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Abstract

We consider a system of quadratic forms F1, . . . , FR with integer coefficients. Generalizing

the work of Myerson we find an asymptotic formula for the number of integral zeros within

a growing box which also lie in suitable residue classes, i.e. fix m,n ∈ N and let Ωp be a

chosen subset of (Z/pmZ)n then we count all x = (x1, . . . , xn) ∈ Zn with |xi| < P such that

F1(x), . . . , FR(x) = 0 and x ∈ Ωp. This is done by using Selberg’s sieve. As an application

we study the number of rational points that lie in a thin set in the intersection of a system

of quadratic forms F1, . . . , FR. Lastly we find a lower bound for the number of x ∈ Zn with

|xi| < P such that F1(x), . . . , FR(x) = 0 and x1 · · ·xn is a positive integer with at most r

prime divisors outside some given finite set.
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1 Introduction

A fundamental theme in mathematics is the study of rational points on projective algebraic

varieties. Let X ⊂ PnQ be a projective variety that is the zero set of a finite system of

homogeneous equations. A question we could ask ourselves is: when is X(Q) non-empty?

how large is X(Q) when it is non-empty? There is a conjecture by Manin [1, Conjecture C’]

which tries to to give an answer. We will state Manin’s conjecture in the way Browning [6]

does.

Points of Pn(Q) can be represented by vectors x = (x0, . . . , xn) ∈ Zn+1 with

gcd(x0, . . . , xn) = 1.

This can be done in two ways: having
∏
xi > 0 or having

∏
xi < 0. We define a height

function H : Pn(Q)→ Z as

x 7→ |x| := maxi(|xi|),

where x = (x0, . . . , xn) ∈ Zn+1 represents x ∈ Pn(Q). The function H is also known as the

standard exponential height function associated to the supremum norm.

Given a suitable Zariski open subset U ⊂ X, the goal is then to study the quantity

N(U,H, P ) := #{x ∈ U(Q) : H(x) ≤ P},

as P → ∞. Suppose for simplicity that X is a non-singular complete intersection, with

X = W1 ∩ . . . ∩WR ⊂ X, for hypersurfaces Wi ⊂ Pn of degree di. We assume X to be Fano,

and therefore its Picard group is a finitely generated free Z-module, and we denote its rank

by ρ(X). Then in this setting the Manin conjecture [1, Conjecture C’] takes the following

shape.

Conjecture 1.1. Suppose that d1 + . . . + dR ≤ n. Then there exists a Zariski open subset

U ⊂ X and a constant cX,H such that

N(U,H, P ) = cX,HP
n+1−d1−...−dR(logP )ρ(X)−1(1 + o(1)), (1.1)

as P →∞ and where ρ(X) is the rank of the Picard group of X.

It is not so difficult to see why we need to restrict the counting function to something

open. If we look at the zeros in P3(Q) of F (x) = x3
0 +x3

1−x3
1−x3

3 for which |x| ≤ P, it is easy

to see that if x0 = x2 and x1 = x3, then F (x) = 0. So we have at least P 2 solutions. Now we

can see why (1.1) won’t hold if we don’t restrict it to some open U , namely P 2 grows faster

then P (logP )4−1 as P →∞.

The original version of Manin’s conjecture (1.1) is false in general. This was first shown

in 1996 by Batyrev and Tschinkel [2]. As Browning and Loughran [8] say, numerous authors

have recently investigated a ”thin” version of Manin’s conjecture (see [21, §8], [17], [7] or

[16]), where one is allowed to remove a thin subset of X(Q), rather than just a Zariski closed

set. See Definition 10.1 for the definition of thin subsets. A question is whether removing

a thin subset could change the asymptotic behavior of the counting function N(U,H, P ).

We will show that, under some conditions, this is not the case when the rational points are

equidistributed and X is the zero set of some quadrics.
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Theorem 1.2. Let X(Q) ⊂ Pn(Q) be a smooth variety defined by the quadratics F1, . . . , FR
with integer coefficients. Suppose dimX = n−R, dim X̃∗ ≤ n− 1 where X̃∗ is defined as in

§8.4.1. Further suppose n+ 1− σR > 8R, where

σR = 1 + maxβ∈RR\{0} dim Sing V (β · F )

and V (β ·F ) is the hypersurface cut out in Pn by β1F1 + . . .+βRFR. Let Υ ⊂ X(Q) be a thin

set. Then there exists θn > 0 such that

#{x ∈ Υ : |x| ≤ P} �Υ,X Pn+1−2R−θn .

This theorem is proved in section 10 by using another main result of this thesis, stated

below. Let X be an integral model for the variety defined by F1, . . . , FR = 0. Fix m ∈ N and

let Ωpm ⊂ X(Z/pmZ) then define

N(P,Ω) := #{x ∈ X(Q) : |x| ≤ P, x mod pm ∈ Ωpm for all p}.

Theorem 1.3. Let X ⊂ Pn(Q) be as above, in Theorem 1.2. In particular

n+ 1− σR > 8R. (1.2)

Let m ∈ N and let Ωpm ⊂ X(Z/pmZ) for each prime p. Assume that 0 ≤ ωp < 1, where

ωp = 1− #Ω̂pm

#X̂(Z/pmZ)
, (1.3)

and

Ω̂pm = {x ∈ (Z/pmZ)n+1 : p - x, (x0 : . . . : xn) ∈ Ωpm}

and

X̂(Z/pmZ) = {x ∈ (Z/pmZ)n+1 : p - x, F1(x0, . . . , xn) = 0 mod pm}.

Then for every ξ ≥ 1 and any ε > 0, we have

N(P,Ω)�X,ε
Pn+1−2R

J(ξ)
+ Pn+1−2R−δξ2mδ2+2+ε,

where

J(ξ) =
∑
k<ξ

µ2(k)
∏
p|k

(
ωp

1− ωp

)
and δ and δ2 are some positive constants.

For the proof of Theorem 1.3 we will use Selberg’s sieve. This is a very useful tool, since

then, as we will see in section 9, we only need to have a formula for

Ñ(P,ΩM ) := #{x ∈ Zn : |x| < PB, fi(x) = 0 for 1 ≤ i ≤ R, x mod pm ∈ Ωpm for all pm||M},

where B is a box in Rn contained in the box [−1, 1]n, and having sides of length at most 1

which are parallel to the coordinate axes, fi are quadratics and where we write pm||M if pm

divides M , but pm+1 does not divide M . The assumptions of the following theorem requires

some more notation, which can be found in section 8.1.
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Theorem 1.4. Let fi ∈ Z[x1, . . . , xn] be quadratic forms with integer coefficients and n ≥ 2

and dim(X̃∗) ≤ n − 1, where X̃∗ is defined as in §8.4.1. Let Naux
h (B) as in Definition 8.2.

Suppose that the fi are linearly independent and that

Naux
β·f (B) ≤ C0B

(d−1)n−2dC

for some C0 ≥ 1,C > 2R and all β ∈ RR and B ≥ 1, where β · f = β1f1 + . . .+ βRfR. Then

for all P ≥ 1 we have

Ñ(P,ΩM ) =
∑

[v]M∈ΩM

(JS(v;M)Pn−2RM−n +O(Pn−2R−δM−n+δ2)), (1.4)

where the implied constant depends at most on C0,C and the fi, and δ and δ2 are positive

constants depending at most on C and R. Here J and S are as in Lemma 8.11 and Lemma

8.10.

For the proof of the previous theorem we follow Myerson [20]. The dependence of M in

(1.4) is my own contribution. Myerson found in 2017 the following formula for Ñ(P,Ω) if

Ωpm = X(Z/pmZ) for all p.

Theorem 1.5. ([20, Theorem 1.2.]). Let F1(x), . . . , FR(x) be homogeneous forms of degree

2, with integer coefficients in n variables. Let B be a box in Rn, contained in the box [−1, 1]n,

and having sides of length at most 1 which are parallel to the coordinate axes. For each P ≥ 1,

we write

N(P ) = #{x ∈ Zn : x ∈ PB, F1(x), . . . , FR(x) = 0}.

If dimX(F1, . . . , FR) = n− 1−R and

n− σR > 8R,

then for all P ≥ 1, some J1 ≥ 0 depending only on the coefficients of Fi and on B, and some

S1 ≥ 0 depending only on the coefficients of Fi, we have

N(P ) = J1S1P
n−2R +O(Pn−2R−δ1)

where the implied constant depends only on the forms Fi and δ1 is a positive constant depend-

ing only on R.

There is a similar upper bound like the one in Theorem 1.3 proven by Van Ittersum [13].

He requires

n+ 1− dimX∗ > 2R(R+ 1), (1.5)

where X∗ is the projective variety cut out in Pn(Q) by the condition that the R × (n + 1)

Jacobian matrix (∂Fi(x)/∂xj)ij has rank less than R. Van Ittersum used the techniques of

Birch [5]. Birch found in 1961/1962 a formula for N(P,Ω) if Ωpm = X(Z/pmZ) for all p. As

mentioned earlier, Myerson [20] found also a formula for N(P,Ω) if Ωpm = X(Z/pmZ) and

Fi are quadratics. If Fi are quadratics, the formula of Birch is weaker than the formula of
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Myerson whenever R ≥ 4. Likewise, (1.5) is weaker then (1.2) whenever R ≥ 4. Namely, we

have SingX(β · F ) ⊂ X∗. So σR ≤ 1 + dimX∗. Thus (1.5) is weaker than (1.2) whenever

2R(R+ 1) > 8R, hence R ≥ 4.

A main motivation in the work of Myerson was that Müller [19] and Bentkus and Götze

[3], [4] in the period of 1997 to 2008 came with some ideas to find an upper bound for the

integral of some function over any bounded measurable set. We will use these theorems in

section 8.5, where the dependence of M is my own contribution.

Another main result of this thesis, which is proved by using Theorem 1.4, is the following.

Theorem 1.6. Let F is a system of R linear independent quatrics in n variables and integer

coefficients. Assume dim(X̃∗) ≤ n− 1 and n+ 1− σR > 8R. Let J be as in Theorem 1.4, set

σp = limk→∞
1

pk(n+1−R)
#{b ∈ {1, 2, . . . , pk}n+1 : F (b) ≡ 0 mod pk}.

and

Ωp = {x ∈ (Z/pZ)n : F (x) ≡ 0, x1 · · ·xn ≡ 0 mod p}

and let Ω̂p be as in Theorem 1.3. Let B be the set of primes for which #Ωp = 0 and Pr(B) the

set of positive integers with at most r prime divisors outside B. Assume (11.2), (11.3) and

(11.4) hold. Let τ and βκ be as in section 11. For any two reals numbers u and v satisfying

1

τ
< u ≤ v, βκ < τµ

we have ∑
x∈Zn∩PB
F (x)=0

x1···xn∈Pr(B)

1� Pn−2RJ
∏
p

σp
∏

p<(Pn−2RJ
∏
p σp)1/v

#Ω̂p

X̂(Z/pZ)
,

provided that

r > τµu− 1 +
κ

fκ(τv)

∫ v/u

1
Fκ(τv − s)(1− u

v
s
)ds

s
.

We first fix some notation in section 2. In section 3 we describe sieves in general, which

will be used later. Section 4 is used to describes how we view points on varieties such that

we can count them. After that, in section 5 and 6 we discuss N(P,Ω) if R = 1, for which we

follow [8]. Then, in section 7 till 9 we prove Theorem 1.3 and 1.4. For that we follow mostly

Myseron [20]. In section 10 we are then ready to prove Theorem 1.2. Lastely in section 11

we see a proof of Theorem 1.6.
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2 Notation

For a point x ∈ Rn we write x = (x1, . . . , xn) with xi ∈ R and we introduce the supremum

norm

|x| = max(|x1|, . . . , |xn|).

Here |xi| is the usual absolute value of xi ∈ R. For any x ∈ Zn and d ∈ N we write [x]d for

the reduction of x modulo d. We abbreviate e2πix by e(x) for x ∈ R.

For a, b ∈ N we write (a, b) for gcd(a, b) and we write ω(a) for the number of distinct

primes dividing a. For m ∈ N we write pm||M if pm divides M but pm+1 does not divide M.

We define

Znprim := {y ∈ Zn : gcd(y1, . . . , yn) = 1}.

We let B be a box in Rn, contained in the box [−1, 1]n and having sides of length 1 which

are parallel to the coordinate axes.

Further, let F1, F2, . . . , FR be homogeneous polynomials with integers coefficients. LetX

be an integral model for the zero set of these polynomials. Let m,M ∈ N be fixed and let

ΩM =
∏
pm||M Ωpm , where Ωpm are chosen subsets of the variety X over Z/pmZ. We use the

notation X̂ and Ω̂ for viewing X and Ω as affine spaces, i.e.

Ω̂pm = {x ∈ (Z/pmZ)n+1 : p - x, (x0 : . . . : xn) ∈ Ωpm}

and

X̂(Z/pmZ) = {x ∈ (Z/pmZ)n+1 : p - x, F1(x0, . . . , xn) = 0 mod pm}.

Let f, g be functions on a subset of the real numbers. We write f(x) � g(x) if f(x) =

O(g(x)), that is there are constants C > 0 and x0 such that |f(x)| ≤ Cg(x) for all x > x0.

We call C the implied constant of f(x)� g(x). If we write f(x) = OR(g(x)) or equivalently

f(x)�R g(x) we mean that the implied constant and x0 depends on R.

We use the notation f(x) = o(g(x)) as x→∞ for limx→∞
f(x)
g(x) = 0, i.e. f(x) is of smaller

order of magnitude than g(x).

Lastely if V ⊂ Cn is a affine variety defined by f1, . . . , fR, all of degree d, we define V ∗ as

the Birch singular locus as the affine variety consisting of all points x ∈ Cn for which

rank
(∂f [d]

i

∂xj
(x)
)
i,j
< R,

where f
[d]
i denotes the degree part of fi.
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3 Introduction to Selberg’s Sieve

Sieves are used to estimate the size of a sifted sets of integers. There are a lot of different sieves

and in this thesis we will use Selberg’s sieve, also denoted as the Λ2-sieve, which is a technique

for estimating the size of sifted sets of positive integers which satisfy a set of conditions which

are expressed by congruences. It was developed in the 1940s by Atle Selberg. First we will

say something about sieves in general and then we discuss Selberg’s sieve.

