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Abstract

This research looks into the current state of spatial obfuscation algo-
rithms and investigates attack strategies to circumvent them. A set of
over 37.000 cyclist tracks are obfuscated using a variety of obfuscation
algorithms, after which two categories of attack strategies were applied
to reconstruct the original tracks based on the obfuscated tracks. These
attack strategies were based on heuristic approaches on the one hand,
with a deep learning approach to privacy attacks on the other. Using
an evaluation measure determining the overlap between actual tracks and
predicted tracks, each attack strategy was evaluated, revealing the applied
deep learning approach not to be suitable as an attack strategy in its cur-
rent form, and showing heuristic methods to function better. However,
these methods are still unable to recover the original track completely, and
further research is required to get attack strategies suitable to evaluate
the performance of spatial obfuscation algorithms.

1 Introduction
With a growing number of consumers in possession of a smartphone, location-
based services like Strava and Google maps have started to attract more cus-
tomers. These types of location-based services (LBS) provide a lot of function-
ality to their users based on their geo-location. In recent years, however privacy
has become more of an issue. Strava, for example, raised controversy with their
published heat-maps revealing the location of secret U.S. army bases (Hern,
2018).

However, it is not just secret army bases that should care about location
privacy. Few people realise just how much information can be gleaned from their
location data or the risks that could be involved if it fell into the wrong hands
(Krumm, 2009; Kaasinen, 2003). Nevertheless, a person’s location data can
pose a significant threat, possibly exposing a user to unsolicited advertisements,
scams, or even being tracked down with intent for physical violence (Shokri
et al., 2011; Wordsworth, 2015). Furthermore, many mobile phone applications
nowadays actually gather location data, regardless of whether it is relevant to
the application itself (Thurm and Kane, 2010).

Location privacy, when compromised, can have a significant impact on the
users of an LBS. Naturally, the easiest way to protect location data is to not
gather or store it in the first place. However, an LBS heavily relies on location
data to function and location data can provide significant value to scientific
research. A study by Ghinita (2009) identified these two types of scenario
where location privacy plays a large role. The first is that of the online LBS,
where users are provided with a live service based on their location. There
is, however, also a second relevant domain for location privacy, namely that of
research, where gathered location data can be published without endangering
the privacy of the individuals that data was gathered from.

The question then becomes how best to protect a user’s location privacy.
A part of this protection is generally done through network security, prevent-
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ing outsiders from unlawfully obtaining data. This does not however entirely
exclude the possibility of a company’s data being hacked or obtained through
social hacking. This is the process of extracting information from individuals
through manipulation or deceit (Nolan and Levesque, 2005).

Similarly, network security does not protect against insiders such as employ-
ees that may want to exploit the data. Finally, companies have also started
to publish their own data through open data protocols such as the European
INSPIRE framework. This could be a big step towards an open data ecosystem
which does not compromise privacy issues for commercial or other uses, if it was
possible to publish location data without compromising user privacy, even at a
less precise resolution than the original.

Currently, one of the most commonly used location privacy protection mea-
sures (LPPMs) is to aggregate data to a lower resolution. While this generally
works well for privacy protection, it also distorts the data so that patterns in
the original data are no longer present for investigation (Zandbergen, 2014).
Therefore, a lot of research has gone into creating different methods for pri-
vacy protection which maintain as many of the original data characteristics as
possible. The methods used to protect a user’s privacy are generally called ob-
fuscation algorithms. This research will look into those obfuscation measures
that distort the data sufficiently to protect the original data, while still keeping
it mostly intact.

1.1 Problem Definition
There are many different ways in which data may be obfuscated. Location data
can be moved, rotated and distorted in any conceivable number of ways. The
value, however lies in how well-suited an obfuscation method is for a specific
purpose. For example, if one were to find a theoretical obfuscation algorithm
that perfectly protects the privacy for a data-set but distorts the data beyond
any utility, it is not a useful obfuscation method. Similarly, if we have an incred-
ibly low distortion, no matter how complex our algorithm, it is still virtually
useless if it does not protect adequately against possible attackers.

This highlights a problem with current research into obfuscation algorithms.
While most research is focused on creating and improving obfuscation algo-
rithms with acceptable distortion, possible attack strategies are generally only
considered implicitly (Fechner and Kray, 2012). This leaves a significant gap in
the current body of scientific knowledge, where location protection is discussed
without considering how an attacker might go about computationally circum-
venting these obfuscation methods. In that sense, obfuscation algorithms have
so far been developed in a sort of academic vacuum, where it is attempted
to protect the privacy from users without knowing what it needs to be pro-
tected from. This research aims to take the first steps in exploring what types
of location-based attack strategies are possible for user trajectories, to gain a
better insight into how to defend user privacy in an LBS.

As a consequence of the limited research into attack strategies, the evaluation
of different obfuscation algorithms is also limited. While there is some research
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into the quantification of obfuscation algorithm security (Shokri et al., 2011),
it is still mainly theory-crafting, rather than application-based. This research
will therefore look into an application-based approach of evaluating obfuscation
strategies by investigating possible attack strategies and examining how these
spatial obfuscation algorithms hold up. In order to study the performance
of different obfuscation algorithms, as well as attack strategies, developing a
performance measure will also be a part of this research.

1.2 Context
This research will be conducted in the context of the Global Geo-Health Data
Center (GGHDC, https://globalgeohealthdatacenter.com) setting up an
LBS where users can upload point data (often tracks) to receive high-quality
information concerning the air quality at that location and time. Air quality is
shown to have a strong impact on health (Neidell, 2004), and furthermore, air
quality is highly localised (Padilla et al., 2014). Therefore the balance between
user privacy and location precision which plays out in obfuscation algorithms
(Seidl, 2014) is highly relevant to this field.

In order to protect the privacy of its users, the GGHDC wants to obfuscate
spatial data before sending it to the service while still maintaining high data
quality and low distortion, to provide as much value as possible to users.

