
to arbitrarily assign the head role to the first conjunct; this, however, would
have the effect of potentially introducing exceedingly high-order functors to de-
scribe words further down the DAG, which bare little semblance to their actual
phrase-local syntactic functionality. The hard decision to make then is whether
to enforce well-typedness at the sentence-level, or constrain the type scope to
the local, conjunct-internal context, favoring corpus-wide uniformity and type
clarity. For the time being, we opt for the latter, leaving these constructions
unheaded. A temporary but minimally pervasive treatment for such analyses is
detailed in the paragraph to follow. A future solution would be to attempt to
push punctuation into the DAG and allow it to partake in or interact with the
type assignment, filling in the gaps left by the missing coordinators.

Discourse Labels and Headless Conjuncts Excluding multi-word phrases
(for which an adequate solution has been realized), unheaded analyses amount
to about 3% of the overall branchings in the corpus. These mostly include
discourse-level annotations (nuclei, satellites, discourse links and parts), but

3.3. EXTRACTION PROCESS 49

0 10 20 30 40 50 60
Phrase Length

13640 (20)

27281 (40)

40921 (60)

54562 (80)

68203 (100)

#
 o

f P
hr

as
es

 (%
)

Figure 3.7: Cumulative phrase length in the processed corpus, excluding punc-
tuation.

also the aforementioned conjunctions with no coordinator. The overall percent-
age is minor, but cannot be taken lightly; sentences containing at least one
such branching occupy a non-negligible part of the treebank, and ignoring them
would incur a significant loss of samples for the extraction and its later applica-
tions. Given our inability to perform type inference in such scenarios, a solution
that minimizes the sample loss is to instead split each unheaded branch, dis-
carding problematic dependencies and all components above them, and treating
each disjoint sub-DAG underneath as a new, independent phrase, rooted at the
cut-off daughter node. This way, we may still utilize proper annotations that
are enclosed within unheaded structures under broader phrases. The partial
nature of the resulting DAGs remains in line with the rest of the treebank, as
a number of unprocessed samples already portray phrases that do not stand as
independent linguistic units. The result of the splitting process is a new tree-
bank which contains more but smaller samples; Figure 3.7 depicts the size and
length distribution of the altered treebank. The impact of this transformation is
a decrease in the average length of a phrase of about 3 words (also including the
removal of punctuations), and an increase in the corpus size by 3 000 samples.

Nominalization No explicit action is taken towards nominalization, with the
annotation’s tags taken at face value. This increases the plurality of verb types,
as new instances of them will arise from non-standard argument combinations.
Effectively, these new types may be used as an indication for the different kinds
of possible noun promotions, which may be performed a posteriori as an in-

50 CHAPTER 3. EXTRACTION

formed post-processing step, if deemed necessary. Majority voting ensures that,
even in the case of uneven parts, conjuncts are properly typed, thus eliminating
any ambiguity that might have arisen.

Coordinator Types Coordinators, when present in a conjunction, are in-
stances of the polymorphic inductive scheme:

C := {Ct | ∀ t ∈ Type}

where

Ct := t
cnj−→ t | t cnj−→ Ct

Intuitively, the scheme says that the type of coordinators is parametric to
the type of their arguments (i.e. there exists a scheme of coordinators for every
type3), but also to the number of arguments they are applied on (i.e. for each
coordinator scheme, there exists a different instance that specifies the number
of conjuncts).

The multitude of potential types occurring under conjunction, in combina-
tion with the great variety in the number of possibly conjoined sisters yields an
alarming number of different instantiations of the above scheme, dramatically
increasing the ambiguity of coordinator types. To remedy this, we replace the
induction by the meta-type:

Ct := ?t
cnj−→ t

where ? is a meta-logical unary connective denoting a sequence of types t with
a minimal length of two. This change is implemented via a conditional branch
in the head-type construction method. Table 3.3 presents the most common
instantiations of the polymorphic scheme, which together account for approxi-
mately 75% of the total occurrences of coordinator types.

The absence of strict nominalization implies that (rarely) some conjunction
cases will not follow the polymorphic scheme; for example, a nominalized adjec-
tive (typed as adj) or a pronoun (vnw) might be conjoined with one or more
nouns. When such situations arise, we are forced default to a mixed conjunction
type:

?x1
cnj−→ ?x2 . . .

cnj−→ y

where X={x1, . . . } a set of distinct types, and y ∈ X the conjunction type, as
inferred by majority voting.

Ellipses So far, we have universally regarded secondary edges as embedded
clause arguments. This is, however, not always the case; secondary edges may
also signal “copied” arguments, i.e. nodes that have the same functional role
repeated multiple times under a phrase-wide conjunction. Such secondary edges

3In practice, not all types can be conjoined, e.g. there is no impredicativity (conjunction
of coordinators)

3.3. EXTRACTION PROCESS 51

Type Count

np 12308

smain 3485

ap 1990

(n
invdet−→ np)→ np 1373

pp 1322

np
su−→ smain 1154

Table 3.3: Most common types and occurrence counts for the polymorphic

coordinator scheme ?t
cnj−→ t. The fourth type is due to conjunction of noun-

phrases with a shared determiner. The sixth type is due to conjunction of
sentences with a shared noun-phrase subject.

need to be distinguished from embedded arguments, as they require different
treatment. This distinction is made easy by the collapse of “phantom” and
lexical nodes; to tell a copied argument from an embedded argument, it suffices
to inspect the set of incoming edges it is associated with. If they are all identical
(modulo the primary/secondary marking), the node is classified as the former.
Otherwise, if at least one of the dependencies is not in agreement with the rest,
it is classified as the latter.

Several different elliptical structures appear in the treebank, each necessi-
tating a different approach.

Modifier Copying If all daughters of a conjunction node are associated
with the same modifier, the modifying node is separated from them and linked
to the conjunction node itself. This serves two purposes. First, it suppresses
the need for a logical treatment of the copying on the type level. Further, it
indirectly enforces the polymorphic nature of the modifying node, even in the
case of non-polymorphic conjunctions. Essentially, even if not all conjuncts have
equal types, the majority voting scheme creates the most plausible type at the
conjunction level. Since the modifier is now applied on the higher level, there is
no added ambiguity for its type.

Argument Copying If a non-modifying argument is applied on more than
one descendants of a conjunction, the type inference process gets slightly more
involved. A minimal solution would be to simply allow copying of the missing
material via a unary operator such as ILL’s bang (!). Although this trivializes the
extraction, it significantly increases the grammar’s complexity. The alternative
we pursue instead seeks to perform the type inference process at a local level,
deriving the conjunct’s type as the result of a partial argument application.
The head functor is allowed to consume its sisters’ types, minus the ones that
are shared across the conjunction. The incomplete result, a shorter functor, is
used to update the local conjunct’s type in a reverse-recursive manner. The

52 CHAPTER 3. EXTRACTION

5
pp
1

6
voor
prep
vz

hd

7
machines

noun
n

obj1

1
conj

2
en
vg
vg

crd

3
np

cnj

8
np

cnj

mod primary

4
Onderdelen

noun
n

hd mod secondary

9
toebehoren

noun
n

hd

(a) Before reattachment

1
conj

2
en
vg
vg

crd

5
pp
1

mod

4
Onderdelen

noun
n

cnj

9
toebehoren

noun
n

cnj

6
voor
prep
vz

hd

7
machines

noun
n

obj1

(b) After reattachment

Figure 3.8: Derivation structure before (a) and after (b) reattachment of shared
modifiers for the conjunction “onderdelen en toebehoren voor machines” (parts
and accessories for machines) [WR-P-E-H-0000000052.p.689.s.1]. The trans-
formation detaches the prepositional phrase “voor machines” from the two con-
juncts it modifies, and connects it once as a daughter of the conjunction node.

updated conjuncts are then used as the instantiating type for the polymorphic
scheme used by the coordinator. After the coordinator has been applied to all
daughters, the remainder is a single instance of this partially reduced functor,
which is then allowed to consume the shared arguments.

Head Copying Another common pattern is head copying, where each
conjunct has its own individual arguments, but shares the head with its sisters.
Again, a bang operator on the functor would resolve this trivially. Aside from
that, ILL provides another direct solution in virtue of the tensor (⊗); a pair
of argument sequences could be converted into a sequence of pairs, to be then
consumed by the functor. Rather than enhancing the logic with the pair type
and altering the functor type, we may instead utilize an equivalent implicational
type. That is:

A1, . . . , AN ` (A1 → · · · → AN → C)→ C

3.3. EXTRACTION PROCESS 53

Y ` Y id

. . .

A,B,A→ B → C ` C → E

A,B ` Y → C
→ I

. . .

A,B,A→ B → C ` C → E

A,B ` Y → C
→ I

?X → X ` X → X → X
id

A,B, ?X → X ` X → X
→ E

A,B, ?X → X,A,B ` Y → C
→ E

A, Y,B, ?X → X,A,B ` C → E

Figure 3.9: Abstract schema for the derivation of a sentence under head coor-
dination.

which states that from a sequence of assumptions A1,. . .AN , one can derive a
higher-order function that accepts a curried function from the sequence to Γ
to produce a Γ. This higher-order proposition at the right hand side of the
turnstile is now the instantiating type for the polymorphic coordinator.

To drive the point across, Figure 3.9 presents an abstract derivation, with
shorthands Y ≡ A → B → C and X ≡ Y → C. A concrete example of the
symbolic scheme would be a sentence such as “logicians like proofs and linguists
derivations”, with type assignments:

Word Type
logicians A ≡ np
proofs B ≡ np

linguists A
derivations B

like Y ≡ np
su−→ np

obj1−→ smain

and ?(Y → smain)
cnj−→ Y → smain

Mixture The last kind of ellipses we need to consider are those where
both the head and one or more arguments are shared across the conjuncts, as
in the case of a shared phrasal verb. The treatment is essentially a combination
of the two prior cases. The type schema remains identical to the simple head
coordination, except for the fact that the argument sequence A1,. . .AN now
consists only of the arguments that are uniquely instantiated per daughter, and
Γ is no longer a simple type, but rather a function type from the common
arguments to the conjunction type, as in the simple argument sharing case.

Non-Polymorphic Ellipses Non-polymorphic ellipses occur when there
is shared material between two or more conjuncts, but their internal structure
does not match, thus rendering our designed solutions unusable. In total, 400
such annotations occur over the corpus; they are either annotation discrepancies
or edge cases necessitating unique modeling. A temporary solution is in the
works, inspired by ILL’s with connective (&). Its applicability and utility can be
evaluated only after a manual inspection of each of these cases, and a correction
of those that are indeed erroneous, and is left as future work.

54 CHAPTER 3. EXTRACTION

Single Daughter Non-Terminals The displacements and detachments per-
formed by the transformations described often result in non-terminal nodes with
a single daughter. As the nodes may potentially carry different category tags
to their daughters (by-product of some now obsolete phrasal promotion), this
can result in inconsistencies among identical or very similar structures. To void
this, we collapse non-terminal nodes with a single outgoing edge in an itera-
tive, bottom-up manner, with the resulting node inherits its attributes from its
immediate descendant.