3.1 Sieves

We describe the basis ideas behind sieves for which we follow mostly Friedlander and Iwaniec

[11, Chapter 5] and Iwaniec and Kowalski [14, Chapter 6].

We start with a sequence A = (an) of non-negative numbers. The ultimate question is

how often these numbers are supported on primes. The basic input to any sieve mechanism

comes via the subsequence Ad consisting of those an with n ≡ 0 (mod d) and, in particular,

from estimates for the congruence sums

|Ad| =
∑

n≡0(mod d)

an.

Sometimes A is restricted to n < x, and then we write

Ad(x) =
∑
n<x

n≡0(mod d)

an.

For applying a sieve we need an asymptotic formula for Ad(x) of the following form

Ad(x) = g(d)A1(x) + rd(x) (3.1)

where g(d)A1(x) is the expected main term and rd(x) is an error term which we think of as

being relatively small. So g(d) stands for the density of the masses an attached to n ≡ 0

(mod d). Expecting that divisibility by distinct primes are independent events, we assume

that the density function g(d) is a multiplicative function and that

0 ≤ g(p) < 1.

It is convenient to have a smooth approximation to A(x), which we label as X, and we replace

(3.1) by

Ad(x) = g(d)X + rd(x). (3.2)

In practice we will choose X close enough to A1(x), so that (3.1) and (3.2) are equivalent.

Let the sifting set of primes P be a set of all primes, z ≥ 2 and

P (z) =
∏
p<z
p∈P

p.

8



We seek seek estimates for the shifted sum

S(x, z) =
∑
n<x

(n,P (z))=1

an. (3.3)

We refer to z as the sifting level. An instrumental role in the sifting process is played by the

sifting function (3.3). The condition (n, P (z)) = 1 can be detected by the Möbius inversion

formula

∑
d|n

d|P (z)

µ(d) =

{
1 if (n, P (z)) = 1

0 if (n, P (z)) > 1.

Hence (3.3) becomes

S(x, z) =
∑
n<x

( ∑
d|n

d|P (z)

µ(d)
)
an.

If we change the order of summation we obtain

S(x, z) =
∑
d|P (z)

µ(d)Ad(x). (3.4)

From this formula we see that in some sieve problems we do not need to sieve by all the

primes. Indeed, we do not need in P any prime p for which all an with n ≡ 0 (mod p)

vanish, that is, such that Ap = 0. For example, if an is supported on the polynomial values

n = m2 + 1, then we can restrict P to primes p ≡ 1 (mod 4). Since we use (3.2) only for

d|P (z), we are free to modify the multiplicative function g(d) arbitrarily at d coprime to P (z)

and for notational simplicity we set

g(p) = 0 if p - P.

Combining (3.4) with (3.2) gives

S(x, z) = XV (z) +R(x, z)

where

V (Z) =
∏
p|P (z)

(1− g(p))

and

R(x, z) =
∑
d|P (z)

rd(x). (3.5)
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3.2 Sifting Weights

The essence of sieve methods is the replacement of the Möbius function µ(d) by a function

Λ = (λd). This will give us a way to reduce the number of terms in (3.4) and, in particular

the number of terms in the remainder term R(x, z) (3.5). We choose Λ such that it has a

finite support

Λ = (λd) for d|P (z) and d < D.

We refer to λd as sieve weights (or sifting weights) of level D. The price for the change to

weights with finite support is that we no longer have the exact formula for the sifting function

(3.4) but rather obtain the “sifted sum”

SΛ(A, z) =
∑
d|P (z)

λd|Ad|. (3.6)

Let

θn =
∑
d|n

d|P (z)

λd.

Then (3.6) becomes

SΛ(A, z) =
∑
n|P (z)

anθn.

If we choose Λ− = (λ−) and Λ+ = (λ+) such that

θ−n =
∑
d|n

d|P (z)

λ−d ≤
∑
d|n

d|P (z)

µ(d) ≤
∑
d|n

d|P (z)

λ+
d = θ+

n ,

then S−(A, z) ≤ S(A, z) ≤ S+(A, z) where we used the notation S+ (respectively, S−(A, z))
for the sieves with weight Λ+ (respectively, Λ−).

It is convenient to normalize Λ and Λ± such that λ1 = λ±1 = 1. It follows that θ±n = 1 for

(n, P (z)) = 1. Moreover we have θ+
n ≥ 0 for (n, P (z)) > 1 and θ−n ≤ 0 for (n, P (z)) > 1.

A weight system having the properties stated above will be called a lower-bound sieve,

upper-bound sieve, respectively. An example of a upper-bound sieve is Selberg’s sieve, which

will be discussed next paragraph. Of course, in the case of an upper-bound sieve, we should

like to choose the weights λ+
d so as to make S+ as small as possible.

In the case of the upper-bound sieve λ+ and the lower-bound sieve λ− we denote the

corresponding sifted sums by S±(A, z), their main term sums

V +(D, z) =
∑
d|P (z)
d<D

λ+
d g(d), V −(D, z) =

∑
d|P (z)
d<D

λ−d g(d) (3.7)

and their remainder by

R+(D, z) =
∑
d|P (z)
d<D

λ+
d rd, R−(D, z) =

∑
d|P (z)
d<D

λ−d rd. (3.8)
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3.3 Selberg’s Sieve

Selberg’s sieve is used to find a upper bound for the sifted sum. We start with a sequence of

real numbers λ+
d . For notational simplicity hereafter we omit the superscript +. If we want

an upper-bound sieve of level D the real numbers λd have to satisfy the conditions λ1 = 1

and ∑
d|n

λd ≥ 0 for (n, P (z)) > 1. (3.9)

For notational simplicity we omit the superscript + in the rest of this section. The positivity

condition is in general quite difficult to hold, but if we choose λd like Selberg, namely∑
d|n

λd =

(∑
d|n

ρd

)2

, (3.10)

where ρd is another sequence of real numbers, the square guarantees the positivity condition

(3.9). From the condition λ1 = 1, we see that we need to have

ρ1 = 1. (3.11)

If we have a closer look at the sum

(∑
d|n ρd

)2

in (3.10), we see that the term ρd1ρd2 appears

if and only if (d1, d2) |n. By grouping the elements ρd1ρd2 for which (d1, d2) = d for some d|n,

we have(∑
d|n

ρd

)2

=
∑
d|n

∑
(d1,d2)=d

ρd1ρd2 .

Hence

λd =
∑

(d1,d2)=d

ρd1ρd2 . (3.12)

In order to control the level D we assume the coefficients ρd are supported on integers smaller

than
√
D, i.e.

ρd = 0 if d ≥
√
D. (3.13)

Now the resulting sieve (λd) has level of support D.

Applying the Λ2-sieve to A = (an) in the shifting range {p ∈ P, p < z} we obtain

S(A, z) =
∑

(n,P (z))=1

an ≤ S+(A, z), (3.14)

where

S+(A, z) =
∑
n

an

( ∑
d|(n,P (z))

ρd

)2

=
∑

d1|P (z)

∑
d2|P (z)

ρd1ρd2 |A(d1,d2)|

= XG+R+(A,Λ2), (3.15)
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and

G =
∑

d1|P (z)

∑
d2|P (z)

g((d1, d2))ρd1ρd2 (3.16)

and

R+(A,Λ2) =
∑

d1|P (z)

∑
d2|P (z)

ρd1ρd2r(d1,d2). (3.17)

It is easy to verify that these notation coincide with earlier notation (3.7) and (3.8). The goal

of Selberg was to make the general inequality (3.14) optimal. We will first concern us about

the main term G. We wish to minimize G with respect to the unknown numbers ρd subject

to (3.11) and (3.13). The expression (3.16) is a quadratic form in ρd. In order to find the

minimum of G it helps to diagonalize it. We assume that

0 < g(p) < 1 if p|P (z)

g(p) = 0 if p 6 |P (z).

Let h(d) be the multiplicative function defined by

h(p) =
g(p)

1− g(p)
. (3.18)

Rewriting gives

g(p) =
h(p)

1 + h(p)
. (3.19)

We obtain

G =
∑

abc|P (z)

g(abc)ρacρbc

=
∑
c

g(c)
∑

(a,b)=1

∑
g(a)g(b)ρacρbc

=
∑
c

g(c)
∑
d

µ(d)g(d)2

(∑
m

g(m)ρcdm

)2

=
∑
d|P (z)

h(d)−1

( ∑
m≡0(mod d)

g(m)ρm

)2

If we now choose the following change of variables

yd =
µ(d)

h(d)

∑
m≡0(mod d)

g(m)ρm (3.20)

we obtain

G =
∑
d|P (z)

h(d)y2
d, (3.21)
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which is a diagonal form.

Before we do something with this diagonal form, we will first look at the condition (3.11)

and see what it is in terms of the new variables yd. Using Möbius inversion we convert (3.20)

into

ρl =
µ(l)

g(l)

∑
d≡0(mod l)

h(d)yd. (3.22)

In particular if we take l = 1 we then have∑
d|P (z)

h(d)yd = 1. (3.23)

If we have a closer look at (3.20) and (3.22) we see that the support conditions for yd are the

same as ρd, hence

yd = 0 if d ≥
√
D. (3.24)

Furthermore the convolution 1 ∗ p in the new variables yd becomes∑
l|n

ρd =
∑
d

µ(d)((d, n))h

(
d

(d, n)

)
yd. (3.25)

Having made this observations, we now wish to minimize (3.21) on the hyperplane (3.23).

Applying Cauchy’s inequality to (3.23) we derive

1 =
∑
d|P (z)

h(d)yd ≤
( ∑
d|P (z)

h(d)y2
d

) 1
2
( ∑
d|P (z)

d<
√
D

h(d)

) 1
2

= (GJ)
1
2 ,

where we put

J = J(D) =
∑
d|P

d<
√
D

h(d). (3.26)

Hence JG ≥ 1. Since h(d) ≥ 0, we have that J ≥ 0. Hence G is greater of equal to J−1. If

we choose

yd = J−1 if d <
√
D (3.27)

we have

G =
∑
d|P (z)

d<
√
D

h(d)y2
d (3.28)

=
∑
d|P (z)

d<
√
D

h(d)J−2 = J−1. (3.29)

13



Hence the minimal value of G is J−1. From now on we assume that yd are the constants given

by (3.27). We note that by just using the definition of g(d) we could (3.26) also write as

J(D) =
∑
d<
√
D

µ2(d)
∏
p|d

(
g(d)

1− g(d)

)
. (3.30)

Since we now know yd we can compute pl, by substituting (3.27) in (3.22). We have

ρl =
µ(l)

g(l)
J−1

∑
d≡0 (mod l)

d<
√
D

h(d). (3.31)

Since h is multiplcative and only supported on the square free number, we can rewrite∑
d≡0 (mod l)

d<
√
D

h(d) as
∑

(d,l)=1

d<
√
D/l

h(d)h(l). So after pulling out this factor h(l) we write (3.31) as

ρl = µ(l)j(l)Jl(D)J−1 (3.32)

where

j(l) =
h(l)

g(l)
=
∏
p|l

(
1− g(p)

)−1
(3.33)

and

Jl(D) =
∑

d<
√
D/l

(d,l)=1

h(d). (3.34)

and J(D) = J1(D). Now we know ρl, we use the definition of λd (3.12) to find

λd = µ(d)j(d)
∑
abc=d

µ(c)j(c)Jac(D)Jbc(D)J(D)−2.

Moreover, the convolution 1 ∗ ρ, as in (3.25) becomes∑
l|n

ρl =
1

J(D)

∑
q<
√
D

µ((n, q))h

(
q

(n, q)

)
.

We will now show that |ρd| ≤ 1. By grouping the terms in (3.26) according to the greatest

common divisor of d and l we get that

J(D) =
∑
k|l

∑
d|P (z)

d<
√
D

(d,l)=k

h(d)

=
∑
k|l

h(k)
∑

mk|P (z)

m<
√
D/k

(m,l)=1

h(m)

≥
(∑

k|l

h(k)

) ∑
mk|P

m<
√
D/l

(m,l)=1

h(m) = j(l)Jl(D).

14



Combing this with (3.32) gives

|ρd| = j(l)Jl(D)J−1 ≤ 1. (3.35)

Again using the definition of λd (3.12) gives

|λd| ≤
∑

(d1,d2)=d

1

≤
∑

d1d2d3=d

1.
(3.36)

We define

τ3(d) =
∑

d1d2d3=d

1. (3.37)

Collecting the above results we conclude the following:

Theorem 3.1. (Selberg’s Λ2−Sieve). Let A = (an) be a finite sequence of non-negative

number and let P be a finite product of distinct primes. For every d|P we write

|Ad| =
∑

n≡0 (mod d)

an = g(d)X + rd(A). (3.38)

where X > 0 and g(d) is a multiplicative function with 0 < g(p) < 1 for p|P . Let h(d) be the

multiplicative function given by h(p) = g(p)(1 − g(p))−1 and J = J(D) given by (3.26) for

some D > 1. Then we have

S(A, z) =
∑

(n,P )=1

an ≤ XJ−1 +R+(A,Λ2), (3.39)

where

R+(A,Λ2) =
∑
d|P

λdrd(A), (3.40)

with λd given by (3.12) and (3.32)-(3.34).

Using (3.36) and (3.37) we can estimate the remainder crudely by

|R+(A,Λ2)| ≤ R(A,Λ2) ≤
∑
d|P
d<D

τ3(d)|rd(A)|. (3.41)
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4 Rational Points on Varieties

This section describes how we view points on varieties such that we can count them.

Let X ⊂ P(Q) be the zero set of some homogeneous polynomials F1, . . . , FR with integer

coefficients and suppose X is smooth. Points of P(Q) can be represented by vectors x =

(x0, . . . , xn) ∈ Zn+1
prim, where Zn+1

prim = {y ∈ Zn+1 : gcd(y0, . . . , yn) = 1}. Recall that we have

defined the height function H : Pn(Q)→ Z as

x 7→ |x| = maxi(|xi|),

where x = (x0, . . . , xn) ∈ Zn+1
prim represent x ∈ PnQ. Note that the function H does not depend

on the choice of representation. Further let m ∈ N be fixed once and for all. For each prime

p we suppose that we are given a non-empty set of residue classes Ωpm ⊂ X(Z/pmZ). Put

ΩM =
∏
pm||M

Ωpm . (4.1)

We are interested in the following counting function

N(P,Ω) := #{x ∈ X(Q) : |x| ≤ P, [x]pm ∈ Ωpm for all p},

where Ω = (Ωpm)p and [x]pm is the reduction of x mod pm.

