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Abstract

Tissue mechanics controls biological processes such as cancer metastasis, em-
bryonic development and wound healing. Recent studies have examined jam-
ming transitions in tissues to determine how they become fluid-like, which
is considered key to understanding these phenomena. Here, two models of
biological cells are used to describe the dynamics of epithelial tissue and to
study the effect of oscillations on the onset of flow in tissues. The first model
treats cells as soft deformable disks interacting via the Hertz potential and
imposes oscillations in the size of the particles. The second model describes
cells as polygons through a Voronoi diagram, allowing changes in size and
shape. We found that oscillations in diameter enhance motion of crystallised
‘Hertzian cells’ and hinder the motion of cells in dense tissues. The Voronoi
model was implemented with a flip algorithm, but stability issues were found.
Further analysis of these issues is required to investigate the role of shape
oscillations in fluidisation of the tissue as described by the Voronoi model.
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Chapter 1

Introduction

Cancer metastasis, embryonic development and wound healing are biological
processes for which cell dynamics is important. Collective properties are
proposed to play a role in these phenomena [1], specifically for the fluidisation
of the tissue, which is related to jamming and glass transitions. Experimental
studies have shown that epithelial cells can undergo glass transitions and
form an amorphous solid [2]. Cells can also change size and shape through
contractions and extensions of the cytoskeleton and its associated protein
filaments [3]. It has been observed that cells in epithelial tissue contract
and expand in a coordinated fashion [4]. Recently, computational studies of
tissue models have reported a rigidity transition upon changing an internal
parameter that describes the elongation of the cells [5]. The aim of this thesis
is to contribute to this discussion and to explore the influence of cellular
size and shape oscillations on the fluidisation of epithelial tissues, by asking
whether oscillations enhance cell motility.

To answer this question, two models were studied. First, the Hertzian poten-
tial was used as a toy model, describing cells as deformable soft disks with
short range interactions. Simulations at different densities were performed
and the size of the particles was made to oscillate sinusoidally with different
amplitudes, frequencies and phases. The second model that was implemented
was the one used by Bi et al. [5], the Voronoi model. This framework describes
cells as polygons that interact with their immediate neighbours according to
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geometric variables, namely area and perimeter, which express mechanical
properties such as tension and contractility. In the Voronoi model, oscilla-
tions in size and shape are possible.

The diffusion coefficient of the Hertzian disks was used as a measure of
cell motility. We found that diameter oscillations in a low density fluid
phase have no effect on diffusivity, while at high density they hinder motion.
Conversely, oscillations enhance motion in a crystallised arrangement. The
Voronoi model was implemented and features of the flip algorithm were vali-
dated. However, stability issues not yet fully understood impeded the study
of oscillations.

This thesis starts with a conceptual introduction to epithelial tissue, in Chap-
ter 2, as well as the motivation to study this biological subject from a physical
point of view. Chapter 3 deals with the details of the Voronoi model and its
simpler counterpart, the vertex model. The toy model that describes cells
as Hertzian particles is explored in Chapter 4, and results of the Voronoi
model are presented in Chapter 5. Chapter 6 presents the conclusions of this
project, as well as possible directions of further studies.
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Chapter 2

Background

2.1 Epithelial Tissue

There are four basic types of tissue in animals: epithelial, muscle, connective
and nervous tissue [6]. Epithelial tissue covers the outside of the body and
lines organs and cavities. It is made up of closely packed epithelial cells,
which form a mechanical barrier. This dense packing leads to confluent
configurations, where cells are arranged in a dense layer, with no empty
spaces between them. In such configurations, protein complexes called cell
junctions establish contact between adjacent cells.

Epithelial cells can have different shapes, according to their function. Those
that are large and brick-shaped are called columnar epithelial cells and fa-
cilitate secretion and active absorption. They are found, for example, in the
intestines, where digestive juices are secreted and nutrients absorbed. Squa-
mous epithelial cells are plate-like and form thin layers whose function is the
exchange of chemicals via diffusion. They line blood vessels and pulmonary
alveoli, where they diffuse nutrients and oxygen. Cuboidal epithelial cells are
dice-shaped and form most glands and glandular tubules of the body, where
they help with secretion.
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The study of epithelial tissue is useful due to the insights it can provide
about carcinoma and organogenesis. Carcinomas are cancers that originate
in epithelial cells [7]. Because epithelial tissue lines organs and glands, a sig-
nificant number of the most common cancers are carcinomas. Specifically, all
prostate and pancreatic cancers and nearly all lung, oral and breast cancers
arise from malignant mutations in epithelial cells.

Organogenesis is a step in embryonic development during which the three
primary cell layers of an embryo (endoderm, mesoderm and ectoderm) give
rise to all four fundamental tissues and all organs of an animal [8]. This
process involves cell differentiation and tissue flows, that spatially arrange
cells to form different body structures. Thus, studying epithelial tissue can
help understand not only how cancer develops and spreads but also how
tissues move during embryonic development to form organs.

2.2 Physics of Biological Tissues

Biological cells are highly complex systems composed of many different struc-
tures and signalling networks and, as such, cellular processes are primarily
studied from a single-cell perspective. However, there are cases where higher-
level physical properties become relevant, especially when studying biological
tissues like epithelia, where a large number of cells come together, and when
studying disease progression, for which cell mechanics is important.

To assess the role of tissue-level properties, let us consider the stiffness-
softness paradox of tumours [1]. On the one hand, magnetic resonance
elastography shows that tumours are stiffer than surrounding tissue, allow-
ing their detection as lumps [9]. On the other hand, optical deformability
studies show that tumour cells are softer — their cytoskeletons are more de-
formable — than non-cancerous cells [10], which facilitates cancer invasion
since softer cells can more easily travel across thin gaps in the extra-cellular
matrix and in the walls of blood vessels [11]. Thus, stiff tumours contain
softer cells. This contradiction between single-cell and tissue-level properties
points towards a role of emergent phenomena.
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Another motivation for studying the mechanics of tissue biology is the fact
that, in epithelia, a change in cell-cell adhesion and cell contractility gives
rise to the epithelial-mesenchymal transition (EMT) [1]. This transition cor-
responds to a transformation of phenotype, whereby polarised epithelial cells
become elongated mesenchymal stem cells, with enhanced migration and in-
vasiveness [12]. Mesenchymal stem cells are connective tissue cells that are
multipotent and can therefore differentiate into several cell types [13]. Be-
cause EMT is associated with a transition from collective movement to single
cell movement, it is proposed to be critical for tumour progression and cancer
metastasis, especially in carcinomas [14, 15]. It also plays an important role
in other processes, such as tissue repair [16] and inflammation [17].

Cellular tissues lend themselves to physical studies because they are vis-
coelastic, behaving as elastic solids or as viscous fluids in different circum-
stances [1]. Tissues are reminiscent of fluids, namely immiscible ones, when
different types of cells coexist and sort themselves into different domains [18].
Elasticity, in turn, is present when, for example, tissues are moulded into
spheres and are observed to respond elastically to deformations [19], anal-
ogously to elastic liquid droplets. Surface tension is at the origin of both
these phenomena. Elasticity is due to the resistance that the macroscopic
surface tension offers to deformations. Furthermore, cellular surface tension
leads to sorting because it varies according to the magnitude of the micro-
scopic interactions: assymetry in the interactions between constituents of
the same cell and between constituents of different cells originates different
surface tensions and thus different macroscopic spatial preferences. A va-
riety of mechanisms are proposed to give rise to tissue surface tension [1]:
cell-cell adhesion, mediated by molecules called cadherins; cell contractility,
mediated by the actin cortex of cells, which is adjacent to the cytoskeleton;
or a combination of the two, since cadherins are coupled to the actin cortex.
A final reason to study tissues using tools from physics is the fact that cells
consume energy and create active forces, which prompts their study as active
fluids instead of simple, passive ones.
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2.3 Models of Cell Dynamics

There are various approaches to studying the mechanics of cells. All of
them can be simulated in two dimensions, instead of three, without loss of
generality, since, as mentioned in section 2.1, epithelial tissue consists of thin
layers. Discrete models, that describe cells individually, can be divided in
roughly three types, based on the way they treat interactions between cells.
These models use particle-like potentials, update rules or geometry-based
local forces [20].