3.4 Implementation Notes

Although a full technical overview of the extraction escapes the purposes of
this document, this section seeks to provide some key insights on the imple-
mentation, in order to make future use and modification easier for any inter-
ested party. The implementation language is Python 3.6; although this choice
comes at a cost in elegance compared to a typed language that would naturally
accommodate the type system, it is driven by the need for homogeneity and
compatibility with the extraction’s output’s later uses, which will involve statis-
tical learning, for which Python is adopted as the go-to choice. The extensive
number of cases requiring unique treatment demand an iterative approach to
the problem, with code parts altered and added as the need arises. This con-
stantly evolving nature of the codebase makes it hard to design a static software
structure that is guaranteed to capture any future grammar alteration or un-
foreseen edge case. As such, this section is more of a snapshot of the design
at the time of the writing and its overall principles rather than a conclusive
technical report. The extraction code is publicly available at https://github.
com/konstantinosKokos/Lassy-TLG-Extraction and the latest commit at the
time of writing is 3d10be8646dfa08d7ead9589297bc264ddd298bb.

System Decomposition On the most abstract level, the extraction algo-
rithm may be viewed as a parameterizable map that accepts as input a DAG
representing the derivation of a sentence in Alpino-style format as its input,
applies a number of modifications on it producing one or more DAGs as an
intermediate step, which are then decorated with a type for each of their nodes
and returned as the output.

The system consists of two core, interdependent components — the type
component and the extraction component, each enclosed within a corresponding
file. The first implements the particulars of the extracted type system; it defines
the classes that implement the type variations present in the grammar, their
inductive construction and their means of interaction. The second revolves
around the treebank transformations and the extraction algorithm itself, as well
as providing a wrapper for managing a dataset (i.e. a collection of samples) and
a minimal visualization tool.

https://github.com/konstantinosKokos/Lassy-TLG-Extraction
https://github.com/konstantinosKokos/Lassy-TLG-Extraction

3.4. IMPLEMENTATION NOTES 55

3.4.1 Type System

The type system is implemented by a hierarchy of classes, each class correspond-
ing to a family of types exhibiting common structure.

WordType The top class is WordType, an abstract class inherited by all other
classes which defines the minimal attributes and functions that all other classes
must implement. A listing of class functions shared between all types is given
below. The first is equality, a binary function that compares two types based on
both their structure and the singular elements they are composed of and returns
True if they are in agreement, or False otherwise. Equality is implemented as a
non-commutative function; a type t1 might be left-equal to a type t2 if the latter
is a subclass of the former with identical common attributes, but this does not
imply the inverse. The second is order, a function that returns a non-negative
integer expressing the order of the functor that a type represents. Hashing is a
utility function that uniquely maps types to integers, allowing the arrangement
of types into sets and dictionaries. Finally, string is a utility function that
converts types into a unique and visually informative string format that allows
types to be directly printed.

AtomicType The simplest class of types and the building block for all other
types is AtomicType. These are zero-ary functors, i.e. constants, identified by
the strings they were constructed from. The set of AtomicTypes is provided
by the co-domain of the type lexicon, which is a user-specified, many-to-one
mapping from part-of-speech tags and phrasal categories to Atomic Types, as
seen in Table 3.1.

ComplexType The ComplexType class implements the family of inductively
defined functor types tA → tB, a unary functor from the argument type tA

into the result type tB. Multi-argument functors are folded into their unary
representations; that is, a functor from a sequence of arguments a1, . . .aN into
a result type r may be written as the a1 → a2 → . . .r, where the ordering
can be specified by a preference scheme. Otherwise, commutativity may be re-
introduced by overloading the comparison operator, allowing for an equivalence
relation between multi-argument functors to be easily established (useful in
cases where no argument ordering is forced).

ColoredType ColoredType inherits ComplexType and implements the family
of functor types tA

c−→ tB, where
c−→ is a subtyped variant of the implication

arrow (a “colored” arrow), identified by the label c. Colored types refine the no-
tion of function and allow distinguishing between functors that share the same
arguments and result but differ in the means of conversion from the argument
space to the result space. Colors are strings, elements of a closed set defined
by a mapping from the dependency relations present in the corpus, as seen in
Table 3.2. Similarly to complex types, multi-argument functors can be restruc-
tured into their chained unary counterparts. In this case, an extra opportunity

56 CHAPTER 3. EXTRACTION

for binarization arises, as the ordering can be informed by the implication labels
rather than the argument types, as described in 3.3.1.

ModalType The ModalType class implements a special family of types which
are decorated with some unary operator [.]. The class lacks a universal semantics
interpretation; they are instead defined on a per-instance basis. An example
of this is the StarType, a case of ModalType where the operator in question
is the ?, denoting a sequence of at least 2 repetitions of the argument type.
Other usecases could involve intuitionistic (i.e. non-linear) types, or expanding
the grammar with structural control modalities for limiting the application of
copying/erasing, exchange and associativity.

Other Types A few extra classes of types are implemented, which are not
yet used by the extraction process. They are mentioned here for the sake of
completeness, and to showcase how drastic alterations to the extraction may
potentially be achieved with only minor changes in the code.

• DirectedComplexType
Inherits ComplexType, but also includes an implication direction, allow-
ing for the construction of implicational types more akin to the Lambek
Calculus.

• DirectedColoredType Inherits both DirectedComplexType and Colored-
Type. Can be used to create types that are simultaneously direction- and
dependency-aware.

Type Transformations The hierarchical arrangement of type-implementing
classes is of major practical importance. Any subclass of types may be trivially
transformed to any higher subclass by simple erasure of the extra information.
Essentially, as long as this design principle is respected, the extraction algorithm
and the type system may be further expanded upon, producing more sophisti-
cated type structures while still allowing an immediate interpretation into a less
refined variant. In other words, given an extracted grammar, simpler versions
of it can be obtained trivially with neither a do-over of the extraction code or
even a repeated run of the algorithm over the corpus.

The inverse process, i.e. refining the extraction, is also largely simplified;
one could always simply overload the type constructors being called throughout
the DAG iteration, adding any extra required arguments, thus adapting the
extracted grammar with only minimal changes over the type inference algorithm.

3.4.2 Processing

As mentioned earlier, the development process of the extraction component had
to follow an iterative approach that incorporated solutions for particular cases
in a gradual fashion, either as exceptions or general rules and transformations
depending on their regularity. Even though this poses a difficulty in pre-defining

3.5. SUMMARY 57

a concrete, end-to-end design pattern, extra effort was put into the adaptability
and extensibility of the code in order to accommodate future additions and
changes. To that end, the extraction component relies on a simple but robust
procedure; a decomposition module that accepts an input sample, applies a
series of transformations onto it, and finally calls the type inference algorithm
on the result.

This yields a number of significant benefits. First off, the overall transfor-
mation is malleable, being the composition of arbitrary independent functions.
Each transformation is designed individually; as long as its output is compatible
with the expected input of another, the two may be seamlessly composed with
no added complexity required to model their interaction. New transformations
may be inserted, and existing ones removed or altered, adapting the input DAG
to the extraction’s needs while keeping the type inference algorithm unchanged.
More practically, as the first transformation is the one responsible of converting
the input file into an extraction-compatible format, replacing it with another
could admit processing of different input structures. At the same time, if a new
grammar is specified, it suffices to change the last transformation, it being the
inference algorithm, virtually allowing switching between implemented gram-
mars at a whim. Additional post-processing steps may be chained after the
inference to convert the type-annotated DAGs into MILL proofs, pairs of word
and type sequences, or simply lexicons mapping words to empirical distributions
over types.

Further, the overall process is stateless, letting us capitalize on the indepen-
dence of a sample’s output from inputs other than the current one. As such, the
extraction lends itself nicely to the MapReduce paradigm [DG08], enabling the
use of tunable multi-threading and parallel I/O processing. By performing the
corpus transformations dynamically on the input data, rather than sequentially
processing and storing intermediate results, storage and processing overhead is
minimized. The per-sample processing scheme, in combination with lazy evalua-
tion and on-demand reading ensures smooth scaling to arbitrarily large datasets,
allowing a perfectly seamless transition to Lassy-Large.

Finally, the extraction boasts minimal system requirements but near-perfect
utilization of additional computational resources, despite its complex nature; the
whole of Lassy-Small can fully processed in under 2 minutes using a commercial
grade computer.

3.5 Summary

This chapter presented the means through which our type-logical grammar,
as specified in Chapter 2, can be experimentally aligned with real-world data
via the means of an extraction algorithm. We reviewed the algorithm that
accomplishes this alignment, the difficulties that may arise in such a process
and the transformations required to adopt Lassy’s dependency annotations into
grammar-compatible structures. The resulting treebank combines the high-
quality of the Lassy-Small with a highly refined type-system, and offers itself

58 CHAPTER 3. EXTRACTION

for many practical and theoretical applications, ranging from supertagging and
constituency parsing to semantic analysis and statistical models of the language
as a whole. It is our hope that as the extraction gets further refined, its output
will arise as a useful, publicly available linguistic resource that can act as the
groundwork for further research endeavours.

Chapter 4

Supertagging

This chapter is an extended version of [KMD19], to be presented in the fourth
workshop on Representation Learning for NLP (REPL4NLP).

4.1 Background

The extraction algorithm, as described in Chapter 3, produces a type-annotated
DAG. Projecting a DAG’s yield we obtain a sentence where each word is deco-
rated with its corresponding type, which is the minimal information required to
begin a proof-theoretic analysis of the sentence. Obviously, a system only capa-
ble of analyzing sentences that it has already been exposed to is of little practical
use. The question then naturally arises of how to enable analyses for sentences
not contained in the original corpus. The answer is supertagging [BJ99]; a
process that employs statistical learning techniques to probabilistically model
the type assignment process. In what follows, we will inspect supertagging,
as initially introduced, gradually expanding the original formulation with addi-
tional components that broaden its applicability, alongside the literature that
introduced them. For each such component, a paragraph will be devoted to mo-
tivating our reasons for incorporating such additions with reference to our data
and the current problem specification. Regardless of the particular implemen-
tation, the common point lies in the treatment of the type-annotated corpus as
a training dataset. The corpus is treated as a collection of information-carrying
samples, which may be used for inferring the parameters of a statistical model
(of varying complexity). The hypothesis is that, after parameter tuning, the
trained model can be general enough to correctly analyze new sentences.

4.1.1 Original Formulation

To set things off, we may define T as the set of types assigned by the extraction
process. First, recall that each word occurrence is assigned a corresponding
type. However, not all occurrences of the same word are necessarily assigned

59

60 CHAPTER 4. SUPERTAGGING

the same type. A sensible approach is to then view the extraction’s output as
a type lexicon L, a mapping that sends each word of the input vocabulary V to
a probability distribution over types:

L : V → S |T |

where S |T | refers to the standard |T |-simplex, such that:

L(w) =

{
o(w, τ)∑
t∈T o(w, t)

∀ τ ∈ T
}

where o(w, τ) simply counts the number of times word w has occurred with type
τ .