We start by making the observation that

N(P,Ω) ≤ #{x ∈ Zn+1
prim\{0} : |x| ≤ P, F1(x) = 0, . . . , FR(x) = 0, [x]pm ∈ Ω̂pm for all p}

where Ω̂pm = {x ∈ (Z/pmZ)n+1 : p - x, (x0 : · · · : xn) ∈ Ωpm}. The condition x ∈ Ω̂pm for all

p implies that x ∈ Zn+1
prim. Hence

N(P,Ω) ≤ #{x ∈ Zn+1 : |x| ≤ P, F1(x) = 0, . . . , FR(x) = 0, [x]pm ∈ Ω̂pm for all p}
(4.2)

One has to keep in mind that N(P,Ω) depends on our choice of F1, . . . , FR and therefore also

on R and the degree of the polynomials Fi. Our goal is to give an upper bound for N(P,Ω).

Without an indication the implied constant may depend on n,R, d and the coefficients of the

polynomials F1, . . . , FR. In section 5 and 6 we will discuss the case when R = 1. In section

7, 8 and 9 we will discuss the case when R > 1.
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5 The Sieve Problem for One Quadratic

We describe how we can rewrite N(P,Ω) in such a way that we can use Selberg’s sieve, where

we follow Browning and Loughran [8]. For the remainder of this section let X ⊂ PnQ be a

smooth projective variety defined by one homogeneous polynomial F1 ∈ Z[x0, . . . , xn]. What

we do in this section you could also do for F1, . . . , FR where R > 1, but we don’t need that,

so we won’t discuss that. Recall from (4.2) that

N(P,Ω) ≤ #{x ∈ Zn+1 : |x| ≤ P, F1(x) = 0, [x]pm ∈ Ω̂pm for all p}

Consider the function ω0 : R→ R≥0, given by

ω0(x) =

{
e−(1−x2)−1

if |x| < 1,

0 otherwise.

We will work with the weight function ω : Rn+1 → R, given by

ω(x) = ω0(5
2 |x| − 2).

Figure 1: A plot of the weight function ω.

We have ω(x) = 0 unless 2
5 < |x| <

6
5 . Moreover if j ∈ N and 1/2 < |2jx/P | ≤ 1, then

ω(2jx/P ) ≥ min{ω(1/2), ω(1)}. Hence we can break the sum (4.2) into intervals, finding that

N(P,Ω) ≤
∞∑
j=0

#
{
x ∈ Zn+1 :

2−j−1P<|x|≤2−jP

F1(x)=0, [x]pm∈Ω̂pm for all p

}
�

∞∑
j=0

∑
x∈Zn+1, F1(x)=0

[x]pm∈Ω̂pm for all p

ω(2jx/P ). (5.1)

For every x ∈ Zn+1{0} we have |x| ≥ 1. Moreover if |2jx/P | ≥ 6
5 , then ω(x) = 0. Hence

if j ≥ log2(6
5P ) then ω(2jx/P ) is zero and thus the sum

∑
j in (5.1) is finite. Since we can

change P it is enough to find a upper bound for∑
x∈Zn+1, F1(x)=0

[x]pm∈Ω̂pm for all p

w(x/P ).
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We define the density function ωp as in Browning and Loughran [8],

ωp = 1− #Ω̂pm

#X̂(Z/pmZ)
∈ [0, 1]. (5.2)

The notation X̂ and Ω̂ stands for that we view the varieties X and Ω as affine space, i.e.

Ω̂pm = {x ∈ (Z/pmZ)n+1 : p - x, (x0 : . . . : xn) ∈ Ωpm}

and

X̂(Z/pmZ) = {x ∈ (Z/pmZ)n+1 : p - x, F1(x0, . . . , xn) = 0 mod pm}.

Note that ωp = 0 implies that Ω̂pm = X̂(Z/pmZ). Since these primes, for which ωp = 0,

do not play a role in the inclusion-exclusion process, we are not interested in those primes.

Let P, ξ ≥ 1 and let P denote the product over distinct primes p < ξ for which ωp > 0, i.e.

#Ω̂pm < #X̂(Z/pmZ). Consider for n ∈ N the following sequences

an :=
∑

x∈Zn+1

F1(x)=0
n(x)=n

w(x/P ), where n(x) =
∏
p|P

[x]pm∈Ω̂cpm

p. (5.3)

If x ∈ Zn+1 with F1(x) = 0 and [x]pm ∈ Ω̂pm for all p, then n(x) = 1 and thus then the term

w(x/P ) appears in a1. Hence∑
x∈Zn+1, F1(x)=0

[x]pm∈Ω̂pm for all p

w(x/P ) ≤
∑
n∈N

(n,P)=1

an. (5.4)

On the other hand if x ∈ Zn+1 with F1(x) = 0 and (n(x),P) = 1, then [x]pm ∈ Ωpm for all

p|P and for all primes p for which ωp = 0. We can not say that [x]pm ∈ Ωpm for all primes p,

so the inequality (5.4) is not necessarily an equality.

We conclude that to find a found for N(P,Ω), it suffices to find a bound for
∑

n∈N
(n,P)=1

an,

with an as in (5.3).

18



6 Sieving on Quadrics

Thanks to the previous section we know how we can write the problem for finding an upper

bound for N(P,Ω) as a sieve problem. In this section we apply Selberg’s sieve as desribed in

section 3 to find this upper bound.

Before we apply Selberg’s sieve we need a formula for Ad as in (3.2). If we assume that

F1 ∈ R[x0, . . . , xn] is a smooth quadratic, a formula for Ad is already known which is stated

in Theorem 6.1. After that, in Theorem 6.2, the upper bound for N(P,Ω) is given.

We use the same notation as in the previous section; let an and n(x) be as in (5.3), and

let P denote the product of distinct primes p < ξ for which ωp > 0. Let d|P. We would like

to write Ad as g(d)X + rd, where X > 0 and g(d) a multiplicative function with 0 < g(p) < 1

for every p|P. We have

Ad =
∑
d|n

an

=
∑

x∈Zn+1,F1(x)=0
d|n(x)

ω(x/P ) (6.1)

We have that d |n(x) if and only if [x]pm ∈ Ω̂c
pm for all p | d, for any x appearing in the

definition of an. Hence (6.1) becomes

Ad =
∑

x∈Zn+1, F1(x)=0
[x]m∈Ωcdm

ω(x/P ). (6.2)

We define

N̂(P,ΩM ) :=
∑

x∈Zn+1, F1(x)=0
[x]M∈ΩM

ω(x/P ).

Theorem 6.1. (Browning and Loughran [8, Theorem 4.1]). Assume that n ≥ 5 and that

∇F1(x) � 1 for all x ∈ supp(w). Assume that M is coprime to 2∆F1 and let ΩM be as in

(4.1). Then

N̂(P,ΩM ) = σ∞(w)Pn−1
∏
p-M

σp
∏
pm||M

#Ωpm

pmn
+Oε,F1,ω(P (n+1)/2+εM (n+1)/2+ε) , ∀ε > 0,

where σ∞(w) is the weighted real density associated to F1 and ω as defined in [12, Th. 3] and

where σp is the p-adic density associated to F1 and defined as

σp = limk→∞ p
−nk#{x ∈ (Z/pkZ)n+1 : p - x, F1(x) ≡ 0 mod pk}

for each prime p.

If we choose M = dm and ΩM = Ω̂dm in the previous theorem, we derive from (6.2) that

Ad = N̂(P, Ω̂c
dm) = g(d)Pn−1σ∞(ω)

∏
p

σp +Oε,X(dm(n+1)/2+ε/4P (n+1)/2+ε), (6.3)
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where

g(d) =
∏
p|d

(
1− #Ω̂pm

#X̂(Z/pmZ)

)
. (6.4)

In deriving the formula g(d) we used that for all p|d we have #X̂(Z/pmZ) = #X̂(Z/pZ) ·
p(m−1)n and σp = X̂(Z/pZ) ·p−n, which follows from a quantitative version of Hensel’s lemma

[8, Lemma 2.1]. We indeed have

g(d)
∏
p|M

σp =
∏
p|M

(
1− #Ω̂pm

#X̂(Z/pmZ)

)
σp

=
∏
p|M

#Ω̂c
pm

#X̂(Z/pmZ)
· σp

=
∏
p|M

#Ω̂c
pm

#X̂(Z/pZ) · p(m−1)n
· X̂(Z/pZ)

pn

=
∏
pm||M

#Ω̂c
pm

pmn
.

Since we have now a formula for Ad we can plug this in in the Selberg sieve [11, p. 93]

and find the following theorem.

Theorem 6.2. (Browning and Loughran [8, Theorem 1.7]). Assume that X ⊂ Pn is a smooth

quadratic of dimension at least 3 over Q. Let m ∈ N and let Ωpm ⊂ X(Z/pm Z) for each

prime p. Further, let ωp be as in (5.2). Assume that

0 ≤ ωp < 1 for all p.

Then, for any ξ > 1 and any ε > 0, we have

N(P,Ω)�ε,X
Pn−1

J(ξ)
+ ξm(n+1)+2+εP (n+1)/2+ε,

where J(ξ) =
∑

k<ξ µ
2(k)

∏
p|k

(
ωp

1−ωp
)
.

Proof. First we use (6.3). It is clear from the definition of g(d) in (6.4) that g(d) is multi-

plicative. Now apply Selberg’s sieve as in Theorem 3.1 and find that∑
(n,P)=1

an �ε,X
Pn−1

J(ξ)
+
∑
d≤ξ2

τ3(d)dm(n+1)/2+ε/4P (n+1)/2+ε,

where J(ξ) =
∑

k<ξ µ
2(k)

∏
p|k

(
ωp

1−ωp
)

. Taking the trivial bound τ3(d)� dε/4 and summing

over d ≤ ξ2, we get that∑
(n,P)=1

an �ε,X
Pn−1

J(ξ)
+ ξm(n+1)+2+εP (n+1)/2+ε.
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7 The Sieve Problem for a System of Quadratics

One can wonder if we can also find a formula for N(P,Ω) if R > 1. The answer is that this

is possible. We will give a proof in the following sections. In this section we formulate the

problem in to a sieve problem. In the next section we prove a analogue for Theorem 6.1 for

the case when R > 1. In section 9 we are ready to prove a formula for N(P,Ω) if R > 1.

Recall from (4.2) that

N(P,Ω) ≤ #{x ∈ Zn+1 : |x| ≤ P, F1(x) = 0, . . . , FR(x) = 0, [x]pm ∈ Ω̂pm for all p}

Let B be a box in Rn+1, contained in the box [−1, 1]n+1 and having sides of length 1 which

are parallel to the coordinate axes. We are interested in a upper bound for

Ñ(P,Ω) = #{x ∈ Zn+1 : x ∈ PB,F (x) = 0,x ∈ Ωpm for all p}, (7.1)

where F is the vector (F1, F2, . . . , FR)T and Fi are smooth quadratics. If we compare this

with the notations we see that if we choose B = [−1
2 ,

1
2 ]n+1, we have

N(P,Ω) ≤ Ñ(2P, Ω̂),

where N(P, Ω̂) is as in section 4. We use this notation because later it will be more usefull.

We have

Ñ(P,Ω) =
∑

x∈Zn+1∩PB
F (x)=0
x∈Ω

1.

If we compare this with the sieve problem in section 5 it looks similar, only now we don’t

have the weight function ω. This ω was needed in section 5 because then there is known an

asymptotic for N(P,ΩM ), which uses this weight function ω. For our approach we don’t need

this weighted function.

Let P, ξ ≥ 1 and let P denote the product over distinct primes p < ξ for which #Ωpm <

#X(Z/pmZ). Consider for n ∈ N the following sequences

an :=
∑

x∈Zn+1∩PB
F (x)=0
n(x)=n

1, where n(x) =
∏
p|P

[x]pm∈Ωcpm

p.

If x ∈ Zn+1 ∩ PB with F (x) = 0 and [x]pm ∈ Ωpm for all p, then n(x) = 1 and thus this x is

counted in a1. Hence∑
x∈Zn+1∩PB
F (x)=0
x∈Ω

1 ≤
∑
n∈N

(n,P)=1

an. (7.2)

On the other hand if x ∈ Zn+1 ∩PB with F (x) = 0 and (n(x),P) = 1, then [x]pm ∈ Ωpm for

all p|P and for all primes p for which #Ωpm = #X̂(Z/pmZ). We can not say that [x]pm ∈ Ωpm
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for all primes p, so the inequality (7.2) is not necessarily an equality. So it is enough to find

an upper bound for
∑

n∈N
(n,P)=1

an.

Now we have formulated our problem into a sieve problem, Selberg’s sieve comes in the

picture. Before we can use this sieve, we have to find a formula for Ad(x). We have

Ad =
∑
d|n

an

=
∑

x∈Zn+1∩PB
F (x)=0
d|n(x)

1 (7.3)

We have that d |n(x) if and only if [x]pm ∈ Ωc
pm for all p | d, for any x appearing in the

definition of an. Hence (7.3) becomes

Ad =
∑

x∈Zn+1∩PB
F (x)=0

[x]m∈Ωcdm

1.

So if we have an asymptotic formula for Ad, which we will do in the next section, then by

applying Selberg’s sieve we are able to find an upper bound for Ñ(P,Ω), which will we do in

section 9.
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8 Systems of Quadratics

In this section we find a asymptotic formula for Ñ(P,ΩM ) (defined below). This formula is

stated in Theorem 1.4, which will be the main theorem of this section and which will help us

(in the next section) to find a formula for Ad (previous section).

First we will fix the notation and state Theorem 1.4. In section 8.2 we will use exponential

sums to rewrite Ñ(P,ΩM ). After that an auxiliary inequality will be discussed. In section

8.4 the circle method will be used to prove some upper bounds, which will be put together in

section 8.5 to prove Theorem 1.4.

8.1 Notation and Main Theorem

Definition 8.1. Let fi be polynomials in n variables. Define

Ñ(P,ΩM ) = #{x ∈ Zn : x ∈ PB,f(x) = 0, [x]M ∈ ΩM},

where f = (f1, . . . , fR)T .

