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Abstract

Classical Density Functional Theory is an active topic within Soft Condensed Matter
Theory and is mainly concerned with constructing density functionals that describe the
properties of classical many-body systems such as gases and fluids. These functionals
of the particle density distribution are unique for a given particle interaction potential,
but there is no straightforward way to find or approximate them except for very simple
systems like the ideal gas or hard spheres. In this thesis we use Machine Learning to
approximate the excess Helmholtz free-energy functional FLJexc[ρ(r)] of a supercritical
Lennard-Jones fluid in planar geometries in 3D. Monte Carlo simulations are used to
generate a set of density profiles that serves as a training data set from which an Ansatz
for FLJexc[ρ(r)] learns. Overall the trained functional outperforms Mean Field Theory
at predicting density profiles and the equation of state, although predictive power is
limited at low temperatures and for chemical potentials slightly above the ideal-gas
regime. The trained functional does not exactly scale linearly with the temperature,
in contrast to our expectations, and performs significantly better at high than at low
temperatures. We discuss the limitations of our method and implications for future
research concerning the use of Machine Learning for classical DFT.
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1 Introduction

Density functional theory (DFT) is a powerful tool that originated in the 1960s in the con-
text of the quantum theory of electrons in atoms, molecules and solids[1]. Walter Kohn and
Pierre Hohenberg showed that the ground state properties of a quantum-mechanical many-
body system are uniquely determined by its electron density distribution. They defined an
energy functional of this density and proved that this functional achieves its minimum value
only at the equilibrium electron density profile of the system. Thus, the density of the ground
state and hence the properties of the system in an arbitrary external potential can be found
by minimizing the energy functional, which generally has to be done numerically. Because
of the relatively high computational efficiency of this method compared to older methods
based on many-body wavefunctions[2], density functional theory had a substantial impact on
solid state physics and quantum chemistry and became one of the most popular calculational
methods.

Not many years later density functional theory was reformulated in terms of classical statis-
tical mechanics, and the new theory inherited the name classical density functional theory. It
was shown that for a specific particle interaction potential, the intrinsic Helmholtz free-energy
functional F [ρ(r)] of a classical many-body system is a unique functional of the density of the
system and is independent of the external potential Vext(r) and chemical potential µ. Given
F [ρ(r)], a self-consistency equation for the equilibrium density ρ0(r) can be derived. So when
F [ρ(r)] is known, it is possible to compute the equilibrium density given some Vext(r) and
µ. Similar to the quantum-mechanical case, where the exact form of the energy functional
is unknown, F [ρ(r)] is not exactly known either for nonzero particle interaction potentials.
An exception is the ideal gas for which the functional is exactly known, and this makes it
possible to split the free-energy functional for an arbitrary type of interaction potential into
an ideal-gas intrinsic free-energy contribution F id[ρ(r)], and a so-called excess intrinsic free-
energy contribution F exc[ρ(r)] due to the particle-particle interactions.

Over the past 50 years, considerable theoretical and computational effort has gone into ap-
proximating F exc[ρ(r)] for different types of interaction potentials. In 1989 Yasha Rosenfeld
developed the so-called Fundamental Measure Theory for hard-sphere mixtures, which is
based on the underlying geometrical properties of hard spheres. This density functional
theory yielded excellent equilibrium density predictions for different physical situations, in-
cluding adsorbtion of hard spheres at a hard wall, compared to Monte Carlo simulations. It
was later improved by Rosenfeld and Tarazona to account for more extreme situations such
as freezing transitions[3].

The Lennard-Jones potential is a mathematically simple potential that approximates the in-
teraction of most neutral pairs of atoms or small molecules. Because it is so widely applicable
this potential is often studied, not unlike hard spheres. The interaction is strongly repulsive
at short distances and weakly attractive at medium to long distances. For the Lennard-Jones
interaction potential, the exact excess free-energy functional is unknown despite significant
theoretical research. A mathematically simple mean field approximation is known which
yields reasonably accurate predictions compared to Monte Carlo simulations, but overall the
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results are not satisfactory. Using the Benedict-Webb-Rubin equation of state, a weighted
density functional was constructed which performs significantly better and yields good results
in most situations such as predicting the density in slit-like pores[4]. Similar improvement
was achieved by a mathematically refined perturbative approach[5]. However, the physical
interpretation of the above methods remains difficult due to requiring many experimentally
determined constants and very high order correlation functions, respectively. To assist in ap-
proximating functionals in physics and to eventually gain deeper theoretical insight, Machine
Learning methods were recently introduced in the context of functional building[7][8].

Machine Learning (ML) methods are extremely widely used for countless tasks including pat-
tern recognition, image classification, interaction in video games and news and social media
filtering[6]. Usually a very general model is postulated in which some mathematical objects
such as parameters or weighting kernels are to be estimated by giving the model sample
data, a process which is called ’training’[6]. ML can therefore be seen as a subset of statistics
and / or of artificial intelligence. The model that is built by using ML techniques can then
be used to make predictions and decisions in situations like those for which the model was
trained. Usually the most difficult aspect of using ML techniques for scientific purposes is
not the implementation of the training process, but the generation of high quality data and
the interpretation of the results. Because of the tremendous succes of using ML in many
fields it has recently been introduced in physics as well, initially for constructing the kinetic
energy functional in 1D in the context of quantum-mechanical DFT[7]. This was successful,
however in the 3-dimensional case it was not possible to approximate the functional explicitly
and ML was used to determine the map between the external potential and the electron den-
sity. The latter yielded very accurate predictions but lacks implications for theoretical insight.

In late 2018 ML was used for the first time to construct a classical density functional, namely
the excess Helmholtz free-energy functional of a 1D Lennard-Jones fluid[8]. Data was gen-
erated by Monte Carlo (MC) simulations. Different Ansatzes for the form of the functional,
all of them in terms casted as products of convolutions of the density with weighting kernels,
were tried. Good results were achieved, except for the equation of state at low temperatures.

In this thesis we apply ML to approximate the excess Helmholtz free-energy functional
F exc[ρ(r)] of a 3D Lennard-Jones fluid in planar geometries. For the first time, we com-
pare the predictions of different Ansatzes for the functional to those of MF and MC and
discuss the physical interpretation of the results. We briefly review the theoretical back-
ground of classical density functional theory. Next we describe the method and settings of
the Monte Carlo simulations used for data generation, and explain the implementation of the
training process. Subsequently we discuss the results and conclude with the key findings.
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2 Theoretical background of Classical Density Func-

tional Theory

In this chapter we briefly review classical density functional theory. We shall assume that
the reader is familiar with basic statistical mechanics and the grand canonical ensemble. In
depth knowledge of the Calculus of Variations is not necessary.

2.1 Some essential definitions and notations

Here we closely follow the notational conventions of [9]. In statistical mechanics, the grand
canonical ensemble (also known as the µV T ensemble) considers a system with a fixed chem-
ical potential µ, volume V and temperature T in thermodynamic equilibrium with a large
reservoir of particles. We shall consider only the case of N spherically symmetric, identical
particles with positions rN = (r1 · · · rN) and linear momenta pN = (p1 · · ·pN). The Hamil-
tonian of N particles is given by HN = K + Φ + V , respectively the sum of the total kinetic
energy K, the energy due to particle-particle interactions Φ and the energy due to an external
field V . Thus,

K =
N∑
i=1

p2
i

2m
;

Φ = Φ (r1 · · · rN) ;

V =
N∑
i=1

Vext (ri) .

(2.1)

In equilibrium, the probability density of the system to be in a microstate of N particles at
point (rN ,pN) in the phase space is given by

f0(rN ,pN , N) =
1

Ξ
exp [β(µN −HN)], (2.2)

where the normalization factor is the grand canonical partition function:

Ξ =
∞∑
N=0

1

N !h3N

∫
dp1 · · · dpNdr1 · · · drN exp [β(µN −HN)]. (2.3)

Here β = 1
kbT

is the inverse temperature, with kb Boltzmann’s constant, h is Planck’s constant

so as to make the result dimensionless and the familiar 1
N !

factor accounts for overcounting
due to identical particles.
In analogy with standard probability theory, the expectation of any function (say: a ther-

modynamic operator) Ô = Ô(rN ,pN , N) is

Trclf0Ô ≡ 〈Ô〉, (2.4)
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where we define the so-called classical trace:

Trcl ≡
∞∑
N=0

1

N !h3N

∫
dp1 · · · dpNdr1 · · · drN , (2.5)

for which Trclf0 = 1 by construction.

