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The opaqueness of machine learning (ML) models is a major hurdle for adoption
throughout the industry. Actors do not outright trust predictions generated by models.
Instead they opt to use business rules-based systems in combination with manual
classification, rather than ML models. Reliable machine learning (RML) seeks to
mitigate this issue by providing a metric that establishes to which extent the model
is certain about its predictions. We investigate the applicability of RML techniques
for high-stakes contexts. Specifically, we conduct a case-study in fraud detection at
bol.com, the Netherlands’ largest online retail platform. Using hand-labelled data
from 199,939 orders, we train models that classify those orders as either fraudulent
or legitimate. These models are a Naive Bayes classifier (NB), a Credal Sum-Product
Network (CSPN), and an XGBoost gradient booster (XGB). All three of these models
provide probability as a reliability metrics for their predictions, and the NB and
CSPN models provide robustness as a metrics as well. The analysis of robustness in a
CSPN with a continous feature is a novelty and extends its application to many new
domains. While the overall accuracy of the models does not exceed that of manual
classification, we demonstrate how RML can improve upon existing business processes
in four manners: 1) providing accurate predictions over a subset of the observations;
2) allowing for a flexible accuracy/cover trade-off; 3) inferring the latent difficulty
variable for classifying individual observations; and 4) eliciting features and feature
combinations that allow for increased business knowledge. This shows how RML
can yield improvements upon existing business processes even when overall predictive
accuracy of models is low, validating and building upon existing research in this
domain.
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Chapter 1

Introduction

In 2017 worldwide potential losses due to fraud in eCommerce amounted to $57.8
billion (Signifyd and PYMNTS, 2017). It is no wonder why online retailers do their
utmost to prevent fraud from occurring, with many of them employing state-of-the-art
technology to thwart prospective fraudsters. Machine Learning (abbr: ML) has been
a blossoming field since the 1990s (Langley, 2011), and there have been prototypes for
fraud detection through ML since at least 2001 (Lek et al., 2001). Nevertheless, the
industry is still in the early days of adopting ML techniques (Deloitte, 2017; Lorica
and Nathan, 2018).

One reason for this lagging adoption is that many ML techniques result in a black box:
models which are so complex that understanding their reasoning is impossible. This
is undesirable and as such a major obstacle in many contexts, such as autonomous
vehicles (Koo et al., 2015) and healthcare (Caruana et al., 2015). Acting on the
results of black box models can be challenging, because it is unknown how reliable
those results are. Reliable Machine Learning (abbr: RML) seeks to mitigate this issue
by providing a measure of certainty for predictions made by the model.

Problem statement

Fraud detection is another high-stakes example where reliability is an important factor.
Basing decisions on unreliable outputs may result in steep losses, both monetarily and
in trust from customers. Many organisations instead rely on traditional business rules
to detect fraud, but the effectiveness of this approach is highly dependent on the
expert’s knowledge (Wong et al., 2000).

This research is a case study into the applicability of RML techniques for high-stakes
classifications. We specifically investigate how RML can improve existing business
processes for fraud detection in eCommerce.

Contributions

The findings produced by this research contribute to the overall state-of-the-art of
RML. We apply known techniques in a specific context, and show how business pro-
cesses can be improved. Specifically, we demonstrate how reliability measures can be
used to subset predictions in such a manner that certain accuracy requirements can
be met.
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1.1 Context

The research described in this thesis was conducted in cooperation with bol.com, the
Netherlands’ largest online eCommerce platform. They serve 9.8 million customers in
the Netherlands and Belgium and had a €2 billion revenue in 2018. The organisation
is still in the exploratory phase of using ML to further its business needs and have
asked us to research the possibilities for applying ML in order to classify fraudulent
orders from customers. While bol.com started out as a webshop, its focus is shifting to
becoming an online e-commerce platform. Because of this, the organisation is looking
for solutions that can be provided as a service to partners as well.!

Fraud & Risk management

The Fraud & Risk team is part of the Platforms Operations division within bol.com.
One of their responsibilities is to review the orders from customers which got flagged
by a system consisting of business rules. Of all orders, 0.2%* are reviewed with the
reviewing expert deciding on a case-by-case basis whether to accept the order. Orders
that are classified as fraudulent are cancelled, with the customer being notified of the
decision. Because bol.com wants to minimise fulfillment time, these reviews are a
24/7 process, accounting for 30%* of the team’s workload.

1.2 Research approach

We view this research through the lens of the design science paradigm, which Wieringa
(2014) describes as “the design and investigation of artifacts in context”. Within design
science the problem is an improvement to be made within a context, which is achieved
through the design of an artifact. This artifact is constructed through application of
existing knowledge and newly gained knowledge from the investigation itself.

As part of this research approach we specify the Research Goal and associated research
questions throughout the following section.

1.2.1 Research goal

This research specifically looks at what Wieringa (2014) characterises as an Artefact
Design Goal: through creation of an artifact, we strive to improve a context. In
accordance with the goal definition framework we specify the following design problem:

“This research aims to improve fraud detection by designing a reliable machine learning
model that classifies fraudulent orders with acceptable accuracy so that bol.com can
increase working efficiency.”

Specifically the accuracy should be on par with performance from the experts who
currently manually review possibly fraudulent orders.

In order to maintain confidentiality of bol.com’s business metrics, we cannot always provide
precise numbers. Instead, this thesis uses rough approximations for these business metrics in order
to sketch a general idea of the context. Numbers where this is the case are indicated with an asterisk

(*)-
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Given the lack of experience with ML at bol.com it is unrealistic to expect outright
replacement of manual assessment with classification by a model. Nonetheless, this
would be an exciting prospect if the solution proves to be accurate enough and as
such a possible next step. Hence, a secondary objective of this project is to gain
experience with (R)ML, thus building trust in its capacities and creating a basis for
future ventures.

1.2.2 Research questions

In order to address the specified research goal we want to investigate how RML can
enhance existing business processes for detection of fraudulent orders. More generally,
we can translate this into the following research question around which this thesis is
structured:

“How can reliable machine learning be applied to improve upon existing business
processes for high-stakes classifications?”

This research question can be decomposed into three distinct sub-questions that con-
tribute to answering this main research question:

1. Why are machine learning models not being widely used for high-stakes classi-
fications?

2. What metrics can be used to determine the reliability of classifications made by
machine learning models?

3. Which machine learning approaches can be applied for high-stakes classifica-
tions?

1.3 Thesis outline

The rest of this thesis is divided into five chapters. Firstly, related works are dis-
cussed to provide background to ML for fraud detection, as well as the domains of
interpretable and reliable ML. Chapter 3 discusses the methods we apply in order
to attain our research goal. The application thereof is discussed in chapters 4 and
5, which together form the most significant part of this thesis. Lastly, we provide a
summary, conclusions, and limitations in chapter 6, as well as future research oppor-
tunities.






Chapter 2

Related works

“Standing on the shoulders of giants” is a well-known metaphor within science. It
illustrates how we can see new things by building upon previous discoveries. This
thesis is no exception to this wisdom, and likewise builds upon discoveries from many
different researchers. To show the existing foundations for this project, we review
relevant topics within the scientific literature.

Because of the breadth of the research domain, this chapter is by no means an exhaus-
tive review. Rather, it should be considered a glimpse at the domain this research
takes place in. Throughout the following chapter we first provide a brief introduction
to the concept of ML. We then evaluate the state of the art for fraud detection with
ML, focussing on eCommerce fraud in particular. Furthermore we provide elaboration
on the concept of RML and discuss relevant research conducted in this domain.

2.1 Machine learning

ML is a sub-domain of Artificial Intelligence (abbr: AT), the latter of which seeks to
create and analyse agents that intelligently solve tasks when provided with information
or stimuli (Russell and Norvig, 2016). The term Machine Learning was first coined by
Samuel (1959), who stated that ML “gives computers the ability to learn without being
explicitly programmed”. More recently it has been interpreted as a field of study that
focuses on computational approaches for learning models from data to best perform
certain tasks (Mohri, Talwalkar, and Rostamizadeh, 2012). In other words, rather
than provide a machine with a predefined algorithm by which it should perform a
task, ML equips machines with tools to develop their own approaches. This approach,
or model, takes inputs and generates outputs as solutions to the defined tasks.

ML techniques can broadly be divided into three categories: supervised, unsupervised,
and reinforcement learning. Witten et al. (2016) argue that philosophically speaking,
supervised learning would be better characterised as “trained learning™ the machine
we want to learn is provided with scaffolding as to know what it should be learning.
In this approach we provide the machine with a dataset and a list of known outcomes,
with the intention of having the machine learn to predict the right outcomes based on
the data. In unsupervised learning, on the other hand, neither the goal nor the out-
comes are known beforehand. The machine is truly learning on its own accord, and its
performance cannot be measured as objectively as in supervised learning (Maini and
Sabri, 2017). Reinforcement learning is unique in that it can affect the environment
in which the machine is learning. The outcomes are not known beforehand, but the
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machine learns the effects of its actions and determines what it needs to do in order
to achieve a desired goal.

Detection of fraudulent orders can be considered a classification problem, which is a
type of supervised learning. ML techniques geared towards classification take features
and labels as input, where the labels are the different classes that the resulting model is
to predict. Existing observations are analysed to determine which features contribute
to certain classifications. As such, feature weight is often an important aspect of
classification models.

2.2 Fraud detection and machine learning

As mentioned in chapter 1 there have been ML prototypes for fraud detection in
eCommerce since the beginning of this century. Lek et al. (2001) proposed a data
mining method that analysed fraud patterns to generate rules for identifying fraud.
Adoption of this approach was not described in scientific literature, however.

Most ML for fraud detection in eCommerce has focused on detection of credit card
fraud, although relatively few articles detailing real-world applications have been pub-
lished (Zareapoor and Shamsolmoali, 2015). Stolfo et al. (1997) and Chan et al. (1999)
describe initial experiments in this context. They argue that true positives and false
positives are better metrics than overall accuracy, since fraudulent cases are a slim
minority of all cases. More generally the problem posed by skewed distributions was
evaluated by Kubat, Matwin, et al. (1997), who identified multiple possible solutions.
These solutions include weighing instances (Pazzani et al., 1994) and including dif-
ferent misclassification costs for positive and negative instances (Gordon and Perlis,
1989).

Outside of eCommerce, Fawcett and Provost (1996) described automated methods for
detecting fraudulent cellphone usage. They found that the available ML methods were
less accurate than hand-coded business rules, but the latter took several months to
implement whereas ML models only took a few hours. Moreover, they demonstrated
the adaptability of ML methods, which enhances the increased effectiveness when
compared to business rules.

The context of our current research shares aspects described by these authors. The
classes of orders (legitimate or fraudulent) are unevenly distributed, although this
skewness is less pronounced in the subset that is manually reviewed than in the overall
population. Moreover, the misclassification costs in our context are uneven for the two
classes: shipping a fraudulent order is far more costly than not shipping a legitimate
order. Another shared aspect is the existing solution in place at bol.com for detecting
fraudulent orders: a system of hand-coded business rules. While the accuracy of this
system is good, it suffers from the same downsides described in literature.

2.3 Interpretable machine learning

The works above cover the applicability of traditional ML techniques (i.e.: black-box
methods) to the domain of fraud detection, but they do not account for the limitations
these methods contribute. As illustrated by Koo et al. (2015) and Caruana et al. (2015)
the lack of trust in ML models has been a major hurdle for adoption.
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Conversely, the opaqueness of black-box models can be considered an asset in certain
contexts. Burrell (2016) argues that within domains such as network security or —
indeed— fraud detection transparency is often avoided because it provides adversaries
valuable insights in the weaknesses of a system: if you do not understand how a
system works, neither can your adversaries. Nevertheless, this obscurity is generally
considered a downside of ML rather than an asset.

Interpretable Machine Learning (abbr: IML) has evolved as field of research that
seeks to mitigate this issue. IML seeks to provide interpretability of how predictions
came to be. This allows for human understanding as well as explanation of decisions,
which may be a requirement in accordance with laws and regulations such as the
General Data Protection Regulation (Council of the European Union, 2016). An
important distinction is to be made between external interpretability and internal
interpretability, or that of the learning algorithm and that of the model itself (Riiping
et al., 2006). External interpretability is often (although not always) implicit: a
learning algorithm was devised by a human, so a human must be able to understand
it as well. This does not automatically result in internal interpretability, however.
With an algorithm one understands, it is still possible to create a model that is
beyond comprehension.

