
Utrecht University

Master Thesis

An Agent Based Approach for
Train Traffic Control

Author:
R.N. (Richard) van Wieringen
3996492

Utrecht University Supervisor:
Prof. dr. M.M. (Mehdi) Dastani

ProRail Supervisor:
Emdzad Sehic

Second Examiner:
Prof. dr. F.P.M. (Frank) Dignum

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Artificial Intelligence

in the

Faculty of Science
Graduate School of Natural Sciences

March 2019

https://www.uu.nl/en
https://www.linkedin.com/in/richardvanwieringen/
https://www.uu.nl/medewerkers/mmdastani
https://www.linkedin.com/in/emdzad-sehic-30b30b48/
https://www.uu.nl/medewerkers/FPMDignum
https://www.uu.nl/en/organisation/faculty-of-science
https://www.uu.nl/en/organisation/graduate-school-of-natural-sciences

A B S T R A C T

The Traffic Control department of ProRail manages the train traffic
on the railway network, especially in cases of calamities. Train Traffic
Controllers (referred to as TRDLs) are the people at this department
that are responsible for safely guiding everything in an assigned area.
A TRDL achieves this mainly by controlling signs, switches and rail-
way settings. These TRDLs are supported by an Automatic Railway
Setting (referred to as ARI. The main shortcoming of the ARI is that
many real world traffic management problems are not supported by
the functionality. The goal of this research project is to specify, design
and implement a multi-agent system within ProRails distributed sim-
ulated environment to support TRDLs in their work that is not handled
by the ARI. The specification and design of this multi-agent system
were modeled using the Prometheus methodology. The implementa-
tion of the MAS is created with the OO2APL Java library. I was able to
create a working proof of concept of a multi-agent system within a
distributed simulation environment that notifies when a Train Han-
dling Documents (referred to as, TAD(s)) should be applied to Pro-
Rail. The system not only does it at the decision point, but it gives
the TRDLs a heads up to possibly prepare a TAD.

iii

A C K N O W L E D G E M E N T S

First of all, I would like to express my gratitude and appreciation
to the follow great people. Without the support of these people this
master thesis would not have been the same.

To start, I would like to thank my awesome ProRail supervisor Emdzad
Sehic for all the support and freedom that he gave to me in order
to successfully implement a multi-agent system at ProRail. He also
guided me through this big organization and to all the right people
within ProRail to achieve my goals. Two of these amazing people I
would like to thank are Wilco Tielman and Arie van den Berg. They
helped me a lot with the implementation of my multi-agent system
and with connecting it to ProRail’s simulators.

I want to thank my brilliant Utrecht University supervisor Mehdi
Dastani for all the support and his critical appraisal. He gave me
the opportunity to conduct my research at ProRail and gave me the
guidance to create this multi-agent system. This also brought me the
possibility to put theory into practice.

I would like to thank my parents Nico van Wieringen and Yrene
van Wieringen for always supporting me and believing in me. With-
out their support I would not have made it this far. I also want to
thank the rest of my family: my brother Fabian Schweichler, my sis-
ter Nicole van Wieringen, and her boyfriend Nadir Mea for all the
moral support.

I would like to specially thank my partner Zoe van den Aardweg
for always being by my side and helping me with every step of the
process mentally but also substantively. You always motivated me to
keep going and I will always be grateful for all your support.

Many thanks to everybody who stood by me and checked in with me
now and again.

v

C O N T E N T S

i introduction 1

1 introduction 3

1.1 ProRail . 3

1.2 Problem and Motivation 3

1.3 Research Question . 4

1.4 Approach . 5

1.5 Outline . 5

2 theoretical background 7

2.1 Train Traffic Control at ProRail 7

2.1.1 Traffic Control Department 7

2.1.2 Train Traffic Controller (TRDL) 9

2.1.3 Automatic Railway Setting (ARI) 12

2.1.4 Train Handling Document (TAD) 14

2.2 Simulation . 17

2.2.1 High Level Architecture (HLA) 17

2.2.2 Simulation at ProRail: Trinity 19

2.2.3 FRISO . 20

2.2.4 Agents Based Traffic Simulation 21

2.3 Agents and Multi-Agent Systems 21

2.3.1 Agent Based Modeling 22

2.3.2 Agent Based Methodology: Prometheus 22

2.4 OO2APL . 23

ii methodology 25

3 methodology 27

3.1 Multi-Agent Specification 27

3.1.1 Goals and Scenarios 27

3.1.2 Interface to the environment 28

3.1.3 Functionalities . 29

3.2 Multi-Agent Design . 29

3.2.1 Agent Types . 29

3.2.2 Agents Overview 30

3.2.3 Interaction between Agents 31

3.2.4 System Overview 31

3.3 Multi-Agent Implementation 31

3.3.1 OO2APL Implementation 32

3.3.2 Connection with the Simulator 37

3.3.3 Models for Testing 38

3.3.4 Deliberation Cycle: Sense Reason Act 39

iii results 41

4 results 43

vii

viii contents

4.1 Multi-Agent System of Train Traffic Control 43

4.2 Systems Setup . 43

4.2.1 Multi-Agent System as Executable JAR 43

4.2.2 Simulator . 44

4.3 Multi-Agent System and Simulation Run 44

iv conclusion and discussion 51

5 conclusion 53

6 discussion 55

6.1 Interpretation of results 55

6.2 Limitations . 55

6.3 Future Research . 56

6.4 Concluding Remarks . 56

bibliography 59

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

This thesis provides an overview of the research project at the Inno-
vation department of ProRail, where a multi-agent system of train
traffic controllers within a distributed simulated environment is spec-
ified, designed and implemented. I will start with a short description
of ProRail, then the problem and motivation, followed by the research
question and the approach. At the end of this chapter will be the out-
line of this thesis.

1.1 prorail

The company ProRail is responsible for the railway network in the
Netherlands and is with over 3.3 million train rides per year one of
the busiest railway networks in Europe. Their goal is to make the
railway network safer, more reliable, punctual and more sustainable
enabling a safe transport of passengers and goods to arrive on time at
their destination. They do all this with attention to their influence on
the environment and society in the process. ProRail is an independent
party that is responsible for the construction, maintenance, manage-
ment and safety of the railway network. They divide the space on the
tracks among transporters, regulate all train traffic, create new tracks
and manage and build train stations. Putting it in perceptive, this
involves maintaining 404 train stations, 7.219 kilometers of existing
tracks, 7.006 switches, 12.093 signals and 2.368 crossings. [23, 24, 26,
28, 29]

1.2 problem and motivation

The Traffic Control department of ProRail manages the train traffic
on the railway network, especially in cases of calamities. Train Traf-
fic Controllers (referred to as TRDLs, Dutch: treindienstleider(s)) are the
people at this department that are responsible for safely guiding ev-
erything in an assigned area. A TRDL achieves this mainly by control-
ling signs, switches and railway settings. These TRDLs are supported
by an Automatic Railway Setting (referred to as ARI, Dutch: Automatis-
che Rijweginstelling) which is an important functionality in the control
system to facilitate them to automate railway settings. In the opti-
mal scenario where all trains are riding according to the schedule the
control systems such as ARI do all the traffic management work au-
tomatically. In the real world this optimal scenario is not alway the
case. The main shortcoming of the ARI is that many real world traf-

3

4 introduction

fic management problems are not supported by the functionality. For
instance, when a train has a delay which deviates too much from the
schedule ARI stops working and the TRDL must intervene.

The Innovation department of ProRail tests new logistic concepts
within the railway network using a distributed simulation environ-
ment. In this environment a number of human-in-the-loop simulators
are linked via a High Level Architecture (referred to as HLA). Cur-
rently a number of human operators such as TRDLs are a requirement
to run a simulation. In practice it is very difficult to get TRDLs together
in order to run a simulation. In the long run ProRail wants an intelli-
gent system that can replace the need for TRDLs as human-in-the-loop
simulators enabling the possibility to tests new logistic concepts faster
and more often.

A multi agent based approach is selected as a solution for this in-
telligent system because it offers powerful modeling techniques and
is noted to considerably improve the way in which people conceptu-
alize and implement various kinds of systems [3, 16]. These powerful
techniques are used for the development of large-scaled distributed
systems to deal with uncertainty in a dynamic environment [7]. Many
problems in traffic control are inherently distributed. It is often the
case that it is not possible to provide additional capacity. Therefore,
a more efficient use of the available infrastructure is a necessity [2].
This agent based approach has been successfully applied in various
(simulated) traffic control systems for vehicles [21], airplanes [39] and
trains [30].

The goal of this research project is to specify, design and implement
a multi-agent system within ProRails distributed simulated environ-
ment to support TRDLs in their work that is not handled by the ARI.
This multi-agent system will be a proof of concept that sets the foun-
dation to eventually replace the need of TRDLs as human-in-the-loop
simulators.

1.3 research question

In order to develop this multi agent system the following research
question is formulated from the goal described in the previous sec-
tion:

How to specify, design, and implement a multi-agent sys-
tem within a simulated environment that assists train traf-
fic controllers (TRDLs) in their work that is not handled by
ProRail’s Automatic Railway Setting (ARI)?