We are interested in an asymptotic formula for Ñ(p,ΩM ).

From now f1, f2, . . . , fR are polynomials in R[x1, . . . , xn] of degree d = 2. We will often

write d instead of just 2, so that it will be clear how the degree effects Ñ(p,ΩM ). We write

f
[d]
i (or f

[2]
i ) for the degree d = 2 part of fi and we write f for the vector (f1, f2, . . . , fR)T in

(R[x])R.

We follow a paper by Myerson [20]. In that paper he proves, under some conditions,

a asymptotic formula for Ñ(P,ΩM ) if Ωpm = X(Z/pmZ). We will use this proof to find a

asymptotic formula for Ñ(P,ΩM ) if Ωpm is not necessarily equal to X(Z/pmZ). Our goal will

be to prove Theorem 1.4.

Definition 8.2. Let h(x) be any polynomial of degree d ≥ 2 with real coefficients in n variables

x1, . . . , xn. For i = 1, . . . , n we define

m
(h)
i (x(1), . . . ,x(d−1)) =

n∑
j1,...,jd−1=1

x
(1)
j1
· · ·x(d−1)

jd−1

∂dh(x)

∂xj1 · · · ∂xjd−1
∂xi

,

where we write x(j) for a vector of n variables (x
(j)
1 , . . . , x

(j)
n )T . This gives an n-tuple

m(h)(x(1), . . . ,x(d−1)) ∈ R[x(1), . . . ,x(d−1)]n.

For each B ≥ 1 we put Naux
h (B) for the number of (d − 1)-tuples of integer n-vectors

x(1), . . . ,x(d−1) with

|x(1)|, . . . , |x(d−1)| ≤ B,

|m(h)(x(1), . . . ,x(d−1))| < |h[d]|∞Bd−2,

where we let |h[d]|∞ = 1
d! maxj∈{1,...,n}d |

∂dh(x)
∂xj1 ···∂xjd

|.
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Let us recall Theorem 1.4.

Theorem 1.4. Let fi ∈ Z[x1, . . . , xn] be quadratic forms with integer coefficients and n ≥ 2

and dim(X̃∗) ≤ n − 1, where X̃∗ is defined as in §8.4.1. Let Naux
h (B) as in Definition 8.2.

Suppose that the fi are linearly independent and that

Naux
β·f (B) ≤ C0B

(d−1)n−2dC

for some C0 ≥ 1,C > dR and all β ∈ RR and B ≥ 1, where β · f = β1f1 + . . .+ βRfR. Then

for all P ≥ 1 we have

Ñ(P,ΩM ) =
∑

[v]M∈ΩM

(JS(v;M)Pn−dRM−n +O(Pn−dR−δM−n+δ2)),

where the implied constant depends at most on C0,C and the fi, and δ and δ2 are positive

constants depending at most on C , d and R. Here J and S are as in Lemma 8.11 and Lemma

8.10.

If Ωpm = X(Z/pmZ), the asymptotic formula that Myerson [20] found, under the same

conditions as Theorem 1.4, is

Ñ(P,X(Z/pmZ)) = JSPn−dR +O(Pn−dR−δ), (8.1)

where the error term may depend on f . One can wonder if we can use this formula directly

in the case when Ωpm 6= X(Z/pmZ) in the following way. Let [v]M ∈ ΩM and GM,v(x) =

F (Mx+v). Now we view M and v as coefficients ofGM,v. We first compute Ñ(P,X(Z/pmZ))

for G with Myersons formula (8.1) and then sum over all [v]M ∈ Ω, finding that

Ñ(P,Ωpm) =
∑

[v]M∈ΩM

(
JSPn−dR +O(Pn−dR−δ)

)
. (8.2)

The problem with this is that if we use Myerson’s formula for GM,v the error term may

depend on M and v. Hence the error term in (8.2) may depend on v and M .

8.2 The Exponential Sum

Definition 8.3. For each [v]M ∈ ΩM , α ∈ RR and P ≥ 1 we define the exponential sum

S(α;P ;v;M) =
∑
y∈Zn

My+v∈PB

e(α · f(My + v)),

where · denotes the standard inproduct and e(x) = e2πix.

Lemma 8.4. If the fi have integer coefficients, then we have

Ñ(P,ΩM ) =
∑

[v]M∈ΩM

∫
[0,1]R

S(α;P ;v;M) dα.
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Proof. First we note that Ñ(P,ΩM ) =
∑

[v]M∈ΩM
Ñ(P, [v]M ), so it is sufficient to prove

that for every [v]M ∈ ΩM we have Ñ(P, [v]M ) =
∫

[0,1]R S(α;P ;v;M) dα. Let [v]M ∈ ΩM .

If x ∈ PB ∩ Zn with f(x) = 0 and x = v mod M , then there is an y ∈ Zn such that

x = My + v. Hence∫
[0,1]R

e(α · f(My + v)) dα =

∫
[0,1]R

e(α · 0) dα =

∫
[0,1]R

1 dα = 1.

Conversely if fi(x) 6= 0 and x = My + v for some y ∈ Zn, then∫
[0,1]

e(αi · fi(My + v)) dαi =
1

fi(x)
e(αi · fi(x)) dα

∣∣∣1
0

=
1

fi(x)
(1− 1) = 0.

Hence if f(x) 6= 0 and x = My + v for some y ∈ Zn, then∫
[0,1]R

e(α · f(My + v)) dα = 0,

which completes the proof.

8.3 The Auxiliary Inequality

Definition 8.5. Let h,m(h)(x(1), . . . ,x(d−1)) be as in Definition 8.2. Given B ≥ 1 and δ > 0,

we let Uh(B, δ) be the number of (d− 1)-tuples of integer n-vectors x(1), . . . ,x(d−1) such that

|x(1)|, . . . , |x(d−1)| ≤ B miny∈Zn |y −m(h)(x(1), . . . ,x(d−1))| < δ.

Note that Uh only depends on the degree d part of h. For this reason we have

Uh(Mx+v)(B, δ) = UMdh(x)(B, δ)

for every [v]M ∈ ΩM .

Lemma 8.6. Let Uh(B, δ) be as in Definition 8.5. Let [v]M ∈ ΩM . For all ε > 0, α,β ∈ RR

and θ ∈ (0, 1], we have

min
{∣∣∣S(α;P ;v;M)

(P/M)n+ε

∣∣∣, ∣∣∣S(α+ β;P ;v;M)

(P/M)n+ε

∣∣∣}2d

�d,n,ε

Uβ·Mdf ((P/M)θ, (P/M)(d−1)θ−d)

(P/M)(d−1)θn

(8.3)

where the implied constants depend only on d, n and ε.

This lemma shows us that if the right hand side is small then you get a saving for one of

the exponential sums of the left hand side.

Proof. To prove (8.3) it is sufficient to prove

∣∣∣S(α;P ;v;M)S(α+ β;P ;v;M)

(P/M)2(n+ε)

∣∣∣2d−1

�d,n,ε

Uβ·Mdf ((P/M)θ, (P/M)(d−1)θ−d)

(P/M)(d−1)θn
. (8.4)
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Let us first eliminate α in the exponential sums in the left hand side of (8.4). We use the fact

that if Mx+ v ∈ PB and M(x+ z) + v ∈ PB, then |z| ≤ P/M .

S(α+ β;P ;v;M)S(α;P ;v;M)

=
∑
x∈Zn

Mx+v∈PB

∑
z∈Zn

M(x+z)+v∈PB

e((α+ β) · f(Mx+ v)−α · f(M(x+ z) + v))

≤
∑
z∈Zn
|z|≤P/M

∣∣∣ ∑
x∈Zn

Mx+v∈PB

e((α+ β) · f(Mx+ v)−α · f(M(x+ z) + v))
∣∣∣

≤
∑
z∈Zn
|z|≤P/M

∣∣∣ ∑
x∈Zn

Mx+v∈PB

e(β ·Mdf [d](x) + gα,β,z,M,v(x))
∣∣∣

for some real polynomial gα,β,z,M,v(x) of degree at most d− 1 in x. Now first apply Lemma

12.2 and then Lemma 12.1 to deduce that

|S(α+ β;P ;v;M)S(α;P ;v;M)|2d−1

≤
( ∑

z∈Zn
|z|≤P/M

∣∣∣ ∑
x∈Zn

Mx+v∈PB

e(β ·Mdf [d](x) + gα,β,z,M,v(x))
∣∣∣)2d−1

≤ (2P/M + 1)n(2d−1−1)
∣∣∣ ∑

x∈Zn
Mx+v∈PB

e(β ·Mdf [d](x) + gα,β,z,M,v(x))
∣∣∣2d−1

�d,n (2P/M)2d−1n
∣∣∣ ∑

x∈Zn
Mx+v∈PB

e(β ·Mdf [d](x) + gα,β,z,M,v(x))
∣∣∣2d−1

. (8.5)

Thanks to Myerson [20, Proof of Lemma 3.1] we have the following bound( ∑
x∈Zn
x≤PB

e(α · h(x))
)2d−1

�d,n,ε P
2d−1n−(d−1)nθ+εUα·h(P θ, P (d−1)θ−d), (8.6)

for some h ∈ (Z[x])R where all hi are of degree d ≥ 2. The implied constant in (8.6) does

not depend on h. The inner sum in (8.5) has the same form as the left hand side of (8.6),

with (PB − v)/M in place of PB and with β ·Mdf [d](x) + gα,β,z,M (x) in place of α · h as

underlying polynomial. So applying (8.6) to (8.5) gives∣∣∣ ∑
x∈Zn

Mx+v∈PB

e(β ·Mdf [d](x) + gα,β,z,M,v(x))
∣∣∣2d−1

�d,n,ε

( P
M

)2d−1n−(d−1)nθ+ε
Uβ·Mdf [d](x)+gα,β,z,M (x)

(( P
M

)θ
,
( P
M

)(d−1)θ−d)
(8.7)

=
( P
M

)2d−1n−(d−1)nθ+ε
Uβ·Mdf(x)

(( P
M

)θ
,
( P
M

)(d−1)θ−d)
,
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as Uh depends only on the degree part of h.

Putting it all together gives

|S(α+ β;P ;v;M)S(α;P ;v;M)|2d−1

�d,n,ε

( P
M

)2d−1n( P
M

)2d−1n−(d−1)nθ+ε
Uβ·Mdf(x)

(( P
M

)θ
,
( P
M

)(d−1)θ−d)
,

which proves (8.4). We can see now why it is so important that the implied constant of (8.6)

does not depend on h, namely then the implied constant of (8.7) does not depend on Mdf ,

in particular not on M . And this will give us the statement of the lemma, where the implied

constant does not depend on M . In the end we are interested in a bound for S(α;P ;v;M)

which does not depend on M .

Proposition 8.7. Let Naux
h (B), |f |∞ be as in Definition 8.2. Suppose that we are given

C0 ≥ 1 and C > 0 such that for all β ∈ RR and B ≥ 1 we have

Naux
β·f (B) ≤ C0B

(d−1)n−2dC . (8.8)

Let κ > µ > 0 such that for all β ∈ RR we have

µ|β| ≤ |β · f [d]|∞ ≤ κ|β|, (8.9)

Let ε > 0. Then there exists a constant C ≥ 1, depending on C0, d, n, µ, κ and ε, such that

the bound

min
{∣∣∣S(α;P ;v;M)

(P/M)n+ε

∣∣∣, ∣∣∣S(α+ β;P ;v;M)

(P/M)n+ε

∣∣∣} ≤ C max{P−d|β|−1, |β|
1
d−1M

d
d−1 }C

(8.10)

holds for all P/M ≥ 1 and all α,β ∈ RR.

Proof. Since (8.8) has to hold for every β, we replace Naux
β·f ((P/M)θ) by Naux

β·Mdf
((P/M)θ).

Let us first suppose that for some θ > 0 we have

Naux
β·Mdf ((P/M)θ) < Uβ·Mdf ((P/M)θ, (P/M)(d−1)θ−d). (8.11)

Then there must be a (d − 1)-tuple of vectors x(1), . . . ,x(d−1) ∈ Zn which is included in the

count Uβ·Mdf ((P/M)θ, (P/M)(d−1)θ−d) but not in Naux
β·Mdf

((P/M)θ).

Since the (d− 1)-tuple (x(1), . . . ,x(d−1)) is counted by Uβ·Mdf ((P/M)θ, (P/M)(d−1)θ−d),

the inequality |x(i)| ≤ (P/M)θ holds for each i = 1, . . . , d− 1, and we have the bound

|y −m(β·Mdf)(x(1), . . . ,x(d−1))| < (P/M)(d−1)θ−d, (8.12)

for some y ∈ Zn. Since the (d−1)-tuple (x(1), . . . ,x(d−1)) is not counted by Naux
β·Mdf

((P/M)θ),

we must also have

|y −m(β·Mdf)(x(1), . . . ,x(d−1))| ≥ |β ·Mdf [d]|∞(P/M)(d−2)θ. (8.13)
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we use (8.12) and (8.13) to relate (P/M)θ and |β|. It follows from (8.12) that either

|m(β·Mdf)(x(1), . . . ,x(d−1))| < (P/M)(d−1)θ−d, (8.14)

or

|m(β·Mdf)(x(1), . . . ,x(d−1))| ≥ 1

2
, (8.15)

When (8.14) holds, then (8.13) implies

|β ·Mdf [d]|∞ <
(P/M)(d−1)θ−d

(P/M)(d−2)θ
= (P/M)θ−d. (8.16)

When on the other hand (8.15) holds, then the bound |x(i)| ≤ (P/M)θ implies

|m(β·Mdf)(x(1), . . . ,x(d−1))| � |β ·Mdf [d]|∞(P/M)(d−1)θ,

and it follows by (8.15) that

|β ·Mdf [d]|∞ � (P/M)−(d−1)θ. (8.17)

Either (8.16) or (8.17) holds. So by rearranging and applying (8.9) we infer

(P/M)−θ �µ,κ max{P−d|β|−1, |β|
1
d−1M

d
d−1 }. (8.18)

We have shown that (8.11) implies (8.18).

Lemma 8.6 shows that for θ ∈ (0, 1] we have

Uβ·Mdf ((P/M)θ, (P/M)(d−1)θ−d)

�ε (P/M)(d−1)θn min
{∣∣∣S(α;P ;v;M)

(P/M)n+ε

∣∣∣, ∣∣∣S(α+ β;P ;v;M)

(P/M)n+ε

∣∣∣}2d

.