The context of this research will assume the product with an attacker that
has a set of obfuscated data from which he or she wants to recover the original
points. To achieve this, the attacker is assumed to possess a set of unobfuscated
tracks that can be used to reverse engineer the applied obfuscation algorithm.
This can be done by sending the unobfuscated data to the server for testing
and receiving the obfuscated enriched data, or by using an obfuscation script
that has been made available by the GGHDC for privacy protection before
uploading. Aside from the likelihood of such a scenario, it was also chosen to
allow for more targeted attack strategies to be applied, before starting research
on a blind obfuscation problem.

Figure 1: The context of the attack strategies in this research
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2 Research Objectives
This research aims to collect, formulate and test attack strategies against spa-
tial obfuscation methods. This research into attack strategies will improve the
testing possibilities for new obfuscation methods, as well as allow obfuscation
measures to be compared based on their performance against such attack strate-
gies.

This research will formulate attack strategies to a collection of different spa-
tial obfuscation algorithms, examine ways of evaluating the obfuscation algo-
rithms’ performance, and apply this to a range of obfuscation algorithms. This
is done with the goal in mind of creating a testing toolkit for spatial obfuscation
algorithms through a suite of attack strategies that can be applied to test a new
spatial obfuscation algorithm.

2.1 Research questions
The previously described research goal can be translated into the following re-
search question:

What types of attack strategies can be used against spatial obfusca-
tion algorithms, and how can their performance be evaluated?

This can subsequently be split up into the following subquestions:

• What attack strategies can be used to counteract spatial obfuscation al-
gorithms?

• How can attack strategies be evaluated for their performance on different
obfuscation algorithms?

• Which attack strategies work best on what obfuscation methods?

2.2 Scope
In order to keep the research both relevant and feasible, some scope limitations
have been applied.

Firstly, although many privacy protection strategies are based on aggrega-
tion, these will not be taken into account in this research, since a study done
by Gruteser and Hoh (2005) shows that even aggregated spatial information
can be separated into the original users that provide it. Furthermore, the data
distortion in aggregation is too high to qualify as a viable privacy protection
measure for highly localised air quality data. Additionally, the data distortion
that occurs in aggregation makes subsequent analysis of aggregated data less
valuable, since patterns such as clustering or localised spatial patterns are lost
(Seidl et al., 2015).
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3 Theoretical Framework
This section will contain the relevant information from literature in the field of
spatial obfuscation and privacy methodologies, as well as providing the scientific
background and concepts that are used in this research.

3.1 Spatial Obfuscation
This section will contain an overview of the relevant literature behind commonly
used track obfuscation methods that have been selected for evaluation in this
research.

3.1.1 Grid Masking

Grid masking is an obfuscation algorithm first introduced by Leitner and Curtis
(2006). Grid masking creates a grid around the original data, after which points
are manipulated within their respective grid cells. This maintains a large part
of the spatial patterns available, while still providing a measure of privacy. The
most common form of grid masking is to snap all points to their respective grid
cell corners (Krumm, 2007; Seidl et al., 2015). This results in an approximation
of which locations have been visited, but with an uncertainty equal to the applied
cell-size.

3.1.2 Random Perturbation

In a random perturbation algorithm, points are offset from their origin by a
random value Kwan et al. (2004). This random value adds noise to the data,
which makes it more difficult to find the original route, while also keeping the
data distortion relatively low. With a dense road network, such as in most
populated areas in the Netherlands, it is easy for such distortions to mask which
road the user has taken. An example of an obfuscated track is given in figure 2.
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Figure 2: An example of random perturbation applied to a track

3.1.3 Crowding

Crowding, as first described in Kido et al. (2005) and detailed further by Scheider
et al. (2019), is the concept of populating an actual track with a number of
additional points to ensure the original track is no longer distinguishable from
other possible tracks. The most important consideration is that added points
should together form a credible track. Simply put, if a track is obfuscated with
a crowding algorithm that leads into a body of water or straight through other
physical obstacles, an attacker will easily be able to distinguish the original
track from the fake one.

A different way to look at this crowding algorithm is that it simulates a
form of k-anonymity. K-anonymity is the concept that any given data-point
can be attributed to at least K other users, granting each person belonging to
that data-point a certain degree of anonymity (Sweeney, 2002). In a crowding
algorithm, this is no longer done by combining actual data-points, but noise is
generated to artificially generate a k-anonymous track storage.
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Figure 3: Crowding example applied to a track

In order to circumvent a crowding application, there are a few possible attack
strategies. The first of which is to reverse-engineer the original obfuscation
algorithm through the application of machine learning. By training a classifier
to recognise which points have been added (by feeding in some initial training
data), it should be possible to predict which points have been added as an
obfuscation measure.

A different option is to check the credibility of the different possible tracks,
generating a list of probabilities for each possible track, and selecting the track
that is most likely. This selection can be made on the basis of track shape,
movement credibility and location credibility.

3.2 Attack Strategies
The formulation of attack strategies will be done from the viewpoint of a malev-
olent insider with knowledge of the types of obfuscation methods available and
access to the algorithm to run his own training set through it, to obtain paired
combinations of actual and obfuscated tracks.

The attacker is assumed to have a set of obfuscated tracks he has obtained
through other means, and his goal is to re-identify these to their original tracks as
closely as possible. This approach is also called red teaming, and it is commonly
used to identify weaknesses in security systems (Wood and Duggan, 2000). The
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following sections detail the relevant theory concerning the attack strategies
produced in this study.

This research will take two general approaches for attack strategies, where
this section will contain the necessary literature background on which they are
based. The first approach will be referred to as the heuristic approach, where
methods are manually specified to narrow down the possibility space for the
original track. The second approach will be based on machine learning, by
applying neural networks to the data-set. This approach will be referred to as
deep learning.

3.2.1 Heuristic methods

This section will contain the relevant literature behind the applied heuristic
attack strategies.

