
Bachelor thesis

Numerical continuation of closed invariant
curves of maps and its implementation
in the MATLAB software MatContM

Written by
Luuk Sterke

Under supervision of

Prof. Dr. Yuri A. Kuznetsov
Dr. Hil G.E. Meijer

Faculty of Science
Department of Mathematics

Utrecht University
June 2019

Abstract

This Bachelor Thesis aims at developing new methods for continuation of closed invariant curves
of multi-dimensional diffeomorphisms and their actual implementation in MatContM. This soft-
ware includes the standard predictor-corrector code to continue 1D solution branches implicitly
defined by systems of algebraic equations. Thus, the main task is to formulate and implement
a new defining system to continue closed invariant curves with constant rotation number in two
control parameters. These defining equations are based on the Fourier approximation of the closed
invariant curve and the discretization of the invariancy condition. An auxiliary but important
subtask is to implement an initialization algorithm to start continuation of closed invariant curves
from a given point in the Neimark-Sacker bifurcation curve.

I would like to extend my sincere thanks to:
Yuri Kuznetsov, for the help with understanding the theory in this

thesis,
Hil Meijer, for the tremendous help with implementing and integrating
these methods into MatContM.

3

Contents

1 Introduction 3
1.1 Discrete time dynamical systems . 3
1.2 Orbit structure near a fixed point . 4
1.3 Neimark-Sacker bifurcations . 5

1.3.1 Planar case . 5
1.3.2 Multidimensional case . 8

1.4 Numerical continuation of curves . 10
1.5 MatContM . 11

2 Algorithms and Implementations 13
2.1 Defining system . 13
2.2 Initializer . 14
2.3 Supporting scripts . 15

3 Examples 16
3.1 A delayed logistic map . 16
3.2 An adaptive control map . 19

4 Conclusions 22

A The code for the defining system 26

B The code for the initializer 29

C The code for FCMAP 31

D The code for testciv 32

E The code for PIC 33

1

Preface

Discrete-time dynamical systems generated by iterating diffeomorphisms exhibit various invariant
sets, from fixed points and cycles to chaotic attractors. Closed invariant curves are examples of
nontrivial invariant sets appearing in applications. It is well known that such an invariant curve
can appear as a result of a Neimark-Sacker (NS) bifurcation, when the fixed point changes its
linear stability via a pair of complex eigenvalues passing the unit circle.

There exist well known algorithms for numerical computation of fixed points and their bifurcations
(including NS), which are implemented in the standard MATLAB bifurcation software MatContM.
While some algorithms for continuation of closed invariant curves were proposed in the literature,
they have not been implemented into any standard software for bifurcation analysis of diffeomor-
phisms.

This Bachelor Thesis aims at developing new methods for continuation of closed invariant curves
of multi-dimensional diffeomorphisms and their actual implementation in MatContM. This soft-
ware includes the standard predictor-corrector code to continue 1D solution branches implicitly
defined by systems of algebraic equations. Thus, the main task is to formulate and implement
a new defining system to continue closed invariant curves with constant rotation number in two
control parameters. These defining equations are based on the Fourier approximation of the closed
invariant curve and the discretization of the invariancy condition. An auxiliary but important
subtask is to implement an initialization algorithm to start continuation of closed invariant curves
from a given point in the NS bifurcation curve.

The Thesis includes an Introduction, where necessary mathematical notions and results will be
presented, including the theory of the NS bifurcation. It also contain an explanation of the current
functionality and continuation techniques implemented in MatContM software. Then, a detailed
description of the new algorithms and their implementation in MATLAB is given. The new func-
tionality is illustrated on two examples from applications.

2

Chapter 1

Introduction

1.1 Discrete time dynamical systems
Before we start, let us define a few basic notions and a system of which we want to study certain
properties. In general, we will work with a map

x 7→ f(x, α), (1.1)

where x is some vector in Rn, α is a parameter vector in Rm and f is a smooth function. It will
always be assumed that this map is a diffeomeorphism for each α, at least locally. We will use α,
and later on a parameter β based on α, a lot in this thesis. Most statements, lemmas and theorems
do not work for all α but only for sufficiently small |α|. There is no indication of the limits of α,
as these heavily depend on the concrete definition of f . We will not consider situations where |α|
gets as large as to make our statements incorrect, as for these αs, the behaviour of our system is
not the behaviour we want to study in this thesis.

Our first point of interest are the fixed points of f ; points that remain unchanged under f . More
formally, a point x0 is called fixed if and only if f(x0, α) = x0. The follow-up question to be asked
is whether there are non-fixed points xc for which there is a K > 1 in N such that f (K)(xc, α) = xc,
where f (K) is the Kth iterate of (1.1). Such a point xc is called cyclic, while the collection of all
distinct images under f of a cyclic point is called a cycle.

Letting f act on a point x an arbitrary number of times, we obtain a (forward) orbit,

x, f(x, α), f(f(x, α), α), f(f(f(x, α), α), α), . . . ,

and have created a discrete dynamic system. Backward orbits can be defined similarly using
the inverse of f . As we change the parameter α of this system, the topological properties of our
system, such as number and stability of fixed and cyclic points, may change. In particular, at a
certain value of α, let us denote it by α0, fixed and cyclic points may appear or disappear. Such
a moment in which the topological properties of a dynamical system change is what we call a
bifurcation. Bifurcation theory has many applications. An elementary example from ecology is
the scalar Ricker Map [8]

x 7→ αxe−x

that describes the year-to-year density of a fish population. This map has a trivial fixed point
x0 = 0 for all α > 0. At α1 = 1, the trivial fixed point becomes unstable and a stable nontrivial
fixed point x1(α) = lnα appears. A cycle with period 2 splits from x1 at α2 = e2 = 7.389 . . ., when
this fixed point also becomes unstable via the so called period-doubling bifurcation. Actually, an
accumulating infinite sequence of period-doubling bifurcations happens in (1.10), leading to “chaos”
at approximately α = 14.742

3

4 1.2. Orbit structure near a fixed point

The main object of this thesis will be closed invariant curves. A “closed curve” is a home-
omorphic (and often diffeomorphic) image of a circle. “Invariant” means that whenever we start
at a point on such curve, we will always get to a point on the same curve again when we apply f .
More formally, if curve C is in the domain of f , then C is an invariant curve if for any x0 ∈ C, all
elements in the forward orbit of x0 are again in C. Clearly, closed invariant curves are possible for
n ≥ 2.

On this closed invariant curve we can also define the rotation number ρ, that characterizes
the average angle by which the curve gets rotated if we let f act on it. To formally define the rota-
tion number, let us parametrize the closed invariant curve C by an angle θ (mod 2π) and consider
the map θ 7→ Ψ(θ) induced by the map f , i.e. Ψ(θ) is by definition the angle corresponding to
f(x, α) ∈ C if θ corresponds to x ∈ C. We assume that Ψ preserves orientation on C.

