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1 Introduction

The KRIMP algorithm [16] was introduced by Siebes et al. as a way to combat
pattern explosion, a commonly encountered problem in Frequent Itemset Min-
ing [1]. A classic example for frequent itemset mining is that of trying to find
patterns among the transactions made in a super market, where the patterns,
frequent itemsets, are sets of products which are often bought together. The
problem known as pattern explosion is that if one wishes to find more than
the obvious and well-known patterns, one is confronted with a huge amount of
mostly redundant patterns, as many patterns have some level of overlap with
each other. The KRIMP algorithm manages to reduce the huge set of frequent
itemsets to a small set of patterns characteristic to the dataset. It does so by
following the Minimum Description Length principle [14, 6], which can be sum-
marized as model selection through compression. KRIMP uses the frequent
itemsets to give a lossless description of the original data, and tries to find the
set of patterns which gives the most succinct description. Further validating
the KRIMP approach, the models it produces have been shown to be useful at
various other tasks, such as classification [21], outlier detection [18], difference
measurement [20] and partitioning [19].

Low entropy sets [8] are a type of pattern similar to frequent itemsets. The
difference between low entropy sets and frequent itemsets is that frequent item-
sets only consider the co-occurrence of items, whereas low entropy sets signify
strong interaction between items in general, by considering items symmetrically.
Both patterns have a monotonic property which allows for efficient pattern min-
ing algorithms. Many of the pattern mining algorithms for frequent itemset
mining have been converted to the context of low entropy set mining. Low
entropy set mining is also plagued by pattern explosion, it should come as no
surprise that an algorithm similar to KRIMP has been proposed to solve this.
This algorithm is called Low Entropy Set Selection [9], or LESS for short, and
was introduced by Heikinheimo et al. Unlike with KRIMP the models produced
by LESS have not been used for other applications yet.

Partitioning, or clustering is the task of creating groups of data points with-
out being provided some ground truth grouping through class labelling. Algo-
rithms for this task often require some form of distance or similarity metric in
order to create these groupings. When it is hard to define a meaningful distance
metric ad hoc approaches are employed. The benefit of the KRIMP-based ap-
proach to partitioning by van Leeuwen et al. [19] is that no distance measure
needs to be defined, so no prior knowledge of the data is required. In addi-
tion their models provide insight into the patterns underlying each grouping,
whereas other well-known clustering methods such as k-means [11] merely give
the grouping itself.

The subject of this thesis has been inspired by an ad hoc approach to parti-
tioning, known as Minimum Entropy Decomposition, by Eren et al. [5]. This al-
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gorithm comes from the field of bio-informatics where it is used to group together
genetic sequences into high resolution Operational Taxonomic Units, while fil-
tering out erroneous sequences created during laboratorial analysis. While their
algorithm makes use of an ad hoc stopping criterion it shows that entropy can
be a very effective tool for partitioning.

Because LESS is an entropy-based variant of KRIMP which has yet to be
applied to other tasks it seemed like an interesting subject for a thesis to apply
the LESS algorithm to the partitioning task, similar to how van Leeuwen et al.
do this with KRIMP models.

1.1 Outline

This thesis is outlined as follows: in Section 2 I will discuss the literature relevant
to my thesis subject. In Section 3 I formulate the main research question, and
three sub questions. These subquestions are answered in Sections 4, 5 and 6.
Lastly in Section 7 I answer the main research question while summarizing the
contents of this thesis, followed by a discussion and suggestions for future work.
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2 Related Work

I begin the related work section covering some important concepts from the field
of Information Theory in Section 2.1, the first being Shannon entropy [15] and
its relation to compression, the second being the Minimum Description Length
principle [14, 6]. After this, Section 2.2 will discuss frequent itemset mining
and the KRIMP models and algorithm [16, 21]. The SLIM algorithm [17] is
discussed in Section 2.3 because it works with the same models as KRIMP but
uses a smarter heuristic to find better solutions in less time. I will then discuss
the KRIMP-based partitioning algorithms suggested by van Leeuwen et al. [19]
in Section 2.4. This is followed by an explanation of low entropy set mining [8],
and the KRIMP-like Low Entropy Set Selection algorithm [9] in Section 2.5.

2.1 Important Concepts from Information Theory

For this subsection I will mostly refer to explanations from the book Elements
of Information Theory [4] by Cover and Thomas.

2.1.1 Shannon Entropy

Shannon entropy [15] is a function on probability distributions, used as a mea-
sure of the information produced by some data source. Consider a source to be
a random variable X which produces information by taking values x ∈ X , the
entropy H(X) is defined by the following formula, where p(x) = P (X = x):

H(X) = −
∑
x∈X

p(x) log2 p(x) (1)

The logarithm is base 2, meaning entropy is measured in bits. Unless explicitly
stated otherwise all logarithms in this thesis are base 2. Further, it is appro-
priate to follow the convention that 0 log 0 = 0, as values with a probability of
zero should not affect a measure of the information produced by X. Aside from
the (for now) vague notion of being a measure of information it is clear from
this formula that entropy tells us something about the skewness of a probability
distribution, the more skewed the distribution, the lower the entropy.

There are multiple ways to justify using Shannon entropy as a measure of
information, for this thesis I focus on the relation between entropy and compres-
sion. A more thorough account of this can be found in chapter 5 of Elements
of Information Theory [4].

Suppose the string “21131241” represents a sequence of states output by a
random variable X from a set of possible states X = {1, 2, 3, 4} and consider
the task of storing the output produced by X concisely in a binary format. To
translate the output of X in binary we need a mapping from possible states of
X to binary strings, C(x) : X → {0, 1}∗. We call such a mapping a code, the
states x ∈ X source words and the binary strings code words. A code can be
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represented by a binary tree. Source words are placed on nodes of the tree, and
the corresponding code word is given by the path from the root of the tree to
the node of the source word. At every branching of the tree, going left adds a
‘0’ to the code word and going right a ‘1’.

C(x) =


00, if x = 1

01, if x = 2

10, if x = 3

11, if x = 4

Figure 1: Example prefix code C(x) and its tree representation

A special kind of code is the prefix code this is a code where no code word
is the prefix of another code word. As a result any string encoded by C(x) is
uniquely decodable, meaning it can only be produced by (and decoded into) one
possible source string. In addition to being uniquely decodable, for a prefix code
we can immediately recognize when we’ve arrived at the end of a code word,
allowing for instantaneous decoding. Prefix codes provide the most efficient en-
coding when we require these features, as other codes would require additional
symbols to indicate the ending of a code word.

In the binary tree representation of a prefix code all source words must be
located at leaf nodes. If this were not the case the path to one source word
would be contained by the path to another, causing its code word to be prefix
of the other code word. Figure 1 gives an example of a prefix code and its
corresponding binary tree.

The prefix constraint has an effect on the length of the code words lx, this
effect is captured by Kraft’s Inequality:

∑
i

2−li ≤ 1 (2)

Intuitively it can be seen as a budget for code words in a prefix code, where
using a code word of length lx takes up 2−lx of your budget, as none of the
nodes below it in the tree representation can be used for coding anymore. A
more formal explanation of Kraft’s inequality can be found in section 5.2 of
Cover et al. [4].

Using the code from Figure 1 the expected code length LX to encode a
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source word produced by X is 2 bits as all code words require 2 bits.

LX =
∑
x∈X

p(x)lx (3)

If we know something about the probability distribution of X we could use
this knowledge to lower the expected code length, by assigning shorter codes to
more frequent outcomes. Suppose the outputs from X are distributed according
to the probability distribution in (4). We can then lower the expected code
length to 1.75 bits using the code C ′(x) from Figure 2.1.1, which is actually the
optimal code for X.

P (X = 1) = 1
2

P (X = 2) = 1
4

P (X = 3) = 1
8

P (X = 4) = 1
8

(4)

C ′(x) =


0, if x = 1

10, if x = 2

110, if x = 3

111, if x = 4

Figure 2: Optimal code C ′(x) for probability distribution in (4)

For any probability distribution the optimal code is given by Huffman cod-
ing [10]. However in this thesis we are not interested in actual codes, but in
theoretical compression and the relation to Shannon Entropy.

We can consider the requirement for code lengths lx to be integer values as
a practical limitation of binary codes. Dropping this requirement, to find the
optimal code lengths l∗x is to minimize the expected code length (3) with the
code lengths satisfying Kraft’s inequality. In section 5.3 of their book Cover
et al. [4] show that this leads to the following optimal code lengths.

l∗x = − log p(x)

Inserting this into the formula for the expected code length, we find that the
expected code length for a (non-integer) optimal prefix code for X is the same
as the entropy of X.

LX = −
∑
x∈X

p(x) log p(x) = H(X) (5)
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Shannon entropy thus gives us the shortest expected code length we can
achieve with a prefix code, when unhindered by the practical limitations of
actualized binary codes. This makes Shannon entropy a measure of information
in that it gives us a lower bound for the average amount of bits required to
describe data.