Subquestions:

1. How do Train Traffic Controllers (TRDLs) work with ARI in ev-
eryday practice?

1.4 approach 5

2. What are the limitations of ARI that TRDLs encounter in practice?

3. How can a multi-agent system be modeled to overcome these
limitations?

4. What is an efficient and effective agent based design method for
a multi-agent system?

5. How to implement a multi-agent system onto ProRail’s dis-
tributed simulation environment?

1.4 approach

A literature study should give insights into the diverse aspects in-
volving: Train Traffic Control at ProRail, Simulation, Multi Agent
Systems and OO2APL. The specification, design and implementation
of the agent-based system will be in the Object Oriented Agent Pro-
gramming Language called OO2APL (developed by M. Dastani and B.
Testerink) that is capable of communicating with the distributed sim-
ulation environment (of the Innovation department of ProRail). The
agent reasoning will be based on the theoretical background and in-
terviews with TRDLs on how they tackle a specified problem that can
not be handled by the ARI. The information from the latter will lead
to the protocols that drives the multi-agents system.

1.5 outline

In Chapter 2 I will provide background information necessary to un-
derstand the multi-agent system developed in this thesis. This the-
oretical background consist of four sections (2.1-2.4). In section 2.1
the internal structure of the traffic control department of ProRail will
be described and will elaborate on the function of a TRDL. In section
2.2 the background theory and actual simulation environment that is
used by ProRail is described. In section 2.3 elaborates on background
theory of agents and multi-agent systems. In section 2.4 background
information and short description of the OO2APL is presented.

In Chapter 3 I will provide the methodology that I used for spec-
ifying, designing and implementing a multi-agent system within a
simulated environment. This methodology consist of three sections
(3.1-3.3). In section 3.1 the specification phase of the multi-agent sys-
tem is described. In section 3.2 the design phase of the multi-agent
system is provided. In section 3.3 the implementation phase is de-
scribed.

In Chapter 4 I will provide the results of this study that carried
out the methodology. The results consist of three sections (4.1-4.3). In
section 4.1 the results of the multi-agent system of train traffic control
are given. In section 4.2 system setup is described. In section 4.3 a real

6 introduction

world simulation run of the multi-agent system of train traffic control
is presented.

In Chapter 5 I will provide the conclusion of this study. In this
chapter I will answer the research questions.

In Chapter 6 I will provide the discussion of this study. This discus-
sion consist of four sections (6.1-6.4). In section 6.1 the interpretation
of results will be presented. In section 6.2 the limitations of this study
will be elaborated. In section 6.3 future research possibilities will pro-
vided. In section 6.4 some concluding remarks are given.

2
T H E O R E T I C A L B A C K G R O U N D

2.1 train traffic control at prorail

Train Traffic Control at ProRail is carrying out the final preparations
for letting trains ride according to schedule. The schedule is supplied
by the logistical chain of capacity allocation and asset management
makes sure the needed infrastructure is available. Finally, Train Traffic
Control ensures that everything is being executed as well as possible
with safety as the priority [25].

2.1.1 Traffic Control Department

The traffic control department is hierarchically structured, consisting
of three levels: at the top there is the National Traffic Control (re-
ferred to as, LVL, Dutch: Landelijke Verkeersleiding), then there are the
Decentralized Traffic Controllers (referred to as, DVLs, Dutch: Decen-
trale Verkleersleider(s)), and at the lowest level there are the TRDLs [25].
LVL is situated in the Operational Control Center Rail (referred to as,
OCCR) located in Utrecht and are the beating heart of the department.
They handle major disruption in close cooperation with the national
control centers of the transporters and with the DVLs at the 13 posts
spread across the country see the red dots in Figure 1. These 13 posts
are divided in 5 regions (demarcated by blue lines in Figure 1):

• Randstad North: Amsterdam en Alkmaar

• Randstad South: Rotterdam en Rotterdam Goederen (Kijfhoek)

• Region Northeast: Groningen, Zwolle, Arnhem

• Central Region: Den Haag, Utrecht, Amersfoort

• Region South: Eindhoven, Roosendaal, Maastricht

Every Traffic Control post is responsible for safely managing every-
thing within a demarcated area. At a post the DVL works together
with TDRLs. A TRDL has an assigned area within the demarcated area
of a post [27].

7

8 theoretical background

Figure 1: Overview of the process management areas [27]

In a nutshell, the hierarchy of the Traffic Control Department works
as follows (see Figure 2): The LVL can make changes to the schedule
because they have a national overview and therefore they can over-
rule DVLs. A DVL can make changes to the schedule because they have
an overview of the post area and therefore they can overrule TRDLs.
When they cannot solve a post area issue they report this to the LVL.
The TDRL uses the schedule and ARI to set the railway settings for the
trains. When they cannot solve a local issue they report this to the DVL.
The next subsection will elaborate on the TRDLs and will also clarify
what an assigned area looks like for a TRDL.

Figure 2: Traffic Control Schematic Overview

2.1 train traffic control at prorail 9

2.1.2 Train Traffic Controller (TRDL)

A TRDL monitors and manages the train traffic within an assigned
area. The rapidity at which a TRDL acts in case of a calamity or de-
viation of the schedule is of great influence for all the train travelers
and transporters. To be able to handle these stressful situations a TRDL

needs to be sharp and stress-resistant. When there are multiple prob-
lems on the railway that need to be handled, a TRDL must be able to
prioritize which one is most urgent. Handling these problems usually
happens with close coordination and cooperation with other TRDLs
and the DVL.

A TRDL has two main tasks: execution of the schedule and making
sure everything happens safely. In a nutshell, the execution of the
schedule works as follows: Most of the time the TRDL executes the
schedule by timely controlling signs, switches and railway settings
for train traffic. During this process they are supported by the Process
Management System that enables him/her to manage train traffic.
This system contains the routing schedule for every emplacement of
the assigned area. Usually the railway settings for arriving trains will
be set by ARI. This happens when trains, with the corresponding train
number according to the schedule, arrive within a certain time frame.
When this is the case, ARI will give the railway settings as assignments
to the Control System. The Control System sets the order and passes
it along to the Security Systems which control the Elements of the
Track (switches, signs, etc.). This all happens just before the departure
time of the train, but when the train diverges too much from the
schedule (time frame) ARI stops working and will do nothing. In this
case the TRDL has to make adjustments to the schedule [33, 37]. Figure
3 provides a schematic overview of the process management.

Figure 3: Schematic representation of the process management [37]

10 theoretical background

An assigned area of a TRDL is called a Process Management Area (re-
ferred to as, PLG, Dutch: ProcesLeidingGebied). This is the control area
that one TRDL is responsible for. Figure 4 provides an overview of PLGs
demarcated in black boxes at the post Amsterdam. Every PLG consists
of one or more Primary Process Management Areas (referred to as,
PPLG, Dutch: Primair ProcesLeidingGebied). This is the control area of
a train station called emplacement. The connection between two em-
placements is referred to as free track. An example of a PLG in Figure
4 is for instance the bottom left demarcated black box named TRDL
Schiphol. An example of PPLGs within the PLG of TRDL Schiphol are:
Asdl, Asra, Schiphol Airport and Hoofddrop.

Figure 4: Overview of the process management post Amsterdam [45]

2.1 train traffic control at prorail 11

One of the subsystems of the Process Management System is the
schedule screen as displayed in Figure 5. This schedule screen is an
example of the TRDL Schiphol assigned area in Figure 4 with the four
PPLGs. A schedule screen consists of the following components:

A Schedule Menus

B History Window

C Schedule Window

D Mutation Menu Bar

E Mutation Window

In A all the functions can be found concerning History Window or
Schedule Window. The History Window (B) shows the last four rail-
way setting commands. The Schedule Window (C) displays for every
PPLG the schedule. In D are all the functions concerning the Mutation
Window. In the Mutation Window (E)

Figure 5: Schedule screen of the process management system [33]

Figure 6: An overview of a schedule line of the schedule screen [33]

12 theoretical background

The schedule contains lines and every line provides information
of one specific train that a TRDL needs for the process management.
Figure 6 provides an example of a schedule line that consists of the
following elements:

A Indicator

B Train Number

C Activity Type

D Railway Track Number

E Schedule Time

F Delay Type

G Delay Duration

H Control Point

I Scheduled Set Time

J Setting Method

K From (Railway Destination)

L To (Railway Destination)

M Forced Railway Number

N Ready Notification Indicator

O Material Relationship Indicator

P Particularities

All in all, the task for every TRDL is to execute the schedule with safety
as the priority. In this process the effects of a calamity or deviation
of the schedule on travelers and transporters has to be minimized.
During this task a TRDL is initially not allowed to discriminate among
transporters. This means that for example a passenger-train does not
automatically have priority over a goods-train.