ρ =
1

2π
lim
k→∞

∑k
j=1(Ψj(θ)−Ψj−1(θ))

k
.

Clearly, if we got a rational rotation number ρ = p
q , where p, q ∈ N, then we got cycles in C

x, f(x, α), . . . fK(x, α) = x

of at most length q. The dynamics of smooth maps with irrational rotation numbers is described
by the following classical result.

Theorem 1.1.1 (Denjoy, [1]). If Ψ is at least twice differntiable and ρ is irrational, then Ψ is
topologically equivalent to a rigid rotation through the angle 2πρ, i.e. the map θ 7→ θ+2πρ (mod 2).

1.2 Orbit structure near a fixed point
In this thesis, we will encounter a specific kind of bifurcation: a Neimark-Sacker bifurcation of a
fixed point. We start with a discrete dynamical system as described in Paragraph 1.1. As f is a
function from Rn+m to Rn, the Jacobian matrix

A =
[
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]
(1.2)

is an n× n matrix, in general depending on parameter α. Suppose that at some fixed α0 the map
f has a fixed point x0. Denote by µ1, µ2, . . . , µn the eigenvalues of A. Suppose that there are ns
stable eigenvalues with |µ| < 1, nc critical eigenvalues with |µ| = 1, and nu unstable eigenvalues
with |µ > 1.

Definition 1.2.1. A fixed point is called hyperbolic if nc = 0.

Theorem 1.2.1 (Grobman–Hartman, [3]). Near a hyperbolic fixed point x0 = 0, any diffeomor-
phism x 7→ f(x, α0) is locally topologically equivalent to the linear map x 7→ Ax.

This theorem implies that near a hyperbolic fixed point x0 the qualitative properties of f , specifi-
cally stability of x0 and asymptotic behaviour of orbits near x0, will be the same as of the map

x 7→ Ax. (1.3)

This means that we can expect bifurcations of a fixed point x0 close to our initial parameter value
α = α0, when A has one or more eigenvalues with |µ| = 1. Given a critical parameter value α = α0,
simplest bifurcations of non-hyperbolic fixed points can be categorized into three groups:

• Period-doubling bifurcations [5, pp. 119–124], which occur if A has an eigenvalue µ = −1,

• Fold bifurcations [10], which occur if A has an eigenvalue µ = 1 and

Chapter 1. Introduction 5

• Neimark-Sacker bifurcations [5, pp. 129–137], which occur if A has eigenvalues µ1,2 = e±iθ0 .

The dynamics near a non-hyperbolic fixed point is more complicated and is described by the
following theorem. Write the diffeomorphism (1.3) in its eigenbasis: u

v
w

 7→
 Acu+G(u, v, w)

Auv + U(u, v, w)
Asw + S(u, v, w)

 , (1.4)

where (u, v, w) ∈ Rnc×Rnu×Rns , so that matrix Ac has nc eigenvalues with |µ| = 1, while Au and
As have only unstable and stable eigenvalues, respectively. HereG,U, S begin with nonlinear terms.

We then apply the Center Manifold Theorem for n dimensional maps.

Theorem 1.2.2 (Center Manifold Theorem, [9]). If (u,v0, w0) = 0 is a non-hyperbolic fixed point
of (1.4) then there exists a local smooth invariant nc-dimensional center manifold

W c = {(u, v, w) ∈ Rn : (v, w) = H(u)}

where H : Rnc → Rnu × Rns is such that H(u) = O(‖u‖2).

Moreover, the diffeomorphism (1.4) is locally topologically equivalent near the origin to u
v
w

 7→
 Acu+ g(u)

Auv
Asw

 ,

where g(u) := G(u,H(u)).

Though the dynamics on the center manifold near the non-hyperbolic point do depend on nonlinear
terms, the dynamics in the stable and unstable eigenspaces are still equivalent to those of linear
maps.

1.3 Neimark-Sacker bifurcations
Before we can analyze Neimark-Sacker bifurcations, we will need to find a normal form of f , a
simplification of f that does not change f ’s local qualitative properties. We will formulate such a
normal form based on [5], in which some of the proofs of the results we need can also be found.

1.3.1 Planar case
Matrix A(α) in which we vary the parameter α ∈ R has two eigenvalues, depending on this α,
denoted by µ1,2(α) = r(α)e±iθ(α). From our initial eigenvalues µ1,2 = e±iθ0 , we find that in µ(α)
we must have r(α0) = 1 and θ(α0) = θ0.
Now we introduce a smooth function β(α), so that we can substitute r(α) by 1 + β(α), such that
β(α) = β(α0) = 0 and suppose that β′(α0) 6= 0, so we can use β as our new unfolding parameter.
Then we can rewrite our eigenvalues as µ1(β) = µ(β) = (1 + β)eiφ(β) and µ2(β) = µ(β), the
complex conjugate of µ1(β). Now we will rewrite our map as a map of one complex variable,

z 7→ µ(β)z + g(z, z, β), (1.5)

with a function g we will find now.
First, let q(β) and p(β) be eigenvectors of A(β) and AT (β), the transposed of matrix A(β), re-
spectively. Then we normalize p(β) with respect to q(β), so we have 〈p(β), q(β)〉 = 1. Here
〈p(β), q(β)〉 = p(β)T q(β) is the standard complex vector inner product.
We can now uniquely define the variable z in (1.5), since any x ∈ R2 can be written as zq(β)+zq(β)

6 1.3. Neimark-Sacker bifurcations

for some z ∈ C. We extract z from this equation by taking the inner product with p(β) and then
using basic rules for the inner product. This gives us the expression

z = 〈p(β), x〉.

Now, using (1.11) and substituting x, we see that the system defined in (1.5) is equivalent to

z 7→ µ(β)z + 〈p(β), F (zq(β) + zq(β), β)〉.

From this we conclude that

g(z, z, β) = F (zq(β) + zq(β), β)〉.

Considering that we know F is the Taylor expansion of f , we can further define g(z, z, β) as

g(z, z, β) =
∑
k+l≥2

1

k!l!
gkl(β)zkzl,

where gkl denotes the lth partial derivative of g with respect to z followed by the kth partial
derivative with respect to z.

In the following lemmas we will omit parameter β, writing µ = µ(β) and gkl = gkl(β).

Lemma 1.3.1. If eiθ0 6= 1 and e3iθ0 6= 1, we can transform the map

z 7→ µz +
g02
2
z2 + g11zz +

g20
2
z2 +O(|z|3),

into the map

w 7→ µw +O(|w|3),

using an invertible change of coordinates

z = w +
h20
2
w2 + h11ww +

h02
2
w2,

where

h20 =
g20

µ2 − µ
, h11 =

g11
|µ|2 − µ

, h02 =
g02
|µ|2

.