2.1.2 Minimum Description Length Principle

The second important concept from Information Theory to discuss is the Min-
imum Description Length (MDL) principle [14, 6]. The MDL principle uses
compression to choose between multiple models for explaining some observed
data set. The idea is that the model which can describe the data using the fewest
bits is the model which best fits the data. MDL avoids selecting complex and
likely overfitted models by requiring the models themselves to be compressed as
well. The version of MDL discussed and used in this thesis is known as two-part
MDL or crude MDL [6]. Here the data and model are compressed separately.
Given a set of models M for some data set D the best model M ∈ M for D is
the one which minimizes:

L(M) + L(D |M)

Where L(M) is the length in bits required to describe the modelM , and L(D|M)
is the length of the description of the data D when encoded with M . Many of
the algorithms I discuss in this thesis use the MDL principle for model selection,
the first example of how to put MDL into practice will be the KRIMP algorithm
in subsection 2.2.2.
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2.2 KRIMP

In this section I will present the KRIMP algorithm [16, 21], which is based on
the MDL principle. The algorithm was designed to solve a problem in Frequent
Itemset Mining known as pattern explosion. In the next subsection I will ex-
plain frequent itemset mining and pattern explosion, after which I present the
KRIMP algorithm.

2.2.1 Frequent Itemset Mining

The subject of frequent itemset mining was introduced by Agrawal et al. [1]. As
mentioned earlier, the problem can be summarized as finding patterns of fre-
quently co-occurring products in a database of supermarket transactions. These
patterns are called frequent itemsets and can be used to give insight into buying
habits of customers.

The problem can more formally be described as follows, consider the super-
market products to be represented by a set of literals I referred to as items

I = {I1, I2, ..., Im}

Transactions can be seen as a set of purchased products, which is a subset of
the items t ⊆ I. A transaction database D is a bag of transactions

D = {t1, t2, ..., tn}

The objective of frequent itemset mining is to find frequently occurring patterns
in a transaction database.

The patterns we are looking for are called itemsets, an itemset X is a subset
of items, X ⊆ I. If an itemset X is a subset of a transaction t, we say t supports
X. The support of an itemset X by a database D is written as suppD(X) and
gives us the number of transactions t ∈ D which support X.

suppD(X) = |{t ∈ D |X ⊆ t}|

Table 1 gives an example of a transaction database, and Table 2 shows the
support suppD(X) of this database for some itemsets.

D I = {A,B,C,D,E}
t0 {A,B,D}
t1 {C,E}
t2 {C,D,E}
t3 {B,D}
t4 {A,B,C,E}
t5 {D}

Table 1: Example Database

X suppD(X)
{B,D} 2
{C,E} 3
{A} 2
{B} 3
{C} 3
{D} 4
{E} 3

Table 2: suppD(X) for some example
itemsets
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The objective of frequent itemset mining is to find the set F of all frequent
itemsets X, where an itemset X being frequent means suppD(X) is above some
minimum support threshold minsup.

FD = {X ∈ P(I) | suppD(X) ≥ minsup}

To find the set of frequent itemsets we can make use of a monotonic property
known as the A Priori property, which I will briefly discuss.

The A Priori Property

For a database over I there are 2|I| − 1 itemsets1, which could all potentially
be frequent depending on the minsup threshold. The size of the search space
makes it important to have efficient algorithms. The first efficient algorithms for
finding frequent itemsets [2] make use of the A Priori property. For an itemset
Y which is a superset of X, the set of transactions supporting Y is a subset of
the set of transactions supporting X.

X ⊆ Y ⇒ suppD(Y ) ≤ suppD(X)

The implications of this property are that if a set X is infrequent then none of
its supersets are frequent. Conversely for a set Y to be frequent all of its subsets
must be frequent. This property allows for a bottom up level-wise search, only
checking support for itemsets of size k for which all subsets of size k − 1 were
found to be frequent in the previous stage. The A Priori property has since been
used to design more efficient algorithms such as Eclat [22] (depth-first search)
and FP-Growth [7] (transforming D to an efficient tree structure).

While the A Priori property allows for efficient mining algorithms it comes
with the downside of pattern explosion. If we mine itemsets with a high minsup
we get very few, but likely well-known, and thus not very interesting patterns.
But if we lower the minsup threshold the amount of resulting patterns grows
rapidly, resulting in more patterns than can be manually interpreted. Because
of the subset/superset relation between frequent itemsets there will be a lot of
redundancy in the results. In the next subsection I will discuss the KRIMP
algorithm’s approach to filtering out redundant itemsets.

2.2.2 KRIMP: MDL for Frequent Itemsets

KRIMP’s [16, 21] solution to pattern explosion is to use itemsets for compres-
sion of a database. The redundancy of an itemset is evaluated by how helpful it
is in achieving better compression. Itemsets which don’t aid compression must
be redundant, and are thus not interesting enough to report. This allows Siebes
et al. [16] to reduce the output of frequent itemset mining algorithms to a much
smaller and more interesting subset.

1not counting the empty set
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Recall that the objective of Minimum Description Length is to find the model
M which minimizes:

L(M) + L(D |M)

The models KRIMP is concerned with are called code tables. A code table CT
is a two-column table, with the left column containing itemsets and the right
column containing code words. It represents a prefix code for itemsets, but is
only used as a means to calculate the theoretically achievable compression of a
model. Because of this we never look for actual code words in the right column,
instead we consider their (not necessarily integer) code lengths.

In the following subsections I will explain how a code table is used to encode a
transaction, how to calculate the amount of bits required to encode a database
D, how to compress the code tables themselves, and how to find code tables
with good compression. The MDL objective written in terms of code tables is
to minimize:

L(D, CT ) = L(CT | D) + L(D | CT )

Cover Function

We can describe a transaction by selecting a non-overlapping set of itemsets
from the left column of a code table, until the union of these itemsets matches
the items in the transaction. Such a description is called a cover. Any valid
cover must satisfy the following conditions:

X ∈ cover(CT, t) =⇒ X ∈ CT
X, Y ∈ cover(CT, t) =⇒ X ∩ Y = ∅ or X = Y

t =
⋃

X∈cover(CT,t)
X

To ensure that there is always at least one way for a code table to cover any
transaction t ⊆ I it is required that CT contains the singleton itemsets for all
items i ∈ I. There are often multiple ways to encode a transaction with a code
table, to have a non-ambiguous way of encoding transactions we require a cover
function. KRIMP’s cover function is quite simple, the itemsets of the code
table are ordered based on what they call the Standard Cover Order and every
transaction is encoded by greedily picking itemsets from the code table, provided
they don’t overlap with previously selected cover elements. The standard cover
order is to sort the itemsets first descending on cardinality, second descending
on their support by D and third lexicographically. This is represented by the
following notation [21]:

|X| ↓ suppD(X) ↓ lexicographically ↑
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Compressing the Database

After covering all transactions t ∈ D we can count how often each itemset gets
used.

usageCT (X) = {t ∈ D |X ∈ cover(CT, t)}

I will occasionally abuse notation to avoid cluttered equations, writing usageCT (X)
when I mean |usageCT (X)|. It should generally be clear from context whether
I’m referring to the set of transactions or the amount of transactions in the set.
The usage counts of all itemsets in CT together form a probability distribution.

P (X | D, CT ) =
usageCT (X)∑

Y ∈CT usageCT (Y )

As discussed in section 2.1.1 the code lengths for minimizing the average
required bits to encode, given a probability distribution, coincide with the for-
mula for Shannon entropy. Therefore the optimal code length for an itemset X
is

L(X | CT ) = − log(P (X | D, CT ))

We know how often each itemset is used to describe D with CT and we know
the code lengths for each itemset, so we can calculate the compressed size of D
using CT by multiplying the code lengths with the usage counts.

L(D | CT ) =
∑

X∈CT

usageCT (X)L(X | CT )

Compressing the Code Table

Two-part MDL not only requires compression of the data, but also of the model
itself. In order to compress a code table CT we need to compress both columns,
the itemsets and the codes.

The (unmaterialized) codes are already in binary format and don’t need fur-
ther compression, their code lengths are simply added to the compression of the
model. The itemsets are compressed using another, simpler code table, this is
possible since itemsets just like transactions are simply sets of items. They are
compressed with a code table using only singleton itemsets, called the Standard
Code Table CTST . The code lengths of CTST are determined by covering D with
only the singleton itemsets, as a result items with high support get shorter codes.

Itemsets in the code table with a usage of 0 are not used for compressing
D and are therefore not included in the compression of the model. The above
leads to the following formula for the amount of bits required to encode CT

L(CT | D) =
∑

X∈CT
usageCT (X)6=∅

L(X | CTST ) + L(X | CT )
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Finding Good Code Tables

We’ve discussed how to use a code table to unambiguously encode a transaction
database D, and how to calculate the corresponding amount of bits required
for this encoding. The remaining task is to find the model giving the shortest
encoding L(D, CT ). Näıvely one could try all possible code tables, but this is
not a feasible approach. According to Vreeken et al. [21] there are

2|I|−|I|−1∑
k=0

(
2|I| − |I| − 1

k

)
possible code tables. This search space is considered too large and not struc-
tured enough to allow for an efficient way of finding the optimal code table.
Instead the KRIMP algorithm relies on a greedy search heuristic.