2.1.3 Automatic Railway Setting (ARI)

ARI is a subsystem of the process management system that runs at
every workplace of a TRDL. ARI gives assignments to the safety sys-
tems to automatically set the railway routes for a train according to
the route planning process (the schedule). For every PPLG there are
two mutually exclusive modes in which ARI can be activated. The
two modes are called "Plan is leading" and "First Come First Served"
(referred to as, FCFS). In the "Plan is leading" mode the order in which
ARI handles train route settings is based on the schedule. Trains have
to notify ARI within a certain time frame. In the "FCFS" mode the or-
der in which ARI handles train route settings is based on when trains

2.1 train traffic control at prorail 13

notify ARI. Incoming trains do not have to abide by the time frame of
the schedule to be handled by ARI [1, 22, 40, 46].

There a few important conditions that need to be met in order for
ARI to automatically set routes for trains. The conditions are as fol-
lows [46]:

• The railway that has to be set needs to be available.

• The train to be handled has to have the correct train number.

• The set-up time needs to be within the time frame or the waiting
frame.

In order for ARI to work all the conditions need to be met. If one (ore
more) of the conditions is not met ARI will be disabled for that partic-
ular schedule line. The status of ARI for a schedule line can be derived
from the color of the line within the schedule screen (see Figure 7).
There are different color codings for an activated or deactivated status
of ARI. What these colors entail is displayed in Figure 8.

Figure 7: Schedule screen of the process management system [46]

14 theoretical background

Figure 8: Schedule line color coding overview [46]

2.1.4 Train Handling Document (TAD)

In some deviant train related scenarios where ARI stops working han-
dling agreements have been made for specific scenarios. These han-
dling agreements are written down in Train Handling Documents
(referred to as, TAD(s), Dutch: Trein Afhandelings Document), see
figure 9 for an example that applies to the TRDL that is responsible of
the Zuidtak operating area in Amsterdam.

A TAD consists of three distinct components: Waiting times passen-
ger trains (referred to as, WRT), handling strategy by train or train
series and if/then scenarios.

WRT:

• The WRT indicates for each railway junction how long trains can
wait for a connection when arriving trains are delayed.

• The WRT does not apply if two trains are delayed that normally
takes over from each other.

• The WRT determines the final connections of passenger trains at
the end of a traffic day.

Handling strategy by train or train series:

• Handling strategies indicates for each station what needs to be
done when there is an increasing delay.

• It prevents the emergence of a domino effect in case of delays.

• It ensures that there is no repression among transporters.

If/then scenarios:

2.1 train traffic control at prorail 15

• If/then scenarios are intended for delays that arise in the train
schedule within the operating area of the TRDL.

• These scenarios become effective when a train exceeds a prede-
termined delay margin.

• A TRDL is authorized to adjust the train schedule according to
the if/then scenarios within its operating area.

If the execution of the TAD results in an order change, a TRDL must
give a standard message. If the TAD does not offer a solution a TRDL

must consult with the DVL [6, 41]. In figure 9 are lines highlighted
with specific colors to explain a TAD in more detail:

• Blue : A goods train has right to keep its own path on the
railway network when the delay is 4 minutes or less.

• Yellow : Concerns the first and last trains of the day. If the
specific train numbers in the left columns have no more then 10

minutes delay: the specific trains in the right columns have to
wait for them, because they have a connection with each other.
For some trains the connection applies only for certain days of
the week.

• Green : Concerns train series that have a connection with other
train series at a specific PPLG, in this case WP (Weesp) with
trains heading to Asd/Shl (Amsterdam/Schiphol). In this case
the heading indicates trains series with even numbers. The 4300

series, heading to Shl, with an Arrival hh:02 or hh:32 at WP, has
a delay between WRT (meaning 0) and up to and including 4

minutes, when this delay is observed at the decision point Alm
(Almere), then the 15800 train serie has to wait for the 4300 se-
ries.

• Orange : Concerns train series that have to change order with
each to prevent the emergence of a domino effect, at a specific
PPLG, in this case WP (Weesp) with trains heading to Asd/Shl
(Amsterdam/Schiphol). In this case the heading indicates trains
series with even numbers. The 1500 series, heading to Asd, with
an Arrival hh:19 or hh:49 at WP, has a delay of 6 minutes or
more, when this delay is observed at the decision point Ndb
(Naarden-Bussum), then the 1500 train serie will change order
with 14600 series.

There are three different tables of agreements in the TAD example in
figure 9. The first table (containing yellow highlights) represents how
to handle all the first and last trains of the day given a train series.
The second table (containing green and orange highlights) represents
how to handle train series at PPLG Wp that are going towards PPLGs:
Asd/Shl. The third table represents how te handle trains series at
PPLG Wp that are going towards PPLGs: Alm/Hvs.

16 theoretical background

Figure 9: Example of a TAD for the TRDL Zuidtak (Amsterdam)

2.2 simulation 17

2.2 simulation

A simulation can be used to mimic a real world environment and can
be seen as a particular type of an executable model. A simulation is
an execution of a model that can be created out of a complex system
(a system that consist of multiple heterogeneous, interacting compo-
nents) [34]. Simulating a railway network with traffic control is an
example of a complex system.

Most of the time there are multiple interacting entities involved in
simulations. For instance the rolling stock, in the rail transport indus-
try referred to as any vehicle that moves on a railway. There can be a
monolithic simulation model incorporating all rolling stocks and their
interactions with one other and their environment. The alternative is
to have individual models of each railway vehicle and the environ-
ment, and these models interact with one other via a well-defined
and agreed-upon interface. The alternative can be preferred for the
following reasons: the simulation load can be shared by multiple pro-
cessors and these processors can be distributed over a network. The
latter leads to the so called distributed simulation which is of interest
[38].

2.2.1 High Level Architecture (HLA)

A High Level Architecture (referred to as HLA) is a standard archi-
tectural framework for distributed simulation. This architecture fa-
cilitates the reuse, interoperability and composability of simulations.
The reuse is enabled by the interoperability and composability. The
interoperability is the capability of a simulation to exchange informa-
tion in a useful and meaningful way. The composability enables the
selection and assembly of components in any combination to achieve
the objective of the systems. This HLA framework essentially enables
component-based simulation development [38, 44].

The basic components of a HLA consists of the following set of spec-
ifications [38]:"

• HLA Framework and Rules: Specifies the elements of
systems design and introduces “a set of ten rules that
together ensure the proper interaction of federates in
a federation and define the responsibilities of feder-
ates and federations” [13]

• Interface Specification: The HLA Interface Specification
defines “the standard services of and interfaces to
the HLA runtime infrastructure. These services are
used by the interacting simulations to achieve a coor-
dinated exchange of information when they partici-
pate in a distributed federation” [12]

18 theoretical background

• Object Model Template (referred to as OMT): presents the
mechanism to specify the data model – the informa-
tion produced and consumed by the elements of the
distributed simulation. The OMT describes “the format
and syntax (but not content) of HLA object models”
[14]"

Federates Applications that implements or conforms to the HLA

are called federates. These support and use the interfaces that are
specified in the HLA Federate Interface Specification. These specifica-
tions ensures that federates can participate in a distributed simulation
execution. A federate becomes a so called Joined Federate when it
participates in a federation execution. During an execution a federate
may join multiple times. New joined federates are created each time
when a federate joins multiple executions. How a federate should be
structured is not specified by the HLA, because it is only interested
in the interface of a federate. A federate can be all kinds of applica-
tions, for example: simulations of systems, monitoring applications,
gateways or live entities. Technically is a federate a single connection
to the Runtime Infrastructure (referred to as, RTI), where it can be a
single process or contain multiple processes running on several com-
puters. In the process a federate can produce/consume data or both.
Designing reusable set of simulation features as a federate is consid-
ered best practices. A federate can for instance represent a rolling
stock platform that simulates any type of train or an TRDL workplace
model as a scenario training simulator. Also, legacy simulation ap-
plication can be wrapped as a federate and therefore enabled to par-
ticipate in a federation execution (runtime instantiation, which is an
actual simulation execution).

Federation The set of federates that have a common specifica-
tion of data communication formulated in Federation Object Model
(referred to as, FOM) is called a federation. When communication re-
quirements of federates are specified in their Simulation Object Mod-
els (referred to as, SOMs), they are composed and interoperate over the
RTI throughout federation execution.

Runtime infrastructure A HLA require an infrastructures to en-
able inter-federate communication. The RTI is the underlying manag-
ing software infrastructure, where federates interact with to partici-
pate in the distributed simulation and exchange data. It supports the
rules provided by the Interface Specification of the HLA. Figure 10 pro-
vides an example overview of federations and federates interacting
with the RTI.