An important thermodynamic operator is the density operator ρ̂(r) =
∑N

i=1 δ(r − ri), of
which the expectation is the equilibrium density distribution of the system:

Trclf0ρ̂(r) = 〈ρ̂(r)〉 ≡ ρ0(r). (2.6)

The grand canonical partition function Ξ contains all the thermodynamic information of the
system in thermal equilibrium, and full knowledge of it would provide the ability to calcu-
late the expectation of any thermodynamic observable Ô of interest, by Eq.(2.4). However,
calculating Ξ exactly by integration is clearly impossible for almost all situations involving
even slightly complex or weak interaction potentials, due to the integrand which couples the
integration variables. Numerically it is also impossible, because of the high dimension of
the phase space. An argument for this based on an equivalent one in [10] goes as follows.
In D spatial dimensions with N particles the phase space has dimension (roughly, due to
conservation laws) equal to 2ND. Suppose we take D = 3, N = 1000, and a conservative
10 grids points per integration variable. The total number of grid points of the entire phase
space is then 106000 and on this grid the integral is not computable by any craft that we on
earth possess.

2.2 The grand potential and the intrinsic Helmholtz free energy

The grand potential, the thermodynamic potential of the grand canonical ensemble, is given
by:

Ω = −kBT ln Ξ. (2.7)

It is a functional of f0 = f0(rN ,pN , N) and hence of Vext(r), through Ξ.
Now consider the following functional of some normalized non-negative probability density
f :

Ω[f ] = Trcl{f · (HN − µN + β−1 ln f)}. (2.8)

Here Ω[f ] and f are arbitrary and supposedly unrelated to the grand potential Ω and f0.

We will show that the functional of Eq. (2.8) possesses two properties of great interest. First,
evaluated at the equilibrium probability density f0 it reduces to the grand potential Ω:

Ω[f0] = Trcl{f0 · (HN − µN + β−1 ln f0)}
= Trcl{f0 · (−kBT ln Ξ)}
= −kBT ln Ξ

= Ω,

(2.9)
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where the second equality follows from rewriting Eq.(2.2) and the third follows from the fact
that Ξ is independent of rN and pN and that f0 is normalized.

Second, for any other normalized probability density f 6= f0 the inequality Ω[f ] > Ω[f0]
holds:

Ω[f ] = Trcl{f · (HN − µN + β−1 ln f)}
= Trcl{f · (Ω[f0] + β−1 ln f − β−1 ln f0)}
= Ω[f0] + β−1Trcl{f · (ln f − ln f0)}
> Ω[f0] for f 6= f0,

, (2.10)

in which the second equality uses HN − µN = Ω[f0]− β−1 ln f0 which follows from Eq.(2.2),
Eq.(2.7) and (2.9). The inequality in the last step is known as the Gibbs Inequality, a proof
can be found in [3].

The equilibrium probability density f0 is a function of Vext(r) and therefore the equilibrium
density ρ0(r) is a functional of Vext(r) through Eq.(2.6). Because Vext(r) is uniquely deter-
mined by ρ0(r) for a given interaction potential Φ (r1 · · · rN) and a given β, which is proved
in [3], the equilibrium probability density f0 is a functional of ρ0(r). This allows us to write
Ω[f0] as Ω[ρ0] because it is now a functional of ρ0(r) through f0.

Likewise, any normalized probability density f 6= f0 is a functional of the corresponding
equilibrium density ρ(r) and we can rewrite the result Ω[f ] > Ω[f0] as Ω[ρ] > Ω[ρ0] ∀ ρ 6= ρ0.

The above can be condensed into

δΩ[ρ(r)]

δρ(r)

∣∣∣∣
ρ=ρ0(r)

= 0 and Ω[ρ0] = Ω. (2.11)

We can define, for a given µ and Vext(z), the intrinsic Helmholtz free-energy functional

F [ρ] = Ω[ρ]−
∫
drρ(r)(Vext(r)− µ), (2.12)

which is a functional of ρ(r) and satisfies:

δF [ρ(r)]

δρ(r)

∣∣∣∣
ρ=ρ0(r)

= µ− Vext(r). (2.13)

The Helmholtz free energy of the system is

F = Ω + µN, (2.14)

where N =
∫
ρ0(r)dr and Ω = Ω[ρ0(r)]. Substituting Eq.(2.12) for Ω yields

F = F [ρ0(r)] +

∫
drρ0(r)Vext(r), (2.15)



2 THEORETICAL BACKGROUND OF CLASSICAL DENSITY
FUNCTIONAL THEORY 6

which shows that the part of F that is ’intrinsic’ to the system, that is, the energy not due
to Vext(r), is indeed equal to F [ρ0(r)] as the name suggests.

So instead of calculating the grand canonical partition function Ξ by analytical or numerical
integration, which is impossible in either case, we can instead minimize the grand potential
Ω[ρ(r)], or equivalently, solve the Euler-Lagrange equation that follows from the definition
of F [ρ(r)] with respect to the density ρ(r), to obtain the structure and properties of the
system. Solving the Euler-Lagrange equation, provided F [ρ(r)] is known, presents no signif-
icant challenge to modern numerical methods, however, for almost all interaction potentials
with the exception of the free ideal gas the expresion of F [ρ(r)] is unknown. The search for
F [ρ(r)] given particles with interaction Φ (r1 · · · rN) at temperature T , for example for hard
spheres or Lennard-Jones particles, is an important problem in density functional theory[3].

It is convenient to split F [ρ(r)] into an ideal-gas contribution and an excess free-energy
contribution due to particle-particle interactions:

F [ρ(r)] = Fid[ρ(r)] + Fexc[ρ(r)], (2.16)

where Fid[ρ(r)] is known[9] as:

βFid[ρ(r] =

∫
drρ(r)

(
ln ρ(r)Λ3 − 1

)
. (2.17)

Here Λ = h(2πkBTm)−1/2 is the thermal wavelength. Differentiating both sides of Eq.(2.16)
to ρ(r) and involving Eq.(2.13) yields a self-consistency equation for the equilibrium density
ρ0(r):

Λ3ρ0(r) = exp

(
βµ− β δFexc[ρ(r)]

δρ(r)

∣∣∣∣
ρ=ρ0(r)

− βVext(r)

)
. (2.18)

Because the one-body direct correlation function c(1)(r) = −β δFexc[ρ(r)]
δρ(r)

is generally unknown

unless Fexc[ρ(r)] is known, the above equation is not helpful, but it is the generative equation
for iterations in a numerical minimization process, as will become clear later. Note that for
an ideal gas, Fexc[ρ(r)] = 0 and we recover

ρ0(r) = ρbulk exp (−βVext(r)), (2.19)

where ρbulk = exp (βµ)
Λ3 is the equilibrium density of an ideal gas at chemical potential µ in the

absence of an external field.

2.3 Hard spheres and the Rosenfeld functional

As touched upon in the introduction, the hard-sphere potential serves as a good reference
system to model the repulsive part of many types of particle, such as Lennard-Jones parti-
cles. In 1989 Yasha Rosenfeld developed an approach to approximate the excess free-energy
functional of hard spheres, famously known as the Fundamental Measure Theory (FMT)[3].
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This approach, based on the geometrical properties of hard spheres, yields accurate results
for most situations such as hard-sphere adsorption at a hard wall. Afterwards, improvements
have been developed by Rosenfeld and Tarazona by requiring that the exact free energy in
the zero-dimensional limit is recovered by this functional, and this new version of FMT also
describes situations of extreme confinement such as hard-sphere freezing transitions well.
The original Rosenfeld (RF) functional in 3D is of the form

βFRFexc [ρ(r)] =

∫
dr′ ΦRF ({nα(r′)}), (2.20)

where ΦRF ({nα(r′)}) is the reduced free-energy density; a function of weighted densities
nα(r):

ΦRF ({nα(r)}) = −n0 ln(1− n3) +
n1n2 − ~n1 · ~n2

1− n3

+
n3

2 − 3n2~n2 · ~n2

24π(1− n3)2
. (2.21)

The weighted densities are convolutions of the density ρ(r) with certain scalar and vector
weighting kernels ωi(r) and ~ωi(r):

nα(r) =

∫
dr′ρ(r′)ωα(r− r′). (2.22)

The ~nα(r) are defined analogously. The weighting kernels are given[3] by:

ω3(r) = Θ(R− |r|),
ω2(r) = δ(R− |r|),

ω1(r) =
ω2(r)

4πR
,

ω0(r) =
ω2(r)

4πR2
,

~ω2(r) =
r

|r|
δ(R− |r|),

~ω1(r) =
~ω2(r)

4πR
,

(2.23)

where R is the radius of the particle and Θ(..) and δ(..) denote the 3D Heaviside step function
and Dirac delta function, respectively.