We also have the assumption (8.8):

Naux
β·Mdf ((P/M)θ) ≤ C0(P/M)θ((d−1)n−2dC ).

This shows that (8.11) holds provided that θ ∈ (0, 1] and that

(P/M)θ((d−1)n−2dC )

≤ C−1
1 (P/M)(d−1)θn min

{∣∣∣S(α;P ;v;M)

(P/M)n+ε

∣∣∣, ∣∣∣S(α+ β;P ;v;M)

(P/M)n+ε

∣∣∣}2d

(8.19)

for some C1 ≥ 1 depending only on C0, d, n and ε. Define θ by

(P/M)θ = C
1/2dC
1 min

{∣∣∣S(α;P ;v;M)

(P/M)n+ε

∣∣∣, ∣∣∣S(α+ β;P ;v;M)

(P/M)n+ε

∣∣∣}−1/C
, (8.20)

so that the inequality (8.19) holds.
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We consider three cases.

The first case is when θ ≤ 0 holds. We can rule this out. If θ ≤ 0 then (8.20) gives

min
{∣∣∣S(α;P ;v;M)

(P/M)n+ε

∣∣∣, ∣∣∣S(α+ β;P ;v;M)

(P/M)n+ε

∣∣∣} ≥ C−1/2d

1 . (8.21)

To prove (8.10), we can assume without loss of generality that P/M �ε 1 holds. But then

(8.21) is false, since |S(α;P ;v;M)| ≤ (P/M + 1)n by Definition 8.3.

The second case is when 0 < θ ≤ 1 holds. We saw above that in this case (8.11) and hence

(8.18) holds. Now (8.10) follows from (8.18) by substituting the value of θ from (8.20) and

choosing C to satisfy the bound C �µ,κ C
1/2d

1 .

The third and last case is when θ > 1. In this case we have by (8.20) that

min
{∣∣∣S(α;P ;v;M)

(P/M)n+ε

∣∣∣, ∣∣∣S(α+ β;P ;v;M)

(P/M)n+ε

∣∣∣} < C
1/2d

1 (P/M)−C . (8.22)

Now for any t > 0 we have max{(P/M)−dt−1, t
1
d−1 } ≥ (P/M)−1, and hence

max{P d|β|−1, |β|
1
d−1M

d
d−1 }C ≥ (P/M)−C .

So (8.10) follows from (8.22) on choosing C such that C ≥ C1/2d

1 holds.

8.4 Circle Method

In this section the circle method will be used to prove some upper bounds. Hardy and

Littlewood developed what is nowadays called Hardy-Littlewood circle method. Initially,

this method involved a contour integral over the unit circle, which explains the word circle.

However, in the modern formulation, exponential sums take over the role of the contour.

8.4.1 Notation for the Circle Method

We split the domain [0, 1]R into two regions. Let ∆ ∈ (0, 1), we define the major arcs

MP,d,δ =
⋃
q∈N

q≤MdRP∆

⋃
0≤a1,...,aR≤q
(a1,...,aR,q)=1

{α ∈ [0, 1)R : |α− a
q
| ≤MdRP∆−d},

and the minor arcs

mP,d,δ = [0, 1]R\MP,d,δ.

For each [v]M ∈ ΩM , q ∈ N and a ∈ ZR we set

Sq(a;v;M) = q−n
∑

y∈{1,...,q}n
e(
a

q
· f(My + v)).

S(P ;v;M) =
∑

q≤MdRP∆

∑
a∈{1,...,q}R

(a1,...,aR,q)=1

Sq(a;v;M).
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For each γ ∈ RR, set

S∞(γ) =

∫
B
e(γ · f [d](t))dt,

and let

J(P ;M) =

∫
α∈RR

|α|≤MdRP∆−d

( P
M

)n
S∞(P dα) dα.

Further we set

δ0 =
n− dim(X̃∗)

(d− 1)2d−1R
,

where X̃∗ is the Birch singular locus defined as the variety consisting of all points x ∈ Cn for

which

rk
(∂f [d]

i

∂xj
(x)
)
i,j
< R.

We will always assume that dim(X̃∗) ≤ n− 1.

8.4.2 The Minor Arcs

Lemma 8.8. Suppose that the polynomials fi have integer coefficients and dim(X̃∗) ≤ n− 1.

Let ∆,mP,d,δ and δ0 be as in §8.4.1 and let ε > 0. Further let S(α;P ;v;M) be as in Definition

8.3. Then we have

supα∈mP,d,δ |S(α;P ;v;M)| �ε (P/M)n−∆δ0+ε

where the implicit constant depends only on f , d, n,R and ε. The constant δ0 satisfies δ0 ≥
1

(d−1)2d−R
.

Proof. Let 0 < ∆′ < 1. We will use [13, Lemma 2.13], which says that one of the following

holds:

(i) |
∑
y∈Zn∩(P/M)B e(α · f(y))| �R (P/M)n−∆′δ0+ε

(ii) there is a rational approximation a/q to α with a ∈ ZR≥0 and q ∈ N satisfying

(a, q) = 1

|α− a
q
| ≤ C̃(R−1)(P/M)∆′−d

1 ≤ q ≤ C̃R(P/M)∆′ ,

where C̃ denotes the maximum of the absolute values of the coefficients of f . Let K be

any constant. By choosing ∆′ such that (P/M)∆′ = (P/M)∆K, we deduce a variant of [13,

Lemma 2.13]; one of the following holds:

(i) |
∑
y∈Zn∩(P/M)B e(α · f(y))| �f ,d,n,R,K (P/M)n−∆δ0+ε
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(ii) there is a rational approximation a/q to α with a ∈ ZR≥0 and q ∈ N satisfying

(a, q) = 1

|α− a
q
| ≤ KC̃(R−1)(P/M)∆−d

1 ≤ q ≤ KC̃R(P/M)∆.

Let α ∈ mP,d,δ. By the definition of the minor arcs we have that for all a ∈ ZR≥0 and q ∈ N
with (a, q) = 1 one of the following holds

|qα− a| > MdRP∆−dq or q > MdRP∆.

We have the inequalities

MdRP∆−dq ≥MdRP∆−d

≥MdRM∆−d(P/M)∆−d

≥Md(R−1)(P/M)∆−d

and

MdRP∆ ≥MdR(P/M)∆M∆

≥MdR(P/M)∆.

So we have for all a ∈ ZR≥0 and q ∈ N with (a, q) = 1 that

|qα− a| > Md(R−1)(P/M)∆−d or q > MdR(P/M)∆.

Now choose K = min{C̃1−R, C̃−R}, where C̃ denotes the maximum of the absolute values

of the coefficients of f(x). Then we have for all a ∈ ZR≥0 and q ∈ N with (a, q) = 1 that

|qα− a| > K(C̃M)d(R−1)P∆−d or q > (C̃M)dRP∆.

Now we will apply the variant of [13, Lemma 2.13] on the polynomial f(Mx+ v). We note

that if we replace f(x) by f(Mx + v) then C̃ changes in MdC̃. Hence the variant of [13,

Lemma 2.13] gives

|
∑

y∈Zn∩(P/M)B

e(α · f(My + v))| �f ,d,n,R,K Pn−∆δ0+ε,

which proves the first statement. The second statement from the lemma follows directly from

the definition of δ0 and the assumption that dim(Ṽ ∗) ≤ n− 1.

8.4.3 The Major Arcs

Lemma 8.9. Suppose that the polynomials fi have integer coefficients. Let [v]M ∈ ΩM with

0 < |v| ≤M . Let ∆,MP,d,δ, S∞(γ;v;M), Sq(a;v;M),G(P ) and J(P ) be as above. Then for

all a ∈ ZR and all q ∈ N such that q ≤ P/M , we have

S(
a

q
+α;P ;v;M) = Sq(a;v;M)

( P
M

)n
S∞(P dα) +O

(
q
( P
M

)n−1
(1 + P d|α|)

)
(8.23)
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and it follows that∫
MP,d,δ

S(α;P ;v;M) dα = S(P ;v;M)J(P ;M)

+O
(
M1−n+3dR+2dR2

Pn−1+∆(2R+3)−dR
)

(8.24)

We remark that in the case when a = 0 and q = 1 equation (8.23) gives

S(α;P ;v;M) =
( P
M

)n
S∞(P dα) +O

(( P
M

)n−1
(1 + P d|α|)

)
.

Proof. First observe that

S(
a

q
+α;P ;v;M) =

∑
x∈Zn

Mx+v∈PB

e(
a

q
· f(Mx+ v))e(α · f(Mx+ v))

=
∑

1≤y1,...,ym≤q
e(
a

q
· f(My + v))

∑
x∈Zn

Mx+v∈PB
x≡y mod q

e(α · f(Mx+ v)) (8.25)

since if y ≡ x mod q, then f(My + v) ≡ f(Mx+ v) mod q and there is a b ∈ Zn such that

f(My + v) = f(Mx+ v) + qb; hence

e(
a

q
· (f(My + v)) = e(

a

q
· (f(Mx+ v) + qb))) = e(

a

q
· f(Mx+ v)).

Observe that α · f(Mx + v) = α ·Mdf [d](x) + O(Md|x|d−1|α|). With Lemma 12.3 we see

that

e(α · f(Mx+ v)) = e(α ·Mdf [d](x)) +O(Md|x|d−1|α|). (8.26)

By substituting (8.26) into (8.25) we get

S(
a

q
+α;P ;v;M)

=
∑

1≤y1,...,ym≤q
e(
a

q
· f(My + v))

∑
x∈Zn

Mx+v∈PB
x≡y mod q

(
e(α ·Mdf [d](x)) +O(Md|x|d−1|α|)

)

=
∑

1≤y1....,ym≤q
e(
a

q
· f(My + v))

∑
x∈Zn

Mx+v∈PB
x≡y mod q

e(α ·Mdf [d](x))

+O
(
qnMd

( P
M

+ 1
)d−1

|α|
)
.

=
∑

1≤y1....,ym≤q
e(
a

q
· f(My + v))

∑
x∈Zn

Mx+v∈PB
x≡y mod q

e(α ·Mdf [d](x))

+O
(
Md
( P
M

)n+d−1
|α|
)
. (8.27)
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If ψ is any differentiable complex-valued function on Rn we have

ψ(x) = q−n
∫
u∈Rn
|u|≤q/2

ψ(x+ u) du+On(qmax u∈Rn
|u|≤q/2

|∇uψ(x+ u)|).

Setting ψ(x) = e(α ·Mdf [d](x)) gives∑
x∈Zn

Mx+v∈PB
x≡y mod q

e(α ·Mdf [d](x))

= q−n
∑
x∈Zn

Mx+v∈PB
x≡y mod q

∫
u∈Rn
|u|≤q/2

e(α ·Mdf [d](x+ u)) du

+
∑
x∈Zn

Mx+v∈PB
x≡y mod q

On(qmax u∈Rn
|u|≤q/2

|∇ue(α ·Mdf [d](x+ u))|)

= q−n
∫

u∈Rn
Mu+v∈PB

e(α ·Mdf [d](u)) du+ q−nOn

(
q
( P
M

+ q
)n−1)

+
∑
x∈Zn

Mx+v∈PB
x≡y mod q

On

(
q max u∈Rn

|u|≤q/2
Mdd(x+ u)d−1|α|

)

= q−n
∫

u∈Rn
Mu+v∈PB

e(α ·Mdf [d](u)) du

+On,d

(( P

qM

)n
qMd

( P
M

+ 1 +
q

2

)d−1
|α|+ q1−n

( P
M

+ q
)n−1)

= q−n
∫

u∈Rn
Mu+v∈PB

e(α ·Mdf [d](u)) du

+On,d

(
q1−nMd

( P
M

)n+d−1
|α|+ q1−n

( P
M

)n−1)
, (8.28)

where the error term q( PM + q)n−1 occurs since it can happen that
∑

x∈Zn
Mx+v∈PB
x≡y mod q

∫
u∈Rn
|u|≤q/2

inte-

grates over a larger box than only (PB+v)/M . In the worst case all sides of (PB+v)/M are

increased by length q/2. This extension increases the value of the integral over (PB + v)/M

at most with n · 2 q2( PM + q)n−1.

Substituting (8.28) into (8.27) and using Sq(a;v;M) = O(1) shows

S(
a

q
+α;P ;v;M)

= Sq(a;v;M)
(∫

u∈Rn
Mu+v∈PB

e(α ·Mdf [d](u)) du+O
(
qMd

( P
M

)n+d−1
|α|+ q

( P
M

)n−1))
+O

(
Md
( P
M

)n+d−1
|α|
)
.