The first category includes models ranging from those that treat cells as sim-
ple particles to those that describe internal cellular details. Cells as particles
can be modelled in isolation or in confluent tissues and can be deformable [21]
and asymmetric [22]. Models with intra-cellular components calculate the in-
teractions not only between cells but also between constituents of the cells,
such as the particles that make up the membrane [23].

The second category features mainly the cellular Potts model. This approach
employs a spatial lattice, where each point belongs to a particular cell or
to interstitial fluid and changes its state according to a Monte Carlo-like
rule [24]. There are no explicit forces in the cellular Potts model, only an
energy associated to each state that the system seeks to minimise. Thus,
the evolution does not follow Newtonian mechanics, unlike the models in the
other categories, which evolve with explicit equations of motion, integrated
computationally using molecular dynamics (MD) algorithms.

The third category contains vertex models and phase field models. Vertex
models describe each cell as a polygon, with edges representing the mem-
branes that separate neighbouring cells. Interactions are calculated locally
using the area and perimeter of adjacent cells to quantify biological features
such as cell volume incompressibility, cellular contraction and membrane ten-
sion [25]. Phase field models, on the other hand, represent each cell as a
moving interface, characterized by a phase field that transitions from one
inside the cell to zero outside of it [26]. Interactions rely on the perimeter
and curvature of the membranes, as well as overlaps between cells.

Apart from these discrete models, there are also continuum models, that use
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a cell concentration instead of describing each cell individually [27]. Contin-
uum models consist of partial differential equations, in space and time, for
cell concentration, velocity and polarity, as well as inter-cellular adhesion.
Adhesion is in some cases described using Maxwell’s theory of viscoelastic
fluids [28].

To describe confluent tissues and simulate the collective motion of cells, ver-
tex models arise as the most appropriate tool, due to their low computational
cost, the natural description of cell shapes, as can be seen in Fig. 2.1, and the
fact that they favour topological aspects of the distribution of cells, instead
of focusing on intra-cellular details.

(a) Epithelial tissue. (b) Voronoi diagram.

Figure 2.1: Voronoi tessellations as a representation of epithelial tissue. Mi-
croscopy image from [29], licensed under CC BY IGO.

Vertex models can be further distinguished from Voronoi models [5], where
cells are represented not as generic polygons but as Voronoi domains of the
cell nuclei. A Voronoi diagram of a discrete set of points divides space into
regions, also called Dirichlet domains or Wigner-Seitz cells, that contain all
the locations closer to that point than to any other point in the set. The
main difference between vertex and Voronoi models is that the equations of
motion of the former describe the dynamics of the vertices of the polygon,
whereas in the latter the equations of motion pertain to the cell centres.

Both models have been used to describe wound healing, cell sorting [30] and
tissue folding and growth [31]. Recently, studies using the Voronoi model
proposed the existence of a jamming transition in cell dynamics [5], which
can be important for the epithelial-to-mesenchymal transition, introduced in
section 2.2.
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2.4 Jamming and Glass Transitions

Jamming transitions correspond to abrupt dynamical arrest and occur in
non-biological systems, such as granular materials, foams and traffic jams,
when the density is increased beyond a certain point [32]. Glass transitions
occur in amorphous materials when the temperature decreases and changes
the consistency of the material, from a viscous liquid to a crystal state [33].
Jamming and glass transitions are similar in the sense that they restrict the
system to a small region of phase space, either by varying the density or the
temperature, respectively.

These rigidity transitions have been studied in the context of biology for
phenomena in which cell motility, and therefore cell arrest, is relevant [1].
Cell arrest corresponds to the equilibrium, non-perturbed configuration of
the tissue, when cells are jammed and do not move significantly. Contrar-
ily, cell motility coincides with a fluidised state, where cells have inhanced
displacements. However, in contrast to jamming and glass transitions in
granular matter, biological tissues often have constant temperature and a
constant volume fraction of one, due to being confluent. Therefore, jamming
and glassy behaviour are proposed to occur in tissues as a result of factors
other than temperature or density. Some of the variables suggested to trigger
and regulate rigidity transitions in cellular tissue are active motility, cell con-
tractility, cell shape, applied stress, and cell-cell adhesion [1]. Nevertheless,
it is still debated whether density plays a role in cellular jamming [34]. A
glass transition due to cell-cell and cell-substrate adhesion has been observed
in an aging epithelial monolayers by Garcia et al. [2].

2.5 T1 Topological Transitions

In confluent tissue like epithelia, cells are, as seen in Fig. 2.1, approximately
polygons that occupy the entire two-dimensional layer, sharing edges with
their immediate neighbours. When one cell moves persistently in one direc-
tion and is able to overcome the energy barrier imposed by its neighbours,
it breaks the cell junctions in front of it, inserting itself where once was an
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edge between two other cells. This is called a T1 topological transition.

In a T1 transition, tissue topology changes locally through the exchange of
neighbours between four cells. As shown in Fig. 2.2, cells that share an edge
(the white cells in the figure), and are thus neighbours, are drawn apart un-
til they only share a single vertex (in red in the picture). By moving them
further away from each other, the single vertex splits into two vertices, con-
nected by a horizontal edge shared by the green and blue cells. Thus, two
cells that were neighbours no longer are and two cells that were not neigh-
bours now share an edge. Furthermore, an edge that was vertical (orange)
collapsed into a point (red), shared by all four cells, and then flipped into a
horizontal edge (yellow).

Figure 2.2: T1 topological transition, necessary for tissue rearrangement.

Since this is the only way cells can move around in confluent tissue, T1
transitions are a necessary condition for and a measure of cell motility and
tissue fluidity.

2.6 Oscillations in Cell Size and Shape

Oscillations in cell area are driven by transient actin-myosin accumulations
in the cell cortex, which change the large-scale actin and myosin structures of
the cell [4]. Cell shape oscillations also arise due to rearrangements of actin
and myosin, as well as microtubules, caused by changes in substrate adhesion
or by biochemical cues [35]. Both types of oscillations can be autonomous [3],
that is, a consequence of single-cell processes and not collective properties.

Numerous studies have addressed tissue-level oscillations, caused by changes
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at the tissue boundary [36] or shear deformations [37], but work on single cell
oscillations in confluent tissue has been scarce and focused solely on aspects
such as fluctuations of junction tension [29], and not on oscillations of size
and shape, which are the focus of this thesis.
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Chapter 3

Methods

This chapter gives details on two models introduced in section 2.3: the ver-
tex model and the Voronoi model. The vertex model is introduced first as
it is mathematically simpler but very similar to the Voronoi model. Then
the Voronoi model is briefly described, before an explanation of the Voronoi
digram and its dual tessellation, the Delaunay triangulation, which are a nec-
essary ingredient to derive the equations of motion. The rest of the chapter
deals with practical aspects of the implementation: how the Voronoi diagram
is calculated, how the simulation can be sped up with the flip algorithm and
how activity can be incorporated in the motion of the cells.

3.1 Vertex Model

The vertex model treats a confluent tissue as a convex polygonal partitioning
of space, where the degrees of freedom are the vertices of each polygon. The
energy of a system of N polygons is defined as

E =
N∑
i=1

Ki

2
(Ai − A0

i )
2 +

N∑
i=0

Γi
2

(Pi − P 0
i )2, (3.1)
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where Ai and Pi are the area and perimeter of cell i, and A0
i and P 0

i are
constants denoting the target area and target perimeter of that cell. Finally,
Ki and Γi are elastic moduli quantifying how hard it is to modify the area
and the perimeter of cell i [20].

The first term of Eq. 3.1 represents cell volume incompressibility and the
resistance of the epithelial monolayer to height fluctuations. The second
term stands for contractility of the actin-myosin cortex and cell membrane
tension due to cell-cell adhesion and cortical tension [5]. Cell membrane
tension is linear in perimeter and incorporated in the above expression by
assuming that the tension modulus at each junction is equal for all junctions
belonging to the same cell [30].