Lemma 1.3.2. If e2iθ0 6= 1 and e4iθ0 6= 1, we can transform the map

z 7→ µz +
g30
6
z3 +

g21
2
z2z +

g12
2
zz2 +

g03
6
z3 +O(|z|4)

into the map

w 7→ µw + c1w
2w +O(|w|4),

using an invertible change of coordinates

z = w +
h30
6
w3 +

h21
2
w2w +

h12
2
ww2 +

h03
6
w3,

where

h30 =
g30

µ3 − µ
, h12 =

g12
µ|µ|2 − µ

, h03 =
g03

µ3 − µ
..

Chapter 1. Introduction 7

Note that we did not mention an expression for h21. This is because the expression we would like
to use for h21,

h21 =
g21

µ(1− |µ|2)
,

is not smooth around β = 0. Indeed, as β approaches zero, µ(β) approaches one, resulting in h21
diverging to ±∞. Therefore we will set h21 = 0, which gives

c1 =
g21
2
.

Now we combine these results. With the same definitions as before, we get a transformation of our
original map, formulated slightly differently.

Lemma 1.3.3. The map

z 7→ µz +
g20
2
z2 + g11zz +

g02
2
z2 +

g30
6
z3 +

g21
2
z2z +

g21
2
zz2 +

g03
6
z3 +O(|z|4)

can be transformed into the map

w 7→ µw + c1w
2w +O(|w|4)

using a smooth invertible transformation

z = w +
h20
2
w2 + h11ww +

h02
2
w2 +

h30
6
w3 +

h12
2
ww2 +

h03
6
w3

with suitable hjk, j, k ≥ 0, 2 ≤ j + k ≤ 3.

We need to recompute c1 for the new coordinate system, using the Taylor coefficients of the original
map, resulting in

c1 =
g20g11(µ− 3 + 2µ)

2(µ2 − µ)(µ− 1)
+
|g11|2

1− µ
+

|g02|2

2(µ2 − µ)
+
g21
2
, (1.6)

which is again a function of β. At the bifurcation parameter value, β(0) = 0 and

c1(0) =
g20(0)g11(0)(1− 2µ0)

2(µ2
0 − µ0)

+
|g11(0)|2

1− µ̄0
+
|g02(0)|2

2(µ2
0 − µ̄0)

+
g21(0)

2
, (1.7)

where µ0 = eiθ0 .

Let us now first consider the planar case.

Theorem 1.3.4. Consider a two dimensional discrete time system

x 7→ f(x, α), x ∈ R2, α ∈ R, (1.8)

where

• f is a smooth function,

• for small enough |α|, f has a fixed point at x = 0.

• at this fixed point, the Jacobian matrix of f has eigenvalues µ1,2(α) = r(α)eiφ(α), where
r(0) = 1 and φ(0) = θ0,

• r′(0) 6= 0,

• eikθ0 6= 1 for k = 1, 2, 3, 4, which is equivalent to θ0 /∈ {0, π2 , π,
2π
3 }.

8 1.3. Neimark-Sacker bifurcations

Then, by smooth invertible coordinate and parameter changes, we can transform the map (1.8) into

z 7→ (1 + β)eiθ(β)z + c1(β)z|z|2 +O(|z|4), z ∈ C, β ∈ R, (1.9)

which is equivalent to[
y1
y2

]
7→ (1+β)

[
cos θ(β) − sin θ(β)
sin θ(β) cos θ(β)

] [
y1
y2

]
+(y21+y22)

[
cos θ(β) − sin θ(β)
sin θ(β) cos θ(β)

] [
a(β) −b(β)
b(β) a(β)

] [
y1
y2

]
+O(‖y‖4),

(1.10)

where z = y1 + iy2 and ‖y‖ is the standard Euclidian norm,
√
〈y, y〉, θ(0) = θ0, c1 is the func-

tion from formula (1.6) and a(β) and b(β) are real-valued functions such that a(β) + ib(β) =
e−iθ(β)c1(β).

It is easy to see that map (1.10) without the O(‖y‖4)-terms has a unique closed invariant curve,
provided a(0) 6= 0. Then we get to perhaps one of the most important theorems in this thesis:

Theorem 1.3.5 (Generic Neimark-Sacker bifurcation). Consider a map (1.8) that satisfies all
conditions of Theorem 1.3.4, as well as a(0) 6= 0. Then there exists a neighbourhood of x0 = 0 in
which a unique closed invariant curve bifurcates from x0 as α passes through α = 0.

Figure 1.1: Here we see the subcritical case. The red circle represents a repelling invariant curve.

Definition 1.3.1. The real number

a(0) := Re(e−iθ0c1(0))

is called the first Lyapunov coefficient for the Neimark-Sacker bifurcation.

The smoothness of the closed invariant curve appearing at the NS-bifurcation according to Theorem
1.3.5 is in general finite but increases when α approaches the critical parameter value α = 0.

1.3.2 Multidimensional case
As A is the matrix representing the first order terms in f ’s Taylor expansion, we can write our
system around the given fixed point x0 as

f(x0 + x, α0) = x0 +A(α0)x+
1

2
B(α0;x, x) +

1

6
C(α0, x, x, x) +O(‖x‖4). (1.11)

Chapter 1. Introduction 9

Figure 1.2: Here we see the supercritical case. The green circle represents an attracting invariant
curve.

Here B and C are multi-linear vector functions of dimension n with the ith coordinates

Bi(α0;x, v) =

n∑
j,k=1

∂2fi(ξ, α0)

∂ξj∂ξk

∣∣∣∣
ξ=x0

xjvk,

Ci(α0;x, v, w) =

n∑
j,k,l=1

∂3fi(ξ, α0)

∂ξj∂ξk∂ξl

∣∣∣∣
ξ=x0

xjvkwl .

Let µ1, µ2, . . . , µn again be the eigenvalues of the Jacobian matrix, depending on α. As before,
assume that there are nc eigenvalues with |µ| = 1, ns eigenvalues with |µ| < 1 and nu eigenvalues
with |µ| > 1. Now we assume there is a fixed point x0 = 0 at α0 = 0, which we could force by
translation, if necessary. Introduce a new map(

α
x

)
7→
(

α
f(x, α)

)
, (1.12)

where α ∈ Rm. Then at the fixed point (x0, α0) = (0, 0) we get the Jacobian matrix

J =

[
Im 0

fα(0, 0) fx(0, 0)

]
,

where Im is the unit m×m matrix, fα(0, 0) is an m×n matrix with on rows the partial derivatives
of f with respect to αj , where j is the column number as well as the number of the component
of α with respect to which we take a partial derivative and fx(0, 0) is our matrix A from (1.2).
Matrix J has (nc +m) eigenvalues with absolute value 1 and (n− nc) eigenvalues with a nonzero
|(µ|−1). Now let the space with a basis of (generalized) eigenvectors corresponding to the (nc+m)
eigenvalues on the unit circle be denoted by T . Now by the Center Manifold Theorem 1.2.2, there
is a locally defined smooth (nc +m)-dimensional manifold W , that is tangent to T in x0. Now as
α remains unchanged by (1.12), every set of the form {(α, x) : α = α0} is invariant with respect to
this map. This means that for each α we get a separate invariant manifold Wα of dimension nc.
We also call Wα a center manifold.