From a societal point of view there is merit to IML as well. Pasquale (2015) calls for
auditors who have access to algorithms to ensure organisations do not use discrimi-
nating classifiers.! This is, however, impossible when algorithms are designed in such
a way that their inner workings cannot be interpreted by humans.

Lack of trust in the outputs of a ML model has been described as a hurdle for adoption
at bol.com as well. This showcases the need for ML models that provide interpretabil-
ity of their predictions within the industry. Bol.com especially wants to be able to
interpret how certain they can be that models provide correct outcomes, and this is
where reliable machine learning comes into play.

2.4 Reliable machine learning

RML can be considered a sub-domain of ML that specifically makes one aspect of ML
models interpretable: it seeks to provide a metric by which we can assess the extent
to which predictions are reliable, thus allowing for interpretation beyond “the model
thinks this instance belongs to class A”. The concept has been described by many
authors, some of whom use terminology such as credibility and statistical confidence
(Saunders, Alexander Gammerman, and Volodya Vovk, 1999; Hamilton, Shan, and
Ziarko, 1997) as an alternative to reliability. Vladimir Vovk, Alex Gammerman, and
Shafer (2005) call predictions which incorporate an indication of their accuracy and
reliability hedged predictions.

A major benefit of reviewing reliability metrics, besides the increased trustworthi-
ness of the model’s predictions, is that it allows for subsets of predictions based on
instances’ scores. One could, for example, accept the predictions with a high reli-
ability score and manually review instances with low reliability. In other words, it
becomes possible to control the number of erroneous predictions by selecting a certain
reliability metric (Alexander Gammerman and Vladimir Vovk, 2007).

'From a technical point of view all classifiers are discriminating, but in this context we colloquially
refer to discrimination in the legal sense — or rather the illegal sense.
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This concept of reliability was explored by Balasubramanian, Ho, and Vladimir Vovk
(2014) and Bosni¢ and Kononenko (2009), the latter of whom note that it is a useful
indicator in contexts where acting upon individual predictions has significant conse-
quences. Examples of these contexts include medical diagnoses and financial decisions.
Bosni¢ and Kononenko recognise the difference between reliability metrics that are
model-dependent and -independent. The first type of metric is built into the model
and generally probabilistic, whereas the second type treats the model as a black box
and analyses how variations in instances affect classification.

Probabilistic model-dependent metrics —the metrics themselves are usually called
probability— have been described since the 1990s (Cestnik et al., 1990). Kukar and
Kononenko (2002) define reliability as “an estimated probability that the classification
is the correct one”. If an instance has a 0.18 probability of belonging to class A, for
example, the prediction of the instance being in class B has a reliability of 0.72.

Robustness is an example of a model-independent reliability metric, which has been
shown to provide a better estimate of reliability in certain contexts (Maua et al., 2017;
Conaty, Del Rincon, and De Campos, 2018). Robustness can be considered the extent
to which variations can occur without affecting the predicted class. If these variations
are large, one can assume an instance to belong firmly to one class, or to be robust.
This concept is not dissimilar from what was proposed by Weigend and Nix (1994),
who showed that predicted variance estimates can serve as a reliability metric.

We consider the fraud domain to be a high-stakes domain where acting upon individual
predictions has a significant monetary impact. Probability and robustness are two
metrics that can identify in which instances a model’s predictions are reliable. We
will apply these concepts and analyse how they impact classification of fraudulent
orders, and therewith the business processes of bol.com.



Chapter 3

Methods

As described in chapter 1 we view this research through the lens of design science as
described by Wieringa (2014). This paradigm iterates over designing and investigat-
ing, and Wieringa provides the Engineering Cycle as a structure for doing so. This
structure consists of four phases:

1. Problem Investigation: investigate the context, including the causes of the prob-
lem, goals, and stakeholders.

2. Treatment Design: specify the requirements of the envisioned solution and de-
sign the solution, either through application of available treatments or through
creation of a new one.

3. Treatment Validation: determine if the designed treatment solves the problem.
4. Treatment Implementation: integrate the solution and solve the problem.

While we do want to have a framework that defines a structured approach towards
solving our design problem, the Engineering Cycle is too generic for our needs. It is
not specifically tailored towards the application of ML, but instead sterns from dis-
ciplines such as industrial product engineering (Jones, 1980) and systems engineering
(Hall, 1962). An approach that better suits the context of this research is the Cross-
Industry Standard Process for Data Mining (abbr: CRISP-DM) (Chapman et al.,
2000). CRISP-DM is the most widely-used approach amongst data scientists (Brown,
2015b), and we have previous experiences in following the process. This makes the
method both a convenient and logical choice for this research. The following section
provides a brief description of CRISP-DM. After that we discuss modifications we
make to the method to better suit our needs, detailing how it will be followed in the
remaining chapters of this thesis.

3.1 CRISP-DM

CRISP-DM prescribes an iterative process consisting of six phases. The phases, which
are visualised in figure 3.1, are as follows:

1. Business Understanding: gain knowledge of the context, the problem we are
trying to solve, and how it impacts the organisation.

2. Data Understanding: evaluate the available data and see what we will have to
work with.
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Data
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Data
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FIGURE 3.1: A visualisation of the CRISP-DM process. Pictured are
its six phases (the boxes) and the most prominent interdependencies
between those phases (the arrows) (Chapman et al., 2000).

3. Data Preparation: take the “raw” data and transform it into the form required
for analysis.

4. Modelling: use techniques to model the data in such a way that it contributes
to solving the problem.

5. Evaluation: determine whether the models produced in the previous phase solve
the problem.

6. Deployment: integrate the solution into the organisation.

It should be noted that the six phases are neither strictly sequential nor separated,
and that advances in one phase can lead to advances in another. For example: trans-
forming time stamps (data preparation) in the data can lead to an understanding
of the time the data comes from (data understanding). Written descriptions of the
process —such as this thesis—, tend to forego these nuances in favour of a well-framed
sequence of events. We ask the reader to keep this in mind throughout the rest of this
work.

The phases in CRISP-DM can be broken down into generic tasks, which in turn can
be divided into specific tasks. An example of a generic task for Data Understanding
is Collect Initial Data, which has the Initial Data Collection Report as an output.
Generic tasks can be further divided into specific tasks, or activities. The relevance of
these activities is dependent on the context of the project: “|CRISP-DM] gives detailed
tips and hints for each phase and each task within a phase, and depicts how to carry
out a data mining project”. Throughout chapters 4 and 5 we follow the structure of
the generic tasks to describe the specific tasks, i.e. the activities we have concretely
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conducted. An overview of the generic tasks and their associated outputs is provided
in appendix A.

The observant reader may have noticed that the phases in CRISP-DM are not entirely
different from those in the Engineering Cycle. To illustrate, Business Understanding in
CRISP-DM encompasses tasks that yield the same output as Problem Investigation in
the engineering cycle, such as the needs and constraints of the organisation. Likewise,
Evaluation shares its core concept with Treatment Validation: determining if the
proposed solution adequately satisfies the design goal.

3.2 Adaption

Having selected the base method for this thesis, we will now describe where we deviate
from the activities prescribed by CRISP-DM. Specifically, because of the nature of
this thesis project, we will not follow the Business Understanding phase. As Brown
(2015a) establishes, the most important goal of the Business Understanding phase is
to make sure management agrees with the need for data analysis and buys into it. In
our case, however, the client has already assented to the need for and goals of this
research. More importantly, the problem we aim to solve has already been established
in the previous two sections of this thesis. This diminishes the risks the Business
Understanding phase is intended to mitigate.

Secondly, we will not describe the evaluation phase as a separate section. The purpose
of this phase is to evaluate the project, draw conclusions, and determine what steps are
to be taken next. In a thesis such as this one, this shows parallels with the discussion
chapter. Hence, we will incorporate these aspects in our final chapter.

Lastly, the Deployment phase will not be conducted for it is outside of the scope
of this research. We sadly do not possess the knowledge of bol.com’s infrastructure,
nor the resources, to facilitate this step. We will, however, take implementation into
consideration when selecting data sources and the modelling techniques.
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Chapter 4

Data and set-up

This chapter details the first half of the data mining process we described in chapter 3.
Each section relates to one of the six phases within the CRISP-DM cycle and describes
its outputs.

4.1 Data understanding

The goal of the Data Understanding phase is to understand what data we need to
meet the objectives. Specifically, we need to collect data that pertains to orders and
includes both features and labels.

4.1.1 Collect initial data

The data for the project were provided to the researchers by bol.com. We agreed
that the available data should be identical to or closely resemble the data used with
bol.com’s production environment. This way a resulting model could be incorporated
in the business processes without additional data sources having to be made available.
Furthermore, for the purpose of labelling, data should be available that shows the
legitimacy of orders after the fact.

This resulted in four related datasets pertaining to four distinct business concepts:

1. Order data: generic data pertaining to orders and the customers who placed
those orders. These includes data such as total price, shipping address, date of
birth, and gender.

2. Fraud function data: data that are the result of function executions in the
existing business-rules. These functions return a value based on an input and
determine, for example, whether an IP address is on a blacklist or whether the
customer has a record of not fulfilling their payments.

3. Payment status data: data that show whether payments for an order have been
fulfilled, gone to debt collection, or been written off. This can be used to identify
true negatives and false negatives.

4. Customer support data: data that show whether a customer contacted customer
support after their order had been cancelled. This would indicate that the
customer was placing a legitimate order, thus indicating false positives.

The observations in each of these datasets were combined through their shared iden-
tifier; ORDER_ID. Initially, for the purposes of describing and preparing the data, the
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number of orders was limited to 36,707. A model can be more accurate, however,
when the size of its training set increases. Hence, this number was later increased to
260, 189, which encompassed all orders that were cancelled (either automatically or
manually) or approved by an expert. Later this number was brought down to 199, 939,
having left out orders that were not manually reviewed.

The datasets were provided to us as CSV sheets and loaded into RStudio (v1.2.1335)
for analysis.

4.1.2 Describe data

Below we will provide descriptions of what data are contained in the acquired datasets.
A tabular overview can be found in table 4.1.

Order data

The order data consisted of data relating to both orders (e.g.: Shipping_location,
Payment_method, Total_price) and the customers that placed those orders (City,
Gender, Date_of _Birth, Account_type, and Date_of_first_order). The dataset
contained 225,195 records, but one order can have multiple records if it contains
more than one item. In total, there were 139, 729 unique orders in this dataset.

Fraud function data

The fraud function data contained 14,115,810 records, each representing a func-
tion executed by the business rules. Exact duplicates (from when a rule was exe-
cuted by multiple rules) had already been eliminated at query level. The dataset
did contain many instances of duplicate executions with differing results, however.
This could be the case if a parameter in the function execution was different (e.g.:
CheckIfHigher (50, amount) and CheckIfHigher (100, amount) can return True and
False respectively when amount equals 75). The dataset did not contain these param-
eters.

Payment data

The payment status data consisted of 81,282 records, each of which represented an
invoice. Not every order has an invoice, because some orders are cancelled by an
expert. Conversely, an order can have more than one invoice if it consists of orders
from different suppliers. Aside from ORDER_ID the dataset includes PAYMENT _METHOD
(nominal), TOTAL_AMOUNT (ratio), OPEN_AMOUNT (ratio), and three different versions of
WRITE_OFF (ratio; categorised depending on the reason for the write-off).

Customer support data

The customer support data contained 4,471 records, which included ORDER_ID and
LOGPATH at different levels. The latter of these indicates the reason for a customer
contacting support. In short, this showed whether a customer had contacted bol.com’s
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support about one of the orders in the datasets described above, and why they had
done so.