The area and perimeter of each polygon are calculated from the positions of
its vertices:

Ai =
1

2

∑
µ∈Ωi

(~rµ × ~rµ+1) · N̂i, Pi =
∑
µ∈Ωi

|~rµ+1 − ~rµ|, (3.2)

with N̂i = êz a unit-length vector perpendicular to the surface of the polygon.
The sums are counter-clockwise over all vertices µ that belong to polygon
Ωi, closing the loops with µ+ 1 ≡ 1 for µ = NΩi .

Figure 3.1: Polygon Ωi with centre ~ri, in red, and vertices ~rµ, in yellow.

16



3.1.1 Shape Index

A dimensionless ratio can be defined from the target area and the target
perimeter of the cells:

f 0
i =

P 0
i√
A0
i

. (3.3)

This ratio describes shape. The shape ratios of some geometric figures are
presented in Table 3.1. Elongated polygons, like an ellipse with large aspect
ratio (for example, a/b = 3), have higher shape ratios.

Polygon A P f
circle πr2 2πr ≈ 3.54
pentagon 5`2/4 tan(π/5) 5` ≈ 3.81

ellipse, a = 2b 2πb2 ≈
√

10πb ≈ 3.96
square `2 4` 4

ellipse, a = 3b 3πb2 ≈
√

20πb ≈ 4.58

Table 3.1: Area, perimeter and shape index f of some geometric figures. The
perimeter of an ellipse was approximated by P ≈ 2π

√
(a2 + b2)/2, with a

and b the major and minor axes.

The jamming transition found in Ref. [5] occurs when the shape index in-
creases and cells become elongated. Specifically, the transition is observed
at f 0 ≈ 3.81. In fact, an increase in f 0 corresponds to cortical tension dom-
inating over cell-cell adhesion, which facilitates fluidisation of the tissue [1].
The value of f 0 for which the transition occurs decreases when cells are self-
propelled, or active (see section 3.2.5).

3.1.2 Equations of Motion

In the overdamped limit, where inertial effects are insignificant and the sec-
ond derivative of the position can be ignored, the equation of motion of each
vertex is

γ
d~rµ
dt

= ~Fµ, (3.4)
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with ~rµ the position of vertex µ, ~Fµ the force on that vertex and γ a friction
coefficient. Forces are obtained from the energy as

~Fµ = −~∇~rµE = −
N∑
i=1

[
Ki(Ai − A0

i )~∇~rµAi + Γi(Pi − P 0
i )~∇~rµPi

]
, (3.5)

where ~∇~rµ is the gradient with respect to the coordinates of vertex µ. The
gradients of the area and perimeter are obtained using Eq. 3.2:

~∇~rµAi =
1

2
(~rµ+1 − ~rµ−1)× N̂i (3.6)

~∇~rµPi =
~rµ − ~rµ−1

|~rµ − ~rµ−1|
− ~rµ+1 − ~rµ
|~rµ+1 − ~rµ|

. (3.7)

Thus, the expression of the force on each vertex is

~Fµ =−
N∑
i=1

Ki

2
(Ai − A0

i ) (~rµ+1 − ~rµ−1)× N̂i (3.8)

−
N∑
i=1

Γi(Pi − P 0
i )

(
~rµ − ~rµ−1

|~rµ − ~rµ−1|
− ~rµ+1 − ~rµ
|~rµ+1 − ~rµ|

)
,

where the sums over polygons i are effectively only over the polygons that
share vertex µ. Vertex µ − 1 is the vertex before µ in cell i, in counter-
clockwise order, and vertex µ+ 1 is the one that comes after vertex µ.
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(a) Vertex model. (b) Voronoi model.

Figure 3.2: Flow chart of the vertex and Voronoi model algorithms.

Calculating the dynamics of cells in the vertex model corresponds to follow-
ing the steps in Fig. 3.2a. An initial tessellation of polygons is generated,
defining the initial coordinates of the vertices, ~rµ. The initial velocity of
each vertex is also set. Then, at each time step, the force on each vertex is
calculated according to Eq. 3.8. Using the newly calculated forces and the
velocities of each vertex, new positions ~rµ are calculated by integrating the
equations of motion, Eq. 3.4. T1 topological transitions take place when the
length of an edge falls below a threshold. Implementing a T1 transition is
similar to performing a flip in the Voronoi model, which will be explained in
section 3.2.4.

3.2 Voronoi Model

The Voronoi model is similar to the vertex model, except the degrees of
freedom are the cell centres and not their vertices. Furthermore, the polygons
that represent cells are Voronoi polygons, each generated by the cell centre
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it represents. The energy expression is precisely the same (Eq. 3.1) although
now the expression of the force is different, because the gradient must be with
respect to the coordinates of the central sites, ~ri. The equation of motion of
each site i is:

γ
d~ri
dt

= −∇~riE. (3.9)

Since cell areas and perimeters are calculated using the coordinates of the
vertices ~rµ, a relation between ~rµ and ~ri is needed to calculate the projection
of the force on the central sites. This relation comes from the properties of
the Voronoi diagram and its dual, the Delaunay triangulation, explained in
the next section.

The general algorithm of the Voronoi model is shown in Fig. 3.2b. The sim-
ulation starts by setting the initial coordinates of each cell centre, as well
as their velocities. These positions are used as seed points for the Voronoi
diagram. Calculating the Voronoi cell associated with each point determines
the positions of the vertices. The vertex model can be initialised in exactly
the same way, except then the positions of the cell centres are discarded and
only the positions of the vertices are used for all subsequent calculations.
The next step in the Voronoi model is to calculate the force on each cell
centre. This is a lengthier calculation than in the vertex model, because, as
mentioned, the force on the vertices must be projected onto the cell centres.
Then, using an integration scheme, new positions for the centres are calcu-
lated. From here, the new positions of the vertices are found by updating
the Voronoi diagram according to the new positions of the seed points.

3.2.1 Voronoi Diagram and Delaunay Triangulation

As mentioned in section 2.3, a Voronoi diagram of a set of points is defined as
the partition of space into domains whose points are closer to the seed point of
that domain than to any other seed in the set. The dual graph of the Voronoi
diagram for the same set of seed points is the Delaunay triangulation, defined
as the partition of space into triangles, whose vertices are the seed points,
such that no seed point is inside the circumcircle of any triangle.

The circumcentres of the Delaunay triangles are the vertices of the Voronoi
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cells. Thus, every site (cell center) is associated with a Voronoi polygon
and every vertex corresponds to a Delaunay triangle. Furthermore, if two
Delaunay triangles share an edge, their circumcentres are connected with an
edge in the Voronoi tessellation.

Figure 3.3: Triangle with vertices i, j and k, in red, and circumcentre µ, in
yellow.

The position of the circumcentre, ~rµ, is related to the positions of the vertices
of a triangle, ~ri, ~rj and ~rk (see Fig. 3.3), by

~rµ =
λi
Λ
~ri +

λj
Λ
~rj +

λk
Λ
~rk, (3.10)

where Λ = λi + λj + λk and λi, λj and λk are the barycentric coordinates,
given by

λi = l2i (l
2
j +l2k−l2i ), λj = l2j (l

2
k+l2i −l2j ), λk = l2k(l

2
i +l2j−l2k), (3.11)

with
li = |~rj − ~rk|, lj = |~rk − ~ri|, lk = |~ri − ~rj|. (3.12)
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3.2.2 Force Projection

Calculating the gradient in Eq. 3.9 involves applying the chain rule to the
gradients of the area and of the perimeter:

[∇~riAi]k =
∑
µ∈Ωi

[∇~rµAi]m
[
∂~rµ
∂~ri

]
mk

, [∇~riPi]k =
∑
µ∈Ωi

[∇~rµPi]m
[
∂~rµ
∂~ri

]
mk

.

(3.13)

Therefore, one needs to calculate the Jacobian ∂~rµ
∂~ri

for each vertex, which is a
novelty of the Voronoi model. The gradients ∇~rµAi and ∇~rµPi were already
present in the vertex model (Eqs. 3.6 and 3.7).

