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Abstract

The last decade, the influence and the use of causal models is growing in
several scientific disciplines. Recently, Beckers & Halpern (2019) and Beckers,
Eberhardt & Halpern (2019) developed an account of abstraction for causal
models which makes it possible to go from a low-level causal model to a high-
level causal model, including interventions on the low-level and high-level causal
model. This thesis combines the theory of abstracting causal models with the
theory of Markov Equivalence Classes to come to an account of Markov Ab-
straction Equivalence Classes. A Markov Abstraction Equivalence Class is a
subset of a Markov Equivalence Class, generated by using the information of an
abstraction to eliminate models from the Markov Equivalence Class. Markov
Abstraction Equivalence Classes reduce the search space of causal search algo-
rithms, which improves the performance of causal search algorithms. The pcabs
algorithm is developed to put the theory of Markov Abstraction Equivalence
Classes into practice. This thesis builds on the theory of causal models, causal
search algorithms, Markov Equivalence Classes and constructive τ -abstraction.

Keywords: causal models, causal search algorithms, PC algorithm, Markov
Equivalence Class, constructive τ -abstraction, Markov Abstraction Equivalence
Class
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1 | Introduction

Since the beginning of human thinking, the concept of causality has been dis-
cussed by philosophers, scientists and everyday people. The basic principle of
causality is about as intuitive as it gets: a child can recognize that when she
kicks a ball against the window, the window will break. This is a simple causal
relation: if the ball hits the window, then the window breaks. Reasoning back,
the child will realize that because she does not want the window to break, she
should not kick the ball against it. As simple as this might seem, philosophers
and scientists have had much discussion about what causality is exactly, and
how one can use it in science. The heart of the discussion lies at the question of
how to prove causality. I can reason that every time I kick the ball against the
window, the window breaks, so the ball hitting the window causes the window to
break. However, this is no guarantee for causality to be at play. It is also the case
that every time the rooster crows, the sun rises, but we would not say that the
crowing of the rooster causes the sun to rise. It turns out that events that follow
up each other do not necessarily have a causal relation – in most cases, a third
or multiple other variables are involved. This has led scientists to embrace the
notorious statement "correlation does not imply causation" and the existence of
ironical websites like https://tylervigen.com/spurious-correlations, in
which the most bizarre correlations between two events show the impossibility
of any causal relation between them. Popular culture plays with the "correla-
tion does not imply causation"-phenomenon as well, for example in the recent
movie Smallfoot (2018), where it is believed that hitting a gong is necessary
each morning to bring the sun to rise, and in a comic by xkcd, shown in Figure
1.1.

Because of the difficulty of proving causality, scientists do not even have
the scientific tools to express causality in cases when we know it is true. Con-
sider the example in Pearl (2018), where we want to write down the causal
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Chapter 1 – Introduction 4

Figure 1.1: A comic about the relation between correlation and causation by
xkcd.

relationship between atmospheric pressure P and the barometer reading B. We
can write down this relationship in an equation like B = kP , where k is some
constant of proportionality: the value of the barometer is determined by the at-
mospheric pressure times a constant. We can use the rules of algebra to rewrite
the statement as P = B/k, k = B/P or as B − kP = 0. All the equations
express the knowledge that if we know the value of two variables, we can de-
termine the value of the third variable. However, none of the equations express
our knowledge that it is the pressure that causes the value of the barometer. It
is impossible to write down such a causal relationship in mathematical terms.

If we look at our own experiences, is the statement "correlation does not
imply causation" consistent with how we reason? I am willing to believe that, if
every time I eat an orange, a rash develops, the orange is the cause of the rash.
Or look at the famous tennis player Rafael Nadal, who seems to believe that
each of his 19 rituals is needed in order to win a tennis match. And I’m sure
that you attribute your improved health to the medicine you took, instead of
just the coincidence that they happened to correlate. All of this implies that in
most cases, people are satisfied to accept correlated events as causally related
events.

This omnipresence of thinking causally in everyday human thinking led some
scientists to search for ways to involve causal thinking in scientific methods as
well. A pioneer of this was Sewall Wright, who invented path analysis in the
1920s. This is a way to model dependent and independent variables graphically
in order to answer causal questions. However, it took a long time before Wright’s
method got appreciated, apart from some coincidental duplications in social
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Chapter 1 – Introduction 5

sciences and economics. In 1985, Judea Pearl brought Bayesian Networks into
the world as a way to simplify computations with probability tables. It turned
out that Bayesian Networks were a great tool to also model causality. These
models were called Causal Models. The books by Spirtes, Glymour and Scheines
(1993) and Pearl (2000) were influential in summarizing and explaining causal
models, causal inference and causal discovery.

So what is the strength of causal inference? Causal models make it possible
to model causality graphically: by pointing an arrow from variable A to vari-
able B, you express that A causes B. An arrow missing from variable A to
variable B means that B is not caused by A. Causal inference makes it pos-
sible to reason with the causal relations expressed in causal models. You can
reason about elementary causal questions ("is B caused by A?"), you can rea-
son about interventions ("what will happen if I do this?") and you can reason
about counterfactuals ("what would have happened if I had done this?"). Some
real questions asked in this category are "does smoking cause cancer?", "what
will happen if we give this medicine to our patients?" and "what would have
happened if we had funded a different diabetes treatment in Dutch insurances?".

The causal method is very useful and powerful. It allows us to formalize and
objectively answer questions of causality, that for long have been impossible to
answer in a scientific way. Nowadays, the causal method is used in a variety of
scientific disciplines, like economics, social sciences, statistics, computer science
and epidemiology. Causal inference allows us to form a bridge between human
thinking and scientific thinking, by formalizing age-old causal questions. This
shows the importance of causal inference for Artificial Intelligence: by formaliz-
ing a typical human-way of thinking, you allow this way of thinking to be used
for artificial purposes too. Instead of an artificial intelligence-agent learning
only from data, causal relations that are available in the data can be added to
the agent’s knowledge, which makes the range of possible questions to be asked
and to be answered much wider. As Pearl (2018) describes in his Introduction:

"I believe that causal reasoning is essential for machines to communicate
with us in our own language about policies, experiments, explanations, the-
ories, regret, responsibility, free will, and obligations – and, eventually, to
make their own moral decisions." (Pearl 2018)

In this thesis, I will add a new insight to the theoretical foundation of causal
modelling. Specifically, I combine the theory of abstracting causal models with
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Chapter 1 – Introduction 6

the theory of Markov Equivalence Classes to come to an account of Markov
Abstraction Equivalence Classes. An abstraction on a causal model is a way to
go from a large, detailed causal model to a smaller, less detailed causal model,
i.e. the smaller causal model is an abstraction of the larger model. A Markov
Equivalence Class is a class of causal models that behave the same. Both terms
will be explained extensively in this thesis.

This new account, Markov Abstraction Equivalence Classes, is accompanied
by an algorithm called pcabs. The algorithm allows causal search algorithms
to find a smaller set of possible causal models. Causal search algorithms are
algorithms that are able to construct a causal model from data. Up until now,
the norm for causal search algorithms is to find the Markov Equivalence Class
of a causal model. By using the pcabs algorithm, causal search algorithms will
be able to find the Markov Abstraction Equivalence Class, which is a subset
of the Markov Equivalence Class. This will improve the performance of causal
discovery algorithms.

The thesis is structured as follows. Chapter 2 serves as an introduction to
causal models, consisting of an introduction to graphs, probability theory and
Bayesian networks. Most terms and notations used in the rest of the thesis are
explained in this chapter. Readers familiar with the subject of causal models
are invited to skip this chapter.

Chapter 3 is an introduction to causal search algorithms, also called causal
discovery algorithms. The important assumptions used in causal discovery are
explained, such as the Causal Markov Condition and the Faithfulness Assump-
tion. The three main approaches to causal discovery algorithms are discussed,
and which algorithm belongs to which approach.

Chapter 4 discusses Markov Equivalence Classes, an important term in
causal modelling and causal discovery algorithms. The definitions of Markov
Equivalence and Markov Equivalence Classes are provided and the chapter ends
with an example.

Chapter 5 discusses the PC Algorithm, one of the most used causal discovery
algorithms. First, it is explained how algorithms like the PC algorithm are able
to extract causal relations from data. Then, the reader is provided with the
pseudocode of the PC algorithm, together with an extensive example of its use.

Chapter 6 discusses the phenomenon of abstracting causal models. Abstract-
ing causal models is quite a technical subject. The specific type of abstraction
called constructive τ -abstraction is the only type of abstraction discussed in this
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Chapter 1 – Introduction 7

thesis. The reader is provided with a definition and an example.
Subsequently, Chapter 7 is where the method and use of Markov Abstrac-

tion Equivalence Classes is presented. First, the notion of τ -compatibility as a
characteristic of a causal model is introduced. It is then argued in the Ontolog-
ical Faithfulness Assumption that a causal model must be compatible with τ in
order for a constructive τ -abstraction to be possible. After an example of this,
the definition of Markov τ -Abstraction Equivalence and Markov Abstraction
Equivalence Classes is given. The chapter ends with an explanation of why the
Markov Abstraction Equivalence Class is useful.

Chapter 8 is focussed on the pcabs algorithm. This is the algorithm that
puts the theory of Markov Abstraction Equivalence Classes into practice. First,
pcabs is introduced conceptually, by a discussion of the four scenarios it faces.
Following this is the pseudocode of pcabs. The chapter ends with the results
of testing the pcabs algorithm.

In the appendix, the complete code of pcabs can be found. It is introduced
with an example and explanation of how to use pcabs in practice.
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2 | Causal Models

In this chapter I will provide an introduction to the basic concepts of causal
modelling that will be used in the rest of the thesis. I will start with some
elementary graph theory and probability theory. Next, I will describe Bayesian
networks and d-separation. I will end the chapter with the definition of causal
models and its characteristics.

2.1 Graphs

Definition 2.1.1. Graph A graph G consists of a set of vertices (or nodes) V
and a set of edges (or links) E that connect pairs of vertices. �

The vertices in a graph represent the variables. There are two types of
variables in a graph:

1. Exogenous variables, which are variables that are outside the control of
the model;

2. Endogenous variables, which are variables that are determined by the
values of the other variables in the model.

If you want to construct a simple model of how the type of weather influences
the growth of the plants in your garden, you could use the variables Weather

and Plant Growth. The variable Plant Growth is completely determined by the
variables in the model, namely by the variableWeather (taken aside other vari-
ables that could influence plant growth, like the use of a fertilizer). Plant Growth
is thus an endogenous variable. On the other hand, the variable Weather is an
exogenous variable, as its value – which could be rain, sunny, cloudy, etc. – is
not determined in the model, but outside of the model, through factors like air
pressure and the season. Its value is thus outside the control of the model.

8



Chapter 2 – Causal Models 9

Each edge in a graph can either be directed (a single arrowhead on the edge),
undirected (no arrowhead) or bidirected (an arrowhead on each side of the edge).
Two variables connected by an edge are called adjacent. If all edges in a graph
are directed, we call the graph a directed graph. Figure 2.1 shows an example of
a directed graph. If we remove all arrowheads in a graph, we are left with the
skeleton of that graph. A path in a graph is a sequence of edges such that each
edge starts with the node ending the preceding edge. Paths may go along or
against the direction of the arrows. For example, in Figure 2.1, a possible path
is ((W,Z), (Z, Y ), (Y,X), (X,Z)). If every edge in a path is directed from the
first to the second node of the pair, we have a directed path. In Figure 2.1, the
path ((W,Z), (Z, Y )) is directed, but the path ((Z, Y ), (Y,X)) is not. If there
exists a path between two nodes in a graph, then the two nodes are connected ;
else they are disconnected.

Figure 2.1: A directed acyclic graph (DAG).

A graph can contain cycles:

Definition 2.1.2. Cycle A cycle in a graph is a directed path from a node to
itself. �

A simple example of a cycle is the directed path A→ B,B → C,C → A. A
graph that contains no cycles is called an acyclic graph. A graph that is both
directed as well as acyclic is called a directed acyclic graph (DAG). Figure 2.1
is such a graph. These kinds of graph will be used most often in the discussion
of causal graphs.

9



Chapter 2 – Causal Models 10

There are several kinds of relationships in a graph. The parents of a node are
the direct ancestors of a node, i.e. the nodes at the other end of all incoming
edges. The children of a node are the direct descendants of a node, i.e. the
nodes at the other end of all outgoing edges. The ascendants of a node is the
set of nodes that contains the parents of a node, the parents of the parents of a
node, etc. In other words, all nodes that can reach the node of interest with a
directed path. The descendants of a node is the set of nodes that contains the
children of a node, the children of the children of a node, etc. In other words,
all nodes that the node of interest can reach with a directed path. A family in
a graph is the set of nodes containing a node and all its parents.

In Figure 2.1, variable Y has two parents (Z and X ), no children, three
ancestors (Z, X and W ) and no descendants. Variable Z has one parent (W ),
two children (Y and X ), one ancestor (W ) and two descendants (Y and X ).
{W}, {Z, W}, {X, Z} and {Y, Z, X} are all the families in Figure 2.1.

A node in a directed graph is called a root if it has no parents, and a sink
if it has no children. In Figure 2.1, variable W is the root of the graph and
variable Y is the sink of the graph. Every DAG has at least one root and at
least one sink. A connected DAG in which every node has at most one parent
is called a tree, and a tree in which every node has at most one child is called
a chain. A graph in which every pair of nodes in the graph is connected by an
edge is called complete. A graph in which there are no edges is called empty.

2.2 Probability Theory

If you have a graph, you can add probabilities to it. In Figure 2.1, that would be
to say that the edge from W to Z means that there is a 75% chance that after
W , Z follows. This is what is done in Bayesian Networks, upon which causal
models are built. In this section I will shortly discuss some basic concepts in
Probability Theory, in order to make the rest of the thesis understandable.

A probability is always the probability of something : of an event, a state-
ment, a proposition, etc. In formal terms, we speak of P (A): the probability of
A. Probabilities are always expressed in a number from 0 to 1. A probability
of 1 means that A is certainly true, a probability of 0 means that A is certainly
false. We also speak of conditional probabilities P (A | B). This denotes the
probability of A, under the assumption that we already know B with complete
certainty. Think of it like this: we can determine the probability of a wet pave-
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Chapter 2 – Causal Models 11

ment A (P (A)), but we can also determine the probability of a wet pavement
given that we know B, namely that it has rained today (P (A | B)). This is
all there is to conditional probabilities: you take into account that you have
acquired some extra knowledge.

If it turns out that P (A | B) = P (A), then we say that A and B are inde-
pendent, because knowing B does not change anything about the probability
of A. It can also be the case that P (A | B,C) = P (A | C), which means that
A and B are conditionally independent given C: once we know C, learning B
does not change the probability of A. We calculate conditional probabilities as
follows:

P (A | B) =
P (A ∧B)

P (B)

Vice versa, when we want to calculate the probability of a joint event (A∧B),
and when we know that A and B are not independent, we can do it as follows:

P (A ∧B) = P (A | B) · P (B)

If we know that A and B are in fact independent, the calculation of joint
event A ∧B becomes easier:

P (A ∧B) = P (A) · P (B)

A famous theorem in Probability Theory is Bayes’ Theorem. Bayes’ Theo-
rem makes it possible to calculate a conditional probability by turning the prob-
ability around: to calculate P (A | B), you can use the probability of P (B | A).
The Theorem is as follows:

P (A | B) =
P (B | A) · P (A)

P (B)

Bayes’ Theorem is useful when you do not have the exact information needed
to calculate the conditional probabilities, but instead you know other probabil-
ities related to it. For example, if you want to know the probability of having
cancer given that you are a certain age, you can do so by using the probability of
being a certain age given that you have cancer, the probability of having cancer
and the probability of being a certain age. Formally:

P (Cancer | Age) =
P (Age | Cancer) · P (Cancer)

P (Age)

11



Chapter 2 – Causal Models 12

The probability of being a certain age given that you have cancer can easily
be read off data of people having cancer, and likewise the probability of having
cancer and the probability of being a certain age are easy to determine.

2.3 Bayesian Networks

Bayesian networks are graphs that represent conditional probabilities on a set
of variables. They are used to make probabilistic distribution insightful and
structured: instead of representing a probabilistic distribution with n variables
in a table with 2n entries, a graph with n nodes can do the same. This can be
done with the use of Markovian Parents:

Definition 2.3.1. Markovian Parents Let V = {X1, ..., Xn} be an ordered
set of variables, and let P (v) be the joint probability distribution on these
variables. A set of variables PAj is said to be the Markovian parents of Xj if
PAj is a minimal set of ascendants of Xj that renders Xj independent of all its
other ascendants. In other words, PAj is any subset of {X1, ..., Xj−1} satisfying

P (xj | paj) = P (xj | x1, ..., xj−1)

and such that no proper subset of PAj satisfies this. �

This definition assigns to each variable Xj a set of preceding variables PAj
that are sufficient for determining the probability ofXj . This can be represented
in a graph, in which from each node in the parent set PAj , an edge is drawn to
the child node Xj .

Figure 2.2 shows an example of a Bayesian network. The graph expresses
that the variable Season is the parent of both Sprinkler and Rain, and that it
is not a parent of the variables Wet and Slippery. The graph is quite intuitive:
the current season influences the probability of rain and the probability of the
sprinkler being on. Both rain and a sprinkler influence the probability of having
a wet pavement, and a wet pavement influences the probability of a slippery
pavement.

If we write out the probability distribution of the DAG in figure 2.2, we
come to the following:

12



Chapter 2 – Causal Models 13

Figure 2.2: A Bayesian network with five variables.