Dataset Features Records Description

Orders 15 225,195 General descriptive data of the or-
ders and personal information of the
customers

Function executions 6 14,115,810 Functions triggered by the fraud
module and their outputs per order

Payments 6 81,282 Invoices and their payment status,
including write-offs and debt collec-
tion

Customer support 5 4,471 Cases relating to orders

TABLE 4.1: Descriptive overview of the collected datasets: these
four datasets contain various aspects of orders that were analysed by
bol.com’s fraud module from October 2018 to January 2019

4.1.3 Explore data

Off-the-bat the datasets yielded few insights that could help reach our research objec-
tives. Further processing and data combination was needed to allow for application
of ML techniques. Specifically, the datasets and their records needed to be combined
so that each record pertained to one ordered item. We utilised this step to determine
what measures could be taken without significant loss of information.

Initial exploration of the fraud function dataset showed why it had many more records
than the number of orders included in the dataset. As we discussed, these functions
could return varying results depending on the parameters used in the function call.

The order dataset revealed that some of the included orders had not been manually
reviewed by an expert, but were cancelled for other reasons. These cancellations were
attributed to either the buyer or seller.

No surprises were found in the payment and customer support datasets, which were
both to be used for labelling. If anything, these included more data than necessary
for labelling of the orders, such as the precise logpath for customer support cases.

4.1.4 Verify data quality

The quality of the data was determined to be relatively high, with very few oddities.
Throughout the datasets there were only 23 NA values, each of which belonged to
empty rows.

The only dataset that showed strange values was the order data, where 1.01% of all
orders had scrambled personal details. This was due to the customers deleting their
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account between the time of ordering and our analysis." Data strictly pertaining to
the order itself was preserved, however.

4.2 Data preparation

Data was provided to us in CSV files by bol.com, which we then imported into R. The
code written to import and process the data can be found in appendix B. The columns
were in some cases renamed to be more convenient for processing, and their contents
were converted to appropriate data types. Two columns without any variation were
removed. A few conversions were applied as well, namely:

e Converted true and false strings to logical.
e Converted Y and N to logical.

e Converted factor columns with two levels to logical.

4.2.1 Select data

As discussed in 4.1.3, the function execution dataset contained functions with different
outputs depending on the provided parameters. Because we did not have access to
the parameters, we decided to remove these observations. This decreased the number
of functions in this dataset from 88 to 55.

In consultation with bol.com, personal data such as gender and date of birth was
removed from the dataset. While these features are potentially useful, bol.com had
reservations about using them in classifications from ML models for ethical and legal
reasons. Moreover, not all of these data were available in bol.com’s cloud infrastruc-
ture at the time of writing. This went against our aim of only using data that would
be available in a production environment, so we decided to leave out these features
for this project.

Because of restrictions on available computing power, features with little variation
(where the minority class accounted for less than 0.01 of the observations) were re-
moved from the datasets. While we would have preferred to not sacrifice these data,
exploratory modelling showed that the features had little impact on accuracy of the
models.

Lastly, there were some features that occurred across multiple datasets, such as
orderTotal. These duplications were removed.

4.2.2 Clean data

While some data clean-up did take place, all of this pertained to personal data features
that were removed for the reasons elaborated upon. Nevertheless, we will briefly
highlight these steps for they could provide insight in situations where one wants to
retain those features:

! Although we do not possess data to verify this, it is likely that the percentage of “forgotten”
accounts is higher in this sample than in the total number of orders. According to business experts,
many customers delete their account upon learning it has been compromised, rather than changing
its log-in credentials.
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e The data contained some records (approximately 1.01%) pertaining to “forgot-
ten” accounts. The owners of these accounts requested to have their personal
data removed from bol.com’s systems, to which bol.com complied by overwrit-
ing their personal data with random strings. These randomised values were
converted to missing values.

e Because of the number of levels in certain features (e.g. PickupPoint and City),
these values were converted to the ratio of their occurrences.

4.2.3 Construct data

A number of additional features were created from the existing data to facilitate
labelling;:

Total loss was created by combining different types of write-offs and the open
amount for each order. This combined total was used throughout the rest of the
project, rather than the more granular features. After all, the being able to distin-
guish between these various costs is irrelevant for classification of orders: each order
that is not going to be paid for, should ideally not be shipped.

We created a feature to determine whether an account had been taken over by an
adversary. We did so based on the existing features IpDiffersFromPreviousOrders
and AddressDiffersFromPreviousOrders. The logpaths from the customer support
data were also taken into account for this feature. This was done to allow for better
labelling: if an account has been taken over, then the customer contacting support
does not automatically indicate erroneous cancellation of the order as would normally
be the case.

Despite having many features throughout the four datasets, labels were not readily
available. Labels were based on the verdict provided by business experts and con-
structed using the following logic:

e True Positive: an order was cancelled and the customer either did not contact
support, or had their account taken over and did contact support.

e True negative: an order was approved and subsequently paid for.
e False positive: an order was cancelled, but the customer contacted support.
e False negative: an order was approved but not paid for.

It should be noted that these labels may not be completely accurate. False positives
are especially difficult to detect, because we cannot know whether all customers con-
tact support after their order is cancelled. Some might simply order from a competitor
or forego their order. Therefore the data can contain orders that are labelled as true
positive while in reality being false positives. Construction of this data allowed for
analysis of expert performance, which turned out to be 93.25%.>

These assessments of correctness were converted into class labels, the ratio’s of which
are provided in table 4.2. As shown, the positive cases are a minority, although not
one as slim as in the overall population of orders.

2Because of the difficulties in labelling positive observations described above, the real accuracy is
expected to be somewhat lower. How much “somewhat” is, we sadly cannot know.
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Legitimate Fraudulent

Total observations 157311 42628
Ratio 0.79 0.21

TABLE 4.2: Frequency of classes within the dataset: the fraudulent
cases are a minority within the orders that are manually reviewed by
experts.

Distribution of prices by class

Frequency

Total price

FIGURE 4.1: Distributions of price within the dataset: distributions
for fraudulent observations (red) are comparable to those of legitimate
observations (black).

As visualised in figure 4.1, we found that the one continuous feature in the dataset
(i.e. Total_Price) had similar distributions for both the legitimate and fraudulent

classes.?

4.2.4 Integrate data

We integrated the datasets by OrderID: one observation for each manually reviewed
ordered item that contained the function execution results, customer support data,
payment data, additionally constructed columns, and a label determining fraud. This
resulted in a matrix with 199, 939 rows and 55 columns.

4.2.5 Format data

The data was one-hot encoded to ensure compatibility, since many implementations
of ML techniques are only able to process 1s and 0s. This converted features with
more than 2 levels into separate columns.

The resulting dataset after all of these tasks contained 67 columns and 199, 939 rows.
All columns were logical except for Total_Price, which was numerical. A full overview
of the features (pseudonymised) and their distributions is provided in appendix C.

3In order to maintain confidentiality with bol.com, the numbers in this figure are redacted.
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Chapter 5

Execution and results

The following chapter describes the processing of the dataset into fully fledged models,
as well as an analysis of these models’ results. This corresponds with phases 4 and 5
of CRISP-DM: modelling and evaluation.

5.1 Modelling

Now that we had availability over well-structured data, we could start what many
data scientists consider the exiting part: modelling! Given the iterative nature of
tweaking models and improving the performance, we cannot truly describe the process
in a sequential manner. Therefore, the following section can be considered to be a
description of the modelling choices we eventually decided upon and the motivations
that led to these choices.

5.1.1 Select modelling techniques

We decided to select three distinct ML techniques as candidates for creating an RML
model. This allowed for a three-way comparison of their performance, resulting in an
analysis on how different reliability metrics affect classifications in different circum-
stances. Additionally, a three-way comparison could show the generalisability of the
concept of RML in high-stakes contexts.

We wanted to select a set of techniques that included both a well-studied approach
and one that is considered state of the art in the industry. In addition to this, we also
wanted to analyse a relatively new technique that showed promise but has not been
studied extensively yet within our context.

Aside from diversity being a criterion, the ML techniques also had to work within the
limited technical scope that was available to us. This meant that it was necessary
for models to allow for local training and testing, while also providing opportunities
for operationalisation on a larger scale in the future. As such, ML techniques with
excessive processing requirements were ruled out.

After careful deliberation, we decided upon the following three candidates, each of
which adhered to the requirements outlined above:

e Naive Bayes
e Credal Sum-Product Networks
e XGBoost



20 Chapter 5. Execution and results

Each of these ML techniques provides probability as a model-dependent reliability
metric. The latter two also provide robustness of classifications as a metric. In the
following subsections we will briefly describe the background and workings of each of
the candidates, as well as our motivations for selecting these models specifically.

Naive Bayes

A Naive Bayes (abbr: NB) classifier is a classifier based on Bayes’ theorem. It was
proposed by Maron (1961) and uses probabilities of independent features belonging
to certain classes to determine to which class observations most likely belong. While
rudimentary in nature, training a NB classifier is relatively fast and its results of-
ten show high accuracy (Stecanella, 2017). A downside of NB is its reliance on the
independence of features, which is not necessarily the case within this context.

Since its introduction it has been used extensively in classification tasks and become
a de facto baseline technique (Wang and Manning, 2012), making NB a logical choice
for a classifier in a three-way comparison. Comparing the other classifiers against a
NB classifier showcases their performance relative to technique that is widely applied
throughout the industry.

Credal Sum-Product Network

Credal Sum-Product Networks (abbr: CSPN) (Maua et al., 2017) are a variation
on Sum-Product Networks (abbr: SPN) (Poon and Domingos, 2011). SPNs were
designed as a deep architecture, posing an alternative to graphical models such as NB.
SPN classifiers are well suited for producing inferences, meaning they are tractable over
trees with a large width. As such, no approximation techniques for the probabilities
of features have to be used. An SPN is comprised of nodes that perform weighted
sums or multiplications to predict an instance’s class. Whereas NB classifiers rely on
independence of features, SPNs can process combined features through those sums
and multiplications. Gens and Pedro (2013) show that SPNs are typically superior to
graphical models in inference speed and accuracy.

CSPNs provide an imprecise extension to SPNs, thus facilitating the representation
of incomplete knowledge. This mitigates SPNs’ susceptibility to unreliability and
overconfidence. CSPNs achieve this by allowing the weights of sum nodes to vary
within a certain range. Through this process it can be established to what degree
these weights can vary without affecting the outcome class. CSPNs provide this
extent as a robustness value, which can be used to assess the reliability of predictions
as described in section 2.4.

CSPNs have been a recent subject of study at Utrecht University, providing a consid-
erable in-house knowledge base on this ML technique. Accessibility to this knowledge
and being able to contribute to on-going research was a major motivation for selecting
this technique. While CSPNs show promise, little research has been conducted into
their real-world applications. Using this method on a dataset such as ours, which in-
cludes a continuous numerical feature, would be a novel contribution to the research
domain.



5.1. Modelling 21

XGBoost

XGBoost (abbr: XGB) is an implementation of tree boosting that is widely used
within the industry and outperforms similar implementations (Chen and Guestrin,
2016). It is based on the principle of gradient boosting (Friedman, 2001), which in
turn is an extension of adaptive boosting, or AdaBoost (Freund, Schapire, and Abe,
1999).

Gradient boosting techniques combine subsequently trained boosters that aim to
achieve marginally better results than the previous iteration. Through this approach
weak learners are assembled into one strong learner. Although the approach produces
accurate results, it has the downside of being greedy. XGB is an implementation that
specifically optimises for performance. It has become the leading model in Kaggle
competitions, where its prevalence is attributed to its ease of implementation and
state of the art performance and speed (Becker, 2018; Pathak, 2018; Brownlee, 2016).

Perhaps as a result of its widespread use, XGB is one of the techniques readily avail-
able within the Google Cloud platform, which is part of the existing I'T infrastructure
at bol.com. This would allow for relatively easy operationalisation in a production en-
vironment, motivating our choice for this candidate. Additionally, minor experiments
using XGB have been conducted at bol.com, providing some in-house knowledge.

5.1.2 Generate test design

The dataset was split into two separate sets for training and testing. We decided
upon a division of 0.80 to 0.20, because it maximises learning while still retaining a
sufficiently large test set. The division was stratified on the labels of the observations
(i.e.: fraudulent or legitimate), ensuring comparable distributions between the two
sets.

Aside from the “raw” predictions for the observations in the test set (i.e.: the binary
classifications), the reliability metrics were also recorded. As discussed before, all
three models provided probabilities for their predictions. Additionally, the NB and
CSPN classifiers recorded the robustness of those predictions.