In this thesis we are solely concerned with planar geometries, that is, the external potential
is only dependent on one coordinate, which we take to be z without loss of generality;
Vext(r) = Vext(z). By symmetry, and in the absence of spontaneous symmetry breaking, the
equilibrium density ρ0(r) is then homogeneous in x and y and therefore only dependent on
z; ρ0(r) = ρ0(z). It is now possible to perform two of the three integrals in nα(r) analytically
so that

nα(r) = nα(z) =

∫
dz′ρ(z′)ωα(z − z′), (2.24)
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and similarly for ~nα(z). The weighting kernels ωα(z) are now reduced to functions of a single
variable and are given by:

ω3(z) = π(R2 − z2),

ω2(z) = 2πR,

ω1(z) =
1

2
,

ω0(z) =
1

2R
,

~ω2(z) = 2πzẑ,

~ω1(z) =
zẑ

2R
,

(2.25)

in which ẑ is the outward-pointing unit vector perpendicular to the xy-plane.
Given some chemical potential µ and external potential Vext(z) we can use Eq.(2.18) to
calculate the equilibrium density profile ρ(z) of hard spheres. This requires the calculation

of c(1)(z) = −β δFexc[ρ(r)]
δρ(r)

, which is straightforwardly evaluated for hard spheres in planar
geometries:

c(1)(z) = −
∫
dz′
∑
i

∂ΦRF

∂ni(z′)

δni(z
′)

δρ(z)
with

δni(z
′)

δρ(z)
=

δ

δρ(z)

∫
dz′′ρ(z′′)ωi(z

′ − z′′) = ωi(z
′ − z),

(2.26)

so that finally

c(1)(z) = −
∑
i

∫
dz′

∂ΦRF

∂ni(z′)
ωi(z

′ − z). (2.27)

Here ∂ΦRF

∂ni(z′)
is readily evaluated by partially differentiating Eq.(2.21) to ni, and the sum is

over both scalar- and vector weighting kernels alike. Note that in the latter expression we
have ωi(z

′−z), instead of ωi(z−z′) as before, and the integral is therefore a cross-correlation
(which we denote by ⊗), instead of a convolution:

c(1)(z) = −
∑
i

(
∂ΦRF

∂ni
⊗ ωi

)
(z). (2.28)

Eq.(2.28) allows (numerical) calculation of the equilibrium density ρ0(z) by involving Eq.(2.18),
for some given µ, β and Vext(z). This can be done by the so-called Picard iteration method.
First a guess is required for ρ0(z), which can simply be taken as ρ0(z) = ρ0 exp (−Vext(z))
for some constant ρ0 ∈ (0, σ−3). Then c(1)(z) is evaluated for ρ0(z) and inserted in Eq.(2.18),
which yields a new density profile ρ1(z), and the process is repeated which yields ρ2(z), ρ3(z), ρ4(z)...
until the successive differences between ρk(z) and ρk+1(z) are below some pre-defined thresh-
old value. The last iteration’s result is then taken to be the equilibrium density profile ρ0(z).
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2.4 The Lennard-Jones potential and mean field theory

The Lennard-Jones 12-6 interaction potential is given[1] by

U(r) = 4ε

((
σ

r

)12

−
(
σ

r

)6)
, (2.29)

where r = |r|, and where σ is the particle diameter. The r−6 term describes the long-range
attractive Van der Waals forces between neutral pairs of atoms or small molecules and the
r−12 term describes the short-range repulsion. The exponent of the latter term has no physical
meaning, but is simply a convenient choice. The minimum value of the potential is −ε which
occurs at r = rm = 21/6σ. A plot of the Lennard-Jones potential of Eq.(2.29) is given in
Figure 2.1.

Figure 2.1: The Lennard-Jones 12-6 interaction potential of Eq.(2.29).

We can split the Lennard-Jones potential into an attractive and a repulsive part so that
U(r) = Urep(r) + Uatt(r). We employ the Barker-Henderson splitting, which is[11] simply:

Urep(r) =

{
U(r), if r ≤ σ

0, otherwise,
(2.30)

and

Uatt(r) =

{
0, if r ≤ σ

U(r), otherwise.
(2.31)

Here Urep(r) is modelled by hard spheres with an effective diameter d (generally not equal to
σ), where the temperature dependence of d was derived by Barker and Henderson[11]. An
approximation (see [11]) is

d

σ
=

1 + 0.2977T ∗

1 + 0.33163T ∗ + 1.0477 · 10−3T ∗2
, (2.32)
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where T ∗ = kbT/ε = 1/ε∗ is the so-called reduced temperature. This approximation works
well in the range of T ∗ ∈ (0, 15).

We can therefore split the excess free-energy functional for the Lennard-Jones 12-6 system
into a repulsive part modelled by the Rosenfeld functional for hard spheres with diameter d,
and an attractive part, so that

FLJexc[ρ(r)] = FRFexc [ρ(r); d] + Fattexc[ρ(r)]. (2.33)

A crude approximation for the attractive part is the mean field approximation[8]

FMF [ρ(r)] =
1

2

∫ ∫
drdr′ρ(r)ρ(r′)Uatt(|r− r′|). (2.34)

In the rest of this thesis we denote this mean field theory approximation for Fattexc[ρ(r)] as
MF.
In planar geometries, ρ(r) = ρ(z), and

FMF [ρ(z)] =
1

2

∫ ∫
dzdz′ρ(z)ρ(z′)Uatt,z(|z − z′|), (2.35)

where we scaled out the factor ε and introduced the dimensionless xy-integrated attractive
part of the LJ-potential

Uatt,z(z) =

∫ ∞
−∞

∫ ∞
−∞

Uatt(
√
x2 + y2 + z2)

ε
dxdy

=


−6πσ2

5
, if |z| ≤ σ

2πσ6(2σ6 − 5z6)

5z10
, if |z| > σ.

(2.36)

This result is derived in Appendix A.1. In Figure 2.2 Uatt(z) is plotted.

Figure 2.2: The integrated mean field kernel Uatt(z) of Eq.(2.36).
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The one-body direct correlation function c(1)(z) for the Lennard-Jones potential in the mean-
field approximation then follows straightforwardly:

c(1,LJ)(z) = −β δF
LJ
exc[ρ(z)]

δρ(z)
= −β

(
δFRFexc [ρ(z); d]

δρ(z)
+
δFMF [ρ(z)]

δρ(z)

)
= c(1,RF )(z)− β

(
ρ ∗ Uatt,z

)
(z)

(2.37)

with c(1,RF )(z) given by Eq.(2.28) and ∗ denoting convolution. Given an external potential
Vext(z), chemical potential µ and (inverse) temperature β the equilibrium density profile ρ0(z)
can then be approximated by applying Picard iteration on Eq.(2.18) as described at the end
of Section 2.3.
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3 Methodology

3.1 Introduction to the method used

In this thesis we use ML to construct a better attractive excess free-energy functional
Fattexc[ρ(r)] for the attractive part of the Lennard-Jones 12-6 potential in planar geometries in
3D. We aim to improve the mean-field approximation given by Eq.(2.34). Here we briefly
give an overview of the method used and then explain each component more in-depth in the
corresponding subsection below.