2.2 simulation 19

Figure 10: Federation and federates

2.2.2 Simulation at ProRail: Trinity

The distributed simulation at ProRail is called Trinity and is based on
the HLA framework. Figure 11 gives a overview of Trinity. The Trinity
simulator (Figure 11) consists of the following components:

• RTI: Runtime infrastructure, handling all messages between the
simulation

• Trinity FOM: Federation Object Model, handling the objects

• BAP: Planning of NS, live system for personnel, train operators,
conductors

• Bapper: Translating the BAP information for the RTI

• Morpheus: Train driver simulator

• Friso: Flexible Rail Infra Simulation Environment (see 2.2.3)

• Friso Mapper DLL: Translating the Friso messages for the RTI

• PRLGame: Human in the loop TRDLs

• PRL Mapper: Translating the PRLGame information for the RTI

• BAM: Planning of NS, live system for rolling stock

• BOP: Personnel simulation, Human in the loop operator for
monitoring and controlling

• Plan federate: Containing and managing the master schedule

• VOS werkplek: Human in the loop DVLs

• VOS: VOS server for simulation

• VOS federate: Mimic live VOS system to the RTI

20 theoretical background

• SBG++: Railway occupation graph, visual representation of the
schedule

• Arp federate: Enables the simulation of SBG++

• Bootstrap federate: Game leader, controlling scenarios, manag-
ing the simulation

• ARI federate: The master ARI

Figure 11: Trinity Overview Sheet Q1 2018

2.2.3 FRISO

The abbreviation FRISO stands for Flexible Rail Infra Simulation En-
vironment (Dutch: Flexibele Rail Infra Simulatie Omgeving) and is one
of Prorail own set of simulators. FRISO is a discrete event based mi-
croscopic simulator where train traffic within a railway network can
be simulated at a detail level. FRISO can be used to research the fol-
lowing:

• Locally analyzing, comparing and improving the stability/ro-
bustness and efficiency of the schedule for a specific area.

• Comparing different control variants (FCFS, Fixed Order or Plan
is leading) in a specific area.

• Tracking down and quantifying bottlenecks in the infrastructure
for a specific area.

• Analyzing cause and effect relations for delays.

• Calculating the driving times of the trains.

2.3 agents and multi-agent systems 21

• Quantifying effects of changes to the schedule.

In addition, FRISO has a mutation functionality that makes it pos-
sible to research changes to the infrastructure and the possibility to
link it to an external traffic management system. FRISO can also be
deployed as a simulator in a Railway Gaming Suite, where human-
in-the-loop simulators such as PRL Game and Morpheus. Because of
this, FRISO can also be used for training purposes or for testing the
influence of new systems on the behavior of people who have to work
with it [19, 35, 36].

2.2.4 Agents Based Traffic Simulation

Agents based simulations have been applied more often within the
domain of traffic simulation, an overview is given by [7] and [18].
This agent based approach has been applied in various simulated
traffic systems for instance: cars [21], airplanes [39] and trains [30].
One of the reasons agent based approaches are often applied is be-
cause they offer powerful techniques that are used for the develop-
ment of large-scaled distributed systems to deal with uncertainty in
a dynamic environment [7]. This is why an agent based approach is
perfectly suited for train traffic control which takes place within a
such an environment.

2.3 agents and multi-agent systems

Multi-agent systems (referred to as, MAS) are a new software engi-
neering (computational) paradigm and is considered innovative in
computer science. The goal of such a system is to provide high-level
abstractions to model and develop complex systems and with that
improving solutions for industry problems related to interacting au-
tonomous systems. The term agents is widely used within the liter-
ature without an exact definition that is adopted by everyone [11].
The next two quotes will provide the definitions I used for MAS and
agents:

"A multi-agent system is one that consists of a number of agents,
which interact with one-another."

"An agent is a computer system that is capable of independent
action on behalf of its user or owner (figuring out what needs
to be done to satisfy design objectives, rather than constantly
being told). The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over their
internal state. Thus: an agent is a computer system capable of
autonomous action in some environment in order to meet its
design objectives."

22 theoretical background

— Michael Wooldridge [42]

The agents oriented software engineering community of MAS aims
to provide concepts and abstractions to conceptualize, model, imple-
ment, test and analyze interacting autonomous agent based systems.
MAS are basically the development of a set of autonomous agents, how
they are organized and how they interaction with their environment.
These agents are required to make proactive decision themselves to
achieve their goals or in a reactive manner by responding to incom-
ing events of their (shared) environment. In MAS, the organized agents
coordinate the agent’s behavior in order to achieve the overall goals
of the system. This is behavior can be endogenously or exogenously
driven. Endogenously means the agents follow specification rules or
protocols and exogenously means external software artifacts causes
the behavior. [10, 42]

2.3.1 Agent Based Modeling

A commonly used approach for agent based modeling is the belief-
desire-intention (referred to as, BDI) paradigm [17, 31, 32]. This ap-
proach formalizes the reasoning of a rational agent, which is an agent
that always chooses the action that achieves the optimal expected out-
come towards reaching its goals among all other feasible actions. An
agents reasoning is based on its beliefs that are internal representa-
tions of information about its environment. The desires of an agent
are the states its wants to achieve. Intentions are an agent’s commit-
ment to actions that are parts of a plan. An agent uses these concepts
of belief, desire and intention to execute actions based on plans to
achieve its goals. Based on the BDI paradigm several methodologies
have been proposed and developed, like Tropos [5], Prometheus [20]
and others [17, 43]. The underlying goal of all the authors is to pro-
vide a framework to conceptualize, model, implement, test and ana-
lyze complex (multi-)agent systems.

2.3.2 Agent Based Methodology: Prometheus

As mentioned in the previous subsection there are several method-
ologies developed based on the BDI paradigm. The Prometheus [20]
methodology will provide the guidelines in the development of this
MAS. It is the most mature software development methodology for
agent-based systems that is widely accepted and intended for in-
dustrial software developers and undergraduate students. Although
Prometheus is detailed, it is intended as a set of guidelines and should
be interpreted in conjunction with the common sense of the user(s).
I will therefore use my own knowledge, gathered insights, common
sense reasoning and the essence of Prometheus to develop a MAS of

2.4 oo2apl 23

train traffic controllers. The essence of Prometheus consists of three
phases: "

1. System Specification: where the system is specified using goals and
scenarios; the system’s interface to its environment is described in
terms of actions, percepts and external data; and functionalities are
defined.

2. Architectural Design: where agent types are identified; the system’s
overall structure is captured in a system overview diagram; and sce-
narios are developed into interaction protocols.

3. Detailed Design: where the details of each agent’s internals are de-
veloped and defined in terms of capabilities, data, events and plans;
process diagrams are used as a stepping stone between interaction pro-
tocols and plans. " [20]

2.4 oo2apl

Various agent programming languages (referred to as, APLs) and frame-
works have been proposed in the last few decades to support the de-
velopment of autonomous agents and multi-agent systems [4]. These
APLs can be divided into three different categories:

• Declarative: Strict focus on logic and being formal (for instance:
DALI [8]).

• Imperative: Agent-oriented languages that are built upon and
are in common with imperative languages such as JAVA (for
instance: JACK [15]).

• Hybrid: This category is defined by combining the possibility to
use a declarative approach and imperative programming (for
instance 2APL [9])

My area of interest is with the hybrid approach and especially 2APL

[9], which is a BDI agent-oriented APL. It implements agent concepts
and abstraction by providing programming constructs. 2APL uses a
declarative approach for the representation and reasoning of an agent’s
beliefs and goals and imperative approach for the agents plans and
interface to their environment. These common constructs in agent
programming literature, with emphasis on 2APL, are what OO2APL

[10] is attempting to capture as object oriented design patterns and
constructs. What is implemented in object-oriented technology are
abstractions and some characteristic concepts of autonomous agents
and multi-agent systems. It is achieved by initiating a Java library
of object-oriented design patterns and constructs to capturing these
characteristic and abstractions. I will use OO2APL to develop this
multi-agent system.

24 theoretical background

"We follow the argument that multi-agent programming
technology can find its way to industry by providing a
methodology that guides the development of autonomous
agents and multi-agent systems in standard programming
technology."

— Mehdi Dastani and Bas Testerink [9]

Part II

M E T H O D O L O G Y

3
M E T H O D O L O G Y

In the previous chapter I have presented the various aspects of the
Train Traffic Control at ProRail, Simulation, Agents and Multi-Agent
Systems and OO2APL that are needed in the development of this MAS.
In this chapter, I will present the development process of the MAS of
Train Traffic Control in three parts. Firstly, the Multi-Agent Specifi-
cation part describes the system specifications process and follows
the first phase of Prometheus [20]. Secondly, the Multi-Agent Design
part describes the design process and follows the second and third
phase of Prometheus [20]. Thirdly, the Multi-Agent Implementation
part describes how this specified and designed multi-agent system is
implemented in OO2APL and connected to Trinity (ProRails distributed
simulator).

3.1 multi-agent specification

The specification phase of Prometheus [20] will provide a rough idea
of the system. In the next subsections I will give a rough description
and define the requirements of the system in terms of:

• The goals of the system and use case scenarios

• Interface to the environment

• Functionalities

3.1.1 Goals and Scenarios

The goal of this multi-agent system, described on a high level, is to
support TRDLs in their work that is not handled by the ARI. As men-
tioned in 2.1 safety has the highest priority, meaning the system has to
achieve its goals without jeopardizing that priority. One of the TRDLs
tasks that is not handled by ARI, is applying TADs when necessary as
described in 2.1.4. This part of a TRDL’s work will be supported by the
system. From this higher goal and the determined work the system is
supporting, I extracted the sub goals of the system: monitoring train
traffic, determining if TAD is applicable, execute TADs, inform DVL of
a particular TAD and listening to incoming TRDL messages. These sub
goals of the system (see table 2) contribute to the higher level goal.

