
Universiteit Utrecht
Faculty of Science
Dept. of Information and Computing Sciences

Generic diffing and merging of mutually
recursive datatypes in Haskell

Author

Arian van Putten (4133935)

Supervisor

Dr. Wouter Swierstra
Dr. Alejandro Serrano Mena

Daily Supervisor

Victor Cacciari Miraldo

May 14, 2019

In liefdevolle herrinering aan mijn papa, die altijd zo trots op mij was.

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Approach . 5
1.3 Contributions . 7

2 Background - Generic programming 9
2.1 Datatype-generic programming . 9
2.2 Datatype-generic programming in Agda . 14

3 Background - Diffing and merging 18
3.1 Diffs as edit scripts . 18
3.2 Structured Diffs . 23

4 Haskell Implementation 30
4.1 A generic representation for Abstract Syntax Trees . 30
4.2 Pattern matching . 36
4.3 Implementing an efficient diffing algorithm . 38
4.4 Structured Diffs . 42
4.5 An efficient algorithm for structured diffs . 44
4.6 Merges . 51

5 Experiments 57
5.1 Data collection . 57
5.2 Diff performance . 57
5.3 Merges . 58

6 Conclusion and Future work 61
6.1 Conclusion . 61
6.2 Future work . 61

3

1
Introduction

1.1 Motivation
Version control systems are an important tool for the collaboration of software developers. They
allow multiple people to work simultaneously on the same code repository effectively. It is the task
of the version control system to reconcile changes when multiple people edit the same piece of a file.
There are multiple techniques employed by different version control systems to do this reconcilia-
tion. The most widely-used software-merging tools are unstructured in nature. Popular tools are
the diff and diff3 tools, which power version control systems like subversion and git. Unstruc-
tured approaches are simple. These systems treat all code as lines of text, and use the largest common
sub-sequences algorithm to find changes on a line-by-line basis [lcs]. Though this approach gives us
a performant approach for finding changes between files, reconciling these changes can be tricky at
times. When two people make changes to the same line of code that seem to be independent diff3
will still find a conflict, because each line of code is treated as a separate character in the diffing algo-
rithm. Sometimes single units of change might also span multiple lines of code, instead of a subset
of lines, and in this case diff3 might also struggle during reconciliation.

As an illustrating example, we have picked a merge conflict from the popular Lua project Kong 1.
Two changes were performed in parallel on same same file by two different people. The first contrib-
utor created a commit that refactored some parts of the code in a predictable way. Namely, replacing
all occurrences of the string ngx. with ngx_.

@@ -237,7 +241,7 @@ function Kong.init_worker()
return "init"

end)
if not ok then

- ngx.log(ngx.CRIT, "could not set router version in cache: ", err)
+ ngx_log(ngx_CRIT, "could not set router version in cache: ", err)

return
end

@@ -291,7 +295,7 @@ function Kong.balancer()

local ok, err = balancer_execute(addr)
if not ok then

- ngx.log(ngx.ERR, "failed to retry the dns/balancer resolver for ",
+ ngx_log(ngx_ERR, "failed to retry the dns/balancer resolver for ",

addr.upstream.host, "' with: ", tostring(err))
1https://github.com/Kong/kong

4

return responses.send(500)

At the same time, another person fixed a bug in the logging code. The field addr.upstream.host
ceised to exist some versions ago, which caused the logger to always print nil. The person came up
with the following simple patch to fix that:

@@ -292,7 +292,7 @@ function Kong.balancer()
local ok, err = balancer_execute(addr)
if not ok then

ngx.log(ngx.ERR, "failed to retry the dns/balancer resolver for ",
- addr.upstream.host, "' with: ", tostring(err))
+ tostring(addr.host), "' with: ", tostring(err))

return responses.send(500)
end

Though these changes are obviously disjoint, diff3 will report a conflict, because a single line was
changed in two different ways at the same time.