All three models were trained on and tested against the exact same datasets, although
additional feature selection was applied for the NB and CSPN classifiers to reduce
processing time. This was done based on the variance within features, with only the
logical features where the minority class comprised at least 0.01 being selected.

5.1.3 Build model

Building the models was an iterative process, in which we tweaked hyper-parameters
and evaluated their effects. The code for building the models can be found in appen-
dices D and E.

Whereas the XGB classifier was relatively quick to train (approximately 30 minutes),
the NB and CSPN classifiers took multiple hours and were generally trained overnight.
Because the implementation (not published) for the NB and CPSN classifier could not
process missing values, we replaced these values with the median of those features.
XGB classifiers are able to recognise extreme outliers, so for this model we replaced
the missing values with the maximum negative integer value (—2147483648).
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NB CSPN XGB

nround = 1000

eta = 0.01

max.depth = 20

min _child weight = 10
scale _pos weight = # false/#true
lambda = 2

thr = 0.01 thr = 0.01
height = 2 height = 1,000,000
samples = 5 samples = 5

TABLE 5.1: Overview of hyperparameters: these settings were used
in the training of the three classifiers.

The hyper-parameter settings for the NB and CSPN models were determined in coop-
eration with the creators of the implementation (not published), prioritising training
time. The settings for the XBG classifier were determined through a grid-search as
inspired by Revert (2018), optimising for overall prediction accuracy. The resulting
settings for all three classifiers can be found in table 5.1. It should be noted that the
parameters are not comparable between the different classifiers.

5.2 Assessment

We assess the performance of the models based on two underlying metrics, the first of
which is their predictive accuracy. Secondly, we use Cover extensively throughout the
following sections. We define this metric as the proportion of the dataset’s observations
for which the model assigns a prediction. A cover of 0.2, for example, equates to
the observations with a reliability measure equal to or above the 80th percentile.
This allows us to analyse a model’s accuracy over the n predictions with the highest
reliability score.

The evaluation was performed in two phases. First, we extensively analysed the
performance of the robustness metric for the CSPN classifier over a subset of the
dataset. These findings were published in Rob C. De Wit et al. “Robustness in Sum-
Product Networks with Continuous and Categorical Data”. In: Proceedings of the 2019
International Symposium on Imprecise Probabilities. 2019, which is also included in
appendix F.

We thereafter analysed the performance of all three classifiers and their associated
reliability metrics against one another over the full dataset. The following subsections
discuss these respective analyses.

5.2.1 Robustness with continuous data

As described in section 5.1.1, CSPNs have been a recent subject of study at Utrecht
University. One of the aspects that has been studied is the extension of CSPNs
to process continuous features. The dataset from bol.com provided an opportunity
to conduct a case study on a real-world application, validating the effectiveness of
robustness as a reliability metric.

Because we did not possess the entire dataset at the time of publishing these results,
we performed the analysis on a subset of the dataset. This subset consisted of of all
orders placed in October of 2018. This was the same subset as the original dataset of
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36, 707 orders we described in section 4.1.1, which we used for describing and preparing
the data. As described by Maua et al. (2017), however, CSPNs’ benefits are especially
pronounced when trained on sparse data. Therefore, the limited size of the dataset
used for this analysis exemplifies the applicability of robustness as a reliability metric.

In addition to the number of observations being reduced as compared to the analysis
in the three-way comparison, the number of features was also reduced. The 23 features
with the highest variance were selected, as well as the continuous Total_Price feature.

The SPN was trained using the procedure of Gens and Pedro (2013), with the excep-
tion that independence tests were performed using one of Chi-square, Kruskal-Wallis
or Kendall (according to the variables involved), clustering was done with the Gower
distance (so as to take into account both categorical and continuous variables), and
leaves related to continuous variables were forced to be normally distributed.

The robustness value was then calculated through the method described by Maué
et al. (2017). Both robustness and probability of most probable class were used in
order to discriminate the quality of the predictions. Figure 5.1 shows the results
obtained by issuing a classification only when the associated reliability metric met a
certain threshold. Using probability no threshold allowed us to exceed experts’ manual
performance. Robustness, on the other hand, allowed us to achieve on-par accuracy
over (.15 of all orders.

This analysis showed that robustness was a better indicator of reliability than proba-
bility in this context. As we will discuss in the following section, however, it should be
noted that there is a difference between experts’ overall accuracy and their accuracy
over the subset of most robust predictions. We further investigated this nuance in the
three-way comparison over the entire dataset.
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Manual NB CSPN XGB
Accuracy 0.93 0.82 0.83 0.88

True negative 0.77 0.73 0.72 0.73
False positive 0.02 0.06 0.06 0.06
False negative 0.05 0.12 0.10 0.05
True positive 0.16 0.11 0.11 0.16

TABLE 5.2: Confusion matrices: how do the various models compare
against each other and the experts’ review?

NB CPSN XGB

probability 0.60 0.56 0.84
robustness 0.69 0.63 -

TABLE 5.3: Cover for manual accuracy: how many of a classifiers
predictions can we accept while achieving the same accuracy that is
on par with experts over the entire dataset?

5.2.2 Three-way comparison

Having trained the three different models, we were able to compare their predictive
accuracy against one another. Additionally, their accuracy was compared to that of
experts’ manual review as well. The code used for this comparison can be found in
appendix H, with the code for the visualisations being located in appendix I.

None of the models exceeded experts’ overall accuracy, as can be seen in table 5.2.
Out of the three models the XGB classifier performed best, with 0.88 overall accu-
racy. Looking at the differences between manual review and the predictions from
the XGB classifier, it appears that the latter tends to classify legitimate orders as
fraudulent more often. This can in part be explained by the hyper-parameter setting
scale_pos_weight, where we attribute a higher weight to fraudulent orders. As de-
scribed in section 2.2 this makes sense business-wise, since false negatives are far more
costly than false positives.

The NB and CSPN classifiers, which do not incorporate these different weights, per-
form somewhat worse. For the NB classifier this is in line with previous research which
shows XGB to outperform NB classifiers on a regular basis (Wainer, 2016). The fact
that the CSPN classifier does not outperform the XGB classifier can be attributed to
the fact that CSPNs’ strengths (i.e.: performing well with sparse datasets) are not
pronounced in the current context.

Despite achieving lower overall accuracy, the models show promise for creating a
better business nevertheless. Accepting each and every prediction the models make
at face-value would be too costly. Using their reliability scores to determine which
predictions we can trust, however, yields better results. As shown in table 5.3 the
models achieve on-par accuracy for part of the dataset. The XGB classifier performs
best: if we want on-par overall accuracy, we can achieve a cover of 0.84. For the NB
and CSPN classifiers, robustness remains a considerably better estimator for reliability
than robustness, just as shown in the previous section.
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FIGURE 5.2: Performance of reliability metrics: how much cover can
be achieved against which accuracy, going by the predictions with the
highest reliability scores.

For each of the five model/reliability metric-combinations, we plotted the achieved
accuracy against the cover over the dataset. As shown in figure 5.2 all models perform
better than experts up to a certain cover. In other words, we could set a threshold
for the reliability score and leave instances that do not achieve this threshold up for
manual classification. This would allow for both an increase in overall accuracy, as
well as a reduced workload.

This approach is slightly naive, however. Or rather, the actual results are somewhat
less spectacular than they appear at first. The underlying assumption of this approach
is that experts’ accuracy is constant over all classifications. While reliability is a latent
variable, it plays a part in manual review nonetheless. Simply put: not all orders are
equally difficult to classify for experts.

In that case, we should be comparing the classifiers’ performance against performance
of experts over the exact same subset rather than the entire dataset. Looking at
figure 5.3 we can see that the experts’ accuracy is indeed not constant over all cases.
For the 0.69 instances with the highest reliability score, the XGB classifier does as
well as manual review. This is still a promising prospect, but slightly less so than the
0.84 cover we achieved under the previous assumption. The other reliability metrics
show a similar pattern: where the model is more reliable, the expert performs better
than over the whole dataset. Visualisations of the other classifiers’ performance can
be found in appendix G.

Knowing this, one could now set a reliability threshold to determine the what portion
of the predictions to trust. Effectively, this provides a button by which it is possible to
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Performance of XGB probability compared to manual classification
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FIGURE 5.3: XGB probability versus manual classification: what
is the experts’ accuracy over the same observations covered by the
model?

determine the trade-off between accuracy and workload. In this context, this might be
worth adjusting at times when very many or very few orders are expected by bol.com.

Aside from the outright classification of orders, we can also use the classifiers some-
what differently to improve upon the existing situation. XGB allows for analysis of
feature importance, providing insights into which aspects of an order are typical of a
fraudulent order. The experts can take these insights into consideration to improve
their analytical skills, or use them to improve the business rules that are currently
in place. The decision tree of the XGB classifier can also be analysed as a whole,
allowing for elicitation of business rules that is independent of domain knowledge.

The same approach can be taken in a slightly less sophisticated manner for each of the
reliability metrics. We have determined that observations with a low reliability score
are inherently more difficult to classify, even for experts. Further analysis of these
difficult cases could allow experts to extract additional features and expand upon the
existing business rules.!

!Because feature importance scores and the decision tree provide a step-by-step guide into how
the legitimacy of orders is determined, these insights could put bol.com’s business in jeopardy. As
such, we cannot publish these concrete findings.
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Chapter 6

Discussion

In the following chapter we provide a brief summary of this thesis project, before draw-
ing conclusions and answering our research questions. We then discuss the limitations
of this project, and highlight opportunities for future research.

6.1 Summary

Adoption of machine learning models within the industry is lagging. Lack of trust
in the predictions generated by models plays a major part in this. Reliable machine
learning seeks to mitigate this issue by providing a measure of reliability to predictions.

Throughout this thesis we investigated the applicability of reliable machine learning
for high-stakes classifications. Specifically, we conducted a case study into RML for
fraud detection at bol.com, the Netherlands’ largest online retailer. We analysed or-
ders from between October 2018 and January 2019 in order to to achieve the following
research goal:

“This research aims to improve fraud detection by designing a reliable machine learning
model that classifies fraudulent orders with acceptable accuracy so that bol.com can
increase working efficiency.”

While a business rules-based system for identifying fraudulent orders currently exists
at bol.com, 0.2%* of those orders are flagged for manual review by an expert. We set
out to classify these orders using reliable machine learning models, to see how reliable
machine learning models could contribute to existing business processes.

We conducted a data science project following the CRISP-DM method. We collected
data from four different sources (order data, fraud function execution data, payment
data, and customer support data) and combined these datasets to get one labelled
dataset. We divided these datasets into a train- and test-set, and created three dif-
ferent classifiers: a Naive Bayes classifier, a Credal Sum-Product Network, and an
XGBoost gradient booster.

The XGB classifier performed best of these three, but none were able to achieve an
overall accuracy on-par with manual review. Nevertheless, we were able to subset the
predictions based on the models’ reliability metrics. Both robustness and probability
allowed for this, and we were able to achieve higher prediction than overall manual
accuracy over subsets with higher reliability. As such, 0.69 of the XGB classifier’s
prediction could be relied upon without sacrificing predictive accuracy.
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6.2 Conclusions

In this thesis we set out to answer a number of research questions. Having fully
conducted this research project, we are now able to answer these questions as follows:

1. Why are machine learning models not being widely used for high-
stakes classifications? Literature shows that the industry is hesitant to adopt
machine learning because of a lack of trust in models’ predictions. Reliable
machine learning seeks to mitigate this issue by accompanying predictions with
a metric that establishes their reliability according to the model.

2. What metrics can be used to determine the reliability of classifica-
tions made by machine learning models? We can distinguish between
model-dependent and -independent reliability metrics. Instances of these met-
rics are probability and robustness respectively. Both of these metrics are good
estimators of reliability, although robustness outperforms probability within the
same model.

3. Which machine learning approaches can be applied for high-stakes
classifications? While we did not conduct an exhaustive review, we found
that supervised learning methods that generate a classifier can be used within
the domain of fraud detection. Specifically, Naive Bayes classifiers, Credal Sum-
Product Networks, and XGBoost Gradient Boosters are applicable to this do-
main.

Answering these sub-questions contributed to the investigation of our main research
question, which we can answer by drawing the following conclusions:

“How can reliable machine learning be applied to improve upon existing
business processes for high-stakes classifications?”