Time series analysis

When you take away the background spatial context, a GPS track can also be
viewed as if it were a time series (Hu et al., 2013). The main difference with
time series, as opposed to GPS tracks, is that the goal is to predict both the X
and Y values, as opposed to time series analysis predicting a Y value based on
an independent X.

This approach has been employed in several studies to decrease the GPS
error(Mao et al., 1999; Williams et al., 2004), but can theoretically also be
applied as an attack strategy. In these studies, the main method used was a
maximum likelihood estimation (MLE).

Another commonly used way of removing noise from time series data is the
moving average (Hamilton, 1994). By assuming that change between observa-
tions is gradual, and affected by noise, a moving average can reduce the impact
of noise on the observations, while still maintaining most of the gradual, actual
change.

3.2.2 Deep learning

Although machine learning is a wide field with an equally wide range of possibil-
ities, standard machine learning algorithms tend to have a limited capacity for
learning complex interactions and nonlinear relations. Additionally, "simple"
machine-learning requires extensive feature engineering to get the most descrip-
tive features for the variable of interest (LeCun et al., 2015). By applying deep
learning, further explained in the coming section, feature engineering is auto-
mated through back-propagation, and complex interactions can be modelled by
specifying an appropriate network architecture.

A neural network can be seen as a series of connected nodes. When a layer
in the network receives an input, the network multiplies the input with a set of
weights, after which often a non-linear transformation is applied (Haykin and
Network, 2004). The result of this is then passed on to the next layer, and so on
until the network reaches the output layer, which is then used for evaluation.
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Figure 4: A basic illustration of a single-layer neural network

When the network is evaluated, the outputs are compared to the desired out-
puts in a process called backpropagation (Werbos, 1990). For this operation, the
gradient of the previous operations with respect to the output loss is recursively
evaluated, and the weights adjusted based on this and a specified learning rate
parameter. In this way, the neural network will adapt to the type of operation
needed to go from the training input to the training output and, if it is not
overfitted to the training data, be able to predict new examples accurately.

Applying the theory to this research, we can input a track that has been
obfuscated, and gather relevant features for each point in the obfuscated track.
Using matrices, we can input the spatial distribution, and for a single point, we
can use features such as distance from the nearest road or distance from the
previous point.

These features are then fed into the model, and backpropagation is applied
to adapt the weights in the model to reduce the training error, and thus improve
results. This is done multiple times with the entire available data-set, each pass
being called an epoch, until the specified number of epochs is reached or, when
specified, the loss no longer decreases for a certain number of epochs.
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Recurrent Neural Networks

Although neural networks are powerful, the previously described options are
still the basics of neural networking. In addition to this, multiple types of more
advanced layers have been developed. One such layer that is relevant to this
research is the recurrent layer.

A recurrent layer, in its initial form, is very similar to any other layer com-
monly used in a neural network. It has a set of weights, an activation function,
and its performance is improved through backpropagation. Its main applica-
tion is for data that comes in some sort of sequence. Rather than applying its
weight multiplication and activation function to the entire input at a time, the
input is split up into its sequences, and passed through step by step (Gross-
berg, 2013). This allows the recurrent layer to build up a representation of the
input as it receives it, allowing for memory units within the recurrent layer to
retain some sort of general representation of the input sequence. Two commonly
used recurrent layers are made up of long short-term memory units (LSTMs)
(Gers et al., 1999) and gated recurrent units (GRUs)(Chung et al., 2014). The
most important difference is that LSTMs are more complex in their calcula-
tions, sometimes allowing for better performance. On the other hand, GRUs
are slightly less complex and thus train faster while still achieving nearly the
same performance (Chung et al., 2014).

convolutional networks

A different type of layer used in this research is the convolutional layer. Although
there are variations from 1 to 3 dimensions, only the 1-dimensional variant is
relevant to this research, as the others are generally used for image or video
processing (LeCun et al., 1995).

In the case of the 1-dimensional convolutional layer, the model has a vector
of weights to optimise for, generally referred to as a filter. In a convolutional
layer, the model overlays each filter over a part of the input sequence. The
input values are then multiplied by the weight values in the filter, and summed
to generate an output for the first input value. The filter is then moved up
a step to the next input values each time, thus performing operations on the
entire input sequence. After this is completed, a non-linearity is applied to the
output values.

Precision and Recall

Two common evaluation metrics in machine learning for binary variables are
precision and recall. Rather than just using accuracy (the difference between
actual and predicted), it allows one to distinguish between the ratio true posi-
tives and false positives for precision, or true positives versus false negatives for
recall (Powers, 2011). This can be captured in the following equations:

Precision =
True positives

True positives+ False positives
(1)
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Recall =
True positives

True positives+ False negatives
(2)

Put more practically, table 1 contains some randomly generated results for a
classification algorithm, where we compare the ground truth (denoted as actual)
to the predicted scores. Calculating the precision is then done by calculating 8
/ (8 + 14) = 0.364, and the recall comes out to 8 / (8 + 15) = 0.348.

Predicted True Predicted False
Actual True 8 15

Actual False 14 7

Table 1: Confusion matrix for explaining recall and precision

Simply put, recall is the measure of how many of the actual values have been
recovered, whereas precision is the measure of how many of the recovered values
were correctly recovered.

For this research, precision and recall are used to compare the disjoint and
overlapping areas between predicted and actual tracks. When considering recall
in the spatial domain this way, this research defines it as follows:

Precision =
Intersection

Predicted area
(3)

Recall =
Intersection

Actual area
(4)

4 Methodology
In this section, the steps taken to answer the previously described research ques-
tions are detailed. This includes the chosen obfuscation methods, the applied
attack strategies, and a method of evaluating the results. All relevant code can
be found at https://github.com/Martin13131/GIMA-thesis.