This definition of a type lexicon is completely faithful to its original formula-
tion by Bangalore and Joshi. Although illuminating as a starting point, it suffers
from a number of limitations. Several of those have already been addressed by
prior work, and the next subsections are devoted to explaining how.

4.1.2 Unbounded Domain

Our treatment of the lexicon as a mapping from a prespecified vocabulary in-
herently fails to address type-assignment for words not present in the training
corpus.

Word Embeddings At this point, we will need to take a short detour to
briefly introduce word vectors. Word embeddings are dense, finite-dimensional
vectorial representations that capture word semantic content. They inherit their
functionality in virtue of the distributional hypothesis, which states that words
with similar meanings exhibit similar use (i.e. they tend to appear under similar
contexts). The contextual surroundings of words may be statistically modelled
using large-scale corpora in an unsupervised manner; the resulting distributions
are high-dimensional and sparse. Word vectorization techniques are applied on
top of these, producing low-dimensional, dense representations. This may be
accomplished either in a predictive manner (e.g. fit the parametric representa-
tions of words so as to predict a missing word given its context) or as simple
factorizations of the input (e.g. perform singular-value decomposition on the
co-occurrence matrix). Generally speaking, word vectorization techniques ac-
cept large, unstructured textual input and produce a vector space with implicit
but rich topological structure. Words are assigned vectors within that space,
and linguistic notions are inherited in the form of numeric operations, with
the prime example being semantic similarity between words materializing as
angular distance between vectors. With the recent advent of neural networks,
word vectorization techniques have risen in popularity and efficiency, achieving
impressive results in encoding both syntactic and semantic information.

4.1. BACKGROUND 61

Domain Expansion Given that word embedding algorithms require no struc-
tured input, they may be trained on corpora scales of magnitude larger than the
extraction algorithm, therefore containing many more words. Let E be a word
embedding system, trained on a corpus with vocabulary V ′, where V ′ ⊃ V, that
produces vectors in a d-dimensional space:

E : V ′ → Rd

Then, we may use our lexicon L to parametrically fit a continuous function
fL : Rd → S |T |, which by function composition yields a probabilistic lexicon
over an expanded domain:

fL ◦ E : V ′ → Rd

Domain Unbounding The above addition allows expanding the supertag-
ger’s domain to words not present in the type-annotated corpus. Language is
not a closed construct, however; there still is a possibility of the supertagger
encountering a word w that is not present in the expanded corpus. Rather
than backing to default behavior, a further and final expansion of the domain
may be achieved by incorporating sub-word information (e.g. morpheme- and
character-level content). In fact, modern vectorization techniques do utilize such
information in order to account for languages that feature word generation by
compounding or rich but systematic morphology [BGJM17]. Then, E becomes
a mapping from any word in the language L onto an object of the vector space:

E : L→ Rd

and its composition with the continuous type-assignment function is an un-
bounded domain supertagger:

fL ◦ E : L→ S |T |

Case In Point The practical importance of achieving the maximal possible
expansion of the supertagger’s domain is substantiated by our corpus’ statistics;
the extraction output contains little over 73 000 unique words, whereas the Wo-
ordenboek der Nederlandsche Taal (Dictionary of the Dutch Language)[Kru76]
contains approximately 400 000.

4.1.3 Type Disambiguation

The next thing to address is the ambiguity of the type assignment process. As
pointed out in the original supertagging proposal, the fact that lexical items are
assigned different types for each syntactic context they appear in comes at the
cost of local ambiguity that needs to be resolved for accurate parsing.

In order to reduce it (or even completely eliminate it), we may inform the
type assignment function with surrounding context C:

fL : L ⊗ C → S |T |

62 CHAPTER 4. SUPERTAGGING

Our notion of context, and the means of representing it, can for now remain
abstract as it varies between implementations. Generally, the syntactic and se-
mantic content of words is largely disambiguated by the surrounding words, so
these are valid candidates for inclusion. Similarly, the proof-theoretic behavior
of types imposes certain constraints on the types they may interact with; there-
fore a formulation that iteratively assigns types while taking prior assignments
into consideration is bound to benefit overall performance.

The first approaches to reducing ambiguity involved simple heuristics per-
taining to the satisfiability of minimal structural constraints (e.g. the span of the
annotation must fall within the sentence boundaries), or modeling joint prob-
abilities over word-type pair spans. During the later half of the last decade,
recurrent networks rose to prominence in supertagging literature, owing to
their general adoption as the de-facto computational machinery for sequential
processing, as well as the increased availability of high-quality word vectors.
[XAC15] first applied a simple recurrent network [Elm90] for CCG supertag-
ging, whereas [LLZ16] and [VBSM16] utilized bi-directional Long Short-Term
Networks [HS97], each successively achieving higher performance benchmarks.
In their general formulation, such systems accept as their input a sequence of
vectors representing a sentence, and apply a recurrent function on them, tasked
with producing contextually aware feature vectors. The latter are then used to
model each word’s class membership over supertags, turning the problem into
an instance of sequence labeling, a common case of supervised learning [Gra12].

Case In Point The fine-grained nature of our type system results in a large
number of unique supertags, each characterizing a very specific phrasal struc-
ture. On one hand, this means that words that uniformly assume a single
syntactic role are highly likely to be assigned a single type. On the other hand,
words that exist in a broader range of contexts are increasingly ambiguous, even
when these contexts are similar.

In practical terms, Figure 4.1 displays a log-log plot of type ambiguity.
Words are, on average, assigned 1.8 unique types. The majority of words
(55 000 and 75% of the total) are unambiguous throughout the corpus. The
next most likely bin counts 17 000 words (23%) that have up to 10 different
possible types. 1 000 words (1.4%) are highly ambiguous, with up to 100 dif-
ferent types. Finally, there are almost 30 lexical items (mostly function words,
e.g. coordinators) which are extremely ambiguous, reaching up to 500 potential
assignments.

4.2 Unbounded Codomain

The previous section presented a brief overview of supertagging and its progress
through the years. It concluded with the current state of the art, which treats
the problem as a case of sequence labeling, modeled by recurrent neural net-
works. This perspective is quite natural, and allows supertagging systems to
directly inherit the constant and ongoing progress of sequence labeling archi-

4.2. UNBOUNDED CODOMAIN 63

100 101 102

Type Ambiguity (log)

102

103

104

#
 o

f W
or

ds

Figure 4.1: Log-log bins of type ambiguity. The horizontal axis bins ranges of
type ambiguity, and the vertical axis counts the number of unique lexical items
that belong in each bin.

tectures. These benefits, however, come at the expense of two significant side-
effects, both inherent to classification algorithms.

The first pertains to the issue that class imbalance poses to supervised learn-
ers. Across all categorial grammars, some categories have disproportionately low
frequencies of occurrence compared to the more common ones, leading to severe
sparsity issues, which are further pronounced the more refined the grammar is.
Under-represented categories are very hard to learn, especially in the context of
sequence labeling, where under- and over-sampling are not immediately appli-
cable. As a result, modern supertagging models are commonly evaluated and
tested against only small subset of the full categories present in a grammar, the
elements of which have occurrence counts lying above a predetermined treshold.

Moreover, they operate under the strong assumption that the set of types
that may be assigned is bounded, and also fully represented by the training cor-
pus, i.e. known in advance. Practically, the implicit hypothesis is that sentences
that would require previously unseen supertags to be correctly analyzed do ex-
ist, but are sufficiently rare to be safely ignored. Such a compromise might be
realistic, but it still sets a fixed upper bound on the associated parser’s strength.

Jointly, the above concessions have a far-reaching consequence; they place an
implicit constraint on the nature of the grammars that may be learned. Essen-
tially, the grammar must be sufficiently coarse, allocating most of its probability
mass on a small number of unique categories. Grammars enjoying a higher level
of analytical sophistication are virtually unusable, as to train an adequate su-

64 CHAPTER 4. SUPERTAGGING

pertagger for them would require prohibitive amounts of annotated data in order
to overcome their sparsity.

Our grammar is one such, necessitating an alternative perspective. This
section is devoted to pointing out how a subtle reformulation of the problem
bypasses the aforementioned limitations, allowing accurate supertagging with
an unbounded codomain.

4.2.1 The Language of Types

Classification over an open set is a difficult problem undergoing active research.
Fortunately, even though our type vocabulary is open, its inhabitants are char-
acterized by an important regularity. They are all the made out of the same
atomic components, the union of the sets of atomic types and n-ary logical
connectives, each of which is itself closed. Further, not all sequences of these
components constitute valid types. Rather, all types are produced by a under-
lying inductive scheme:

t ::= a | t1
d−→ t2 (4.1)

where t, t1, t2 are types, a is an atomic type and
d−→ an implication arrow,

decorated with the label d.
An examination of the above scheme reveals a simple context-free grammar

(CFG). Given the fact that our connectives are of fixed arity, the polish nota-
tion [Ham62] can be adopted, abolishing the need for parentheses and reducing
the representation length of types, while also encoding their order in a succinct,
up-front manner. Then, the grammar materializes using just two meta-rules for
productions:

{(S =⇒ A) ∀ A ∈ A} (4.2)

{(S =⇒ d S S) ∀ d ∈ D} (4.3)

where S is the initial symbol and the only non-terminal, =⇒ is the CFG
production arrow, A is the set of terminals corresponding to atomic types, and
D is the set of terminals corresponding to named implication arrows. In this
light, types are no more than words of the type-forming language.

Of course, the CFG specified above is particular to our type system. How-
ever, any logically grounded categorial grammar is associated with one; conse-
quently, the methodology to be described next is applicable to other formalisms
as well.

4.2.2 Supertagging as Sequence Transduction

This intuition exposes a range of alternative perspectives. To begin with, it
has been shown that neural networks are capable to implicitly acquire context-
free languages, both as recognizers and generators [GS01]. Additionally, state
of the art supertagging architectures can already perform the context-sensitive

4.3. IMPLEMENTATION 65

type-assignment process. It is therefore reasonable to expect that, given enough
representational capacity and a robust training process, a network should be able
to jointly learn the two tasks; namely, a context-free grammar embedded within
a broader labeling task. A joint acquisition of the two amounts to learning a)
how to produce types (including novel ones), and b) which types to produce
under different contexts. Successfully doing both provides the means for an
unrestricted codomain supertagger.

A number of data representations and network structures are suitable for
meeting the above specifications. The simplest and most natural one is to
simply encode a type as a sequence of atomic symbols S = s1s2 . . . sn, where
si ∈ A ∪ D. A sequence of types may then be represented S1#S2# . . . SM ,
where # is an auxiliary symbol used to mark type boundaries.

The problem then boils down to learning how a sequence of words can be
transduced into a (longer) sequence of unfolded symbols denoting types. Neural
machine translation architectures naturally lend themselves to such a prob-
lem specification; this becomes clearer if we imagine the problem as a case of
translation operating on word-level input and producing character-level output,
where the source language is the natural language trained on and the target is
the language mutually defined by the type-logical grammar and the underlying
grammar of types.