P (Season, Sprinkler,Rain,Wet, Slippery) = P (Season) · P (Sprinkler |

Season) · P (Rain | Season) · P (Wet | Sprinkler,Rain) · P (Slippery |Wet)

where each variable is only conditioned on its parent(s). This is a much smaller
distribution than letting each variable condition on each other variable, which
is the following probability distribution:

P (Season, Sprinkler,Rain,Wet, Slippery) = P (Season | Sprinkler,Rain,

Wet, Slippery) · P (Sprinkler | Season,Rain,Wet, Slippery)·

P (Rain | Season, Sprinkler,Wet, Sprinkler) · P (Wet | Season,

Sprinkler,Rain, Slippery) · P (Slippery | SeasonSprinkler,Rain,Wet)

Looking at Figure 2.2 again, we can see and intuitively acknowledge that
the season influences the probability that the pavement is wet: the probability
of a wet pavement is much higher in autumn than in the summer. However,
if we condition on the amount of rain ("given Rain"), learning about which

13



Chapter 2 – Causal Models 14

season it is will not have any effect on the probability of a wet pavement, as the
amount of rain is a much more direct indicator. We say that the variable Wet is
independent of Season given Rain. You can read off the independence relation
between Season and Wet from the graph in Figure 2.2. When using graphs, we
say that two variables that are independent are d-separated from each other:

Definition 2.3.2. D-separation A path p is said to be d-separated (or blocked)
by a set of nodes Z if and only if

1. p contains a chain I → M → J or a fork I ← M → J such that the
middle node M is in Z, or

2. p contains an inverted fork (or collider) I →M ← J such that the middle
node M is not in Z and such that no descendant of M is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from
a node in X to a node in Y . �

So, in chains like I → M → J and forks like I ← M → J , variables I
and J are marginally dependent, but become independent of each other once
we condition on M (i.e. know the value of M). So, if we already know the
value of M , learning about I has no effect on the probability of J : if we know
about the amount of rain, which season it is will not affect the probability of
a wet pavement. If we look at inverted forks like I → M ← J , we say that I
and J are marginally independent, but become dependent once we condition on
M . We see such an inverted fork in Figure 2.2, with the variables Sprinkler →
Wet← Rain. If we learn that the pavement is wet, Sprinkler and Rain become
dependent: refuting one of these explanations ("the sprinkler is off") increases
the probability of the other ("it probably rains").

2.4 Causal Models

When there is an arrow between two variables in a Bayesian network A → B,
we do not say that A causes B. The arrow merely indicates the influence of
the probability of A on B. Looking back at Figure 2.2, it would be rather odd
to say that the season causes the sprinkler to be on or off. Instead, the season
has influence on the probability of the sprinkler being on or off. This changes
for causal models. Causal models use a stronger notion of association between
two variables, saying that A is really a cause of B. If A is the only variable

14



Chapter 2 – Causal Models 15

that points at B, we also say that A is the only cause of B (given that specific
model).

You can also think of causal models in terms of hypothetical experiments.
An arrow from A to B means that if we vary the value of variable A only, we
would see a change in the probability of B. No arrow from A to B means that
varying the value of A has no effect on the value of B.

In order to define causal models properly, we first need to define the signa-
ture:

Definition 2.4.1. Signature A signature S is a tuple (U, V,R), where U is
a set of exogenous variables, V is a set of endogenous variables, and R is a
function that associates with every variable Y ∈ U ∧V a nonempty set R(Y ) of
possible values for Y , that is, the set of values over which Y ranges. �

Definition 2.4.2. Causal Model A causal model M is a pair (S, F ), where
S is a signature and F defines a function that associates with each endogenous
variable X a structural equation FX , that gives the value of X in terms of the
values of the other variables. �

A specific kind of causal model is a probabilistic causal model. In order to
define it properly, we first need to define the context :

Definition 2.4.3. Context The context of a causal model is a specific setting
~u of values of the exogenous variables in the causal model. �

Definition 2.4.4. Probabilistic Causal Model A probabilistic causal model
M = (S, F, I, Pr) is a causal model together with a probability Pr on contexts.�

A causal model is represented by a set of variables and a set of equations,
that show how each variable depends upon its parents. The set of equations
induces a graph with parent- and child-relations: if the equation of variable B
contains the value of variable A, then we can conclude that variable A must be
a parent of variable B. This way, causal models use graphs as a tool to visualize
the relationships between its variables.

In this thesis, it is assumed that each variable has an error term, which
expresses the probability that certain variables in the equations are unobserved.
Each variable equation has the following form:

xi = fi(pai, ui) i = 1, ..., n

15



Chapter 2 – Causal Models 16

in which pai is the set of immediate causes of xi (its parents), and where ui
represents the error term.

A simple causal model M with five variables can be represented as follows
in five equations:

X1 = u1

X2 = f2(x1, u2)

X3 = f3(x1, u3)

X4 = f4(x2, x3, u4)

X5 = f5(x3, u5)

A specification of the functions in M could be as follows:

X1 = u1

X2 = 5x1 + u2

X3 = 3x1 + u3

X4 = 2x2 + 6x3 + u4

X5 = 3x3 + u5

This clearly shows how the graph of M should be composed: variable X1

does not have a parent, variable X2 has variable X1 as single parent, etc. The
complete graph of M is represented in figure 2.3. Figure 2.4 represents the
graph of M including the error terms (E_X1, ..., E_X5) on each variable.

Figure 2.3: The complete graph of causal model M .

A difference between Bayesian networks and causal models is that Bayesian
network can only tell the probability of an event, while causal models allow us
to perform interventions on a model.

16



Chapter 2 – Causal Models 17

Figure 2.4: The graph of causal model M including error terms.

Definition 2.4.5. Intervention Given a causal model M , an intervention on
a variable A in M is to set the value of A by a process that overrides the usual
causal structure, without interfering with the causal processes determining the
other variables. �

An intervention is an external change to a model, like an order to turn off
the sprinkler to preserve water. Interventions are represented by do-statements:
do(Sprinkler = Off). Note the difference between the statements "do(Sprinkler
= Off)" and "Sprinkler = Off": the first is an action, led by external events
like the order to preserve water, and the latter is a simple observation that it
happens to be the case that the sprinkler is off.

We write an intervention as X ← x, which means that the value of variable
X has been set to x. We can also write it for a set of variables, denoted by
~X, as follows: ~X ← ~x, which means that the values of the variables in ~X are
set to ~x. With an intervention, you actually create a new causal model, as
every incoming edge on the intervened variable is removed. This new model is
denoted as M ~X←~x. The probability of the value of the variable following the
intervention is set to 1, because the external change determines the value of the
variable with certainty. Likewise, the corresponding equation changes, as the
value of the variable does not depend on its parents anymore.

For example, if we intervene on causal model M in Figure 2.3 by setting the
value of variable X3 to 11, we delete the edge from X1 to X3 and change the
equation of X3 from X3 = 3x1 +u3 to X3 = 11. The resulting graph is shown in
Figure 2.5. The outgoing edges from the intervened variable remains the same,
since X3 is still a cause of variables X4 and X5, regardless of the intervention.
Likewise, the rest of the equations in M stay the same.

Given a signature S = (U, V,R), a primitive event is a formula of the form
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Figure 2.5: An intervention performed on causal model M : the arrow between
X1 and X3 has been removed.

X = x, for X ∈ V and x ∈ R(X). In other words, this is the observation
that variable X has the value x. A causal formula over S has the form [Y1 ←
y1, ..., Yk ← yk]φ, where

1. φ is a Boolean combination of primitive events,

2. Y1, ..., Yk are distinct variables in V , and

3. yi ∈ R(Yi)

This formula can be abbreviated to [~Y ← ~y]φ. Intuitively, it means that φ
would hold if Yi would be set to yi, for i = 1, ..., k.

Finally, a causal formula ψ is true or false in a causal model, given a certain
context. A true causal formula ψ in causal model M given context ~u is denoted
as (M,~u) � ψ.

In chapter 6, we writeM(~u) to denote the unique element of R(V ) such that
(M,~u) � V = ~v. The same holds given an intervention ~Y ← ~y, whereM(~u, ~Y ←
~y) denotes the unique element of R(V ) such that (M,~u) � [~Y ← ~y](V = ~v).
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3 | Causal Search Algorithms

Causal search algorithms, or causal discovery algorithms, are algorithms that
examine data and find a causal model based on it. Causal search algorithms do
not test certain hypotheses, so whether a certain model would be a good fit to
the data, but instead they consider all possible models, test them and select the
set of models consistent with the data.

There are several parts at play in causal discovery. First, there are several
assumptions that every causal search algorithm makes, and some assumptions
that are specific to certain algorithms. Next, there are three kinds of causal
search algorithms. I will describe these in the following sections.

3.1 Assumptions in Causal Discovery

There are several assumptions that are held by causal search algorithms: some
by all, some only by a few.

Causal Markov Condition

All causal search algorithms assume that the "true graph", which is the graph
to be found, satisfies the Causal Markov Condition (CMC). This means that
every variable X in the set of variables V is independent of its non-effects, the
variables that are not descendants of X, conditioned on its direct causes.

Definition 3.1.1. Causal Markov Condition Let G be a causal graph with
vertex set V and the probability distribution P over the vertices in V generated
by the causal structure represented by G. G and P satisfy the Causal Markov
Condition if and only if for every X in V , X is independent of all the variables
in V that are not its parents and not its descendants, given the parents of X.
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Formally:

X ⊥⊥ V \(Descendants(X) ∪ Parents(X)) | Parents(X).

�

If we look at the simple causal model in Figure 3.1, we can conclude on the
basis of the CMC that B must be independent of C given A, because C is not
a descendant from B and A is the parent of B.

Figure 3.1: A simple causal model.

Faithfulness Assumption

Most search algorithms also assume Faithfulness: the only independencies among
the variables in V are those entailed by the CMC.

Definition 3.1.2. Faithfulness A causal graph G and a probability distri-
bution P over G are faithful to one another if all and only the conditional
independence relations true in P are entailed by the Causal Markov Condition
applied to G. �

It is possible for the faithfulness condition not to hold, in the case when
there are other independence relations besides the ones entailed by the CMC.

Together, CMC and Faithfulness imply a tight connection between the struc-
ture of the causal graph and the conditional independencies in the data. It is
this connection that is useful for search algorithms. For example, if we were to
look for the graph in Figure 3.1, we would first measure the variables A, B and
C. We can then find that B and C are dependent (denoted as B 6⊥⊥ C), that A
and C are dependent (A 6⊥⊥ C), and that A and B are dependent (A 6⊥⊥ B), while
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B and C are independent given A (denoted as B ⊥⊥ C | A). If we know this,
and we assume CMC and Faithfulness, we can infer that one of the following
three causal structures is the true one:

B → A→ C

B ← A← C

B ← A→ C

These three causal structures form a Markov Equivalence Class, which will
be discussed in detail in the next chapter.

CMC and Faithfulness thus do not provide a unique causal structure in
most cases, but instead provide a set of possible causal structures. These can
be united in a pattern, which is a directed graph with some or only undirected
edges. An undirected edge means that the arrow of the edge can be pointed in
both ways. The pattern of the graph in Figure 3.1 would be the one depicted in
Figure 3.2, as the edges A−B and A− C can be pointed both ways. We only
know that the structure can not be B → A← C.

Figure 3.2: The pattern of the causal model in Figure 3.1.

Linearity

Linearity is an assumption about the functional form of a causal relation. It
requires that the value of a variable is determined by a linear sum of the values
of its causes plus some error term. Graphs that are not linear can be graphs that
involve some threshold, above or below which there is no, or a different causal
effect, or graphs with a non-monotonic effect. The justification for linearity
is that it is the most common relationship between variables, and that it is
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computationally simple: the values of the variables can easily be found through
regression analysis. Linearity is an assumption adopted by some causal discovery
algorithms.

For example, when we model the relationship between body weight and
weeks of exercise, we can end up with quite different looking graphs, each be-
longing to a different graph form. A linear graph consists of a linear sum of the
variables plus some error term. It would look as follows: the more weeks you
exercise, the less you will weigh. The graph is depicted in Figure 3.3.

Figure 3.3: A linear relationship between Weight and Weeks of Exercise.

However, it could also be that at first you do not lose any weight, and then,
in the third week of exercise, your weight suddenly drops a lot. We call this
form of graph a threshold graph: once the threshold has been reached, the value
changes. So, once the threshold of three weeks of exercise has been reached, your
weight drops. Such a graph is depicted in Figure 3.4.

Figure 3.4: A threshold relationship between Weight and Weeks of Exercise.

Another way could be that when you start exercising, you first add some
weight, due to your body functioning differently. Then, after about three weeks,
your weight starts to drop again. We call this form of graph a non-monotonic
graph, as there is no clear increasing or decreasing order of the graph. Such a
graph is depicted in Figure 3.5.
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Figure 3.5: A non-monotonic relationship between Weight and Weeks of Exer-
cise.

Gaussianity

The linearity assumption is usually combined with the assumption that the error
term of a variable has a Gaussian distribution, i.e. a bell-curve distribution.
This has to do with the computational simplicity of it: combinations of Gaussian
distributions together form joint Gaussian distributions as well. If you take
all the individual error terms to represent the minor individual influences not
accounted for in the model, then the error term for a large sample can be
expected to be Gaussian as well.

Causal Sufficiency

Causal sufficiency is a strong assumption to make. Causal sufficiency states that
there are no unmeasured common causes, i.e. that the model is complete. So,
if you have only two variables X and Y in your causal model, causal sufficiency
states that there is no unmeasured common cause of X and Y . This means that
if a dependency between X and Y is observed, the only possible structures are
the following:

(a) (b)

Figure 3.6: Possible structures between dependent variables X and Y with no
unmeasured common cause.

However, if we drop the assumption of causal sufficiency, three more models
become possible, in which L represents an unobserved variable, as depicted in
Figure 3.7.
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(a) (b) (c)

Figure 3.7: Possible structures between dependent variables X and Y with
unmeasured common cause L.

In other words, the assumption of causal sufficiency makes the search space
smaller, i.e. there are fewer possible models. Even though there is rarely a
proper justification for causal sufficiency, it is necessary for causal discovery
algorithms to adopt the assumption: you have to assume that the variables
provided in the data are the only variables at play in the causal phenomenon,
because otherwise it is as good as impossible to determine causal relationships
between the variables.

3.2 Types of Causal Search Algorithms

There are three different approaches to causal discovery. I will briefly explain
each of them.

Constraint-based algorithms

Constraint-based algorithms focus directly on the connection between graphs
and the implied independence facts. These algorithms search for the set of
causal graphs that imply exactly the conditional independencies found in the
data. This is done through a sequence of hypothesis tests. In the most extensive
manner, this is done by generating every possible graph on a set of variables
V , and testing the implied conditional independencies for each graph against
the data. The graph with the best score is crowned the best graph. However,
most algorithms use a heuristic to explore the space of possible DAG models
in an efficient way, in order to prevent having to test each and every one of
them. Algorithms that belong to the constraint-based algorithms are the SGS
algorithm, the PC algorithm and Fast Causal Inference (FCI). The difference
between the SGS algorithm and the PC algorithm is that the SGS algorithm
tests every possible graph on a set of variables, while the PC algorithm thins out
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the set of possible graphs before performing hypothesis tests, by using n-order
conditional independence relations. More information on this can be found in
chapter 5, where we discuss the PC algorithm in detail.

Score-based algorithms

Score-based algorithms compare models on the basis of some score of model
fit. The most common score is the Bayesian Information Criterion (BIC) score,
which approximates the posterior probability of the model given the data. Scor-
ing can be done on every possible model, but most algorithms use a heuristic to
prevent having to score every possible model. For this, a "greedy" algorithm is
typically used. Algorithms that belong to the score-based algorithms are Greedy
Equivalence Search (GES) and Fast Greedy Equivalence Search (FGES). The
main difference between constraint-based algorithms and score-based algorithms
is that constraint-based algorithms turn out be much faster than score-based al-
gorithms. However, recent simulation studies show that score-based algorithms
are generally more accurate than constraint-based algorithms that make the
same assumptions for datasets with small sample sizes.

Causal search algorithms with semi-parametric assumptions

As the name says, algorithms that fall into this category make some stronger
assumptions to learn causal relationships more efficiently and in more detail.
These algorithms do not rely on the Faithfulness assumption, but instead adopt
some more specific assumptions. For example, when the data are generated by
a linear mechanism but with non-Gaussian error terms, Linear Non-Guassian
Model (LiNGaM) algorithms can find the causal structure using independent
components analysis. The drawback of the algorithms in this approach of causal
discovery is that the semi-parametric assumptions that are used are usually
difficult to test. In addition, the algorithms usually require a much larger sample
size compared to constraint-based and score-based algorithms. This is why these
algorithms are less developed in comparison with constraint-based algorithms
and score-based algorithms.

In this thesis, I will focus on the PC algorithm, which belongs to the class of
constraint-based algorithms. A detailed discussion of the PC algorithm can be
found in chapter 5.
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In this chapter I will describe the use of Markov Equivalence Classes. First, I will
introduce Markov Equivalence, upon which the definition of Markov Equivalence
Classes follows. The chapter ends with an extensive example.

Note that from now on in the thesis, it is assumed that the Causal Markov
Condition (CMC) holds, which is explained in the previous chapter.

4.1 Markov Equivalence

When the use of DAGs (Directed Acyclic Graphs) became more popular in a
wide variety of research fields, one problem arose: it turned out that it was
quite common that two different causal models produce the same results and
are equally predictive. When this is the case, these causal models are said to be
Markov equivalent :

Definition 4.1.1. Markov Equivalence Let M1 and M2 be two DAGs with
the same set of nodes V . M1 and M2 are Markov equivalent if for every three
mutually disjoint subsets A, B, C ⊆ V , A and B are d-separated by C in M1 if
and only if A and B are d-separated by C in M2. �

Theorem 4.1.1. Two DAGs are Markov equivalent if and only if they have the
same independence statements.

Theorem 4.1.2. Two DAGs have the same independence statements if and
only if they have the same adjacencies and the same colliders.

The proof of theorem 4.1.2 can be found in Verma and Pearl (1991).

Markov Equivalence can be shown with the two causal models in Figure
4.1a and 4.1b. Even though their structure differs, the probability distribution
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of both models turns out to be the same. The probability distribution of model
1 is P (A), P (B | A) and P (C | B). The probability distribution of model 2
is P (A | B), P (B), and P (C | B). To show that the two models are Markov
equivalent, we apply the definition of conditional probability:

P (A)P (B | A) = P (AB) = P (B)P (A | B)

(a) Causal model 1. (b) Causal model 2.

Figure 4.1: Two Markov Equivalent causal models.