Using the expression for ~rµ in terms of the barycentric coordinates (Eq. 3.11),
the Jacobian is:

dxµ
dxp

=
1

Λ

[
λp + xi

dλi
dxp

+ xj
dλj
dxp

+ xk
dλk
dxp

]
− xiλi + xjλj + xkλk

Λ2

dΛ

dxp
dxµ
dyp

=
1

Λ

[
xi
dλi
dyp

+ xj
dλj
dyp

+ xk
dλk
dyp

]
− xiλi + xjλj + xkλk

Λ2

dΛ

dyp
dyµ
dxp

=
1

Λ

[
yi
dλi
dxp

+ yj
dλj
dxp

+ yk
dλk
dxp

]
− yiλi + yjλj + ykλk

Λ2

dΛ

dxp
dyµ
dyp

=
1

Λ

[
λp + yi

dλi
dyp

+ yj
dλj
dyp

+ yk
dλk
dyp

]
− yiλi + yjλj + ykλk

Λ2

dΛ

dyp
,

where p = i, j, k, according to Fig. 3.3. The 24 derivatives of λp and Λ
with respect to xp and yp can be calculated straightforwardly from Eqs. 3.11
and 3.12. Details of these calculations can be found in [30].
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The equation of motion for each cell is then

γ
d~ri
dt

= −
N∑
k=1

Kk

2
(Ak − A0

k)
∑
µ∈Ωk

[
(~rµ+1 − ~rµ−1)× N̂k

]T [∂~rµ
∂~ri

]
(3.14)

−
N∑
k=1

Γk(Pk − P 0
k )
∑
µ∈Ωk

(
~rµ − ~rµ−1

|~rµ − ~rµ−1|
− ~rµ+1 − ~rµ
|~rµ+1 − ~rµ|

)T [
∂~rµ
∂~ri

]
.

In practice, this means that, to calculate the total force on cell i coming
from the area, one must calculate the factor Ki

2
(Ai − A0

i ) and multiply it

by the sum, over all vertices of cell i,
∑

ν∈Ωi
[(~rν+1 − ~rν−1) × N̂i]

T
[
∂~rν
∂~ri

]
.

Then, for each immediate neighbour j of cell i, the factor
Kj
2

(Aj − A0
j) is

calculated and multiplied with the sum, over vertices of j that also belong to

i,
∑

ν∈Ωi∩Ωj
[(~rν+1 − ~rν−1) × N̂j]

T
[
∂~rν
∂~ri

]
. An analogous procedure is followed

to calculate the perimeter contribution [30].

3.2.3 Implementation of a Voronoi Diagram

The Voronoi diagram of a set of points in two dimensions can be obtained
with Fortune’s algorithm, which sweeps the plane in the vertical or horizontal
direction and draws the edges of the Voronoi cells as it goes through the sites
by calculating the points that are equidistant to neighbouring sites. A thor-
ough explanation can be found in [38]. For this project, an implementation
of Fortune’s algorithm in C, written by Mathias Westerdahl, was used [39].

After initialising the Voronoi diagram, linked lists were built to account for
the connectivity between cell centres and vertices. Thus, for each cell cen-
tre there is a linked list of its Voronoi vertices and a linked list of the cell
centres that are its direct neighbours, that is, that share a vertex with it.
In turn, for every Voronoi vertex there is a linked list of the vertices of its
Delaunay triangle and a linked list of its neighbouring triangles. The list of
Voronoi vertices is used to calculate areas, perimeters and forces and the list
of Delaunay vertices is used to calculate the barycentric coordinates. The
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list of Voronoi neighbours is used to calculate the force, for which only adja-
cent cells contribute, and the list of Delaunay neighbours is used in the flip
algorithm, explained below.

3.2.4 Flip Algorithm

At each iteration of the integration of the Voronoi system, the last step is
to rebuild the Voronoi diagram, that is, to update the vertices’ positions
from the newly calculated cell centre positions. This can be done in two
ways. The first approach [5] recalculates the Voronoi diagram from scratch,
using as seeds the new positions of the sites. The second approach [30] is
the flip algorithm, which sweeps the diagram and looks for places where
an edge of the Delaunay triangulation needs to be flipped in order to keep
the tessellation strictly Delaunay (and its dual strictly Voronoi). In this
approach, once the diagrams are updated, the positions of the vertices are
calculated using the barycentric coordinates, Eq. 3.10. Therefore, the flow
chart of the Voronoi model with the flip algorithm is the one in Fig. 3.5.

Figure 3.4: Equiangulation procedure: for every pair of adjacent Delaunay
triangles, if α + β > π, the edge of the triangles is flipped.

The flip algorithm computes, for every edge of the triangulation, the sum of
the angles opposite to it. If the sum is larger than π, the edge is flipped,
connecting the two sites that were previously opposed — see Fig. 3.4. This

24



corresponds to the T1 transition described in section 2.5. The procedure is
repeated until there are no more edges to flip, at which point the triangu-
lation is Delaunay, and its dual tessellation is Voronoi. This method, called
equiangulation, carries a lower computational cost than calculating a full
Voronoi diagram at each time step.

Figure 3.5: Flow chart of the Voronoi model with the flip algorithm.

Flipping an edge of the triangulation corresponds to updating most of the
structures in the code. The exchange of Voronoi neighbours means that cells
1 and 3 (see Fig. 3.6) leave each other’s neighbour lists and cells 2 and 4
become neighbours. Furthermore, there is loss and gain of Voronoi sites, i.e.,
the lists of vertices of cells 2 and 4 gain one element and those of 1 and 3
lose one. There is also a rearrangement of Delaunay neighbour lists. Finally,
the list that keeps track of Delaunay edges needs to be updated so that the
previous edge is erased and the new, flipped edge is created.
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Figure 3.6: Voronoi tesselation (in dark gray) and Delaunay triangulation
(in white) during a T1 transition. Marked in red is the edge that flips during
the transition.

3.2.5 Activity

Self-propulsion can be incorporated in the Voronoi model to represent cell
orientation. In the simplest case, orientation is treated as a unit vector that
undergoes random rotational diffusion. The equation of motion of each cell
is modified by activity thus:

d~ri
dt

=
1

γ
~Fi + von̂i, (3.15)

where n̂i = (cos θi, sin θi) is the unit vector representing each cell’s polar-
ity and v0 is the constant magnitude of the self-propulsion force [5]. The
stochastic evolution of the polarity angle θi is described by

dθi
dt

= ηi(t), (3.16)

with ηi(t) a white-noise process with zero mean and variance 2Dr (see details
in section 4.1), and Dr the rotational noise strength, which determines the
persistence of n̂i. Activity cannot be easily incorporated in the vertex model
because the degrees of freedom there are the vertices.
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Chapter 4

Toy Models

4.1 Types of Dynamics

The evolution of the Voronoi model relies on a molecular dynamics (MD)
algorithm, that is, an algorithm that explicitly integrates the equations of
motion of all constituents of a system, yielding trajectories and thermody-
namical quantities that are physically meaningful. The Voronoi model also
incorporates activity, or self-propulsion, of the degrees of freedom. This
means that energy enters the system through intrinsic velocity of the cells,
and thus has to be dissipated. Furthermore, it is assumed that self-propulsion
undergoes random reorientation, for which stochastic differential equations
are needed.

In order to arrive at dissipative translational dynamics and stochastic rota-
tional dynamics, several modifications need to be made to the initial energy-
conserving implementation of molecular dynamics. The reason the NVE en-
semble serves as starting point is that it is easiest to correct, since the energy
is straightforward to calculate and needs to be strictly conserved through-
out the simulation. To test the first integration scheme and the subsequent
modifications to the dynamics, a system simpler than the Voronoi model was
used, namely, a system of disk-like particles interacting via a two-particle

27



potential. This potential was then used as a toy model for cellular tissue,
discussed in sections 4.4.3 – 4.4.4.