The algorithm begins with the standard code table CTST and requires a
set of candidate itemsets F to be mined from D beforehand. These candidates
are sorted in Standard Candidate Order, first descending on support, second
descending on size and then lexicographically.

suppD(X) ↓ |X| ↓ lexicographically ↑
In this order candidates are iteratively added to the code table to see if

their addition improves compression. If a candidate itemset improves the total
compression it is accepted into the code table, otherwise it is permanently dis-
carded. After each acceptance KRIMP tries to prune previously added code
table elements. This keeps the code table small and lowers redundancy among
the itemsets in the code table. Pruning is also done in the same greedy manner,
but in order of the usage of itemsets, beginning with the itemsets with lowest
usage. Itemsets which no longer help with compression are discarded.

2.3 SLIM

Vreeken et al. [21] suggested that the search space of all possible code tables
is unstructured. While it may be too unstructured to find a guaranteed best
code table the SLIM algorithm [17] shows that there is enough structure for
improvement over KRIMP. The SLIM algorithm does not use a previously
mined set of candidate itemsets, and therefore requires no minsup threshold to
be chosen. Instead SLIM generates its candidate itemsets on the fly based on
itemsets present in the code table. Because candidates are based on code table
elements they are able to make accurate estimates of how adding a candidate
would change compression. They manage to gain better compression, while
nearly always being faster than KRIMP as well.

At every step of the algorithm the candidate set F is based on the itemsets
in CT at that time. Each candidate is the union of two elements of the code
table:

13



F = {X ∪ Y |X,Y ∈ CT}

This list is generally smaller than the candidate lists KRIMP is run with,
allowing SLIM to also reconsider old candidates rather than permanently dis-
carding them. SLIM manages to outperform KRIMP because their accurate
estimates allow them to focus on good candidates first.

Estimating Compression Gain

The gain in compression after adding an itemset X ∪ Y is simply old compres-
sion, L(D, CT ) minus the new compression L(D, CT ′). This compression relies
almost2 entirely on the usage counts of the itemsets in both code tables. While
for most itemsets Z ∈ CT it is hard to predict the difference from usageCT (Z)
to usageCT ′(Z) there are three exceptions. For candidate X ∪ Y we know that
it will (at least) be used in every cover where previously both X and Y were
used, as the candidate places higher in the standard cover order. This gives us
three bounds for usage counts in CT ’.

usageCT ′(X ∪ Y ) ≥ usageCT (X) ∩ usageCT (Y )

usageCT ′(X) ≤ usageCT (X)− usageCT ′(X ∪ Y )

usageCT ′(Y ) ≤ usageCT (Y )− usageCT ′(X ∪ Y )

The authors of SLIM found that assuming equality, with all other usage
counts remaining the same allowed them to make very accurate estimates of the
compression gain, while requiring little computation.

Finding the usage intersection usageCT (X) ∩ usageCT (Y ) is a potentially
expensive computation, in the worst case one would have to go over the entire
database. Because the amount of transactions in the usage intersection of two
itemsets is bounded by the usage of the individual itemsets SLIM can avoid
computing many intersections.

|usageCT (X) ∩ usageCT (Y )| ≤ usageCT (X)

|usageCT (X) ∩ usageCT (Y )| ≤ usageCT (Y )

Generating the candidates in order of their parent-sets usage counts SLIM keeps
track of the top-k candidate estimates, and only computes the usage intersection
if it has the potential to improve on the top-k estimates.

2Almost, as compressing the itemsets themselves does not rely on usageCT (X)
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2.4 Identifying the Components

As mentioned at the end of section 2.2.2 KRIMP can be used for other tasks
than filtering out redundant itemsets. van Leeuwen et al. [19] use code tables
to partition a database into what they call “highly characteristic components”.
The authors state that databases often consist of samples of different distribu-
tions. And that a model which takes into account the underlying distributions
is often superior to one that does not. Following the MDL principle, a better
model should lead to better compression.

The basic idea of their approach is to let k partitions be encoded by differ-
ent code tables and iteratively refine the partitioning/code tables to allow for
better compression. The authors give two separate approaches for partitioning
with KRIMP code tables. Both approaches require running the partitioning
algorithm for all k ∈ [2, |D|] and selecting the partitioning with the shortest
compression, assuming that compression is better than the original code table
which corresponds to k = 1.

Both methods are reported to provide partitionings with much shorter data
descriptions while dividing the data into highly dissimilar components. Because
the optimal partitioning is determined by MDL no parameter k has to be chosen,
making this an attractive approach when there is little to no prior knowledge
about the data. Additionally the authors suggest that their framework can be
adapted to function with other MDL methods without much work.

2.4.1 Model-Driven Partitioning

The first algorithm they propose is what they call a Model-Driven approach.
A code table induced for a complete database should capture the entire distri-
bution, so the distributions of the multiple underlying components should be
modelled by this code table implicitly. This suggests that each of the underlying
components could be modelled efficiently using subsets of the original code table.

The Model-Driven algorithm creates k copies of the original code table and
iteratively removes itemsets from the code tables to improve compression. To
calculate the total compression of the database every transaction is assumed
to be encoded by the code table which gives it the shortest encoded length.
All code lengths are calculated with a Laplace correction3 to ensure every code
table can encode transactions from other partitions.

For removing code table elements the algorithm searches for the best ele-
ment to remove exhaustively, until no removal further improves compression.
This exhaustive search for the best removal makes this method relatively slow
compared to the next approach.

3increasing usageCT (X) by one
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2.4.2 Data-Driven Partitioning

They call their second algorithm a Data-Driven approach. This Data-Driven
approach is similar to k-means clustering, but without the need for a distance
metric. The algorithm starts by randomly dividing the data over k partitions.
After initialization the algorithm iteratively makes code tables for each parti-
tion, and reassigns transactions to the code table which provides the shortest
encoding. This process is repeated until the partitioning becomes stable, mean-
ing no transactions require reassigning. Because of the random initialization
step the algorithm is run multiple times to ensure finding a good solution, how-
ever the authors claim that the results of each run are very similar, suggesting
that the algorithm is very robust despite the initial randomness.

2.5 Low Entropy Set Selection

Low Entropy Set Selection (LESS) [9] is a variant of KRIMP which works
with low entropy sets rather than frequent itemsets. Low entropy sets were
introduced by Heikinheimo et al. [8] and are close relatives to frequent itemsets.
While frequent itemsets only look at the co-occurrence of items low entropy
sets look at both presence and absence relations of items. This symmetrical
approach should allow for more powerful descriptions of data.

First I will briefly go over the differences and similarities between low en-
tropy sets and frequent itemsets, after which I will discuss the LESS MDL
approach [9].

2.5.1 Low Entropy Set Mining

In this context we are still concerned with transaction databases D, bags of
transactions, but the transactions and items are represented differently. Previ-
ously the items were literals, which were either present or absent in a transac-
tion, here the items I, usually referred to as attributes, are considered to be
binary attributes which can take values 0-1. Transactions are no longer subsets
of I, but binary vectors of length |I|. The value of a transaction t at the xth

index is written as πx(t) and should coincide with an item’s presence in the old
representation.

Ix ∈ told ⇐⇒ πx(t) = 1

Ix /∈ told ⇐⇒ πx(t) = 0

Previously we called sets of items X ⊆ I itemsets, now we call them attribute
sets. Because every transaction now contains all attributes we don’t look at the
support of an attribute set, but at the entropy. An attribute set X and a
transaction t together determine a binary vector πX(t) of values πA(t) defined
by the attributes A ∈ X. ΩX is defined to be the set {0, 1}|X| of all 0-1 vectors
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of length |X| [8]. The vectors i ∈ ΩX are called the instantiations of X. An
instantiation i fits a transaction t iff i = πX(t). Counting how often each
instantiation i ∈ ΩX fits a transaction t ∈ D we get a probability distribution.

pX(i) =
|{t ∈ D | i = πX(t)}|

|D|
From the probability distribution over the instantiations of an attribute set

X we can compute the entropy of X.

H(X) = −
∑
i∈ΩX

pX(i) log pX(i)

D \ I A B C D E
t0 1 1 0 1 0
t1 0 0 1 0 1
t2 0 0 1 1 1
t3 0 1 0 1 0
t4 1 1 1 0 1
t5 0 0 0 1 0

Table 3: Example Database

X H(X)
{B,D} 1.92
{C,E} 1
{A} 0.92
{B} 1
{C} 1
{D} 0.92
{E} 1

Table 4: Entropy example for Table 3

Attribute sets with low entropy have a skewed probability distribution,
meaning certain value combinations occur significantly more often than oth-
ers. Such attribute sets might provide valuable insight into the data, similar to
how frequent itemsets can be interesting. Given a maximum entropy threshold
ε we call an attribute set X a low entropy set if H(X) ≤ ε.