We will now introduce some local coordinates u ∈ Rnc on Wα and look at the restriction of
(1.12) to Wα

u 7→ Φ(u, α), (1.13)

10 1.4. Numerical continuation of curves

which is again a smooth map. At α = 0 it has a the fixed point u = 0 with nc eigenvalues with
absolute value 1.

We now apply these results to the Neimark-Sacker bifurcation in the n-dimensional case. Here the
matrix A(0) has nc = 2 critical eigenvalues, so that map (1.13) is two-dimensional and exhibits a
planar Neimark-Sacker bifurcation discussed above. We know that there is a complex coordinate
in which (1.13) can be written as

w 7→ Φβ(w) = eiθ(β)(1 + β)w + c1(β)w|w|2 +O(|w|4)

with β a smooth function of α as in the planar case, θ(0) = θ0, and c1(β) the same function as in
(1.6). One can prove (see [5, 7]) that

c1(0) =
1

2
〈p, C(q, q, q) + 2B(q, (In −A(0))−1B(q, q)) +B(q, (e2iθ0I)n−A(0))−1B(q, q)))〉 ,

where q, p ∈ Cn are such that

A(0)q = eiθ0q, AT (0)p = e−iθ0p

and 〈q, q〉 = 〈p, q〉 = 1. From the first Lyapunov coefficient a(0) = Re(e−iθ0c1(0)), we can draw
conclusions about dynamics on the the center manifold exactly as in the planar case, see Figures
1.1 and 1.2. The stability of the center manifold itself depends on the numbers ns and nu.

1.4 Numerical continuation of curves

The numerical continuation of a curve here is the approximation of a curve by using the predictor-
corrector technique [4, 7]. In short the idea is to start in a point X0 and use a defining function
F to guess the next point, X1, using the derivative of F in X0. Then we correct this prediction by
solving systems of equations. This process is known as the Moore-Penrose algorithm. Generally,
we want to formulate our initial problem as a suitable algebraic problem

F (x) = 0,

where the defining function F is a function from RM to RM−1, with M depending on the problem.
F is also known as the defining system. For the continuation, both F and its partial derivatives
are being used. When the initial point x(0) on the curve has been found, that means that x(0)
satisfies F (x(0)) = 0, we predict what the next point on a curve will be by taking a small step into
the direction of the curve at x(0). Lets say this tangent vector is v(0), then we predict that our
next point will be

X0 = x(0) + hv(0).

In general, X0 will not be the correct next point on the curve, so we need to correct X0 in order to
get the next point on the curve x(1). As we know that x(1) has to be on the curve and for small h it
has to be in this direction somewhere, we will try to find x(1) by solving an optimization problem
using our approximation and knowledge about F . We get

x(1) = min
x∈RN+1

{‖x−X0‖|F (x) = 0}.

Finding this minimum is equivalent to computing X satisfying{
F (X) = 0,
〈v,X −X0〉 = 0,

Chapter 1. Introduction 11

where v is the tangent vector to the curve F (x) = 0 at X. Using the linear approximation, we
replace this system by{

F (X0) +DF (X0)(X1 −X0) = 0,
〈V 0, X1 −X0〉 = 0,

where V 0 is the normalized tangent vector to F (X) = F (X0) at X0, i.e.

DF (X0)V 0 = 0, ‖V 0‖ = 1,

and where X1 is our next best approximation for x(1) (see Figure 1.3(a)). However, X1 may not
yet be close enough to the real x(1) and we may want to get more precision. In this case, we repeat
part of the process. Now we will have the normalized tangent vector V 1 of F (X) = F (X1) in the
point X1 such that

DF (X1)V 1 = 0, ‖V 1‖ = 1,

and try to find a better approximation X2 by solving the new system{
F (X1) +DF (X1)(X2 −X1) = 0
〈V 1, X2 −X1〉 = 0.

With every such step we will get closer to some point x(1) in the curve. If after k such steps both

(a) (b)

V 1

V 1

V 2

V 2

F (x) = 0 F (x) = 0

F (x) = F (X0)
F (x) = F (X0)

v(i+1)
v(i+1)

x(i)

v(i)

V 0

X1

X0

x(i+1)

V 1

V 0

X2

x(i)

v(i)

x(i+1)

X1

X0

Figure 1.3: Numerical continuation: (a) Moore–Penrose algorithm; (b) its simplified implementa-
tion in MatContM.

the correction ‖Xk −Xk−1‖ and the error ‖F (Xk)‖ are smaller than some margin of error ε, we
take x(1) = Xk and we repeat the whole process to find the next point on the curve, x(2). Actually,
the algorithm implemented in MatContM is slightly different (see Figure 1.3(b)), but the idea is
the same.

If we use a small step size h, this numerical continuation of the curve will approach the exact curve,
if we connect the points x(0), x(1), . . . , x(L) for some L to which we wish to continue the process.

1.5 MatContM
For the numerical continuation of points, fixed points and curves, there is a piece of software
created in the domain specific language of MATLAB, that goes by the name of MatContM [4].
The software is able to provide its users with:

• Simulation and visualization of maps as described above.

12 1.5. MatContM

• Computation of the Lyapunov exponent at any point in the orbit of a map.

• Continuation of fixed points of maps depending on the given control parameter, such as our
α.

• Detection of bifurcations such as the Neimark-Sacker bifurcation, but also fold and flip bi-
furcations.

• Continuation of these bifurcations, as well as computing their normal forms, all in two control
parameters.

• Computation of both stable and unstable one-dimensional invariant manifolds.

• Continuation of orbits with respect to a control parameter like α and the detection of tan-
gencies on the curve of orbits.

There are a few more features, that we will not mention here, as they are not directly related to
the thesis and the scripts we will write and/or edit here.

The main functionality we are interested in, is the continuation of invariant manifolds. MatContM
does this in two distinctive steps, categorized as the initializer and the continuer. The initializer
is also known as the starter, these terms will be used interchangeably.
Typically a user will use the MatContM GUI to define a map and provide and/or has the software
provide its derivatives. Then the initializer produces the first point from which the continuation
will start. This point can be point of the user’s choice, but we can also compute a point on the
invariant curve, if one is present. The initializer in this thesis will not produce a point however,
but it will produce the start of the invariant curve instead. Then MatContM allows the user to
see how this point changes if we iterate with f or how a fixed point or invariant curve evolves if
we change f ’s control parameters. The latter is done by numerical continuation.

Chapter 2

Algorithms and Implementations

Before we can start the iterative continuation of our invariant curve, we need to specify a defining
function F for it. Also, we need to starting point x(0) from which we will begin the continuation
of the curve. This starting point is produced by the initializer. The main objective of this thesis
is to develop a defining system and an initializer, and to include their numerical implementations
in MatContM.