What this means is that the two models in Figure 4.1 have the same d-
separation, namely A ⊥⊥ C | B (A is d-separated from C by B). We call a
statement like A ⊥⊥ C | B an independence statement. When we look at causal
models 3 and 4, shown in Figure 4.2a and 4.2b, we can derive their Markov
equivalence with the models in Figure 4.1 through their independence state-
ments: model 3 shows the independence statement A ⊥⊥ C | B, and is thus
Markov equivalent with causal models 1 and 2, depicted in Figures 4.1a and
4.1b. Model 4 shows the independence statement A ⊥⊥ C, without conditioning
on variable B. This is a different d-separation statement, which means that
model 4 is not Markov equivalent with models 1, 2 and 3.

(a) Causal model 3. (b) Causal model 4.

Figure 4.2: Two causal models that are not Markov Equivalent.

Markov equivalence thus comes down to having the same d-separations or
independence statements. This can be shown by rewriting the probability dis-
tribution, which is what we did with the causal models in Figure 4.1 and 4.2.
However, there is an easier way to check for similar independence statements,
as described in Theorem 4.1.2: by checking for the same adjacencies and the
same colliders between two models.

To check for this, you first have to check whether the two causal models
have the same adjacencies. It is quite obvious that Markov equivalent models
must have the same adjacencies: if model 1 has a link between A and B, but
model 2 does not have such a link, the two models cannot behave the same, and
therefore not be Markov equivalent.
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Second, you have to check whether the two causal models have the same
colliders. We can see the importance of similar colliders when we look at the
models in Figures 4.1 and 4.2. The difference between model 4 and the Markov
equivalent models 1, 2 and 3 is that model 4 has two incoming edges at variable
B. In models 1, 2 and 3, each variable has either one incoming edge, or no
incoming edge at all. If we look back at the definition of d-separation (see
chapter 2), the structure of two incoming edges is called a collider, or v-structure:
with the collider A → B ← C, variables A and C become dependent given B,
while first being independent of each other. A collider behaves different than the
other possible structures, which are chains and forks. We can therefore say that
two graphs with the same colliders on the same three variables share the same
independence statements. If three variables form a chain or a fork, the precise
direction of the edges does not matter, as they have the same independence
relation.

So, in order to check for Markov equivalence between two or more causal
models, we can check for similar adjacencies and similar colliders between the
models. Together, they ensure that the models have the same d-separations or
independence statements, which makes them Markov equivalent.

4.2 Markov Equivalence Classes

With the definition of Markov equivalence, you can easily construct the class of
Markov equivalent models.

Definition 4.2.1. Markov Equivalence Class The Markov Equivalence Class
of a causal model M is the class of all graphs that are Markov Equivalent with
M . �

In a Markov Equivalence Class, it is quite common that an edge can be di-
rected multiple ways. If we look back at the Markov equivalent causal models
in Figures 4.1 and 4.2, we see that the edge between A and B can be directed
both A→ B as well as A← B. The direction of the edge between A and B is
thus not determined in the Markov Equivalence Class of the causal models in
Figures 4.1 and 4.2. We depict such an undetermined edge as A − B, without
an arrow. As a consequence, this means that if there is a directed edge between
two variables in a Markov Equivalence Class, then this edge is a determined
edge, i.e. for all the causal models that are part of that Markov Equivalence
Class, the edge is directed exactly that way. This is always the case for colliders
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in a causal model, as models that are Markov equivalent must have the same
colliders.

The construction of the Markov Equivalence Class of a causal model consists
of two steps:

1. First, the construction of the rudimentary pattern of the causal model.
This is a partially directed graph, with all the arrowheads removed that
do not form a collider.

2. Second, the construction of the completed pattern. In this step, you fill in
the direction of arrowheads for the following edges:

(a) Undirected edges with a variable on one side that already has an
edge directed at it (A − B ← C) are directed the other way (as
A ← B ← C), as not to point to this variable. This is to prevent
creating a new collider that is not present in the causal model.

(b) Undirected edges that can create a cycle are directed the other way, as
not to create the cycle. This is because we are working with directed
acyclic graphs.

A more detailed version of how to direct the edges in a Markov Equivalence
Class can be found in the PC algorithm, as described in Chapter 5.

Upon completing these steps, the completed pattern is the Markov Equivalence
Class. However, note that a Markov Equivalence Class always asks for a right
interpretation by its user. That is, the undirected edges can not be directed in
a model in such a way that a new collider or a cycle is created. On the other
hand, we know with 100% certainty that the directed edges must be directed as
they are, in all models belonging to the Markov Equivalence Class.

4.2.1 Markov Equivalence Class Example

The following example shows the construction of the Markov Equivalence Class
of causal model M1, as depicted in Figure 4.3.

First, we create the rudimentary pattern by removing all arrowheads that
do not form a collider. This means that only the two incoming edges on variable
D remain, which is shown in Figure 4.4.

What rests is filling in the direction of the edges as to not create a loop or
a new collider. From the graph in Figure 4.5, no loops can be created, as the
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Figure 4.3: Causal model M1.

Figure 4.4: The rudimentary pattern of M1.

collider on variable D prevents this. However, a new collider can be created,
when the edge D−E is pointed to variable D (as D ← E). This is not allowed,
which means that the arrow must be pointed the other way (D → E). The
completed pattern is depicted in Figure 4.5.

This makes the Markov Equivalence Class of M1. We see that the edges
between A − B and A − C are not directed, which means that there are other
causal models belonging to this Markov Equivalence Class, in which A−B and
A− C are directed differently than in M1. They are shown in Figure 4.6.

The specific causal model with the edges directed as A ← B and A ← C

does not belong to the Markov Equivalence Class of M1, because it contains a
new collider on variable A, not included in the Markov Equivalence Class. We
can thus say with certainty that the Markov Equivalence Class in Figure 4.5
consists only of the three causal models depicted in Figure 4.3 and Figure 4.6.
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Figure 4.5: The completed pattern or the Markov Equivalence Class of M1.

Figure 4.6: The other two causal models belonging to the Markov Equivalence
Class of M1.
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5 | The PC Algorithm

The PC algorithm is one of the most well-known and most used causal search
algorithms. It is also one of the oldest search algorithms: in 1991 Peter Spirtes
and Clark Glymour wrote a paper in which they described the PC algorithm as
the successor of the SGS algorithm. They named the algorithm after themselves:
Peter and Clark. In this chapter, I will first describe how to find independence
statements in data, which is used as the input for the PC algorithm. Then, I
will describe the PC algorithm in pseudo code, followed by an extensive example
of its use.

5.1 Independence facts from data

The PC algorithm constructs a causal model on the basis of data. However,
as input, the PC algorithm uses "independence and conditional independence
facts about the data", as quoted from Spirtes and Glymour (1991). What are
these, and how do you find them?

(Conditional) independence facts are the independencies found in the data.
A conditional independency is a d-separation: conditioned on some variable, two
other variables are found to be independent. An independency does not need to
be conditional, as it can also be the case that two variables have no correlation
at all. These variables are then independent from each other, without the need
to condition on another set of variables. We call this kind of independence a
zero order independency. Conditional independencies that condition on just one
variable are called first order independencies, conditional independencies that
condition on a set of two variables are called second order independencies, etc.

Independencies are found using the correlation coefficient. This is a value
that describes the correlation between two variables. It is a number between
-1 and 1, where -1 means a perfect negative correlation (negative slope), and
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1 means a perfect positive correlation (positive slope). You can compute the
correlation coefficient r using the following formula:

r =
1

n− 1

∑
(
xi − x̄
sx

)(
yi − ȳ
sy

)

where n is the number of variables, x̄ is the sample mean of the variables and sx is
the sample standard deviation of the variables. It is also possible to compute the
correlation coefficient in programming language R, using the linear regression
function. You can compute the correlation coefficient on a set of variables, or on
only two variables. We will use the latter, since we are looking for the correlation
and possible independency between two variables. Each correlation coefficient
has a p-value, which describes the significance of the correlation. Generally, a
p-value above 0.05 is considered not significant; anything with a p-value under
0.05 is considered significant. There are two ways to discover an independency
between two variables using the p-value of the correlation coefficient:

1. The p-value of the correlation coefficient between variables A and B is
above 0.05, i.e. not significant. This means that there is no correlation
between the two variables, and thus that they are independent from each
other. We write this as A ⊥⊥ B.

2. Discovering a conditional independency consists of two steps:

(a) First, you find that the correlation coefficient between variables A
and C is below 0.05, which means that the correlation is significant.

(b) However, when you control for another variable B, you find that
the correlation between A and C is not significant anymore, i.e. the
p-value increases above 0.05.

This means that A is independent from C given B. We write this as
A ⊥⊥ C | B.

When checking the independency between each pair of variables in the data,
you generate a list of independence and conditional independence facts about
the data. This is what the PC algorithm needs.
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5.2 The PC Algorithm - pseudocode

The PC algorithm uses the list of independence facts as input. The facts are
divided into sets of zero order independencies, first order independencies, second
order independencies, etc. The following is the pseudocode of the PC algorithm:

1. Start with a complete undirected graph, i.e. every node is connected to
every other node with an undirected edge.

2. Set n = 0

(a) Check for n = 0 order independencies, i.e. independencies that are
not conditional. For these independencies, remove the direct edges
between the nodes.

3. Set n+ = 1

(a) Check for all n = 1 order independencies. These are independen-
cies of the sort "X ⊥⊥ Z | Y ", which is an independency given one
variable. For these independencies, remove the direct edges between
the independent nodes. So, for X ⊥⊥ Z | Y , remove the edge from
X to Z. Add each conditional to the variable ’Sepset’ of the two
independent nodes. So, for X ⊥⊥ Z | Y , add Y to Sepset(X,Z).

4. Set n+ = 1

(a) Check for n = 2 order independencies. These are independencies
of the sort "X ⊥⊥ Z | {Y,W}", which is an independency given two
variables. For these independencies, remove the direct edges between
the independent nodes. So, for X ⊥⊥ Z | {Y,W}, remove the edge
from X to Z. Add each conditional to the variable ’Sepset’ of the
two independent nodes. So, for X ⊥⊥ Z | {Y,W}, add Y and W to
Sepset(X,Z).

5. Set n = n+ 1

6. Keep doing this for higher values of n. Repeat until no more independency
statements are left.

7. Directing edges part 1: for each triple of nodes X,Y, Z, such that the pair
X and Y are adjacent and the pair Y and Z are adjacent, but X and
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Z are not adjacent, iff Y is not in Sepset(X,Z) (i.e. X and Z are not
independent conditioned on Y ), orient X − Y − Z as X → Y ← Z.

8. Directing edges part 2: if X → Y , Y and Z are adjacent, X and Z are not
adjacent, and there is no arrowhead at Y , then orient Y − Z as Y → Z.

9. Directing edges part 3: if there is a directed path from X to Y , and an
edge between X and Y , then orient X − Y as X → Y .

10. Repeat steps 8 and 9 until no more edges can be oriented.

11. End. This produces the final pattern.

In many ways, the PC algorithm shows similarities with Markov Equivalence
Classes. First, the output of the PC algorithm is a pattern. This is a partially
directed graph, in which undirected edges stand for a conditional dependence
between the two variables they connect, however uncertain about the direction
of the dependence. An undirected edge between variable X and Y thus means
that X could be a cause of Y , or Y could be a cause of X. It is only known
that there is a conditional dependence between X and Y . On the other hand, a
directed edge between two variables means that the direction of the conditional
dependence is certain. This is similar to Markov Equivalence Classes: in Markov
Equivalence Classes, an undirected edge also means that the direction of depen-
dency could be both ways. In fact, the pattern that the PC algorithm produces
is a Markov Equivalence Class: the pattern stands for a class of possible causal
models compatible with the data.

A second similarity between the PC algorithm and Markov Equivalence
Classes is the way the final pattern is produced, specifically steps 7 through
10, in which the edges are directed. In step 7, the algorithm looks for collid-
ers. As shown in Chapter 4, all colliders in a causal model must be included
in the Markov Equivalence Class or final pattern, as they represent a different
independence statement in comparison with chains and forks. In step 8, the
algorithm makes sure that no other colliders are created, as all colliders in the
causal model have already been found in step 7.

In short, the similarities between the PC algorithm and Markov Equivalence
Classes are found in the output of the PC algorithm, which simply is a Markov
Equivalence Class, and in the steps to produce the output.
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5.2.1 PC Algorithm Example

Let’s look at an example of the working of the PC algorithm. For this, we will
trace the discovery of the causal model depicted in Figure 5.1, called the "true
graph".

Figure 5.1: The true graph.

The PC algorithm starts with the complete undirected graph, thus connect-
ing all variables in the model with all the other variables. This is shown in
Figure 5.2.

Figure 5.2: The complete undirected graph of Figure 5.1.

The next step is checking for n-order independencies. In the data belonging
to this causal model, there are no zero-order independencies, i.e. no uncondi-
tional independencies. There are some first-order independencies however:

A ⊥⊥ C | B

A ⊥⊥ E | B

A ⊥⊥ D | B

C ⊥⊥ D | B

This means that the edges between A and C, A and E, A and D, and C

and D must be removed. This gives the graph depicted in Figure 5.3.
Next, there is only one second order independency:

B ⊥⊥ E | {C,D}
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Figure 5.3: The complete undirected graph of Figure 5.1 with the first-order
independencies removed.

Figure 5.4: The complete undirected graph of Figure 5.1 with the first-order
and second-order independencies removed.

This means that we need to remove the edge between B and E. There are
no further n-order independencies. The graph in Figure 5.4 is thus the skeleton
of the causal model given the data. The variables Sepset() are filled in these
steps as well. They are as follows:

Sepset(A,C) = {B}

Sepset(A,E) = {B}

Sepset(A,D) = {B}

Sepset(C,D) = {B}

Sepset(B,E) = {C,D}

Next, we can start directing the edges. To find the colliders in the graph, we
need to check all triples of nodes X, Y , Z such that the pair X, Y and the pair
Y , Z are adjacent, but X, Z are not adjacent in the graph. They can simply be
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read off the skeleton depicted in Figure 5.4. The triples of nodes are as follows:

A−B − C

A−B −D

B − C − E

B −D − E

C − E −D

C −B −D

We can direct the triple X, Y , Z as X → Y ← only if Y is not in
Sepset(X,Z). The only triple for which this holds is C − E − D, as E is
not in Sepset(C,D). We thus know that there is a collider on E, as depicted in
Figure 5.5.

Figure 5.5: The discovered graph of Figure 5.1 with the PC Algorithm.

Lastly, we need to check whether there are any other edges we can direct.
First, can we direct an edge as not to produce a new collider? Since there are
no other edges at the collider variable E, this is not the case. Second, is there
a directed path between two variables for which the edge between those two
variables is not directed yet? This is also not the case. The graph produced in
Figure 5.5 is thus the final pattern produced by the PC algorithm. Likewise,
the graph depicted in Figure 5.5 is also the Markov Equivalence Class of the
causal model shown in Figure 5.1.
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6 | Abstracting Causal
Models

In this chapter I will discuss the notion of abstraction in causal models. First, I
will explain the intuition behind abstracting causal models. Then, I will discuss
constructive τ -abstraction, which is the type of abstraction considered in this
thesis. The chapter ends with an example of constructive τ -abstraction. All
definitions in this chapter are based on Beckers & Halpern (2019) and Beckers,
Eberhardt & Halpern (2019).

6.1 The idea of abstraction

There are many problems that we analyse at different levels of detail. For
example, political scientist A might analyse a national election by looking at
all votes that have been cast, in order to find a pattern. On the other hand,
political scientist B might analyse the same election by looking at groups of
votes that tend to behave the same: for example, by bundling the votes of
well-educated people living in cities in one group, by bundling the votes of the
middle class living in the countryside in another group, etc. Political scientist
B thus analyses the votes on the level of voting groups. These are different
levels of understanding the same phenomenon, namely, the election. We can
say that political scientist B looks at a higher, or more abstract, level of detail,
by bundling votes in groups. The single votes, analysed by political scientist A,
are a representation of the election at a more detailed level, which we call the
micro-level, or low-level. The groups of votes, analysed by political scientist B,
are a representation of the election at a less detailed level, which we call the
macro-level, or high-level. In general, the macro-level is an abstraction of the
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micro-level.
If we are interested in the causal relationships between variables, we can

model various levels of abstraction in causal models. In an abstraction between
causal models, you look at a causal phenomenon at two different levels of detail:
the detailed level is modelled in the micro-level model, the less detailed level
is modelled in the macro-level model. However, you have to be careful that
the abstraction to the high-level model preserves the causal relationships in the
micro-level model. For example, if you cluster variables X, Y and Z into a
single variable with the value X+Y +Z, you do not want that different settings
(x, y, z) and (x′, y′, z′) such that x+y+z = x′+y′+z′ lead to different outcomes
in the high-level model.

It is inherent to abstractions that you lose some information: the single value
X + Y + Z contains less information than the three values X,Y, Z apart. A
good abstraction only loses the inessential information of the low-level model.
However, the question then remains what this inessential information is. To
some extent, this will always be in the eye of the beholder. However, a good
definition of abstraction will guide the user in making the right decisions. This
will become clear in the next sections.

6.2 Constructive τ -Abstraction

In this section, I will explain and define constructive τ -abstraction, which is
the only type of abstraction considered in this thesis. For this, I will follow
Beckers & Halpern (2019) and Beckers, Eberhardt & Halpern (2019). However,
a remark is in place. In Beckers & Halpern (2019), the definition of constructive
τ -abstraction is brought about by first discussing other kinds of abstraction, like
τ -abstraction, that are used in the definition of constructive τ -abstraction. In
this thesis, I will not do this, as the other kinds of abstraction are not relevant
for my purpose. I will explain all elements that are needed for the definition
of constructive τ - abstraction. However, as the definition will not be entirely
identical to the definition in Beckers & Halpern (2019), we consider it a special
kind of constructive τ -abstraction. The definition remains conceptually similar.

An abstraction on a micro-level model is guided by the τ -function, which
takes care of several things needed for an abstraction. First, the τ -function
abstracts the state space of the set of low-level endogenous variables to the
state space of the set of high-level endogenous variables. We only focus on
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abstracting the endogenous variables here, because they make up the structure
of a causal model and are therefore the variables to be discovered by causal
search algorithms. If we look back at the definition of causal models in Chapter
2, we see that the set of endogenous variables is signified by V , and that R is the
function that associates with every variable the set of possible values, i.e. the
state space of a variable: R(V ). The τ -function that abstracts the endogenous
variables then looks as follows:

τ : RL(VL)→ RH(VH)

where the subscript L stands for the low-level causal model and the subscript H
stands for the high-level causal model. RL(VL) thus stands for the state space
of the low-level variables. We adopt this notation in the rest of the thesis.