A Priori Property for Low Entropy Sets

Similar to frequent itemsets, low entropy sets have a monotonicity property [8].
The entropy of an attribute set Y is greater or equal to the entropy of its subsets
X.

X ⊆ Y ⇒ H(Y ) ≥ H(X)

As with itemset mining, this property allows for very similar efficient pattern
mining algorithms, Heikinheimo et al. [8] propose a level-wise search, Heikin-
heimo et al. [9] use a depth-first search similar to Eclat [22], and very recently
Pennerath [13] proposed an approach inspired by FP-growth [7]. While this
property allows for similar efficient mining strategies, it also causes low entropy
set mining to suffer from pattern explosion. Similar to how frequent itemset
mining algorithms have been adapted to work with low entropy sets LESS is
an adaptation of KRIMP to solve pattern explosion for low entropy sets.
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2.5.2 LESS: MDL for (Low Entropy) Attribute Sets

Like KRIMP, LESS [9] also uses code tables for models, now with attribute
sets in the left column, and codes in the right column. Unlike KRIMP this
is not enough to describe a database. The content of a transaction can’t be
described by attribute sets alone, as an attribute set says nothing of the values
of attributes. Instead LESS uses pairs of attribute sets and instantiations to
cover transactions. These instantiations are part of a second code table, with
instantiations in the left column and code lengths on the right. The code table
containing the attribute sets will be referred to as CTLE , the code table for
instantiations as CTI . Valid covers for a transaction t can’t contain overlapping
attributes between attribute sets, for a cover element (X, i) instantiations are
determined by the values of t for the attributes of X, all attributes of t must be
covered.

(X, i) ∈ cover(t) =⇒ X ∈ CTLE and i ∈ CTI
(X, i), (Y, j) ∈ cover(t) =⇒ X ∩ Y = ∅ or X = Y, i = j

t =
⋃

(X,i)∈cover(t)
πX(t) = i

To make sure any possible transaction for attributes I can be encoded the
authors require CTLE to contain all singleton attribute sets, and CTI all in-
stantiations from length 1 to the largest attribute set in CTLE .

CTI =

max
X∈CTLE

|X|⋃
l=1

{0, 1}l

Because the cover function from Heikinheimo et al. [9] is more complicated
than the one used for KRIMP I will first discuss the models and how to do
compression with them, before I explain how the covers are determined.

Compressing the Database

Since LESS uses two code tables we break the objective of MDL into four parts,
the task is to minimize:

L(M) + L(D |M)

Where

L(D |M) = L(D | CTLE) + L(D | CTI)

L(M) = L(CTLE | D) + L(CTI | D)
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The usage of attribute sets X and instantiations i is determined by how
often they occur in the cover of a transaction, written as follows4:

usageCTLE
(X) = {t ∈ D |X ∈ cover(t)}

usageCTI
(i) = {t ∈ D | i ∈ cover(t)}

As with KRIMP the usage counts of the code tables form probability dis-
tributions, which are used to calculate the optimal code lengths. The attribute
sets are treated the same as itemsets in KRIMP.

P (X | D, CTLE) =
usageCTLE

(X)∑
Y ∈CTLE

usageCTLE
(Y )

L(X | CTLE) = − log(P (X | D, CTLE))

For the instantiations in CTI remember that to ensure we can encode any
transaction, CTI must contain all instantiations of size 1 to the largest set in
CTLE , even if they are not used in any covers for D. To give these zero-usage
instantiations a non-infinite code length we have to apply a Laplace correction5.
All usages are increased by 1 in the definition of the probability distribution for
the instantiations.

P (i | D, CTI) =
usageCTI

(i) + 1

|CTI |+
∑

j∈CTI
usageCTI

(j)

L(i | CTI) = − log(P (i | D, CTI))

With this we can calculate the encoded size of D as

L(D | CTLE) =
∑

X∈CTLE

usageCTLE
(X)L(X | CTLE)

L(D | CTI) =
∑

i∈CTI

usageCTI
(i)L(i | CTI)

Note that the Laplace corrections are only present in the definition for
P (i | D, CTI) so we can assign codes to unused instantiations, these do not
affect the actual usage counts.

Compressing the Code Tables

The attribute set code table CTLE is compressed analogously to how KRIMP
encodes the code table for itemsets. The code lengths are summed, and the
attribute sets are encoded by the standard code table, the simplest code table
containing only singleton attribute sets. In this context the standard code table

4for usageCTI
(i) interpret it to be a bag of transactions rather than a set, considering that

a transaction can use the same instantiation multiple times in its cover
5This is not mentioned in[9], but I have verified that this is indeed what they do
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will assign equal length codes to each attribute, as every transaction contains
every attribute A ∈ I.

L(codeST (X)) = |X| log(|I|)

L(CTLE | D) =
∑

x∈CTLE

L(X | CTLE) + L(codeST (X))

For compressing CTI again the code lengths are summed, the instantia-
tions are encoded by their bit-representation. This means the instantiation
i = 〈0, 1, 0〉 gets “compressed” to ‘010’ thus bit(i) = 3. All instantiations are
taken into account when encoding the model L(CTI), including instantiations
with usageCTI

(i) = 0.

L(CTI | D) =
∑

i∈CTI

L(i | CTI) + bit(i)

Cover Function

The cover function for LESS is very different from the one used by KRIMP.
The reason for this is that for every transaction t and attribute set X there is an
instantiation i which can make X fit t. If we were to simply impose an ordering
on CTLE and cover transactions with non-overlapping attribute sets we would
always use the same attribute sets in every cover. Instead the authors propose
a cover function which considers the attribute sets in a different order for each
transaction. For this they use the maximum likelihood principle. Taking the
cover C that maximizes the conditional probability p(t | C) of the transaction.
The loglikelihood of a transaction t given a cover C is:

llh(t, C) =
∑
X∈C

log p(πX(t))

The cover which maximizes the likelihood is called the optimal cover

Copt = arg max
C

llh(t, C)

The code length for the instantiation matching πX(t) should then be propor-
tional to its negative loglikelihood. This would make minimizing the negative
loglikelihood a way to optimize the code lengths and thus a way to optimize
compression.

Because finding the cover which optimizes the likelihood is an NP-complete
problem [9] they use a greedy heuristic to approximate the optimal cover. Given
a transaction t each attribute set X is assigned a weight w(t,X) called the per
attribute likelihood addition, which is the loglikelihood of πX(t) divided by the
amount of attributes in X.

w(t,X) =
log (p(πX(t)))

|X|
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For each transaction t the cover function orders the attribute sets descend-
ingly on these weights, greedily selecting (X,πX(t)) to cover if none of the
previously selected attribute sets overlap with X. The LESS cover function
makes an exception for singleton attribute sets 6. Singleton sets are not taken
into account in the cover order, instead a non-singleton set X can only be used
to cover to cover t iff the likelihood of πX(t) is higher than the likelihood of the
combined singletons.

useful(t) = {X | p(πX(t)) ≥
∏
a∈X

p(πa(t))}

Any attributes not yet covered after considering all useful non-singleton at-
tribute sets will be covered by the singleton attribute sets. Without this feature
singleton attribute sets will be used more often, leading to many low usage at-
tribute sets being added to the solution. Doing this requires little extra work
and can only improve the likelihood of a cover, making it a better approximation
of the optimal cover.

Finding Good Code Tables

The only remaining topic is how LESS attempts to find a good code table. This
is done in the same way KRIMP does. Candidate attribute sets are mined
beforehand with some threshold ε and iteratively added to the code table, ac-
cepting candidates if compression improves, rejecting them if not. The order
in which candidates are considered by LESS is entropy over size, H(X)/|X|.
This should put attribute sets with high likelihood addition at the top of the
candidate list, meaning candidates with high expected usage will be considered
first. LESS also prunes the code table after each addition, attempting to re-
move potentially redundant attribute sets from CTLE .

The authors claim LESS finds very short, high quality descriptions of the
data, needing one to two orders of magnitude fewer attribute sets than KRIMP
requires itemsets.

6A crucial part of the algorithm, unmentioned in the original paper [9]
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3 Research Question

In Section 2 I’ve discussed the KRIMP algorithm [16, 21] which provides a
solution to pattern explosion for frequent itemset mining. This algorithm was
improved on by the SLIM algorithm [17], and used for partitioning by van
Leeuwen et al. [19]. The LESS algorithm [9] provides an approach similar to
KRIMP for low entropy attribute sets. There are many similarities between
frequent itemset mining and low entropy set mining, and many algorithms for
frequent itemsets can be applied to low entropy sets. This makes it interesting
to investigate whether approaches which build on the KRIMP algorithm can be
adapted to work with the LESS algorithm. The MED algorithm [5] has shown
that entropy can be used as an effective tool for partitioning, but provides an
ad hoc approach. This inspired the following research question:

Can we create a generally applicable entropy-based partitioning
method using LESS code tables?

3.1 Subquestions

To answer this question I have divided my research into three sections aiming
to answer the following three subquestions.