After achieving an energy-conserving algorithm, a thermostat was added to
obtain the equation of state of the system and confirm the validity of the
integration. The thermostat ensures the temperature of the system is con-
stant by introducing corrections to the velocities of the particles and thus
forcing the kinetic energy to remain equal to a pre-set value. The Ander-
son thermostat does this by coupling the system to a heat bath through
stochastic collisions between randomly selected particles and the heat bath,
satisfying Maxwell-Boltzmann statistics [40]. Another possibility is the Nosé-
Hoover thermostat, which is deterministic and uses an extended Lagrangian,
with artificial coordinates and velocities, to introduce a thermodynamic fric-
tion coefficient. This coefficient measures the difference between the kinetic
energy of the system and the kinetic energy associated with the desired tem-
perature and corrects the force on each particle accordingly. At constant
temperature, the pressure of the system is measured at different densities,
yielding a curve P (ρ).

When particles are suspended in a fluid, their collisions with the fast-moving
molecules in the fluid give rise to Brownian motion, characterised by random
fluctuations in a particle’s trajectory. In the overdamped limit, where inertia
is not relevant, and in a dissipative, viscous medium, the equation of motion
for Brownian dynamics is

γt
d~ri
dt

= ~Fi + ~ξi, (4.1)

with γt the friction coefficient for translation, ~Fi the interaction force on
particle i, and ξi a white-noise process that models the random fluctuations
caused by collisions with the suspending particles. This process has, for each
dimension (x and y), mean 0 and variance 2Dtγ

2
t :

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dtγ
2
t δ(t− t′)δij,

where Dt is the translational diffusion coefficient. The translational diffusion
coefficient is related to the translational friction coefficient via the temper-
ature T : Dt = kBT/γt, where kB is the Boltzmann constant. The mean
displacement of an isolated Brownian particle is 0 since, from the solution of
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Eq. 4.1, with ~Fi = ~0, we have:

〈~ri(t)〉 =

〈
~ri(0) +

1

γt

∫ t

0

~ξi(t
′)dt′

〉
=

1

γt

∫ t

0

〈
~ξi(t

′)
〉
dt′ = 0.

The mean squared displacement, however, is non-zero. For a two-dimensional
system, it is:

〈~ri(t)~ri(t)〉 =
2~ri(0)

γt

∫ t

0

〈
~ξi(t

′)
〉
dt′ +

1

γ2
t

∫ t

0

∫ t′

0

〈
~ξi(t

′′)~ξi(t
′′′)
〉
dt′′dt′′′

=
1

γ2
t

∫ t

0

∫ t′

0

[〈ξxi (t′′)ξxi (t′′′)〉+ 〈ξyi (t′′)ξyi (t′′′)〉] dt′′dt′′′

=
2

γ2
t

∫ t

0

∫ t′

0

2Dtγ
2
t δ(t

′′ − t′′′)dt′′dt′′′ = 4Dt

∫ t

0

dt′

= 4Dtt (4.2)

Thus, the mean squared displacement of the particles in a diffusive system
is linear in time and the diffusion coefficient can be obtained from a linear
regression.

When Brownian particles are active, that is, when they have a self-propulsion
force with constant magnitude and whose direction diffuses thermally, the
translational equation of motion becomes:

d~ri
dt

=
1

γt

(
~Fi + ~ξi

)
+ v0n̂i,

where v0 is the constant magnitude of the activity and n̂i is the direction
of each particle’s self-propulsion. The self-propulsion n̂i = (cos θ, sin θ) per-
forms a rotational random walk in the plane:

dθi
dt

= ηi(t), (4.3)

where ηi is the rotational white-noise process, with moments:

〈ηi(t)〉 = 0, 〈ηi(t)ηj(t′)〉 = 2Drδ(t− t′)δij, (4.4)

where Dr is the rotational diffusion coefficient, related to the temperature
through Dr = kBT/γr, with γr the rotational friction coefficient.
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The mean squared displacement of an isolated active Brownian particle can
be calculated by multiplying Eq. 4.1 (with ~Fi = ~0) by ~ri(t), taking the
ensemble average and then integrating over time:〈

~r
d~r

dt

〉
=

〈
1

2

d (~r 2)

dt

〉
=

1

2

d

dt

〈
~r 2
〉
⇒
〈
~r 2(t)

〉
= 2

∫ t

0

〈
~r(t′)

d~r(t′)

dt′

〉
dt′.

The solution of Eq. 4.1 is ~ri(t) = ~ri(0) + 1
γt

∫ t
0

(
~ξi(t

′) + v0n̂i(t
′)
)
dt′. We also

have that 〈n̂i(t) · n̂i(t′)〉 = exp (−2Dr(t− t′)) (see derivation in Ref. [41]) and
〈ξi(t)ni(t)〉 = 0, that is, translational and rotational noise are uncorrelated.
The calculation goes as follows:

1

2

d

dt

〈
~r 2
i

〉
=

1

γt

∫ t

0

〈
~ξi(t) · ~ξi(t′)

〉
dt′ + v2

0

∫ t

0

〈n̂i(t) · n̂i(t′)〉 dt′

=
2

γt
2Dtγ

2
t

∫ t

0

δ(t− t′)dt′ + v2
0

∫ t

0

e−2Dr(t−t′)dt′

= 2Dt + v2
0e
−2Drt

∫ t

0

e2Drt′dt′

= 2Dt +
v2

0

2Dr

(
1− e−2Drt

)
,

where we used the result
∫ t

0
δ(t − t′)dt′ = 1

2
. Integrating over time to get

〈~r 2
i (t)〉 leads to:〈
~r 2
i (t)

〉
= 4Dtt+

v2
0

Dr

∫ t

0

(
1− e−2Drt′

)
dt′ = 4Dtt+

v2
0τ

2
r

2

(
2t

τr
+ e−2t/τr − 1

)
,

where the rotational diffusion time τr = 1/Dr was introduced [42]. The term
in parenthesis has two limiting cases, depending on whether t� τr or t� τr:

2t

τr
+ e−2t/τr − 1 =

{
2t
τr

t� τr
2t
τr

+
(

1− 2
τr
t+ 4

τ2r
t2
)
− 1 t� τr

=

{
2t
τr

t� τr
4t2

τ2r
t� τr

.

The mean squared displacement thus becomes:

〈
~r 2
i (t)

〉
=

{
4Dtt+

v20
Dr
t t� τr

4Dtt+ 2v2
0t

2 t� τr
. (4.5)
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It is linear in time for long time scales, the diffusive regime, and quadratic for
short times scales, the ballistic regime. From Eq. 4.5 it is possible to extract
the effective translational diffusion coefficient:

Deff = Dt +
v2

0

2Dr

. (4.6)

When particles have macroscopic size, they are no longer subject to thermal
Brownian motion and form conglomerates of granular matter. The dynamics
is dissipative:

γt
d~ri
dt

= ~Fi.

This is the relevant regime for biological cells (see Eqs. 3.4 and 3.9). However,
as mentioned in section 3.2.5, when activity is introduced the equation of
translational motion is changed to

d~ri
dt

=
1

γt
~Fi + v0n̂i.

If the dynamics of n̂i is assumed to be diffusive, that is, if cell orientation
is assumed to be perturbed randomly by cellular processes and the environ-
ment, then cellular rotational dynamics is identical to that of active Brownian
particles, and thus described by Eqs. 4.3 and 4.4.

4.1.1 Integration Schemes

Microcanonical Ensemble (NVE)

To realise an energy-conserving algorithm, a symplectic integration scheme,
that is, an integration scheme for Hamiltonian systems, was chosen. The
Velocity-Verlet scheme updates both the positions and the velocities of each
particle and is a two-step algorithm because it calculates the new velocities
both before and after updating the forces between particles.

~x(t+ ∆t) = ~x(t) + ~v(t)∆t+
~F (t)

2
∆t2 (4.7)

~v(t+ ∆t) = ~v(t) +
~F (t) + ~F (t+ ∆t)

2
∆t2, (4.8)
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where the mass of the particles was set to 1.