Case In Point Our grammar boasts a rich type system, enumerating about
5 700 unique types. Its fine-grained nature has the side-effect of a high degree of
sparsity; the distribution of types frequencies has a steep exponential curve. As
Figure 4.2 shows, the vast majority of types (80%) are rare, i.e. have less than
10 occurrences, and at least one such type exists in a non-negligible portion
of the overall sentences (12%). Under this regime, recognizing rare types as
first-class citizens of the grammar becomes imperative.

Additionally, a significant portion of types (45%) appear only once through-
out the corpus. Such types would be completely unusable under a predictive
setting. Yet worse, their presence is suggestive of the existence of many more
types than those extracted, necessitating an approach that can dynamically
construct new types as needed. With the above in mind, we set out to design
a system that can exploit the above observation towards efficient unbounded
codomain supertagging.

4.3 Implementation

Our setup imposes a number of design specifications that we must satisfy. First,
given the relatively free word order of the language, the type assignment pro-
cess needs to be informed by the entirety of the input sentence. In other words,
our system must posses a global receptive field over the input. Moreover, given
the co-dependence between types, owing to their proof-theoretic properties, the
output generation process has to be informed by prior outputs, i.e. the archi-
tecture needs to follow an auto-regressive formulation. Finally, the presence of

66 CHAPTER 4. SUPERTAGGING

100 101 102 103 104 105

Threshold Type Frequency (log)

0

20

40

60

80

100

%

Types Covered
Sentences Covered

Figure 4.2: Cumulative distribution of types and sentences covered as a function
of type frequency. The horizontal axis depicts the logarithm of type occurrences
in the corpus. The vertical axis depicts the percentage of types (red line)and
sentences (green line) kept, if all types below an occurrence rate (or sentences
containing them) are discarded.

both short- and long-range dependencies, the first dictated by the type-forming
grammar and the latter by the sentence-wide grammar, our system would bene-
fit from representations that are global and sensitive to dynamic contexts, rather
than local and iterative.

One recent proposal, originally intended for machine translation, perfectly
fits the above requirements, namely the Transformer [VSP+17], which is an
instance of a self-attention network. To understand why that is the case and
provide the necessary background for the rest of the subsection, we will begin
by briefly going over the theoretical basis for self-attention networks and the
mathematical formulation of the Transformer.

4.3.1 Self-Attention

Self-attention is a recently emerging idea that has gained traction in neural
computation. It is loosely inspired by cognitive attention, i.e. the ability to
discriminate between sensory signals that are relevant to the current task and
those that are not. Neural attention was originally intended for use in image
processing, but it has been adopted in the natural language processing domain
as well, following its successful use in translation [BCB14]. Neural attention
may be thought of as a means of content-based addressing, allowing a network

4.3. IMPLEMENTATION 67

to selectively shift its focus among arbitrary, non-contiguous indices over a set
of dimensions of high-order tensors. The general formulation requires a notion
of similarity for the vector space occupied by some input and some context, as
established by a matching function s:

s : Rd ⊗ Rd → R

where s(i, c) represents the real-valued weight of agreement between the input i
and the context c (where i, c ∈ Rd). The output of this matching function may
be used in a number of possible ways. To begin with, it allows the same vector
i to enact different roles under different scenarios, enabling context-sensitive
processing. Alternatively, s(i, c) can exert a multiplicative factor over the value
of i, deciding to what influence the latter will participate in further computa-
tion. Attention then acts as a means of addressing that essentially allows highly
precise information retrieval out of arbitrarily large tensors, superseding the
need to lossily encode them in a fixed vector space. Computationally, this is
analogous to a program which refers only to variables invoked by its currently
run instruction, where the variables are sought ought via partial or approximate
reconstructions thereof using autoassociative memory.

If the function s is continuous and differentiable, s may be implemented
as a neural function (fixed or parametric), through which gradients can flow
during the backward pass, allowing either of its arguments to be optimized
(soft attention). Self-attention is a particular case of soft attention, in which
the vectors of both i and c are not provided as direct arguments, but are in
themselves productions of the network. Crucially, the network is then tasked
with finding the appropriate transformations such that its inner representations
can be efficiently exploited by the matching function s.

4.3.2 Transformers

The first applications of attention involved the utilization of attentional in-
terfaces on top of a recurrent network’s hidden representations. Transform-
ers divert from that norm, instead modeling sequential processing purely via
self-attention and position-local feed-forward connections. This approach does
away with the computational cost of recurrence (i.e. temporal iteration) and
the conceptual constraints it imposes. In finding an batch-efficient variation of
attention, sequential processing may be done in a single step, owing to the lack
of temporal dependencies. For reasons of completeness, this section will briefly
cover the main building blocks of a standard Transformer.

Scaled Dot-Product Given matrices Q ∈ RM×d, K,V ∈ RN×d, denoting
queries, keys and values respectively, scaled dot-product attention A is modeled
as:

A(Q,K, V) = softmax(
QKT

√
d

)V

68 CHAPTER 4. SUPERTAGGING

The term QKT

√
d

is simply the dot-product of the queries against the keys scaled

by the inverse of the square root of the vector space dimensionality. It computes
the weighted matching between M queries and N keys (both of dimensionality
d), in the form of an M by N matrix. The latter is normalized across its
second dimension by application of the softmax function, thus converted into
M N -simplexes. The result is matrix multiplied against V , producing a M by
d matrix, each row of which is a weighted sum of the original rows of V .

Multi-Head Attention A k-headed attention block is a neural function con-
sisting of three sets of linear maps fi,q, fi,k, fi,v : RD → Rd and a linear map

fo : Rkd → RD. It accepts three inputs Q̂ ∈ RM×D and K̂, V̂ ∈ RN×D and
produces an output MHA(Q̂, K̂, V̂) ∈ RM×D as follows:

MHA(Q̂, K̂, V̂) = fo

(
concat

([
A
(
fi,q(Q̂), fi,k(K̂), fi,v(V̂)

)
∀ i ∈ 1, . . . , k

]))
Practically, each fi,x is a parametric projection of its input to a lower-dimensional
space. The scaled dot-product of each of the k projection triplets is computed,
and they are concatenated together forming a matrix in RM×kd. The result is
projected back into the original space by application of fo.

Encoder Block A transformer encoder block is a neural component that
models the composition of a multi-headed attention block and a two-layer,
position-local feed-forward network (FFN). It receives as input a sequence of
M vectors, X ∈ RM×D, to which it applies the multi-headed attention block
producing an intermediate representation H = MHA(X,X,X) ∈ RM×D. The
position-local network is then applied independently on each vector over the
M index of H. Optionally, regularization in the form of layer normaliza-
tion [LBKH16] and dropout layers [HSK+12] as well as highway connections [SGS15]
may be inserted before, between and/or after the encoder block’s subcompo-
nents.

Decoder Block A transformer decoder block differs from the encoder block in
two ways: it accepts two inputs X ∈ RM×D and Y ∈ RN×D, and it contains two
multi-head attention blocks. The first computes the intra-attention of Y over
itself to produce a sequence of factored queriesQY = MHA(Y, Y, Y). The second
computes the attention between the input X and QY : H = MHA(QY , X,X).
Finally, the position-wise transformation is applied on H just as before.

Putting Things Together The overall architecture consists of an encoder
and a decoder, each being a stack of their respective blocks. The encoder is first
applied over the full input sequence, producing contextually informed vectors
over it. The absence of recurrence necessitates the modulation of the input to
distinguish between repetitions of the same item in a sequence; this is accom-
plished by adding a positional encoding over both input and output embeddings,

4.3. IMPLEMENTATION 69

implemented as a multi-dimensional sinusoidal wave. The decoder then com-
poses the decoder blocks as follows:

• each block’s Yi input is produced by the immediately prior block (where
Y0 is the vectorial representation of the output sequence produced up until
the current timestep, right shifted once)

• each block’s X input is the encoder’s output

• the output of the last decoder block is passed through a standard classifier
to produce class labels over each output item

This flow ensures that the final output is informed by the full input sequence
but also the preceding output sequence. It is not bound to equal sequence
lengths between input and output, and requires no lossy compression, unlike
recurrent encoder/decoder architectures. By masking the right-shifted output
embeddings, the forward pass of the Transformer has minimal computational
cost during training time, allowing faster training of deeper models. During
inference, temporal dependency is reintroduced by the need to operate on output
embeddings which are not known in advance. An abstract schematic view of
the Transformer is given in Figure 4.3.

4.3.3 Model

The supertagging model’s architecture follows the standard encoder-decoder
paradigm commonly employed by sequence-to-sequence models. It accepts a
sequence of words as input, and produces a longer sequence of atomic sym-
bols as output. A high-level overview, together with an example input/output
pair, are presented in Figure 4.4. The source code for our model is pub-
licly available and can be found at https://github.com/konstantinosKokos/
Lassy-TLG-Supertagging. The custom implementation of the Transformer
used by the model can be found at https://github.com/konstantinosKokos/
UniversalTransformer.

Language Model Pretraining Empirical evidence [RLL17] suggests that
sequence-to-sequence architectures benefit from unsupervised pretraining of their
encoder and decoder components as independent language models. Language
models are statistical models that estimate the probability distribution of se-
quences (e.g. sentences). They can be used to either rank the probability of a
whole sequence, or as generators, for instance predicting a sequence’s continu-
ation given a variable-length prefix thereof, by taking the maximum-likelihood
estimate of the conditional distribution p(wt|w0, . . . , wt−1).

Adhering to this, we incorporate a pretrained Dutch ELMo into our en-
coder [CLW+18]. ELMo was originally proposed as an architecture for produc-
ing deep contextualized word representations [PNI+18], where deep is reference
to the use of a stacked, bi-directional LSTM to process the input sequence. A
weighted combination of the representations of each layer is then utilized as

https://github.com/konstantinosKokos/Lassy-TLG-Supertagging
https://github.com/konstantinosKokos/Lassy-TLG-Supertagging
https://github.com/konstantinosKokos/UniversalTransformer
https://github.com/konstantinosKokos/UniversalTransformer

70 CHAPTER 4. SUPERTAGGING

Input
Embeddings

MHA

FFN

MHA

FFN

. . .

Output
Embeddings

(right-shifted)

MHA

MHA

FFN

MHA

MHA

FFN

. . .

Classifier

Output Probabilities

Encoder

Decoder

Embedding

Layer

argmax

Figure 4.3: Abstract view of the Transformer architecture, with unspecified
number of Encoder and Decoder layers. During training, the output embeddings
are precomputed. During inference, the embedding of the most probable output
class of each timestep is iteratively computed and appended to the previous
output embeddings, as depicted by the dotted line.