= Sq(a;v;M)

∫
u∈Rn

Mu+v∈PB

e(α ·Mdf [d](u)) du+O
(
qMd

( P
M

)n+d−1
|α|+ q

( P
M

)n−1)
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Setting Mu+ v = P t and using the definition of S∞(γ) from §8.4.1 we conclude

S(
a

q
+α;P ;v;M)

= Sq(a;v;M)
( P
M

)n ∫
t∈B

e(α · P df [d](t)) dt+O
(
q
( P
M

)n−1
(1 + P d|α|)

)
= Sq(a;v;M)

( P
M

)n
S∞(P dα) +O

(
q
( P
M

)n−1
(1 + P d|α|)

)
,

which proves (8.23). We will now use equation (8.23) and the definition of MP,d,δ (§8.4.1) to

prove (8.24).∫
MP,d,δ

S(α;P ;v;M) dα

=
∑
q∈N

q≤MdRP∆

∑
0≤a1,...,aR≤q
(a1,...,aR,q)=1

∫
|α−a

q
|≤MdRP∆−d

S(α;P ;v;M) dα

=
∑
q∈N

q≤MdRP∆

∑
0≤a1,...,aR≤q
(a1,...,aR,q)=1

∫
|β|≤MdRP∆−d

S(β +
a

q
;P ;v;M) dβ

=
∑
q∈N

q≤MdRP∆

∑
0≤a1,...,aR≤q
(a1,...,aR,q)=1

∫
|β|≤MdRP∆−d

Sq(a;v;M)
( P
M

)n
S∞(P dβ) dβ

+O
( ∑

q∈N
q≤MdRP∆

∑
0≤a1,...,aR≤q
(a1,...,aR,q)=1

∫
|β|≤MdRP∆−d

q
( P
M

)n−1
(1 + P d|β|) dβ

)

= S(P ;v;M)J(P ;M)

+O
( ∑

q∈N
q≤MdRP∆

∑
0≤a1,...,aR≤q
(a1,...,aR,q)=1

∫
|β|≤MdRP∆−d

q
( P
M

)n−1
(1 + P d|β|) dβ

)
. (8.29)
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We have

O
( ∑

q∈N
q≤MdRP∆

∑
0≤a1,...,aR≤q
(a1,...,aR,q)=1

∫
|β|≤MdRP∆−d

q
( P
M

)n−1
(1 + P d|β|) dβ

)

= O
( ∑

q∈N
q≤MdRP∆

∫
|β|≤MdRP∆−d

qR+1
( P
M

)n−1
(1 + P d|β|) dβ

)

= O
( ∑

q∈N
q≤MdRP∆

∫
|β|≤MdRP∆−d

qR+1
( P
M

)n−1
(1 +MdRP∆) dβ

)

= O
( ∑

q∈N
q≤MdRP∆

qR+1
( P
M

)n−1
MdR+dR2

P∆+(∆−d)R
)

= O
(

(MdRP∆ + 1)R+2M1−n+dR+dR2
Pn−1+∆+(∆−d)R

)
= O

(
M1−n+3dR+2dR2

Pn−1+∆(2R+3)−dR
)
. (8.30)

Here we used Lemma 12.4 in the second last step. Combining (8.29) and (8.30) completes

the proof.

Lemma 8.10. Let [v]M ∈ ΩM and let B be the box [0.1]R and let Sq(a) be as in §8.4.1.

Suppose the polynomials fi have integer coefficients and dim(Ṽ ∗) ≤ n − 1. Let ε ≥ 0 and

C ≥ 1 such that the bound (8.10) in Lemma 8.7 holds. Then:

(i) There is ε′ > 0 such that ε′ = OC (ε) and

min{|Sq(a;v;M)|, |Sq′(a′;v;M)|} �C (q′ + q)εM
dC
d−1 |aq −

a
q′ |

C−ε′
d−1 , (8.31)

for all a,a′ ∈ {1, . . . , q}R such that aq 6=
a
q′

(ii) If C > ε′, then for all t > 0 and q0 ∈ N we have

#{aq ∈ QR ∩ [0, 1)R : q ≤ q0, |Sq(a;v;M)| ≥ t} �C M
−dR(q−ε0 t)

− (d−1)R

C−ε′ ,

where a
q are in lowest terms.

(iii) Let δ0 as in §8.4.1 and let ε′′ > 0. For all q ∈ N and all a ∈ ZR such that (a1, . . . , ar, q) =

1, we have

|Sq(a;v;M)| �ε′′ M
dRδ0q−δ0+ε′′ .

(iv) Let ∆ and S(P ) as in §8.4.1. Suppose that ε is sufficiently small in terms of C , d and

R. Provided the inequality C > (d− 1)R holds, we have

S(P ;v;M)−S(v;M)�C,C P−∆δ1MdR(δ1−1) (8.32)
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for some S(v;M) ∈ C and some δ1 > 0 depending at most on C , d and R. We have

S(v;M) ≥ 0 and

S(v;M) =
∏
p

limk→∞
1

pk(n−R)
#{b ∈ {1, 2, . . . , , pk}n :

f1(Mb+ v) ≡ 0, . . . , fR(Mb+ v) ≡ 0 mod pk} (8.33)

where the product is over the primes p and converges absolutely.

Proof. Proof of part (i). Let P/M be a parameter, to be chosen later. Then (8.10) gives

min
{∣∣∣S(α;P ;v;M)

(P/M)n+ε

∣∣∣, ∣∣∣S(α+ β;P ;v;M)

(P/M)n+ε

∣∣∣} ≤ C max{P−d|β|−1, |β|
1
d−1M

d
d−1 }C .

(8.34)

Since B = [0.1]n the equality S∞(0) = 1 holds, ans so (8.23) implies that

S(aq ;P ;v;M)

(P/M)n
= Sq(a;v;M) +O(q(P/M)−1), (8.35)

S(a
′

q′ ;P ;v;M)

(P/M)n
= Sq(a

′;v;M) +O(q′(P/M)−1). (8.36)

Together (8.34), (8.35) and (8.36) yield

min{Sq(a;v;M), Sq′(a
′;P ;v;M)} ≤ C(P/M)εP−dC |a′q′ −

a
q |
−C

+ C(P/M)ε|a′q′ −
a
q |

C
d−1M

Cd
d−1 +O((q′ + q)(P/M)−1)

Observe that for P sufficiently large the term C(P/M)ε|a′q′ −
a
q |M

Cd
d−1 dominates the right-hand

side. We claim that this is the case for

P/M = (q′ + q)|a′q′ −
a
q |
− 1+C
d−1 .

Indeed, since |a′q′ −
a
q | ≤ 1 it follows that

min{Sq(a;v;M), Sq′(a
′;P ;v;M)} ≤ C(P/M)ε(q′ + q)−dCM−dC |a′q′ −

a
q |

C+C2d
d−1

+ C(P/M)ε|a′q′ −
a
q |

C
d−1M

Cd
d−1 +O(|a′q′ −

a
q |

1+C
d−1 )

�C (P/M)εM
Cd
d−1 |a′q′ −

a
q |

C
d−1 .

By again substituting our choice for P/M we see

min{Sq(a;v;M), Sq′(a
′;P ;v;M)} �C ((q′ + q)|a′q′ −

a
q |
− 1+C
d−1 )εM

Cd
d−1 |a′q′ −

a
q |

C
d−1

�C (q′ + q)εM
Cd
d−1 |a′q′ −

a
q |

C
d−1
− 1+C
d−1

ε.

By choosing ε′ = 1+C
d−1 ε = OC (ε), statement (i) follows.
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Proof of part (ii). If ε′ < C is small, then by part (i), the points in the set

{aq ∈ QR ∩ [0, 1)R : q ≤ q0, |Sq(a;v;M)| ≥ t}

are seperated by caps of size

|a′q′ −
a
q | �C (tq−ε0 M

dC
d−1 )

d−1
C−ε′

�C (tq−ε0 )
d−1

C−ε′M
dC

C−ε′

�C (tq−ε0 )
d−1

C−ε′Md.

At most OC((M−dR(q−ε0 t)
− (d−1)R

C−ε′ ) such points fit in the box [0, 1)R, proving the claim.

Proof of part (iii). The bound follows from [13, Lemma 2.14].

Proof of part (iv). With a/q we mean (a1
q , . . . ,

aR
q ) where a ∈ ZR, q ∈ N and (a1, . . . , aR, q) =

1. It is sufficient to show that

s(Q) :=
∑

a/q∈[0,1)R

Q<q≤2Q

|Sq(a;v;M)| �C,C M−dR(QM−2dR)−δ1 , (8.37)

for all Q ≥ 1 and some δ1 depending only on C , d and R, since if (8.37), then∣∣∣S(P ;v;M)−
∑

a/q∈[0,1)R

Sq(a;v;M)
∣∣∣ ≤ ∑

a/q∈[0,1)R

q>P∆MdR

|Sq(a;v;M)|

=
∑

Q=2kP∆MdR

k=0,1,...

s(Q)

�C,C

∞∑
k=0

M−dR(2kP∆MdRM−2dR)−δ1

�C,C M−dRP−∆δ1MdRδ1

�C,C P−∆δ1MdR(δ1−1)

which proves (8.32) with S(v;M) =
∑
a/q∈[0,1)R Sq(a;v;M), where this sum is absolutely

converges since∑
a/q∈[0,1)R

Sq(a;v;M) =
∑

a/q∈[0,1)R

q=1

Sq(a;v;M) +
∑
Q=2k

k=0,1,...

s(Q)

�C,C 1 +
∑

k=0,1,...

M−dR2−δ1kM2dRδ1

�C,C 1 +MdR(2δ1−1).

Then (8.33) follows as in §7 of Birch [5], and S(v;M) ≥ 0 follows from Myerson [20, Theorem

1.3].
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We will now prove (8.37). Let l ∈ Z. We have

s(Q) =
∑

a/q∈[0,1)R

|Sq(a;v;M)|≥2−l

Q<q≤2Q

|Sq(a;v;M)|+
∞∑
i=l

∑
a/q∈[0,1)R

2−i>|Sq(a;v;M)|≥2−i−1

Q<q≤2Q

|Sq(a;v;M)|

≤ #{a
q
∈ QR ∩ [0, 1)R : q ≤ 2Q, |Sq(a;v;M)| ≥ 2−l} · supq>Q |Sq(a;v;M)|

+
∞∑
i=l

#{a
q
∈ QR ∩ [0, 1)R : q ≤ 2Q, |Sq(a;v;M)| ≥ 2−i−1} · 2−i. (8.38)

Now parts (ii) and (iii) show that

#{a
q
∈ QR ∩ [0, 1)R : q ≤ 2Q, |Sq(a;v;M)| ≥ t} �C (Qεt)

− (d−1)R

C−ε′ M−dR

and that

supq>Q |Sq(a;v;M)| � Q−δ0/2MdRδ0 .

Substituting these bounds into (8.38) gives

s(Q)�M−dRQOC (ε)−δ0/2MdRδ02
l
(d−1)R

C−ε′ +M−dRQOC (ε)
∞∑
i=l

2(i+1)
(d−1)R

C−ε −i.

We have C > (d−1)R and we have assumed that ε′ is small in terms of C , d and R, so we may

assume that the bound C > (d − 1)R + ε′ holds. So we may sum the geometric progression

to find that

s(Q)�C,C M−dRQOC (ε)2
l
(d−1)R

C−ε′ (Q−δ0/2Mdδ0R + 2−l).

Picking l =
⌊
log2(Qδ0/2M−dRδ0)

⌋
shows that

s(Q)�C,C M−dRQOC (ε)(QM−2dR)
δ0
2

(
(d−1)R
(C−ε) −1

)
.

We have δ0 ≥ 1
(d−1)2d−1R

, by Lemma 8.8. As ε is small in terms of C , d and R it follows that

s(Q) �C,C M−dRQ−δ1M2dRδ1 for some δ1 > 0 depending only on C , d and R. This proves

(8.38).

Lemma 8.11. Let C,C and ε be as in Lemma 8.7.

(i) For all γ ∈ RR we have

S∞(γ)�C |γ|−C +ε′ , (8.39)

for some ε′ = OC (ε).

(ii) If the conclusion of part (i) holds and C − ε′ > R, then there exists a complex number

J ∈ C such that for all P ≥ 1 we have

Mn

Pn−dR
J(P ;M)− J�C ,C,ε′ P

−∆(C−ε′−R)M−dR(C−ε′−R). (8.40)

38



Furthermore we have J ≥ 0 and

J = limP→∞
1

Pn−dR
λ{t ∈ Rn :

1

P
t ∈ B, |f [d]

1 (t)| ≤ 1

2
, . . . , |f [d]

R (t)| ≤ 1

2
}, (8.41)

where λ{·} denotes the Lebesgue measure.

Proof of part (i). For this part we set M = 1 and we will use the bound (8.10) and (8.23) to

find a bound for S∞(γ). First, for all β ∈ RR we have |S(β;P ;v;M)| ≤ S(0;P ;v;M), from

Definition 8.3. Taking α = 0,β = P−dγ in (8.10) shows that

|S(P−dγ;P ;v;M)| ≤ CPn+ε max{|γ|−1, P−
d
d−1 |γ|

1
d−1 }C .

If we take a = 0, q = 1,α = P−dγ in (8.23) we have

S(P−dγ;P ;v;M) = PnS∞(γ) +O(Pn−1(1 + |γ|))

Combining these equality’s gives

S∞(γ)�C P
ε max{|γ|−1, P−

d
d−1 |γ|

1
d−1 }C + P−1 + P−1|γ| (8.42)

If we have |γ| ≤ 1, then we choose P = 1. We then have

S∞(γ)�C max{|γ|−1, |γ|
1
d−1 }C + 1 + |γ| � |γ|−C

Hence (i) follows. Otherwise we put P = |γ|1+C . We then have

S∞(γ)�C P
ε max{|γ|−1, P−

d
d−1 |γ|

1
d−1 }C + |γ|−1−C + |γ|−C

≤ 2|γ|−C +(1+C )ε.

If we set ε′ = (1 + C )ε = OC (ε), then (ii) follows.

Proof of part (ii). By the definition of J(P ;M) in §8.4.1 we have

J(P ;M) =

∫
|γ|≤P∆MdR

Pn−dRM−nS∞(γ) dγ.

If the inequality C − ε′ > R holds, then by (8.39) we have

Mn

Pn−dR
J(P ;M)− J =

∫
|γ|>P∆MdR

S∞(γ) dγ

�C ,C,ε′ P
−∆(C−ε′−R)M−dR(C−ε′−R),

where the integrals converge absolutely. This proves (8.40) with

J =

∫
γ∈RR

S∞(γ) dγ.

Now (8.41) follows from Myerson [20, Lemma 2.6], where again it is important to note that

our definition of S∞ coincides with the definition of S∞ in Myerson. Lastely, J ≥ 0 follows

from Myerson [20, Theorem 1.3].
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8.5 Proof of Theorem 1.4

In this section we deduce Theorem 1.4. For that we need two technical lemmas. The proof

of the first one can be found in Myerson [20, Lemma 2.1]. The second lemma is a variant of

Myerson [20, Lemma 2.2], which we will prove below. After that, in §8.5.2 we prove the main

theorem of this section, Theorem 1.4.

8.5.1 Some Technical Lemmas

We show that the bound (8.10) implies an upper bound for the integral of the function

S(α;Pv;M) over any bounded measurable set. Müller [19] and Bentkus and Götze [3],[4]

previously used similar ideas to treat quadratic forms with real coefficients. This was a main

motivation in the work of Myerson [20].

Lemma 8.12. (Myerson [20, Lemma 2.1]).

Let r1 : (0,∞)→ (0,∞) be a strictly decreasing bijection, and let r2 : (0,∞)→ (0,∞) be

a strictly increasing bijection. Write r−1
1 and r−1

2 for the inverses of these maps. Let w > 0

and let E0 be a hypercube in RR whose sides are of length w and parallel to the coordinate

axes. Let E be a measurable subset of E0 and let ϕ : E → [0,∞) be a measurable function.