2.1 Defining system
Assume that our map (1.1) has a sufficiently smooth closed invariant curve C with an irrational
rotation number ρ. Further assume that we can parametrize C by a smooth function θ 7→ x(θ)
with θ (mod 2π), such that

f(x(θ), α) = x(θ + 2πρ) (2.1)

for all θ. According to Fourier theory, any sufficiently smooth periodic function can be written as
a convergent trigonometric series. Next, we truncate the series to order N and now we need to
find the coefficients a0, ak, bk ∈ Rn (1 ≤ k ≤ N) in the expression

x(θ) = a0 +

N∑
k=1

ak cos(kθ) + bk sin(kθ). (2.2)

This is done by evaluating (2.1) at the equidistant points

θj =
2πj

2N + 1
, 0 ≤ j ≤ 2N.

This yields a system of (2N + 1) equations if ρ is fixed:
f(x(θ0), α) = x(θ0 + 2πρ)

f(x(θ1), α) = x(θ1 + 2πρ)
...
f(x(θ2N), α) = x(θ2N + 2πρ).

Each equation is in fact n-dimensional, so that we have here a system of n(2N+1) scalar equations.
Its solution is not unique since a translation y(θ) := x(θ+φ) with any φ also defines the same closed
invariant curve. To make the solution unique one can set a component to be zero, e.g. b1,1 = 0
and remove it from the unknowns. Since ρ is fixed, one must add one more model parameter to
the continuation variables to guarantee the solvability, as an invariant curve with rotation number
ρ may not exist otherwise. Next one can turn this into a continuation problem by freeing one more
model parameter.

13

14 2.2. Initializer

Note that we have (N + 1) ai-terms and N bi-terms, with each n components, combined with two
one-dimensional parameters. Thus, we have

M = (2N + 1)n+ 2

continuation variables. If we now define

X = (a0, a1, b1, a2, b2, . . . , aN , bN , α1, α2) ∈ RM

and set

F1(X) := f1(x(θ0), α)− x1(θ0 + 2πρ)
...
Fn(X) := fn(x(θ0), α)− xn(θ0 + 2πρ)

Fn+1(X) = f1(x(θ1), α)− x1(θ1 + 2πρ)
...
FM−2(X) := fn(x(θ2N), α)− xn(θ2N + 2πρ)

FM−1(X) := b1,1,

(2.3)

where x(θ) is defined as in (2.2), we obtain the continuation problem

F (X) = 0, F : RM → RM−1,

that will be needed to run the continuer. In this way we will approximate numerically a closed
invariant curve with a fixed rotation number.

The defining system has been programmed in MATLAB, the code can be found in Appendix
A.

2.2 Initializer

At the Neimark-sacker bifurcation, the critical center manifold W c
0 is tangent to the 2D eigenspace

of A corresponding to the pair of eigenvalues e±iθ0 . This eigenspace can be parametrized by z ∈ C
as

zq + zq = 2Re(zq),

where q = qR + iqI ∈ Cn is the normalized eigenvector associated to eiθ0 . This plane still approxi-
mates the parameter-dependent center manifold W c

α for small |α| 6= 0, when the map has a closed
invariant curve. Thus, we can approximate this closed invariant curve in W c

α using z = εeiθ, i.e.

2Re(zq) = 2Re [ε(cos θ + i sin θ)(qR + iqI)] = 2ε(qR cos θ − qI sin θ),

where ε > 0 is a small user-defined parameter. Indeed, if we keep only the leading linear term in
(1.9) and assume that β = 0, any closed curve z = εeiθ will be invariant with the rotation number

ρ0 =
θ0
2π
.

The final initializer algorithm will look as follows. Take a fixed point x0 at the Neimark-Sacker
bifurcation parameter value α0 and compute its complex eigenvector q = qR + iqI corresponding
to eiθ0 . Use as an approximation to the first closed invariant curve

x(θ) = x0 + 2ε(qR cos θ − qI sin θ)

Chapter 2. Algorithms and Implementations 15

with a small ε > 0. Furthermore, approximate the parameter value at with this curve will exist
α = α0 and use ρ = ρ0 defined above as the constant rotation number in the defining system (2.3).

Since the defining system is formulated in terms of the Fourier coefficients, we have

a0 = x0, a1 = 2εqR, b1 = −2εqI .

Note that the eigenvector q should be scaled to satisfy qI,1 = 0 to assure that b1,1 = 0, which is
always possible.

The way this has been implemented in MATLAB can be found in Appendix B.

2.3 Supporting scripts
Besides the two main scripts, we have also created a few scripts that support the two scripts de-
scribed above. The FCMAP script, which is an edited script from Hil Meijer, evaluates the Fourier
coefficients and returns the vector X as a vector of all components of a point x on the invariant
curve evaluated at θ.

The testciv script is a function that accepts the starting fixed point and parameter values and
a map, and then calculates where the bifurcation happens, calls the functions we implemented to
initialize and continue the closed invariant curve and returns a big matrix with on each column
the non-fixed Fourier coefficients of the closed invariant curve and under that the active parameter
values corresponding to that curve. This is also an edited script from Hil Meijer. In both these
scripts the edit includes generalizing the scripts to work on any given map.

The last script we used here is the PIC script, which is short for Plot Invariant Curve. We
have written this script to accept any amount of columns from the matrix X outputted by the
continuer, or equivalently, by the testciv script. It adds the zero on the fixed Fourier coefficient
and draws all closed invariant curves defined by the columns in matrix X. The script accepts two
arguments that define which dimensions should be plotted. The individual final curves are being
drawn by standard MATLAB functions.

All of these scripts can be found in appendices C - E. In the scripts, some other scripts from
MatContM are also called. These are unchanged and can be found in the current MatContM
software.

Chapter 3

Examples

Of course we want to see that our methods work and verify that they in fact produce a series of
invariant curves. As we want our methods to work for any map f that fits the criteria as described
in Chapter 1, we will include two examples with different dimensions and parameters. This will
ensure that the methods allow for a wide variety of maps to be analyzed. We will run the scripts
we created using N = 15. Curves will be drawn using a different script that uses the standard
MATLAB functionality to draw a continuous curve depending on one parameter θ.

3.1 A delayed logistic map
Our logistic map will keep track of the evolution of a population over time, where every step
represents one year having past. As in a MatContM example on a logistic map [6], we will be
looking at the recurrent relation

xk+1 = rxk(1− xk−1) + ε,

that depends on two parameters and where the next state depends on two previous states of the
system. The r parameter represents the growth rate and the ε parameter represents the migration
rate. To deal with this dependence on last year for calculating the value for next year, we introduce
a variable

yk = xk−1

that keeps track of the previous year. Combining these, we can turn the equations into an iterative
2D map(

x
y

)
7→
(
rx(1− y) + ε

x

)
. (3.1)

Using the current functionality of MatContM, we can find fixed points of this map and we can find
parameter values and a fixed point corresponding to these parameter values at which a Neimark-
Sacker bifurcation occurs.

In figure 3.1 and figure 3.2 we have drawn the closed invariant curves as produced by our ex-
tension of MatContM.