• Can LESS be improved with runtime candidate generation?
The SLIM algorithm improved on KRIMP, providing a faster approach
with better compression rates. The way SLIM achieved this is through
runtime candidate generation and accurate estimation of compression gain.
I want to investigate whether the same improvements can be made for
LESS.

• Is it possible to translate the Data-Driven and Model-Driven
methods by van Leeuwen et al. [19] to the context of LESS code
tables?
van Leeuwen et al. suggest their partitioning methods, especially the Data-
Driven one, should be straightforward to adapt to other MDL approaches.
To use LESS code tables for partitioning I will investigate how straight-
forward this adaptation is.

• How does partitioning with LESS code tables compare to parti-
tioning with KRIMP code tables?
Frequent itemsets only consider presence relations between items, whereas
low entropy sets consider data symmetrically. This allows low entropy sets
to capture more types of variable interactions than frequent itemsets. It’s
interesting to explore whether this makes LESS code tables better at
partitioning than KRIMP code tables.
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4 Improvements to LESS

In this section I aim to answer the first subquestion:
Can LESS be improved with runtime candidate generation?

In order to answer this question I will use the SLIM algorithm [17] as a
guideline, attempting to implement their changes to KRIMP to LESS in sim-
ilar fashion. I will discuss how to make LESS suitable for runtime candidate
generation, and what is required to make accurate estimates for compression
gain.

4.1 Candidate Generation

Following SLIM’s approach we can generate candidate attribute sets by com-
bining code table elements from CTLE . The set of candidates F is then defined
as

F = {X ∪ Y |X,Y ∈ CTLE}

KRIMP, SLIM and LESS have all used the standard code table as the start-
ing point of their algorithm, it makes sense to do the same here. As a result,
initially all sets X ∈ CTLE will be singletons. This means for our first set of
candidates F , all attribute sets Z ∈ F contain two attributes |Z| = 2.

The reason SLIM is an improvement over KRIMP is because of their com-
pression gain estimates, allowing them to mostly try good candidates. However
the algorithm should work without these estimates as well, albeit suboptimally.
We might not always pick the optimal candidate, or reject more candidates
before accepting, but adding a candidate to the code table will have the same
effect on compression. This means we should be able to run LESS using this
dynamic candidate set, but this already proved to be problematic. In all of my
initial tests, none of the candidates Z ∈ F of size |Z| = 2 gave any improvement
in compression, even when used in every cover of every transaction. The reason
for this is that the code lengths in CTI are causing unnecessary bias in the
compression gain of candidates.

4.2 Biased Code Lengths in CTI

I will try to provide an explanation for the problem. Consider we have a database
D with n transactions over m attributes. Initially each attribute set is used in
the cover of each transaction leading to all code lengths being log(m). After
adding a candidate X ∪ Y , assuming the best case scenario, X and Y are no
longer used and all other code lengths become log(m − 1). This will always
improve L(D | CTLE).

For CTI the effect of adding X ∪ Y is very different, even in this best case
scenario. Where previously CTI contained only two instantiations, 〈0〉 and
〈1〉, it now contains six instantiations, adding 〈0, 0〉, 〈0, 1〉, 〈1, 0〉 and 〈1, 1〉,
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all sharing the same prefix code. If we ignore Laplace corrections to simplify
matters, we can write L(D|CTI) as the total usage of the code tables, multiplied
by the average expected bits of the code table, its entropy, the same for the new
“best case” code table CT ′I .

L(D | CTI) ≈ nmH(CTI)

L(D | CT ′I) ≈ n(m− 1)H(CT ′I)

For CT ′I to improve on CTI , L(D | CT ′I) ≤ L(D | CTI) this reduces to the
following inequality

H(CT ′I) ≤ mH(CTI)

m− 1

While this is far from a formal proof, it shows that unless D consists of very
few attributes7 this means H(CT ′I) must be near equal to H(CTI) (or lower).
But the new CT ′I contains six instantiations where previously CTI contained
two. Generally speaking the only way for the entropy to become lower is that
one of the two singleton instantiations is (nearly) entirely replaced by one of the
new instantiations. In that case, the rest of the database must have only used
the other singleton instantiation, that is obviously not an interesting database
to analyse. In this explanation I ignored that the gain in L(D |CT ′LE) could in
theory outweigh this loss in compression, because I found that in practice this
did not happen.

The reason LESS avoids this problem is because it considers larger candi-
dates first. Larger candidates are more likely to replace enough singletons in
CTLE to outweigh the initial negative effects on CTI . After a while many sin-
gletons have been replaced and sets of size 2 no longer harm the compression
and can be added to the code table. However if we would inflate a database
with extra attributes, while keeping the candidate set the same, LESS would
also never accept a candidate.

The way CTI is defined causes LESS to be biased towards attribute sets
which have the same cardinality as others already in CTLE . A singleton in-
stantiation can never be paired with a non-singleton attribute set Z, yet it still
influences the code lengths for instantiations of length |Z|. Having many sin-
gleton attribute sets in CTLE leads to longer code lengths for non-singleton
instantiations. I consider this bias to be unnecessary, leading to suboptimal
compression, and likely worse code tables. In the next subsection I will discuss
two alternate definitions for CTI to reduce this bias.

7In which case why use LESS as the number of low entropy sets would be small enough to
inspect manually

24



4.2.1 LESS-Per-Length

The first solution to remove bias from CTI stays close to the original definition
from LESS, but accounts for the fact that an attribute set of size |Z| can
only be paired with instantiations i ∈ {0, 1}|Z|. The idea is to split CTI into
multiple code tables IT , such that there is a separate code table for each length
of instantiation up to the largest set X ∈ CTLE .

IT l = {0, 1}l

CTI = {IT l | l ∈
⋃

X∈CTLE

|X|}

Because instantiations will share a prefix code only with instantiations of
equal length the code lengths will be shorter, determined by the next distribu-
tion:

P (i | D, IT |i|) =
usageIT |i|(i) + 1

|IT |i||+
∑

j∈IT |i| usageIT |i|(j)

Using this definition of CTI adding a two-attribute candidate to the singleton
code table is no longer (practically) guaranteed to worsen compression. I will
refer to the version of LESS using such code tables as LESS-Per-Length or
LESS-PL for short.

4.2.2 LESS-Individual-Instantiations

Even LESS-PL has some potentially unnecessary bias in the code lengths of
CTI , which can be illustrated as follows. Take three attribute sets X,Y, Z of
equal cardinality, suppose the cover function only uses each attribute set for
one (separate) instantiation of high likelihood. Because of their high likelihood
these instantiations are supposed to get relatively short code lengths. Since
each attribute set is used with only one instantiation, you could even argue that
a good model should assign a code length of (near) zero to the instantiations.
In LESS-PL, because the attribute sets use different instantiations from the
same code table IT |X| the instantiations all negatively affect each other’s code
lengths. As a result, despite the high likelihoods, it could very well have been
better to use some differently sized attribute sets with a lower likelihood addi-
tion, to create code tables with better compression.

My solution for this problem is once again to use even more code tables,
redefining CTI to contain a separate code table for each attribute set in CTLE .

CTI = {ITX |X ∈ CTLE}

Code lengths will now be based on the following probabilities

P (i | D, ITX) =
usageITX(i) + 1

|ITX |+
∑

j∈ITX usageITX(j)
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This version of LESS will be referred to as LESS-Individual-Instantiations
or LESS-II.

There are often multiple attribute sets of the same size, giving each attribute
set its own code table sounds like a lot of extra work, but in practice it’s not.
An implementation of these code tables will not have to explicitly model all
instantiations, it suffices to only keep track of the ones which are actually used.
The LESS cover function only uses a handful of different instantiations per at-
tribute set, so this should remain manageable. In addition pruning should also
keep CTLE small.

4.2.3 Which variant should we use?

Both of the variants just introduced solve the bias problem which obstructed us
from using runtime candidate generation, but which of them is better?

Given the same CTLE the compression with LESS-PL is always better than
LESS, since CTI still contains exactly the same instantiations, only the codes
are shorter. The same can’t be guaranteed for LESS-II, as each attribute set
creates some overhead by needing a new code table, increasing the model size
L(CTI | D). Due to the Laplace corrections it is also not guaranteed that the
data compression L(D | CTI) will be more compact. However in general, given
that an attribute set is used often enough, the data compression of LESS-II
should be shorter due to code lengths of CTI being tailored to specific attribute
sets.

Because it is difficult to objectively say which variant provides better models
I will from this point onward consider both, though this does not matter for
most of the choices made in the coming sections. The variants are experimen-
tally compared in Section 6.

4.3 Estimating Candidate Compression Improvement

To make good estimates on the change in compression after adding a candidate
we rely on good estimates of the changes in usage counts after adding a candi-
date. For LESS we must accurately estimate both the changes in CTLE and in
CTI , as compression gained in L(D, CTLE) can easily be undone by changes in
CTI .