4.3. IMPLEMENTATION 71

Input Sentence Output Sequence

ELMo

Encoder

Embedding

Decoder
Embedding
(transposed)

σα

Output Probabilities

M symbolsN words

Sentence Embedding
RN×1024

Symbol Embeddings
RM×1024

Encoder Keys
RN×1024

Encoder Values
RN×1024

Decoder Values
RM×1024

Class Weights

(a) The model architecture, where σ and α denote the sigsoftmax and argmax functions
respectively, grayed out components indicate non-trainable components and the dotted
line depicts the information flow during inference.

is (is)

np
su−→ smain

er (there)

smain
mod−→ smain

een (a)

np
det−→ np

toepassing (use)
np

voor (for)

np
obj1−→ np

mod−→ np

lineaire (linear)

np
mod−→ np

logica (logic)
np

su−→,np, smain,#,
mod−→, smain, smain,#,

det−→,np,np,#,np,obj1−→,np,mod−→
,np,np,#

mod−→,np,np,#,np,#
(b) Input-output example pair for the sentence “is er een toepassing voor lineaire
logica?” (is there a use for linear logic?). The first two lines present the input
sentence and the types that need to be assigned to each word. The third line presents
the desired output sequence, with types decomposed to atomic symbol sequences under
polish notation, and # used as a type separator.

Figure 4.4: Supertagging Architecture (4.4a) and an example input-output
pair (4.4b).

72 CHAPTER 4. SUPERTAGGING

input by downstream task-specific models, where the weighting terms are func-
tions to be learned by the task models. The variation we are using was trained as
a task-agnostic language model on large-scale corpora, and the 1024-dimensional
representations it constructs were proven highly adequate for parsing tasks. The
choice of ELMo’s output as our sentence-level input carries relays the added
strength of utilizing subword-level information; a character-level LSTM partic-
ipates in the construction of ELMo’s lowest-level (context-independent) token
representations.

Constructing a decoder-side language model is less of a straightforward deci-
sion. The size of Lassy-Small prohibits pretraining, as this would require split-
ting into two disjoint subsets (thus reducing the amount of data available to
the end-to-end supertagger); this necessitates the use of a different corpus. Our
extraction algorithm is applicable to the silver-standard Lassy-Large, the size
of which is certainly appealing for such an endeavour. However, the quality of
its annotations is lacking, reducing the potential benefits from pretraining. Fur-
ther, its larger size, in conjunction with the more irregular types (a by-product
of the frequency of erroneous annotations) would be a confounding factor in
evaluating our model’s ability to construct new types. Considering the above,
we refrain from pretraining the decoder in the current setting.

Transformer Even though ELMo acts as an encoder already, its representa-
tions are not necessarily optimal to use as is. Adapting its representations to
the domain is a costly process; ELMo counts a very large number of parameters,
making it prone to overfit our dataset. Instead, we treat it as a static function
and process its output with a single-layer Transformer encoder of 3 attention
heads. In practice, since ELMo’s parameters are hard-set and not affected by
the backward pass, we may precompute the embeddings of our sentences in
advance and feed those onto the rest of the network.

The decoding process is accomplished by 2-layer Transformer decoder. As
the decoder needs to cast its predictions from a broader range of contexts, due
to it processing information at a higher granularity scale, we increase its number
of attention heads to 8.

We follow the original Transformer formulation in all but one point; we model
the position-wise feed-forward transformation that is internal to the encoder and
decoder layers as a two-layer, dimensionality preserving network. We replace
the linear rectifier of the intermediate layer with the empirically superior and
statistically grounded Gaussian Error Linear Unit [HG16]:

GELU(x) = 0.5x
(

1 + tanh
(√

2/π
(
x+ 0.044715x3

)))
Overall, the network is tasked with modeling the probability distribution of

the next atomic symbol at timestep t, at, conditional on all previous predictions
a0, . . . , at−1 and the full input sequence w0, . . . , wτ , as parameterized by its
trainable weights θ:

pθ(at|a0, . . . , at−1, w0, . . . , wτ)

4.3. IMPLEMENTATION 73

Embedding Since there are no pretrained embeddings for the output tokens,
we train an atomic symbol embedding layer alongside the rest of the network.
The Transformer’s formulation gives us no say on the dimensionality of the
output space, as it has to match that of the input— 1024. This is not optimal,
as the number of unique output tokens is one order of magnitude lower than the
dimensionality, making the scale of the representations redundant. To recover
from this and make further use of the extra parameters, we use the transpose
of the embedding matrix as our output classifier. Concretely, the embedding
matrix is a linear map from R|A| to R1024, where A the set of atomic symbols
used by the supertagger. Hence, it’s transpose is a linear map from R1024 to
R|A|, which may be reused to convert the transformer’s 1024-dimensional output
back into class weights. These weights are converted into probabilities in the
|A|-simplex by application of the sig-softmax function [KFYA18], a softmax
variant that enjoys stronger statistical approximation properties:

sigsoftmax(xi) =
exiσ(xi)∑
j e
xjσ(xj)

4.3.4 Digram Encoding

Predicting type sequences one atomic symbol or connective at a time provides
the vocabulary to construct new types, but results in elongated target output
sequence lengths. Note that if lexical categories are, on average, made out of c
atomic symbols, the overall output length is a constant factor of the sentence
length, i.e. there is no change of complexity class with respect to a traditional su-
pertagger. As a countermeasure, we experiment with digram encoding, creating
new atomic symbols by iteratively applying pairwise merges of the most fre-
quent intra-type symbol digrams [Gag94], a practice already shown to improve
generalization for translation [SHB16] and language modeling tasks [RWC+19].
To evaluate performance, we revert the merges back into their atoms after ob-
taining the predictions.

With no merges, the model has to construct types and type sequences using
only atomic types and connectives. As more merges are applied, the model gains
access to extra short-hands for subsequences within longer types, reducing the
target output length, and thus the number of interactions it has to capture.
This, however, comes at the cost of a reduced number of full-type constructions
effectively seen during training, while also increasing the number of implicit
rules of the type-forming context-free grammar. If merging is performed to
exhaustion, all types are compressed into single symbols corresponding to the
indivisible lexical types present in the treebank. The model then reduces to a
traditional supertagger, never having been exposed to the internal type syntax,
and loses the potential to generate new types.

4.3.5 Experiments

Training In all described experiments, the model is run on the subset of
sample sentences that are at most 20 words long. We use a train/val/test split

74 CHAPTER 4. SUPERTAGGING

of 80/10/10; it is worth pointing out that the training set contains only ∼85%
of the overall unique types, the remainder being present only in the validation
and/or test sets. Training takes place with a batch size of 128, and sentences
are padded to the maximum in-batch length. Training to convergence takes, on
average, eight hours & 300 epochs for the training set of 45000 sentences on a
GTX1080Ti. Results are averaged over 5 repetitions.

Accuracy is reported on the type-level; that is, during evaluation, we predict
atomic symbol sequences, then collapse subtype sequences into full types and
compare the result against the ground truth. Notably, a single mistake within
a type is counted as a completely wrong type.

For the training algorithm, we adopt the training scheme originally proposed
by Vaswani et al [VSP+17], which is unique in two ways. First, rather than using
standard cross-entropy as the objective function, it instead optimizes Kullback-
Leibler divergence, a measure of distance between probability distribution. The
distributions compared are the network’s predictions and an artificial distri-
bution of the ground truth. The latter is constructed by subtracting a fixed
percentage of the probability mass from the true label, which is then uniformly
spread across the remaining labels. This practically forces the network to be
less certain of its predictions, increasing its generalization capacity. Moreover, it
utilizes an adaptive learning rate, linearly increasing over a number of training
iterations, then exponentially decaying until termination. We set the amount
of redistributed probability mass to 20%, double that of the original proposal;
a change that is crucial in order to discourage the network from memoizing
common type patterns. We apply dropout in between all network connections,
at a rate of 20%.

Results Our experiments involve a fully constructive model employing no
merges (M0), a fully merged one i.e. a traditional supertagger, (M∞), and
three in-between models trained with 50, 100 and 200 merges (M50, M100 and
M200 respectively). Table 4.1 displays the models’ accuracy. In addition to the
overall accuracy, accuracy over different bins of type frequencies is displayed,
as measured in the training data: unseen, rare (1-10), medium (10-100) and
high-frequency (> 100) types.

Table 4.1 shows that all constructive models perform overall better than
M∞, owing to a consistent increase in their accuracy over unseen, rare, and
mid-frequency types. This suggests significant benefits to using a representation
that is aware of the type syntax. Additionally, the gains are greater the more
transparent the view of the type syntax is, i.e. the fewer the merges. The
merge-free model M0 outperforms all other constructive models across all but
the most frequent type bins, reaching an overall accuracy of 88.05% and an
unseen category accuracy of 19.2%.

What is also interesting to examine is the models’ “imaginative” precision,
i.e., how often do they generate new types to analyze a given input sentence, and,
when they do, how often are they right (Table 4.2). Although all constructive
models are eager to produce types never seen during training, they do so to

4.3. IMPLEMENTATION 75

Type Accuracy

Overall Unseen Freq Freq Freq

Model Types 1-10 10-100 >100

M0 88.05 19.2 45.68 65.62 89.93

M50 88.03 15.97 43.69 64.33 90.01

M100 87.87 15.02 41.61 63.71 89.9

M200 87.54 11.7 39.56 62.4 89.64

M∞ 87.2 - 23.91 59.03 89.89

Table 4.1: Model performance at different merge scales, with respect to training
set type frequencies. Mi denotes the model at i merges, where M∞ means the
fully merged model. For the fully merged model there is a 1 to 1 correspondence
between input words and output types, so we do away with the separation
symbol.

Model New Types Unique Correct (%)

Generated

M0 213.6 199.2 44.39 (20.88)

M50 186.6 174.2 37.89 (20.3)

M100 187.8 173.4 34.31 (18.27)

M200 190.4 178.8 27.46 (14.42)

Table 4.2: Repetition-averaged unseen type generation and precision.

a reasonable extent. Similar to their accuracy, an upwards trend is also seen
in their precision, with M0 getting the largest percentage of generated types
correct.

Together, the results indicate that the type-syntax is not only learnable,
but also a representational resource that can be utilized to tangibly improve a
supertagger’s generalization and overall performance.

Baselines In order to evaluate our model’s performance in comparison to
established supertagging practices, we experimented with RNN-based encoder-
decoder architectures. We tried training a single-layer BiGRU encoder over
the ELMo representations, connected to a single-layer GRU decoder, follow-
ing [CvMG+14]; the model took significantly longer to train and yielded far
poorer results. We hypothesize that the encoder’s fixed length representation is
unable to efficiently capture all of the information required for decoding a full
sequence of atomic symbols, inhibiting learning.

As an alternative, we tried a separable LSTM decoder operating individ-
ually on the encoder’s representations of each word. Even though this model
was faster to train and performed marginally better compared to the previous

76 CHAPTER 4. SUPERTAGGING

in (to)

bw
obj1−→ ((inf

mod−→ inf)→ sv1)
body−→ whq

hoeverre (what-degree)
bw

zal (will)

inf
vc−→ np

su−→ sv1

het (the)

n
det−→ np

rapport (report)
n

dan (then)

inf
mod−→ inf

nog (still)

inf
mod−→ inf

een (a)

n
det−→ np

rol (role)
n

spelen (play)

np
obj1−→ inf

Figure 4.5: Type assignments for the correctly analyzed wh-question “in hoev-
erre zal het rapport dan nog een rol spelen” (to what extent will the report still
play a role) involving a particular instance of pied-piping. The type of “in” was
never seen during training; it consumes an adverb as its prepositional object, to
then provide a third-order type that turns a verb-initial clause with a missing
infinitive modifier into a wh-question. Such constructions are a common source
of errors for supertaggers, as different instantiations require unique category
assignments.

attempt, it still showed no capacity for generalization over rare types. This is
unsurprising, as this approach assumes that the decoding task can be decom-
posed at the type-level; crucially, the separable decoder’s prediction over a word
cannot be informed by its predictions spanning other words, an information flow
that evidently facilitates learning and generalization.