27

28 methodology

High-level goal

Support TRDLs in their work

that is not handled by the ARI

Sub goals

- Monitoring Train Traffic

- Determining if a TAD is applicable

- Execute TADs

- Inform DVL of particular TAD

- Listening to incoming TRDL messages

Table 1: The systems’ high-level goal and sub goals

The system will support various scenarios when a TAD should be
applied. I will give one example of a use case scenario responding
to a particular event. The event is that train 1522 has to change or-
der with another train to prevent the emergence of a domino effect
at a specific PPLG, in this case WP (Weesp), with trains heading to As-
d/Shl (Amsterdam/Schiphol). The 1522 train, heading to Asd, with
an Arrival time of 12:19 at WP, has a delay of 8 minutes, observed at
the decision point Ndb (Naarden-Bussum). According to the TAD the
1522 train has to change order with train 14626 who rides on schedule.
The system will work as follows:

Step 0: GOAL: Monitoring Train Traffic.

Step 1: PERCEPT: Train 1522 has delay of 8 minutes observed at

decision point Ndb.

Step 2: ACTION: Determining TAD is applicable.

Step 3: PERCEPT: Train 1522 is more then 6 minutes delayed and

14626 rides on schedule, so an order change has to be applied.

Step 4: ACTION: Order change plan is to be executed.

Step 5: ACTION: Environment is updated with the

order change plan.

Table 2: The systems’ high-level goal and sub goals

3.1.2 Interface to the environment

The environment in which the agent system is situated consists of the
connection it has with the simulator. This connection ensures that the

3.2 multi-agent design 29

agents are able to receive events from the distributed simulated envi-
ronment. The agent system perceives directly from the environment,
but its actions are indirectly transmitted to the environment.

3.1.3 Functionalities

The main functionality of the system is to determine if a TAD is appli-
cable in the current state of the environment. The agents are therefore
monitoring the environment, creating events for determining if a TAD

is applicable. If so, the agents execute TADs. One of the actions can
be to notify a DVL of this particular TAD. An agent does not want to
miss notifications of other agents that is why it is listening to possible
incoming messages so it gets triggered.

3.2 multi-agent design

The architectural design phase of Prometheus [20] will provide the
Agent Types, the interactions between agents, and the overall system
structure. The detailed design phase of Prometheus [20] provides the
internals of agents that will also be described in the Agent Types
subsection.

3.2.1 Agent Types

The multi-agent system has two kinds of agent types: a TRDL agent
and a DVL agent.

3.2.1.1 TRDL Agent

The TRDL agent is modeled with the knowledge provided in subsec-
tion 2.1.2.

Name: TRDL Agent

Description: Monitors the Train Traffic, Determine if a TAD

is applicable,

Execute TAD, Message DVL when instructed by TAD

Lifetime: Instantiated when system is started. Demise when

system is halted.

Goals: Monitoring Train Traffic, Determining if a TAD is applicable,

Execute TADs, Inform DVL of particular TAD

Responds to: External monitoring events,

Internal Execute TAD trigger

Table 3: Descriptor of a TRDL Agent

30 methodology

3.2.1.2 DVL Agent

The DVL agent is modeled with the knowledge provided in subsection
2.1.1.

Name: DVL Agent

Description: When a TRDL message is received, the corresponding

TAD is executed

Lifetime: Instantiated when system is started. Demise when

system is halted.

Goals: Listening to incoming TRDL messages, Execute TADs

Responds to: Incoming TRDL message

Table 4: Descriptor of a DVL Agent

3.2.2 Agents Overview

The agents overview in figure 12 provides insights in the internals of
the two types of agents. It also shows the flow of information.

Figure 12: Agents Overview

3.3 multi-agent implementation 31

3.2.3 Interaction between Agents

In the system are all the agents are connected with one another. This
means that the agents are able to send messages to one another if nes-
sasery. There is one meaningful interaction contributing to the higher
goal and the sub goal: Inform DVL of particular TAD, see figure 13. This
use case occurs when the TAD dictates that the DVL agent must be
notified of the particular situation.

Figure 13: Interaction between agents

3.2.4 System Overview

A simplified overview of the system is given in figure 14 with all the
agent types and connections to the environment and one another.

Figure 14: System Overview

3.3 multi-agent implementation

In the previous sections Multi-Agent Specification and Multi-Agent
Design, all the modeling is provided to actually implement this multi-
agent system. The implementation of this multi-agent system will be

32 methodology

described in the following three subsections: The implementation in
OO2APL, the Connection with the Simulator, and the Models for Test-
ing the implemented multi-agent system that is connected to ProRails
distributed simulator Trinity.

3.3.1 OO2APL Implementation

In this subsection I will give a description of the OO2APL implemen-
tation of the multi-agent system as modeled in the previous two sec-
tions 3.1 and 3.2. The OO2APL JAVA library I used can be found on
Github and is created by Bas Testerink in collaboration with Mehdi
Dastani (see figure 15).

Figure 15: Java library packages of the multi-agent system

In the system all the agents are connected with one another. When
the agent platform is created, the agents are getting instantiated with
an adress book, which is stored in the context of the agents. The
implementation of the agents is dedicated to the Train Traffic Control
of the Amsterdam Area.

Figure 16: Java packages of the TRDL agents and DVL agent

Every agent in the system has four kinds of plan schemes, as shown
in figure 17. Through this, the agents can be triggered by all sorts of
events: external events, goal driven events, the agents’ own internal
driven events, or message events.

https://github.com/BasTesterink/OO2APL/tree/master/src/oo2apl

3.3 multi-agent implementation 33

Figure 17: Java plan schemes package of the TRDL agents and DVL agent

All the TRDL agents in the system have a set of plans, as shown in
figure 18. These plans are responsible for the generation of all the
actions an agent can execute.

Figure 18: Java plans of the TRDL agents

3.3.1.1 TAD Templates

Every assigned area of a TRDL has its own TAD that applies to it. I
decided to create TAD-templates for every TRDL assigned area, as can
be seen in figure 19. These templates capture all the agreements of
the associated TAD. The templates can be seen as the plan schemes in
the multi-agent system, since every agreement of the TAD entails its
own plan which entails a specific action.

Figure 19: TADs of post Amsterdam

Every schedule line of every PPLG in an assigned area of an agent has
to be processed by the agent before it is able to determine if a TAD

is applicable. Before a schedule line is processed by the agent, three
kinds of pre-processes are applied. Every agent has access to the util
package, see figure 20, that contains the pre-processing functions:

34 methodology

1. Train number conversion: since TAD documents only specify
how te handle train series.

2. Time conversion: the time has to be rounded to minutes to de-
termine the delay.

3. Train number check: to determine if a train number is an even
or odd train series.

Figure 20: Java util package of the multi-agent system

When the pre-processing is done, the agent can determine if the
schedule line in question is applicable for a TAD. Figures 21 - 23 show
pieces of code that represent three kinds of handling agreements from
a TAD-template:

• How to handle the last trains of the day

• How to handle an order change

• How to handle connections

Figure 21 shows an example of code that handles the last trains of
the day. Here line 2: check the train number of a given schedule line.
Line 3 - 7: checks if its a Monday - Friday. Line 8: checks if the de-
lay is between 1 and 10 minutes. Line 9 - 13: action is set to "Wait
for Connection", trainsWait are cleared, train 15889 is added and a
TadReturnObject is created with these parameters and returned.

3.3 multi-agent implementation 35

Figure 21: One TAD last train code example

Figure 22 shows an example of code that handles an order change.
Here line 2 - 4: check the train number of a given schedule line to
be of 700 series or 300700 series or 310700 series. Line 5 - 8: check
if its an even number, if the activity equals "D" and if the schedule
time of the train is HH:22 and if the delay is greater or equal to 8

minutes. Line 9 - 13: If that is the case at decision point "Lls", action
is set to "Order Change", orderChange is set to "14600e - 700e" and a
TadReturnObject is created with these parameters and returned. Line
14 - 18: If that is the case before decision point "Lls", action is set to
"Prepare Order Change", orderChange is set to "14600e - 700e" and a
TadReturnObject is created with these parameters and returned. Line
21 - 24: If that is not the case "Lls", action is set to "Check to cancel
Prepare Order Change" and a TadReturnObject is created with these
parameters and returned.

36 methodology

Figure 22: One TAD order change code example

Figure 23 shows an example of code that handles connections. Here
line 2 - 3: check the train number of a given schedule line to be of 146

series or 314600 series. Line 4 - 5: check if its an even number, and if
the schedule time of the train is HH:09 or HH:39, and if the delay is
greater then 1 and less or equal to 5 minutes. Line 7 - 12: If that is the
case at decision point "Asdm", action is set to "Wait for Connection",
extraInfo is set to "5700o", trainsWait add 5700 and a TadReturnObject
is created with these parameters and returned. Line 14 - 18: If that is
the case before decision point "Asdm", action is set to "Prepaire Wait
for Connection", extraInfo is set to "5700o", trainsWait add 5700 and a
TadReturnObject is created with these parameters and returned. Line
20 - 23: If that is not the case "Asdm", action is set to "Check to cancel
Wait for Connection" and a TadReturnObject is created with these
parameters and returned.