RML models can be trained to classify observations of a dataset and provide associated
reliability measures such as probability and robustness. In our specific context, we
conclude that an RML model can be incorporated in the existing infrastructure of
bol.com in order to further their business needs, thus achieving our research goal. Over
subsets with a high reliability score a model can achieve on-par or higher accuracy
than manual review. This allows for automation of manual labour, scalability benefits,
and externalisation of order classification as a service. For bol.com specifically, this
would contribute to their strategy of becoming the leading e-commerce platform.

Aside from providing concrete opportunities for bol.com to improve upon their busi-
ness, this case study also provides general insights into the applicability of RML in
high-stakes domains. We both validate and expand upon existing research in a real-
world context. The assessment of the models’ classifications shows that reliability
metrics allow for subsetting of a given model’s predictions in such a manner that
higher accuracy is achieved over a certain proportion (or cover) of the predictions.
This illustrates how reliable machine learning models can be implemented to improve
upon existing business processes through the following manners:

e Providing accurate predictions over a portion of the observations even when
overall predictive accuracy is lower than that of existing approaches.

e Allowing for a flexible accuracy/cover trade-off, where one can accept a decrease
in accuracy for an increase in cover or vice-versa.



6.3. Limitations 29

e Determining which observations are difficult to classify and therewith inferring
the latent difficulty variable of those observations.

e Eliciting features and feature combinations that allow for improvement of rules-
based systems and experts’ analytical skills.

These conclusions apply to the domain as a whole, thus extending the existing sci-
entific knowledge base. We have shown that robustness outperforms probability as a
reliability metric for CSPN and NB classifiers in the domain of fraud detection. We
furthermore demonstrated the novel capability of CSPNs calculating these measures
over datasets with continuous features, which extends their applicability to many new
domains.

6.3 Limitations

Even though this project yields tangible contributions to the general knowledge base
on RML, it has certain limitations. First of all, the project was conducted in a
post-hoc setting, only analysing data for which the eventual outcome was known.
Implementation in a live environment —while taken into consideration when selecting
data sources— was not studied in and of itself.

Furthermore, while we performed a comparison of three different ML techniques, the
comparison was by no means exhaustive. As such, we cannot say with certainty which
models and associated reliability metrics perform best under which circumstances. Ad-
ditionally, little feature selection was performed when training the models. Extensive
selection beyond an assessment of variability could improve the overall performance
of the models and affect the provided reliability metrics.

Lastly, the classifiers we created were all built upon existing business rules in place at
bol.com. While this showcases how RML techniques can be used to used to expand
upon existing business processes, it also impacts generalisability beyond the current
context. We did not demonstrate how (R)ML models could function as a stand-alone
system, and their continued performance in this context necessitates that the various
black- and whitelists from which the features are derived are kept up-to-date.

6.4 Future research

The research we conducted leaves a number of questions to be answered, and therewith
opportunities for continued research. While the XGB classifier achieved the best
performance using the probability metric, the other classifiers showed robustness to
be a better indicator of reliability. It would therefore be worth investigating whether
incorporating a robustness metric in other models (such as XGB) would be possible
and beneficial.

Furthermore, while this research produced a proof of concept, it did not yield a model
that was validated in a live environment. Continued research into the deployment
of RML models would produce insights into the real-world application of RML mod-
els. This would also document the final phase of CRISP-DM, completing the cycle.
Studying an RML model in production would also show the interaction effects with
the environment in which it is operating.
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Lastly, the applicability of this thesis’ findings could be studied in another context
than within bol.com. This would provide validation to our results and mitigate the
generalisability concerns.
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A schematic overview of the generic tasks (bold) and their outputs (italic) by phase
in CRISP-DM (Chapman et al., 2000):

Business Data Data : :
Understanding | Understanding | Preparation | Modeling | Evaluation ‘ Deployment
Determine Collect Initial Data Select Data Select Modeling Evaluate Results Plan Deployment
Business Objectives  Initial Data Collection | Rationale for Inclusion/ = Techniques Assessment of Data | Deployment Plan
Background Report Exclusion Modeling Technique Mining Results w.r.t.
Business Objectives Modeling Business Success Plan Monitoring and
Business Success Describe Data Clean Data Assumptions Criteria Maintenance
Criteria Data Description Data Cleaning Report Approved Models Monitoring and
Report Generate Test Design Maintenance Plan
Assess Situation Construct Data Test Design Review Process
Inventory of Resources | Explore Data Derived Attributes Review of Process Produce Final Report
Requirements, Data Exploration Generated Records Build Model Final Report
Assumptions, and Report Parameter Settings Determine Next Steps | Final Presentation
Constraints Integrate Data Models List of Possible Actions
Risks and Verify Data Quality  Merged Data Model Descriptions | Decision Review Project
Contingencies Data Quality Report Experience
Terminology Format Data Assess Model Documentation
Costs and Benefits Reformatted Data Model Assessment
Revised Parameter
Determine Dataset Settings
Data Mining Goals Dataset Description

Data Mining Goals
Data Mining Success
Criteria

Produce Project Plan

Project Plan

Initial Assessment of
Tools and
Techniques
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R code data pre-processing

library (tidyr)

library (stringr)

library (splitstackshape)
library (onehot)

library (mltools)

library (data.table)

# Import the datasets
# Separate months have separate CSVs, hence the binding

raw_functions <— read.csv2(file.choose(), sep = ",")
raw_functions <— rbind(raw_ functions, read.csv2(file.choose/()
— , sep = ","))

raw_payment <— read.csv2(file.choose())
raw_payment <— rbind(raw_payment, read.csv2(file.choose()))

raw_csupport <— read.csv2(file.choose(), sep = ",")

raw_csupport <— rbind(raw_csupport, read.csv2(file.choose(),
— sep = ","))

raw_orderdata <— read.csv2(file.choose(), sep = ";")

raw_orderdata <— rbind(raw_orderdata, read.csv2(file.choose/()
— , sep = ";"))

# Get a list of all functions and their output types
functions <—unique(raw functions|, c("Name", "functionType")
= 1)

# Get a list of unique orders and their associated function
— outputs

# Make a copy of the raw data

functionExecutions <— raw_functions

functionExecutions$Name <— paste(functionExecutions$Name,
< functionExecutions$functionType, sep = "-")

# Delete function ezxecutions with differing results

# Some functions return a different wvalue depending on the
— parameter, but we don’t have the parameters. Therefore
— these functions don’t provide any info to us.
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functions double outputs <— functionExecutions|[, c("
— orderReference", "Name", "Result")|
functions double outputs <— unique(functions double outputs)
functions double _outputs <— functions double outputs|
— dupllcated(functlons double outputs[ 1:2]) |
— duplicated (functions double outputs|, 1:2], fromLast =
— TRUE) , |
functions double outputs <— unique(functions double outputs]|,
—  "Name" |)

# Remove these wuncertain results from our dataset
functionExecutions <— functionExecutions|!functionExecutions$
< Name %in% functions double outputs, |
functionExecutions | functionExecutions = "true"| <— TRUE
functionExecutions | functionExecutions = "false"| <— FALSE

# Combine rows to have Function QOutputs as columns with Order
— _ID as a key

functionExecutions <— functionExecutions|,c("orderReference",
< "Name", "Result")]

functionExecutions <— unique(functionExecutions)

functionExecutions <— reshape (functionExecutions, idvar =
< orderReference", timevar = "Name", direction = "wide")

colnames (functionExecutions)[1] <— "ORDER ID"

n"

# Data types

functionExecutions[,2:ncol(functionExecutions)| <— sapply(
< functionExecutions|,2:ncol(functionExecutions)|, as.
— character)

functionExecutions[,2:ncol(functionExecutions)| <— sapply (
< functionExecutions|,2:ncol(functionExecutions)|, as.
— logical)

# Add the orderdata, change their names for ease of use.
orders <— raw_orderdata
orders|[, c("Ind.fraud", "Orders..Dist....")]| <— NULL

colnames (orders) [2] <— "ORDER ID"
colnames(orders) [3] <— "CITY SHIPMENT"
colnames (orders) [4] <— "ACCOUNT TYPE"
colnames(orders) [5] <— "PICKUP_LOCATION"
colnames (orders) [6] <— "CANCELLATION REASON"
colnames(orders) [7] <— "GPC"

colnames (orders) [8] <— "TOTAL PRICE"
colnames (orders) [9] <— "DELIVERY METHOD"
colnames(orders) [10] <— "CUSTOMER ID"
colnames(orders) [11] <— "DATE FIRST ORDER"
colnames (orders) [12] <— "GENDER"

colnames (orders ) [13] <— "DATE OF BIRTH"
colnames(orders) [14] <— "PAYMENT METHOD"
colnames (orders) [15] <— "SELLER_ID"
colnames(orders) [16] <— "SELLER TYPE"
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# Convert to proper datatypes and clean up some data

orders$DATE OF BIRTH <— as.Date(orders$DATE OF BIRTH, "%d—%m
— —%Y")
orders$DATE FIRST ORDER <— as.Date(orders$DATE FIRST ORDER, "

< %d—Y-%Y")

# Deleted accounts ("forgotten")
# Data from these accounts was scrambled. Change these wvalues
— to NA to reflect this.

for (i in l:nrow(orders)) {
gender <— orders[i, "GENDER"|
dfo <— orders|[i, "DATE FIRST ORDER'|

if (dfo =— "9999-09-09" | is.na(dfo)){orders[i, "DATE FIRST
— ORDER"| <— NA}
if ((gender != "M" & gender != "F") | is.na(gender)){

orders[i, "GENDER"| <— NA

#Deal with removed accounts (scrambled personal data)
if (orders|i, "DATE OF BIRTH"| — "1900—-01-01" | is .na(
<~ orders|i, "DATE OF BIRTH"|)){
orders [i, "DATE OF BIRTH"| <— NA
orders [i, "CITY SHIPMENT"| <— NA

}

}

if (orders|i, "SELLER ID"| — —1 | is.na(orders|i, "SELLER
— ID"])){
orders [i, "SELLER ID"| <— NA

}

if (orders|i, "PICKUP LOCATION"| — "NONE" | is.na(orders|i,

< "PICKUP_LOCATION"]) ) {
orders[i, "PICKUP LOCATION"| <— NA

}

}
orders$GENDER <— droplevels (orders$GENDER)

orders$CITY SHIPMENT <— droplevels (orders$CITY SHIPMENT)
rm(gender , dfo, 1)

# And mow we merge the function results with the payment data
payment <— raw_payment

<— "ORDER ID"
< "OPEN"_

colnames (payment) [1]
[2]
[3] <= "WO FRAUD"
[4]
[5]

( )
colnames (payment)
colnames (payment) ) |
( ) [4] <~ "TOTAL PRICE"
( ) <— "WO CHARGEBACK"

colnames ( payment
colnames (payment
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colnames (payment) [6| <— "WO PHISHING"
colnames (payment) [7| <— "REMINDER LEVEL"

payment |, c(1:7)] <— sapply(payment|[, c(1:7)|, as.character)
payment |, c(1:7)] <— sapply(payment|[, c(1:7)]|, as.numeric)

# We don’t really care why a write—off was made, so we
— combine these into a single feature. Loss is WO + not
— patd.

payment$WO TOTAL <— payment$WO FRAUD + payment$WO CHARGEBACK
— + payment$WO PHISHING

payment$TOTAL LOSS <— payment$WO TOTAL + payment$OPEN

# Get a list of ORDER IDs and whether they have been paid for
— .

paymentUnpaid <— payment|, c("ORDER ID", "TOTAL PRICE", "
—» TOTAL LOSS", "WO PHISHING") |

paymentUnpaid$UNPAID <— paymentUnpaid$TOTAL LOSS > 0

payment Unpaid SACCOUNT TAKEOVER <— paymentUnpaid$WO PHISHING >
— 0

paymentUnpaid <— paymentUnpaid|, c(1, 5, 6)]