4.1 Data
This research used the B-riders data-set (de Kruijf, 2014); this data-set consists
of over 3.3 million individual points, divided into 39.000 unique tracks. All
tracks come from 580 users with home locations included estimated according
to the method in Feng and Timmermans (2017). In order to obtain road vertices
for the crowding algorithm, the fietsersbond bicycle road network is also used
as a reference.
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4.2 Obfuscation methods
In order to keep the scope of this research feasible, three obfuscation meth-
ods were selected to implement and test. The chosen obfuscation methods are
grid masking, random perturbation, and crowding. These have been chosen
since grid masking and random perturbation are commonly used (Seidl et al.,
2015), whereas crowding is a promising new obfuscation technique introduced
by Scheider et al. (2019). More importantly, they provide three different types
of approaches to obfuscation, as described below.

4.2.1 Grid masking

Grid masking is a prime example of GPS points being snapped to a pre-existing
structure, and more applicable to track information than, e.g. voronoi masking.
During the implementation, an average grid distance of 250 meters was used.
This distance was chosen as previous research already indicated a distance of
200-350 m (Leitner and Curtis, 2006) was sufficient to distort the data so that
its perceived similarity was substantially different, and Seidl et al. (2016) found
this to be the most effective grid masking distance threshold overall.

4.2.2 Random perturbation

Random perturbation provides an offset-based obfuscation and subsequently
adds a lot of randomness(Sila-Nowicka and Thakuriah, 2016). This makes it
more difficult for a deterministic attack strategy to be applied. The main pa-
rameter for this type of algorithm is the offset amount, which was set at 10% of
the upper and lower bounds of both the x and y directions per track.

This distance was chosen in order to maintain a relevant spatial distortion,
since the area covered in a single track can vary wildly across different tracks,
and a flat distance has a strong chance to not distort the track enough in tracks
with a high distance to attain an accurate privacy measure, or too much for low
distance tracks, which would then become unusable for our stated purpose.

4.2.3 Crowding

Finally, crowding does not simply alter the original data but instead adds addi-
tional points. This process can make it more difficult for an attacker to extract
the relevant information from an obfuscated track. This research used a specific
implementation of a crowding algorithm, described below.

In order to account for credible location and movement constraints, the
road network in a buffer zone of 500 meters was taken. From this clipped road
network, all vertices were added to a pool of possible locations. Subsequently, a
maximum number of either 1000, or the total number of available vertices were
randomly sampled from this pool of possible points, and added to the original
track. This number of 1000 available points was chosen based on a test-sample
of different tracks and visual inspection showed that 1000 points are sufficient to
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cover the majority of the track, whereas 500 added points still made it relatively
easy for the track to be discerned visually.

4.3 Evaluation
Before covering possible attack strategies, it is important to consider the purpose
of the intended attacker, and how to evaluate an attack strategy once it has been
applied.

Thinking about possible attacks, there are different purposes possible for
someone wanting to attack data obfuscations. This could be trying to find a
person’s home address, finding which route they usually take, or completely
reconstructing the original track point by point for other, possibly analytical
purposes. These goals would all require a different evaluation metric on which to
score an attack strategy. This research proposes three different attack strategy
evaluation metrics, depending on the intended purpose.

Firstly, corresponding to the goal of finding a person’s home location, the
loss function must reflect the distance of the actual home location to the home
location proposed by the attack strategy. This can further be normalized based
on several factors such as the total length of the track, or other measures, but
in essence, the distance between these two points is the key factor.

A problem with this approach is that tracks do not necessarily contain the
home location, as the route between someone’s work and e.g. the supermarket
can also be considered a single track. Naturally, this can also provide informa-
tion about the user’s identity, as demonstrated by Fechner and Kray (2012),
but this still requires human deduction as an attack strategy, and is therefore
not applied in this research.

Secondly, when an attacker tries to reconstruct the original route a person
took, it is not relevant if each point is at the right location, as long as the shape
of the track remains the same. In order to obtain this shape, a set of points is
not representative of the original track, so they will need to be converted into
line features. From line features, we can then calculate the distance between
the line of the actual track, and the line of the proposed track from an attack
strategy.

However, when using line features to compute our loss function, the only
metrics available to us are the distance between two lines or the overlap of the
two lines. Thus, in order to obtain different metrics, a buffer is added to convert
the lines into polygons. This has the advantage of providing overlap and a
possibility to use metrics like precision, recall and intersection over union (IoU),
also referred to as the Jaccard index. These can be computed by calculating
both the intersection and the union of the actual and predicted polygons, and
result in a standardized, meaningful score.

Furthermore, this approach will discount possible small errors that may be
caused by to circumstantial factors such as GPS errors, as the polygonal overlap
will still occur when a prediction is slightly off, which would not occur with e.g.
line-based evaluation.
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For this research, the evaluation measure using polygonal overlap has been
used to evaluate the results of different attack strategies. While the home lo-
cation estimation is the most likely evaluation measure an attacker would use,
as this is the most sensitive information, this would require points of interest to
be marked as temporary home locations from which a user profile could then
be built up. The data used in this research only has home locations marked,
and is therefore unsuitable for testing attack strategies with this purpose. By
using the polygonal overlap method, the most information as to the functioning
of each attack strategy can be extracted, making it the most suitable version.
In this research, a buffer of 10 meters was used to generate these polygons, as
this corresponded to the GPS-error of the tracks.

As the polygonal overlap evaluation metric is computationally expensive, it
was infeasible to apply this to the deep learning approach as its loss function,
which is essentially the function it is optimising for. This is because each track
is fed into the neural network up to hundreds of times, and computing the
polygonal overlap measure would either require a significant portion of time
through rewriting all required functions in a format suitable for GPU processing,
or significantly increasing the already high training times of a neural network.
Therefore, a different measure was used as a loss function in the training of the
neural network.

For this purpose, the root mean squared error (rmse) function was applied
on a point-by-point basis, effectively computing the distance between where a
point is predicted, and where its counterpart in the actual track is located, and
optimising to minimize this difference. This measure was chosen as it required
a significantly lower computational investment, and due to its close relation to
the geospatial domain.