3.3 multi-agent implementation 37

Figure 23: One TAD connection code example

Figure 24 shows the content of a TAD return Object.

Figure 24: TADreturnObject

3.3.2 Connection with the Simulator

The connection to simulator Trinity at ProRail, as mentioned in sub-
section 2.2.2, is obtained via a custom made library developed by Arie
van de Berg (developer at ProRail). The library connects to CERTI
which is the open source HLA RTI used by the Trinity simulator. The
library is added to the multi-agent system via an import and is one
of the first things to be executed before the agent platform is created.
The HLA connection creates a Plan object showed by figure 25. This

https://savannah.nongnu.org/projects/certi

38 methodology

Plan object of plans represents the simulation environment and is
given to the agents when they are instantiated. From this point the
agents know how to connect to the simulation environment and are
able to get the real time train schedules. The amount of train sched-
ules the agents can get is limited to the top 20 schedule lines of a
given PPLG. This amount turned out to be sufficient for the purpose
of this system, but can always be adjusted.

Figure 25: HLA connection code

3.3.3 Models for Testing

In order to verify if this multi-agent system within the simulation
environment is doing what it is supposed to do, a disruption model
has been created: this is a model of disruptions on the railway from
certain points of time. These disruptions can very from, for example,
trains that have entrance disruptions or delays, to broken signs or
switches on the tracks. These models make it possible to simulate the
specific scenarios where a TAD has to be applied and therefore test the
performance of the system. These models are created in the scenario
management of the simulator and are able to simulate almost every
scenario.

I have created and tested multiple disruption models to verify this
multi-agent system. The disruption model that I used for demonstrat-
ing the system is meant to show two types of TADs: a train that has to
wait for a connection with another train and an order change of two
trains. Order changes and connections are the two most occurring sit-
uations within train traffic control where TADs are applied and these
are represented by this disruption scenario.

The exact model used consists of the two disruptions:

1. Train 15825 with an entrance disruption +3 minutes at PPLG

ASD.

2. Train 722 is given an delay of +8 minutes from PPLG Stb.

3.3 multi-agent implementation 39

3.3.4 Deliberation Cycle: Sense Reason Act

In this section I will describe the deliberation cycle of the multi-agent
system. When the agent program is started, two things are done as a
prerequisite:

1. A connection with the HLA simulatior is established

2. Agents output window is created

Then the agents platform is created by the following steps:

1. Agents are instantiated with (Type, PPLG book, HLA connec-
tion)

2. Agents’ IDs are put in adressbook and given to the agents

3. Agents get an external TAD goal trigger

From this point the agent becomes TAD Goal driven and the deliber-
ation cycle of sense reason act is initiated:

1. Tad goal trigger toTad plan

2. toTad Plan scans 20 schedule lines for every PPLG where the
agent is responsible for and sends an internaltrigger for every
schedule line to check for TAD

3. These schedule line are checked for TAD, if that is the case: the
right plan is selected

4. The plan is an execute once plan and also creates the agents
output that is displayed in the agents notification window.

Part III

R E S U LT S

4
R E S U LT S

In the previous chapter I have presented the methodology of my
study. In this chapter I will present the results of the developed MAS of
Train Traffic Control as described in the methodology in three parts:
Firstly, the Multi-Agent System of Train Traffic Control part describes
the outcome of the implemented MAS. Secondly, the Systems Setup
part describes the setup in which the MAS was implemented. Thirdly,
the Multi-Agent System and Simulation Run part provides an de-
tailed overview of the simulation run.

4.1 multi-agent system of train traffic control

The main result of this study is a proof of concept (POC) of a suc-
cessfully modeled, implemented and working multi-agent system of
Train Traffic Control. The developed system is connected to a dis-
tributed simulation environment and capable of determining if a TAD

is to be applied for the current state of this environment. The POC as
described in the implementation section 3.3, can be seen as a foun-
dation to eventually replace the need of TRDLs as human-in-the-loop
simulators. This multi-agent system is focused on the Traffic Control
post Amsterdam and area, since it can easily be implemented for all
posts, it can work on a national scale.

4.2 systems setup

The section will describe the system setup that is used for the demon-
stration of the multi-agent system at ProRail. The actual detailed sim-
ulation run of the demonstration is provided in section 4.3. All the
simulations are performed on Windows 10 machines.

4.2.1 Multi-Agent System as Executable JAR

Due to connection issues from the IDE of my laptop to the CERTI (HLA
RTI) of the simulator, the decision was made te run the program from
an executable JAR. An executable JAR is an executable Java program,
along with any libraries the program uses, that is packaged in a JAR
file.

The multi-agent system is executed as follows: from the location
of the JAR file: right click on the mouse and select: open PowerShell-
window. In the Windows Powershell Type: java -jar TadAgentDemo.jar
and press enter to execute the program. Then type: ’tadGoal’ in the

43

44 results

powershell and press enter to start the multi-agent system. A Java
Window will open, where all the notifications of the TRDL agents are
outputted.

4.2.2 Simulator

In order for the multi-agent system to work, the right simulation set-
tings have to be selected, because the MAS is created for Traffic Control
post Amsterdam. The simulation consists of FRISO and PRLgame. In
FRISO the simulation model is selected (Amsterdam), then the disrup-
tion model is selected from the scenario management. If the model
and scenario are all loaded and PRLgame is started the simulation
can start.

4.3 multi-agent system and simulation run

The results of the simulation run using the disruptive model as de-
scribed in section 3.3.3 are presented below in form of screenshots
of the corresponding simulation and the agents’ output. Important
note: in order to read and interpret the screenshots zooming in is
required. The screenshot images are too big to display them in any
other way. I will first explain the different screens that are shown in
the screenshots below from left to right see figures 26- 31:

• Figure 26: Simulation manager

• Figure 27: Schedule lines per PPLG

• Figure 28: Graphical representation of the trains

• Figure 29: FRISO’s grafical representation of the trains

• Figure 30: Windows Powershell

• Figure 31: Agent Notification window

Figure 26: Simulation manager

4.3 multi-agent system and simulation run 45

Figure 27: Schedule lines per PPLG

Figure 28: Schedule lines per PPLG

Figure 29: FRISO’s grafical representation of the trains

46 results

Figure 30: Windows Powershell

Figure 31: Agent Notification window

De first screenshot 32 below shows that the highlighted line of the
schedule line per PPLG event triggered the MAS to come into action
and produced an output on the agent notification window. The agents
message is Prepare connection TAD for train 15825. Prepare connec-
tion means the TRDL should make preparations for a possible wait for
connection for the given train.

Figure 32: Screenshot 1: Simulation Run Time 08:13:08

4.3 multi-agent system and simulation run 47

De second screenshot 33 below shows that the highlighted line of the
schedule line per PPLG event triggered the MAS to come into action
and produced an output on the agent notification window. The agents
message is Prepare order change TAD for train 722. Prepare order
change means the TRDL should make preparations for a possible order
change for the given train.

Figure 33: Screenshot 2: Simulation Run Time 08:15:05

De third screenshot 34 below shows that the highlighted line of the
schedule line per PPLG event triggered the MAS to come into action
and produced an output on the agent notification window. The agents
message is Definite connection TAD for train 15825, since the delay is
within the threshold of the TAD at decision point. Definite connection
TAD means the TRDL should let the given train wait for its connection.

Figure 34: Screenshot 3: Simulation Run Time 08:18:08

Screenshots 3 until 8 shown in figures 34 - 39, perfectly demonstrate
what is called the tail lights effect. This is what happens when the
wait for connection TAD is not executed. Train 15825 arrives at plat-
form 2 which has a connection with train 4325 that is already at plat-
form 1: as can be seen directly below the simulator manager.

48 results

Figure 35: Screenshot 4: Simulation Run Time 08:28:55

Figure 36: Screenshot 5: Simulation Run Time 08:28:59

Figure 37: Screenshot 6: Simulation Run Time 08:29:01

4.3 multi-agent system and simulation run 49

Figure 38: Screenshot 7: Simulation Run Time 08:29:11

Figure 39: Screenshot 8: Simulation Run Time 08:29:18

De ninth screenshot 40 below shows that the highlighted line of the
schedule line per PPLG event did not trigger the MAS to come into
action and produced an output on the agent notification window. The
agents message is still active Prepare connection TAD for train 722.

Figure 40: Screenshot 9: Simulation Run Time 08:31:15

De tenth screenshot 41 below shows that the highlighted line of the
schedule line per PPLG event triggered the MAS to come into action

50 results

and produced an output on the agent notification window. The agents
message is Cancel connection TAD for train 722, since the delay is
lower than the threshold of the TAD at decision point. Cancel connec-
tion TAD means the TRDL should cancel the preparation for a possible
connection for the given train.