4.3.6 Analysis

Type Syntax To assess the models’ acquired grasp of the type syntax, we
inspect type predictions in isolation. Across all merge scales and consistently
over all trained models, all produced types (including unseen ones) are well-
formed, i.e. they are indeed words of the type-forming grammar. Further, the
types constructed perfectly follow along our implicit notational conventions such
as the obliqueness hierarchy.

Even more interestingly, for models trained on non-zero merges it is often
the case that a type is put together using the correct atomic elements that
together constitute a merged symbol, rather than the merged shorthand trained
on. Judging from the above, it is apparent that the model gains a functionally
complete understanding of the type-forming grammar’s syntax, i.e. the means
through which atomic symbols interact to produce types.

Sentence Syntax Beyond the spectrum of single types, we examine type
assignments in context.

We first note a surprising ability to correctly analyze syntactically complex
constructions requiring higher-order reasoning, even in the presence of unseen
types. An example of such an analysis is shown in Fig 4.5.

For erroneous analyses, we observe a strong tendency towards self-consistency.
In cases where a type construction is wrong, types that interact with that type

4.3. IMPLEMENTATION 77

SMAIN

predm

sup

BW

app

CP

hd mwpAP

WHQ

ADV

obj2

LET

ADJ

PPART

WHREL

pc

cnj

N

SV1

WHSUB

PP

hdf

whd_body

NP

WW

pobj1

obj1

TI

invdet

svp

rhd_body

LID

SSUB
ld

VZ me

VNW

SPEC

OTI

TW

se

DETP

PPRES

VG

body

REL obcomp

predc

AHI

SVAN

INF

vc

rhd
mod

TSW

su

Figure 4.6: 2-d tSNE projection of the embedding space. Two major clusters
are formed by binary connectives (lowercase, east) and atomic types (uppercase,
west). Smaller clusters are also noticeable between sentential types, indirect
verb arguments, secondary clauses, complementizers, preliminary arguments,
phrasal types etc. Refer to Tables 3.1, 3.2 for a legend.

(as either arguments or functors) tend to also follow along with the mistake.
On one hand, this cascading behavior has the effect of increasing error rates as
soon as a single error has been made. On the other hand, however, this is a sign
of an implicitly acquired notion of phrase-wide well-typedness, and exemplifies
the learned long-range interdependencies between types through the decoder’s
auto-regressive formulation. On a related note, we recognize the most frequent
error type as misconstruction of conjunction schemes. This was, to a degree,
expected, as coordinators display an extreme level of lexical ambiguity, owing
to our extracted grammar’s massive type vocabulary.

Output Embeddings Finally, we draw attention to a thus far ignored aspect
of the architecture. Our network trains not only the encoder-decoder stacks, but
also an embedding layer of atomic symbols. We can extract this layer’s outputs
to generate vectorial representations of atomic types and binary connectives,
which essentially are high-dimensional character-level embeddings of the type
language. Figure 4.6 displays a 2-dimensional tSNE [MH08] reconstruction of
the embedding space, where some degree of structure is immediately apparent.
Considering that dense supertag representations have been shown to benefit
parsing [KFM+17], our atomic symbol embeddings may be further utilized by
downstream tasks, as a highly refined source of type-level information.

78 CHAPTER 4. SUPERTAGGING

4.4 Summary

This chapter presented supertagging and its evolution during the last two decades.
We saw how supertagging is a crucial component to categorial parsing, and the
means through which it may become more generally applicable and accurate.
Our novel contribution lies in the reformulation of the supertagging task, from
sequence labeling (with labels being the type vocabulary) to sequence trans-
duction (with outputs being the elements primitive to type construction). Such
a reformulation, paired with the strong idea of self-attention and an encoder-
decoder architecture allowed us to lift the closed-world assumption, yielding a
highly general architecture capable of dynamically constructing types beyond
a prespecified lexicon. This work shows that the type-forming syntax internal
to categorial grammars can be fully acquired by neural networks, bypassing the
limiting factor of type sparsity, and paving the way for exploring the realistic
applications of richer type systems in natural language parsing.

Chapter 5

Parsing

This chapter presents presents preliminary results on parsing using the grammar
specification of Chapter 2 and the extraction results of Chapter 3. A version
of this manuscript has been accepted for presentation at the third workshop
on Semantic Spaces at the Intersection of NLP, Physics, and Cognitive Science
(SemSpace2019).

5.1 Background

Natural language parsing has been a subject of extensive research during the last
decades. Current state-of-the-art relies on recurrent neural networks equipped
with complex data structures that are used to rank the potential parsing steps
[DKBS16, DM16, LZ17]. It is not uncommon for combinations of models or
training tasks to also be used in order to further improve performance [CLML18,
FSK17]. Despite their impressive results, such models are usually complicated
to reason about, inconvenient to adapt to different domains and computationally
expensive, making them difficult to train and employ.

In light of the above, we take an alternative approach towards parsing that
seeks to maximally utilize the proof-theoretic properties of our grammar while
remaining as simple and cost-efficient as possible.

5.2 Framework

The key insight is that a parse is a proof, and a proof is simply a sequence of
logical rule applications. If we were to model these rules, namely implication
introduction and elimination, and follow them in a backwards-search fashion,
we would obtain a proof-faithful parser.

An alternative problem formulation arises if one adopts an Abstract Cate-
gorial Grammar (ACG) perspective [DG01]. In brief, ACG posits the modeling
of syntax as the homomorphic translation from a source “abstract” logic, which
specifies syntactic relations by assigning MILL types to lexical constants, onto

79

80 CHAPTER 5. PARSING

a target “surface” grammar, which specifies the realization of these abstract
syntactic elements as strings and functions over them. From this viewpoint, our
types are (dependency-enhanced) abstract syntactic types of the source logic;
what remains to be done is to provide (or rather, learn) the postulated homo-
morphism that accomplishes the translation onto the surface strings.

With the above in mind, we draw an abstract picture of a backwards-search
parsing process in Algorithm 3.

Algorithm 3 Parse Step

. Performs a backward step of the proof reconstruction.

1: procedure ParseStep(Premises)
2: Goal← InferGoal(Premises)
3: while CanIntroduce() do
4: (premises,Goal)← ApplyIntro(premises,Goal)
5: end while
6: (PremisesLeft,PremisesRight)← ApplyElim(Premises,Goal)
7: return (PremisesLeft,PremisesRight)
8: end procedure

The procedure defined may be decomposed into several subroutines, outlined
in the next paragraphs.

Goal Inference First, given the types at the left-hand side of a judgement
as assumptions, we need to obtain the conclusion, i.e. the proof’s goal type
at the current step. Although this is not a strict requirement for the general
framework, it is mandatory if we wish to perform introduction online, rather
than as a post-processing step, which in turn allows us to inform the elimination
module of the goal type at each prior time step.

Introduction The next step involves determining whether an introduction
rule may be applied. Generally, any time the goal type is a complex type, we
can safely replace it by its result (i.e. the type on the right side of the main
implication connective) while adding its argument (i.e. the type on the left side
of the main connective) onto the list of premises, a functionality implemented
by the ApplyIntro routine. This is not the case, however, if the main con-
nective carries a name corresponding to a modifier label, or the argument to be
introduced was just eliminated at the immediately prior step of the backwards
proof search (thus avoiding infinite loops); CanIntroduce can be designed as
a minimal stateful program that keeps track of these two conditions and informs
the parser accordingly.

Elimination Finally, given that our complex types are the signatures of bi-
nary functors, elimination may be treated as the splitting of a sequence (Premises)
into two disjoint, possibly non-contiguous, subsequences (PremisesLeft and

5.3. IMPLEMENTATION 81

PremisesRight), where the elements of the first together form the argument
that is to be consumed by the function formed by the elements of the second.

Overview In practical terms, we first provide our system with a phrase (the
full sequence of premises), out of which the phrasal type is derived. After zero
or more applications of an introduction rule followed by one application of an
elimination rule, the phrase is split into two disjoint (possibly non-contiguous)
sequences of premises. If any of the resulting sequences has an length of one, it
corresponds to an axiom leaf; otherwise, it requires further processing, which is
accomplished by repeating the same process anew. This iteration progressively
yields a binary branching tree, that is in one-to-one correspondence with the
underlying proof constructed bottom-up (with introduction rules telescoped).

5.3 Implementation

5.3.1 Count Invariance

As mentioned earlier, goal inference is only needed if we to perform introduction
steps during proof construction and thus keep track of the goal formula at each
proof step. A very simple way to implement the InferGoal routine, which is
nevertheless sufficient for our preliminary experiments, is by utilizing the count
invariance property [vB91] that requires a balanced number of input and output
occurrences of individual atomic types. Concisely, we may imagine each complex
type as a fractional, with the result type as its nominator and the argument type
as its denominator. Out of a multiset of assumptions, the conclusion may then
be derived by performing a multiplication over the corresponding types, with
fractionals maximally simplified afterwards. This process (combined with our
ability to deterministically arrange functor types via the argument ordering
scheme of subsection 3.3.1) yields a unique type which is generally the correct
one, modulo a few edge cases.

Things become less straightforward when considering modifiers; being poly-
morphic instances of the x→ x scheme, their fractional representations are self-
canceling, thus invisible to the count invariance. This rarely, however, poses a
problem, if we take into account that a) the bottom step of the proof will never
have a modifier type as its conclusion, given that modifiers are context-specific
(for instance, an adjectival phrase in isolation will be typed as ap rather than
np→ np) and b) the goal type may also be inferred by taking the goal type of
the prior parse step and “subtracting” the goal type of the eliminated argument
of the current parse step.

Even after this alteration, some cases still remain unsettled. Third or higher
order types require hypothetical reasoning over embedded functors, rather than
arguments. If these happen to be modifiers, they are again invisible to the count
invariance, but no immediate way of resolving them is now evident.

Count invariance also struggles under conjunction, as our coordinator types
do not specify the exact number of conjuncts but only their general structure;

82 CHAPTER 5. PARSING

i.e. there is an added variable that the type equations need to be solved against,
the value of which would specify the exact instantiation of the coordinator type.

Given the prototype nature of the parsing experiments, we refrain from
designing a more complicated algorithm targeted towards these cases. Instead,
for the time being we simply ignore samples that involve such constructions. For
the sake of argument, many directions are possible as future work; for instance
utilizing heuristics that account for higher-order lexical type assignments, or
even a full replacement with a neural, lexically informed module responsible for
type inference.