# Match order data with payment data
orders <— merge(orders, paymentUnpaid, by = "ORDER ID", all =
— TRUE)

# Combine CSupport data with rest

# We ditch all information except for "has this customer
— contacted CS?"

# Reasons are not important.

csupport <— raw_csupport |, 1:2]

colnames (csupport) [1] <— "ORDER ID"

colnames (csupport) [2] <— "CONTACTED CS"

csupport | ,2] <— TRUE

orders$CONTACTED CS <— orders$ORDER ID %in% csupport$ORDER ID

# Include wverdict of fraud: did the analyst label it as such?
orders$VERDICT ANALYST <— orders$CANCELLATION REASON %in% c ("
— FRAUD BE", "FRAUD CS")

# Drop rows where ORDER ID is NA (some silly cleaning)
orders <— orders|—which(is .na(orders|, "ORDER ID"])) ,|

— # exclude rows which are empty
orders <— orders|—which(is.na(orders|, "ACCOUNT TYPE"])) ,|
— # exclude rows without order data

# Combine with fraud function execution data
orders <— merge(orders, functionExecutions, by = "ORDER ID")

# Analyse where we expect accounts to have been taken owver
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# This affects how we perceive a CS case: takeover customers
— tend to contact Bol.com even if their order was
— rightfully cancelled.

orders$ACCOUNT TAKEOVER <— orders$ACCOUNT TAKEOVER | (orders$
— ‘Result.OrderApplicantEmailDiffersPreviousOrder—
— blacklist ¢ & orders$‘Result.
< OrderIpDiffersFromKnownOrders—blacklist ‘)

# Labeling: Determine whether an order was actually
— fraudulent

labelFraud <— function (row) {
# If the analyst says it’s fraudulent ...
if (row$VERDICT ANALYST) {
# Return false if CS was contacted, unless it ’s related
— to account takeover
if ((is.na(row$SACCOUNT TAKEOVER) | row$ACCOUNT TAKEOVER —
— FALSE) ){
return (!row$CONTACTED CS)
} else {
return (TRUE)
}

# If the analyst approved the order, return TRUE if it
— wasn’t paid for
} else if(is.na(row$UNPAID) | !'row$UNPAID) {
return (FALSE)
} else if (row$UNPAID){
return (TRUE)

}

return (NA)

}

# Loop the function over all orders. 0 points for style.
for (i in 1:length(orders|, 1])){
orders[i, "IS FRAUD"| <— labelFraud(orders[i, |)

rm(1i)

# Some last formatting

orders [which (orders$DELIVERY METHOD — "") | "DELIVERY METHOD"
— | <= NA

orders$CITY SHIPMENT <— toupper (orders$CITY SHIPMENT)

orders$CITY SHIPMENT <— gsub("["A-Z|", "", orders$CITY
— SHIPMENT)

orders [which(orders$CITY SHIPMENT — "")  "CITY SHIPMENT"| <-
— NA

orders <— droplevels(orders)
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# Select the data which can be used for training and testing
— of the model.

output <— orders [which(orders3CANCELLATION REASON != "FRAUD
< BE"), c(2:5, 7:16, 21:76)]

# We now have all features that could be used for training
— and testing.

# There are, however, a few features left we don’t want to
< wuse (or aren’t available in the cloud as of now)

# So we remove these features. As it turns out, they don’t
— have a huge impact on accuracy anyway.

output|, c("Yrmonth", "CITY SHIPMENT",6 "PICKUP LOCATION", "
— GPC", "CUSTOMER ID", "SELLER ID", "GENDER", "DATE FIRST
— _ORDER", "DATE OF BIRTH")| <- NULL

output$ACCOUNT TYPE <— output$ACCOUNT TYPE — "B"

# Remove features with little wvariation and convert to 1s and
—  0Os.

output [, nearZeroVar (output, freqCut = 100/0)] <— NULL

#output <— as.data.frame(one_hot(as.data.table (output), cols
— = ¢(3:39), naCols = TRUE, dropCols = TRUE))

output <— as.data.frame(predict (onehot (output,
— stringsAsFactors = TRUE, max levels = 30, addNA — TRUE)
— , output))

output$VERDICT ANALYST <— orders [which(orders$CANCELLATION
5 REASON != "FRAUD BE'"), "VERDICT ANALYST']

# Create stratified train and test sets

temp <— stratified (output, "IS FRAUD", .8, bothSets = TRUE)
train data <— as.data.frame(temp|[[1]])

test data <— as.data.frame(temp|[[2]])

resMAN <— test data|, c("IS FRAUD", "VERDICT ANALYST") ]
train_data$VERDICT ANALYST <— NULL
test data$VERDICT ANALYST <— NULL

write.csv2(resMAN, file = "resultsManual-noBE.csv")
write.csv2(train data, file = "trainset-noBE.csv")
write.csv2(test data, file = "testset noBE.csv")
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Feature distributions of dataset

feature FALSE TRUE NA feature FALSE TRUE NA
f1 192703 7236 0 f22 38211 73929 87799
2.1 199086 853 0 23 119585 7032 73322
2.2 184718 15221 0 f24 23204 957 175778
2.3 17979 181960 0 25 179795 7643 12501
f2.4 197412 2527 0 f26 199861 78 0
2.5 166226 33713 0 27 58561 440 140938
2.6 189176 10763 0 f28 11181 1609 187149
2.7 190754 9185 0 29 186524 7939 5476
f2.8 199812 127 0 30 13725 1943 184271
2.9 199877 62 0 f31 199732 207 0
f2.10 56379 143560 0 £32 23873 14732 161334
f2.11 199937 2 0 £33 28770 28857 142312
3.1 177031 22908 0 34 158934 14638 26367
£3.2 70706 129233 0 f35 21618 38604 139717
3.3 197328 2611 0 36 170570 2604 26765
3.4 154752 45187 0 f37 90180 8567 101192
f4 121402 71298 7239 38 3503 1854 194582
f5 190832 9107 0 f39 19126 9035 171778
f6 192417 32 7490 f40 1815 811 197313
f7 185313 2013 12613 f41 7088 162 192689
f8 183971 391 15577 f42 27164 2578 170197
f9 96451 10946 92542 f43 1512 1865 196562
f10 199353 20 566 fa4 166030 16121 17788
fi1 192315 164 7460 f45 199883 56 0
f12 199936 3 0 f46 172121 27809 9
f13 56231 9036 134672 f47 199725 214 0
f14 34037 1 165901 f48 75710 96155 28074
f15 139803 60034 102 f49 566 193077 6296
f16 197139 2457 343 50 3437 110323 86179
f17 189685 2764 7490 51 199877 62 0
f18 23988 14620 161331 52 6244 174248 19447
f19 199898 41 0 53 22889 1241 175809
20 164627 8160 27152 54 64105 18009 117825

f21 199244 566 129
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R code training XGB

library (dplyr)

library (xgboost)

library (caret)

library (splitstackshape)

dtrain <— xgb.DMatrix(data = as.matrix(train_data[, —ncol(
— train data)]|), label= train data|, ncol(train data)|)

dtest <— xgb.DMatrix(data = as.matrix(test data|, —ncol(test

— data)|), label= test data|, ncol(test data)])
test labels <— test data|, ncol(test data)]

# Train model
model <— xgboost (data = dtrain ,
objective = "binary:logistic",
nround = 1000,
eta = 0.01,
max.depth = 20,
min child weight = 10,
early stopping rounds = 100,

45

scale pos weight = sum(train labels — FALSE

— )/sum(train labels — TRUE) ,

#alpha = 3,
lambda = 2,
#gamma = 5,
verbose = 1,
missing = —2147483648,

#num_parallel tree = 10,
#colsample _bytree = 0.8,
print every n = 50

)

# Generate predictions for our held—out testing data
pred <— predict(model, dtest)

# Get & print the classification error

accuracy model <— 1 — mean(as.numeric(pred > .5) != test
— labels)

print (accuracy model)
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write.csv2(pred, file = "resultsXGBoost—noBE.csv")

# FEverything below here is just to wvisualise performance:

# Plot a matrix showing threshold and accuracy for every
— threshold

# E.qg.: if the model classifies everything where p < .25 | p
— > .75, its cover is already .85 with an accuracy of .97

leaveOutMiddle <— function(threshold){
pred certain <— vector (mode="numeric", length=0)
labels certain <— vector (mode-="numeric", length=0)

for(n in 1:length(pred)){
val <— pred|[n]
if(val < threshold | val > (I—threshold)){
pred certain <— c(pred certain, val)
labels certain <— c(labels certain, test labels|n])

}
}

accuracy model certain <— 1 — mean(as.numeric(pred certain
< > .5) != labels certain)
work done by model <— (length(pred certain) / length(pred))

return(c(threshold , work done by model, accuracy model
< certain))

}

# level of detail: 100 for 1% steps, 1000 for .1% steps

level of detail = 100

certainty by threshold <— matrix(data = 0,nrow = level of
< detail/2, ncol = 3)

colnames(certainty by threshold) <— c("OuterBounds",
— WorkloadHandledByModel" , "PredictionAccuracy")

n

for (n in l:nrow(certainty by threshold)){
res <— leaveOutMiddle(n/(level of detail))
certainty by threshold[n,| <- res

}

# Plot the outcome

par (mar—c (5,4 ,4,5) + 0.1)

plot (certainty by threshold|[,1], certainty by threshold|,2],
— type="1", xlab="Outer_threshold", ylab = "Work_handled_
< by_model")

par (new = T)



Appendix D. R code training XGB 47

plot (certainty by threshold|,1], certainty by threshold]|,3],
— type="1", xlab=NA, ylab = NA, axes = FALSE, col = ’red’

=)
axis(side = 4, col.axis = ’red’, col.ticks = ’'red’)
mtext(side = 4, ’'Accuracy_of_predictions’, line = 3, col =~
< red’)

abline(h = 0.94, col = ’blue’, lty=2)
rm(level of detail, res, n)
# Plot feature importance

importance matrix <— xgb.importance (colnames(train data),
< model = model)

xgb.plot.importance (importance matrix, rel to first = TRUE,
— xlab = "Relative_feature_importance XGB_classifier",
< top n = 10, cex = .7)

xgb.plot . tree (model = model)
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R code training NB and SPN

require (igraph)
require(cluster)
require (ROCR)
require(caret)
require (onehot)
require(doParallel)
require (dplyr)

)

source( 'spn.value.r’)

source( 'spn.value.int.r’)

source( 'spn.evidence.r )
Y

(
(
(
source( 'spn.evidence.int.r’)
(
(
(
(

Y

Y

)

source( 'spn.learn.r’)
source( 'spn.print.r’)
source( 'spn.test.r’)
source( 'spn.utils.r’)
Train <— read.csv2(file.choose(), sep = ";")
Test <— read.csv2(file.choose(), sep = ";")

Train$X <— NULL
Test$X <— NULL

All <— rbind(Train, Test)

Al1$TOTAL PRICE <— as.numeric(as.character (Al11$TOTAL PRICE) )

A1I$TOTAL PRICE <—( A11$TOTAL PRICE-min( A11$TOTAL PRICE) )/ (max
s (AII$TOTAL PRICE-min( A11$TOTAL PRICE)))

All[All
All[All

— TRUE| <— 1
—— FALSE| <~ 0
for (i in 1l:ncol(All)){
All[which(All[, i] — —2147483648), i] <— median(All [which(
— All[, i] > —-1), i])
}

All <— All%%select (—ACCOUNT TYPE,ACCOUNT TYPE)
All <— All%%select (—IS_FRAUD, IS FRAUD)
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All[, 2:ncol(All)] <— All[, 2:ncol(All)] + 1

All[|, nearZeroVar(All, freqCut = 99/1)| <— NULL
All <~ as.matrix(All)

#outputSPN <— spn.cv(Train,nfolds=2,classcol=ncol(Train),
— werb = TRUE, height = 2)

#cat(’pr 7, mean(res[,3]), mean(res[,1]==res|[,2]),
— mean(res[res[,1][==res[,2],3]), mean(res[res[,1]'=res
— [,2],8]), sum(res[,1]'=res[,2]), sum(res[,1]==res[,2]),
(3N J\ni)

#cat (’'rob 7, mean(res[,4]), mean(res[,1]==res[,2]),
— mean(res[res[,1]==res[,2],4]), mean(res[res[,1]!=res
= [,2].4]), ’ln’)

# Train

summ <— spn.learncats (All, classcol=ncol(All))

spn3 <— spn.learn (summ$data|—(nrow(Train)+1:nrow(All)) ,|,ncat

— =summ$ncat , maxv=summ$maxv, minv=summ$minv , verb=TRUE,
< classcol=ncol(All), thr = 0.01)

spnNB3 <— spn.learn (summ$data|—(nrow(Train) +1l:nrow( All)) .|,
— ncat=summ$ncat , maxv=summ$maxv, minv=summ$minv , verb=TRUE,

— classcol=ncol(All),thr=0.01,height=2)

# Test

resNB3 <— as.data.frame(spn.predict (spnNB3, All
<~ [159952:199939, ,drop=FALSE|, classcol = ncol(All), run.
— 1ob=TRUE, ncores=4,tfname="tfname"))

resSPN3 <— as.data.frame(spn.predict(spn3, All
— [159952:199939, ,drop=FALSE|, classcol = ncol(All), run.
< 1rob=TRUE, ncores=4,tfname="tfname"))
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ISIPTA 2019 paper submission

The following short paper was published as Rob C. De Wit et al. “Robustness in
Sum-Product Networks with Continuous and Categorical Data”. In: Proceedings of
the 2019 International Symposium on Imprecise Probabilities. 2019.
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Abstract

Sum-product networks are a popular family of proba-
bilistic graphical models for which marginal inference
can be performed in polynomial time. After learning
sum-product networks from scarce data, small varia-
tions of parameters could lead to different conclusions.
We adapt the robustness measure created for categori-
cal credal sum-product networks to domains with both
continuous and categorical variables. We apply this
approach to a real-world dataset of online purchases
where the goal is to identify fraudulent cases. We em-
pirically show that such credal models can better dis-
criminate between easy and hard instances than simply
using the probability of the most probable class.