local ok, err = balancer_execute(addr)
if not ok then

<<<<<<< A.lua
ngx_log(ngx_ERR, "failed to retry the dns/balancer resolver for ",

addr.upstream.host, "' with: ", tostring(err))
=======

ngx.log(ngx.ERR, "failed to retry the dns/balancer resolver for ",
tostring(addr.host), "' with: ", tostring(err))

>>>>>>> B.lua

return responses.send(500)
end

1.2 Approach
Structured syntactic merging tries to reduce the amount of conflicts that occur, by exploiting the
underlying structure of the file that is being diffed. This can be accomplished by parsing the files
that we want to diff into abstract syntax tree. In Figure 1.1, we again see the changes that were made
to the Lua file, but this time the patches are represented as changes over the abstract syntax tree of
the changed files. In these images, the color red indicates a deletion of part of the tree. This means
that the tree on which we apply the diff, must have all the components marked in red, and these
are then removed to produce the result of the diff. White parts denote parts of the tree that must be
preserved when applying the patch. They have to be present in the source tree when applying the
patch, and will be copied over verbatim. Green parts of the patch denote insertions. These are new
parts that will be added to the tree when we apply the patch. Finally in yellow we have Scp nodes.
These nodes match any value in the tree on which we are applying the patch, and copies whatever
it matches over to the new tree. The existence of these Scp nodes makes our patches applicable to a
wide domain of trees, instead of limiting the domain of a patch to just a single tree.

If we look carefully at the Scp nodes in both patches, we see that the two patches are actually
disjoint. They both operate on the source tree 𝑂.𝑙𝑢𝑎 independently. At every place where the two

5

Name "log"

"ngx" "ngx_log"

Name

VarName

PEVar *

SelectName *

PEVar

NormalFunCall

Args

Name "ERR"

"ngx" "ngx_ERR"

Name

VarName

PEVar *

SelectName *

PEVar

PrefixExp

:

Scp

Scp

NormalFunCall

Args

Scp

:

:

Scp :

Name "tostring"

VarName

PEVar

NormalFunCall *

Args *

[]

Name "host"

Name "addr"

VarName

PEVar

SelectName

Name "host"

PEVar

SelectName *

PEVar

PrefixExp *

: *

PEFunCall *

PrefixExp Scp

Figure 1.1: Diffs as changes over trees6

patches differ, the two patches are trivially disjoint. Looking back at Figure 1.1, at each place where
the two patches are different, either the left patch or the right patch is equal to Scp. Since the domain
of Scp matches any subtree, it in particular matches the subtree that the other patch would generate.
Hence, we can reconcile any Scp with any patch.

Language specific tools for e.g. XML, Java, and C++ have been developed in the past that parse
files into abstract syntax trees using their context-free grammars and show promising results [14].
However, there is one big downside to the structured approach. For each language that we want to
support, language-specific tooling has to developed [1].

Recently, studies have been conducted to utilise datatype-generic programming to implement
efficient structured diffing algorithms in a language-agnostic way [13, 31, 25]. Haskell or Agda
datatypes are used to describe language ASTs. They then utilise datatype-generic programming to
describe changes between values of these datatypes in a language-agnostic way. However, these ap-
proaches all work on a flattened representation of ASTs, which makes it hard to reason about merges.
Furthermore, though in theory these algorithms are quadratic, existing implementations are not
well-optimised, which makes them not suited for real-world usage. Also, previous approaches can
not guarantee that performing a merge produces a tree that is well-formed, or in other words, well-
typed. Let us illustrate with an example. Consider the following approximation of the Lua AST.

data Expr = Val Int
data Stmt

= If Expr [Stmt]
∣ Asg Name Expr
∣ Print Expr

It would then be invalid if a diff would produce an AST, that would put an assignment in the body
of the If statement.

invalid ∶∶ Stmt
invalid = If (Asg "yo" (Val 3)) [Print (Val 3),Print (Val 4)]

^^^^^^^^^^^^^^^^^^
Expected ‵Expr‵ but got ‵Stmt‵

A novel approach by Miraldo, Dagand, and Swierstra [21] defines patches that follow the same
tree-like structure that the source and destiniation value of the patch have. Using this richer struc-
ture, it is then possible to reason about merges [20], as we have demonstrated in Figure 1.1. How-
ever, their approach lacks an efficent algorithm for generating these patches. Moreover, their patch
datatype can only describe changes between regular datatypes, but most ASTs need mutually recur-
sive datatypes to be described correctly. For example, the Stmt datatype from above is not regular,
as it not only recurses back into Stmt, but also into Expr.