The τ -function means that τ abstracts the endogenous variables of the low-
level model to variables in the high-level model, together with the function that
defines the set of values for each variable.

The type of abstraction that we consider here is a constructive abstraction,
which is when the low-level variables are clustered in such a way that the clusters
form the variables of the high-level model. Intuitively, this means that a variable
in the high-level model captures the effect of a set of variables in the low-level
model. For the τ -function, this means that τ can only abstract a cluster of
low-level variables to a single high-level variable. When this is the case, we say
that τ is constructive.

Definition 6.2.1. Constructive τ . If VH = {Y1, ..., Yn}, then τ : RL(VL) →
RH(VH) is constructive if τ is surjective, there exists a partition P = {~Z1, ..., ~Zn+1}
of VL, where ~Z1, ..., ~Zn are nonempty, and mappings τi : R(~Zi) → R(Yi) for
i = 1, ..., n such that τ = (τ1, ..., τn); that is, τ(~vL) = τ1(~z1) · ... · τn(~zn), where
~zi is the projection of ~vL onto the variables in ~Zi, and · is the concatenation
operator on sequences. �

For each cluster of low-level variables, a mapping τi is thus defined to map
the cluster to a high-level variable Yi. The partition P consists of n + 1 sets
of variables, of which only n sets are abstracted to the high-level model. This
means that the variables that are placed in set n+ 1 are the variables that are
not abstracted to the high-level model, i.e. they are the marginalized variables.

The reason we demand τ to be surjective is that as we are going from the
low-level model to the high-level model, we are taking away details from the
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low-level model. However, we still want to make sure that every high-level state
has at least one low-level state.

As we use τ to abstract variables in the low-level model to variables in the
high-level model, we also want to use τ to abstract the interventions in the low-
level model to interventions in the high-level model. However, it turns out that
not all interventions in the low-level model can be abstracted to an intervention
in the high-level model. This is the case because as each variable in the low-
level model is mapped to a ~Zi in P , we can only abstract interventions that are
performed on all variables in ~Zi. The following example will show why this is
the case.

Let X1, X2, X3 be variables in low-level model ML, that are abstracted to
variable Y1 in high-level model MH . All variables in VL and VH are binary.
The value of Y1 is the sum modulo 2 of the values of X1, X2 and X3. If we
look at the intervention (X1 ← 1) on ML, we can ask what the corresponding
intervention is on MH . This means we have to pick a value for Y1 that matches
the intervention (X1 ← 1) on the low-level. If we pick Y1 = 1, this value would
turn out to be wrong if X2 = 1 and X3 = 0, as the sum modulo 2 of X1,
X2 and X3 makes 0. If on the other hand we pick Y1 = 0, this value would
turn out to be wrong if X2 = 1 and X3 = 1, as the sum modulo 2 makes 1.
There is thus no intervention on the high-level variable Y1 that matches with
the low-level intervention (X1 ← 1), as the value of Y1 depends on all three
low-level variables X1, X2, X3. This is why we can only abstract interventions
that are performed on all variables mapped to a certain ~Zi. An example of such
an intervention is the intervention ~X ← ~x on ML, where ~X = (X1, X2, X3) and
~x = (1, 0, 1). This is abstracted to the high-level intervention Y1 ← 0.

We call the interventions on the low-level variables for which this is the case,
i.e. interventions that are performed on all variables mapped to a certain ~Yi,
allowed interventions. This means that the set of interventions on the low-level
model is restricted to the set of allowed interventions by the following conditions:

τ( ~X ← ~x) = ~Y ← ~y if and only if there exists some a and b in 1, ..., n such that:

• ~X ← ~x can be written as ~Za ← ~za, ..., ~Zb ← ~zb, ~Zc ← ~zc where c = n + 1

or ~Zc is empty;

• ~Y ← ~y can be written as Ya ← ya, ..., Yb ← yb;

• τa(~za) = ya, ..., τb(~zb) = yb.
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We can see how these restrictions follow from the definition of the construc-
tive τ that abstracts the endogenous variables. The conditions say that all
low-level interventions must be interventions on all variables in a cluster ~Zi in
P and the τ -function τi abstracts the low-level cluster-intervention value ~zi to
a high-level intervention value yi. When a low-level intervention meets these
requirements, we say that the intervention is allowed. For interventions on the
high-level model, we do not need to define the set of allowed interventions, as
every intervention in a high-level model will have a corresponding intervention
in the low-level model. The topic of allowed interventions has been discussed
in more detail in other papers, like Rubenstein et al. (2017) and Beckers &
Halpern (2019).

We perform an abstraction on a Probabilistic Causal Model, which is a
causal model with a probability distribution Pr on contexts (see Chapter 2). A
probability distribution on the context, or exogenous variables, of a causal model
indirectly determines the probability distribution on the endogenous variables
R(V ) as well, as the values of the exogenous variables determine the values of
the endogenous variables. Concretely, this means

Pr(~v) = Pr({~u : M(~u) = ~v}).

TheM(~u) notation is explained in chapter 2, just as theM(~u, ~X ← ~x) notation.
This also holds for any specific intervention, as each intervention ~X ← ~x

induces a probability Pr ~X←~x on R(V ) as follows:

Pr
~X←~x(~v) = Pr({~u : M(~u, ~X ← ~x) = ~v}).

In the rest of the thesis, we will view Pr as a distribution on both R(U) and
R(V ). The context should make clear which we intend.

Lastly, τ(Pr) "pushes up" the low-level distribution to a high-level distribu-
tion, as follows:

Pr(~vH) = Pr({~vL : τ(~vL) = ~vH})

With all the elements explained, we can now say that for an abstraction,
we require that for all allowed interventions ~X ← ~x on the low-level model, we
have that τ(Pr

~X←~x
L ) = Pr

τ( ~X←~x)
H . This means that if you start at the low-level
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intervention ~X ← ~x and abstract this to the high-level model, you can follow
two different routes to end up at the same place.

First, you can follow the route where the low-level intervention ~X ← ~x

changes the probability distribution on the low-level variables, as denoted by
Pr

~X←~x
L . This distribution on the low-level variables can be abstracted to a

high-level distribution by applying the τ -function, denoted by τ(Pr
~X←~x
L ). In

this route, you first apply the intervention on the low-level model, and then you
abstract the distribution on the low-level variables with the τ -function.

On the other hand, the second route abstracts the low-level intervention
~X ← ~x to a high-level intervention by applying the τ -function, as denoted
by τ( ~X ← ~x). This intervention changes the probability distribution on the
high-level variables, as denoted by Prτ(

~X←~x)
H . In this route, you first abstract

the low-level intervention to a high-level intervention, and then you apply the
intervention to the high-level variables.

The two routes are shown visually in Figure 6.3.

Figure 6.1: The two routes to τ(Pr
~X←~x
L ) = Pr

τ( ~X←~x)
H .

Now, we can properly define Constructive τ -Abstraction:

Definition 6.2.2. Constructive τ-Abstraction High-level causal modelMH

is a constructive τ -abstraction of low-level causal model ML if τ is constructive,
|RL(UL)| ≥ |RH(UH)| and for all allowed interventions ~X ← ~x on ML, we have
that τ(Pr

~X←~x
L ) = Pr

τ( ~X←~x)
H . �

In a constructive τ -abstraction, we require that |RL(UL)| ≥ |RH(UH)| holds.
This means that UL, which denotes the possible contexts of the low-level model,
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has to be larger than or equal to UH , the context of the high-level model. This
is also quite intuitive: as the low-level model is more detailed and consists of
more variables than the high-level model, it follows that its context will also be
larger than or equal to the context of the high-level model.

6.2.1 Constructive τ-Abstraction Example

Let’s take a look at a somewhat concrete example. In the example, we want to
model a causal phenomenon in two ways: as a low-level causal model consisting
of a detailed view of the causal phenomenon, and as a more abstract model of
the causal phenomenon. The former is the micro-level model, and the latter is
the macro-level model. The micro-level model ML is depicted in Figure 6.2.

Figure 6.2: The micro-level causal model ML.

ML consists of 8 variables, (X1, X2, X3, X4, Y1, Y2, Y3, Y4). Figure 6.2 shows
which variables are a cause of other variables. So, variable X1 causes variable
X2, variable X2 causes variables X3 and X4, etc. We can abstract this model
by dividing the 8 variables into two groups, namely group X and Y . This is
macro-model MH , depicted in Figure 6.3.

Figure 6.3: The macro-level causal model MH .

We want to give the constructive τ -abstraction between the micro- and
macro-level model. This means that we have to define partition P of the low-
level variables:

P = {~Z1, ~Z2, ~Z3} = {(X1, X2, X3, X4), (Y1, Y2, Y3, Y4), ∅}

~Zn+1 is empty, as all low-level variables are abstracted to a high-level vari-
able. In the rest of this thesis, we will not specifically define ~Zn+1 when ~Zn+1 is
empty. Partition P is abstracted with τ to the high-level model ML, as follows:
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τ(~Z1, ~Z2) = (X,Y ),

where τ1 = R(~Z1)→ R(Y1) and τ2 = R(~Z2)→ R(Y2).

This means that the low-level variables X1, X2, X3 and X4 are mapped to
~Z1 and are abstracted to variable X, and that variables Y1, Y2, Y3 and Y4 are
mapped to ~Z2 and are abstracted to variable Y in the high-level model, and it
has to be the case that τ1 and τ2 are surjective.

As was just discussed, the allowed interventions on the low-level are inter-
ventions on the group of variables in ~Zi of P . The allowed interventions on the
low-level model IL are as follows:

IL = {~Z1 ← ~z1, ~Z2 ← ~z2 : ~z1 ∈ R(~Z1), ~z2 ∈ R(~Z2)}

On the high-level, all interventions are allowed.
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7 | Markov Abstraction
Equivalence Class

In this chapter, I will combine the insights of Markov Equivalence Classes and
constructive τ -abstraction on a low-level causal model. The idea of the theory
in this chapter is how you can use the knowledge that there exists a constructive
τ -abstraction to determine how a low-level causal model should look.

It is important to note that in this chapter I will only focus on the causal
structure of causal models, and not on the accompanying equations. The causal
structure consists of the variables and the edges of a causal model, including
the directions of the edges. I only focus on the causal structure because the
theory I present in this chapter serves as an expansion of the PC algorithm,
and the PC algorithm also solely focusses on the causal structure to be found,
as we saw in Chapter 5. The reason for this is that the search for equations is
a regression problem, which is not what the PC algorithm and this thesis are
concerned with.

7.1 τ -Compatibility and the Ontological Faithful-

ness Assumption

As we saw in the previous chapter, a constructive τ -abstraction allows us to
define a macro-level causal model as the abstraction of its micro-level causal
model. In a constructive τ -abstraction, we define a partition on the low-level
model, which represents the cluster of variables in the low-level model that form
the variables of the high-level model. In other words, a cluster of variables in
the low-level consisting of variables X1, X2, X3 and X4 is abstracted to the
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high-level model as one variable X.
When the high-level model consists of two or more variables, meaning the

low-level model consists of two or more clusters, the edges between the clusters
on the low-level model face an obvious condition: there can not exist a cycle
on the low-level clusters, because this would result in a cycle on the high-level.
When this is the case, we say that the low-level causal model is compatible with
τ or τ -compatible:

Definition 7.1.1. τ-Compatibility Given a causal model ML with a con-
structive τ with partition P = {~Z1, ..., ~Zn+1} of VL, we say that ML is τ -
compatible, or compatible with τ , if there does not exist a cycle of the form
~Zi → ~Zj , ..., ~Zk → ~Zi, where ~Zi → ~Zj means that there exists an edge from
Xa ∈ ~Zi to Xb ∈ ~Zj for some a and b. �

If we only look at the structure of a causal model, we can say that if a causal
model ML is compatible with τ , then we can construct a causal model MH

which is a constructive τ -abstraction of ML. So, as far as the structure goes,
if a causal model is τ -compatible, then a constructive τ -abstraction is possible.
This is the case, because if we see in ML that a variable X4 ∈ ~Z2 is causally
influenced by a variable X2 ∈ ~Z1 through an edge from X2 to X4, then we
abstract this influence toMH by directing the edge between high-level variables
Y1 and Y2 likewise. This is shown visually in Figure 7.1.

Intuitively, one might think that the implication also runs in the other di-
rection: if a constructive τ -abstraction is possible, then ML is τ -compatible,
because otherwise there would be a cycle in the high-level model. However, this
does not always hold: there are cases when a constructive τ -abstraction is pos-
sible andML is not τ -compatible, i.e. there a exists a low-level cycle of the form
~Zi → ~Zj , ..., ~Zk → ~Zi which does not result in a cycle in the high-level causal
model. To show when this is the case, we have to take the causal equations into
account. Take a look at the following example.

Take low-level model ML with six variables, all ranging over N: X1, X2, Y1,
Y2, A, B. Two equations of ML are important:

Y1 = X1 +A

X2 = Y2 mod 2 + 2 ·B
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Figure 7.1: The edge from X2 ∈ ~Z1 to X4 ∈ ~Z2 in ML is abstracted to MH as
an edge from Y1 to Y2.

This means that there is an edge X1 → Y1 and an edge Y2 → X2. The variables
A and B serve to create a collider at Y1 and X2. ML is depicted in Figure 7.2.

Figure 7.2: Causal model ML, with the clusters ~Z1 and ~Z2 defined.

MH is the constructive τ -abstraction of ML. The variables X1 and X2 are
grouped together in ~Z1, which is mapped to the high-level variable X through
the τ -mapping τ1 : X = X1 + X2/2, where the division is a Euclidean division
(i.e. 7/2 = 3). The variables Y1 and Y2 are grouped together in ~Z2, which is
mapped to the high-level variable Y through the τ -mapping τ2 : Y = Y1 + Y2.
The clusters ~Z1 and ~Z2 can also be seen in Figure 7.2. We see that there exists a
cycle on the variables in ML that are grouped together, namely a cycle between
~Z1 and ~Z2. However, in this case this does not pose a problem for the high-level
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causal model MH : the influence of Y2 on X2 is not relevant for MH , because
for each B and Y2 it holds that

(Y2 mod 2 + 2 ·B)/2 = B

Together with the τ -mapping τ1 : X = X1 +X2/2, we can conclude that X does
not depend on Y2, which means that there should not be an edge from Y to X
on the high-level. Instead, MH has the edge X → Y .

This counterexample shows that a constructive τ -abstraction is still possi-
ble, even though a cycle exists between ~Z1 and ~Z2 on the low-level. Because
the causal equations show that the influence of one of the directions of the cy-
cle is irrelevant for the high-level variables, we can formulateMH without cycles.

However, I argue that it is reasonable to adopt the view that when a con-
structive τ -abstraction is possible, there can not exist a cycle of the form
~Zi → ~Zj , ..., ~Zk → ~Zi, i.e. ML must be τ -compatible. If we accept two simple
assumptions, this automatically follows:

1. The variables that are grouped together to a ~Zi in P in the low-level
model ML describe the characteristics of the same causal event, as they
would not be grouped together if this was not the case. Following this, we
consider the variables that are grouped together to a ~Zi in P to be one
causal event.

2. An arrow between two variables means that there is some form of cau-
sation from one variable to the other variable. If there is a cycle on a
set of variables, this means that ultimately a variable causes itself. In
other words, we speak of self-causation (causa sui). I will not go into the
philosophical discussion of self-causation, but, as is generally accepted, we
consider self-causation to be impossible.

So, because self-causation of a causal event is impossible, and because the
variables inML that are grouped together to a ~Zi in P are considered one causal
event, self-causation of a ~Zi is impossible, which means that there can not exist
a cycle of the form ~Zi → ~Zj , ..., ~Zk → ~Zi. We summarize these assumptions as
one assumption, the Ontological Faithfulness Assumption:

Ontological Faithfulness Assumption Given a causal model ML with a
constructive τ with partition P = {~Z1, ..., ~Zn+1} of VL, if there exists a causal
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model MH which is a constructive τ -abstraction of ML, then ML is compatible
with τ . �

We adopt the Ontological Faithfulness Assumption in the rest of this thesis.
This means that if a causal model is compatible with τ , then a constructive
τ -abstraction is possible, and if a constructive τ -abstraction is possible, then
the causal model is compatible with τ .

7.1.1 Ontological Faithfulness Assumption Example

Let’s take a look at an example. Let ML be a causal model with variables X1,
X2, X3, Y1, Y2, Y3, W1 and W2, as depicted in Figure 7.3. The partition P of
ML is as follows:

P = {~Z1, ~Z2, ~Z3} = {(X1, X2, X3), (Y1, Y2, Y3), (W1,W2)}

Figure 7.3: Low-level causal model ML.

Let MH be the high-level abstraction of ML, with the following τ -mapping:

τ(~Z1, ~Z2, ~Z3) = (X,Y,W )

In other words, low-level variables X1, X2 and X3 are clustered in the high-
level variable X, low-level variables Y1, Y2 and Y3 are clustered in the high-level
variable Y , and low-level variables W1 and W2 are clustered in the high-level
variable W . High-level model MH is depicted in Figure 7.4.

Figure 7.4: High-level causal model MH .

We will check if the Ontological Faithfulness Assumption holds for low-level
causal model ML, i.e. if ML is compatible with τ . We consider this in two
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steps. First, we will only consider the edges between each pair of clusters (~Zi,
~Zj). The edges between a pair of clusters must either be undirected, or be
directed equally, because otherwise a cycle would exist on ~Zi and ~Zj . Second,
we will check whether a cycle exists considering all clusters ~Z1, ..., ~Zn. If there
is a directed edge between a pair (~Zi, ~Zj), we consider this to be the direction
of all edges between ~Zi and ~Zj . When we do this for all pairs of clusters, we
can check whether a cycle is created on the entire model. The steps will now be
explained in detail.