Figure 41: Screenshot 10: Simulation Run Time 08:31:55

Part IV

C O N C L U S I O N A N D D I S C U S S I O N

5
C O N C L U S I O N

In this chapter, I will discuss the most important findings and pro-
vide answers to the research question and related sub-questions. The
research question was:

How to specify, design, and implement a multi-agent sys-
tem within a simulated environment that assists train traf-
fic controllers (TRDLs) in their work that is not handled by
ProRail’s Automatic Railway Setting (ARI)?

Subquestions:

1. How do Train Traffic Controllers (TRDLs) work with ARI in ev-
eryday practice?

2. What are the limitations of ARI that TRDLs encounter in practice?

3. How can a multi-agent system be modeled to overcome these
limitations?

4. What is an efficient and effective agent based design method for
a multi-agent system?

5. How to implement a multi-agent system onto ProRail’s dis-
tributed simulation environment?

All the traffic management work of Train Traffic Controllers is, in
the optimal scenario, done automatically by the control systems such
as ARI. The limitations of the ARI arises in the situations where trains
deviate too much from the schedule. This multi-agent system solves
the limitation of applying handling procedures called TADs on partic-
ular delay scenarios.

The Prometheus methodology turned out to be a very efficient and
effective method of modeling agent systems, because it is intended
to be interpreted in conjunction with, in this case my own, common
sense. I managed to model a multi-agent system of Train Traffic Con-
trol using the Prometheus methodology. The modeled multi-agent
system was successfully implemented in a JAVA program using the
OO2APL library. Via a HLA library the MAS was able to connect as an
federate to ProRails HLA simulator Trininty. Disruption models make
it possible to simulate the specific scenarios where a TAD has to be
applied and therefore test the performance of the system. This MAS

is quite generic, because, for instance, a change of context makes the
system applicable for every train traffic control area within ProRail.
Therefore the system can scale quite easily, but it is also simple to add
more capabilities to the agents.

53

54 conclusion

I was able to successfully demonstrate this working multi-agent
system within a distributed simulation environment that notifies when
a TAD should be applied to ProRail. The system not only does it at the
decision point, but it gives the TRDLs a heads up to possibly prepare
a TAD.

6
D I S C U S S I O N

6.1 interpretation of results

This study led to an actual working proof of concept. Specifying the
MAS was done by extensive literature study and talking with lots
of different employees at ProRail. When a good understanding of
TRDLs was established we decided to create a MAS that could carry
out TADs. From that point the designing phase started and with the
Prometheus methodology the systems’ specification and design was
created. Other methodologies where considered, but Prometheus was
chosen as the best fit. This led to the implementation phase of the re-
search project, which created a fundamental multi-agent system of
DVL and TRDL agents.

This study provides new and different insights into the possibilities
of implementing agent based technology within the train traffic con-
trol domain. This is how multi-agent programming technology can
find its way into the industry by providing a proof of concept that
hopefully guides the development of autonomous agents and multi-
agent systems in standard programming technology.

6.2 limitations

The biggest limitation of this research project was the time in which
the MAS had to be developed. I initially got six month to specify, de-
sign, and implement a multi-agent system. The process takes a lot of
time.

One of the limitations of the agent system due to time is the lack
of active communication. The MAS is implemented in a way that com-
munication/messages between agents are possible, but for TAD this
was not initially necessary. Also the OO2APL library has no initial
reference to other agents. This means you need to create an address
book that is given to the agents in order to communicate to one an-
other. Another limitation of the MAS the agents’ outputs. Also due to
lack of time the agent’s output is purely textual. The system as works
an advice system for TRDLs that does simulation runs for training
purposes.

The main limitation for connecting, testing and verifying the MAS

was the speed of the simulations. It took a lot of time booting up the
simulator and get it running. In some occasions it would crash or
your initial disruption model was not testing the right premise. Then
a whole new simulation run had to be initiated. The connection of

55

56 discussion

the MAS to the simulator was also a difficult process. I was dependent
of programmers at ProRail to write the HLA connection library. I
never got to connect directly from my laptop to the simulator. Only
with an executable jar of the MAS program running it on the simulator
computer itself. The main disadvantage was that it took a lot of extra
time when adjustments to the MAS had to be made, since with every
change a new jar had to be made and transferred to the simulator
computer.

6.3 future research

The present study provides a proof of concept and a foundation to
build upon. ProRail was very pleased with the results and are ex-
ploring new possible applications of agent based technology. This
multi-agent system can be further extended, since it is quite generic,
for instance only a change of context makes the system applicable
for every train traffic control area within ProRail. Capabilities can be
simply added to the agents. This makes the system scale quite easily.

Different implementations and configurations of collaboration of
TRDL agents can be explored. It will be interesting to research how
this effects train traffic control.

An interesting follow-up study would be on how to implementing
a multi-agent system. I had a very interesting and also philosophical
discussion with my University supervisor of making the environment
of the system smarter. In the current literature there is not much in-
formation on this topic.

In my own research time Wilco Tielman from ProRail and I also
tried to use machine learning on actual train traffic data to predict
when an order change has to be applied. We managed to create an
WEKA order model, but due to limited time and the scope of my
research project, we could not explore this interesting idea, see figure
42.

Figure 42: Java Weka folder of the multi-agents system

6.4 concluding remarks

The present study shows that a multi-agent system can be success-
fully specified, designed and implemented to support TRDLs in their
work within a distributed simulated environment. This study is mean-
ingful for ProRail because it demonstrates the power of agent based

https://www.cs.waikato.ac.nz/ml/weka/index.html

6.4 concluding remarks 57

technology for Train Traffic Control and the many possibilities be-
yond that.

B I B L I O G R A P H Y

[1] I. Vaes B. Kupers. Software Requirements Specification (SRS) Au-
tomatische Rijweginstelling (ARI). Version 12.0. ProRail ICT Lo-
gistiek Be- en Bijsturing, 2016.

[2] Ana LC Bazzan. “Opportunities for multiagent systems and
multiagent reinforcement learning in traffic control.” In: Au-
tonomous Agents and Multi-Agent Systems 18.3 (2009), p. 342.

[3] Eric Bonabeau. “Agent-based modeling: Methods and techniques
for simulating human systems.” In: Proceedings of the National
Academy of Sciences 99.suppl 3 (2002), pp. 7280–7287.

[4] Rafael H Bordini, Lars Braubach, Mehdi Dastani, A El F Seghrouchni,
Jorge J Gomez-Sanz, Joao Leite, Gregory O’Hare, Alexander
Pokahr, and Alessandro Ricci. “A survey of programming lan-
guages and platforms for multi-agent systems.” In: Informatica
30.1 (2006).

[5] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia,
and John Mylopoulos. “Tropos: An agent-oriented software de-
velopment methodology.” In: Autonomous Agents and Multi-Agent
Systems 8.3 (2004), pp. 203–236.

[6] ProRail Verkeersleiding Bedrijfsbureau Centraal. Werkwijze trein-
dienstleider Mei 2018. Mei 2018. Versie Mei 2018. ProRail, 2018.

[7] Bo Chen and Harry H Cheng. “A review of the applications
of agent technology in traffic and transportation systems.” In:
IEEE Transactions on Intelligent Transportation Systems 11.2 (2010),
pp. 485–497.

[8] Stefania Costantini and Arianna Tocchio. “A logic program-
ming language for multi-agent systems.” In: European Workshop
on Logics in Artificial Intelligence. Springer. 2002, pp. 1–13.

[9] Mehdi Dastani and John-Jules Ch Meyer. “A practical agent
programming language.” In: International Workshop on Program-
ming Multi-Agent Systems. Springer. 2007, pp. 107–123.

[10] Mehdi Dastani and Bas Testerink. “Design patterns for multi-
agent programming.” In: International Journal of Agent-Oriented
Software Engineering 5.2-3 (2016), pp. 167–202.

[11] Stan Franklin and Art Graesser. “Is it an Agent, or just a Pro-
gram?: A Taxonomy for Autonomous Agents.” In: International
Workshop on Agent Theories, Architectures, and Languages. Springer.
1996, pp. 21–35.

59

60 Bibliography

[12] HLA Working Group et al. “IEEE standard for modeling and
simulation (M&S) high level architecture (HLA)-Federate inter-
face specification.” In: IEEE Standard (2000), pp. 1516–2000.

[13] HLA Working Group et al. “IEEE standard for modeling and
simulation (M&S) high level architecture (HLA)-framework and
rules.” In: IEEE Standard (2000), pp. 1516–2000.

[14] HLA Working Group et al. “IEEE standard for modeling and
simulation (M&S) high level architecture (HLA)-object model
template (OMT) specification.” In: IEEE Standard (2000), pp. 1516–
2000.

[15] Nick Howden, Ralph Rönnquist, Andrew Hodgson, and An-
drew Lucas. “JACK intelligent agents-summary of an agent in-
frastructure.” In: 5th International conference on autonomous agents.
2001.

[16] Nicholas R Jennings, Katia Sycara, and Michael Wooldridge. “A
roadmap of agent research and development.” In: Autonomous
agents and multi-agent systems 1.1 (1998), pp. 7–38.