To use ML to construct a better functional in the first place, two things are essential: Train-
ing data and an Ansatz for the functional. With ’training data’ we mean an information
set of which each element has the form ((µ, Vext(z)), (ρ(z)) where ρ(z) is the true equilib-
rium density distribution that would be found in a system with chemical potential µ and
external potential Vext(z). Because the true functional F [ρ(r)] is certainly independent of µ
and Vext(z)[9], but cannot be proven to be independent of the (reduced) interaction energy
ε∗ = βε (not of either ε or β to be precise), training data should consist of varying µ and
Vext(z) for a fixed ε∗. This way, the functional is constructed for that specific ε∗.

Therefore, the idea is, for some fixed ε∗, to construct a functional that minimizes the dis-
crepancy between the output densities ρML

i (z) it produces for some (µ, Vext(z))i and the true
densities ρi(z) corresponding to this (µ, Vext(z))i. The true densities can be approximated
to very high accuracy with Monte Carlo (MC) simulations, which is one of the most heavily
used type of simulation in the field of computational soft condensed matter theory[10]. MC
is used in this thesis and we elaborate on the precise simulation method and settings in the
next subsection.

What exactly is meant by ’minimizing the discrepancy’ (in ML language: minimizing the
loss) between the output densities and the true densities is a point of discussion. We treat
the MC-simulated densities as ’exact’, and an ML functional will always yield the same re-
sulting output density for some input µ and Vext(z), that is, it is not a random variable.
This means that there is no probabilistic aspect at all to this model, and hence there is no
direct incentive to use any statistical estimation method such as Ordinary Least Squares or
Maximum Likelihood Estimation above any other method[12].

However, it turns out to be the most convenient, when implementing the training process,
to minimize a squared-difference type loss function. First due to the convexity of the loss
function not requiring special measures to prevent negative loss, and second due to the
computationally convenient linear first derivative of the loss function with respect to the
densities. To be precise, based on the same approach as in [8], we minimize the criterion:

J =
∑
i

∫
dz(ρMC

i (z)− ρML
i (z))2, (3.1)

where the sum is over the entire training data set and the integral over the length of the
simulated system.
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Second to training data, we need an Ansatz for the functional in terms of some unknown
parameters βi and / or weighting kernels ωi(z) so that we can minimize the loss function
J with respect to these parameters and / or weighting kernels. It is non-trivial to conjure
up a good Ansatz because we do not know what the mathematical form of the true func-
tional Fattexc[ρ(r)] is. Furthermore, care must be taken not to utilize too many weighting kernels
and / or parameters, as this can easily cause overfitting and bad out-of-sample predictions[6].

3.2 Data generation

We use grand canonical MC simulations to generate data. A box (x, y, z) defined by x ∈
(0, 16σ), y ∈ (0, 16σ), z ∈ (0, 8σ) is chosen as the system under consideration, and the parti-
cle diameter σ is taken to be the unit of length. We employ periodic boundary conditions in
each dimension, and use the nearest-image convention, that is, each particle i only interacts
with that particle j that is nearest to it when the system is copied next to itself in each
direction.

The Lennard-Jones potential in the simulation is truncated at r = rcut = 2.5σ and a correc-
tion ecut = 4ε(( σ

rcut
)12−( σ

rcut
)6) is substracted from each particle-particle interaction energy to

remove the discontinuity in the potential, an approach based on [10]. The system is divided
into cubic cells with length equal to rcut, so that each particle only interacts with particles in
neighbouring cells (including cells of ’image’ systems). This is not a further approximation,
but simply an optimization method.

3.2.1 Generating the training data set

Each simulation in the training data set is done for some pre-defined chemical potential µ and
external potential Vext(z). The (reduced) interaction energy ε∗ is the same for all simulations
because, as we already mentioned, the functional may be dependent on the temperature or
the interaction energy, and hence we train for only a single ε∗. The chemical potentials used
are µ∗ = βµ ∈ {−1.5,−0.5, 0.0, 0.5, 1.5}, which for ε∗ = 0.5 correspond to bulk densities of
respectively ρσ3 ∈ {0.268, 0.490, 0.565, 0.624, 0.710}. The external potentials are all of the
same mathematical form as in [8], namely:

βVext(z) =


a((Lz/σ

2
− b(Lz/σ))− z/σ)c, if z/σ < Lz/σ

2
− b(Lz/σ)

a(z/σ − (Lz/σ
2

+ b(Lz/σ)))c, if z/σ > Lz/σ
2

+ b(Lz/σ)

0, otherwise.

(3.2)

The parameters (a, b, c) vary per simulation and are all the possible combinations of a ∈
{3.0, 6.0, 9.0}, b ∈ {0.15, 0.20, 0.25, 0.30, 0.35}, c ∈ {2.0, 3.0, 4.0}. So in total the training set
consists of 5 ·3 ·5 ·3 = 225 MC simulations. Furthermore, Lz is the box size in the z-direction,
we use Lz = 8σ. It can easily be verified that all βVext(z) are symmetric about z = Lz

2
. This

is convenient because, by symmetry, the true densities ρ(z) should then be symmetric as well
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(a) µ∗ = 0.5, V (z) with a = 3.0, b = 0.15 and
c = 3.0.

(b) µ∗ = 1.5, V (z) with a = 3.0, b = 0.25 and
c = 4.0.

Figure 3.1: Two MC simulations for different external potentials V (z) (dark blue dot-dashed
line) and different chemical potentials µ. The red open circles are the MC-simulated density
profile. Both simulations are for ε∗ = 0.5.

and this yields us extra information which we can use to double the accuracy of the simula-
tions. In βVext(z), the parameter a simply represents a multiplicative factor for the energy,
b is the fraction of the distance between the center of the box and the onset of the external
potential, and c represents the steepness of the potential as the system boundaries are neared.

An MC simulation in our method consists of 106 MC ’cycles’. In each cycle a so-called trial
move is performed N times, where N denotes the current amount of particles in the system.
A trial move consists of either an attempt to move a particle that is already in the system,
or an attempt to insert a particle at a random position in the system or delete a random
particle. An attempt to move a particle is made with probability 0.9 and an attempt to either
insert or delete a particle with probability 0.1. These probabilities are arbitrary but appear
to work sufficiently well to quickly equilibrate the system, as we determined by comparison
with other values, and we also noted that the end result in a large simulation is the same
either way.
When an attempt to move a particle is made, a random particle is chosen, together with
three random real numbers in the range (−δ, δ) which represent the particle’s move in each
direction. Here δ is chosen so that a move is accepted with probability approximately equal
to 0.5, where δ = 0.1 often works well but can be made to vary during the simulation.
Periodic boundary conditions make sure that the particle stays in the system at all times.
The difference in energy ∆U = Unew−Uold is computed and thereafter the acceptance rule[10]

acc(old→ new) = min(1, exp (−β∆U)). (3.3)

Next a random real number p ∈ (0, 1) is drawn. If p < acc(old→ new) the move is accepted,
otherwise the move is rejected and the system is reset to its old configuration.
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These rules are derived in [10]. When an attempt at either particle insertion or deletion
is made, insertion is attempted with probability 0.5 and otherwise deletion is chosen. For
insertion, a particle is inserted at a random position in the system and the difference ∆U
between the new and old configuration is computed. For deletion, a random particle is deleted
and the energy difference ∆U is computed. In either case, the respective acceptance rule is
computed and the trial move is accepted when a random number p ∈ (0, 1) drawn is of lower
value than this rule. The acceptance rule for insertion is:

acc(N → N + 1) = min(1,
V

Λ3(N + 1)
exp (−β(∆U − µ)), (3.4)

and for deletion it is:

acc(N → N − 1) = min(1,
Λ3N

V
exp (−β(∆U + µ)). (3.5)

Here we set the thermal wavelength Λ equal to σ as is done in [10]. Before the density
distribution gets sampled, the system is equilibrated by 104 MC cycles. After equilibrating
the system, the density ρMC(z) is sampled each fourth cycle, so that samples are decorrelated
sufficiently, like was done in [8]. Therefore the equilibrium density distribution is sampled
approximately 2.5 · 105 times. To sample the density, the system is divided in the z-direction
by planar grids, with a width corresponding to 32 grids per particle diameter. This can be
thought of as slicing up the system like cheese. Then the number of particles in each grid
is divided by the volume of that grid and the resulting density is stored. At the end of the
simulation, the average density is computed for each grid and can then be plotted and used
for ML purposes. In Figure 3.1 two examples of MC-simulated density profiles are given for
ε∗ = 0.5.