4.3.1 Consequences of the Cover Function

The usage counts of attribute sets and instantiations depend on the cover func-
tion. The simplicity of the cover function used by KRIMP [21] has multiple
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benefits for the SLIM algorithm [17]. Because itemsets are ordered by cardinal-
ity a candidate will always be used in a cover if previously both parent itemsets
were used. The ordering on cardinality also make its impossible for a candidate
to replace a larger itemset in a cover, as the larger itemsets are considered first.
This means a candidate can only lower the usage of smaller itemsets, generally
this is a good thing for KRIMP code tables. Fewer itemsets required per cover
lead to lower total usage, which will generally lead to shorter codes. The ex-
ception where adding a candidate leads to a higher total usage count is when
a candidate partially replaces a smaller itemset in a cover, but the remainder
has to be replaced by multiple smaller itemsets. This situation is either rare or
has no large effect on compression, as SLIM manages to make good estimates
without taking this into account.

The Likelihood Cover Function

The cover function for LESS is more complicated, giving no guarantee that a
candidate attribute set replaces its parent sets in every cover where both parents
were previously used. Instead a candidate needs to have a better likelihood
addition than both parent sets.

w(t,X ∪ Y ) ≥ max (w(t,X), w(t, Y ))

To know these weights we need to know the likelihoods of all instantiations of
X ∪ Y , requiring us to pass over the entire database. This is expensive, but it
does tell us exactly for which covers the parent attribute sets will be replaced.

This allows us to make good estimates for the first few additions to the code
table, but after CTLE contains a few overlapping attribute sets the estimates
become very inaccurate. Candidates with large expected gain are rejected for
having negative gain, and at some point candidates with no expected gain will
end up improving the solution.

The main reason for this occurs when a candidate overlaps with a larger
attribute set. If the candidate has a higher likelihood addition for some trans-
actions it will replace the larger set. Because the candidate set is smaller, the
remaining attributes need to be covered by other sets, which increases the total
usage count of the code tables, causing longer codes. For SLIM this situation
was impossible, as a large itemset could never be replaced in a cover by a new
smaller set.

Taking into account this situation would require comparing w(t,X ∪ Y ) to
the likelihood addition of all (larger) overlapping attribute sets. Doing this and
then “estimating” the change in compression is effectively the same as adding
the candidate to the code table and calculating the actual compression. This
shows that the likelihood cover function does not provide enough structure for
accurate and efficient estimation.
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4.3.2 Using A Different Cover Function?

If we wish to make good estimates to use with runtime candidate generation we
are forced to use a different cover function, but should we? And what should
be the new cover function?

One cover function I’ve tried is similar to the Area ascending cover func-
tion [21], tried for KRIMP. This cover function considers the database as an
area that needs to be covered and each cover element as a tile covering certain
cells of the database. A cover element (X, i) would be ordered based on the
support of (X, i) multiplied by its cardinality, this is the maximum area a cover
element can potentially cover. This cover function turned out to be too similar
to the likelihood cover function, providing too little structure. I suspect that
unless we use the same cover order on CTLE for all transactions we won’t be
able to make good estimates.

As explained in Section 2.5.2 we can’t use the same cover order for ev-
ery transaction, as we would end up only using the same greedily picked non-
overlapping large sets in every cover. This would result in only a handful of
patterns, a vastly different kind of reduction in patterns compared to what
KRIMP does for itemset mining.

It appears that any cover function will either lack exploitable structure for
making good estimates, or significantly simplify the code tables to the point
where the algorithm no longer serves its initially intended purpose.

4.4 Conclusions

Can LESS be improved with runtime candidate generation?
The original LESS algorithm is not suitable for runtime candidate generation,
as small attribute sets are extremely unlikely to improve compression of the
standard code table. This can be helped by redefining CTI as I’ve done in my
suggested variants of LESS-PL and LESS-II. Using either of these variants
LESS code tables can be found using runtime candidate generation, however
the likelihood cover function provides too little structure to allow for accurate
compression estimation. Using a different cover function will change the algo-
rithm to the point where it becomes unsuitable for its original application. I
have to conclude that LESS can’t be improved with runtime candidate gener-
ation, because of this I will continue with the original heuristic for finding code
tables, using a set of mined candidates.
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5 Partitioning with LESS(-variants)

In this section I aim to answer the most important subquestion:
Is it possible to translate the Data-Driven and Model-Driven meth-
ods from van van Leeuwen et al. [19] to the context of LESS code
tables?

The section will be split into three different parts. In the first subsection
I will investigate how to integrate LESS into the Data-Driven partitioning al-
gorithm [19]. The second subsection similarly considers how to translate the
Model-Driven method to the two code table approach of LESS. In the third
subsection I will propose what I consider to be the most elegant solution.

5.1 Data-Driven Partitioning for LESS

The Data-Driven approach is supposedly easy to translate to other MDL meth-
ods, which would include LESS. The first consideration for this approach is
whether we should mine new candidate sets for each partition. Candidates
mined for the entire dataset might no longer have low enough entropy in a
partition and vice versa. While the problem is slightly different for itemsets8

I imagine [19] faced the same question and uses the old set of candidates as
mining new candidates for each iteration is very computationally expensive.

Formulating a Data-Driven algorithm for LESS should then be trivial. Be-
gin with an initial random partitioning, and iteratively build code tables and
reassign transactions, until no transactions need to be reassigned. This turned
out to be more problematic than expected. The partitioning often did not stabi-
lize as transactions would continuously change partitions. It was also not simply
that transactions would swap between two partitions in a small loop. Instead
each iteration lead to a new partitioning, so there were no easily detectable
loops. This makes it difficult to justify halting the algorithm prematurely, so
instead I investigated what caused this behaviour.

I found that, given some partition with some code table built on the parti-
tion, even if only a handful of transactions are added to the partition, the CTLE

built on that partition would be completely different. Generally less than 1 out
of 10 attribute sets from the old code table would still be used in the new code
table. A counterintuitive consequence is that a model MD built for a partition
D, with t ∈ D can be worse at compressing t than the model MD\t built for
the same partition, except t is removed from D. This inconsistency means that
similar partitions don’t necessarily require a similar amount of bits to compress.

Another observation I made was that L(D | CTLE) tends to be much larger
than L(D | CTI) when we partition. One could say this is a good result as low

8support can only go down from partitioning data
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values for L(D | CTI) suggest that we use few different instantiations, meaning
the data being partitioned well. I would argue this is not the case, and that
having CTLE dominate the compression rate is a bad thing. The elements of
CTLE are seemingly a bit arbitrary as evidenced by small changes in partitions
having large changes on CTLE . To have this arbitrary factor dominate com-
pression, the measure by which we determine the ‘optimal’ partitioning, can’t
be desirable.

5.2 Model-Driven Partitioning for LESS

The Model-Driven approach [19] makes copies of the original code table for the
entire dataset and prunes the copies so that they can efficiently encode different
parts of the data. To translate this approach to LESS code tables some choices
have to be made, such as whether to copy only CTLE , CTI or both.

Copying CTLE seems like a logical first step, as it is the code table most sim-
ilar to those in KRIMP. Most importantly, it can actually be pruned, whereas
CTI must contain all instantiations per definition.

One problem with copying CTLE stems from a seemingly incomplete for-
mulation of the Model-Driven approach. Transactions are assigned to the code
table providing the shortest encoded length, but the cover order of a code table
depends secondarily on the support of the data it describes, but initially all
partitions are empty. For LESS this problem is even worse as the cover order
depends primarily on likelihood. Without a cover order there is no cover, and
in turn no way to calculate the encoded length of a transaction. I assume they
decided to to use the cover order of the original code table regardless of changes
to partitions.

Another problem area is that there is no suggestion on how to break ties
when two code tables give identical encoded length, which will be the case for
the initial partitioning. One might choose randomly between the best partitions,
but this is effectively a random initialization as with the Data-Driven method,
as initially all code tables are equal. But for the Model-Driven approach the
authors don’t suggest doing multiple runs to cancel out randomness. An alter-
native is to order the partitions and pick the first in the order, but this means
one partition will initially contain all transactions. Another way to handle this
is to break ties by iteratively assigning transactions to the smallest partition in
the tie to more evenly spread the data. If the transactions are ordered this is
technically not random, but for LESS this order will have a big influence on
the outcome.

At first glance copying CTI appears strange, part of the definition of CTI ,
regardless of which LESS-variant we use is that it contains every instantiation.
Surely it can’t be very efficient to have multiple completely filled code tables.
On the other hand, if we use a single CTI for all partitions then L(D | CTI)
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is unlikely to get much shorter. Because we use the cover order from the orig-
inal code table most covers remain the same, attribute sets get shorter codes
from the CTLE copies, but instantiations remain the same. As a result we are
grouping transactions based on using the same attribute sets, while ignoring the
valuations on those attribute sets. This means, we should make copies of CTI .

Even if we ignore the problems that van Leeuwen et al. [19] leave unde-
scribed, following this approach we are likely to run into the same problem we
had with the Data-Driven method, which was that CTLE would dominate the
compression rates. For this reason I suggest a different approach in the next
section, which could be considered a hybrid approach, taking elements from
both algorithms.

5.3 Partitioning Algorithm for LESS

The algorithm I propose for finding a good partitioning with LESS code tables
is given in pseudocode below. The algorithm is the same for all variants of
LESS, but will obviously give different compression rates and results.