5.3.2 Elimination as Binary Sequence Classification

At this point, recall that our grammar specification assumes associativity and
commutativity as universally holding, a design choice that limits the type sys-
tem’s complexity and enhances its learnability. The non-directionality of →
means that the splitting done by ApplyElim is not deterministic. In practice,
the type assignments made by the supertagger (even when fully correct) may ad-
mit more proofs (or parses) than linguistically desired. To constrain the search
space over parses to just those that are linguistically plausible but also consti-
tute valid proofs, our parser needs to resolve ambiguities by incorporating both
lexical and type-level information. Hence, rather than treating Premises as a
sequence of types, we instead expand it to sequence of pairs of words and types.
This allows us to distinguish between elements that share the same type but
are anchored to different lexical items — an addition that, together with our
dependency-decorated types, allows for a preferential treatment of particular
words with respect to certain dependency roles under different contexts.

With this in mind, we choose to model ApplyElim as a neural function.
Under its current specification, the function’s task is to split a sequence into
two disjoint subsequences; or equivallently, to assign a binary label for each
item within the sequence. Binary sequence classification is an established prob-
lem in machine learning literature, which points to the direct applicability of
standard recurrent architectures. Our network is a standard variant of such
an architecture; we allow a bidirectional, two-layer deep Gated Recurrent Unit
(GRU) [CvMG+14] to iterate over the vectorial representations of the input
sequence. A linear transformation then converts the high-dimensional vectors
of the recurrent unit onto a class weight vector in R2, which are converted onto
class probabilities by the softmax function.

To create vectorial representations of our sequence elements, we first apply
the ELMo used by the supertagger onto each word of a sentence. A word’s
vector −→w is then given by ELMo(word, context), where context refers to the
initial sentence (prior to any eliminations). By using a contextual embedding
that is informed by the full sentence and letting it persist unchanged throughout
the proof, we can provide the parser with an implicit notion of the proof’s ”past”
while drastically reducing the computational costs associated with calculating
the word vectors at each step. Next, we convey the type-level information
by associating each unique type with a vector. Recalling that complex types

5.3. IMPLEMENTATION 83

(in Polish notation) are sequences of atomic types and binary connectives, for
which we already have embeddings as produced by the supertagger, we construct
complex type embeddings by iterating another GRU over the vector sequences
that correspond to each complex type.

A word-type pair’s vector is then simply the concatenation of its word and
type vectors. In cases where an element participating in an elimination is not
lexically grounded (i.e. types generated by prior introduction rules), we simply
set its word vector to zeros. Finally, in order to inform the network of the
conclusion type (which we have already derived), we further concatenate its
vector onto each word-type pair, essentially converting the recurrence into a
function that is parametric with respect to the goal type.

A visual presentation of the network is shown in Figure 5.1.

5.3.3 Experiments

Implementation Details We use a 1-layer unidirectional GRU with an input
and hidden dimensionality of 1024 as our type embedder. For the premise-level
GRU, we set its hidden dimensionality to 256, its number of layers to 2 and
apply a recurrent dropout of 0.5 for regularization. We train our network using
a cross-entropy loss and an AdamW optimizer [LH17] with a learning rate of
10−3 and a weight decay of 10−4. The source code for the model described can
be found at https://github.com/konstantinosKokos/Lassy-TLG-Parsing.

Training To train the network, we precompute the contextualized vectors for
each word participating in an elimination. Since the word vectors do not change
within any single proof, we may then treat each elimination as an independent
data point, allowing multiple eliminations (possibly from different sentences) to
be processed in parallel. This gives us the ability to avoid complex data structure
manipulation during training time, abolishing the need for CPU instructions
that insert computational overhead. In effect, the neural component of the
parser is based solely on highly optimized tensor operations and requires no
more than a couple of minutes to train, despite its high expressivity. This marks
a significant improvement over modern parsing architectures, which commonly
involve a stack containing partial derivations which is continuously written to
and read from, in both the temporal axis (the parse steps) and the sentential
axis (the neural iteration over the words).

Inference The inference process is identical to training, except for the fact
that the input is no longer an independent sample, but rather the production of a
previous application of the network (or, the initial phrase). End-to-end inference
has quadratic complexity with respect to the input length (linear number of
eliminations, linear iteration complexity per elimination).

Experimental Setup We run preliminary experiments on a subset of our
data to evaluate the framework’s potential. We limit our experiments to sen-

https://github.com/konstantinosKokos/Lassy-TLG-Parsing

84 CHAPTER 5. PARSING

Input Sentence

hond bijt man

ELMo

−→w1
−→w2

−→w3

Input Type Sequences

np obj−→ np
su−→ np smain

np

−→
t1

−→
t2

−→
t3

TTT TTT TTT

Input Goal Type

smain

−→g

TTT

−→w1;
−→
t1 ;−→g −→w2;

−→
t2 ;−→g −→w3;

−→
t3 ;−→g

EEE

1 1 0

Figure 5.1: The ApplyElim neural architecture, where T refers to the type-
level GRU, and E to the premise-level GRU. Vector concatenation is denoted
by ;. For the example word input “hond bijt man”, “man” is the element to be
eliminated, therefore getting the label 0.

Model Full Full-g Full-g-t Full-g-w

Accuracy 97.15 95.3 87.77 94.2

Table 5.1: Percentage of eliminations correctly analyzed by each model, where
Full refers to the model described in 5.3.2, and -g, -t, -w refer to a model where
the goal, type and word-level inputs have been removed respectively.

tences involving types of at most order 2 and no conjunctions for the reasons
outlined earlier. The resulting dataset counts 33 000 sentences (approximately
half of the original), out of which 340 000 instaces of eliminations are generated.
We train on the first 80% of the sentences, and report results on the remaining
20%. In order to assess the parser in isolation, we use the gold extracted types
rather than the types assigned by the supertagger.

Ablations We perform a number of ablations to gain an understanding of the
relative influence of each extra source of information to the model. Table 5.1
reports our results.

Analysis As all other parsing subroutines considered are deterministic, the
neural elimination module is the factor that decides the upper boundary of
our system’s performance. Evidently, the model achieves highly competitive
accuracy scores despite its simple formulation and implementation. Further, it

5.4. SUMMARY 85

manages to successfully incorporate all informational sources, as suggested by its
increased performance when allowed access to more inputs. When trained only
on word or type information, it still manages adequate accuracy scores, attesting
to the high quality of both the word vectors as yielded by the pretrained ELMo,
and also the rich informational content of the atomic embeddings as produced
by the supertagger.

The raw numbers presented are of course not fully indicative of the system’s
performance in a realistic setting, as many potential error sources have been
artificially removed. First off, the types considered are the correct ones, whereas
they would normally need to be produced by the supertagger. To increase
its robustness against wrong tags, the training process could emulate these by
confounding the input types in a controlled manner (alternatively, the two could
be jointly trained on a shared portion of the dataset). Further, eliminations are
performed independently, meaning that errors from prior eliminations within a
sentence are not propagated upwards through the proof. Finally, the sentences
analyzed are on the easier side of the spectrum, as they involve either no or
limited hypothetical reasoning and no conjunctions (which were also the major
source of error for the supertagger). Nevertheless, these first results testify
to the strength of the general approach and show that an undirectional type
logic provides fertile grounds for parsing, confirming our original hypotheses
and earlier design decisions.

5.4 Summary

In this chapter, we introduced an abstract framework for the construction of
type-logical proofs in a backwards fashion. We then instantiated this frame-
work with a basic goal inference component capable of dealing with a portion
of possible input judgements, and an elimination component in the form of a
simple recurrent network. This elementary instantiation serves as a concrete
proof-of-concept rather than a completely developed parser. Yet, its very high
preliminary results are a clear indication that efficient and highly accurate pars-
ing with our undirectional type logic (and the type lexicon extracted) is within
reach.

86 CHAPTER 5. PARSING

Chapter 6

Conclusion

This thesis set out to design, extract and experimentally validate a type-logical
grammar for written Dutch, aimed towards semantic compositionality.

We began by introducing type-logical grammars and the recurring patterns
within them. Having weighted the pros and cons between established variants,
we chose to base our grammar on the Lambek-van Benthem Calculus. This
decision gave our grammar a direct equivalence to the simply-typed λ-calculus,
making it highly fitted for future semantic interpretations. It also trivialized
the treatment of crossing and long-range dependencies, as well as any issues
pertaining to word order permutations. At the expense of these benefits, our
type logic becomes hard to perform proof-search over and permits more deriva-
tions than the language allows. To reconcile these shortcomings, we enriched
the logic with dependency annotations, anticipating their future utilization in
coordination with word-level information.

Next, we implemented an algorithm tasked with performing type assign-
ments on the syntactically annotated sentences of Lassy, the written Dutch
corpus, according to our type logic. To ameliorate incompatiblities between our
desired analyses and the ones provided by the corpus, we layed out a number of
corpus transformation, each specific to a particular syntactic construction. By
applying them to the corpus we utilized otherwise unusable sentences, ensuring
the maximum number of type assignments without making any compromises on
their quality.

Albeit our designed grammar’s lack of directionality, the type system still
proved highly refined, owing to the numerous dependency decorations and atomic
types but also the large variety in type structures. Its fine-grained nature had
the side effect of a previously unseen degree of type sparsity, challenging its
learnability by standard supertagging architectures. Rather than ignore rare
types or artificially deflate the type system’s complexity, we proposed a genera-
tive, attention-based supertagging architecture. Our model proved able to fully
acquire the type syntax, learning to construct types inductively, thus bypassing
the inherent limitations of established models with respect to type sparsity.

Finally, in order to ascertain the type system’s potential as a backbone to

87

88 CHAPTER 6. CONCLUSION

parsing, we ran some first experiments on backwards proof-search using a simple
recurrent architecture, simultaneously informed by word- and type-level infor-
mation. The network proved highly optimal, both in terms of computational
efficiency and raw performance. Although incomplete, these first results sug-
gest that, despite their lack of directionality, our grammar’s types suffice for
structural disambiguation, when used in tandem with the lexical content of a
sentence.

To review, this thesis has produced a dependency-aware type-logical gram-
mar variant, a means for its data-driven extraction, a methodology for construc-
tive supertagging and a (still in the works) framework for structurally ambiguous
type-logical parsing.

Future Directions Some of the research questions posed have only been given
partial answers. Regarding parsing, it remains to be seen how to best integrate
supertagging and parsing, and how to overcome the limitations of the current
parsing framework. Regarding the extraction, further work on exception cases
would now yield diminishing returns; however, any bit of extra coverage, no
matter how small, is worth the effort as it turns the grammar more general. In-
vestigating non-compositional phenomena (i.e. unheaded structures) is also an
open challenge. A great degree of empirical experimentation may still be per-
formed over the extraction parameters (e.g. reducing the range of the atomic
type or implication label translation tables) to evaluate their effect on down-
stream tasks. On a related note, a sanity check could be carried out using pure
ILL types to assert the significance of the dependency decorations in parsing.
The positive effect is an opposing force to the type system’s complexity (and the
associated drops in supertagging accuracy); thus the two need to be carefully
weighed to find an optimal balance.