Canonical Ensemble (NVT)

As mentioned in the previous section, one way to make an NVE integration
NVT is to add a stochastic mechanism like the Anderson thermostat, whereby
the particles collide with a heat bath and their velocities become thermalised.
These collisions occur with frequency ν. As such, the probability that a
particle is selected in a time step ∆t to undergo a collision is ν∆t. When
a particle is selected [40], its velocity is updated to a value drawn from the
Maxwell-Boltzmann distribution associated to the desired temperature:

if Xi(t) < ν∆t : ~vi(t) =
√
kBT~Γi(t), (4.9)

with Xi(t) a random number between 0 and 1, drawn from a uniform distri-
bution, and Γ(t) a random number drawn from a Gaussian distribution.

The deterministic Nosé-Hoover thermostat introduces a friction coefficient ξ
that imposes the correct kinetic energy by subtracting a frictional drag in
the equation of motion [40]. The effective force on each particle i becomes
~F (t) − ξ(t)~vi(t), with ~Fi the force calculated from the interaction potential
and ~vi(t) the velocity of particle i. The friction coefficient is updated through:

ξ(t+ ∆t) = ξ(t) +
1

Q

(
N∑
i

v2
i (t)− dNT

)
, (4.10)

where d is the number of degrees of freedom and Q is a parameter from the
extended Lagrangian and is usually set to 1.

Brownian Dynamics

To integrate the equations of motion of Brownian particles, a scheme ap-
propriate to stochastic differential equations must be used. The Euler-Maru
algorithm updates the positions of active particles at each time step according

32



to:

~x(t+ ∆t) = ~x(t) +
√

2Dt
~Γ(t)
√

∆t+
~F (t)

γt
∆t+ v0 n̂(t)∆t,

where again Γ(t) is a Gaussian random number. The orientation of each
particle is updated as:

θ(t+ ∆t) = θ(t) +
√

2Dr Γ(t)
√

∆t,

from which n̂ is calculated: n̂ = (cos θ, sin θ). According to Stokes’ law, the
friction coefficient on a particle of radius a moving in a fluid of viscosity
η is γt = 6πηa. For rotational motion, the friction coefficient is given by1

γr = 8πηa3. For particles of diameter 1, we have that γt/γr = 3 and thus,
recalling that D = kBT/γ, Dr = 3Dt. The two equations become:

~x(t+ ∆t) = ~x(t) +

√
2kBT

γt
~Γ(t)
√

∆t+
~F (t)

γt
∆t+ v0 n̂(t)∆t (4.11)

θ(t+ ∆t) = θ(t) +

√
6kBT

γt
Γ(t)
√

∆t. (4.12)

4.2 Neighbour Lists

In simulations with short ranged interactions, there is no need to calculate
the forces between all pairs of particles, since particles that are at distances
larger than the range of the potential will not feel each other’s presence.
These redundant pairs of interactions, when taken into account, significantly
slow down the simulation, especially when the number of particles is high.
Neighbour lists are a tool used to speed up the computation by performing
a calculation that scales faster than N2. In molecular dynamics simulations,
they typically consist of a combination of cell lists and Verlet lists [40].

Implementing a cell list corresponds to dividing the simulation box in smaller
boxes, or cells, of size rc slightly larger than the cutoff radius of the potential,
and then assigning particles to each cell according to their position. This is

1Other choices of γr can be made.
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a calculation of order N . Using only cell lists, calculating the force on one
particle would entail calculating its interaction with all the other particles
in the same cell and in the neighbouring cells — 8 for a two-dimensional
system.

The Verlet list of a particle is a list of all the particles whose distance to
the original particle is smaller than the Verlet radius rv, chosen to be larger
than the cutoff radius. Calculating the force on one particle thus consists of
calculating its interactions with all the particles in its Verlet sphere (or disk,
in two dimensions). This a calculation of order N , whereas building a Verlet
list is an operation of order N2.

(a) Cell list. (b) Verlet list.

Figure 4.1: Schematics of the construction of cell and Verlet lists, based on
[40].

Cell and Verlet lists are combined by employing cell lists to build Verlet lists
and Verlet lists to calculate interactions. This way, the construction of Verlet
lists is optimised, by taking into account only 9 cells instead of the whole
box. Moreover, fewer redundant interactions are calculated, by looking only
at a small circular region in space instead of 9 cells or, worse, the whole box.
Using this combination, CPU time scales with N [40].

In this project, both lists were implemented using linked lists in C, one for
each particle and one for each cell. The lists are maintained by updating
them from scratch as soon as one particle is displaced more than rv − rc.
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4.3 Hertz Potential

The Hertz potential describes the change in elastic energy of two deformable
objects when subjected to axial compression [43]. This soft, repulsive poten-
tial has the form

V (r) =

{
ε
(
1− r

σ

)5/2
r < σ

0 r ≥ σ,
(4.13)

where ε is the maximum repulsion and σ is the range of the interaction.

This potential describes deformations and overlaps of round particles. As
such, at high densities, Hertzian disks mimic the appearance of cells in a
confluent tissue. Thus, the MD implementation of the Hertz potential was
used as a toy model for the study of oscillations in the size of particles. To
that end, a generalized form of the two-particle potential was used, taking
into account that the particles interacting can have different sizes and radii
of influence:

V (r) =

{
ε
(

1− 2r
σ1+σ2

)5/2

r < σ1+σ2
2

0 r ≥ σ1+σ2
2

,
(4.14)

with σ1 the radius of influence of particle 1 and σ2 the radius of influence of
particle 2.

In the system of Hertzian disks, only the size, and not the shape, of the par-
ticles can be changed, since the potential is spherically symmetric. Accord-
ingly, the interaction length scale σi of each particle was varied sinusoidally:
σi(t) = σ0 + ∆σi sin(ωit + φi). The reference value σ0 is the same for all
particles but the amplitude ∆σi, frequency ωi and phase φi can be different
for each particle.

4.4 Results

The equation of state of Hertzian particles in two dimensions is presented in
section 4.4.1, together with pictures representative of the different phases en-
countered upon varying the area fraction, which is a non-dimensional density
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and which will hereafter be referred to merely as density. For each density,
324 particles and 106 time steps were simulated, using the integration scheme
in Eqs. 4.7 and 4.8, and the Nosé-Hoover thermostat, Eq. 4.10, with time
step ∆t = 10−4. Temperature was set to kBT = 1 and the strength of the
potential to ε = 1000. Particles have diameter σ = 1.

For simulations of active and/or oscillating Hertzian particles, Brownian dy-
namics was used, according to the integration scheme in Eqs. 4.11 and 4.12.
The same number of particles, time step and temperature were used. The
potential strength was set to ε = 2000. The translational friction coefficient
was set to one, γt = 1. Thus, the imposed translational diffusion coefficient
is Dt = D0 = 1. For each system, 4 simulations of 4 · 105 time steps were
performed. The squared displacement of the particles was measured in each
run and then averaged over the 4 ensembles. The curve of the mean squared
displacement as a function of time was fitted to a linear function, from which
the diffusion coefficient was extracted according to Eq. 4.2. All the simula-
tions in this chapter were performed using periodic boundary conditions.

4.4.1 Passive Hertzian Particles

Simulations of Hertzian particles at different packing fractions and measure-
ments of the virial pressure lead to the equation of state in Fig. 4.2. The
change in the curve P (ρ) at around ρ ≈ 1.0 corresponds to a phase transition
between a fluid phase and a triangular crystal, as is shown in Fig. 4.3.
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Figure 4.2: Pressure P as a function of the packing fraction ρ of Hertzian
disks in a two-dimensional box, with βε = 1000.

The final configurations of simulations of Hertzian particles at different den-
sities are presented in Fig. 4.3. The Fast Fourier Transform (FFT) of each
phase, computed by the visualisation software of Michiel Hermes [44], is also
shown. Fluid, hexagonal and squared phases are observed, as well as a do-
decagonal quasicrystal phase, for which particles are arranged in pentagons
and whose FFT contains 12 peaks. The only phase reported in Ref. [43] that
was not observed is the stretched hexagonal phase, which would correspond
to non-regular hexagons in reciprocal space. The narrowness of the range of
densities for which this phase exists explains the difficulty in observing it.
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Figure 4.3: Physical configurations and Fast Fourier Transforms of Hertzian
disks at different packing fractions ρ for effective potential strength ε/kBT =
1000. The numbers show the values of density, read from [43], for which
phase transitions occur at this temperature. F – fluid, H – hexagonal, Q –
square, D – dodecagonal quasicrystal, S – stretched hexagonal.