Keywords: Robustness, Sum-Product Networks

1. Introduction

Sum-Product Networks (SPNs) are a class of probabilis-
tic graphical models that allow for the explicit representa-
tion of context-specific independence [9] while retaining
efficient marginal inference [7, 10]. An SPN encodes an
arithmetic circuit [3]: internal nodes perform (weighted)
sums and multiplications, while leaves represent variable
assignments (or marginal distributions of continuous vari-
ables). SPNs can be seen as a class of mixture of univariate
distributions with tractable inference [4, 8, 11].

SPNs learned from data may generalise poorly and
produce unreliable and overconfident conclusions. When
variables are categorical, Credal Sum-Product Networks
(CSPNs), a class of imprecise probability models, can be
used to perform a (computationally efficient) robustness
analysis of SPNs for classification [1, 2, 5, 6]. However,
often real-world data comes with both discrete and continu-
ous variables, which can be used to infer an SPN. We extend
CSPNs towards domains with continuous variables. A CSPN
is an SPN where the weights associated with sum nodes
(i.e., the numerical parameters of the model) are allowed to
vary inside a closed and convex set. Continuous variables
are represented in leaf nodes and are assumed to be nor-
mally distributed. An experimental analysis is conducted
using data from a major online retailer, where the goal is to

© R.C. de Wit, C.P. de Campos, D. Conaty & J. Martinez del Rincon.

discriminate between fraudulent and legitimate orders. This
is a multi-million market and frauds can be very costly.

2. Continuous and Categorical CSPNs

The evaluation of an SPN (i.e., the computation of its value)
for a given configuration of variables can be performed by
a bottom-up message propagation scheme whereby each
node sends to its parent its value. Leaf nodes send a density
value (continuous variables) or the result of the indicator
function (categorical variables). The whole procedure takes
linear time and space. Conditional probabilities for categor-
ical variables can be obtained in linear time by evaluating
the network for each value of the query variable and the
given evidence (then normalising the result). For CSPNs,
more intricate algorithms have been devised to compute the
expectation of any function over a single categorical vari-
able. They can be promptly adapted to handle continuous
variables, since the propagation of density values is similar
to the propagation of probability values. In particular, SPNs
(and their inferences) do not need to be normalised, so one
needs simply to take the continuous leaf nodes and com-
pute their density values, and then to “send” these values
to their parents in the SPNThis is the only required adap-
tation, while the procedure in the internal nodes remains
the same as for categorical CSPNs and the algorithms for
credal classification work just as designed before in the
literature [5]. In fact, this result can be proven by realis-
ing that observed continuous variables act similarly to an
observed binary categorical variable, and so we obtain the
following theorem.

Theorem 1 Computing lower conditional expectations of
a function over a single categorical variable in CSPNs with
both categorical and continuous variables takes at most
polynomial time when each internal node has at most one
parent.

Because of that, credal classification (i.e., computing
the set of non-dominated classes) can be done in poly-
nomial time too. On par with previous work [5], we use
CSPNs as means to define the robustness level of an issued
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Figure 1: Graphs show cover, that is, the percentage of the cases that were classified if one only classifies the cases with
measure (either probability or robustness value) above the given threshold, and accuracy over those cases. The
final part of the curves is non-monotonic likely due to small sample size (very low cover).

classification as the most imprecise CSPN (based on the
e-contamination of the weights) for which a single class
is non-dominated (one could also define some contamina-
tion for the continuous leaves, for instance by placing an
interval of length € around the precisely learned mean of
the Gaussian distributions). The overall procedure runs a
bisection with €-contaminated CSPNs until converging to
the (numerically approximate) maximum € such that the
prediction from the model is still unique (that is, all SPNs
represented by the CSPN yield the same class prediction).

3. Case Study

Currently all orders placed at a major online retailer are
evaluated through sophisticated hand-crafted business rules.
The business rules can result in three outcomes: approval,
outright cancellation, and manual review. A team of busi-
ness analysts works around the clock to approve or cancel
the orders that were flagged for manual review. For this
case study, 36707 orders were collected and analysed, each
of which was flagged for manual review by the business
rules. For each of these orders, we collected the variables
utilised by the existing expert system, the payment data

for those orders, and the customer support data. This ef-
fort resulted in a total of 109 features. From those orders,
the business analysts approved 18739 (51%), while 17968
(49%) were determined to be fraudulent and subsequently
cancelled. The orders were labelled as follows: true posi-
tive: cancelled by analyst without customer complaint; false
positive: cancelled by analyst, but the customer contacted
customer support with a reasonable explanation; true neg-
ative: approved and subsequently paid for; false negative:
approved, but not paid for (incurring loss to the company).
The analysts achieved an accuracy of approximately 94%
in this dataset. It should be noted, however, that the true
accuracy could be lower. Not all customers might contact
customer support upon cancellation of their order. Some
might opt to forego their order, or simply order from a
competitor.

We selected the 24 most important features to build an
SPN: one continuous (that is, the price) and 23 Boolean vari-
ables. The SPN was learned using the procedure of [4], with
the exception that independence tests are performed using
one of Chi-square, Kruskal-Wallis or Kendall (according to
the variables involved), clustering is done with the Gower
distance (so as to take into account both categorical and
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continuous variables), and leaves related to continuous vari-
ables are forced to be normally distributed (in this study,
we have used a single continous variable). Then the ro-
bustness value is calculated per testing instance using the
same approach as in [6]. Both robustness and probability
of most probable class are used in order to discriminate
the quality of the predictions. Figure 1 shows the results
obtained by issuing a classification only when the model
output is deemed robust, that is, either the probability value
of the SPN (first row of graphs) or the robustness value
from the CSPN (second row of graphs) for that particular
instance was above a threshold (all possible thresholds are
plotted). This is equivalent to saying that we refrain from
guessing for those cases of greater indecisiveness. Based
only on probabilities, no value of threshold would lead to
classification results as accurate as the business analyst.
Note that the analyst does not know which instances are
robust or not, so they need to predict all of them. On the
other hand, using robustness from CSPNs, if we only issued
a decision when robustness is above the threshold of 0.1,
then the model achieves the same performance as the ana-
lyst and would cover (that is, issue predictions for) about
15% of all orders. This can potentially benefit the company
by reducing the time required to analyse orders flagged
for review. This is a promising preliminary study of CSPNs
with continuous and categorical variables. Such capability
extends the applicability of CSPNs to many new domains.

References

[1] D. Conaty, D. D. Mau4, and C. P. de Campos. Approx-
imation complexity of maximum a posteriori infer-
ence in sum-product networks. In Proceedings of the
Thirty-Third Conference on Uncertainty in Artificial
Intelligence, pages 322-331, 2017.

[2

—

D. Conaty, J. Martinez del Rincon, and C. P. de Cam-
pos. Cascading sum-product networks using robust-
ness. In Proceedings of Machine Learning Research
72, pages 73-84, 2018.

[3

—

A. Darwiche and G. M. Provan. Query DAGs: A
practical paradigm for implementing belief-network
inference. In Proceedings of the Twelfth Annual Con-
ference on Uncertainty in Artificial Intelligence, pages
203-210, 1996.

[4

[ina)

R. Gens and P. Domingos. Learning the structure of
sum-product networks. In Proceedings of the Thirti-
eth International Conference on Machine Learning,
pages 873-880, 2013.

[5] D. D. Maud, D. Conaty, F. G. Cozman, K. Poppen-
haeger, and C. P. de Campos. Robustifying sum-
product networks. International Journal of Approxi-
mate Reasoning, 101:163-180, 2018.

[6] D. D. Maud, F. G. Cozman, D. Conaty, and C. P.
de Campos. Credal sum-product networks. In Pro-
ceedings of the Tenth International Symposium on Im-
precise Probability: Theories and Applications, pages
205-216, 2017.

[7] A. Nath and P. Domingos. Learning tractable proba-
bilistic models for fault localization. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelli-
gence, pages 1294-1301, 2016.

[8

[l

R. Peharz, R. Gens, F. Pernkopf, and P. Domingos.
On the latent variable interpretation in sum-product
networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 1-14, 2016.

[9] H. Poon and P. Domingos. Sum-product networks:
A new deep architecture. In Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence,
pages 337-346, 2011.

[10] F. Rathke, M. Desana, and C. Schnorr. Locally adap-
tive probabilistic models for global segmentation of
pathological oct scans. In Proceedings of the Inter-
national Conference on Medical Image Computing
and Computer Assisted Intervention, pages 177-184,
2017.

[11] H. Zhao, M. Melibari, and P. Poupart. On the rela-
tionship between sum-product networks and Bayesian
networks. In Proceedings of the 32nd International
Conference on Machine Learning, pages 116-124,
2015.



95

Appendix G

Classifiers’ performance

The following visualisations show the accuracy of the NB and CSPN classifiers com-
pared against the performance of manual review over the exact same instances. The
visualisations are provided for subsets of the predictions based upon both of the clas-
sifiers reliability metrics: probability and robustness.
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R code model comparison

2

# Import models’ results

rawNB <— read.csv2(file.choose())
rawSPN <— read.csv2(file.choose())
rawXGB <— read.csv2(file .choose())
rawMAN <— read.csv2(file.choose())

# Remove rownames
rawNB|,1] <— NULL
rawSPN | ,1] <— NULL
rawXGB| ,1] <— NULL
rawMAN| ,1| <— NULL

# Create template for processing

resMAN <— data.frame(matrix(ncol = 5, nrow = nrow (rawMAN) ) )
colnames (resMAN) <— c("Actual", "Predicted", "Correct", "Prob
s n ||R0b||>

resMAN$ Actual <— rawMAN|[, 1] > 0

# Copy layout for other models
resXGB <— resMAN

resSPN <— resMAN

resNB <— resMAN

resNB$Predicted <— rawNB[, 2] > 1
resNB$Correct <— resNB|[, 1] = resNB|[, 2]
resNB$Prob <— rawNB|[, 3]

resNB$Rob <— rawNB|[, 4]

resSPN$Predicted <— rawSPN[, 2] > 1
resSPN$Correct <— rawSPN|[, 1] = rawSPN|[, 2]
resSPN$Prob <— rawSPN|, 3]

resSPN$Rob <— rawSPN|[, 4]

resMAN$Predicted <— rawMAN$VERDICT ANALYST — 1
resMAN$ Correct <— rawMANSVERDICT ANALYST — rawMAN$IS FRAUD

resXGB$Predicted <— rawXGB >= 0.5
resXGB$Correct <— resXGB[, 1] =— resXGB[, 2]
resXGB$Prob <— rawXGB|[, 1]