3.2.2 Generating the equation of state

We also use MC to simulate the equation of state for the bulk density ρbulk(µ) as a function
of the chemical potential µ and the pressure P (ρ) as a function of the density ρ. This is done
so we can compare the predicted equation of state of ML to the MC data. The equation of
state for the bulk density is easy to generate with MC, and, for a fixed chemical potential µ
and (inverse) temperature ε∗, simply comes down to dividing the number of particles in the
system by the system’s volume in each MC cycle, and then taking the average over all cycles.

To calculate the pressure with MC, we use the virial equation of state[10]

〈P 〉 = ρkbT +
1

3V

〈∑
i<j

f(rij) · rij
〉

= ρkbT +
8ε

V

〈∑
i<j

(
2

(
σ

rij

)12

−
(
σ

rij

)6)〉
,

(3.6)

where the second equality follows from Eq.(2.29) and from the fact that the interparticle
force f(rij) is parallel to the displacement vector rij. The average is over all MC cycles, and
the density ρ in Eq.(3.6) follows from the equation of state ρbulk(µ).
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3.3 The training process illustrated for a simple case

A very simple Ansatz for the attractive part, based on mean field theory, is the functional:

Fatt[ρ(z)] =
ε

2

∫ ∫
dzdz′ρ(z)ρ(z′)ω2(|z − z′|), (3.7)

where ω2(z) is to be determined by ML. We use a cutoff range of 8σ for ω2(z) so that its
domain is [−4σ, 4σ]. The subscript 2 is to emphasize that the corresponding term is of
second order in the density. Because we use the Rosenfeld functional Eq.(2.21) to model the
repulsive part of the potential, the complete Ansatz is therefore:

FLJ,ML
exc [ρ(z)] = FRF [ρ(z); d] + Fatt[ρ(z)] (3.8)

The effective hard-sphere diameter d for the Rosenfeld functional is given by Barker and
Henderson in Eq.(2.32).

We illustrate the training process for this Ansatz. The case ω2(z) = Uatt,z(z) with Uatt,z(z)
defined in Eq.(2.36) is equivalent to MF. The loss J is to be minimized with respect to
ω2(z), which can be done by gradient descent. First we require an initial guess which we
naturally take as ω0

2(z) = Uatt,z(z), that is, we initiate the learning process from mean field
theory itself. Then we compute δJ

δω2(z)
|ω2(z)=ω0

2(z) and update the kernel ω2(z) to ω1
2(z) =

ω0
2(z)− α δJ

δω2(z)
|ω2(z)=ω0

2(z) with α ∈ (0, 1) some suitably choosing learning rate. So in general
we repeat:

ωk+1
2 (z) = ωk2(z)− α(k)

δJ

δω2(z)

∣∣∣∣
ω2(z)=ωk

2 (z)

, (3.9)

until the squared difference
∫
dz(ωk+1

2 (z)−ωk2(z))2 is below some pre-defined threshold value,
and where the learning parameter α(k) can in general be defined as a function of the iteration
number k, which is called a learning schedule. We compute the functional derivative by
involving Eq.(2.37) and noting that the MC densities ρMC

i (z) are constant; they obviously
do not depend on ω2(z) and are fixed. The dependence on ω2(z) is through ρML

i (z), which
are generated by Eq.(2.18), the generative equation, repeated below for convenience:

σ3ρML
i,k (z) = exp

(
βµ− β δF

LJ
exc[ρ(z)]

δρ(z)

∣∣∣∣
ρ=ρMC

i (z)

− βVext(z)

)
= exp

(
βµ−

(
c(1,RF )(z)− ε∗(ρMC

i ∗ ωk2)(z)

)
− βVext(z)

)
,

(3.10)

where we use ρML
i,k (z) to denote the density for data set i generated by the ML functional

in iteration k of the training process, and where c(1,RF )(z) is again the one-body direct cor-
relation function of hard spheres as defined in Eq.(2.28). The star ∗ denotes convolution,
opposed to cross-correlation as used earlier. However, due to the symmetry of the weighting
kernels, cross-correlation and convolution yield equal results. Also note that we evaluate the

functional derivative δFLJ
exc[ρ(z)]
δρ(z)

∣∣∣∣
ρ=ρMC

i (z)

on the MC densities and do not numerically solve the
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Euler-Lagrange equation Eq.(2.18) each time, this is done to accelerate the training process.

Using Eq.(3.10) we compute δJ
δω2(z)

|ω2(z)=ωk
2 (z):

δJ

δω2(z′)

∣∣∣∣
ω2(z)=ωk

2 (z)

= −2
∑
i

∫
dz(ρMC

i (z)− ρML
i,k (z))

δρML
i,k (z)

δω2(z′)

∣∣∣∣
ω2(z)=ωk(z)

= −2ε∗
∑
i

∫
dz(ρMC

i (z)− ρML
i,k (z))ρML

i,k (z)ρMC
i (z′ + z),

(3.11)

which follows by applying the chain rule and using that

δ(ρMC
i ∗ ω2)(z)

δω2(z′)
= ρMC

i (z′ + z). (3.12)

So the training process for the above mean field-like case can be summarized as:

1. Start with a guess for ω2(z), for example ω0
2(z) = Uatt,z(z). For numerical implementa-

tion, ω2(z) should be discretised on a pre-defined grid, with grid spacing equal to the
one used in the MC simulations.

2. Compute all ρML
i,0 (z) by Eq.(3.10).

3. Compute δJ
δω2(z′)

|ω2(z)=ω0
2(z) by Eq.(3.11).

4. Compute the new ω1
2(z) by Eq.(3.9).

5. Repeat step 2, 3 and 4 for each next iteration k until convergence is reached.

The process for any other Ansatz for Fatt[ρ(z)] is analogous, however, of course, when more
parameters and / or weighting kernels are used, the loss J should be minimized with respect
to all parameters and kernels, and each iteration involves differentiating J with respect
to all parameters and kernels to be determined, and these derivatives generally depend on
one another. Furthermore, as the Ansatz becomes more complex, the derivatives become
mathematically much more involved. Nevertheless, the main reasoning remains the same.

3.4 Making predictions with ML

When the training process is finished and the ML functional is constructed for a certain
temperature, we can make predictions with ML such as computing the density profile for
arbitrary µ and V (z), and computing the equation of state. To compute a density profile,
the Euler-Lagrange equation

σ3ρML(z) = exp

(
βµ− β δF

LJ,ML
exc [ρ(z)]

δρ(z)

∣∣∣∣
ρML(z)

− βVext(z) (3.13)
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is solved by the Picard iteration method described in Section 2.3. To generate the equation
of state ρbulk(µ), Eq.(3.13) is solved with Vext(z) = 0 for the desired range of µ. To compute
the equation of state for the pressure P (ρ), the Gibbs-Duhem equation[9]

Ndµ = −SdT + V dP,

ρ(µ)dµ = dP,∫ P

0

dP ′ =

∫ µ

−∞
ρ(µ′)dµ′,

P (µ) =

∫ µ

−∞
ρ(µ′)dµ′

(3.14)

is used, where the second equality follows from dT = 0 in the grand canonical ensemble. The
relation P (µ) can then be cast into P (ρ) by inverting the equation of state ρ(µ) computed
before. Because for low µ the system behaves like an ideal gas, the first part of the integral∫ µmin

−∞ ρ(µ′)dµ′ can be done analytically by invoking the ideal gas law ρ = exp (µ∗)
Λ3 , where µmin

denotes the smallest µ for which ρ(µ) was computed by ML.
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4 Results

4.1 A mean-field like Ansatz

For a fixed temperature corresponding to ε∗ = 0.5 (or equivalently, T ∗ = kBT/ε = 1/ε∗ =
2.0), we start with a mean-field like Ansatz. Note that this temperature is well above the
critical temperature T ∗c = 1.188 of the 2.5σ-truncated Lennard-Jones potential[13]. The
training data set used is that of Section 3.2.1, where the external potential parameters a, b, c
vary as well as the chemical potential µ. The Ansatz is

Fatt[ρ(z)] =
ε

2

∫ ∫
dzdz′ρ(z)ρ(z′)ω2(|z − z′|). (4.1)

The resulting kernel ω2(z) is shown in Figure 4.1 together with the mean-field kernel of
Eq.(2.36). With ’ML2’ we mean ML with an Ansatz of second order in the density, as in
Eq.(4.1). Apparently MF underestimates the attractive potential between particles with z-
coordinates z and z′ with |z−z′| < σ and slightly overestimates the attraction for |z−z′| > σ.
It is unclear how exactly the shape of ω2(z) should be interpreted.