1.3 Contributions
In this thesis, we show that type-safe, generic structured diffing is not only theory, but also can be
practically used in the real world on actual code repositories, regardless of programming language.
More specifically, this thesis makes the following contributions:

• We port the work of Miraldo, Dagand, and Swierstra [21] to Haskell using the generics-mrsop
library. More importantly, we add support for diffing and merging of mutually recursive
datatypes. This allows us to diff and merge a wide variety of programming language ASTs.
(Section 4.4)

7

Edit scripts [13] Structured diff [21] This thesis
Fast diff In theory No Yes
Type-safe diff Yes Yes Yes
Easy merge No Yes Yes
Type-safe merge Yes Yes Yes
Mutual recursion Yes No Yes

Table 1.1: Contributions at a glance

• We implement an optimised version of the gdiff algorithm in Haskell. We show that modern
Haskell language extensions allow us to reduce the amount of singleton type values to make
the patches typecheck, reducing the memory footprint and running time of the algorithm sig-
nificantly, allowing us to diff large files. (Section 4.3)

• We show that we can implement a quadratic algorithm for generating structured patches by
using gdiff as an oracle. This allows us to use structured diffs and merges on large ASTs in
reasonable time. (Section 4.5)

• We have instantiated our framework for both the Clojure and Lua programming languages and
mined merge conflicts from many popular GitHub repositories. We evaluate the performance
of our diffing algorithm on this dataset. Furthermore, we evaluate our merging algorithm
on this dataset as well. We show, though we use a rather naive merging algorithm, that we
are able to solve around 15 percent of conflicts automatically for Clojure, and 13 percent of
conflicts for Lua. (Chapter 5)

8

2
Background - Generic programming

Haskell allows us to straightforwardly represent abstract syntax trees using algebraic datatypes. For
example, a language for integer expressions could be defined as:

expr
∶∶= expr '+' expr
∣ 'let' name '=' expr 'in' expr
∣ int

data Expr
= Add Expr Expr
∣ Let String Expr Expr
∣ Val Int

Combined with its rich ecosystem for parser-combinator libraries this makes Haskell particu-
larly well-suited for writing tools manipulating programs. It comes to no surprise that Hackage has
a rich ecosystem of language ASTs and parsers 1. For the purpose of building a library for generi-
cally diffing and merging programming language ASTs, it is convenient that much of the language-
specific work has already been done for us. One question remains; how dowe implement function-
ality not speficially for one language, but for any programming language AST in general? This is
where generic programming libraries come into play. They give us a unified view of the structure
datatypes. We then implement desired behaviour over this unified view, and use that to instantiate
this behaviour for each datatype for which we desire such functionality. This allows us to implement
diffing and merging over ASTs that work for any AST.

In this chapter, we will give an introduction to datatype generic programming. First, we will
describe Haskell’s built-in support for generic programming. We will describe shortcomings and
limitations to this approach of generic programming, and will then present a generic programming
library in Agda that is better suited for the purpose of calculating diffs and merges. Using this
generic programming library in Agda, we will then present two existing approaches to datatype-
generic diffing [21, 13]. in Chapter Both make heavy use of dependent types.

2.1 Datatype-generic programming
Datatype generic programming is an umbrella term for techniques that allow us to define functions
in such a way, that they work for many datatypes, instead of repeatedly writing similar functions
for different datatypes. One form of generic programming that most Haskell programmers should
be familiar with is Haskell’s built-in support for deriving certain typeclasses automatically. For ex-
ample, it allows us to define implementations for pretty-printing or checking datatypes for equality,
without having to write those by hand:

deriving instance Show Expr
deriving instance Eq Expr

1http://hackage.haskell.org/packages/tag/language

9

> Val 3 ≡ Val 4
False
> show (Add (Val 3) (Val 4))
"Add (Val 3) (Val 4)"

However, Haskell’s deriving mechanism only works for a predefined collection of typeclasses
and functions. It does not allow the user to define new functionality that works generically.