Parameter values for figure 3.1
r 1.8182 1.8186 1.8203 1.8244 1.8312 1.8415 1.8567 1.8787 1.8925 1.9073
ε 0.1000 0.1007 0.1035 0.1098 0.1188 0.1300 0.1423 0.1544 0.1598 0.1647

16

Chapter 3. Examples 17

Parameter values for figure 3.2
r 1.8182 1.8186 1.8203 1.8244 1.8312 1.8415 1.8567 1.8787 1.8925 1.9073
ε 0.1000 0.1007 0.1035 0.1098 0.1188 0.1300 0.1423 0.1544 0.1598 0.1647
r 1.9167 1.9261 1.9384 1.9565 1.9871 2.0388 2.0539 2.0678 2.0751 2.0806
ε 0.1676 0.1702 0.1727 0.1742 0.1726 0.1644 0.1616 0.1591 0.1579 0.1571
r 2.0853 2.0870 2.0831 2.0727 2.0574 2.0502 2.0796 2.1319
ε 0.1566 0.1566 0.1570 0.1573 0.1562 0.1510 0.1380 0.1201

Figure 3.1: The evolution of the delayed logistic map’s closed invariant curve bifurcating from the
fixed point x0 = (0.55, 0.55) at r = 1.8181, ε = 0.1.

18 3.1. A delayed logistic map

Figure 3.2: If we continue further, we see that the curve loses smoothness and starts to intersect
itself.

Chapter 3. Examples 19

3.2 An adaptive control map
The other example we will use is an adaptive control map introduced in [2]. This map is defined
as x

y
z

 7→
 y

bx+ k + zy

z − ky
c+y2 (bx+ k + zy − 1)

 , (3.2)

where b, k and c are parameters. This map is slightly more complicated and we use it here to
illustrate that the MatContM software can also handle maps that have more than 2 dimensions
and any amount of parameters. Keep in mind however that we do not vary all of these parameters
when we continue its closed invariant curve. Again with the functionality of MatContM, we see
that from the fixed point x0 = (1, 1, 0.3838) of (3.2) at parameter values b = −0.5238, k = 1.14 and
c = 0.1, a closed invariant curve appears. This will then be the fixed point used by the initializer
to find the first closed invariant curve.

We keep c = 0.1 constant here, as we only continue curves by varying two parameters. As we
said, the interval in which the parameters still define a function with a closed invariant curve can
vary quite a lot. In the adaptive control map, the twenty-second curve we calculated, or the out-
ermost curve displayed in figure 3.3, has parameter values b = −0.5122, k = 1.1965 and c = 0.1.
This gives a rough estimate of the parameter value ranges we deal with. In comparison, the last
smooth curve we calculated for the delayed logistic map was found when the parameters r and ε
of (3.1) had values 1.9073 and 0.1647 respectively.

In figures 3.3 and 3.4 the evolution of the invariant curve can be seen. The tables containing
the parameter values that correspond to these curves can be found below as well.

Parameter values for figure 3.3
b -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5237 -0.5237 -0.5236 -0.5234
k 1.1400 1.1400 1.1400 1.1400 1.1400 1.1401 1.1401 1.1403 1.1405

b -0.5230 -0.5224 -0.5216 -0.5206 -0.5195 -0.5181 -0.5165 -0.5148 -0.5130
k 1.1410 1.1418 1.1429 1.1444 1.1463 1.1488 1.1520 1.1560 1.1610

b -0.5114 -0.5102 -0.5101 -0.5122
k 1.1671 1.1747 1.1841 1.1965

Parameter values for figure 3.4, continued from the values and curves from 3.3
b -0.5146 -0.5179 -0.5201 -0.5223 -0.5247 -0.5274 -0.5303 -0.5337 -0.5355
k 1.2039 1.2117 1.2160 1.2198 1.2234 1.2265 1.2286 1.2287 1.2277

b -0.5364 -0.5373 -0.5383 -0.5393 -0.5403 -0.5413 -0.5423 -0.5429 -0.5432
k 1.2271 1.2264 1.2256 1.2245 1.2226 1.2193 1.2136 1.2067 1.1998

b -0.5445 -0.5464 -0.5491 -0.5530 -0.5575 -0.5617 -0.5641 -0.5639 -0.5604
k 1.1943 1.1933 1.1936 1.1953 1.1978 1.1998 1.2002 1.1986 1.1947

b -0.5539
k 1.1893

20 3.2. An adaptive control map

Figure 3.3: Here we see the first two dimensions of the closed invariant curve of the adaptive control
map’s closed invariant curve. Clearly the center is the point x0 = (1, 1, 0.3838) we calculated,
restricted to the first two dimensions.

Chapter 3. Examples 21

Figure 3.4: If we continue further, we see that the curve loses smoothness and starts to intersect
itself.

Chapter 4

Conclusions

We can draw a few conclusions from the research that has been done while writing this thesis.

A smooth closed invariant curve can indeed be approximated by a convergent Fourier series of
any length, depending on the desired precision. The defining system as described in Chapter 2 can
be used by the current MatContM software to continue an existing closed invariant curve, both in
forward and in backward direction.

Furthermore, the starting invariant curve as computed by our initializer does in fact produce
a closed invariant curve that is very likely to be correct. We can conclude this from tests that
we did with the examples we saw. We simply produce the invariant curve and then we let the
continuer continue the closed invariant curve backwards with a small step size. The result is that
we see that the closed invariant curve converges to the fixed point of which we know it is the
corresponding Neimark-Sacker point. That means that, assuming that the defining system and the
current software works correctly, the starting closed invariant curve has to be correct as well.

We also conclude that the parameter values for which this whole process produces useful results
for us are limited. If we continue the curve too far, we see that it loses smoothness. The curve
may also lose stability at some parameter values. Calculating at which exact values this happens,
is something that we may want to add to the software in the future. Without that feature we
can still estimate these values by analyzing the graphs however, as we have done shortly in the
examples section.

Lastly, we know that the current functionality of MatContM has been added to a graphical user
interface (GUI), to make it easier to use for users. As of now, the new methods have been imple-
mented in such a way that they can be called via commands in the MATLAB command line. In
the future, this will be added into the MatContM GUI as well.

In addition to this analysis, we can pick a point on the curve and use the current MatContM
software to simulate the map from this point on wards, creating a forward orbit. This orbit should
look the same as the computer closed invariant curve. In order to check this, we have taken the
closed invariant curve and the curve generated by the forward orbit started on the curve at the
same parameter values and put them in one figure, see Figure 4.1. We use this figure so also verify
the functionality of the developed methods.

We also see that the non-smooth curves are not closed invariant curves, or curves that have any
significant meaning, when we draw both these curves in the same figure. We see the result of this
in Figure 4.2.

22

Chapter 4. Conclusions 23

Figure 4.1: The blue line is the computed invariant curve, while the black line is the collection
of points in the forward orbit of any point on the curve at (r, ε) = (1.8787,0.1544). The graphs
visually coincide, meaning that our predicted curve is very accurate.