Figure 4.1: The trained mean-field like kernel ω2(z) of Eq.(4.1) compared to the MF-kernel
Eq.(2.36).

In Figure 4.2 the predicted density profiles of ML of a Lennard-Jones fluid between two pla-
nar hard walls are shown, together with the predicted density of MF Eq.(2.35), for µ∗ = 0.0
and µ∗ = 0.75. These hard-wall potentials were not part of the training set for ML and are
therefore predictions. Clearly MF does not predict the bulk density well, in contrast to ML.
Furthermore, the predicted density profile of ML appears to be more oscillatory which is in
better agreement with the MC data.
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(a) At µ∗ = 0.0 (ρbulk = 0.57). (b) At µ∗ = 0.75 (ρbulk = 0.64).

Figure 4.2: A Lennard-Jones fluid between two planar hard walls at ε∗ = 0.5. The blue solid
line is the prediction of ML with Ansatz Eq.(4.1), the black solid line the result of MF and
the red open circles are the MC data. Not the entire plot range is shown.

(a) At µ∗ = 1.25 (ρbulk = 0.69). The V (z) used
has parameters a = 2.0, b = 0.26, c = 2.5.

(b) At µ∗ = −12.5 (ρbulk = 0.32). The V (z) used
has parameters a = 4.0, b = 0.18, c = 2.5.

Figure 4.3: The predicted density profiles of ML and MF for two different external potentials
V (z) and chemical potentials µ that were not part of the training set. The blue dot-dashed
line is the external potential V (z) used.
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In Figure 4.3 the predicted density profiles for two out-of-sample situations are shown, with
different V (z) and µ that were not part of the training set. ML predicts the case of µ∗ = 1.25
accurately but fails the predicted the low bulk density at µ∗ = −1.25, although the shape of
the density profile seems to better than that of MF. MF underestimates the bulk density in
both cases.

4.2 An Ansatz with an additional term of fourth order in the den-
sity

To improve on the previous Ansatz, we consider an extra kernel in addition to Eq.(4.1),
resulting in

Fatt[ρ(z)] =
ε

2

∫ ∫
dzdz′ρ(z)ρ(z′)ω2(|z − z′|) +

ε

2

∫ ∫
dzdz′ρ2(z)ρ2(z′)ω4(|z − z′|). (4.2)

The resulting kernels, for ε∗ = 0.5, are depicted in Figure 4.4. With ’ML2+4’ we mean ML
with an Ansatz of second and fourth order in the density, as in Eq.(4.2). The new ω2(z)
is slightly less attractive compared to the one of Eq.(4.1). The new kernel ω4(z) is slightly
negative inside the ’core’ |z − z′| < σ and slightly positive elsewhere.

Figure 4.4: The trained kernels ω2(z) and ω4(z) of Eq.(4.2), together with the kernel of
Eq.(4.1) and the MF-kernel Eq.(2.36).

In Figure 4.5 the predicted equation of state for ρbulk(µ) and P (ρ) is shown. The Ansatz
of Eq.(4.1) overestimates the density and hence the pressure for µ∗ ∈ (−2.0,−0.5), that is,
slightly above the ideal-gas regime. The new Ansatz of Eq.(4.2) performs somewhat better in
this range although the agreement with MC data is still worse than that of MF. ML predicts
higher densities and pressures better than MF, the latter underestimates those. In Figure
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4.6 the differences ∆ρ = ρ−ρMC and ∆P = P −PMC with the MC data are shown to better
illustrate the relative performance of ML and MF.

(a) The equation of state for ρbulk(µ). (b) The equation of state for P (ρ).

Figure 4.5: The equation of state. The light blue solid line is the result of ML with Ansatz
Eq.(4.1), the blue dashed line the result of ML with Ansatz. Eq.(4.2), the black dot-dashed
line the result of MF and the red open circles are the MC data. We also plotted the pressure
for hard spheres (Carnahan-Starling) in green dots.

(a) Error in the predicted ρbulk(µ). (b) Error in the predicted P (ρ).

Figure 4.6: The errors compared to MC data for the equation of state, in terms of ∆ρ =
ρ− ρMC and ∆P = P − PMC .
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In Figure 4.7 we show two predicted density profiles, respectively for the case two planar hard
walls at µ∗ = 0.0, and an external potential that was not in the training set at µ∗ = 1.25.
We also computed the predicted MF density profiles when the chemical potential µ for MF is
optimized so as to be in the best agreement possible with the corresponding MC simulation.
For the situation of two hard walls all predictions (except the standard MF ones) seem to be
in good agreement with MC data, with the µ-optimized MF the best by a slight margin. For
the other external potential, the new ML Ansatz of Eq.(4.2) performs somewhat better than
µ-optimized MF prediction, because the density oscillations are more accurately modelled.

(a) The case of two planar hard walls at µ∗ =
0 (ρbulk = 0.57).

(b) The case of the external potential V (z) (light
blue dot-dashed line) at µ∗ = 1.25. The V (z) used
has parameters a = 6.0, b = 0.18, c = 4.5.

Figure 4.7: The predicted density profiles of the ML Ansatz Eq.(4.2). The purple dotted
line is the prediction of MF and the black solid line the prediction of MF when the chemical
potential µ is tweaked so that the result is in the best possible agreement with the MC
simulation.

To investigate whether the ML functional of Eq.(4.2) performs overall better than µ-optimized
MF, we generated 108 MC density profiles for varying out-of-sample external potentials V (z)
and chemical potentials µ∗ ∈ (−1.25, 1.25) not in the original training set. (In the same
way as the original training set was generated.) We compared the predicted densities of the
ML functional Eq.(4.2) and µ-optimized MF for these V (z) and µ, by computing the total
squared errors J with respect to MC as in Eq.(3.1). In terms of J , ML performs 14% better
than a µ-optimized MF, so it predicts the shape of the densities better than MF. This can
be concluded because µ-optimized MF almost surely predicts the bulk density perfectly.
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4.3 The temperature dependence of the ML functional

(a) For T ∗ = 1.6. (b) For T ∗ = 3.0.

Figure 4.8: The trained ω2(z) and ω4(z) of Eq.(4.2) for T ∗ = 1.6 and T ∗ = 3.0.

So far we only considered ε∗ = 0.5, or equivalently, the reduced temperature T ∗ = 1/ε∗ =
2.0. To investigate the temperature dependence of the ML kernels of Eq.(4.2), we gen-
erated the same MC data sets as used in the case T ∗ = 2.0 for different temperatures
T ∗ ∈ {1.6, 1.8, 2.0, 2.2, 2.6, 3.0}, and trained the functional Eq.(4.2) for each of those temper-
atures. The resulting kernels for T ∗ = 1.6 and T ∗ = 3.0 are shown in Figure 4.8. In Figure
4.9 we plotted all the resulting ω2(z) and ω4(z) of Eq.(4.2) in the same figures for comparison.

(a) The trained ω2(z) kernels. (b) The trained ω4(z) kernels.

Figure 4.9: The ML-trained weighting kernels of Eq.(4.2) for different temperatures T ∗ ∈
{1.6, 1.8, 2.0, 2.2, 2.6, 3.0} plotted for comparison in a single figure.
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From Figure 4.8 and Figure 4.9 it is clear that the exact shape of the ML-trained weighting
kernels are temperature-dependent and do not scale precisely in a linear fashion with T ∗,
that is, they do not scale linearly with either the Lennard-Jones attraction parameter ε or
the temperature kBT . However, the general form of all the ω2(z) and all the ω4(z) kernels
are the same and are of the same order of magnitude. At low temperatures, the minimum
of both ω2(z) and ω4(z) is at z = 0, while at higher temperatures there are two minima
equidistantly located from z = 0. Also the ω4(z) kernels seem to increase linearly with T ∗ in
the range |z/σ| > 1. It is unclear why the temperature dependence of the weighting kernels
has these features.