Many libraries have spawned around the concept of generic programming; giving programmers
a set of tools to reason about and program with datatypes in a generic fashion, such that end-users
can define their own automatically derivable behaviours [12, 26, 16, 32, 33]. Even today it is still
an activate area of research [23, 28]. Most generic programming libraries share a similar approach.
They define some common representation of datatypes on which algorithms are defined. They then
define a mapping between datatypes and their common representation. By composing this map-
ping with the algorithm defined on the generic representation, we get an implementation for any
datatype that has such a representation for free. These generic representations are automatically
generated for supported datatypes either through TemplateHaskell [29] or through built-in support
by the compiler [12, 16]. How this representation is defined, is what differentiates these libraries.
As we will see, trade-offs are made between type-safety, expressiveness, efficiency and ease of use
when defining such a representation.

The regular library serves as the main inspiration for GHC’s built-in generic programming
library GHC.Generics. The regular library presents this mapping between representation and type
using a typeclass with an associated type family [4], which gives us a type-safe mapping between
the type and its original representation, as each representation Rep a is tagged with the type it is
representing.

class Generic a where
type Rep a ∶∶ ∗ → ∗
from ∶∶ a → Rep a a
to ∶∶ Rep a a → a

The representation itself consists of a fixed set of pattern functors [26]. These are a set of functorial
datatypes that allow us to describe the shape of a datatype using sums, products, constants and
recursive positions. Algebraic Datatypes lend their name from the fact that datatypes in Haskell
consist of sums and products. Hence, a generic representation of a datatype will consist of sums and
products as well. By taking the fixed point of this representation, we get a value that is isomorphic to
the value that it represents.

𝐹𝑖𝑥 (𝑅𝑒𝑝 𝑎) ≡ 𝑎

data U x = U -- to mark values with no fields (Nothing)
data K i x = K i -- constant fields in products
data I x = I x -- recursive positions in products
data (f × g) x = f x × g x -- products
data (f + g) x = Inl (f x) ∣ Inr (g x) -- sums

Using the Template Haskell rules defined by regular, the following Generic instance is generated
for the Expr datatype.

data Expr = Val Int ∣ Add Expr Expr
instance Generic Expr where

type Rep Expr = K Int + (I × I)

10

from (Val i) = Inl (K i)
from (Add e1 e2) = Inr (I e1 × I e2)
to (Inl (K i)) = Val i
to (Inr (I e1 × I e2)) = Add e1 e2

2.1.1 Writing generic algorithms
In order to demonstrate how to use the regular library to do generic programming, we will imple-
ment a very simple generic functions that counts the number of nodes in a datatype. First, we define
a typeclass that will tell for each pattern functor, how to calculate its size.

class GSize (f ∶∶ ∗ → ∗) where
gsize ∶∶ (a → Int) → f a → Int

U and K are easy. U is an empty product, and trivially has no children, so there are no more nodes
to count. Similarly, we do not consider constants as nodes in our tree, but as values of our nodes,
hence they do not influence the node count.

instance GSize U where
gsize U = 0

instance GSize (K a) where
gsize = 0

Products and sums are interpreted as expected. If a node has multiple children, we add the sizes of
those children together recursively. If there is a choice of constructors, we recurse into the constructor
that was specified.

instance (GSize f,GSize g) ⇒ GSize (f × g) where
gsize rec (x × y) = gsize rec x+ gsize rec y

instance (GSize f,GSize g) ⇒ GSize (f + g) where
gsize rec (Inl x) = gsize rec x
gsize rec (Inr y) = gsize rec y

When we find a recursive position I, it means we need to recurse. Hence we call the recursor rec to
find out the size of the node.

instance GSize I where
gsize rec (I x) = rec x

We then complete the definition of our generic algorithm by tying the recursive knot. Each time we
hit a recursive position (and thus a node in our tree), we increase the size by 1. We then convert
the recursive position into its generic representation using from and continue recursing. We set the
recursor rec to be the size function, such that every occurrence of I recursively calls size again.

size ∶∶ (Generic a,GSize (Rep a)) ⇒ a → Int
size = 1 + gsize size (from x)

This concludes the implementation of a generic size function. And indeed, the implementation
works as expected, regardless of what datatype we give it.