4.4 Attack Strategies
As mentioned before, this research will take a red teaming approach to obfus-
cation algorithms. In that context, the generated train and test set can be seen
as a malevolent outsider having obtained some obfuscated information from the
server, as well as having an unobfuscated set of track for him to experiment
with. This unobfuscated training set can be obfuscated using the provided ser-
vice and examined for alterations in the data, while the test set is the intended
target.

This research proposes firstly takes on a heuristic approach, applying man-
ually specified methods to ascertain the location of the original data. Secondly,
this research investigates the possibilities of using deep learning to ascertain the
original track locations from obfuscated tracks.

4.4.1 Heuristic methods

Assuming no initial knowledge whatsoever of the user’s actual location, there are
several easy ways of narrowing down the possibility space. Speaking in terms of
precision and recall, assuming no knowledge of the user’s actual location implies
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a possible area that covers the entire world. This has the maximum possible
recall, since every point from a GPS track will be contained within this area.
The goal of this approach, therefore, is to maximize our precision, with the
minimum possible sacrifice to our recall value.

Bounding box

Firstly, and most reliably, simply taking the bounding box of the obfuscated
track will provide a good starting point, since the original track will almost
definitely be within the boundaries of the obfuscated track. Either that, or the
original track must have been obfuscated so heavily there is almost no relation
anymore between the obfuscated and the actual track. Using this approach, we
still maintain a near maximum recall, while increasing our precision from an
infinite possibility space.

Buffer approach

Narrowing this down further, a buffer can be generated from all points. The size
of this buffer should be based on the difference between actual and obfuscated
points in a return track. Since an attacker would be able to experiment with the
underlying obfuscation algorithm by uploading points to the server, this metric
would be relatively easy to obtain. In this research, the buffer approach has
been implemented by generating a buffer equal in radius to the average distance
between 2 consecutive points in the obfuscated track.

Although the previously mentioned algorithms are likely to have a high recall
value, they are still based on a narrowing-down approach of where the data must
be, and the precision will likely still be very low. However, the low required
investment of this attack strategy, both in computation as well as in complexity,
can be worthwhile for an initial attempt.

Sliding window approach

An approach that is likely to work on both the grid masking and the random
perturbation algorithms is to apply a moving average on both the X and the Y
values. Applied to grid masking, this will put points in between grid points to a
possible location, recreating a new track somewhat similar to the actual track.

Applying this sliding window approach to the random perturbation obfus-
cation algorithm, this is likely to partially cancel out the generated noise. Since
moving averages are generally used to smooth out noisy time series data (Alessio
et al., 2002).

4.4.2 Deep learning

This research investigated the possibilities of applying deep learning methodolo-
gies as an attack strategy to obtain the original points from obfuscated tracks.
Using deep learning, a data-set was generated with the obfuscated tracks as an
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input and the original tracks as output. This was then split up into a training
and a test set for training and validation, respectively. This research tried dif-
ferent models to test for better results. This research investigated two types of
models to apply to this data.

The first type of model used was a recurrent neural network. Recurrent neu-
ral networks are commonly applied to time series data(Connor et al., 1994) and
are also used for speech processing(Graves et al., 2013). Since track data has
similar properties to time series, as they are a sequence of points with a com-
monality that need not necessarily be a fixed pattern, and since their variable
length is similar to the problems encountered in natural language processing,
this was deemed the most logical first approach.

Given the high training time of neural networks in general, and the GRU
layer’s similar capacity to LSTM’s but with a faster training time, GRU layers
were used for this recurrent neural network approach.

The second type of model that was used was a 1-dimensional convolution
model. Since the sliding window approach effectively is a small 1D convolution,
it stands to reason that many different convolutions with parameters estimated
through a machine learning approach would have the capacity to perform signif-
icantly better. This rationale is also based on the recent advances in computer
vision applications since 2D convolutional filters were no longer manually spec-
ified (Lim, 1990; Krizhevsky et al., 2012), but rather learned through similar
deep learning models. Nowadays, almost all computer vision applications use
deep learning to great results.

For this research, the recurrent neural network models were instantiated
with an initial GRU layer, followed by five consecutive combinations of a GRU
layer and a dense layer with an Exponential Linear Unit (elu) as the activation
function. These layers all had 64 neurons each. Finally, the output layer was
defined as a single dense layer with two neurons to get both an x and a y output.

The 1-dimensional convolutional model was specified similarly with an initial
1D convolutional layer, followed by 5 combinations of a 1D convolutional layer
and a dense layer with the elu activation function of 64 neurons each, with a
dense layer of two neurons as an output layer. For this model, the filter-size for
each convolution was set at five.

Training both these models, a set of 10.000 randomly selected tracks were
given as input, with 10% of this being used as a test set. As neural networks
need a static input shape, each track was padded with zeros to equalize their
lengths. Furthermore, each track was scaled to a mean of zero by subtracting
the mean value of the x and y coordinates in each obfuscated track, as feature
scaling has been shown to improve model results in deep learning (Taylor et al.,
2018).

For the training measure, the rmse loss function was used. During the initial
testing phase, this caused the models to only output zeros due to the large
number of zeroes required for padding. Therefore, the loss function was modified
to not take zero values into account.

The learning rate was set at an initial value of 0.01, multiplied by 0.9 after
three consecutive epochs without an improvement in the training loss. The
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choice to optimize for the training loss instead of the validation loss was made
as the test error of the models coincided with the training error during the
initial experiments, and overfitting was less of a problem than the actual model
learning capacity.

5 Results
This section will detail the results from applying each attack strategy to the set
of three selected obfuscation algorithms. As mentioned above, the metrics of
precision, recall and IoU were obtained by creating polygons out of the original
tracks with a buffer of 10 meters, corresponding to the average GPS-error, and
comparing the overlap between the predicted area and the actual area. In the
case where an attack strategy returned points instead of an area, such as in the
moving average attack, the polygons were also generated by applying a 10-meter
buffer on the predicted points.