Algorithm 1 LESS Partitioning

FindOptimalPartitioning(D, F)

1: CTOG = LESS(D,F)
2: for k = 2 to |D| : rk = FindKPartitioning(D, CTOG)
3: rbest = argmink∈[1,|db|] CompressOptimally(rk)
4: return rbest

FindKPartitioning(D, CTOG)

1: parts = RandomKPartitioning(D, k)
2: do
3: for each pi ∈ parts
4: CTi = copy CTI∈ CTOG, set all usage = 0
5: for each t ∈ pi
6: IncrementUsageCounts(CTi, coverCTOG

(t))
7: SetLaplaceCorrectedCodeLengths(CTi)
8: for each t ∈ D find i s.t. CTi gives t shortest code, assign t to pi
9: while transactions have been swapped

10: return (parts, tables)

The first step is to build a code table CTOG for the entire database D given
some previously mined set of candidates F . This is followed by the partitioning
algorithm, executed for k = [2, |D|].

The partitioning algorithm initially splits D into k random partitions. Ev-
ery k-partitioning uses a single attribute set code table CTLE , which is the one
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used by the original code table. All covers are the same as they were in CTOG.
Because of this L(D,CTLE) will be the same for any partitioning, so we can
ignore it entirely when comparing compression between solutions.

Every partition pi gets its own instantiation code table CTI , which contains
every instantiation from CTI ∈ CTOG. Usage counts of instantiations depend
on the instantiations used in the covers coverCTOG

(t) for all transactions t ∈ pi.
To ensure transactions can be encoded by code tables from other partitions all
instantiations are Laplace corrected, even if an entire subtable in LESS-PL or
LESS-II has 0-usage. Transactions are reassigned to the partition which gives
the shortest encoded length. At some point transactions will no longer swap
partitions, the partitioning and code table are returned.

The final step is to find the partitioning with the best compression. This is
not as straightforward as one would expect. Due to the Laplace corrections, the
more homogeneous the partition the bigger L(CTI |D), as there will be more and
more low- to zero-usage instantiations which get very long codes. This should
not necessarily be a problem, the shorter code instantiations should make up
for it in L(D | CTI). Still, almost always the model with k = 1 turned out to
have the best compression. This implicates there is still some redundancy in
the compression calculation, which gets amplified in models of higher k.

A source of redundancy seems to be the that we compress the bit-representation
of CTI separately for every partition. Because CTI is supposed to contain all
instantiations every code table should contain the exact same instantiations.
I’ve decided instead to count compression bit(i) of the instantiations only once
per partitioning. A downside is that this will be a constant amount of bits
required, depending on the attribute sets in CTLE , regardless of k. However I
expect that this advantage for partitionings of large k is cancelled out by the
amount of codes introducing an extra CTI comes with.

Encoding the Partition Assignment

The methods suggested by van Leeuwen et al. [19] do not mention taking into
account the partition assignments in their compression rates, I consider this a
mistake. For encoding a transaction it is not strictly necessary, one can simply
try all code tables and use the shortest encoding, but for decoding it is a prob-
lem. Each code table forms its own prefix code, which if it were materialized,
might use some of the same code words for different source words. As a result
there might be multiple possible decodings depending on which code table one
uses. To ensure that the transaction encoding remains uniquely decodable we
should always first specify the code table with which to decode the subsequent
code words. The codes specifying which code table to use obviously will become
longer if there are more code tables to choose from. At the very least we should
add log(k) to the encoded length of each transaction. The MDL principle would
suggest we instead take into account the size of partitions as well, increasing

32



compressed size by −|p| log(|p|/|D|).

5.4 Conclusions

Is it possible to translate the Data-Driven and Model-Driven meth-
ods by van Leeuwen et al. [19] to the context of LESS code tables?

A direct translation of the approaches by van Leeuwen et al. [19] is not
possible. Despite it being supposed to work with any MDL method the Data-
Driven approach often does not lead to a stable partitioning, preventing it from
terminating. In addition to this the compression rates are dominated by the
attribute set code tables CTLE , which have the undesirable property of changing
drastically for small changes in partitions. It is possible to define something
similar to the Model-Driven approach, however van Leeuwen et al. [19] leave
some important parts of their method undescribed. Such an approach would
also likely fall victim to similar problems as the Data-Driven variant, with CTLE

dominating compression. Instead I have defined a partitioning algorithm which
takes ideas from both approaches, and eliminates the influence of CTLE by
fixing it over all partitionings. In short, it is possible to translate the ideas from
van Leeuwen et al. [19] to LESS code tables, but less directly than expected.
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6 Experiments

This section contains various experimental results to evaluate the partitioning
algorithm defined in Section 5.3 in order to answer the last of the three sub-
questions: How does partitioning with LESS code tables compare to
partitioning with KRIMP code tables

In the first subsection I will give a summary of the datasets used in the
experiments. In the second subsection I compare the results from the three
variations of LESS with those from van Leeuwen et al. [19]. In addition to this
comparison I will give a visualization of the results for one dataset to gain more
insight into the solutions of the LESS partitioning algorithm. I also ran similar
experiments to van Leeuwen et al. [19] with a different quality measure to get
a more complete view of the quality of my solutions.

6.1 Datasets

For the experiments in Section 6.2.1 I use various UCI datasets [3]. For fair ex-
perimentation the class labels are separated from the data before building code
tables. In Section 6.2.2 I use the European Mammals dataset9 [12] to allow for
a visual inspection of the output. This dataset contains the presence records of
121 mammals in geographical areas of 50× 50 km in Europe.

Table 5 contains basic statistics for the datasets used in the experiments10.
The fourth column contains the purity of the dataset, which van Leeuwen et al.
[19] used as a quality measure for their results. The purity of a partitioning
is the percentage of transactions in D belonging to the majority class of their
assigned partition. The baseline purity is therefore the amount of transactions
belonging to the majority class of the entire dataset.

The right side of Table 5 contains the settings I used for mining low entropy
sets. Attributes with extremely skewed probability distributions were excluded
from candidate mining based on parameter σ to avoid early pattern explosion.
If an attribute value had a probability above σ it was excluded from candidate
mining. These attributes are still part of the code tables as singletons, so that
the compression remains lossless. These parameters were manually determined
in order to get a manageable amount of candidates.

9available upon request from the European Mammal Foundation at https://www.european-
mammals.org

10Pageblocks and nursery values differ from van Leeuwen et al. [19] I assume they made
some errors while typing

34



Dataset Basic statistics Candidate Mining

|D| |I| |C| Purity ε σ |F|
Adult 48842 95 2 76.1 2.9 0.95 108133
Anneal 898 65 6 76.2 2.8 0.95 310777
Chess (kr-k) 28056 40 18 16.2 2.5 0.99 144622
Mammals 2183 121 - - 3.3 0.9 591208
Mushroom 8124 117 2 51.8 2.8 0.9 220259
Nursery 12960 27 5 33.3 3.8 0.99 26114
PageBlocks 5473 39 5 89.8 2.0 0.9985 2091730

Table 5: Statistics on datasets used in experiments

6.2 Results

6.2.1 Comparison with van Leeuwen et al. 2009

In Table 6 I compare the results of my partitioning algorithm with those of
the KRIMP-based algorithms by van Leeuwen et al. [19] based on the achieved
purity. For each LESS-variant code tables are built beforehand to determine
the CTLE with which each partitioning run is performed.

To ensure a fair comparison I looked for k-partitions where k matched the
results reported by van Leeuwen et al. [19]. It would be unfair to compare re-
sults on purity with different k, since a partitioning assigning each transaction
its own partition, in other words k = |D|, will have a purity of 100%, but is
clearly overpartitioned.

Results of the LESS-variants are determined by running the algorithm 25
times to cancel out the random initialization. The result with the best compres-
sion is reported. In some cases the algorithm ends with less than k partitions,
these results are marked with an asterisk to indicate that the comparison is not
entirely fair, favoring the KRIMP-based partitioning.
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Dataset van Leeuwen et al. Purity

Method Optimal k LESS LESS-PL LESS-II KRIMP

Adult Data-D 177 80.4* 81.3* 81.9* 82.2
Model-D 2 76.1 76.1 76.1 76.1

Anneal Data-D 2 76.2 76.2 76.2 76.2
Model-D 19 76.2* 82.2* 81.3* 80.8

Chess (kr-k) Data-D 13 19.9 20.6 18.5 17.8
Model-D 6 18.2 19.4 18.0 18.2

Mushroom Data-D 20 88.9* 96.0* 96.6* 75.6
Model-D 12 93.9* 95.7 95.8 88.2

Nursery Data-D 8 46.9 42.6 47.5 43.4
Model-D 14 62.1 50.6 42.9 45.0

PageBlocks Data-D 30 92.1* 92.3* 92.1* 92.5
Model-D 6 91.0* 90.8 90.9 91.5

Table 6: Comparison of results between Model-Driven and Data-Driven methods
for KRIMP [19] and the LESS-variants

Overall the level of purity achieved by the LESS-variants is comparable
to the results from the KRIMP-based algorithms, with the exception of the
mushroom dataset, where the LESS-variants achieve much higher purity. But
Table 6 does not tell the whole story, as it shows only the output with the
best compression. Considering all 25 runs the output from the LESS-variants
is far from robust. Each run producing an often significantly different output
both in terms of compression and purity, whereas the Data-Driven algorithm
from van Leeuwen et al. [19] is supposedly very robust. In addition to the lack
of robustness, the LESS-variants often select sub-optimal solutions in terms of
purity. This is evidenced by Figure 3 showing there is no correlation between
the purity and compression of a partitioning. The plots for the other datasets11

all look similar, ranging from a Pearson correlation coefficient of 0.3 to -0.3.