Aside from these questions, the thesis opens many possible directions for
future explorations. Given the experimentally validated treebank, the princi-
pal focus now turns on how to best utilize type-logical derivations and their
corresponding computational terms to inform semantics; i.e. which candidate
semantic interpretations exist for our types and their interactions, and how can
they best benefit from this work? Moreover, it is important to consider the
broader applicability of the methods presented; e.g. whether other languages
could benefit from non-directional type logics, or other grammar formalisms
from a constructive supertagging paradigm.

Such inquiries are no small endeavour and could not be fit under a single
thesis. We hope, however, to have sufficiently motivated the interested reader in
pondering the beauty of a type-theoretic view on language, the means through
which it can be practically employed and its potential implications for large-scale
natural language processing.

Bibliography

[Abr93] Samson Abramsky. Computational interpretations of linear
logic. Theoretical computer science, 111(1-2):3–57, 1993.

[ADS18] Bharat Ram Ambati, Tejaswini Deoskar, and Mark Steedman.
Hindi CCGbank: A CCG treebank from the hindi dependency
treebank. Language Resources and Evaluation, 52(1):67–100,
2018.

[Ajd35] Kazimierz Ajdukiewicz. Die syntaktische konnexitat. Studia
philosophica, pages 1–27, 1935.

[BBDPH93] Nick Benton, Gavin Bierman, Valeria De Paiva, and Martin Hy-
land. A term calculus for intuitionistic linear logic. In Interna-
tional Conference on Typed Lambda Calculi and Applications,
pages 75–90. Springer, 1993.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neu-
ral machine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.

[BGJM17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics,
5:135–146, 2017.

[BH53] Yehoshua Bar-Hillel. A quasi-arithmetical notation for syntactic
description. Language, 29(1):47–58, 1953.

[BJ99] Srinivas Bangalore and Aravind K. Joshi. Supertagging: An
approach to almost parsing. Comput. Linguist., 25(2):237–265,
June 1999.

[BVNM01] Gosse Bouma, Gertjan Van Noord, and Robert Malouf. Alpino:
Wide-coverage computational analysis of Dutch. Language and
Computers, 37:45–59, 2001.

[CLML18] Kevin Clark, Minh-Thang Luong, Christopher D Manning, and
Quoc V Le. Semi-supervised sequence modeling with cross-view
training. arXiv preprint arXiv:1809.08370, 2018.

89

90 BIBLIOGRAPHY

[CLW+18] Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, and Ting
Liu. Towards better UD parsing: Deep contextualized word em-
beddings, ensemble, and treebank concatenation. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 55–64, Brussels, Belgium,
October 2018. Association for Computational Linguistics.

[Cur61] Haskell B Curry. Some logical aspects of grammatical structure.
Structure of language and its mathematical aspects, 12:56–68,
1961.

[CvMG+14] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN
encoder–decoder for statistical machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724–1734, Doha, Qatar,
October 2014. Association for Computational Linguistics.

[DG01] Philippe De Groote. Towards abstract categorial grammars. In
Proceedings of the 39th Annual Meeting of the Association for
Computational Linguistics, 2001.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[DKBS16] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and
Noah A. Smith. Recurrent neural network grammars. In Pro-
ceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 199–209, San Diego, California, June
2016. Association for Computational Linguistics.

[DM16] Timothy Dozat and Christopher D Manning. Deep biaffine
attention for neural dependency parsing. arXiv preprint
arXiv:1611.01734, 2016.

[Dow82] David Dowty. Grammatical relations and Montague grammar.
In P. Jacobson and G. Pullum, editors, The nature of syntactic
representation, pages 79–130. Reidel, 1982.

[Elm90] Jeffrey L Elman. Finding structure in time. Cognitive science,
14(2):179–211, 1990.

[FSK17] Daniel Fried, Mitchell Stern, and Dan Klein. Improving neu-
ral parsing by disentangling model combination and reranking
effects. arXiv preprint arXiv:1707.03058, 2017.

BIBLIOGRAPHY 91

[Gag94] Philip Gage. A new algorithm for data compression. C Users
J., 12(2):23–38, February 1994.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical computer science,
50(1):1–101, 1987.

[Gra12] Alex Graves. Supervised sequence labelling. In Supervised
sequence labelling with recurrent neural networks, pages 5–13.
Springer, 2012.

[GS01] F. A. Gers and E. Schmidhuber. LSTM recurrent networks
learn simple context-free and context-sensitive languages. IEEE
Transactions on Neural Networks, 12(6):1333–1340, Nov 2001.

[Ham62] Charles L Hamblin. Translation to and from polish notation.
The Computer Journal, 5(3):210–213, 1962.

[HG16] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and
stochastic regularizers with gaussian error linear units. CoRR,
abs/1606.08415, 2016.

[HMSVDW01] Heleen Hoekstra, Michael Moortgat, Ineke Schuurman, and Ton
Van Der Wouden. Syntactic annotation for the spoken dutch cor-
pus project (CGN). In Computational Linguistics in the Nether-
lands 2000, pages 73–87. Brill Rodopi, 2001.

[Hoc06] Julia Hockenmaier. Creating a CCGbank and a wide-coverage
CCG lexicon for German. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and 44th An-
nual Meeting of the Association for Computational Linguistics,
pages 505–512, 2006.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[HS07] Julia Hockenmaier and Mark Steedman. CCGbank: a corpus
of CCG derivations and dependency structures extracted from
the Penn Treebank. Computational Linguistics, 33(3):355–396,
2007.

[HSK+12] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R Salakhutdinov. Improving neural net-
works by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

[KFM+17] Jungo Kasai, Bob Frank, Tom McCoy, Owen Rambow, and
Alexis Nasr. TAG parsing with neural networks and vector
representations of supertags. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing,
pages 1712–1722, Copenhagen, Denmark, September 2017. As-
sociation for Computational Linguistics.

92 BIBLIOGRAPHY

[KFYA18] Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka, and
Shuichi Adachi. Sigsoftmax: Reanalysis of the softmax bot-
tleneck. In Advances in Neural Information Processing Systems,
pages 284–294, 2018.

[KM97] Natasha Kurtonina and Michael Moortgat. Structural control.
Specifying syntactic structures, pages 75–113, 1997.

[KMD19] Konstantinos Kogkalidis, Michael Moortgat, and Tejaswini De-
oskar. Constructive type-logical supertagging with self-attention
networks. arXiv preprint arXiv:1905.13418, 2019.

[Kru76] C Kruyskamp. Van dale’s groot woordenboek der nederlandsche
taal .‘s-gravenhage: Martinus nijhoff. 1976.

[Lam58] Joachim Lambek. The mathematics of sentence structure. The
American Mathematical Monthly, 65(3):154–170, 1958.

[Lam61] Joachim Lambek. On the calculus of syntactic types. Structure
of language and its mathematical aspects, 12:166–178, 1961.

[LBKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer
normalization. arXiv preprint arXiv:1607.06450, 2016.

[LH17] Ilya Loshchilov and Frank Hutter. Fixing weight decay regular-
ization in adam. arXiv preprint arXiv:1711.05101, 2017.

[LLZ16] Mike Lewis, Kenton Lee, and Luke Zettlemoyer. LSTM CCG
parsing. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 221–231, San
Diego, California, June 2016. Association for Computational
Linguistics.

[LZ17] Jiangming Liu and Yue Zhang. In-order transition-based con-
stituent parsing. Transactions of the Association for Computa-
tional Linguistics, 5:413–424, 2017.

[MH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data
using t-sne. Journal of machine learning research, 9(Nov):2579–
2605, 2008.

[MM02] Michael Moortgat and Richard Moot. Using the spoken dutch
corpus for type-logical grammar induction. In LREC. Citeseer,
2002.

[Moo10] Richard Moot. Extraction of type-logical supertags from the
spoken dutch corpus. Supertagging: Using Complex Lexical De-
scriptions in Natural Language Processing, pages 291–312, 2010.

BIBLIOGRAPHY 93

[Moo14] Michael Moortgat. Typelogical grammar. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics
Research Lab, Stanford University, spring 2014 edition, 2014.

[MR12] Richard Moot and Christian Retoré. The logic of categorial
grammars: a deductive account of natural language syntax and
semantics, volume 6850. Springer, 2012.

[Mus01] Reinhard Muskens. Lambda grammars and the syntax-
semantics interface. 2001.

[PNI+18] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gard-
ner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.
Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018.

[RLL17] Prajit Ramachandran, Peter Liu, and Quoc Le. Unsupervised
pretraining for sequence to sequence learning. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 383–391, Copenhagen, Denmark, September
2017. Association for Computational Linguistics.

[RWC+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsupervised
multitask learners. OpenAI Blog, 1:8, 2019.

[SB11] Mark Steedman and Jason Baldridge. Combinatory categorial
grammar. Non-Transformational Syntax: Formal and explicit
models of grammar, pages 181–224, 2011.

[SGS15] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhu-
ber. Highway networks. arXiv preprint arXiv:1505.00387, 2015.

[SHB16] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural ma-
chine translation of rare words with subword units. In Proceed-
ings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany, August 2016. Association for Computational
Linguistics.

[UMH+15] Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka, Yusuke
Miyao, and Hideki Mima. Integrating multiple dependency cor-
pora for inducing wide-coverage Japanese CCG resources. ACM
Transactions on Asian and Low-Resource Language Information
Processing (TALLIP), 14(1):1, 2015.

[vB88] Johan van Benthem. The semantics of variety in categorial gram-
mar. Categorial grammar, 25:37–55, 1988.

94 BIBLIOGRAPHY

[vB91] Johan van Benthem. Language in action. J. Philosophical Logic,
20(3):225–263, 1991.

[VBSM16] Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan Musa.
Supertagging with LSTMs. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages
232–237, San Diego, California, June 2016. Association for Com-
putational Linguistics.

[vNSV06] Gertjan van Noord, Ineke Schuurman, and Vincent Vandegh-
inste. Syntactic annotation of large corpora in STEVIN. In
LREC 2006 Proceedings. 5th Edition of the International Con-
ference on Language Resources and Evaluation. European Lan-
guage Resources Association (ELRA), 01 2006.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polo-
sukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pages 5998–6008, 2017.

[XAC15] Wenduan Xu, Michael Auli, and Stephen Clark. CCG supertag-
ging with a recurrent neural network. In Proceedings of the
53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages 250–255,
Beijing, China, July 2015. Association for Computational Lin-
guistics.

	Introduction
	Grammar
	Background
	Overview
	Type-Logical Grammars

	A TLG for Semantic Compositionality
	Intuitionistic Linear Logic
	Dependency Refinement

	Summary

	Extraction
	Background
	Corpus
	Corpus Statistics

	Extraction Process
	Extraction Algorithm
	Transformations and Exceptions

	Implementation Notes
	Type System
	Processing

	Summary

	Supertagging
	Background
	Original Formulation
	Unbounded Domain
	Type Disambiguation

	Unbounded Codomain
	The Language of Types
	Supertagging as Sequence Transduction

	Implementation
	Self-Attention
	Transformers
	Model
	Digram Encoding
	Experiments
	Analysis

	Summary

	Parsing
	Background
	Framework
	Implementation
	Count Invariance
	Elimination as Binary Sequence Classification
	Experiments

	Summary

	Conclusion