24

Figure 4.2: The blue line is the curve produced by the continuer when going to parameter values
r = 2.1319 and ε = 0.1201. The black dots are the orbit produced by starting in a point on the
curve and then simulating again with the MatContM. The loops in the computed closed curve
approximately indicate where the actual chaotic fractal attractor of the map has more complicated
structure.

Bibliography

[1] J. Bell. Denjoy’s theorem on circle diffeomorphisms. pages 1–2, 4 2014. On-line lecture notes.

[2] R. Adomaitis C. Frouzakis and I. Kevrekidis. Resonance phenomena in an adaptively-
controlled system. International Journal of Bifurcation and Chaos, 1(1):83–106, 1991.

[3] P. Hartman. A lemma in the theory of structural stability of differential equations. Proceedings
of the American Mathematical Society, 11(4):610–620, 1960.

[4] Yu. A. Kuznetsov R. Khoshsiar Ghaziani N. Neirynck H.G.E. Meijer, W. Govaerts. Matcontm:
A toolbox for continuation and bifurcation of cycles of maps: Command line use. 11 2017.

[5] Yu. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer-Verlag New York, 2004.

[6] Yu. A. Kuznetsov. Computer session V: Bifurcation analysis of maps with cl_matcontm. 1
2010.

[7] Yu. A. Kuznetsov and H. G. E. Meijer. Numerical Bifurcation Analysis of Maps: From Theory
to Software. Cambridge University Press, 2019.

[8] E. Liz. A global picture of the gamma-ricker map: A flexible discrete-time model with factors
of positive and negative density dependence. Bulletin of Mathematical Biology, 80:2, 12 2017.

[9] Yu. A. Kuznetsov O. Diekmann and W.-J. Beyn. Lecture notes on dynamical systems gener-
ated by ordinary differential equations and maps. pages 241–248, 12 2011.

[10] S. Neil Rasband. Chaotic Dynamics of Nonlinear Systems. Wiley-VCH, 1990.

25

Appendix A

The code for the defining system

1 function out = closedinvariantcurve
2 %
3 % Fixed Point of Map curve definition file for a problem in mapfile
4 %
5

6 global cds fpmds
7 out{1} = @curve_func;
8 out{2} = @defaultprocessor;
9 out{3} = @options;

10 out{4} = @jacobian;
11 out{5} = @hessians;
12 out{6} = @testf;
13 out{7} = @userf;
14 out{8} = @process;
15 out{9} = @singmat;
16 out{10} = @locate;
17 out{11} = @init;
18 out{12} = @done;
19 out{13} = @adapt;
20 return
21 %−−−
22 function dd = curve_func(arg)
23 global civds
24 FC = arg(1:end − length(civds.ap)); ps = arg(end−length(civds.ap)+1:end);
25 %FC = arg(1:end−2); ps = arg(end−1:end);
26

27 ps = num2cell(ps);
28 FC = [FC(1:2*civds.n+civds.zerocomponent); 0; FC(2*civds.n+1+civds.zerocomponent:end)];

% Add a zero on spot b[1][zerocomp], which got removed before because it is fixed.
29 NN = civds.NN;
30 theta=2*pi*(0:2*NN)/(2*NN+1);
31 ind=[1:2*civds.n+civds.zerocomponent,2*civds.n+2+civds.zerocomponent:length(FC)]; %Keep

zero component of sine fixed to zero, keep in mind n:m = {n, ..., m} inclusive
32 dd=zeros(civds.n,length(theta));
33

34 %Evaluate the map DD=F(x(t))−x(t+rho)
35 for ii=1:length(theta)
36 dd(:,ii)=feval(civds.func,0,FCMAP(theta(ii),FC),ps{:},civds.pss{:})−FCMAP(theta(ii)+

civds.rho,FC); %create all components of defining system
37 end
38

39 dd = reshape(dd, civds.n*(1+2*NN), 1); %put all values in one long array instead of a
matrix

40 %−−−
41 function jac = jacobian(varargin)
42 global civds
43

26

Appendix A. The code for the defining system 27

44 NN=(length(FC)/civds.n−1)/2;
45 theta=2*pi*(0:2*NN)/(2*NN+1);
46 ind=[1:2*civds.n,2*civds.n+2:length(FC)]; %Keep first component of sine fixed to zero,

keep in mind n:m = {n, ..., m} inclusive
47 eps=1e−4;
48 dd=zeros(civds.n,length(theta));
49

50 % Compute the Jacobian
51 % wrt Fourier coefficients
52 jac=zeros(length(FC));
53 parfor kk=1:length(FC)−1
54 jj=ind(kk);
55 d1=nan(size(dd));
56 d2=nan(size(dd));
57 F1=FC;F1(jj)=F1(jj)+eps;
58 F2=FC;F2(jj)=F2(jj)−eps;
59 for ii=1:length(theta)
60 d1(:,ii)=feval(civds.func,0,FCMAP(theta(ii),F1),ps{:})−FCMAP(theta(ii)+civds.rho,F1)

;
61 d2(:,ii)=feval(civds.func,0,FCMAP(theta(ii),F2),ps{:})−FCMAP(theta(ii)+civds.rho,F2)

;
62 end
63 jac(:,kk)=(reshape(d1,length(FC),1)−reshape(d2,length(FC),1))/(2*eps);
64 end
65 % %wrt System Parameter
66 % ps1=ps;ps2=ps;ps1{1}=ps1{1}+eps;ps2{1}=ps2{1}−eps;
67 % for ii=1:length(theta)
68 % d1(:,ii)=feval(map,0,FCMAP(theta(ii),FC),ps1{:})−FCMAP(theta(ii)+civds.rho,FC);
69 % d2(:,ii)=feval(map,0,FCMAP(theta(ii),FC),ps2{:})−FCMAP(theta(ii)+civds.rho,FC);
70 % end
71 % jac(:,end)=(reshape(d1,length(FC),1)−reshape(d2,length(FC),1))/(2*eps);
72 %
73 % end
74

75 %−−−
76 function hess = hessians(varargin)
77

78 %−−−
79 function varargout = defaultprocessor(varargin)
80

81 global cds nsmds
82 %elseif strcmp(arg,'defaultprocessor')
83 if nargin > 2
84 s = varargin{3};
85 varargout{3} = s;
86 end
87 % compute eigenvalues?
88 if (cds.options.Multipliers==1)
89 n=nsmds.Niterations;
90 x0 = varargin{1}; [x,p] = rearr(x0); p = n2c(p);
91 jac =nsmjac(x,p,n);
92 varargout{2} = eig(jac);
93 else
94 varargout{2}= nan;
95 end
96 % all done succesfully
97 varargout{1} = 0;
98 %−−−
99 function option = options

100 global cds nsmds
101 option = contset;
102 %−−
103 function [out, failed] = testf(id, x, v)
104 %−−−
105 function [out, failed] = userf(userinf, id, x, v)
106 %−−−
107 function [failed,s] = process(id, x, v, s)
108