11the ones not marked with asterisk
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Figure 3: Scatterplots for Nursery dataset k = 8 : compression vs. purity

6.2.2 Visualized Results on European Mammals dataset

To visually inspect the quality of the results and gain insight into the lack of
robustness I’ve plotted the results of the partitioning with LESS-variants on
the European Mammals dataset onto a map of Europe. Figures 4, 5 and 6 show
the results of 3 experiments per LESS-variant, with 25 runs per experiment for
k = 5, plotting the best of the 25 runs.

Figure 4: Partitionings made with LESS
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Figure 5: Partitionings made with LESS-PL

Figure 6: Partitionings made with LESS-II

I expected the results after 25 runs to at least look similar, but as Figures
4,5 and 6 show, each of the variants has at least one significantly different re-
sult. In terms of solution quality it is worth noting that LESS-II in Figure 6
manages to divide the data into quite spatially coherent clusters. This is quite
promising considering that the algorithm isn’t provided any geographical data.
What does seem odd is that Italy and the British Isles are in the same cluster
in all three results. Perhaps this is also caused by the lack of correlation be-
tween compression and our solution quality measure, as more intuitively correct
groupings were part of the 25 results.

6.2.3 Entropy of Class Distribution

I decided to run more tests on another quality measure and to see if it has a
better correlation with the compressed size of the solutions. Because purity only
looks at the majority classes of partitions it gives limited insight into how well
the data gets separated. If class labels aren’t distributed evenly it is likely that
the majority class for the entire dataset will be the majority class in multiple
partitions, the distribution of the remaining classes in those partitions will be
ignored in the purity score. Therefore it might be more interesting to look at
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the entropy of the class distribution within the partitions, weighted by the size
of the partitions. I calculate this weighted entropy as follows:

Hw(Q) =
∑
pi∈Q

|p|
|D|

H(Cp)

Where Q is a partitioning and Cpi
is the class distribution within a partition

pi.

I ran the experiments on the UCI datasets again, this time with k = |C| as
some of the experiments in Table 6 showed the algorithm does not always reach
the k chosen earlier. The amount of runs are also increased to 100 to make sure
we have enough data points for reliable analysis of the correlation.

Dataset Hw(Q) Pearson’s r

LESS LESS-PL LESS-II LESS LESS-PL LESS-II

Adult 0.79 0.79 0.77 -0.29 -0.25 0.32
Anneal 0.96 0.85 0.71 -0.08 0.33 0.32
Chess (kr-k) 3.20 3.19 3.30 0.40 0.42 0.19
Mushroom 0.98 0.37 0.48 0.30 0.86 0.18
Nursery 1.40 1.38 1.34 0.48 0.27 0.18
PageBlocks 0.48 0.47 0.48 -0.80 -0.67 -0.72

Table 7: Left: Entropy of class distribution for partitioning with best compres-
sion, Right: Pearson correlation coefficient between compression and weighted
class entropy

Table 7 shows that the results vary per dataset and LESS-variant, though it
shows there is at least some correlation between class entropy and compression
for most datasets. The results also show that the LESS-PL and LESS-II models
are mostly better at producing solutions with low class entropy than the original
LESS code tables.

6.3 Conclusions

How does partitioning with LESS code tables compare to partitioning
with KRIMP code tables?
It is difficult to give a decisive answer to this question. The resulting parti-
tionings look acceptable, and in terms of purity the LESS algorithm slightly
outperforms the KRIMP methods, suggesting it is indeed a more powerful
approach. However the KRIMP methods are supposedly much more robust,
outputting roughly the same results for multiple runs. The lack of robustness
with LESS could be remedied by performing even more runs per experiment,
but it is uncertain whether this will necessary lead to better results. The prob-
lem is that compression seems to have little correlation with the selected quality
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measures. Perhaps the data contains more interesting groupings than the class
labels provide, but I would still expect at least a moderate correlation with the
tried quality measures. Combining this with the lack of robustness makes the
algorithm unreliable to say the least. Table 7 suggests that adapting the original
LESS code tables was justified, as both variants produce models with better
distinctive capabilities. All in all I think using low entropy attribute sets for
the partitioning task has potential, but the approach needs to be made more
robust before it can be considered useful.
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7 Conclusion

7.1 Summary

In order to answer the research question:
Can we create a generally applicable entropy-based partitioning method
using LESS code tables? My research was split into three parts.

In Section 4 I tried to improve LESS through runtime candidate genera-
tion, similar to how SLIM [17] gave a better algorithm for finding KRIMP
code tables. The definition of the instantiation code tables from LESS was
fundamentally problematic for any bottom up runtime candidate generation
approach. I gave two variants of LESS to avoid this problem. Despite this it
was not possible to improve LESS through runtime candidate generation. The
cover function provided too little structure, making it impossible to efficiently
make good estimates for compression gain.

In Section 5 I attempted to translate the partitioning approaches from van
Leeuwen et al. [19] to LESS code tables. Surprisingly the Data-Driven ap-
proach, which was expected to work with any MDL approach, did not work
with LESS. The algorithm would often not terminate, and exhibited counter-
intuitive behavior. I also considered how to convert the Model-Driven variant
to the LESS setting, however decided against this approach as it would likely
exhibit the same problems as the Data-Driven variant. Instead in Section 5.3 I
gave a partitioning algorithm which incorporated both approaches, while avoid-
ing most of their downsides.

In Section 6 my partitioning algorithm was compared to the Data-Driven
and Model-Driven approaches for KRIMP. The algorithm produces acceptable
partitions, both visibly and in terms of component purity. The final output of
my algorithm was generally comparable with the KRIMP-based partitioning, if
not better. A major problem however was inconsistency. Separate runs produce
significantly different results, and good compression rates did not seem to corre-
late much to what I would consider higher quality solutions. The models of my
LESS-variants slightly outperform the original LESS code tables in distinctive
capabilities, giving justification for the adaptations.

Because of the inconsistency problems of my partitioning algorithm I must
conclude that neither LESS code tables as defined by Heikinheimo et al. [9] or
my two variants allow for a “generally applicable partitioning method”. Though
the approach does show some promise.

7.2 Discussion and Future Work

The results from Section 6.2 have shown that despite decent results the par-
titioning algorithm for LESS is very inconsistent between runs, variants and
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datasets. I believe this might be due to some underlying problems within the
LESS algorithm. I suspect that LESS finds overfitted code tables12. This would
affect LESS-II the most, because it uses more and smaller code tables for the
instantiations. To verify this I think it would be interesting to test LESS, for
all three variants, on a more clearly defined task such as classification.

Another reason for my suspicions is the fact that LESS is not compatible
with the Data-Driven partitioning [19] despite the seemingly valid claims that
it should work with any MDL method. I believe the problem is caused by the
likelihood cover function. This cover function is aimed at optimizing CTI while
ignoring CTLE , but CTLE tends to be the major contributor to the compressed
size of databases with LESS. The cover function also prohibited us from making
good compression estimates for a faster SLIM-like algorithm. It could be worth
exploring different cover functions even if the results would be less interesting
from a pattern mining perspective as noted at the end of Section 4.

If LESS proves to have problems on other tasks where KRIMP does not
then perhaps it is wise to take a simpler approach to compression, as LESS
might be overcomplicating the problem. A näıve compression of a binary
database would require one bit per cell of the database, and perhaps some small
amount of bits to model that each column is linked to an attribute. Models
produced by LESS always require many more bits to encode than this näıve
encoding13. This is because LESS requires that for each cell we add a code
for the attribute-id, creating the need for CTLE , and allowing for overlapping
attribute sets to be used in covers. However considering that an attribute set
can fit any transaction, maybe using overlapping sets is redundant in and of
itself. A more pure compression approach, although less interesting from a pat-
tern mining perspective, would be to work with solutions of non-overlapping
attribute sets, each assigned an instantiation code table. This should be a more
structured search space, with code lengths directly related to the Shannon en-
tropy of the attribute sets, likely allowing for fast heuristics and Data-Driven
partitioning.

12While MDL should prevent overfitting, maximum likelihood estimation is known to have
problems with overfitting, perhaps the likelihood cover function also causes overfitting

13In Heikinheimo et al. [9] their final solutions require 3 to 7 times as many bits as this
näıve encoding
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