(a) At T ∗ = 1.6. (b) At T ∗ = 3.0.

Figure 4.10: The equation of state for ρbulk(µ) at two different temperatures T ∗.

We also compared the performance of ML for these different values of T ∗ and it turns out
that ML with Ansatz Eq.(4.2) performs significantly better at high T ∗ than at low T ∗. In
Figure 4.10 we show the equation of state for T ∗ = 1.6 and T ∗ = 3.0. From Figure 4.10 it
is clear that at T ∗ = 3.0 ML performs well also at low to medium µ in contrast with the
case T ∗ = 1.6. Overall the performance is better than MF. Because the performance of ML
with Ansatz Eq.(4.2) at T ∗ = 1.6 is not so good at low to medium µ, we tried Eq.(4.2)
with an added extra term of sixth order in the densities, ε

2

∫ ∫
dzdz′ρ3(z)ρ3(z′)ω6(|z − z′|),

the result is shown in Figure 4.10a. The new Ansatz yields slightly better results but still
fails to accurately reproduce the MC densities at low to medium µ. An extra term of third
order in the density, ε

2

∫ ∫
dzdz′ρ(z)ρ(z′)(ρ(z) + ρ(z′))ω3(|z − z′|), surprisingly did not seem

to improve the results at all.
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4.4 The direct correlation function

When an Ansatz for the functional is trained, the 2-body direct correlation function can be
computed from[9]

c(2)(r, r′) = −β δ
2FLJ,ML

exc [ρ(r)]

δρ(r)δρ(r′)
. (4.3)

However, the functionals we used are trained in planar geometries, so they only depend on
a single variable z and the functional derivatives in Eq.(4.3) with respect to ρ(r) are not
defined. Assuming that the attractive part of the unknown functional FLJ,ML

exc [ρ(r)], that
is, the functional of the density profile ρ(r) in 3D, is of the same general form as Eq.(4.1)
or Eq.(4.2), and that the corresponding unknown weighting kernels Ωi(r) are spherically
symmetric, so that Ωi(r) = Ωi(r) with r the radial coordinate in the spherical coordinate
system, the relation between the trained ωi(z) and the Ωi(r) by definition is

ωi(z) = 2π

∫ ∞
0

s ds Ωi(
√
s2 + z2), (4.4)

where s denotes the radial coordinate in the cylindrical coordinate system. It is possible, as
is shown in Appendix A.2, to cast Eq.(4.4) to an explicit form for Ωi(r). The result is

Ωi(r) =

(
−1

2πz

dωi(z)

dz

)∣∣∣∣
z=r

. (4.5)

The attractive part of FLJ,ML
exc [ρ(r)] for ML with Ansatz Eq.(4.2) is then

FLJ,ML
exc,att [ρ(r)] =

ε

2

∫ ∫
drdr′ρ(r)ρ(r′)Ω2(|r− r′|) +

ε

2

∫ ∫
drdr′ρ2(r)ρ2(r′)Ω4(|r− r′|). (4.6)

In bulk, ρ(r) = ρ and the 2-body direct correlation function Eq.(4.3) for the attractive part
of the functional reduces to

c
(2),LJ,ML
att (r, r′) = c

(2),LJ,ML
att (r) = −ε∗Ω2(r)− 6ε∗ρ2Ω4(r). (4.7)

The repulsive part of c(2),LJ(r) can be modelled with the exact solution c
(2),PY
rep (r) to the

Ornstein-Zernike equation (using the Percus-Yevick closure) of hard spheres with (effective)

diameter d given in Eq.(2.32). The complete expression for c
(2),PY
rep (r) is given in [9]. The

2-body direct correlation function in bulk fluid at density ρ is then

c(2),LJ(r) = c(2),PY
rep (r) + c

(2),LJ,ML
att (r)

= c(2),PY
rep (r)− ε∗Ω2(r)− 6ε∗ρ2Ω4(r).

(4.8)
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(a) At bulk density ρ = 0.3. (b) At bulk density ρ = 0.8.

Figure 4.11: The 2-body direct correlation function in bulk at temperature T ∗ = 2.0 as
generated by ML from Eq.(4.8) and the Percus-Yevick exact solution for hard spheres with
effective diameter d given in Eq.(2.32).

In Figure 4.11 the 2-body direct correlation function in bulk as generated by ML from Eq.(4.8)
is plotted at T ∗ = 2.0 for bulk densities ρ = 0.3 and ρ = 0.8. The Percus-Yevick solution is
also shown.

When c(2),LJ(r) is computed, it is possible (but we omit this due to time constraints) to com-
pute the structure factor S(q) from the Fourier transform ĉ(q) of c(2),LJ(r), by the relation[10]

S(q) =
1

1− ρĉ(q)
. (4.9)
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5 Summary, discussion of the results and conclusion

We used Machine Learning to approximate the excess Helmholtz free-energy functional
FLJexc[ρ(z)] of a supercritical Lennard-Jones fluid in planar geometries in 3 dimensions. FLJexc[ρ(z)]
was split into two parts, a repulsive and an attractive part. The repulsive part was mod-
elled by hard spheres with an effective diameter d given by Eq.(2.32), for which we used the
Rosenfeld functional Eq.(2.21). The attractive part was to be determined by ML, for which
we took the MF functional Eq.(2.35) as a starting point in the training process.

As training data, we used 225 MC-simulated density profiles ρMC
i (z) corresponding to a

pre-defined set of external potentials Vi(z) and chemical potentials µi, at fixed temperature
kBT/ε. After making an Ansatz for Fatt[ρ(z)] in terms of one or more weighting kernels
ωk(z) that were to be determined by ML, the functional was ’trained’ by minimizing the
discrepancy of the ρML

i (z) it generates for each (µ, V (z))i in the training set with the associ-
ated MC density ρMC

i (z). In practice this meant numerically constructing the ωk(z) in such
a way that the criterion J of Eq.(3.1) over the training set, that is, the difference between
the ML-predicted density profiles and the MC densities, was minimized. The minimization
criterion was based on the practical grounds of numerical efficiency and calculational conve-
nience, and was not chosen for physical or statistical reasons.

Different Ansatzes for Fatt[ρ(z)] were trained, and the resulting trained functionals were
tested on performance by making density predictions in out-of-sample situations, such as the
case of confinement between two planar hard walls and in certain external potentials not in
the training set. These predictions were compared to MC simulations and the performance
increase with respect to MF was computed. Furthermore, we used the trained functionals to
predict the equation of state ρbulk(µ) and P (ρ) and compared the results to those of MF and
to MC simulations. Finally the temperature dependence of the functionals was explored by
repeating the training process for different values of ε∗.