28

109 %−−
110 function [S,L] = singmat
111 global fpmds cds
112 % 0: testfunction must vanish
113 % 1: testfunction must not vanish
114 % everything else: ignore this testfunction
115

116 S = [];
117

118 L = [];
119

120 %−−
121 function [x,v] = locate(id, x1, v1, x2, v2)
122 %−−−
123 function varargout = init(varargin)
124 %−−−
125 function varargout = done
126

127 %−−
128 function [res,x,v] = adapt(x,v)
129 res = []; % no re−evaluations needed
130

131

132

133

134 %−−
135 %%%
136 % −−−
137

138 function [x,p] = rearr(x0)
139

140 % −−−
141 function [x,v] = locateBP(id, x1, v1, x2, v2)
142

143 % −−−
144

145 function [A, f] = locjac(x, b, p)
146

147 % −−−
148

149 function WorkspaceInit(x,v)
150

151 % −−
152 function WorkspaceDone
153

154 % −−−
155

156

157 %SD:continues equilibrium of mapfile

Appendix B

The code for the initializer

1 function [x0,v0]= init_NSm_ICm(mapfile, x, p, NN,amp, ap,n)
2

3 global cds civds
4 zerocomponent = 0; % if we would like to have our fixed component of b[1] in another

place, we can put it here
5

6 cds.options.SymDerivative=0;
7 nphase=length(x);
8 civds.n = nphase; % The dimension of x, small n
9 civds.NumPars = length(p);

10 civds.mapfile = mapfile; % The map we want to evaluate
11 func_handles = feval(civds.mapfile);
12 civds.func = func_handles{2};
13 civds.NN = NN; %Number of Fourier cos+sin modes, excluding constant term
14 civds.p = p;
15 civds.ap = ap;
16 % initoption = 2; %as the initializer doesnt produce the first X yet, there are 2

hardcoded X0s from which we choose at the moment, depending on the system we chose
17 % rho = 0;
18

19 pss = civds.p(length(civds.ap)+1:end);
20 pss = num2cell(pss);
21 civds.pss = pss;
22

23 A=cjac(civds.func,[],x,n2c(p)); % HGE: To be changed so that the Jacobian is called
24 [V,D]=eig(A);D=diag(D);
25 for i=1:nphase−1
26 for j=i+1:nphase
27 if (abs(D(i)*D(j)−1)<1e−3)
28 if (imag(D(i))==0)
29 debug('Neutral Saddle');return;
30 elseif (imag(D(i))>0)
31 idx=i;
32 else
33 idx=j;
34 end
35 end
36 end
37 end
38 q=V(:,idx);
39 q=exp(−1i*angle(q(1)))*q; %Ensure the first component of q is real by rotating q;
40 x0=[x;amp*real(q);amp*imag(q);zeros(2*nphase*(NN−1),1)]; %padding by zeros as close

to the NS−point only the first mode matters
41 x0=[x0([1:2*nphase 2*nphase+2:end]); p(ap)]; %Omit the zero component from the

continuation variable and add parameters.
42 rho=angle(D(idx));
43

44 civds.zerocomponent = zerocomponent;

29

30

45 civds.rho = rho; % The initial curve radius
46 v0 = []; %initial tangent vectors

Appendix C

The code for FCMAP

1 function xx=FCMAP(theta,coef)
2 global civds
3 xx=coef(1:civds.n); %a0 is our fixed point, found in the first n coefficients
4 N=civds.NN; %number of Fourier modes
5 fc=reshape(coef(civds.n+1:end),civds.n,2*N); % Turn a1, b1, ..., aN, bN into Nxn

matrix
6 for ii=1:N
7 xx=xx+fc(:,2*ii−1)*cos(ii*theta)+fc(:,2*ii)*sin(ii*theta);
8 end
9

10 end

31

Appendix D

The code for testciv

1 % TEST CIV
2 function X4 = testciv(mapfile, firstX, firstP)
3

4 %% Preparing initial data from fixed point continuation and Neimark−Sacker
5 init;
6 % global opt cds fpmds;
7 opt = contset;
8 opt = contset(opt, 'Singularities', 1);
9 opt = contset(opt, 'Multipliers', 1);

10 opt = contset(opt, 'MaxNumPoints', 100);
11 x1 = firstX; %Test values for DLM and ACM [0.444444;0.444444] [1;1;0.38]
12 p1 = firstP; %Test values for DLM and ACM [1.8; 0.1] [−0.54;1.14;0.1]
13 [X10, V10] = init_FPm_FPm(mapfile, x1, p1,1,1);
14 [X1, V1, s1, h1, f1] = cont(@fixedpointmap, X10, V10, opt);
15

16 opt = contset(opt, 'MaxNumPoints', 50);
17 opt = contset(opt, 'IgnoreSingularity', [2 3 5]);
18 x3 = X1(1:end−1, s1(2).index);
19 p3 = p1; p3(1) = X1(end, s1(2).index);
20 [X30, V30] = init_NSm_NSm(mapfile, x3, p3, [1 2],15);
21 [X3, V3, s3, h3, f3] = cont(@neimarksackermap, X30, V30, opt);
22 addpath('ClosedInvariantCurve')
23

24 %% Extracting the NS−point
25 id=s1(2).index;x4=X1(1:end−1,id);p4=p1;p4(1)=X1(end,id);
26 N=15; %Number of Fourier modes used, only initializing the first
27 amp=0.02; %Initial amplitude
28 [X40,V40]=init_NSm_ICm(mapfile,x4,p4,N,amp,[1,2],1);
29 [X4,V4,s4,h4,f4]=cont(@closedinvariantcurve,X40,V40);

32

Appendix E

The code for PIC

1 % Plot invariant curves
2 function out = PIC(X, dim1, dim2)
3 global civds
4

5 % Extract the Fourier coefficients from X for each column
6 [n1,n2] = size(X); %n1 is the amount of rows, n2 the amount of columns
7

8 % For every column we plot the closed invariant curve
9 for col = 1:1:n2

10 x = X(:,col:col);
11 x = [x(1:2*civds.n+civds.zerocomponent); 0; x(2*civds.n+1+civds.zerocomponent:end−2)

];
12 theta = linspace(0,2*pi);
13 V = FCMAP(theta,x);
14 x1 = V(dim1:dim1,:);
15 x2 = V(dim2:dim2,:);
16 plot(x1,x2)
17 hold on
18 end
19 hold off
20 end

33

Faculty of Science
Department of Mathematics

Title of work:

Numerical continuation of closed invariant curves of maps and its implementation
in the MATLAB software MatContM

Thesis type and date:

Bachelor thesis, June 2019

Supervision:

Prof. Dr. Yuri A. Kuznetsov
Dr. Hil G.E. Meijer

Student:

Name: Luuk Sterke
E-mail: luuk@sterke.net
Student number: 5740959