Suppose that for all α,β ∈ R such that α ∈ E and α+ β ∈ E, we have

min{ϕ(α), ϕ(α+ β)} ≤ max
{
r−1

1 (|β|), r−1
2 (|β|)

}
. (8.43)

Then, for any integers k and l with k < l, we have∫
E
ϕ(α) dα�R w

R2k +

l−1∑
i=k

2i
(

vr1(2i)

min{r2(2i), w}

)R
+

(
wr1(2l)

min{r2(2l), w}

)R
supα∈E ϕ(α), (8.44)

where the implied constant depends only on R.

We see that (8.43) looks a lot like (8.10). We will see below that if we choose

ϕ(α) =
|S(α;P ; v;M)|
C(P/M)n+ε

, r1(t) = t−1/CP−d, r2(t) = t
d−1
C M−d,

that then (8.43) and (8.10) becomes identical. This will enable us to apply Lemma 8.12

to bound the integral
∫
mP,d,δ

S(α;P ; v;M), where mP,d,δ is a set of minor arcs on which

S(α;P ; v;M) is somehwat small.

Lemma 8.13. (Myerson [20, Lemma 2.2]). Let T be a complex valued measurable function

on RR. Let E0 be a hypercube in RR whose sides are length w and parallel to the coordinate

axes, and let E be a measurable subset of E0. Suppose that the inequality

min
{∣∣∣ T (α)

(P/M)n

∣∣∣, ∣∣∣T (α+ β)

(P/M)n

∣∣∣} ≤ max{P−d|β|−1, |β|
1
d−1M

d
d−1 }C (8.45)
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holds for some P ≥ 1 and C ≥ 0 and all α,β ∈ RR. Suppose that C > dR and that

supα∈E |T (α)| ≤ (P/M)n−δ (8.46)

for some δ ≥ 0. Then we have∫
E

|T (α)|
(P/M)n

dα

�C ,d,R wR(P/M)−dR−δ(1−dR/C ) + P−dR(P/M)−δ(1−R/C ). (8.47)

Corollary 8.13.1. If in addition in Theorem 8.13 we have w = 1, then (8.47) becomes∫
E

|T (α)|
(P/M)n

dα�C ,d,R (P/M)−dR−δ(1−dR/C )

Proof. We have

MdR(P/M)δdR/C ≥ (P/M)δR/C .

Multiplying both sides with P−dR(P/M)−δ gives

(P/M)−dR(P/M)−δ(1−dR/C ) ≥ P−dR(P/M)−δ(1−R/C ),

which proves the claim.

Proof of Lemma 8.13. We want to apply Lemma 8.12, in particular we want to choose T (α),

r1 and r2 in such a way that the bound (8.43) follows from (8.45). It is an obvious choice to

take ϕ(α) = |T (α)|
(P/M)n . We now only have to choose r1 and r2 in a smart way. We want that

r−1
1 (|β|) = (P−d|β|−1)C (8.48)

r−1
2 (|β|) = (M

d
d−1 |β|

1
d−1 )C . (8.49)

For deducing a formula for r1 we set t = (P−d|β|−1)C . Rewriting gives |β| = P−dt−1/C .

Then (8.48) is equivalent to

r1(t) = |β| = P−dt−1/C

For deducing a formula for r2 we set t = (M
d
d−1 |β|

1
d−1 )C . Rewriting gives |β| = M−dt(d−1)/C .

Then (8.49) is equivalent to

r2(t) = |β| = M−dt(d−1)/C .

Hence we choose

ϕ(α) =
|T (α)|

(P/M)n
, r1(t) = t−1/CP−d, r2(t) = t

d−1
C M−d, (8.50)

noting that the bound (8.43) then follows from (8.45). Clearly r1 is a strictly decreasing

bijection and r2 is a strictly increasing bijection. It remains to choose the parameters k and
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l from (8.44). We will choose these so that the right-hand side of (8.44) is dominated by the

sum
∑l−1

i=k, rather than either of the other two terms. More precisely, take

k =
⌊
log2(P/M)−C

⌋
, l =

⌈
log2(P/M)−δ

⌉
Observing that

1

2
(P/M)−C < 2k ≤ (P/M)−C , (P/M)−δ ≤ 2l < 2(P/M)−δ. (8.51)

We may assume that C > δ, for otherwise we have the bound
∫
E T (α) dα ≤ wR(P/M)n−δ

which follows from (8.46), is stronger than the bound (8.47). We then have k < l and so we

can apply Lemma 8.12. Substituting in our choises (8.50) for the parameters yields∫
E

|T (α)|
(P/M)n

dα�R w
R2k +

l−1∑
i=k

2i
(

vP−d2−i/C

min{M−d2(d−1)i/C , w}

)R
+

(
wP−d2−l/C

min{M−d2(d−1)l/C , w}

)R
supα∈E ϕ(α), (8.52)

By (8.46) and (8.51) we have supα∈E
|T (α)|

(P/M)n ≤ 2l, and so we may extend the sum in (8.52)

from
∑l−1

i=k to
∑l

i=k to obtain∫
E

|T (α)|
(P/M)n

dα�R wR2k +
l∑

i=k

2i
(

vP−d2−i/C

min{M−d2(d−1)i/C , w}

)R
Since

P−d2−i/C

min{M−d2(d−1)i/C , w}
≤ P−d2−di/CMd + w−1P−d2−i/C

≤ (P/M)−d2−di/C + w−1P−d2−i/C

we deduce that∫
E

|T (α)|
(P/M)n

dα�R wR2k +
l∑

i=k

wR(P/M)−dR2i(1−dR/C ) +
l∑

i=k

P−dR2i(1−R/C ). (8.53)

Note that
l∑

i=k

2i(1−dR/C ) �C ,d,R 2l(1−dR/C )

and
l∑

i=k

2i(1−R/C ) �C ,d,R 2l(1−R/C ).

Recall from (8.51) that we have 2l ≤ 2(P/M)−δ. It follows that

l∑
i=k

2i(1−dR/C ) �C ,d,R (P/M)−δ(1−dR/C )
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and
l∑

i=k

2i(1−R/C ) �C ,d,R (P/M)−δ(1−R/C ).

Substituting these bounds in (8.53) gives∫
E

|T (α)|
(P/M)n

dα

�C ,d,R wR2k + wR(P/M)−dR(P/M)−δ(1−dR/C ) + P−dR(P/M)−δ(1−R/C ).

Lastly we have the bound 2k ≤ (P/M)−C from (8.51) and we have −C < −dR, hence∫
E

|T (α)|
(P/M)n

dα

�C ,d,R wR(P/M)−C + wR(P/M)−dR−δ(1−dR/C ) + P−dR(P/M)−δ(1−R/C )

�C ,d,R wR(P/M)−dR−δ(1−dR/C ) + P−dR(P/M)−δ(1−R/C ),

which completes the proof.

8.5.2 Proof of Theorem 1.4

Theorem 1.4. Let fi ∈ Z[x1, . . . , xn] be quadratic forms with n ≥ 2 and integer coefficients

and dim(X̃∗) ≤ n− 1. Suppose

Naux
β·F (B) ≤ C0B

(d−1)n−2dC

for some C0 ≥ 1,C > dR and all β ∈ RR and B ≥ 1. For all P ≥M we have

Ñ(P,ΩM ) =
∑

[v]M∈ΩM

(JS(v;M)Pn−dRM−n +O(Pn−dR−δM−n+δ2)),

where the implied constant depends at most on C0,C and the fi, and δ and δ2 are positive

constants depending at most on C , d and R.

Proof of Theorem 1.4. Let (P/M) ≥ 1 and ∆ = 1
4R+6 . By Lemma 8.4 we have

Ñ(P,ΩM ) =
∑
v∈ΩM

(∫
mP,d,δ

S(α;P ; v;M) dα+

∫
MP,d,δ

S(α;P ; v;M) dα
)
,

where mP,d,δ and MP,d,δ are defined as in §8.4.1. We apply Lemma 8.13 with

T (α) = C−1
( P
M

)−ε
S(α;P ;v;M), E0 = [0, 1]R, E = mP,d,δ, δ = ∆δ0.

Lemma 8.7 then gives

min
{∣∣∣ T (α)

(P/M)n

∣∣∣, ∣∣∣T (α+ β)

(P/M)n

∣∣∣} ≤ max{P−d|β|−1, |β|
1
d−1M

d
d−1 }C
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Hence with these choices (8.45) holds. Lemma 8.8 shows that supα∈mP,d,δ CT (α)� (P/M)n−δ,

and after increasing C if necessary this gives us (8.46). This verifies the hypotheses of Lemma

8.13. Now Corollary 8.13.1 gives∫
mP,d,δ

S(α;P ;v;M) dα�C,C (P/M)n−dR−∆δ0(1− dR
C

)+ε. (8.54)

For the major arcs, since ∆ = 1
4R+6 we have by Lemma 8.9 that∫

MP,d,δ

S(α;P ;v;M) dα = S(P ;v;M)J(P ;M)

+O
(
Pn−dR−

1
2M1−n+3dR+2dR2

)
, (8.55)

where S(P ;v;M) and J(P ;M) are defined as in §8.4.1.

Since C > dR holds, dim(Ṽ ∗) ≤ n − 1, and ε is small in terms of C , d and R, both of

Lemmas 8.10 and 8.11 apply. We have J = O(1), S(v;M) = O(MdR(2δ1−1)). Now (8.32)

from Lemma 8.10 and (8.40) from Lemma 8.11 shows that

P dR−nMnS(P ;v;M)J(P ;M)

= (J +OC ,C(P−∆(C−ε′−R)M−dR(C−ε′−R)))(S(v;M) +OC ,C(P−∆δ1MdR(δ1−1)))

= JS(v;M) +OC ,C(P−∆δ1MdR(δ1−1)) +OC ,C(P−∆(C−ε′−R)M−dR(C−ε′−R)MdR(2δ1−1))

= JS(v;M) +OC ,C(P−∆δ1MdR(δ1−1) + P−∆(C−R)/2MdR(2δ1−1+(R−C )/2)), (8.56)

where δ1 > 0 depends at most on C , d and R. Combining (8.54), (8.55) and (8.56) gives

Ñ(P, [v]M ) = JS(v;M)Pn−dRM−n +OC ,C( + Pn−dR−∆δ1M−n+dR(δ1−1)

+ Pn−dR−∆(C−R)/2M−n+dR(2δ1−1+(R−C )/2)

+ Pn−dR−
1
2M−n+1+3dR+2dR2

+ Pn−dR−∆δ0(1− dR
C

)M−n+dR+∆δ0(1− dR
C

)+ε)

Let

δ = min{∆δ1, ∆(C −R)/2,
1

2
, ∆δ0(1− dR

C
)}

and

δ2 = max{R(δ1− 1), dR(2δ1− 1 + (R−C )/2), 1 + 3dR+ 2dR2, dR+ ∆δ0(1− dR
C

) + ε}.

Then

Ñ(P, [v]M ) = JS(v;M)Pn−dRM−n +OC ,C(Pn−dR−δM−n+δ2),

which proves the theorem.
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9 Sieving on System of Quadrics: Proof of Theorem 1.3

Now we have a bound for Ñ(P,ΩM ), we can use this to plug this into Selberg’s sieve to

find an upper bound for N(P,Ω). We use the same notation as in section 7 and 8. So let

F1, . . . , FR ∈ Z[x0, . . . , xn] be quadratics with n ≥ 2, X the corresponding projective variety

and an and Ad as in section 7.

Definition 9.1. Let σR be the element of {0, . . . , n} defined by

σR = 1 + maxβ∈RR\{0} dim Sing V (β · F ),

and V (β · F ) is the hypersurface cut out in PnR by β1F1 + . . .+ βRFR = 0.

Theorem 9.2. Assume dimX = n − R, dim(X̃∗) ≤ n − 1 (X̃∗ defined in §8.4.1) and

n+ 1− σR > 8R. Let J be as in Theorem 1.4 and

σp = limk→∞
1

pk(n+1−R)
#{b ∈ {1, 2, . . . , pk}n+1 : F (b) ≡ 0 mod pk}.

Then

Ad =
∏
p|dm

(
1− #Ω̂pm

X(#Z/pmZ)

)
Pn+1−2RJ

∏
p

σp +O(Pn+1−2R−δdm(−n−1+δ2)#Ω̂c
dm)

Proof. We let C = n+1−σR
4 . Then

Naux
β·F (B) ≤ C0B

n+1−4C

for some C0 ≥ 1 and all β ∈ RR and B ≥ 1 will follow from the proof of Theorem 1.2 in [20].

Theorem 1.4 now gives

Ad =
∑
d|n

an =
∑

[v]dm∈Ω̂cdm

(JS(v; dm)Pn+1−2Rd−m(n+1) +O(Pn+1−2R−δdm(−(n+1)+δ2))).

To simplify the notation let M = dm. Define

σp(v,M) = limk→∞
1

pk(n+1−R)
#{b ∈ {1, 2, . . . , pk}n+1 : F (Mb+ v) ≡ 0 mod pk}.

Note σp(0, 1) = σp. Let

g(d) =
∑
v∈Ω̂cM

∏
p|M

σp(v,M)

σp
M−n−1.

and

X = Pn+1−2RJ
∏
p

σp
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For p - M we have σp(v,M) = σp, since b ∈ (Z\pkZ)n+1 runs over the same elements as

Mb+ v ∈ (Z\pkZ)n+1. Moreover by lemma 8.10 we have S(v;M) =
∏
p σp(v,M). Hence

g(d)X =
∑
v∈Ω̂cM

∏
p|d

σp(v,M)

σp
M−n−1Pn+1−2RJ

∏
p

σp

=
∑
v∈Ω̂cM

∏
p

σp(v,M)M−n−1Pn+1−2RJ

=
∑
v∈Ω̂cM

S(v;M)M−n−1Pn+1−2RJ.