First, we look at each pair of clusters. The edges between a pair must either
be undirected, or directed equally. We will first consider the pair (~Z1, ~Z2).
The edges between them are (X2, Y1) and (X3, Y2). In Figure 7.3, we see that
(X2, Y1) is directed as X2 → Y1, and (X3, Y2) is directed as X3 → Y2. This
means that in both cases, the edge is directed as ~Z1 → ~Z2. The edges between
~Z1 and ~Z2 are thus directed equally, and meet the Ontological Faithfulness
Assumption.

The second pair we consider is the pair (~Z2, ~Z3). The edges between them
are (Y3,W1) and (Y3,W2). In Figure 7.3, we see that (Y3,W1) is directed as
Y3 →W1, and (Y3,W2) is directed as Y3 →W2. This means that in both cases,
the edge is directed as ~Z2 → ~Z3. The edges between ~Z2 and ~Z3 are thus also
directed equally, and meet the Ontological Faithfulness Assumption.

The last pair of clusters to consider is the pair (~Z1, ~Z3). However, there are
no edges between ~Z1 and ~Z3, so there is nothing to check.

The next step is to check whether a cycle exists on all clusters ~Z1, ~Z2, ~Z3.
As there exists a directed edge between ~Z1 and ~Z2, we consider this to be the
direction of the edge between the clusters ~Z1 and ~Z2: ~Z1 → ~Z2. There also exists
a directed edge between ~Z2 and ~Z3, so we consider this to be the direction of
the edge between the clusters ~Z2 and ~Z3: ~Z2 → ~Z3. There are no edges between
~Z1 and ~Z3. The entire model thus looks as follows:

~Z1 → ~Z2 → ~Z3.

We can easily see that this is not a cycle. Therefore, the edges between all cycles
also meet the Ontological Faithfulness Assumption.

As we have proven that there does not exist a cycle between any pair of
clusters in ML, and that there does not exist a cycle on all clusters ~Z1, ..., ~Z3 in
ML, we know with certainty that ML is compatible with τ , i.e. the Ontological
Faithfulness Assumption holds for ML.
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To give an example of when the Ontological Faithfulness Assumption does
not hold, we apply a small change to ML, as depicted in Figure 7.5. Here,
the edges between ~Z1 and ~Z2 are directed as X2 → Y1 and X3 ← Y2. The
edges between ~Z1 and ~Z2 are thus not directed equally, which results in a cycle
between ~Z1 and ~Z2. This means that ML is not compatible with τ and that
the Ontological Faithfulness Assumption does not hold. As a consequence, a
constructive τ -abstraction is not possible on this model.

Figure 7.5: A small change of ML for which the Ontological Faithfulness As-
sumption does not hold, which makes a constructive τ -abstraction not possible.

7.2 Markov Abstraction Equivalence Class

When we have acquired data for a certain causal model, we can find its Markov
Equivalence Class by running the PC algorithm. When we also know that
there exists a constructive τ -abstraction of this model, and we know which
variables are grouped together in the partition P to be abstracted, we can
use this information to restrict the number of possible models taken from the
Markov Equivalence Class by tossing out the models of which no constructive
τ -abstraction exists. For this, we first have to define Markov τ -Abstraction
Equivalence between two models:

Definition 7.2.1. Markov τ-Abstraction Equivalence Two DAGs are Markov
τ -Abstraction Equivalent if they are Markov Equivalent and compatible with τ .
�

As we have established in Section 7.1 with the Ontological Faithfulness As-
sumption, if a causal model is compatible with τ , then there exists a construc-
tive τ -abstraction. So, the consequence of both models that are Markov τ -
Abstraction Equivalent being compatible with τ is that for both models there
exists a constructive τ -abstraction.

With the definition of Markov τ -Abstraction Equivalence, you can easily
construct the class of Markov τ -Abstraction equivalent models:
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Definition 7.2.2. Markov τ-Abstraction Equivalence Class The Markov
τ -Abstraction Equivalence Class C(τ,L) of a causal modelML with a constructive
τ -abstraction is the class of all causal models that are Markov τ -Abstraction
Equivalent with ML. �

If the function τ is clear from the context, we refer to the Markov τ -Abstraction
Equivalence Class as the Markov Abstraction Equivalence Class.

This definition thus requires that all causal models in the Markov Abstrac-
tion Equivalence Class C(τ,L) are compatible with τ , which means, following
the Ontological Faithfulness Assumption, that on all models a constructive τ -
abstraction exists.

The Markov Abstraction Equivalence Class is pictured in the same way as
the Markov Equivalence Class: an undirected edge means that the edge can be
directed both ways, depending on the specific model, and a directed edge means
that for all causal models in the Markov Abstraction Equivalence Class, the edge
is directed exactly that way. Because all models in the Markov Abstraction
Equivalence are compatible with τ , we know that all edges between a pair ~Zi
and ~Zj in P must be directed equally or be undirected, as otherwise a cycle
would exist between the clusters. Consequently, we know that in the structure
of the Markov Abstraction Equivalence Class all edges between clusters must
either be directed equally or be undirected.

Because C(τ,L) is a subset of the Markov Equivalence Class CL, all models in
C(τ,L) must be Markov equivalent to all models in CL. This means that C(τ,L)

must have the same colliders as CL.
The characteristics of the Markov Abstraction Equivalence Class can deter-

mine the direction of edges in C(τ,L) that were not directed in CL. This means
that C(τ,L) contains fewer causal models in comparison to CL.

Note that a Markov Abstraction Equivalence Class also asks its user to
interpret the undirected edges in the right way, just like the Markov Equivalence
Class does. That is, in a specific model the undirected edges can not be directed
in such a way that a new collider or a cycle is created (conditions of the Markov
Equivalence Class), and in such a way that a cycle exists on ~Zi → ~Zj , ..., ~Zk →
~Zi, which makes the specific model not τ -compatible (condition of the Markov
Abstraction Equivalence Class).
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7.2.1 Markov Abstraction Equivalence Class Example

The following example will illustrate the construction of the Markov Abstraction
Equivalence Class. LetML be a causal model with variablesX1, X2, X3, X4, X5,

W1,W2,W3,W4,W5, as depicted in Figure 7.6.

Figure 7.6: Causal model ML.

The Markov Equivalence Class CL of ML is the undirected graph of ML,
with the only directed edges being the two incoming edges on W5. The Markov
Equivalence Class of ML is depicted in Figure 7.7.

Figure 7.7: The Markov Equivalence Class CL of ML.

The partition P on VL is as follows:

P = {~Z1, ~Z2} = {(X1, X2, X3, X4, X5), (W1,W2,W3,W4,W5)}

Let MH be the constructive τ -abstraction of ML, with the following τ -
mapping:

τ(~Z1, ~Z2) = (X,W )

Given that we know that MH is an abstraction of ML, we can construct the
Markov Abstraction Equivalence Class C(τ,L) of ML. We know that in C(τ,L),
all models have to be Markov τ -Abstraction Equivalent, i.e. all models must be
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compatible with τ . When we check for this, we can determine the direction of
certain edges that were undirected in CL.

As we can remember from the Ontological Faithfulness Assumption Example
(Section 7.1.1), checking whetherML is compatible with τ happens in two steps:
(1) checking whether the edges between each pair of clusters (~Zi, ~Zj) are either
undirected, or directed equally; (2) checking whether a cycle exists on all clusters
~Z1, ..., ~Zn.

As there is only one pair of clusters (~Z1, ~Z2) in ML, we only have to check
this pair in the first step. The edges between them are (X3,W1) and (X5,W2).
They are undirected in CL. However, because ML must be compatible with τ ,
we know that these edges must be directed equally. We can actually determine
what way the edges must be directed, when we consider both directions and
check whether one of the directions causes a new collider or cycle in C(τ,L). A
new collider in C(τ,L) is not allowed, as the definition of Markov τ -Abstraction
Equivalence states that all models in C(τ,L) must be Markov Equivalent. If it
is the case that one direction causes a new collider or cycle, then we know that
that direction is not allowed, and that the edges should be directed the other
way.

First, we try directing both edges with a right arrow, as X3 → W1 and
X5 → W2. We notice that the edges (W1,W3) and (W2,W4) must be directed
with a right arrow as well, as W1 →W3 and W2 →W4, in order to prevent the
creation of a new collider. This does not cause any new colliders, which means
that directing the edges between ~Z1 and ~Z2 with a right arrow is allowed.

Second, we try directing both edges with a left arrow, as X3 ← W1 and
X5 ← W2. We notice that the edges (X1, X3) and (X2, X5) must be directed
with a left arrow as well, as X1 ← X3 and X2 ← X5, in order to prevent the
creation of a new collider. However, upon doing so, we also notice that the edge
(X1, X2) can not be directed as not to create a new collider. This means that
directing the edges between ~Z1 and ~Z2 with a left arrow causes a new collider
in C(τ,L), which makes it not Markov equivalent with the causal models in CL
anymore. Therefore, directing the edges between ~Z1 and ~Z2 with a left arrow is
not allowed.

Because directing the edges between ~Z1 and ~Z2 with a left arrow is not
allowed, we conclude that the edges between ~Z1 and ~Z2 must be directed with a
right arrow. Following this, the edges (W1,W3) and (W2,W4) must be directed
with a right arrow as well.
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What rests is checking whether a cycle exists on all clusters ~Z1, ~Z2. As we
have just established the direction of the edges between ~Z1 and ~Z2, and ~Z1 and
~Z2 are the only two clusters of ML, the entire model looks as follows:

~Z1 → ~Z2

It is clear that this is not a cycle. Therefore, ML is compatible with τ .

We have now established that the Markov Abstraction Equivalence Class
C(τ,L) of ML consists of the Markov Equivalence Class CL of ML, with four
extra edges directed: X3 →W1, X5 →W2, W1 →W3 and W2 →W4. C(τ,L) is
depicted in Figure 7.8.

Figure 7.8: The Markov Abstraction Equivalence Class C(τ,L) of ML.

7.3 Justifying the Use of the Markov Abstraction

Equivalence Class

The Markov Abstraction Equivalence Class is a class of low-level causal models
that are Markov Equivalent and compatible with τ , i.e. causal models on which
a constructive τ -abstraction exists. But why do we use information about a
constructive τ -abstraction, i.e. information that there exists a high-level causal
model, on the low-level causal model? Why do we not focus our attention on
the high-level causal model immediately?

When we have acquired data for a causal model, we can construct the Markov
Equivalence Class of the causal model by using algorithms like the PC Algo-
rithm. However, when we know that a constructive τ -abstraction exists on this
causal model, and we know τ , we can also transform the data by τ and con-
struct the high-level causal model right away by applying the PC algorithm on
this data, without bothering about constructing the low-level causal model first.
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We can do this for the low-level causal model ML and its high-level causal
modelMH of the example in Section 7.2.1. ML has 10 variables that are divided
into two clusters ~Z1 and ~Z2 (see section 7.2.1 for more details). MH has two
variables, X and W , that are mapped to by ~Z1 and ~Z2. With this informa-
tion, we can transform the data of ML, by merging the data of X1, X2, X3, X4

and X5 into data for the high-level variable X and by merging the data of
W1,W2,W3,W4 and W5 into data for the high-level variable W . We have now
transformed the low-level data into high-level data, on which we can apply the
PC algorithm. When we do this, we get the following result: the Markov Equiv-
alence Class of MH , with an undirected edge between X and W , as depicted
in Figure 7.9. The PC algorithm is unable to find the direction of the edge
between the two variables, as there is too little information.

Figure 7.9: The Markov Equivalence Class of MH , constructed by transforming
the low-level data to high-level data and applying the PC algorithm.

To compare, we follow the other route, by first constructing the low-level
causal model ML by applying the PC algorithm, constructing the Markov Ab-
straction Equivalence Class C(τ,L) of ML, and by performing a constructive
τ -abstraction on C(τ,L). In section 7.2.1, we can see the Markov Equivalence
Class of ML (Figure 7.7) and the Markov Abstraction Equivalence Class C(τ,L)

of ML (Figure 7.8). Notice that all edges between ~Z1 and ~Z2 are directed in
C(τ,L) with a right arrow. When performing a constructive τ -abstraction on
C(τ,L), we can take this information about the direction of the edges between
the clusters and apply it to MH . This means that we know that the edge be-
tween X and W in MH must be directed as X → W . The high-level causal
model MH as a result of following this route is shown in Figure 7.10.

Figure 7.10: The Markov Equivalence Class of MH , constructed by applying
the constructive τ -abstraction on the Markov Abstraction Equivalence Class of
ML.
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The two routes just described are depicted in Figure 7.11. The first route I
described is the ’red route’: you transform the low-level data with τ to high-level
data, on which you apply the PC algorithm. This gives the Markov Equivalence
Class (MEC) of MH . The second route I described is the ’blue route’: you
obtain the MEC of ML by applying the PC algorithm on the low-level data,
and with the Ontological Faithfulness Assumption you construct the Markov
Abstraction Equivalence Class (MAEC) of ML. Abstracting this with τ gives
the MEC of MH . For ease, I will refer to these routes as the red route and the
blue route.

Figure 7.11: The two routes to get to the Markov Equivalence Class of high-level
causal model MH .

So what does this say? By following the blue route, we have obtained more
information about the structure of MH in comparison with the red route. One
would expect this, because the low-level causal model contains more variables
than the high-level causal model. This means that the red route works with
less information than the blue route. In addition, the blue route gains informa-
tion with the construction of the Markov Abstraction Equivalence Class. The
Markov Abstraction Equivalence Class thus not only adds information about
the structure of the low-level Markov Abstraction Equivalence Class, but it also
helps in finding the structure of the high-level Markov Equivalence Class.

In general, the Markov Abstraction Equivalence Class adds information in
two ways:

59



Chapter 7 – Markov Abstraction Equivalence Class 60

1. It adds information about the structure of the high-level Markov Equiva-
lence Class;

2. It adds information about the structure of the low-level Markov Abstrac-
tion Equivalence Class.

Together, this provides the justification of the focus on the low-level causal
model and the construction of the Markov Abstraction Equivalence Class: it
does not only add information about the structure of the low-level causal model,
but it also adds information about the structure of the high-level causal model.
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8 | The pcabs Algorithm

In this chapter, I will present the algorithm ’pcabs’, which puts the theory of
Markov Abstraction Equivalence Classes into practice. I will first discuss the
algorithm conceptually, after which I will give the pseudocode of pcabs. The
chapter ends by testing the performance of pcabs.

8.1 pcabs conceptually - The Four Scenarios

The pcabs algorithm puts the theory of Markov Abstraction Equivalence Classes
into practice, by adding the information of a constructive τ -abstraction to a
Markov Equivalence Class, in order to determine the direction of certain edges
in the Markov Equivalence Class. The algorithm knows the direction of certain
edges by removing the causal models that:

1. are not compatible with τ , i.e. the causal models that have a cycle on
~Zi → ~Zj , ..., ~Zk;

2. are not Markov Equivalent with the models in the Markov Equivalence
Class. These are the models for which directing all edges between a pair
of clusters creates a new collider.

The output of the pcabs algorithm is exactly the Markov Abstraction Equiv-
alence Class. The algorithm removes all models that are not compatible with τ ,
which means that all models that are left are compatible with τ . Consequently,
on all models, a constructive τ -abstraction is possible. The algorithm also en-
sures that all models that are left are Markov Equivalent. Together, this makes
exactly the Markov Abstraction Equivalence Class.

The pcabs algorithm uses the code of the package ’pcalg’, which is the
PC Algorithm, and extends it. More precisely, the code of pcalg for construct-
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ing the pattern or Markov Equivalence Class from data is used, which is the
PC-function and its helping functions. pcabs should be used after the pat-
tern has been found by pcalg. This pattern is the Markov Equivalence Class,
which we make more complete by using the given partition of the constructive
τ -abstraction. With the partition, pcabs will find Markov Abstraction Equiva-
lence Class, by removing the causal models that are not compatible with τ and
that are not Markov Equivalent with the models in the Markov Equivalence
Class. You add the partition of a constructive τ -abstraction in pcabs by defining
the low-level clusters that will be abstracted to the high-level variables. You thus
do not need to define the τ -function, but only the partition, because we focus
only on the causal structure. For example, on the basis of the Markov Equiva-
lence Class in Figure 7.7, you can add the two clusters (X1, X2, X3, X4, X5) and
(W1,W2,W3,W4,W5). For each pair of clusters, the code faces four scenarios:

Scenario 1 There are no edges between the pair of clusters. This means that no
edges have to be directed.

Scenario 2 All edges between the pair of clusters are undirected. This is the
case for the Markov Equivalence Class in Figure 7.7. Because we
know that the edges between a pair of clusters must be directed
equally, the algorithm tries both directions of all edges, and checks
whether one of the directions leads to a new v-structure (collider). If
so, this means that that direction of the edges is forbidden, as a new
v-structure means that the models are not Markov Equivalent with
the Markov Equivalence Class anymore. If one of the directions
turns out to be forbidden and the other direction is possible, the
other direction of the edges automatically is the right direction. The
algorithm then checks if any other edges can be directed based on
this, as to not produce any new v-structures or cycles. In the case
that both directions of the edges are allowed, the abstraction offers
no new information, and the edges remain undirected.

Scenario 3 There is one directed edge between pair of clusters. This means
that the other edges between the pair of clusters need to be directed
that same way, in order to prevent a cycle on the clusters. The
algorithm finds out what way the already directed edge is directed,
and directs the other edges equally. If this leads to new v-structures,
the constructive τ -abstraction turns out to be impossible, and the
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algorithm returns the original graph with an error message. If the
direction of the edges is possible, the algorithm checks if any other
edges can be directed based on this, again not producing any new
v-structures or cycles.

Scenario 4 There are multiple directed edges between pair of clusters. The al-
gorithm first has to check whether all directed edges are directed
the same way. If this is not the case, the constructive τ -abstraction
turns out to be impossible, because the model is not compatible with
τ . In that case, the algorithm outputs an error message and the
original graph. Otherwise, if all edges are pointed in the same direc-
tion, the algorithm has to check whether there are any undirected
edges left. These have to be directed the same way as the other
edges. The algorithm checks whether this leads to new v-structures,
which makes the constructive τ -abstraction impossible. If not, the
algorithm checks if any other edges can be directed based on the
abstraction, again not producing any new v-structures or cycles.