4.4.2 Active Hertzian Particles

Sample plots of mean squared displacement, averaged over all particles, as
a function of time are presented in Fig. 4.4. Each plot is the result of 4
simulations of a system at density ρ = 0.1. The plot in Fig. 4.4a shows that
the mean squared displacement of passive particles (v0 = 0) is linear in time,
even for short time scales, in accordance with Eq. 4.2. The plot in Fig. 4.4b
shows the two regimes of active partices (v0 = 1000) calculated in Eq. 4.5:
the quadratic, ballistic regime for short time scales and the linear, diffusive
regime for long time scales. For the remainder of this chapter, we will focus
on the long-term behaviour of 〈~r 2(t)〉, that is linear in time, from which the
diffusion coefficient is calculated using a linear regression.
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Figure 4.4: Log plot of mean squared displacement as a function of time for
a passive and an active systems at density ρ = 0.1. Only the first 105 steps
are represented.

The measured diffusion coefficients for Hertzian particles with different lev-
els of activity are presented in Fig. 4.5, where they are compared with the
analytical result for isolated active Brownian particles, Deff = Dt + v2

0/2Dr

(Eq. 4.6). It is clear that the diffusion coefficient increases with activity
and that this increase is faster for the low density system. This is expected,
since activity enhances motion, increasing the squared displacement, and
low-density systems have more available space for particles to move.

Furthermore, the graph shows that low density simulations reproduce the
analytical result, whereas high density simulations only do so for high values
of activity, namely v0 = 104. This is due to the fact that the analytical result
is valid only for isolated particles, for which ~F = 0. At very low densities,
such as ρ = 0.1, this is indeed the case, since Hertzian particles barely
interact. However, at very high densities, such as ρ = 1.8, interactions are
no longer insignificant and the measured diffusion coefficient does not agree
with the analytical prediction of Eq. 4.6. When the activity is sufficiently
high, though, the term proportional to v2

0 dominates over the term due to
interactions and the diffusion coefficient approaches the low-density value.
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Figure 4.5: Effective diffusion coefficient for Hertzian particles with different
levels of activity v0 at high and low densities, compared with analytical result
Deff = Dt + v2

0/2Dr. Error bars are comparable in size to the data points.

4.4.3 Hertzian Particles Oscillating

Simulations were performed for 6 different types of oscillation of the diam-
eter of the particles, varying the amplitude ∆σ and the frequency f (see
section 4.3), at 3 different densities. All particles have the same amplitude
and frequency, while phases are sampled from a uniform distribution between
0 and 2π. The measured diffusion coefficients are shown in Fig. 4.6 and rep-
resentative configurations at each density, with and without oscillations, are
presented in Fig. 4.7.

For low densities (ρ = 0.2), it is visible that oscillations do not enhance
movement since the diffusion coefficient is not significantly changed by the
diameter variations. This happens because the amplitude of the oscillations
is negligible when compared to the interparticle distance, as can be seen in
a snapshot of the system in Fig. 4.7d.
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For density ρ = 1.0, the diffusion coefficient increases when the diameter
oscillates, and is higher for oscillations of larger amplitude. The fact that
disks without oscillations or with very small oscillations (∆σ = 0.1) have
nearly zero diffusion is a consequence of the system being crystallised in these
cases, as can be seen in Fig. 4.7b. This triangular crystal is in accordance
with the phases described in section 4.4.1, particularly Fig. 4.3. When the
amplitude of the oscillations is large enough, particles are able to leave their
caging positions and diffuse, leading to enhancement of motion.

For high density (ρ = 1.8), oscillations not only do not enhance movement,
but seem to hinder the particles, since the diffusion coefficients are lower for
all amplitudes. This may be due to the little available space for particles to
rearrange when they collide through expansions. One could expect that the
contractions would cancel out the effect of expansions but it seems that the
qualitative increase in density caused by expansions dominates. Although
this value of density would correspond to the triangular crystal phase, ac-
cording to Fig. 4.3, the system never crystallises, even without oscillations.
This is because, unlike in section 4.4.1, particles follow Brownian dynamics
instead of existing in an NVT ensemble. This suggests that the friction in
Brownian dynamics is much lower than that associated with a thermostat,
facilitating the existence of a high-density fluid. This effect is a consequence
of the softness of the potential and makes the high-density system resemble
more a confluent tissue.

Finally, comparison of the results at two values of frequency, f = 10 and
f = 50 (left and right columns in Fig. 4.6, respectively) shows that, in the
cases where oscillations affect the diffusion coefficient (ρ = 1.0 and ρ = 1.8),
the effect of higher frequencies is stronger. We can conclude that faster
oscillations of greater magnitude lead to greater enhancement of motion for
ρ = 1.0 and suppress diffusivity further in systems with ρ = 1.8.

41



 0.6

 0.65

 0.7

 0.75

 0.8

 0  0.1  0.2  0.3

D
/D
0

Δσ

(a) ρ = 0.2, f = 10.
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(d) ρ = 1.0, f = 50.
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(f) ρ = 1.8, f = 50.

Figure 4.6: Effective diffusion coefficient for Hertzian particles with different
amplitudes of oscillating diameter ∆σ and two frequencies of oscillation f ,
at densities ρ = 0.2, 1.0, 1.8, compared with result for passive non-oscillating
particles (∆σ = 0).
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(a) ρ = 0.2,∆σ = 0. (b) ρ = 1.0,∆σ = 0. (c) ρ = 1.8,∆σ = 0.

(d) ρ = 0.2,∆σ = 0.2. (e) ρ = 1.0,∆σ = 0.2. (f) ρ = 1.8,∆σ = 0.2.

Figure 4.7: Final configurations of the system at different densities, ρ =
0.2, 1.0, 1.8, without oscillations, ∆σ = 0.0, and with oscillations of ampli-
tude ∆σ = 0.2 and frequency f = 10.

4.4.4 Active Hertzian Particles Oscillating

The same types of oscillation of the previous section were simulated with
activity v0 = 10, to see if self-propulsion would have a non-linear effect when
combined with oscillations, leading to enhancement of motion in the cases
for which oscillations alone did not increase the diffusion coefficient, namely
ρ = 0.2 and ρ = 1.8. The results are presented in Fig. 4.8.
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(a) ρ = 0.2, f = 10.
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(c) ρ = 1.0, f = 10.
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(d) ρ = 1.0, f = 50.
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(e) ρ = 1.8, f = 10.
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(f) ρ = 1.8, f = 50.

Figure 4.8: Effective diffusion coefficient for active Hertzian particles (v0 =
10) with different amplitudes of oscillating diameter ∆σ and two frequencies
of oscillation f , at densities ρ = 0.2, 1.0, 1.8, compared with results for passive
non-oscillating particles. The diffusion coefficients of active and passive non-
oscillating particles are plotted as ∆σ = 0.
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The observed tendencies are roughly the same as those of the previous section:
oscillations do not affect diffusivity for density ρ = 0.2, they enhance motion
for ρ = 1.0 and they hinder motion for ρ = 1.8. The only difference is
that the measured diffusion coefficients are shifter upwards, due to the self-
propulsion. An exception to this is the cases where previously the diffusion
coefficient was nearly zero (∆σ = 0 and ∆σ = 0.1 at ρ = 1.0). Upon adding
self-propulsion these systems still have nearly zero diffusivity, meaning that
the level of activity is not enough to uncage the particles from the triangular
crystal positions.
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Chapter 5

Voronoi Model

Tests of different parts of the Voronoi implementation are presented in this
chapter. First, the Voronoi diagrams and associated Delaunay triangulations
of different types of cell configurations are presented and commented upon.
Next, Fortune’s algorithm is used to test calculation of the vertices positions
using barycentric coordinates and calculation of the Voronoi diagram using
the flip algorithm. Finally, a perturbed triangular lattice is used to test the
time evolution calculated by the Voronoi model.