> size (Val 3)
1

11

> size (Add (Val 3) (Val 3))
3
> size (Just 3)
1
> size (1 ∶ 2 ∶ 3 ∶ [])
4

2.1.2 Deep versus Shallow representations
It is no coincidence that the generic representation of the regular library consists solely of functors.
We can turn any non-recursive functor f into a recursive datatype, by taking the least fixpoint over
f [18].

data Fix f = Fix {unFix ∶∶ (f (Fix f))}

The generic deriving mechanism of the regular library generates combinations of pattern functors,
such that the following isomorphism holds:

𝐹𝑖𝑥 (𝑅𝑒𝑝 𝑎) ≅ 𝑎

There are all sorts of generic traversals that we can define over just Fix [18]. For example, we can
define a function for performing generic folds.

cata ∶∶ Functor f ⇒ (f a → a) → Fix f → a
cata = f ∘ fmap (cata f) ∘ unFix

This suggests that it would be more useful if our Generic typeclass would have the following func-
tions instead:

from ∶∶ a → Fix (Rep a)
to ∶∶ Fix (Rep a) → a

However, the original formulation is at least as powerful as this one, as we can define the deep
representation in terms of the shallow representation:

from′ ∶∶ (Generic a,Functor (Rep a)) ⇒ a → Fix (Rep a)
from′ = Fix ∘ fmap from′ ∘ from
to′ ∶∶ (Generic a,Functor (Rep a)) ⇒ Fix (Rep a) → a
to′ = to ∘ fmap to′ ∘ unFix

Given that all our pattern functors are trivially both Functor and Foldable, we can now straightfor-
wardly define the function size above in terms of cata and sum ∶∶ f a → Int.

size′ ∶∶ (Generic a,Functor (Rep a),Foldable (Rep a),GSize (Rep a)) ⇒ a → Int
size′ = cata ((1+) ∘ sum) ∘ from′

The benefit of using a deep representation is immediately clear. We were able to distill the multi-line
implentation of size from before to just a single line of code!

When to use a shallow versus a deep representation is a matter of taste. Working on a deep rep-
resentation involves less boilerplate, as one doesn’t have to use typeclasses to drive the recursion.
Though on the other hand, converting to a deep representation is costly, as we need to recursively
wrap each recursive position into a Fix. Luckily, Haskell’s lazy semantics make sure that the deep
conversion only gets evaluated as far as needed for a generic function to complete. Though when
implementing an algorithm like gsize, where we need to observe the entire recursive structure any-
how, it can be more performant to opt for the shallow representation instead, at the cost of a more
verbose implementation [26].

12

2.1.3 How to deal with non-regular recursion
The representation using pattern functors unfortunately has more downsides. As the name of the
library suggests, it limits us to only being able to represent regular types. Regular datatype are
datatypes where the right-hand side of the datatype can only directly mention the left-hand side of
the datatype, and not recurse into other datatypes[2]. However, Haskell supports way more types
than just regular types. Datatypes can be nested, meaning that the recursive call to the lest-hand side
is inside that of another datatype.

data Rose a = Node a [Rose a]

Furthermore, multiple datatype declarations together can form a family of mutually recursive datatypes.
Many programming language ASTs use both nested and mutually recursive datatypes. As soon as a
language has expressions, statements and definitions, support for mutual recursion is often already
needed. For example, the small AST below containing just expressions and statements, is a family
of mutually recursive datatypes.

data Expr = Lambda String Stmt
data Stmt = Asg String Expr ∣ Comma Stmt Stmt ∣ Ret Expr

Also, more exotic datatypes likeGADTs and existentials are not regular either. Thus, at a first glance,
using pattern functors as our representation seems too limiting for the purpose of defining generic
diffing and merging algorithms, as we cannot use it on most non-trivial ASTs.