In order to effectively compare the results, it is important to establish a
baseline. While this baseline in terms of attack strategies is set by the bounding
box algorithm, this research also checked the evaluation metrics on the pure
obfuscated data, given below.

Obfuscation algorithm Precision Recall IoU

Grid masking 0.1227 0.1359 0.0689
Random Perturbation 0.0189 0.2085 0.0176

Crowding 0.0249 0.6871 0.0249

Table 2: Evaluation scores for each obfuscation algorithm without applied attack
strategy

5.1 Heuristic methods
In obtaining the results, the evaluation metrics were generated by applying each
attack strategy and the proposed evaluation on the entire data-set of 37.000
tracks. Additionally, a selection of the results was exported into ArcGIS for
closer inspection, which is also included in this section.

5.1.1 Bounding box

As is to be expected, the bounding box algorithm has a high recall value with
a low precision for all obfuscation algorithms. The low precision can easily be
explained by the large area that is "predicted", which would never be exactly
the same as the entire track.

The recall scores, although high, increase with each algorithm. This is logi-
cal, as the grid masking algorithm snaps each point in the original track to its
closest point on the grid, thus making it possible for a point to be snapped into
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the bounding box, generating a slightly lower recall score. The random pertur-
bation algorithm moves all points by a semi-randomly chosen distance, allowing
for points to fall outside of the original track’s domain, and thus increase the
number of points captured within the bounding box. Finally, the crowding al-
gorithm adds many points to the original track, only increasing the scope of the
bounding box, while still maintaining the original track’s area.

Comparing these scores to the generated baseline, it is clear that, while it
performs better on recall, the low precision scores make it an unlikely algorithm
to choose for an attacker interested in determining the exact area where a user
has travelled.

Obfuscation algorithm Precision Recall IoU

Grid masking 0.0062 0.9112 0.0062
Random Perturbation 0.0039 0.9960 0.0038

Crowding 0.0042 0.9999 0.0042

Table 3: Bounding box results for each obfuscation algorithm

Taking a sample track, these numbers are once again reflected in a geographic
view. Each obfuscation method generates a progressively larger bounding box,
and thus achieve increasing recall values and decreasing precision values. In this
way, it is also clearly visible that the grid masking algorithm tends to decrease
the domain of a track, whereas the random perturbation expands the possible
domain, with the crowding algorithm providing the most significant increase in
the total possibility space for the original track.
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Figure 5: Bounding box results for a single track

5.1.2 Buffer approach

The buffer approach has a significantly higher precision score for grid masking
than the bounding box algorithm, with a relatively minor reduction in recall.
For crowding and random perturbation, there does not appear to be a signifi-
cant change in the scores compared to the bounding box algorithm. Although
they may be considered slightly better given the higher recall for random per-
turbation, or the higher precision for the crowding algorithm. Compared to the
baseline, the recall is still significantly higher, although this attack strategy still
sacrifices on precision.

Obfuscation algorithm Precision Recall IoU

Grid masking 0.0638 0.7200 0.0622
Random Perturbation 0.0039 0.9978 0.0039

Crowding 0.0061 0.9967 0.0061

Table 4: Buffer attack results for each obfuscation algorithm

Looking at the geographic aspect of the buffer attack strategy, it is clearly
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visible that the random perturbation algorithm has the lowest precision, as it
covers a significantly larger area. The attack strategy appears to work best on
the grid masking obfuscation, with a large part of the results covering the actual
track.

Figure 6: Buffer results for each obfuscation algorithm

5.1.3 Moving average

The moving average algorithm has a significantly lower recall than that of the
other heuristic algorithms. There is, however, a slight increase in precision on
the crowding obfuscation method compared to the other attacks. Comparing
this with the baseline, the baseline is clearly better in terms of precision, and
with the exception of grid masking, also on recall.

Obfuscation algorithm Precision Recall IoU

Grid masking 0.0051 0.1710 0.0050
Random Perturbation 0.0033 0.1215 0.0033

Crowding 0.0090 0.4194 0.0089

Table 5: Moving average results for each obfuscation algorithm
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The moving average, or smoothing attack strategy appears to behave differ-
ently depending on which obfuscation algorithm has been used. On the grid-
masking algorithm, it appeared to work quite well, with the reconstructed track
looking very similar to the original track, although the generated evaluation
polygons are not overlapping enough to generate good metrics.

Figure 7: Moving average attack strategy on grid-masked data

Looking at the random perturbation results paints a significantly less pretty
picture. It appears that, as a result of the random perturbation algorithm,
points are intertwining in their track, with some points being perturbed to be
further along in the track, distance-wise, while their sequential next points can
get perturbed further back. The strategy in itself does show some promise,
however as the three outliers in the upper left corner are clearly being mitigated
by the rest of the points. This is indicated by the smoothing polygon being
closer to the track than these outliers, and it stands to reason that with a more
forceful reconstruction algorithm, this would better coincide with the original
track’s polygon. It is possible that e.g. with a higher window size, this strategy
would produce better results.

21



Figure 8: Moving average attack strategy on randomly perturbed data

Finally, looking at the crowding algorithm’s results, these polygons appear to
paint the perfect picture of a noisy time series. The generated polygon fluctuates
around the validation polygon, overlapping at times but without a significant
overlapping area to generate high metrics. Similar to the application to the
random perturbation obfuscation, it is possible that a higher window size, or a
higher weight placed on the surrounding elements would generate better results.
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Figure 9: Moving average results for the crowding algorithm

5.2 Deep learning
For the evaluation, the models were applied to 27.000 tracks, with the 10.000
tracks that were used in training being excluded to ensure the results accurately
measured the algorithm’s performance, rather than it being a result of the model
having been trained on that track.

Nearing the end of training time, all models appeared to plateau between
rmse score between 2000 and 2500 on both the training and the test data.
Translating this into distance, this equates to an average difference of 2-2.5 km
between the actual and the predicted points.