So it suffices to prove that g(d) =
∏
p|M

(
1 − #Ω̂pm

X(#Z/pmZ)

)
. We will use that for all

p|d we have #X(Z/pmZ) = #X(Z/pZ) · p(m−1)(n+1−R) and σp = X(Z/pZ) · p−(n+1−R) and∑
[v]M∈Ω̂cM

σp(v,M) = pmR#Ω̂c
pm , which follow from a quantitative version of Hensel’s lemma

[8, Lemma 2.1]. We have

g(d) =
∑
v∈Ω̂cM

∏
p|M

σp(v,M)

σp
p−(n+1)m

=
∏
p|M

∑
v∈Ω̂cM

σp(v,M)

#X(Z/pZ)
p−(n+1)m+(n+1−R)

=
∏
p|M

#Ω̂c
pm

#X(Z/pZ)
p−(n+1)m+(n+1−R)+mR

=
∏
p|M

#Ω̂c
pm

#X(Z/pmZ)
p−(m−1)(n+1−R)

=
∏
p|M

(
1− #Ω̂pm

X(#Z/pmZ)

)
.

Recall the definition of the density function from (1.3)

ωp = 1− #Ω̂pm

#X̂(Z/pmZ)
.

Also, recall Theorem 1.3.

Theorem 1.3. Assume that X ⊂ Pn(Q) is a smooth variety defined by the quadratics

F1, . . . , FR with integer coefficients, dimX = n−R, dim(X̃∗) ≤ n− 1 and n+ 1− σR > 8R.

Let m ∈ N and let Ωpm ⊂ X(Z/pmZ) for each prime p. Assume that

0 ≤ ωp < 1.
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Then for every ξ ≥ 1 and any ε > 0, we have

N(P,Ω)�X,ε
Pn+1−2R

J(ξ)
+ Pn+1−2R−δξ2mδ2+2+ε,

where

J(ξ) =
∑
k<ξ

µ2(k)
∏
p|k

(
ωp

1− ωp

)
.

Proof. Recall from section 7 that

N(P,Ω) ≤ Ñ(2P, Ω̂) ≤
∑

(n,P)=1

an.

The main term follows from combining Theorem 9.2 and applying Selberg’s sieve as in The-

orem 3.1. For the error term we have

|R(A,Λ2)| ≤
∑
d<ξ2

τ3(d)|rd(A)|

≤
∑
d<ξ2

τ3(d)Pn+1−2R−δdm(−n+δ2)#Ω̂c
dm

≤
∑
d<ξ2

τ3(d)Pn+1−2R−δdmδ2

Taking the trivial bound τ3(d)� dε/2 and summing over d ≤ ξ2, we see

|R(A,Λ2)| �X,ε P
n+1−2R−δξ2mδ2+2+ε,

which completes the proof.
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10 Thin Sets: Proof of Theorem 1.2

An application of the asymptotic formula for Ñ(P,Ω) is found when we try to count points

in a thin subset. Our aim in this section is to prove Theorem 1.2. First we give the definition

of thin sets from [22, §3.1].

Definition 10.1. Let X be an integral variety over a field F . A type I thin subset is a set of

the form Z(F ) ⊂ X(F ), where Z is a closed subvariety with Z 6= X. A type II thin subset is

a set of the form π(Y (F )), where π : Y → X is a generically finite dominant morphism with

deg π ≥ 2 and Y geometrically integral. A thin subset is a subset contained in a finite union

of thin subsets of type I and II.

An example of a thin set of type I is the zero set of x2 − y2 in P1(Q). An example of a

thin set of type II is the set of all squares Q, i.e. the image of Q of the map from Q to Q
defined as x→ x2.

Let us recall Theorem 1.2.

Theorem 1.2. Let X(Q) ⊂ Pn(Q) be a smooth variety defined by the quadratics F1, . . . , FR
with integer coefficients. Suppose dimX = n−R, dim X̃∗ ≤ n− 1 and n+ 1− σR > 8R. Let

Υ ⊂ X(Q) be a thin set. Then there exists θn > 0 such that

#{x ∈ Υ : |x| ≤ P} �Υ,X Pn+1−2R−θn .

There is a similar result for only one quadratic, proved by Browning and Loughran [8, Th.

1.8]. The proof of Theorem 1.2 is based on that one. We will see below that θn < δ/(2mδ2+3)

is admissible. To prove Theorem 1.2, we require information on thin sets modulo p.

Lemma 10.2. Let X → SpecZ be a smooth integral finite type scheme of relative dimension

n and Υ ⊂ X(Z) be thin in X(Q).

• If Υ has type I then #(Υ mod p)�Υ pn−1

• If Υ has type II, then there exists a finite Galois extension QΥ/Q and a constant

cΥ ∈ (0, 1) such that for all primes p which split completely in QΥ we have #(Υ mod p) ≤
cΥp

n +OΥ(pn−1/2).

Proof. The first part follows from applying the Lang–Weil estimates [15] to each component

of the closure of Υ. The second part is [22, Theorem 3.6.2].

Proof of Theorem 1.2. To prove Theorem 1.2, it suffices to consider thin sets of type I and

II. We begin with type II. By Lemma 10.2 there is a set of primes P of positive natural

density θ and a constant c ∈ (0, 1), such that for each p ∈ P we have

#(Υ mod p) ≤ cpn−1 +OΥ(pn−3/2).
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Taking m = 1 in ωp for each p ∈ P gives

ωp = 1− #(Υ mod p)

X(Z/pZ)
≥ 1− #(Υ mod p)

pn−1

≥ 1− cpn−1 +OΥ(pn−3/2)

pn−1
≥ 1− c+OΥ(p−1/2)

It follows that there exists η < (1− c)/c such that

ωp
1− ωp

≥ η

for large enough p ∈ P. Let Po denote the set of such p ∈ P. An application of [8, Lemma

3.11] now yields

J(ξ) ≥
∑
a≤ξ

p|a⇒p∈Po

µ2(a)ηω(a) �Υ,X ξ(log ξ)ηδ−1 �ε,Υ,X ξ1−ε,

for any ε > 0 and where we denote ω(a) for the number of primes dividing a. Now it follows

from Theorem 1.3 that

#{x ∈ Υ : |x| ≤ P} �Υ,X,ε ξ
ε−1Pn+1−2R + Pn+1−2R−δξ2mδ2+2+ε.

Balancing the terms by choosing ξ = P θn with θn = δ/(2mδ2 + 3), gives the statement for

thin sets of type II.

For thin sets of type I, we let Z ⊂ X be a Zariski closed subset with Z 6= X. For any

prime p, Lemma 10.2 implies that Z(Fp) ≤ cpn−2, for some c = c(Z) > 0. Then ωp ≥ 1−cp−1

ant it follows that
ωp

1− ωp
≥ 1− cp−1

cp−1
=
p

c
− 1.

A further application of [8, Lemma 3.11] now implies that J(ξ) �ε,X ξ2−ε for all ε > 0. We

complete the proof by the same argument as above.
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11 Almost primes

Let B be a fixed finite set of primes. An application of Theorem 9.2 is found when we try to

count the following set

{x ∈ Zn|x ∈ PB,F (x) = 0, x1 · · ·xn ∈ Pr(B)},

where Pr(B) is the set of positive integers with at most r prime divisors outside B. If

an =
∑

x∈Zn∩PB
F (x)=0
n=x1···xn

1 (11.1)

then ∑
n∈Pr(B)

an = {x ∈ Zn|x ∈ PB,F (x) = 0, x1 · · ·xn ∈ Pr(B)}.

In general, to estimate
∑

ω(n)≤r an we need to know how A is distributed, i.e. for each

square-free d for which (d,B) = 1 we need a formula for

Ad =
∑

n=0(mod d)

an = {x ∈ Zn|x ∈ PB,F (x) = 0, d|x1 · · ·xn}.

Just as in section 3 we write

|Ad| = ωdX −Rd,

where X is an approximation to |A1| = |A| and ωd is a non-negative multiplicative function

satisfying
ω1 = 1;

0 ≤ ωp < 1, if p 6∈ B
ωp = 0, if p ∈ B.

(11.2)

Suppose for fixed (independent of z, z1) constants κ > 1 and A ≥ 2 we have∏
z1≤p<z

(1− ωp)−1 ≤
( log z

log z1

)κ(
1 +

A

log z1

)
, for 2 ≤ z1 < z. (11.3)

The term ωdX s considered as an approximation to |Ad|, and therefore we suppose that the

errors Rd are small on average, i.e. for some constants τ with 0 < τ < 0, A1 ≥ 1, and A2 ≥ 2,∑
d<Xτ log−A1 X

(d,B)=1

µ2(d)4ν(d)|Rd| ≤ A2
X

logκ+1X
, (11.4)

where ν denotes the number of prime factors of d. Before we can state the two essential

theorems for the problem we discuss , we introduce another constant, µ, by

maxan∈A an ≤ Xτµ.
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Note that in our sieving problem we have al = 0 if l > Pn.

To give an lower bound for
∑

ω(n)≤r an, we need two theorems from Diamond and Hal-

berstam [10]. In the first one we introduce the number βκ, which we will use in the second

one.

Theorem 11.1. (Diamond and Halberstam [10, Theorem 0]). Let κ > 1 be given, and let

σκ(u) be the continuous of the differential-difference problem{
µ−κσ(u) = A−1

κ , for 0 < u ≤ 2, Aκ = (2eγ)κΓ(κ+ 1),

(u−κσ(u))′ = −κu−κ−1σ(u− 2), for 2 < u;

here γ denotes the Euler constant. Then there exist two number ακ and βκ satisfying

ακ ≥ βκ ≥ 2

such that the simultaneous differential-difference system
F (u) = 1/σκ(u) for 0 < u ≤ ακ,
f(u) = 0 for 0 < u ≤ βκ,
(uκF (u))′ = κuκ−1f(u− 1) for u > ακ,

(uκf(u))′ = κuκ−1F (u− 1) for u > βκ

has continuous solutions Fκ(u) and fκ(u) with the properties that

Fκ(u) = 1 +O(e−u), fκ(u) = 1 +O(e−u),

and that Fκ(u) and fκ(u) respectively, decreases and increases monotonically towards 1 as

u→∞.

Theorem 11.2. (Diamond and Halberstam [10, Theorem 1]). Let A and B described as

above, in particular (11.2), (11.3) and (11.4) hold. For any two real numbers u and v satis-

fying
1

τ
< u ≤ v, βκ < τν

we have ∑
ω(n)≤r

an � X
∏

p<X1/v

(1− ωp)

provided that

r > τµu− 1 +
κ

fκ(τv)

∫ v/u

1
Fκ(τv − s)(1− u

v
s
)ds

s
.

Theorem 1.6. Let F is a system of R linear independent quatrics in n variables and integer

coefficients. Assume dim(X̃∗) ≤ n− 1 and n+ 1− σR > 8R. Let J, σp be as in Theorem 9.2,

Ωp = {x ∈ (Z/pZ)n : F (x) ≡ 0, x1 · · ·xn ≡ 0 mod p}
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and Ω̂p be as in Section 2. Let B be the set of primes for which #Ωp = 0. Let an described

as in (11.1) and assume (11.2), (11.3) and (11.4) hold. For any two reals numbers u and v

satisfying
1

τ
< u ≤ v, βκ < τµ

we have ∑
ω(n)≤r

an � Pn−2RJ
∏
p

σp
∏

p<(Pn−2RJ
∏
p σp)1/v

#Ω̂p

X̂(Z/pZ)
,

provided that

r > τµu− 1 +
κ

fκ(τv)

∫ v/u

1
Fκ(τv − s)(1− u

v
s
)ds

s
.

Proof. Combing the previous theorem with Theorem 9.2 with m = 1 gives the result.

Corollary 11.2.1. If in addition to Theorem 1.6 we have

Pn−2R
∏

p<(Pn−2RJ
∏
p σp)1/v

#Ω̂p

X̂(Z/pZ)
� P ε (11.5)

for some ε > 0, we know that there are infinitely many solution for F (x) = 0 where x is

r-almost prime.
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12 Appendix

We will often use the following lemmas.

Lemma 12.1. Let k ∈ N. If f(x)� g(x), then

(f(x) + g(x))k �k g(x)k.

Proof. Let x0, C > 0 such that |f(x)| ≤ Cg(x) for all x > x0. Expanding (f(x) + g(x))k gives

(f(x) + g(x))k =

k∑
i=1

(
k

i

)
g(x)if(x)k−i ≤

k∑
i=1

(
k

i

)
Ck−ig(x)k,

for x > x0, which proves the lemma.

Lemma 12.2. Let d ∈ N and I a finite subset of N. Suppose for all i ∈ I we have λi ∈ C,

then ∣∣∣∑
i∈I

λi
∣∣d ≤ (#I)d−1

∑
i∈I
|λi|d.

Proof. We have∣∣∣∑
i∈I

λi
∣∣d ≤ (∑

i∈I
|λi|
)d
.

After expanding the latter one we can bound every term |λi1λi2 · · ·λid | by (max1≤j≤d{|λij |})d.
Let k ∈ I, then there are at most (#I)d−1 terms of the form |λi1λi2 · · ·λid−1

λk| for which

max1≤j≤d−1{|λij |, |λk|} = |λk|. Hence(∑
i∈I
|λi|
)d ≤ (#I)d−1

∑
i∈I
|λi|d.

Lemma 12.3. If h ∈ R, then for every x ∈ R we have

|e(x)− e(x+ h)| � |h|.

Proof. First we note that |1− e(h)| = |e(x)| · |1− e(h)| = |e(x)− e(x + h)|, so we only need

to show that |1 − e(h)| � |h|. If |h| ≥ 1
4π , then |1 − e(h)| ≤ 2 ≤ 8π|h|. If |h| < 1

4π consider

the power series of 1− e(h);

|1− e(h)| =
∣∣∣ ∞∑
n=1

(2πih)n

n!

∣∣∣
≤
∞∑
n=1

(2π|h|)n

≤ (2π|h|)
∞∑
n=0

(2π

4π

)n
� |h|.
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Lemma 12.4. Let m ∈ N and Q ∈ R>0, then∑
x∈N
x<Q

xm = O(Qm+1)

Proof. We have ∑
x∈N
x<Q

xm ≤
∫ Q

0
xm = (Q)m+1.

Remark 12.5. One can easily modify the proof and prove a similar statement for m ∈ Q.

Also, something stronger holds: Qm+1 ∼
∑

x∈N
x<Q

xm as Q→∞, i.e. limQ→∞
Qm+1∑
x<Q xm = 1 .
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