GHC.Generics, the generic programming library that gets shipped with GHC [16], is a slight
variation of the regular library that does support a wider range of Haskell datatypes. It ’solves’ the
problem by not marking recursive positions explicitly in the representation. Instead, it reuses the
constant functor K for both constants and recursive positions. This makes the representation less
precise, but more expresive. For example, the representation of Expr and Stmt generated by GHC
Generics looks as follows:

type Rep Expr = K String × K Stmt
type Rep Stmt = (K String × K Expr) + (K Stmt × K Stmt) + K Expr

The library does not distinguish between recursive or non-recursive positions at all, side-stepping
the problem of recursion completely. Instead, the end-user of the library has to write extra machinery
to decide how recursion should happen. By making the generic representation less precise, a wider
range of datatypes is supported.

The writer of the generic algorithm will write instances for the pattern functors just like in
regular. However, the end-user of the generic algorithm will have to provide the algorithm with
the set of recursive positions such that the algorithm knows where to recurse. It does this by requir-
ing the end-user to write an instance of a typeclass. To write the size function using GHC Generics,
we define an auxiliary typeclass Size that marks recursive positions, and also change the type of gsize
slighty, as it doesn’t deal with recursive positions itself anymore.

class Size a where
size ∶∶ a → Int

class GSize f where
gsize ∶∶ f a → Int

We then change the instance of GSize for the constant functor K to delegate its implementation to
whatever is inside K:

13

instance Size a ⇒ GSize (K a) where
gsize (K x) = size x

The rest of the implementation ofGSize stays exactly the same. The end-user now writes instances for
Size that drive recursion. Values that have an instance for Size will be treated as recursive positions,
whilsts values that do not have an instance for Size will be treated as constants. By delaying this
choice to the end user, instead of forcing recursive positions to be of exactly one type using the
identity functor, we can support a larger amount of datatypes.

instance Size String where size = 0 -- constant
instance Size Stmt where
size = gsize ∘ from

instance Size Expr where
size = gsize ∘ from

There is a clear downside to this approach though. By removing the explicit recursive positions
in the representation, we can not convert to a deep rerpesentation anymore. This means that the
implementation of generic algorithms require more boilerplate. Even worse, if we wants to use such
a generic algorithm on a datatype that we define, will need to provide instances to the Size typeclass
for each datatype in our family of datatypes on which we want to run size. The damage can be
controlled slightly with the use of default signatures. All implementations of Size are the same, and
hence we can provide the end-user a default implementation.

class Size a where
size ∶∶ a → Int
default size ∶∶ (Generic a,GSize (Rep a)) ⇒ a → Int
size = gsize ∘ from

When the end-user then wants to use our library, they do not have to give an explicit implementation
of size themselves.

instance Size String where size = 0 -- constant
instance Size Stmt
instance Size Expr

Though it is great that we can now support generic programming on families of mutually re-
cursive datatypes, this approach is not ideal. In Chapter 4, we will show that we can construct a
representation of types that both supports mutual recursion and marks recursive positions inside
the representation explicitly, giving us both ease of use and expresiveness.

2.2 Datatype-generic programming in Agda
Because most of the previous work on datatype-generic diffing has been formalised in Agda, we will
present a generic universe for regular datatypes in Agda, such that we can present techniques and
algorithms in a uniform way. Though similar to the way regular datatypes are encoded in Haskell,
some tweaks were made to make the universe better suited for the purpose of diffing.