60 Appendix H. R code model comparison

resXGB | which (resXGB$Prob < 0.5), "Prob"| <— 1— resXGB|[which(
— resXGB$Prob < 0.5), "Prob"|

# Convert to numerics

resNB$Prob <— as.numeric(as.character (resNB$Prob))
resNB$Rob <— as.numeric(as.character (resNB$Rob))
resSPN$Prob <— as.numeric(as.character (resSPN$Prob))
resSPN$Rob <— as.numeric(as.character (resSPN$Rob))
resXGB$Prob <— as.numeric(as.character (resXGB$Prob))

# Create confusion matrices
confusionMatrices <— data.frame(matrix(ncol = 6, nrow = 4))
colnames(confusionMatrices) <— c("Model", "Accuracy", "IN" "
s FN" HFP" HTPH)
Y I

getConfusion <— function(name, results){

length <— nrow(results)

TP <— (nrow(results|[results$Actual = TRUE & results$
< Predicted = TRUE, |)) / length

FP <— (nrow(results|[results$Actual — FALSE & results$
< Predicted = TRUE, |)) / length

TN <— (nrow(results|[results$Actual = FALSE & results$
< Predicted = FALSE, |)) / length

FN <— (nrow(results|[results$Actual = TRUE & results$
— Predicted = FALSE, |)) / length

Accuracy <— (TP + TN)

return (c(name, Accuracy, TN, FN, FP, TP))
}

confusionMatrices[1, | <— getConfusion ("Manual", resMAN)
confusionMatrices |2, | <— getConfusion ("XGBoost", resXGB)
confusionMatrices [3, | <— getConfusion ("SPN", resSPN)
confusionMatrices [4, | <— getConfusion ("NB", resNB)

# Calculate accuracy by cover
GetAccuracyByCover <— function(data, measure, cover){
# Measure should be 4 for probability and 5 for robustness
temp <— data|which(data|, measure| > quantile(data]|,
< measure|, 1 — cover)), |
return (mean(temp$Actual = temp$Predicted))

}

levelOfDetail <— 100

accuraciesByCover <— data.frame(matrix(ncol = 7, nrow =
— levelOfDetail))
colnames (accuraciesByCover) <— c("Cover", "Manual", "NB-prob"

< , "NB-rob", "SPN—prob", "SPN-rob", "XGB-prob")

for (i in 1:levelOfDetail){



Appendix H. R code model comparison 61

}

cover <— i / levelOfDetail

accuraciesByCover|i, "Cover"| <— cover

accuraciesByCover[i, "Manual"| <— confusionMatrices|[1,
< Accuracy" |

accuraciesByCover|[i, "NB-prob"| <— GetAccuracyByCover (resNB
< , 4, cover)

accuraciesByCover[i, "NB-rob"| <— GetAccuracyByCover (resNB,
— b5, cover)

accuraciesByCover|[i, "SPN-prob"| <— GetAccuracyByCover (
— resSPN, 4, cover)

accuraciesByCover[i, "SPN-rob"| <— GetAccuracyByCover (
— resSPN, 5, cover)

accuraciesByCover|[i, "XGB-prob"| <— GetAccuracyByCover (
— resXGB, 4, cover)

n

accuraciesByCover|accuraciesByCover = "NaN"| <— NA

# Calculate manual performance given another measure

manualPerformanceByModel <— function(data, measure = 4, lod =
< 100){
df <— data.frame(matrix(ncol = 4, nrow = lod))
colnames (df) <— c("Cover", "ModelAccuracy", "ManualAccuracy
< ", "CombinedAccuracy")

for (i in 1:lod){
cover <— i / lod

tempModel <— data|which(data|, measure| > quantile(data|,

< measure|, 1 — cover)), |

tempManual <— resMAN|[—which(data|, measure| > quantile(
— data|, measure|, 1 — cover)), |

accuracyModel <— mean(tempModel$Actual =— tempModel$
< Predicted)

accuracyManual <— mean(tempManual$Actual — tempManual$

< Predicted)

accuracyCombined <— (accuracyModel % cover) + (
< accuracyManual % (1 — cover))

df[i, 1| <— cover

df[i, 2| <— accuracyModel
df[i, 3| <— accuracyManual
df|[i, 4| <— accuracyCombined

}

df{lod, 3] <— NA
return (df)
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impactManualFromXGB <— manualPerformanceByModel (resXGB,
— measure = 4, lod = 100)

impactManualFromNBProb <— manualPerformanceByModel (resNB |
— measure = 4, lod = 100)

impactManualFromNBRob <— manualPerformanceByModel (resNB
— measure = 5, lod = 100)

impactManualFromSPNProb <— manualPerformanceByModel (resSPN ,
< measure = 4, lod = 100)

impactManualFromSPNRob <— manualPerformanceByModel (resSPN |
< measure = 5, lod = 100)

# Calculate manual accuracies over the same instances as the
— models

manualPerformanceOverSamelnstances <— function(data, measure
— = 4, lod = 100){

df <— data.frame(matrix(ncol = 3, nrow = lod))
colnames (df) <— c("Cover", "ModelAccuracy", "ManualAccuracy
s ")

for(i in 1:lod){
cover <— i / lod

tempModel <— data|which(data|, measure| > quantile(data]|,

< measure|, 1 — cover)), |

tempManual <— resMAN|which(data|, measure| > quantile(
< data|, measure|, 1 — cover)), |

accuracyModel <— mean(tempModel$Actual = tempModel$
— Predicted)

accuracyManual <— mean(tempManual$Actual = tempManual$

— Predicted)

df[i, 1] <— cover
df|i, 2| <— accuracyModel
df[i, 3] <— accuracyManual

}

return (df)

}

sameCoverManual AndXGB <— manualPerformanceOverSamelnstances (
— resXGB, 4, 100)
sameCoverManualAndNBProb <—
— manualPerformanceOverSamelnstances (resNB, 4, 100)
sameCoverManual AndNBRob <— manualPerformanceOverSamelnstances
— (resNB, 5, 100)
sameCoverManual AndSPNProb<—
< manualPerformanceOverSamelnstances (resSPN, 4, 100)
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sameCoverManual AndSPNRob <—
< manualPerformanceOverSamelnstances (resSPN, 5, 100)

# Get XGB results with varying levels of cutoff
resXGBVaried <— as.data.frame(matrix(data = NA, nrow = 100,
< ncol = 11))
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R code model comparison
visualisations

library (ggpubr)

colMAN <— "black"
colXGB <— "red"

colNB <— "forestgreen"
colSPN <— "blue"
linewidth <— 1

# Plot performance of wvarious metrics

plot .new ()

par (mar—=c(4,4,4,4), cex = 0.7)

plot (main = "Performance_of_reliability _metrics",
— accuraciesByCover$Cover, accuraciesByCover$Manual, type
— = "1", xlab = "Cover", ylab = "Accuracy", ylim = c(.8,
o 1))

lines (accuraciesByCover$Cover, accuraciesByCover$ ‘XGB-prob *,
— col = colXGB, type = "1", Ity = "solid", lwd =

— linewidth)
lines (accuraciesByCover$Cover, accuraciesByCover$ ‘NB-prob *,

— col = coINB, type = "1", Ity = "solid", Ilwd = linewidth
=)

lines (accuraciesByCover$Cover, accuraciesByCover$ ‘NB-rob ‘,
— col = colNB, type = "1", Ity = "dotted", lwd =

— linewidth)

lines (accuraciesByCover$Cover, accuraciesByCover$ ‘SPN—prob *,
— col = colSPN, type = "1", Ity = "solid", lwd =
< linewidth)

lines (accuraciesByCover$Cover, accuraciesByCover$ ‘SPN—rob *,
— col = colSPN, type = "1", Ity = "dotted", Ilwd =
< linewidth)

legend (x = "bottom", inset = .05,
bty = "n"
ncol = 3,
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legend = c("Manual", "XGB_probability", "NB_
— probability", "NB_robustness", "CSPN_probability

< ", "CSPN_robustness"),
col = c(colMAN, colXGB, colNB, colNB, colSPN, colSPN),
Ity = ¢("solid", "solid", "solid", "dotted", "solid",
— "dotted"),
lwd =1

)

# Plot impact of using the models/ metrics on manual
— performance

plotImpactOnManual <— function(data, metric = "NA", col ="
— red"){
title <— paste("Performance_of", metric, "and_its_

< impact_on_manual_accuracy")

plot .new ()
par (mar=c (5,4 ,4.,5) + 0.1)
plot (main = title, data|, 1], data|, 2|, type = "1",
— xlab = "Cover_of_model", ylab = "Accuracy",
— ylim = ¢(.8, 1), col = col)
lines(data|, 1], data|, 3|, col = "black", type = "1"
— , lty = "solid")
legend (x = "bottom", inset .05,
bty = "n",
ncol = 2,
legend = c("Manual", metric),
col = c("black", col),
Ity = ¢("solid", "solid"),
lwd = 3

}

# Plot performance of combined approaches:

# QOwverall accuracies if model handles X and analyst handles Y
plot .new ()

par (mar=c (5,4 ,4,5) + 0.1)

plot (main = "Performance_of_combined_approach:_model_and_
< manual" , impactManualFromXGB$Cover, impactManualFromXGB
< $CombinedAccuracy, type = "1", col = colXGB, xlab ="
< Cover_of_model", ylab = "Accuracy", ylim c(.8, 1))

lines (impactManualFromNBProb$Cover, impactManualFromNBProb$
< CombinedAccuracy, col = colNB, type = "1", lty "solid
— ", lwd = linewidth)

lines (impactManualFromNBRob$Cover, impactManualFromNBRob$
— CombinedAccuracy, col = colNB, type = "1", 1ty ="

< dotted", lwd = linewidth)

lines (impactManualFromSPNProb$Cover, impactManualFromSPNProb$
< CombinedAccuracy, col = colSPN, type = "1" Ity "
< solid", lwd = linewidth)
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lines (impactManualFromSPNRob$Cover, impactManualFromSPNRob$
— CombinedAccuracy, col = colSPN, type = "1", Ity ="
— dotted", lwd = linewidth)

legend (x = "bottom", inset = .05,
bty — Hnll
ncol = 3,
legend = c("XGB_probability", "NB_probability", "NB_

< robustness", "CSPN_probability", "CSPN_
< robustness"),

col = c(colXGB, colNB, colNB, colSPN, colSPN),

Ity = c("solid", "solid", "dotted", "solid", "dotted")
(% )

lwd = 3

# Plot performance of model and manual over same cases
plot .new ()

par (mar=c (4,4 ,4,4), cex = 0.7)

plot (main = "Accuracy_of_manual_and_XGBoost_probability _over_
— same_cases ", sameCoverManualAndXGB|, 1],
— sameCoverManualAndXGB|[, 2|, type = "1", xlab = "Cover",
< ylab = "Accuracy", ylim = ¢(.8, 1), col = "red")
lines (sameCoverManualAndXGB|[, 1|, sameCoverManualAndXGB|[, 3],
— col = "black", type = "1", Ity "solid")
plotDifferencePerformance <— function(data, metric "NA"
— col = "red"){
title <— paste("Performance_of", metric, "compared_to
< _manual_classification")
plot .new ()
par (mar=c(4,4,4,4), cex = 0.7)
plot (main = title , data|, 1], data|, 2|, type = "1",
— xlab = "Cover_of_model", ylab = "Accuracy",
— ylim = ¢(.82, 1), col = col)
lines (data|, 1], data|, 3|, col = "black", type = "1"
— , lty = "solid")
legend (x = "bottom", inset = .05,
bty = "n",
ncol = 2,
legend = c("Manual", metric),

col = c("black", col),
Ity = ¢("solid", "solid"),
lwd =1
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plotDifferencePerformance (sameCoverManualAndXGB, "XGB_
< probability")

plotDifferencePerformance (sameCoverManualAndNBProb, "NB_
< probability")

plotDifferencePerformance (sameCoverManual AndNBRob, "NB_
<> robustness")

plotDifferencePerformance (sameCoverManualAndSPNProb, "CSPN_
< probability")

plotDifferencePerformance (sameCoverManualAndSPNRob, "CSPN_
< robustness")
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