8.2 Pseudocode pcabs

I will now give the pseudocode of pcabs. As input, pcabs needs a pattern,
as produced by the PC algorithm, and a specification of the partition of the
low-level variables in a list. The algorithm consists of two parts:

1. The leading part, which looks at the existing edges between all pairs
~Zi and ~Zj in P , and decides which pairs are directed first. This matters,
because directing the edges between a pair can cause other edges to be
directed as well, including edges between other pairs in P . In this algo-
rithm, the pairs with one or more directed edges are directed first, as the
direction of their edges is determined already. Lastly, the pairs with only
undirected edges are directed.

2. The directing part, which takes as input one pair of clusters ~Zi and
~Zj and their connecting edges from the leading part. This part of the
algorithm then determines in what direction the edges should be directed,
according to the four scenarios just described. The directing part gives
back the updated pattern to the leading part.

First, the pseudocode of the leading part is as follows:
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1. By using a nested loop, loop through each pair (~Zi, ~Zj) in P :

(a) Find the edges that connect ~Zi and ~Zj . Store these edges in the
variable absList.

(b) If the length of absList is bigger than 0, we know that pair ~Zi and
~Zj are directly connected. This means that this pair needs to be sent
to the directing part. If the length of absList is 0, scenario 1 comes
into play: we know that pair ~Zi and ~Zj are not directly connected,
and can thus be forgotten for the algorithm.

(c) Check the directed edges between pair ~Zi and ~Zj . Store the directed
edges in the variable dir_list.

(d) If dir_list is not empty, we know that there are directed edges be-
tween ~Zi and ~Zj . Because we first direct the pairs with directed edges,
this pair is sent directly to the directing part (the add_abstraction
function), which sends back the updated pattern.

(e) If dir_list is empty, we know that there are no directed edges be-
tween ~Zi and ~Zj . This means that we want to direct the edges
between this pair lastly. The absList of this pair is added to the list
undirected_list.

2. When all the pairs have been checked, the pairs in undirected_list are
sent to the directing part, which again sends back the updated pattern.
If it turns out that one or multiple pairs can not be directed (i.e. both
directions are possible), these pairs are checked again until only those pairs
that can not be directed remain. These pairs then remain undirected.

3. Lastly, we need to check if a cycle exists on the clusters in the final pattern.
We do so with the check_highlevel_cycles function, which generates
the high-level model with the directed edges of the final pattern. If there
exists a cycle on this, check_highlevel_cycles returns TRUE. The final
pattern is then not compatible with τ , so we return the original pattern
with an error message. If check_highlevel_cycles returns FALSE, the
final pattern is compatible with τ and the final pattern is returned.

The directing part receives the pattern and the edges between a pair ~Zi and
~Zj from the leading part. The variables of ~Zi that are directly connected to
~Zj are stored in the variable abs_group1. The variables of ~Zj that are di-
rected connected to ~Zi are stored in the variable abs_group2. abs_group1 and
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abs_group2 follow the same order, so the first variable in abs_group1 is con-
nected to the first variable in abs_group2, etc.

The pseudocode of the directing part is as follows:

1. Check the directed edges between abs_group1 and abs_group2 on the
pattern given by the PC algorithm. The directed edges are stored in the
variable dir_list.

2. Check the number of v-structures, or colliders. This number is stored in
the variable v_structures.

3. If the length of variable dir_list is 0, i.e. there are no directed edges
between the two groups to be abstracted, scenario 2 comes into play:

(a) Point all edges between abs_group1 and abs_group2 as abs_group1
→ abs_group2. Store this graph in variable pdag1.

(b) Check whether pdag1 causes a cycle or new v-structures not stored in
the original pattern, by checking the number of v-structures and com-
paring this with the variable v_structures. We do so with the func-
tion is_direction_possible(). is_direction_possible() also
checks whether other necessarily directed edges, according to the
rules of the Markov Equivalence Class, causes a cycle or new v-
structures. If is_direction_possible() returns FALSE, we know
that pointing the edges as abs_group1 → abs_group2 is not possi-
ble. Store dir1 = TRUE if the direction abs_group1 → abs_group2
is possible, otherwise dir1 = FALSE.

(c) Point all edges between abs_group1 and abs_group2 as group1 ←
group2. Store this graph in variable pdag2.

(d) Check pdag2 with the function is_direction_possible(). If
is_direction_possible() returns FALSE, we know that pointing
the edges as abs_group1 ← abs_group2 is not possible. Store dir2

= TRUE if the direction group1 ← group2 is possible, otherwise dir2
= FALSE.

(e) If dir1 and dir2 are both TRUE:

i. We know that the two directions of the edges are both possible.
This means that we have not gained any new information. The
original pattern is returned.
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(f) If dir1 = TRUE and dir2 = FALSE:

i. We know that directing the edges as abs_group1 → abs_group2
is the only possible direction. Check if this direction causes
other edges to be directed as well, according to the rules of
the Markov Equivalence Class. We do so with the function
apply_mec_rules(). Direct these edges.

ii. Output the pattern with the edges directed as abs_group1 →
abs_group2, with the other necessary directed edges.

(g) If dir1 = FALSE and dir2 = TRUE:

i. We know that directing the edges as abs_group1 ← abs_group2
is the only possible direction. Direct other edges according to
the function apply_mec_rules().

ii. Output the pattern with the edges directed as abs_group1 ←
abs_group2, with the other necessary directed edges.

(h) If dir1 = FALSE and dir2 = FALSE:

i. We know that both directions of the edges are not possible. This
means that an abstraction on the two groups is not possible.
Return the original pattern with an error message.

4. If the length of variable dir_list is 2, there is exactly one directed
edge between the two groups to be abstracted. This is the case because
dir_list stores both the receiving as well as the outgoing variable of a
directed edge. Scenario 3 comes into play:

(a) Check if the direction of this edge is abs_group1 → abs_group2. If
this is the case, store group1_check = TRUE. Else, store group1_check
= FALSE.

(b) If group1_check = FALSE, change the abs_group1 and abs_group2

variables as follows: q = abs_group1, abs_group1 = abs_group2,
abs_group2 = q. This is necessary for the next step.

(c) Point all edges between abs_group1 and abs_group2 as abs_group1
→ abs_group2. This is always right, as abs_group1 and abs_group2

might have been exchanged in the previous step.

(d) Check these directed edges with the function is_direction_possible().
If is_direction_possible() returns FALSE, we know that the given
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abstraction on the two groups is not possible. Return the original pat-
tern with an error message. If is_direction_possible() returns
TRUE, continue to the next step.

(e) With the edges directed as abs_group1 → abs_group2, direct other
edges according to the function apply_mec_rules().

(f) Output this graph, with the edges directed as abs_group1→ abs_group2,
and with the other necessary edges.

5. If the length of variable dir_list is bigger than 2, i.e. there are multiple
directed edges between the two groups to be abstracted, scenario 4 comes
into play:

(a) Put all variables (receiving and outgoing) connected to the directed
edges in two groups: one group with all the variables that are in
abs_group1, and one group with all the variables that are in
abs_group2. Store the variables of abs_group1 in the list
leftrighlist$left and the variables of abs_group2 in the list
leftrightlist$right.

(b) Check if the variables in leftrightlist$left have outgoing directed
edges. If this is the case, store result = "left". If
leftrightlist$left has ingoing directed edges, store result =

"right". If it turns out that leftrightlist$left has both outgo-
ing as well as ingoing directed edges, store result = "error". This
means that the given abstraction on the two groups is not possible.
Return the original pattern with an error message.

(c) If result == "left":

i. Go through all the variables in abs_group1. If a variable is not
in leftrightlist$left, i.e. it does not have a directed edge,
make the undirected edge(s) from this variable be an outgoing
directed edge. Do so for all variables in abs_group1.

ii. Check these directed edges with the function is_direction_possible().
If is_direction_possible() returns FALSE, we know that the
given abstraction on the two groups is not possible. Return the
original pattern with an error message. If is_direction_possible()
returns TRUE, continue to the next step.

iii. With the edges directed as abs_group1 → abs_group2, direct
other edges according to the function apply_mec_rules().
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iv. Output this graph.

(d) If result = "right":

i. Go through all the variables in abs_group1. If a variable is not
in leftrightlist$right, i.e. it does not have a directed edge,
make the undirected edge(s) from this variable be an ingoing
directed edge. Do so for all variables in abs_group1.

ii. Analogous to steps ii, iii and iv in (c).

6. End of the algorithm.

This algorithm, under the name pcabs, produces exactly the Markov Ab-
straction Equivalence Class. The algorithm removes all causal models from the
Markov Equivalence Class that are not τ -compatible and that are not Markov
Equivalent with the models in the Markov Equivalence Class. By removing
these models, certain directions of edges are determined that were undirected in
the Markov Equivalence Class. This way, the Markov Abstraction Equivalence
Class contains more information in comparison with the Markov Equivalence
Class.

8.3 Testing the pcabs algorithm

In order to test the performance of the pcabs algorithm, we have fed the algo-
rithm several existing and fictional causal models. The results are summarized in
Table 8.1, which shows the difference in the amount of directed edges between
the Markov Equivalence Class (MEC) and Markov Abstraction Equivalence
Class (MAEC), as well as the difference in computation time. The computation
time of pcabs is the sum of the CPU time of pcalg and pcabs, as pcabs needs
the output of pcalg. I will explain each example shortly. All computations
were run on a computer with an Intel Core i7 Processor running at 2.20 GHz
using 4 GB of RAM, running on Windows 8.1.

Example 1

The first example is an existing example of Spirtes & Scheines (2000), to show
which edges the PC algorithm is able to direct. The Markov Equivalence Class,
as formed by the PC algorithm, has 2 of 5 edges directed, as depicted in Figure
8.1a. The constructive τ -abstraction with ~Z1 = (X1, X2) and ~Z2 = (X3, X4, X5)
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Causal
Model

Number of
low-level
Variables

Number of
high-level
Variables

Number
of
Edges

Directed
Edges
in MEC

Directed
Edges in
MAEC

CPU
time
pcalg

CPU
time
pcabs

Example 1 5 2 5 2 4 0.33 sec 0.35 sec
Example 2 11 3 11 2 9 2.10 sec 2.13 sec
Example 3 7 3 8 3 8 0.98 sec 1.00 sec
Example 4 30 2 31 11 31 7.31 sec 7.34 sec
Example 5 18 2 17 9 15 2.38 sec 2.42 sec

Table 8.1: The results of running the pcabs algorithm on five causal models.

gives the information to direct two more edges, as depicted in Figure 8.1b. The
amount of directed edges is thus doubled with use of the pcabs algorithm.

(a) (b)

Figure 8.1: The Markov Equivalence Class of Example 1 with two directed
edges (a) and the Markov Abstraction Equivalence Class of Example 1 with
four directed edges (b).

Example 2

Example 2 is a fictional example, consisting of 11 variables. It shows the explo-
sive amount of extra information that a constructive τ -abstraction can give. The
Markov Equivalence Class has 2 of 11 edges directed, as depicted in Figure 8.2a.
The constructive τ -abstraction with ~Z1 = (X1, X2, X3), ~Z2 = (X4, X5, X6) and
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~Z3 = (X7, X8, X9, X10, X11) gives the information to direct 7 more edges, as
depicted in Figure 8.2b. The amount of directed edges is thus enlarged from
18% to 82% by using the pcabs algorithm.

(a) (b)

Figure 8.2: The Markov Equivalence Class of Example 2 with two directed
edges (a) and the Markov Abstraction Equivalence Class of Example 2 with
nine directed edges (b).

Example 3

The third example is an existing example, found in Shalizi (2019), as depicted
in Figure 8.3. The Markov Equivalence Class of this causal model has 3 of 8
edges directed, as depicted in Figure 8.4a. The constructive τ -abstraction with
~Z1 = (X1), ~Z2 = (X2, X3, X4, X5, X6) and ~Z3 = (X7) gives the information to
direct all 8 edges of the causal model, as depicted in Figure 8.4b. This partition
makes sense, given what we know of the causal model: the variables Frequency
of toothbrushing, Gum disease, Inflammatory immune respone, Frequency of
exercise and Amount of fat and red meat in diet are grouped together because
they are all characteristics of health consciousness that influence the chance of a
heart disease. So, the information added by the abstraction gives a 100% score
of directed edges.

Example 4

Example 4 is a fictional example, to show how the pcabs algorithm works with
a large causal model. The causal model consists of 31 edges, of which 11 are
directed in the Markov Equivalence Class, as depicted in Figure 8.5. If we add
just two abstraction groups to the Markov Equivalence Class, consisting of ~Z1 =

(X1, X2, X3, X4) and ~Z2 = (X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15,

X16, X17, X18, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, X29, X30), we are
able to direct all 31 edges of the causal model, as depicted in Figure 8.6. This
shows how useful the information of only two abstraction groups can be.
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Figure 8.3: The Causal Model of Example 3 (figure taken from Shalizi (2019),
p. 482.)

(a) (b)

Figure 8.4: The Markov Equivalence Class of Example 3 with three directed
edges (a) and the Markov Abstraction Equivalence Class of Example 3 with
eight directed edges (b).

Example 5

The final example is a fictional example, to show which edges are not influenced
by an abstraction. The causal model consists of 17 edges, of which 9 are directed
in the Markov Equivalence Class, as depicted in Figure 8.7. If we add two
abstraction groups to the Markov Equivalence Class, consisting of ~Z1 = (X1, X2)

and ~Z2 = (X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14,
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Figure 8.5: The Markov Equivalence Class of Example 4 with 11 directed edges.

Figure 8.6: The Markov Abstraction Equivalence Class of Example 4 with 31
directed edges.

X15, X16, X17, X18), we are able to direct 6 more edges, as depicted in Figure
8.8. It is remarkable which edges are not directed in the Markov Abstraction
Equivalence Class, namely the edges (X6, X10) and (X9, X14). The variables
X6 and X9 are the only two variables that do not have X1 or X2 as their
ascendants, and that are not directly connected to a v-structure, like variable
X3 is. The abstraction group ~Z1 thus influences all other undirected edges, i.e.
all its descendants.
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Figure 8.7: The Markov Equivalence Class of Example 5 with 9 directed edges.

Figure 8.8: The Markov Abstraction Equivalence Class of Example 5 with 15
directed edges.
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In this thesis, I have introduced an account of Markov Abstraction Equivalence
Classes. The Markov Abstraction Equivalence Class is a subset of the Markov
Equivalence Class, which is constructed by using the fact that we have informa-
tion about a constructive τ -abstraction. The motivation to develop this account
comes from studying the theories underlying it, and specifically by studying the
constructive τ -abstraction.

In Chapter 2, I have laid out the foundation of causal models, which con-
sists of the theory of graphs, probability theory and Bayesian Networks. In this
chapter I also introduced the terms and notations used in the rest of the the-
sis. In chapter 3, I introduced causal search algorithms, which are algorithms
that structure causal models on the basis of data. Causal search algorithms
are known for adopting several assumptions, of which the best known is the
Causal Markov Assumption. I have also adopted this assumption in my the-
sis. In this chapter I also introduced constraint-based algorithms as a type of
causal search algorithms, to which the PC algorithm belongs. In Chapter 4, I
introduced Markov Equivalence and Markov Equivalence Classes. Two causal
models are Markov Equivalent if they have the same d-separations, or the same
independence statements. All causal models that are Markov Equivalent with
each other are part of the same Markov Equivalence Class. The Markov Equiva-
lence Class is an important tool in causal modelling, because it encompasses the
causal models that behave the same and produce the same results, and because
they are the result of causal search algorithms in the form of patterns. In Chap-
ter 5, I discussed the details of the PC algorithm. The PC algorithm is one of
the most frequently used causal search algorithms, and the main causal search
algorithm I have chosen for this thesis. The pseudocode of the PC algorithm
shows the similarities it has with Markov Equivalence Classes. These similari-
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ties also become clear in the output of the PC algorithm, which is the Markov
Equivalence Class of the true graph. In Chapter 6, I dove into the more techni-
cal subject of abstracting causal models. Abstraction is a powerful tool, which
enables you to create a smaller, less detailed, but more comprehensible causal
model that is an abstraction of a bigger, more detailed causal model. In this
thesis, I have only considered constructive τ -abstraction, as this is the notion
of abstraction that is most often used in practice. Constructive τ -abstraction
maps variables from a low-level causal model to a high-level causal model.

In Chapter 7, I described the Markov Abstraction Equivalence Class. First, I
defined τ -compatibility and argued in the Ontological Faithfulness Assumption
that a causal model must be τ -compatible for a constructive τ -abstraction to be
possible. This paved the way to introduce Markov τ -Abstraction Equivalence
and Markov Abstraction Equivalence Class. The Markov Abstraction Equiva-
lence Class can be seen as a subset of the Markov Equivalence Class, with the
causal models removed from the Markov Equivalence Class for which there does
not exist a constructive τ -abstraction. The Markov Abstraction Equivalence
Class is put into practice by the algorithm pcabs as an addition to the PC
algorithm, explained in Chapter 8. pcabs finds the Markov Abstraction Equiv-
alence Class of a Markov Equivalence Class. The performance of pcabs shows
how much information is added by the algorithm and how more detailed causal
models are generated. The results of testing pcabs also show a fast CPU time.

A disadvantage of Markov Abstraction Equivalence Classes and the pcabs

algorithm is that it can only be used for the specific case in which it is known
that an abstraction on a causal model exists, and it is known how the vari-
ables in the low-level causal model are grouped together. Because the theory
on abstracting causal models is still recent, there are not many causal models
to which a constructive τ -abstraction is applied. This also explains why it was
hard to find real-life examples to use pcabs on. As the theory of abstracting
causal models becomes more widespread and is used more often, the theory on
Markov Abstraction Equivalence Classes and the pcabs algorithm will also be-
come more useful.