A diff that changes an expression to a statement could be seen as function Expr → Stmt. Such
a transformation would then be defined by pattern matching on Expr, and moving the required bits
of information into some value of Stmt. However, in the generic case, we want to express such a
transformation as Rep Expr → Rep Stmt. The problem, however is that Rep Expr doesn’t tell us

14

anything about the shape of the generic representation. It only tells us that it is some functor ∗ → ∗,
but gives us no clue how this functor is actually structured. Though it is highly likely that GHC is
generating nested linked lists of sums and products, it would have been a perfectly valid choice to
generate balanced binary trees instead

a ∶ + ∶ (b ∶ + ∶ (a ∶ ∗ ∶ (b ∶ ∗ ∶ (c ∶ ∗ ∶ d)))) ∼ (a ∶ + ∶ b) ∶ + ∶ ((a ∶ ∗ ∶ b) ∶ ∗ ∶ (c ∶ ∗ ∶ d))

In the implementation of size , due to the fact that summing numbers is associative and commutative,
it will always give the same answer, regardless of howRep a is structured. However, one can imagine
that for other algorithms, a sudden change in structure could be problematic. For every algorithm
you have to carefully construct typeclass instances for I, K, ∶ + ∶, ∶ ∗ ∶ such that you traverse the
generic structure in the correct and expected order.

To tackle this problem, instead of assigning each type a an opaque functor Rep a ∶∶ ∗ → ∗
directly, we assign it a Code a ∶∶ SOP where SOP is a concrete datatype which describes a’s sums of
products structure that can be inspected explicitly [32].

record Generic (A ∶ Set) ∶ Set where
field
sop ∶ A → SOP
from ∶ A → Rep (sop A)
to ∶ Rep (sop A) → A

SOP is simply a sum of products of atoms, represented as a double nested list

data Atom ∶ Set where
K ∶ (k ∶ Konst) → Atom
I ∶ Atom

Prod ∶ Set
Prod = List Atom
SOP ∶ Set
SOP = List Prod

All instances of Generic thus share the same structure SOP. We then define a single mapping
Rep, that is the same for all datatypes, that maps SOP to a corresponding functor in a predictible
way. The easiest choice for such a mapping would be to simply translate our codes back to sum and
product functors.

Rep ∶ SOP → Set → Set
Rep [[a, b, c, ...], [d, ...], [e, ...], ...] =

(K a ∶ ∗ ∶ (K b ∶ ∗ ∶ K c ∶ ∗ ∶ ...)) ∶ + ∶ ((K d) ∶ + ∶ (K e ∶ + ∶ ...))

However, that would not be very productive, as we would simply be throwing away all the structured
information of our code, to yet again build up an opaque representation. Instead, we define two
indexed datatypes that preserve the structure of the codes, and allows us to discover this structure
by means of pattern matching. One datatype NP for n-ary products, and a datatype NS for n-ary
sums.

data NP (P ∶ k → Set) ∶ List k → Set where
[] ∶ NP p []
(∶∶) ∶ P x → NP p xs → NP p (x ∶∶ xs)

data NS (P ∶ k → Set) ∶ List k → Set where
H ∶ P x → NS P (x ∶∶ xs)
T ∶ NS P xs → NS P (x ∶∶ xs)

15

⟦_⟧P ∶ Prod → Set → Set
⟦ π ⟧P X = NP (λ α → ⟦ α ⟧A X) π

⟦_⟧S ∶ SOP → Set → Set
⟦ σ ⟧S X = NS (λ π → ⟦ π ⟧P X) σ

⟦_⟧A ∶ Atom → Set → Set
⟦ K κ ⟧A X = ⟦ κ ⟧K
⟦ I ⟧A X = X

Our function Rep is called ⟦_⟧S here, which maps codes to their pattern functor, but this time defined
in terms of NS and NP. Atoms are either mapped to the constant functor or to the identity functor
to mark recursive positions. Finally, we tie the recursive knot using Fix. As its type suggest, given
a code σ it gives is back a type (signified by the return type Set).

data Fix (σ ∶ SOP) ∶ Set where
⟨_⟩ ∶ ⟦ σ ⟧S (Fix σ) → Fix σ

Not only can we now pattern match on the codes that describe the type of our datatypes, we can
also pattern match on their representation in a uniform way because all datatypes share the same
type for representations. For example, we can have a function split, that pattern matches both on the
codes and the representation of a list of fields, in order to split the list of fields into two lists of fields.