5.1 Voronoi Diagram

The implementation of Fortune’s algorithm by Mathias Westerdahl [39] was
adapted for configurations of seed points with periodic boundary conditions.
Additionally, from the Voronoi diagram, the Delaunay triangulation was
built. These computations give the expected results for a triangular lattice
and for a random distribution of points, Fig. 5.1. To evaluate the accuracy
of this algorithm, the maximum difference between the positions of the ver-
tices thus calculated, ~ri,Westerdahl, and those calculated independently using
Mathematica, ~ri,Mathematica, was found:

error = max
i
|~ri,Westerdahl − ~ri,Mathematica| ∼ 10−7. (5.1)
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(a) Triangular lattice. (b) Random configuration.

Figure 5.1: Voronoi diagram, in black, and Delaunay triangulation, in blue,
of two different configurations of seed points, in black.

The Voronoi diagrams of squared and hexagonal lattices can also be com-
puted correctly, Fig. 5.2. However, these configurations are not useful for the
simulation since the Delaunay triangulation for such lattices is not well de-
fined and thus the flip algorithm cannot be used. The blue lines in Fig. 5.2 do
not form triangulations, they simply represent the portions of the Delaunay
triangulation that are not ambiguous. The Delaunay domains in Fig. 5.2a
are actually hexagons and those in Fig. 5.2b are squares. The missing lines
cannot be drawn because there are two ways of dividing each blue square in
Fig. 5.2b into two triangles while respecting the Delaunay rules. Likewise,
there are three ways of dividing each hexagon in Fig. 5.2a into three triangles.
This a limitation of the implementation of the Voronoi model used in this
project: if the tissue has even a small section with quadrangular or triangular
cells, the simulation with the flip algorithm will break down.
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(a) Hexagonal lattice. (b) Squared lattice.

Figure 5.2: Voronoi diagram, in black, and tentative Delaunay triangulation,
in blue, of two different configurations of seed points, in black.

Furthermore, all the vertices of a Voronoi cell are correctly associated with
the site that functions as the seed of that cell. The fact that connectivity is
correctly established is visible in Fig. 5.3, where gray lines connect Voronoi
sites to the vertices of their polygon.

Figure 5.3: Connectivity, represented by gray lines, between seed points, in
black, and the vertices, in red, of their Voronoi polygon, in black.
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5.2 Barycentric Coordinates

The calculation of the positions of Voronoi vertices using barycentric co-
ordinates (λi, λj, λk, Eq. 3.11), associated with the Delaunay triangulation,
differs from those calculated using Fortune’s algorithm by only ∼ 10−6, again
using the error as defined in Eq. 5.1. This attests that the barycentric coor-
dinates are well calculated in the code.

5.3 Flip Algorithm

Simulating the Voronoi model with recalculation of the diagram from scratch
at every time step yields the same results as using the flip algorithm, as can
be seen in Fig. 5.4. The connectivity is the same for both methods. As before,
numerical comparison of the positions of the vertices showed a difference of
order ∼ 10−6 between the two approaches.

Figure 5.4: Voronoi diagram and positions of the cell centres at 3 differ-
ent instants, calculated using the flip algorithm (in black, thick lines) and
Fortune’s algorithm (in blue, thin lines).
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5.4 Triangular Lattice with Displaced Row

To test the validity of the integration of the Voronoi equations of motion, a
triangular lattice of cell centres was first used, setting the target area and the
target perimeter of all cells to the average area and perimeter. This leads to
zero forces at every time step, as expected, since the lattice is perfect and all
cells have the average area and perimeter. To further test the dynamics, a
defect was introduced in the initial configuration by shifting one of the rows
upwards, as can be seen in Fig. 5.5.

Figure 5.5: Triangular lattice with the second row, from the bottom, displaced
vertically.

The system was studied in the absence of friction and without activity. The
dynamics was found to consist of oscillations of the displaced row up and
down. However, it was observed that the oscillations increase in size until
the system is disrupted. Analysing the total energy as a function of time,
Fig. 5.6, provides additional insights: the total energy oscillates from the
beginning until it diverges at t ≈ 16. The fact that the energy is not con-
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served means that something is wrong with the algorithm. Furthermore, the
energy divergence and the disruption of the system are a manifestation of a
significant instability.
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Figure 5.6: Total energy E as a function of time t for the system shown in
Fig. 5.5.

In an attempt to find the underlying problem, an implementation of the
vertex model was created (see section 3.1). The same initial configuration
was used and the corresponding energy plot can be seen in Fig. 5.7. Also in
this case the energy is not conserved. However, the system remains stable
for a longer period of time, only diverging at t ≈ 200. The noise-like spikes
in Fig. 5.7 are in fact the result of aliasing, that is, sampling the energy at
intervals that are incommensurate with the frequency of its oscillations.
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Figure 5.7: Total energy E as a function of time t for the system shown in
Fig. 5.5, using the vertex model instead of the Voronoi model.
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Chapter 6

Conclusion

Summarising, in this project two different models were implemented to study
epithelial tissue and the effect of cell oscillations on collective dynamics.

The Hertz toy model employed to describe cells as particles interacting via
a soft potential showed that oscillations in the size of the cells enhance mo-
tion in crystals by fluidising the system of previously caged cells. For lower
densities, oscillations have no effect on the diffusion of the particles due to
the significant interparticle distance and, for higher densities, which are more
representative of confluent tissues, size oscillations hinder the motion of the
particles.

At high density, Hertzian particles with dissipative dynamics form a fluid and
not a triangular crystal, which would be expected from the phase diagram.
This is due to the softness of the potential. This softness and the fact that the
potential is finite at the origin raise some difficulties in the interpretation of
the results, since a lot of factors such as friction and overlaps are at play. We
can say conclusively that, for high densities, size oscillations hinder motion.
However, several explanations are possible, from the unavailability of enough
empty space for rearrangements after collisions to the increased friction as-
sociated with overlaps. The comparison with the case where enhancement
is observed is further clouded by the fact that this enhancement occurs in a
crystal. The caging/uncaging process is probably more significantly associ-
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ated with crystal behaviour than to intrinsic features of oscillations. Further
studies into the influence of oscillations using other soft potentials that do
not have a phase transition near the relevant regimes could shed light on the
real influence of oscillations on diffusivity.

The Voronoi model was the second model implemented and several of its
features were successfully tested. Nevertheless, issues with the conservation
of energy halted the intended studies with this model. Namely, shape oscilla-
tions and their influence on the fluidisation of tissues could not be accurately
simulated. The underlying error in the Voronoi simulation may be a conse-
quence of different problems.

First, it is possible that there is a minor oversight in the code. However, this
was extensively checked and the fact that an implementation of the vertex
model, whose calculations are much simpler, still shows non-conservation of
energy suggests that a lapse is unlikely.

Another possible source of the error is the intrinsic limitations and stability
problems of the Voronoi and the vertex models. The choices of parameters,
namely the target areas and perimeters (or shape ratios) of the cells, can
lead to divergences. Specifically, if the target area and, to a lesser extent,
the target perimeter are chosen to be much larger or smaller than the aver-
age values, the system becomes overstressed or understressed, which can be
aggravated by the use of periodic boundary conditions. The choice of elastic
constants can also complicate matters further. Bi et al. [5] divide the area
elastic constant by the perimeter elastic constant to create a non-dimensional
parameter. However, this creates a problem by ruling out the possibility of
ignoring the perimeter term in the equations of motion.

Therefore, although the implementation of the Voronoi model works for a
number of features, further insights into the stability of the Voronoi model
are needed in order to study the role of shape oscillations.

In this thesis, diffusivity was used as a measure of the fluidisation of tissues.
However, other measures may be valuable to fully characterise the effect of
oscillations. In addition, elastic features of tissues were not addressed. A
natural starting point for this analysis is the Hertzian model. We hope the
results presented here provide a solid foundation for such investigations.
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