Concretely, this thesis has attributed to the theoretical foundation of causal
models. By adding the new account of Markov Abstraction Equivalence Classes,
causal search algorithms are able to find a smaller set of possible causal models
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based on the Markov Equivalence Class and the partition of a constructive τ -
abstraction. By restricting the set of causal models, you increase the value
of your data, as the Markov Abstraction Equivalence Class provides a more
detailed account in comparison with the Markov Equivalence Class. This is
crucial in an era where data is used more and more often. As the importance
of data grows, the best use of this data also becomes more important. So, even
though this thesis is quite theoretical, it contributes to a concrete goal: a better
and more efficient use of the data at hand.
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11 | Appendix

In this appendix, I describe and provide the code of pcabs. The theory behind
pcabs is explained in Chapter 7 and 8, so I will only focus on the use of pcabs
here. In the first section, I describe a simple example of how to create the
Markov Abstraction Equivalence Class from a causal model with a constructive
τ -abstraction, by using pcabs. In the second section, the complete code of
pcabs is provided. Each function is introduced with a short description about
what it does, what the input is and what the output is for the function. Some
functions are also supplemented with comments to denote what is happening.
All code is written in R. Each comment starts with a hashtag (#). The code of
pcabs can also be found on https://github.com/gekepals/pcabs.

11.1 How to use pcabs

The following code uses pcabs to create the Markov Abstraction Equivalence
Class, as discussed in Chapter 8. At the start of your project, you need to make
sure that you have added the pcalg and pcabs package to your project, as both
will be used:

l i b r a r y ( pca lg )
l i b r a r y ( pcabs )

After this, we simulate the data of the true graph, for which there exists a
constructive τ -abstraction. In other words, this is the low-level causal model
ML. In this case, we create a simple model consisting of 5 variables X1, X2,
X3, X4 and X5, as depicted in Figure 11.1. You may recognize this example as
the first example in Section 8.3.
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Figure 11.1: Causal model ML.

x1 <− rnorm (4000)
x2 <− x1 + rnorm (4000)
x3 <− x2 + rnorm (4000)
x4 <− x2 + rnorm (4000)
x5 <− x3 + x4 + rnorm (4000)
dat <− cbind ( x1 , x2 , x3 , x4 , x5 )

As input for pcabs, we need a tabular representation of the Markov Equiv-
alence Class of ML, which is depicted in Figure 11.2. We call this the pdag of
ML. This table stores which variables are connected with each other. The pdag
of ML looks as follows:

X1 X2 X3 X4 X5

X1 0 1 0 0 0
X2 1 0 1 1 0
X3 0 1 0 0 1
X4 0 1 0 0 1
X5 0 0 0 0 0

The row of each variable denotes with which variable it is connected. So, we
see that X1 is only connected with X2. In the row of X2, we see that X2 is also
connected with X1. This means that the edge between X1 and X2 is undirected.
This is right if we look at the Markov Equivalence Class of ML (Figure 11.2).
On the other hand, we see that X3 is connected with X5, but that X5 is not
connected with X3. This means that there is an incoming edge from X3 to X5:
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X3 → X5. This is also right if we look at the Markov Equivalence Class of ML.

We create the pdag of ML by first creating the skeleton of ML with the
pcalg package. The skeleton of ML is the graph of ML without any directions
of edges. From the skeleton, the pdag of ML is created with the find_pattern
function from pcabs.

l a b e l s <− colnames ( dat )
n <− nrow ( dat )

s k e l <− s k e l e t on ( s u f f S t a t = l i s t (C = cor ( dat ) , n=n) ,
indepTest = gaussCItest , alpha = 0 .01 ,
l a b e l s = l abe l s , verbose = TRUE)

pdag <− f i nd_pattern ( s k e l )

We can also plot this pdag, to see the Markov Equivalence Class of ML.
This is depicted in Figure 11.2.

mec <− as ( pdag , "graphNEL" )
p l o t (mec)

Figure 11.2: The Markov Equivalence Class of ML.

Next, we want to define the partition P of ML. We do so by first defining
each ~Zi of P in a list. Then, we add all ~Zi together in one list abs_groups.

81



Chapter 11 – Appendix 82

a <− l i s t ( "x1" , "x2" )
b <− l i s t ( "x3" , "x4" , "x5" )
abs_groups <− l i s t ( a , b )

This is all the information that pcabs needs. With the pdag of ML and
the definition of the partition P of ML, pcabs is able to direct certain edges
that were not directed in the Markov Equivalence Class of ML. The result of
pcabs is the Markov Abstraction Equivalence Class. We also plot the Markov
Abstraction Equivalence Class. This is depicted in Figure 11.3.

pcabs_c l a s s <− l ead_abs ( pdag , abs_groups )

p l o t_pcabs_c l a s s <− as ( pcabs_c l a s s , "graphNEL" )
p l o t ( p l o t_pcabs_c l a s s )

Figure 11.3: The Markov Abstraction Equivalence Class of ML.
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11.2 pcabs code

1
2 # The code i s d iv ided in two par t s :
3 # 1 . The two main func t i on s l ead_abs ( ) and add_

abs t r a c t i on ( )
4 # 2 . The he lp ing func t i on s
5
6 ######
7
8
9 l i b r a r y ( pca lg )
10
11
12 #### THE TWO MAIN FUNCTIONS ####
13
14
15 ## Leading func t i on (" the l ead ing part ")
16 ## takes as input the pdag and a l l the groups ( a l l Zs )
17 ## loops over the groups to dec ide which are pa i r s ( i . e .

which have connected edges )
18 ## dec ide s the order o f d i r e c t i n g edges between pa i r s
19 ## f i r s t , the pa i r s are d i r e c t ed that have 1 or more

d i r e c t ed edges
20 ## la s t , a l l p a i r s that have no d i r e c t ed edges are

d i r e c t ed
21 ## a l l p a i r s are sent to the add_abs t r a c t i on func t i on to

d i r e c t the edges
22 ## output : the new pdag , with a l l d i r e c t ed edges in i t
23 l ead_abs <− f unc t i on ( pdag , abs_groups ) {
24 o r i g i n a l_pdag <− pdag
25 und i rec ted_l i s t <− l i s t ( )
26 f o r ( i in 1 : l ength ( abs_groups ) ) {
27 cat ( "\nworking on abs_group " , i )
28 f o r ( z in i : l ength ( abs_groups ) ) {
29 i f ( ( z+1) <= length ( abs_groups ) ) {
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30 absL i s t <− f i nd_edge_between_groups ( pdag , abs_
groups [ [ i ] ] , abs_groups [ [ z +1 ] ] )

31 i f ( l ength ( absL i s t $abs_group1 ) > 0) {
32 cat ( "\nfound connect ing edges " )
33 group1 <− noquote ( gsub ( " [^0−9]" , "" , absL i s t $abs

_group1 ) )
34 group2 <− noquote ( gsub ( " [^0−9]" , "" , absL i s t $abs

_group2 ) )
35 d i r_l i s t <− check_d i r e c t ed_edges ( pdag , group1 ,

group2 )
36 i f ( ! i s . nu l l ( d i r_l i s t ) ) {
37 cat ( "\ nd i r e c t ed edges found between groups " )
38 pdag <− add_abs t r a c t i on ( pdag , absL i s t $abs_

group1 , absL i s t $abs_group2 )
39 }
40 e l s e {
41 cat ( "\nno d i r e c t ed edges found between groups

" )
42 und i rec ted_l i s t <− append ( und i rec ted_l i s t ,

ab sL i s t )
43 }
44 }
45 }
46 }
47 }
48 i f ( l ength ( und i rec ted_l i s t ) > 0) {
49 cat ( "\ n s t a r t with und i rec ted l i s t " )
50 p r in t ( l ength ( und i rec ted_l i s t ) )
51 pdag_changed <− FALSE
52 repeat {
53 f o r ( i in seq (1 , l ength ( und i rec ted_l i s t ) , by=2) ) {
54 new_pdag <− add_abs t r a c t i on ( pdag , und i rec ted_l i s t

[ i ] $ abs_group1 , und i rec ted_l i s t [ i +1]$abs_
group2 )

55 i f ( a l l (new_pdag != "both_d i r e c t i o n s_po s s i b l e " ) ) {
56 pdag_changed <− TRUE

84



Chapter 11 – Appendix 85

57 pdag <− new_pdag
58 und i rec ted_l i s t [ i ] <− NULL
59 und i rec ted_l i s t [ i ] <− NULL
60 }
61 }
62 i f ( l ength ( und i rec ted_l i s t ) == 0 | | pdag_changed ==

FALSE)
63 break
64 e l s e
65 pdag_changed <− FALSE
66 }
67 }
68 # check f o r c y c l e s on the h i g h l e v e l !
69 cy c l e_check <− check_h i g h l e v e l_cy c l e s ( pdag , abs_groups )
70 i f ( c y c l e_check ) {
71 cat ( "\nERROR: d i r e c t i n g the edges c r e a t e s a cy c l e on

the high−l e v e l . The o r i g i n a l pdag i s returned " )
72 return ( o r i g i n a l_pdag )
73 }
74 e l s e {
75 cat ( "\nno c y c l e s found on the high−l e v e l . D i r e c t i ng

the edges as such has been approved . " )
76 return ( pdag )
77 }
78 }
79
80
81 ## Dir e c t i ng l ead ing func t i on (" the d i r e c t i n g part ")
82 ## d i r e c t s the edges between a pa i r o f c l u s t e r s
83 ## there are 3 opt ions when an ab s t r a c t i on i s added :
84 ## 1) there i s no d i r e c t ed edge in the ab s t r a c t i on . This

means both d i r e c t i o n s must be t r i e d
85 ## 2) there i s 1 d i r e c t ed edge in the ab s t r a c t i on . This

means a l l edges must be pointed that way
86 ## 3) there are more than 1 d i r e c t ed edges in the

ab s t r a c t i on . This means that f i r s t , i t must
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87 ## be checked whether they a l l po int in the same
d i r e c t i o n . Then , i t must be checked i f the re

88 ## are und i rec ted edges l e f t . I f so , they must po int in
the same d i r e c t i o n as we l l .

89 ## input : a pa i r o f c l u s t e r s ( abs_group1 and abs_group2 )
90 ## output : the updated pdag with d i r e c t ed edges
91
92 add_abs t r a c t i on <− f unc t i on ( pdag , abs_group1 , abs_group2 )

{
93 abs_group1 <− as . numeric ( noquote ( gsub ( " [^0−9]" , "" , abs_

group1 ) ) )
94 abs_group2 <− as . numeric ( noquote ( gsub ( " [^0−9]" , "" , abs_

group2 ) ) )
95
96 d i r_l i s t <− check_d i r e c t ed_edges ( pdag , abs_group1 , abs_

group2 )
97 v_s t r u c t u r e s <− number_v_nodes ( pdag )
98
99 i f ( l ength ( d i r_l i s t ) == 0) {
100 #th i s means the re are no d i r e c t ed edges between the

pa i r
101 #we try both d i r e c t i o n s o f the edges
102
103 ## po in t ing the one way
104 pdag1 <− change_d i r e c t i o n ( pdag , abs_group1 , abs_

group2 )
105 d i r 1 <− i s_d i r e c t i o n_po s s i b l e ( pdag1 , v_s t r u c t u r e s )
106
107 ## po in t ing the other way
108 pdag2 <− change_d i r e c t i o n ( pdag , abs_group2 , abs_

group1 )
109 d i r 2 <− i s_d i r e c t i o n_po s s i b l e ( pdag2 , v_s t r u c t u r e s )
110
111 i f ( d i r 1 && di r2 ) {
112 #th i s means that both d i r e c t i o n s are p o s s i b l e
113 #we return the message "both_d i r e c t i o n s_po s s i b l e "
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114 return ( "both_d i r e c t i o n s_po s s i b l e " )
115 }
116 i f ( d i r 1 && ! d i r 2 ) {
117 #th i s means that the d i r e c t i o n abs_group1 −−> abs_

group2 i s the only p o s s i b l e d i r e c t i o n
118 pdag <− apply_mec_ru l e s ( pdag1 )
119 re turn ( pdag )
120 }
121 i f ( ! d i r 1 && di r2 ) {
122 #th i s means that the d i r e c t i o n abs_group1 <− abs_

group2 i s the only p o s s i b l e d i r e c t i o n
123 pdag <− apply_mec_ru l e s ( pdag2 )
124 re turn ( pdag )
125 }
126 i f ( ! d i r 1 && ! d i r 2 ) {
127 #th i s means that both d i r e c t i o n s are not p o s s i b l e
128 #the o r i g i n a l pdag i s returned , without any

d i r e c t ed edges
129 re turn ( pdag )
130 }
131
132 }
133 e l s e i f ( l ength ( d i r_l i s t ) == 2) {
134 #th i s means that the re i s one d i r e c t ed edge between

the pa i r o f c l u s t e r s
135 #we convert the other edges the same way
136 group1_check <− check_d i r e c t i o n ( pdag , d i r_l i s t , abs_

group1 )
137 i f ( ! ( group1_check ) ) {
138 q <− abs_group1
139 abs_group1 <− abs_group2
140 abs_group2 <− q
141 }
142 pdag <− change_d i r e c t i o n ( pdag , abs_group1 , abs_group2

)
143 check <− i s_d i r e c t i o n_po s s i b l e ( pdag , v_s t r u c t u r e s )
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144 i f ( check ) {
145 pdag <− apply_mec_ru l e s ( pdag )
146 re turn ( pdag )
147 }
148 e l s e {
149 cat ( "ERROR: d i r e c t i n g the edges i s not p o s s i b l e .

Check i f something i s wrong with the graph . " )
150 re turn ( pdag )
151 }
152
153 }
154 e l s e {
155 #th i s means that mu l t ip l e d i r e c t ed edges are found

between the pa i r o f c l u s t e r s
156 #we need to check i f they are d i r e c t ed the same way ,

and d i r e c t the other edges
157 l e f t r i g h t l i s t <− l i s t_d i r_edges ( d i r_l i s t )
158
159 r e s u l t <− match_d i r_edges ( l e f t r i g h t l i s t $ l e f t ,

l e f t r i g h t l i s t $ r ight , abs_group1 )
160
161 i f ( r e s u l t == " e r r o r " ) {
162 cat ( "ERROR: the edges are not d i r e c t ed the same way

. An ab s t r a c t i on i s impos s ib l e ! " )
163 re turn ( pdag )
164 }
165 e l s e i f ( r e s u l t == " l e f t " ) {
166 #the d i r e c t ed edges po int the same way
167 f o r ( i in abs_group1 ) {
168 i f ( ! ( i %in% l e f t r i g h t l i s t $ l e f t ) ) {
169 #not a l l edges are d i r e c t ed yet
170 group1_check <− check_d i r e c t i o n ( pdag , d i r_l i s t ,

abs_group1 )
171 i f ( ! ( group1_check ) ) {
172 q <− abs_group1
173 abs_group1 <− abs_group2
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174 abs_group2 <− q
175 }
176 pdag <− change_d i r e c t i o n ( pdag , abs_group1 , abs_

group2 )
177 check <− i s_d i r e c t i o n_po s s i b l e ( pdag , v_

s t r u c t u r e s )
178 i f ( check ) {
179 pdag <− apply_mec_ru l e s ( pdag )
180 re turn ( pdag )
181 }
182 e l s e {
183 cat ( "ERROR: d i r e c t i n g the edges i s not

p o s s i b l e . Check i f something i s wrong with
the graph . " )

184 re turn ( pdag )
185 }
186 }
187 e l s e {
188 #a l l edges are d i r e c t ed a l ready . No extra edges

need to be d i r e c t ed .
189 return ( pdag )
190 }
191 }
192 }
193 e l s e i f ( r e s u l t == " r i gh t " ) {
194 #the d i r e c t ed edges po int the same way
195 f o r ( i in abs_group1 ) {
196 i f ( ! ( i %in% l e f t r i g h t l i s t $ r i g h t ) ) {
197 #not a l l edges are d i r e c t ed yet
198 group1_check <− check_d i r e c t i o n ( pdag , d i r_l i s t ,

abs_group1 )
199 i f ( ! ( group1_check ) ) {
200 q <− abs_group1
201 abs_group1 <− abs_group2
202 abs_group2 <− q
203 }
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204 pdag <− change_d i r e c t i o n ( pdag , abs_group1 , abs_
group2 )

205 check <− i s_d i r e c t i o n_po s s i b l e ( pdag , v_
s t r u c t u r e s )

206 i f ( check ) {
207 pdag <− apply_mec_ru l e s ( pdag )
208 re turn ( pdag )
209 }
210 e l s e {
211 cat ( "ERROR: d i r e c t i n g the edges i s not

p o s s i b l e . Check i f something i s wrong with
the graph . " )

212 re turn ( pdag )
213 }
214 }
215 e l s e {
216 #a l l edges are d i r e c t ed a l ready . No extra edges

need to be d i r e c t ed .
217 return ( pdag )
218 }
219 }
220 }
221 }
222 }
223
224
225 #### HELP FUNCTIONS ####
226
227
228 ## NOTE: code from pca lg package
229 ## func t i on to produce the pdag from the sk e l e t on
230 ## the pdag i s a tabu la r r ep r e s en t a t i on o f the mec
231 ## input parameter : s k e l e t on ( from pca lg )
232 ## output : pdag o f mec
233 f i nd_pattern <− f unc t i on ( s k e l ) {
234 r e s <− s k e l
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235 g <− as ( ske l , "matrix " )
236 p <− as . numeric (dim( g ) [ 1 ] )
237 pdag <− g
238 ind <− which ( g == 1 , ar r . ind = TRUE)
239 f o r ( i in seq_len ( nrow ( ind ) ) ) {
240 x <− ind [ i , 1 ]
241 y <− ind [ i , 2 ]
242 a l l z <− s e t d i f f ( which ( g [ y , ] == 1) , x )
243 f o r ( z in a l l z ) {
244 i f ( g [ x , z ] == 0 && ! (y %in% ske l@sepse t [ [ x ] ] [ [ z ] ]

| |
245 y %in% ske l@sepse t [ [ z ] ] [ [ x ] ] )

) {
246 pdag [ x , y ] <− pdag [ z , y ] <− 1
247 pdag [ y , x ] <− pdag [ y , z ] <− 0
248 }
249 }
250 }
251 return ( pdag )
252 }
253
254
255 ## func t i on to f i nd the edges between two groups o f

v a r i a b l e s
256 ## input : the pdag , the f i r s t group and the second group
257 ## output : two l i s t s in one l i s t absL i s t :
258 ## absL i s t $abs_group1 = in order , the v a r i a b l e s that are

connected to group_2
259 ## absL i s t $abs_group2 = in order , the v a r i a b l e s that are

connected to group_1
260 ## so both l i s t s are in order and de f i n e which va r i ab l e

i s connected to which
261 f i nd_edge_between_groups <− f unc t i on ( pdag , group1 , group2