[17] David Kinny, Michael Georgeff, and Anand Rao. “A method-
ology and modelling technique for systems of BDI agents.” In:
European Workshop on Modelling Autonomous Agents in a Multi-
Agent World. Springer. 1996, pp. 56–71.

[18] Martijn Mes, Matthieu Van Der Heijden, and Aart Van Harten.
“Comparison of agent-based scheduling to look-ahead heuris-
tics for real-time transportation problems.” In: European journal
of operational research 181.1 (2007), pp. 59–75.

[19] AD Middelkoop and L Loeve. “Simulation of traffic manage-
ment with FRISO.” In: WIT Transactions on the Built Environment
88 (2006).

[20] Lin Padgham and Michael Winikoff. “Prometheus: A method-
ology for developing intelligent agents.” In: International Work-
shop on Agent-Oriented Software Engineering. Springer. 2002, pp. 174–
185.

[21] Praveen Paruchuri, Alok Reddy Pullalarevu, and Kamalakar
Karlapalem. “Multi agent simulation of unorganized traffic.” In:
Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 1. ACM. 2002, pp. 176–183.

[22] ProRail. Software Design Description (SDD) Automatische Rijwe-
ginstelling (ARI). Version 19.0. ProRail, 2017.

[23] ProRail. Organisatie. 2018. url: https : / / www . prorail . nl /

reizigers/wie-zijn-we/organisatie (visited on 01/08/2018).

[24] ProRail. Over ProRail. 2018. url: https://www.prorail.nl/
reizigers/over-prorail (visited on 01/08/2018).

https://www.prorail.nl/reizigers/wie-zijn-we/organisatie
https://www.prorail.nl/reizigers/wie-zijn-we/organisatie
https://www.prorail.nl/reizigers/over-prorail
https://www.prorail.nl/reizigers/over-prorail

Bibliography 61

[25] ProRail. Over Verkeersleiding. 2018. url: https://prorailbv.
sharepoint.com/sites/focus/info-over/org/operatie/VL

(visited on 02/08/2018).

[26] ProRail. Over Verkeersleidingsposten. 2018. url: http : / / www .

jaarverslagprorail.nl/kerncijfers/ (visited on 01/08/2018).

[27] ProRail. Over Verkeersleidingsposten. 2018. url: https://prorailbv.
sharepoint.com/sites/focus/info-over/org/operatie/VL/

Paginas/Verkeersleidingsposten.aspx (visited on 02/08/2018).

[28] ProRail. ProRail in cijfers. 2018. url: https://www.prorail.nl/
reizigers/over- prorail/wat- doet- prorail/prorail- in-

cijfers (visited on 01/08/2018).

[29] ProRail. Wat doet ProRail. 2018. url: https://www.prorail.nl/
reizigers/wat-doet-prorail (visited on 01/08/2018).

[30] Hugo Proenca and Eugenio Oliveira. “MARCS multi-agent rail-
way control system.” In: Ibero-American Conference on Artificial
Intelligence. Springer. 2004, pp. 12–21.

[31] Anand S Rao and Michael P Georgeff. “Modeling rational agents
within a BDI-architecture.” In: KR 91 (1991), pp. 473–484.

[32] Rosaldo JF Rossetti, Rafael H Bordini, Ana LC Bazzan, Sergio
Bampi, Ronghui Liu, and Dirck Van Vliet. “Using BDI agents
to improve driver modelling in a commuter scenario.” In: Trans-
portation Research Part C: Emerging Technologies 10.5-6 (2002), pp. 373–
398.

[33] ProRail ICT Services. Gebruiksvoorschrift: Voor de bediening van
wissel- en seininrichtingen met behulp van Procesleiding Rijwegen.
1st. Version 42.0 (1.0). ProRail, 2016.

[34] Robert Siegfried. Modeling and simulation of complex systems: A
framework for efficient agent-based modeling and simulation. Springer,
2014.

[35] J. Steneker, M. van Schayk, B.D. Cunes, J.C. Goosen, and L.S.
Koelewijn. Conceptueelmodel FRISO. Version 4.4.11 RGS. INCON-
TROL Simulation Solutions, 2018.

[36] J. Steneker, M. van Schayk, B.D. Cunes, J.C. Goosen, and L.S.
Koelewijn. Technisch ontwerp FRISO. Version 4.4.11 RGS. INCON-
TROL Simulation Solutions, 2018.

[37] Herman Sulmann. Railverkeersleiding van Sein tot Sein. 1st. Konin-
klijke van de Garde, Zaltbommel, 2000.

[38] Okan Topçu, Umut Durak, Halit Oğuztüzün, and Levent Yil-
maz. Distributed simulation: A model driven engineering approach.
Springer, 2016.

https://prorailbv.sharepoint.com/sites/focus/info-over/org/operatie/VL
https://prorailbv.sharepoint.com/sites/focus/info-over/org/operatie/VL
http://www.jaarverslagprorail.nl/kerncijfers/
http://www.jaarverslagprorail.nl/kerncijfers/
https://prorailbv.sharepoint.com/sites/focus/info-over/org/operatie/VL/Paginas/Verkeersleidingsposten.aspx
https://prorailbv.sharepoint.com/sites/focus/info-over/org/operatie/VL/Paginas/Verkeersleidingsposten.aspx
https://prorailbv.sharepoint.com/sites/focus/info-over/org/operatie/VL/Paginas/Verkeersleidingsposten.aspx
https://www.prorail.nl/reizigers/over-prorail/wat-doet-prorail/prorail-in-cijfers
https://www.prorail.nl/reizigers/over-prorail/wat-doet-prorail/prorail-in-cijfers
https://www.prorail.nl/reizigers/over-prorail/wat-doet-prorail/prorail-in-cijfers
https://www.prorail.nl/reizigers/wat-doet-prorail
https://www.prorail.nl/reizigers/wat-doet-prorail

62 Bibliography

[39] Kagan Tumer and Adrian Agogino. “Distributed agent-based
air traffic flow management.” In: Proceedings of the 6th interna-
tional joint conference on Autonomous agents and multiagent sys-
tems. ACM. 2007, p. 255.

[40] I. Vaes. “Beveiliging en beheersing anno 2006.” In: (2006).

[41] ProRail Verkeersleiding Afdeling Veiligheid. Handboek treindien-
stleider Mei 2018. Mei 2018. Versie Mei 2018. ProRail, 2018.

[42] Michael Wooldridge. An introduction to multiagent systems. John
Wiley & Sons, 2009.

[43] Michael Wooldridge, Nicholas R Jennings, and David Kinny.
“A methodology for agent-oriented analysis and design.” In:
Proceedings of the third annual conference on Autonomous Agents.
ACM. 1999, pp. 69–76.

[44] Bernard P Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory
of modeling and simulation: integrating discrete event and continuous
complex dynamic systems. Academic press, 2000.

[45] Movares ingenieurs en adviseurs. Telefoonnummers van Verkeer-
sleidinggebieden in Nederland. Version 7.4a. 2017.

[46] VL Vakopleidingen | basisleertraject treindienstleider. Systemen
ARI en ABT. Version 5.0. ProRail, 2016.

	Abstract
	Acknowledgements
	Contents
	Introduction
	1 Introduction
	1.1 ProRail
	1.2 Problem and Motivation
	1.3 Research Question
	1.4 Approach
	1.5 Outline

	2 Theoretical Background
	2.1 Train Traffic Control at ProRail
	2.1.1 Traffic Control Department
	2.1.2 Train Traffic Controller (TRDL)
	2.1.3 Automatic Railway Setting (ARI)
	2.1.4 Train Handling Document (TAD)

	2.2 Simulation
	2.2.1 High Level Architecture (HLA)
	2.2.2 Simulation at ProRail: Trinity
	2.2.3 FRISO
	2.2.4 Agents Based Traffic Simulation

	2.3 Agents and Multi-Agent Systems
	2.3.1 Agent Based Modeling
	2.3.2 Agent Based Methodology: Prometheus

	2.4 OO2APL

	Methodology
	3 Methodology
	3.1 Multi-Agent Specification
	3.1.1 Goals and Scenarios
	3.1.2 Interface to the environment
	3.1.3 Functionalities

	3.2 Multi-Agent Design
	3.2.1 Agent Types
	3.2.2 Agents Overview
	3.2.3 Interaction between Agents
	3.2.4 System Overview

	3.3 Multi-Agent Implementation
	3.3.1 OO2APL Implementation
	3.3.2 Connection with the Simulator
	3.3.3 Models for Testing
	3.3.4 Deliberation Cycle: Sense Reason Act

	Results
	4 Results
	4.1 Multi-Agent System of Train Traffic Control
	4.2 Systems Setup
	4.2.1 Multi-Agent System as Executable JAR
	4.2.2 Simulator

	4.3 Multi-Agent System and Simulation Run

	Conclusion and Discussion
	5 Conclusion
	6 Discussion
	6.1 Interpretation of results
	6.2 Limitations
	6.3 Future Research
	6.4 Concluding Remarks

	Bibliography