Applying deep learning to the crowding algorithm in the specified configura-
tion turned out not to provide any results. Given the custom loss function that
was applied, masking all 0 values in the validation set for the model training,
this effectively caused the neural networks to be blind to all crowded values,
since these were not fed into the backpropagation algorithm as a result of this
masking. However, the alternative of not using a loss function only resulted in
zeros, as the applied sequence padding makes this the best probabilistic approx-
imation of the validation data.

23



5.2.1 Recurrent neural networks

Applied to the grid masking and random perturbation algorithms, it appears
there were no correct predictions. As all metrics returned a value of 0.0. Applied
to the crowding algorithm, the results were as follows:

Obfuscation algorithm Precision Recall IoU

Crowding 0.0385 7.0016e-05 6.9894e-05

Table 6: Recurrent neural network results for the crowding algorithm

Looking at the results from the convolutional networks, these results are
slightly better, but by no means effective when compared to the heuristic strate-
gies or even the baseline. Although the precision values are relatively high, this
is possibly due to the large number of zeros added during the zero-padding in
preprocessing.

Obfuscation algorithm Precision Recall IoU

Grid masking 0.0494 0.0004 0.0004
Random Perturbation 0.0589 0.0.0004 0.0003

Crowding 0.0250 0.0002 0.0002

Table 7: Convolutional neural network results for both applied obfuscation al-
gorithm

The results from the applied evaluation metric are also confirmed when look-
ing at the results on a map. When focusing on a specific track, there is only the
occasional area where a neural network prediction is visible, and even then it is
not clearly related.
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Figure 10: Results from the recurrent neural network approach

Figure 11: Results from the convolutional neural network approach
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6 Discussion
This section will elaborate further on the implications of the results generated
by this research.

6.1 Evaluation
Looking at the resulting polygons from the evaluation, we can see that lines that
appear to coincide well with each other have low scores when the metrics are
being computed. The prime example of this is the moving average results of the
grid masked data. While these lines look very similar, and cross at times, this
does not result in a high score for the evaluation. It should be considered to forgo
the 10-meter buffer in a future research, to allow for a broader interpretation of
when tracks overlap strongly enough.

Another interesting thing to note is the relatively high scores on both preci-
sion and recall the baseline seems to have. Because of this, taking the obfuscated
points, creating a line and subsequently buffering by a certain margin may ac-
tually prove to be the most successful attack strategy this research produced.

A final important consideration related to the evaluation methods is spatial
obfuscation research has been going on for over 16 years (Gruteser and Grun-
wald, 2003), and there is a distinct possibility that obfuscation algorithms have
progressed to a point where it is very difficult to recover the original tracks
from a modern spatial obfuscation method. If this is not the case, at the very
least it takes a considerable amount of work to recover the original tracks, as
demonstrated in this research.

6.2 Heuristic methods
Looking at the results of the heuristic attack strategies, it can be concluded that
the moving average attack strategy does not function as intended, as it has the
lowest precision and recall scores of all heuristic methods. The results do show
there is room for improvement, and that the moving average algorithm has the
potential to draw obfuscated points closer to their actual counterparts.

Looking at the buffer approach, on both the grid masking and crowding algo-
rithms it performs better in terms of precision than the bounding box strategy,
without sacrificing much in terms of recall. Especially applied to grid masking,
it performs over ten times better in terms of precision, while only decreasing by
0.2 in terms of recall. Therefore, this strategy shows promise, especially if one
were to apply a density function to get the center area of all buffered points.

For both these methods, it would be worthwhile to investigate the impact
of their respective parameters i.e. window size and buffer size, respectively on
their impact on the performance of the attack strategy.
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6.3 Deep learning
Although the recall values are very low for the deep learning results, the preci-
sion values are significantly better than that of most heuristic attack strategies.
This research was limited in model complexity as a result of the available com-
putational resources, with a network of 5 layers deep and a width of 64 neurons
per layer. Given the relatively high results on precision, it would be interesting
to investigate neural networks with more capacity to apply to this problem.

Another point of contention is the rmse loss function that was applied for
the network training loss. This effectively causes the model to optimize for a
different metric than we are eventually scoring it on, which may have caused
a disconnect between what the network trained to do, and what this research
expected it to do. It may be worth investigating whether converting each track
to its polygonal representation first, and rasterising it. This way, a 2D convolu-
tional neural network could be applied for semantic segmentation, which could
provide better results. This option is further discussed in section 8.2.2 of the
recommendations.

6.3.1 Additional inputs

It should be noted that the deep learning approach applied in this research
only gave the tracks as an input. While this produced some results, it is likely
that these would be strongly improved by using additional inputs such as the
surrounding road network. However, the embedding of a road network for deep
learning requires a lot of thought as to how this can be well represented in the
network. Bay and Sengupta (2017) have started research into this possibility,
but would require more research to operationalize it as an addition to the deep
learning attack strategy. This is further expanded on in section 8.2.1 of the
recommendations.

6.4 Metrics
Looking at the results, one can see the precision and IoU corresponding strongly.
While on first sight this may seem like an error, this co-occurrence can be
explained by looking at the equations:

Precision =
Intersection

Predicted Area
(5)

IoU =
Intersection

Predicted Area+ V alidation Area− Intersection
(6)

When the predicted area is very large (causing precision to remain very low),
the calculation for IoU will get skewed towards a precision measure, since the
validation area and the intersection between the two are relatively small related
to the actual predicted area. When precision is higher, the validation area and
their intersection will play a larger role, which would make the IoU score more
informative.
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7 Conclusion
This research provides a first step in considering explicit, practical attack strate-
gies. These have been divided into heuristic and deep learning approaches. For
the heuristic approaches, the following algorithms were proposed:

• Bounding boxes

• Point buffers

• Moving average

Out of these approaches, this research shows that the buffer approach currently
works best, but that the moving average attack strategy shows promise for
further study. This research also experimented with using recurrent and convo-
lutional neural networks to see if a machine learning approach could outperform
a heuristic attack strategy, and clearly concludes that using the specified ap-
proach is not suitable for use as an attack strategy.