) {
262 t = 0
263 abs_group1 <− l i s t ( )
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264 abs_group2 <− l i s t ( )
265 f o r ( i in group1 ) {
266 conn_l i s t = f i nd_conn_edges ( pdag , i )
267 f o r ( z in conn_l i s t ) {
268 i f ( z %in% group2 ) {
269 t = t+1
270 abs_group1 [ t ] <− i
271 abs_group2 [ t ] <− z
272 }
273 }
274 }
275 absL i s t <− l i s t ( "abs_group1" = abs_group1 , "abs_group2"

= abs_group2 )
276 return ( absL i s t )
277 }
278
279
280 ## func t i on to f i nd the v a r i a b l e s connected to a c e r t a i n

va r i ab l e
281 ## input : the pdag , and the va r i ab l e f o r which you want

to f i nd the connected edges
282 ## fo r example : x2 i s connected to x1 , x4 , x5
283 ## output : l i s t o f the connected edges
284 f i nd_conn_edges <− f unc t i on ( pdag , row ) {
285 conn_l i s t = l i s t ( )
286 t = 0
287 z = 0
288 f o r ( i in pdag [ row , ] ) {
289 t = t+1
290 i f ( i == 1) {
291 z = z+1
292 conn_l i s t [ z ] = colnames ( pdag ) [ t ]
293 }
294 }
295 return ( conn_l i s t )
296 }
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297
298
299 ## func t i on to check f o r d i r e c t ed edges between two

groups o f v a r i a b l e s
300 ## input : the two groups o f v a r i a b l e s
301 ## output : the l i s t o f d i r e c t ed edges ( i f any ) in one

l i s t
302 ## i f no d i r e c t ed edges are found , re turn i s NULL
303 check_d i r e c t ed_edges <− f unc t i on ( pdag , abs_group1 , abs_

group2 ) {
304 ind <− which ( ( pdag == 1 & t ( pdag ) == 0) , a r r . ind = TRUE

)
305 d i r_edge <− FALSE
306 ind_no <− l i s t ( )
307 t <− 1
308
309 f o r ( i in seq_len ( nrow ( ind ) ) ) {
310 i f ( ind [ i , 1 ] %in% abs_group1 ) {
311 i f ( ind [ i , 2 ] %in% abs_group2 ) {
312 d i r_edge = TRUE
313 ind_no [ [ t ] ] <− ind [ i , 1 ]
314 t <− t+1
315 ind_no [ [ t ] ] <− ind [ i , 2 ]
316 t <− t+1
317 }
318 }
319 e l s e i f ( ind [ i , 2 ] %in% abs_group1 ) {
320 i f ( ind [ i , 1 ] %in% abs_group2 ) {
321 d i r_edge = TRUE
322 ind_no [ [ t ] ] <− ind [ i , 1 ]
323 t <− t+1
324 ind_no [ [ t ] ] <− ind [ i , 2 ]
325 t <− t+1
326 }
327 }
328 }
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329
330 i f ( d i r_edge ) {
331 return ( ind_no )
332 }
333 e l s e {
334 return (NULL)
335 }
336 }
337
338
339 ## func t i on to check the number o f v−s t r u c t u r e s in a

graph
340 ## input : the pdag
341 ## output : the number o f v−s t r u c t u r e s
342 ## th i s i s u s e f u l f o r comparing the f i r s t MEC with the

second MEC with ab s t r a c t i on :
343 ## i f the number o f v−s t r u c t u r e s i s not equal , the g iven

ab s t r a c t i on i s not va l i d
344 number_v_nodes <− f unc t i on ( pdag ) {
345 ind <− which ( ( pdag == 1 & t ( pdag ) == 0) , a r r . ind = TRUE

)
346 v_nodes <− ind [ dup l i ca t ed ( ind [ , 2 ] ) , 2 ]
347 no_v_nodes <− l ength (v_nodes )
348 return ( no_v_nodes )
349 }
350
351
352 ## func t i on that changes a l l und i rec ted edges in to

d i r e c t ed edges
353 ## the edges are d i r e c t ed as abs_group1 −−> abs_group2
354 ## input : the pdag and the two ab s t r a c t i on groups
355 ## output : the d i r e c t ed pdag
356 change_d i r e c t i o n <− f unc t i on ( pdag , abs_group1 , abs_group2

) {
357 f o r ( i in seq_along ( abs_group1 ) ) {
358 a <− abs_group1 [ i ]
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359 b <− abs_group2 [ i ]
360
361 i f ( pdag [ a , b ] == 1 & pdag [ b , a ] == 1) {
362 pdag [ b , a ] <− 0
363 }
364 }
365 return ( pdag )
366 }
367
368
369 ## th i s func t i on checks whether a c e r t a i n d i r e c t i o n o f

the edges i s p o s s i b l e
370 ## i t f i r s t check whether the d i r e c t i o n a lone causes any

more v−s t r u c t u r e s
371 ## then , i t a pp l i e s the MEC−Rules o f the pca lg algor ithm ,

and checks whether
372 ## th i s causes any more v−s t r u c t u r e s
373 ## i f both don ’ t cause more v−s t ru c tu r e s , the d i r e c t i o n

i s a l lowed
374 ## input : the pdag and the number o f v−s t r u c t u r e s in the

o r i g i n a l MEC
375 ## output : TRUE i f d i r e c t i o n i s al lowed , FALSE i f

d i r e c t i o n i s not a l lowed
376 i s_d i r e c t i o n_po s s i b l e <− f unc t i on ( pdag , v_s t r u c t u r e s ) {
377 p o s s i b l e_d i r e c t i o n <− TRUE
378 pdag_v <− number_v_nodes ( pdag )
379 i f ( v_s t r u c t u r e s != pdag_v) {
380 p o s s i b l e_d i r e c t i o n <− FALSE
381 }
382 i f ( p o s s i b l e_d i r e c t i o n ) {
383 ## point other edges accord ing to MEC−r u l e s
384 pdag <− apply_mec_ru l e s ( pdag )
385 pdag_v <− number_v_nodes ( pdag )
386 i f ( v_s t r u c t u r e s != pdag_v) {
387 p o s s i b l e_d i r e c t i o n <− FALSE
388 }
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389 }
390 return ( p o s s i b l e_d i r e c t i o n )
391 }
392
393
394 ## NOTE: code from pca lg pacakge
395 ## func t i on that app l i e s the 3 r u l e s o f PC algor i thm
396 ## input parameter : pdag
397 ## output : a l t e rna t ed pdag accord ing to the r u l e s
398 ## th i s func t i on checks i f edges must be d i r e c t ed

accord ing to the r u l e s o f mec
399 apply_mec_ru l e s <− f unc t i on ( pdag ) {
400 g <− as ( ske l , "matrix " )
401 p <− as . numeric (dim( g ) [ 1 ] )
402
403 o ld_pdag <− matrix (0 , p , p )
404
405 ## Rule 1
406 whi l e ( ! a l l ( o ld_pdag == pdag ) ) {
407 o ld_pdag <− pdag
408 ind <− which ( ( pdag == 1 & t ( pdag ) == 0) , a r r . ind =

TRUE)
409 f o r ( i in seq_len ( nrow ( ind ) ) ) {
410 a <− ind [ i , 1 ]
411 b <− ind [ i , 2 ]
412 indC <− which ( ( pdag [ b , ] ==1 & pdag [ , b ] ==1) &
413 ( pdag [ a , ] == 0 & pdag [ , a ] ==0))
414 i f ( l ength ( indC ) > 0) {
415 pdag [ b , indC ] <− 1
416 pdag [ indC , b ] <− 0
417 }
418 }
419
420 ## Rule 2
421 ind <− which ( ( pdag == 1 & t ( pdag ) == 1) , a r r . ind =

TRUE)

96



Chapter 11 – Appendix 97

422 f o r ( i in seq_len ( nrow ( ind ) ) ) {
423 a <− ind [ i , 1 ]
424 b <− ind [ i , 2 ]
425 indC <− which ( ( pdag [ a , ] == 1 & pdag [ , a ] == 0) &
426 ( pdag [ , b ] == 1 & pdag [ b , ] == 0) )
427 i f ( l ength ( indC ) > 0) {
428 pdag [ a , b ] <− 1
429 pdag [ b , a ] <− 0
430 }
431 }
432
433 ## Rule 3
434 ind <− which ( ( pdag == 1 & t ( pdag ) ==1) , a r r . ind =

TRUE)
435 f o r ( i in seq_len ( nrow ( ind ) ) ) {
436 a <− ind [ i , 1 ]
437 b <− ind [ i , 2 ]
438 indC <− which ( ( pdag [ a , ] == 1 & pdag [ , a ] == 1) &
439 ( pdag [ , b ] == 1 & pdag [ b , ] == 0) )
440 i f ( l ength ( indC ) >= 2) {
441 g2 <− pdag [ indC , indC ]
442 i f ( l ength ( g2 ) <= 1) {
443 g2 <− 0
444 }
445 e l s e {
446 diag ( g2 ) <− rep (1 , l ength ( indC ) )
447 }
448 i f ( any ( g2 == 0) ) {
449 pdag [ a , b ] <− 1
450 pdag [ b , a ] <− 0
451 }
452 }
453 }
454 }
455 return ( pdag )
456 }
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457
458
459 ## func t i on to check the d i r e c t i o n o f the v a r i a b l e s in

d i r_l i s t
460 ## assumptions : the v a r i a b l e s in the abs_groups are

d i r e c t ed equa l ly ,
461 ## and there i s at l e a s t 1 d i r e c t ed edge in abs_group1
462 ## ( t h i s has been checked be f o r e the func t i on i s c a l l e d )
463 ## input : the pdag , the d i r_l i s t ( from check_d i r e c t ed_

edges func t i on ) and abs_group1
464 ## i f the d i r e c t i o n i s abs_group1 −−> abs_group2 , re turn

group1 = TRUE
465 ## i f the d i r e c t i o n i s abs_group1 <−− abs_group2 , re turn

group1 = FALSE
466 check_d i r e c t i o n <− f unc t i on ( pdag , d i r_l i s t , abs_group1 ) {
467 a <− d i r_l i s t [ [ 1 ] ]
468 b <− d i r_l i s t [ [ 2 ] ]
469 i f ( pdag [ a , b ] == 1 & pdag [ b , a ] == 0) {
470 #th i s means the edge i s d i r e c t ed as a −> b
471 i f ( a %in% abs_group1 ) {
472 re turn ( group1 <− TRUE)
473 }
474 e l s e {
475 re turn ( group1 <− FALSE)
476 }
477 }
478 i f ( pdag [ b , a ] == 1 & pdag [ a , b ] == 0) {
479 #th i s means the edge i s d i r e c t ed as a <− b
480 }
481 i f (b %in% abs_group1 ) {
482 return ( group1 <− FALSE)
483 }
484 e l s e {
485 return ( group1 <− TRUE)
486 }
487 }
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488
489
490 ## func t i on to put the r e s u l t s o f check_d i r e c t ed_edges

func t i on in to two l i s t s :
491 ## one l i s t with a l l the nodes found on the l e f t s ide ,

one with nodes on the r i g h t s i d e
492 ## the func t i on s thus s p l i t s up the l i s t found in check_

d i r e c t ed_edges
493 ## input : d i r_l i s t ( from check_d i r e c t ed_edges func t i on )
494 ## output : two l i s t s : l e f t_l i s t and r i gh t_l i s t
495 l i s t_d i r_edges <− f unc t i on ( d i r_l i s t ) {
496 l e f t_l i s t <− l i s t ( )
497 r i gh t_l i s t <− l i s t ( )
498 l <− 1
499 r <− 1
500 f o r ( i in seq (1 , l ength ( d i r_l i s t ) , 2) ) {
501 l e f t_l i s t [ l ] <− d i r_l i s t [ [ i ] ]
502 l <− l+1
503 }
504 f o r ( i in seq (2 , l ength ( d i r_l i s t ) , 2) ) {
505 r i g h t_l i s t [ r ] <− d i r_l i s t [ [ i ] ]
506 r <− r+1
507 }
508 l e f t r i g h t_l i s t <− l i s t ( " l e f t " = l e f t_l i s t , " r i g h t " =

r i gh t_l i s t )
509 return ( l e f t r i g h t_l i s t )
510 }
511
512
513 ## func t i on to check i f v a r i a b l e s in l e f t l i s t are in

e i t h e r absgroup1 or absgroup2
514 ## th i s i s necessary , o therw i se the re has been made a

mistake , in the g iven absgroups
515 ## input : l e f t l i s t and r i g h t l i s t ( from l i s t_d i r_edges

func t i on ) , and abs_group1
516 ## i f the re i s a mistake , then l e f t l i s t i s both in
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absgroup1 and absgroup2
517 ## the func t i on then re tu rn s " e r r o r "
518 ## e l s e , the func t i on r e tu rn s " l e f t " when l e f t l i s t i s in

absgroup1
519 ## th i s means an ab s t r a c t i on o f absgroup1 −−>

absgroup2
520 ## the func t i on return " r i g h t " when l e f t l i s t i s in

absgroup2
521 ## th i s means an ab s t r a c t i on o f absgroup1 <−−

absgroup2
522 match_d i r_edges <− f unc t i on ( l e f t l i s t , r i g h t l i s t ,

absgroup1 ) {
523 r e s u l t <− " e r r o r "
524 group1 <− FALSE
525 group2 <− FALSE
526 f o r ( i in l e f t l i s t ) {
527 i f ( i %in% absgroup1 ) {
528 group1 <− TRUE
529 }
530 e l s e {
531 group2 <− TRUE
532 }
533 }
534
535 i f ( group1 && group2 ) {
536 return ( r e s u l t )
537 }
538 i f ( group1 ) {
539 f o r ( i in r i g h t l i s t ) {
540 i f ( i %in% absgroup1 ) {
541 group1 <− FALSE
542 }
543 e l s e {
544 group2 <− TRUE
545 }
546 }
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547 i f ( group1 && group2 ) {
548 ##in t h i s case , l e f t l i s t i s in absgroup1 , r i g h t l i s t

i s in absgroup2
549 r e s u l t <− " l e f t "
550 re turn ( r e s u l t )
551 }
552 }
553 e l s e i f ( group2 ) {
554 f o r ( i in r i g h t l i s t ) {
555 i f ( i %in% absgroup1 ) {
556 group1 <− TRUE
557 }
558 e l s e {
559 group2 <− FALSE
560 }
561 }
562 i f ( group1 && group2 ) {
563 ##in t h i s case , l e f t l i s t i s in absgroup2 , r i g h t l i s t

i s in absgroup1
564 r e s u l t <− " r i g h t "
565 re turn ( r e s u l t )
566 }
567 e l s e {
568 re turn ( r e s u l t )
569 }
570 }
571 }
572
573
574 ## func t i on to check whether the re are c y c l e s on the high

−l e v e l
575 ## input : low−l e v e l pdag and abs_groups
576 ## output : va lue o f c y c l e_check :
577 ## i f TRUE: a cy c l e e x i s t s on the high−l e v e l
578 ## i f FALSE: no cy c l e e x i s t s on the high−l e v e l
579 check_h i g h l e v e l_cy c l e s <− f unc t i on ( pdag , abs_groups ) {
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580 h i g h l e v e l_pdag <− cons t ruc t_h i g h l e v e l ( pdag , abs_groups )
581 cy c l e_check <− f i nd_cyc l e ( h i g h l e v e l_pdag )
582 return ( cy c l e_check )
583 }
584
585
586 ## func t i on to cons t ruc t the high−l e v e l pdag
587 ## that i s : the t ab l e in which the edges between the

c l u s t e r s are de f ined
588 ## input : the low−l e v e l pdag and abs_groups
589 ## output : the high−l e v e l pdag
590 cons t ruc t_h i g h l e v e l <− f unc t i on ( pdag , abs_groups ) {
591 p <− l ength ( abs_groups )
592 h i g h l e v e l_pdag <− matrix (0 , p , p )
593 f o r ( i in 1 : l ength ( abs_groups ) ) {
594 f o r ( z in 1 : l ength ( abs_groups ) ) {
595 absL i s t <− f i nd_edge_between_groups ( pdag , abs_

groups [ [ i ] ] , abs_groups [ [ z ] ] )
596 i f ( l ength ( absL i s t $abs_group1 ) > 0) {
597 group1 <− noquote ( gsub ( " [^0−9]" , "" , absL i s t $abs_

group1 ) )
598 group2 <− noquote ( gsub ( " [^0−9]" , "" , absL i s t $abs_

group2 ) )
599 d i r_l i s t <− check_d i r e c t ed_edges ( pdag , group1 ,

group2 )
600 i f ( ! i s . nu l l ( d i r_l i s t ) ) {
601 outgoing_edge <− check_d i r e c t i o n ( pdag , d i r_l i s t

, group1 )
602 i f ( outgoing_edge ) {
603 h i g h l e v e l_pdag [ i , z ] <− 1
604 }
605 }
606 }
607 }
608 }
609 return ( h i g h l e v e l_pdag )
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610 }
611
612
613 ## func t i on to check whether the re i s a cy c l e in the

model
614 ## input : pdag
615 ## output : c y c l e va lue which i s TRUE i f a cy c l e i s found ,

FALSE otherwi se
616 f i nd_cyc l e <− f unc t i on ( pdag ) {
617 cy c l e <− FALSE
618 ind <− which ( ( pdag == 1 & t ( pdag ) == 0) , a r r . ind = TRUE

)
619 f o r ( i in seq_len ( nrow ( ind ) ) ) {
620 a <− ind [ i , 1 ]
621 b <− ind [ i , 2 ]
622 c <− which ( ( ind [ ,1]==b) )
623
624 whi l e ( l ength ( c ) > 0) {
625 b <− ind [ c , 2 ]
626 i f ( a %in% b) {
627 break
628 }
629 c <− which ( ( ind [ ,1]==b) )
630 }
631 i f ( a %in% b) {
632 cy c l e <− TRUE
633 }
634 }
635 return ( cy c l e )
636 }
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