As we pointed out in the introduction, it is important for theoretical understanding to phys-
ically interpret the resulting ML-trained functionals, although this is very difficult because
there is no theoretical basis for an Ansatz such as Eq.(4.2), and we simply tried to restrict
as much as possible the number of weighting kernels used and the mathematical complexity
of the Ansatz. Only the mean-field like kernel in Eq.(4.1) can be loosely interpreted as an
empirically-determined effective Lennard-Jones interaction energy after integration over two
dimensions. Evidently the most challenging aspect of using ML for constructing functionals
is designing a good Ansatz for the mathematical form of the functional. This Ansatz should
preferably be based on DFT grounds in order to be able to meaningfully interpret the results
after training and improve theoretical understanding. It should also not include too many
unknown parameters or weighting kernels in order to prevent overfitting. We successfully
restricted the number of weighting kernels used, and still trained functionals that generated
fairly accurate predictions that are overall better than those of MF. However, we failed to
base our Ansatzes on a true theoretical basis, and are therefore limited in our ability to
extract new theoretical insight from the ML-trained functionals that has a direct impact on
contemporary classical DFT.
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ML applied to a simple Ansatz like Eq.(4.1) appears to be overall superior to MF in terms
of predicting the shape of density profiles for varying external potentials and for confinement
between hard walls. The predicted densities are more oscillatory than those of MF, which is
in better agreement with the MC simulations. The Ansatz Eq.(4.2) for Fatt[ρ(z)] performs
significantly better than the mean-field like Ansatz Eq.(4.1), but extra terms including terms
of third and sixth order in the density do not seem to meaningfully improve the results any
further. ML with Ansatz Eq.(4.2) is slightly more accurate, in terms of the squared residuals
as in Eq.(3.1), than ’µ-optimized’ MF, that is, mean field theory with the chemical potential
tweaked so as to minimize the difference with MC in the sense of Eq.(3.1). The ML-predicted
equation of state is overall better than that of MF, but lacks accuracy for low to medium
densities slightly above the ideal-gas regime, where the predictions of MF are better. The
predicted density and pressure for medium to high µ are in good agreement with MC simu-
lations. We expect that the discrepancy in predictions for low to medium µ are due to the
definition of the minimization criterion J in Eq.(3.1). The functional learns by minimizing
the squared differences with respect to MC over the entire data set and over the entire system
length, without paying special attention to the predicted bulk density, or equivalently, to the
equation of state. Therefore an incorrectly predicted density ’peak’ will have a more severe
impact on the next iteration’s weighting kernels, compared to an incorrectly predicted bulk
density associated with a smaller ’cost’ in terms of the criterion J . Furthermore, the results
did not seem to improve when using a larger MC data set of about twice the number of
density profiles. This is most likely because the entire range of interesting values for µ is
already included in the original data set.

The shape of the weighting kernels in Eq.(4.2) are temperature dependent and do not precisely
scale linearly with the temperature, in contrast to what might be expected on basis of mean
field theory as in Eq.(2.34)). Because the entire MC-dataset has to be separately simulated for
each value of ε∗, due to time constraints we were unable to train the functional for a sufficient
number of values for ε∗ to draw quantitative conclusions about the temperature dependence of
Fatt[ρ(z)]. We can however conclude that the performance of the ML-trained functionals for
high temperatures is significantly better than the performance at low temperatures, especially
at those close to the critical point. This is also what Lin. et al. found in the 1D case[8]. For
high temperatures, the equation of state for the bulk density is predicted accurately even for
low to medium µ. We expect that the physics close to the critical point is more difficult to
model with a very simple Ansatz like Eq.(4.2), and that a more sophisticated Ansatz based
on DFT grounds is required.
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A Appendix

A.1 The xy-integrated attractive Lennard-Jones potential

We wish the evaluate

Uatt,z(z) =

∫ ∞
−∞

∫ ∞
−∞

Uatt(
√
x2 + y2 + z2)

ε
dxdy, (A.1)

where Uatt,z(r) is the attractive part of the Lennard-Jones potential given in Eq.(2.31) and

r =
√
x2 + y2 + z2, the spherical radial coordinate. It is convenient to do this integral in

cylindrical coordinates (s, φ, z), so that it becomes

Uatt,z(z) = 2π

∫ ∞
0

s ds
Uatt(
√
s2 + z2)

ε
. (A.2)

Now notice that if z/σ > 1, also r/σ > 1 and therefore Uatt(r) = U(r). And if z/σ ≤ 1,
Uatt(r) = 0 for s2 ≤ σ2 − z2, and Uatt(r) = U(r) otherwise. Therefore, by substituting the
expression for Eq.(2.29), we have

Uatt,z(z) =


8π

∫ ∞
√
σ2−z2

s ds

((
σ2

s2 + z2

)6

−
(

σ2

s2 + z2

)3)
, if |z| ≤ σ.

8π

∫ ∞
0

s ds

((
σ2

s2 + z2

)6

−
(

σ2

s2 + z2

)3)
, if |z| > σ.

(A.3)

These two elementary integrals can be computed analytically. Consider the indefinite integral

I = 8π

∫
s ds

((
σ2

s2 + z2

)6

−
(

σ2

s2 + z2

)3)
. (A.4)

Now make the substitution u = s2 + z2, so that du = 2s ds, and therefore

I = 4π

∫
du

((
σ2

u

)6

−
(
σ2

u

)3)
=
−4πσ12

5u5
+

4πσ6

2u2

=
−4πσ12

5(s2 + z2)5
+

4πσ6

2(s2 + z2)2
.

(A.5)

Evaluating Eq.(A.5) on the integration limits of the two definite integrals in Eq.(A.3) yields
the result

Uatt,z(z) =


−6πσ2

5
, if |z| ≤ σ.

2πσ6(2σ6 − 5z6)

5z10
, if |z| > σ.

(A.6)
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A.2 The relation between the general weighting kernels and the
projected, ML-trained kernels

Given the relation

ωi(z) = 2π

∫ ∞
0

s ds Ωi(
√
s2 + z2), (A.7)

where ωi(z) is known, we wish to derive an explicit expression for Ωi(r). First we make the
substitution u2 = s2 + z2, so that s =

√
u2 − z2 and ds = u du/s. The new integration

domain is [z,∞). Eq.(A.7) then reduces to

ωi(z) = 2π

∫ ∞
z

u du Ωi(u). (A.8)

We can differentiate both sides to z and use the Leibniz integral rule. The u in the integrand
has become a ’dummy’ integration variable, so the partial derivative of it with respect to z
is zero. Therefore the only term is due to the lower integration limit. The result is

dωi(z)

dz
= −2πzΩi(z). (A.9)

We can rewrite this as an explicit expression for Ωi(r):

Ωi(r) =

(
−1

2πz

dωi(z)

dz

)∣∣∣∣
z=r

, (A.10)

where we replaced the variable z with r, purely for cosmetic reasons, to emphasize that the
weighting kernels Ωi(r) are assumed to be spherically symmetric and therefore only dependent
on the spherical radial coordinate r.

A.3 A brief note regarding computational requirements

To simulate the MC density profiles we used for the training data set, we used the C pro-
gramming language and followed guidelines in [10] to write an MC simulation code for the
truncated Lennard-Jones potential. We implemented a so-called ’cell list’ method where the
system is divided into cubic cells of length equal to the truncation distance 2.5σ, and particles
only interact with particles in neighbouring cells (including those due to periodic boundary
conditions). This significantly reduced computational complexity versus a naive implemen-
tation where for each particle a loop over all the other particles in the system is initiated. An
MC-simulated density profile in our training set took somewhere between 20 and 50 hours
to generate on a regular processing unit, depending on the chemical potential µ and hence
the bulk density. This long time was required to simulate with an accuracy great enough
to be used for training purposes, due to the large number of 32 grid points per particle.
Because we simulated 225 density profiles for 6 different temperatures, that is, 1350 in total,
the total computing time necessary would be about 3 to 4 years on a single computer. Thus
we had to resort to using a large computer cluster where we ran an entire training set of 225
density profiles on 225 computers at once. We also used C to simulate all the equations of
state and the out-of-sample density profiles, which required comparable computational effort.
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Figure A.1: The loss J as defined in Eq.(3.1) versus the iteration number, for training of
Ansatz Eq.(4.2) at temperature T ∗ = 2.0.

The training process was written in Python 3, in the Jupyter Notebook environment to be
specific. The authors of [8] were so kind as to share the implementation of the 1D training
process they used with us, so we were able to use their implementation as a starting point,
although many changes were made due to the different Ansatzes we postulated and the
different dynamics in 3D. In contrast to the MC simulations, the training process itself took
much shorter than we initially expected. For any Ansatz for Fatt[ρ(z)] we postulated it was
not more than a few hours, three at most, on a single computer. In Figure A.1 the loss J
as defined in Eq.(3.1), for training of Ansatz Eq.(4.2) at temperature T ∗ = 2.0, is plotted
versus the iteration number of the training process. It can be seen that especially the first
few iterations rapidly improve the performance of ML. Generating a density profile with ML
by iteratively solving the Euler-Lagrange equation with the Picard iteration method, took in
order of a few seconds, no more than ten. Generating the equation of state with ML took a
few minutes. This is without doubt a large advantage of using ML compared to using MC
simulations.
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