Although there are many as of yet unexplored possibilities for more advanced
attack strategies which may perform better, the obfuscation algorithms exam-
ined in this research outperformed the proposed attack strategies. While there
is still much research to be done into this topic, this research took a first step
into the exploration of different attack strategies, so as to improve the security
of modern spatial obfuscation methods.

8 Recommendations for future research
This research provided a first step in the study of attack strategies on obfuscated
data. Throughout the duration of this research, choices were made to keep the
scope manageable, but there are still many other avenues of attacking track
data. This section will discuss the main ideas that are still unexplored, but
which could provide further insights.

8.1 Heuristic methods
While this research proposed three heuristic methods to apply as an attack strat-
egy, there are many different thinkable ways of computationally de-obfuscating
track data. As mentioned in the discussion, using a heuristic strategy that is
based on circumstantial data like road networks, land use, population density
etc. could be applied. Another possibility is to apply a point density analysis
and perform a cost-path on its result from the first to the last point in a track.
While this fell beyond the scope of the current research, there are still many
different attack strategies to create and evaluate.

8.1.1 Map matching

The research field of map matching, or mapping a set of points to their most
likely location on a road network (Quddus et al., 2007), has many similarities

28



to the goal of this research of reconstructing a user’s original track. The main
difference is that this research considers obfuscated tracks, whereas a general
map matching algorithm generally tries to eliminate the GPS error. Neverthe-
less, a map matching algorithm like the one mentioned in Marchal et al. (2005)
could be worth investigating as an attack strategy, since the topics are so closely
connected.

8.1.2 Reordering of points

The smoothing attack strategy as well as the deep learning attack strategy
described in this research both used an approach which was reliant on the se-
quential ordering of points. When applying an obfuscation algorithm, it would
then be an easy step to shuffle the points in a track to invalidate these attack
strategies.

To compensate for this possibility, this research would suggest first apply-
ing a k-nearest neighbour algorithm, similar to the way it has been applied in
the ISOMAP algorithm for use in multidimensional scaling (Tenenbaum et al.,
2000). In this way, the most likely ordering of points can be recreated, after
which the previously mentioned attack strategies can again be applied.

8.2 Deep learning
While this research investigated the preliminary possibilities of applying deep
learning as an attack strategy, the vast majority of current deep learning research
is looking into either computer vision (Badrinarayanan et al., 2015; Chen et al.,
2017) or natural language processing (Deng et al., 2013; Amodei et al., 2016).
While this research attempted to translate experiences from natural language
processing to the field of privacy attack strategies, it was only possible to pro-
vide a first step. This subsection will contain recommendations for the further
exploration of applying deep learning as an attack strategy.

8.2.1 Sequence to sequence models

For future research, it is suggested to apply sequence to sequence learning to the
obfuscated GPS tracks. Sequence to sequence learning is a novel way of using
LSTMs to transfer a sequence from one domain to another (Sutskever et al.,
2014). Rather than passing the data through an LSTM layer and continuing on
with the altered input data, they propose to use the in-memory representation
of the LSTM as an encoder function. This representation is then transferred to
another network, which then generates data based on this representation.

Such types of encoder-decoder models are used for many applications, such
as machine translation (Cho et al., 2014), speech recognition (Bahdanau et al.,
2016), and generating text responses in a chatbot-like setting (Shang et al.,
2015). Applied to GPS-tracks, it stands to reason this could be used to build
up a representation of the track, and subsequently generate a more abstract
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version of the track in return. This could prove especially valuable as an attack
strategy against the crowding algorithm.

A recent research by Bay and Sengupta (2017) was the first to apply a
sequence to sequence model on geographic data. This was done by using Fisher
embedding of the road network to embed it as an input to the neural network.
After training, the model was able to generate the shortest path between two
points on the network. While this operation in itself can be easily performed
through a Dijkstra algorithm (Dijkstra, 1959), the novelty of this research lay
in the geometric embedding of the road network for use in a neural network.
Extrapolating on this possibility, this could be the start of a new branch of
research into geographical vector data using deep learning, where one of the
possibilities entails the use of such a network as an attack strategy.

8.2.2 Track rasterization

Since the field of computer vision has received so much attention in recent years,
another possible approach to achieve better results for a deep learning attack
strategy would be to rasterise the buffer of the actual tracks as a training set,
and apply a convolutional segmentation model to the data. In this way, it would
be possible to use a model that has been proven to provide good results in a
different setting, such as e.g. the Tiramisu model (Jégou et al., 2017), and apply
this as an attack strategy. Furthermore, this allows the model to use a metric
such as intersection over union, which would correspond better with the goal of
determining the travelled area, as opposed to the current approach where the
model is effectively trained to determine the actual location of an obfuscated
point, rather than the route taken on which the final evaluation is conducted.

8.2.3 Generative Adversarial Networks

A relatively recent development in neural networks is the concept of generative
adversarial networks (GANs). GANs are made up of two networks, a generator
network and a discriminative (classifying) network (Goodfellow et al., 2014).
The generative network learns a distribution and generates data based on that
distribution, whereas the discriminator compares it to actual data and classifies
it as either being close to real data, or as significantly different from real-world
data. This is where the adversarial part comes in; these two networks are
directly in competition with one another, where the generator tries to "fool"
the discriminator into believing the newly generated data is actual data.

Applied to the current research, a GAN could be used both as an obfuscation
method, where the generator creates points based on the distribution of the
input track, and an attack strategy while the discriminator tries to break the
obfuscation by being trained on recognising actual versus fake data. Failing to
break the obfuscation would then result in a strong privacy preserving algorithm.
While it has not yet been applied in the context of privacy and attack strategies,
it is certainly an interesting possibility.
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