split ∶ ∀ {a P} {𝑓2 ∶ List a} (𝑓1 ∶ List a) → NP P (𝑓1 ++ 𝑓2) → NP P 𝑓1 × NP P 𝑓2
split [] xs = [] , xs
split (l ∷ ls) (x ∷ xs)

= let xs0 , xs1 = split ls xs
in (x ∷ xs0) , xs1

When programming with datatypes we use constructors to construct values of a sum, by provid-
ing the constructor its required arguments, and dually pattern match on constructors to get access to
its fields. Programming in this way is very natural, and we can introduce this style of programming
for our SoP universe. We can represent a constructor as the task of picking a single element from
our list of products SOP.

Constr ∶ SOP → Set
Constr code = Fin (length code)

Furthermore, given a code ∶ SOP and a constructor, we can look up the fields of the constructor.

typeOf ∶ (code ∶ SOP) → Constr code → Prod
typeOf [] ()
typeOf (t ∶∶ sop) zero = t
typeOf (t ∶∶ sop) (suc n) = typeOf sop n

Given a constructor c and values for its fields, we can reconstruct a value.

inj ∶ {code ∶ SOP} {X ∶ Set} → (C ∶ Constr code) → ⟦ typeOf code C ⟧P X → ⟦ code ⟧S X
inj zero p = H p
inj (suc C) p = H (inj C p)

Dually, we can define a view [17] , that given some value in our SoP universe, tells us its constructor
and its fields.

16

data View {code ∶ SOP} {X ∶ Set} ∶ ⟦ code ⟧S X → Set where
tag ∶ (C ∶ Constr code) (p ∶ ⟦ typeOf code C ⟧P X) → View (inj C p)

sop ∶ {code ∶ SOP} {X ∶ Set} → (s ∶ ⟦ code ⟧S X) → View s
sop (here p) = tag zero p
sop (there s) with sop s
... ∣ tag C p = tag (suc C) p

Using the sop to pattern match, and inj to construct values, we can program in a style that is very
similar to that of programming with normal first class datatypes.

CodeTuple CodeMaybe ∶ SOP
CodeTuple = [[K Int, K String, K Char]]
CodeMaybe = [[], [K Int]]
MkTuple ∶ Constr CodeTuple
MkTuple = 0
Just ∶ Constr CodeMaybe
Just = 1
tupleToMaybe ∶ ⟦ sop Tuple ⟧S X → ⟦ sop Maybe ⟧S X
tupleToMaybe tup with sop tup
... ∣ tag MkTuple fields = inj Just (split [K Int] fields)

Working with the SoP universe is very similar to working with normal datatypes in Agda. They
are not hard to define, and programming using SoP datatypes is similar to programming with nor-
mal datatypes. Now that we have a encoding of generics in Agda, we can start looking at existing
implementations of generic diffing and merging.

17

3
Background - Diffing and merging

3.1 Diffs as edit scripts
Lempsink, Leather, and Löh [13] describe an polynomial time algorithm called gdiff for performing
type-safe diffs between trees. By modifying an algorithm that finds the longest common subse-
quence of a string, they can construct an algorithm that calculates an edit script (a list of deletions,
copies and insertions) between two typed trees [13]. Their work is based on the Maximum Common
Embedded Subtree (MCES) problem by Lozano and Valiente [15]. The idea that Lozano and Valiente
described is simple. By working on a depth-first pre-order traversal of a tree, we can treat it like a
sequence of characters, and thus can calculate the greatest common subsequence on that sequence.

The original MCES algorithm first converts a tree into a sequence before diffing. The gdiff algo-
rithm however, keeps track of a stack of trees whilst diffing and applying edit scripts. An edit script
operation matches a node against the node label, and the arity of the node. This way, we know how
many nodes end up on the stack when applying a deletion, and how many nodes get consumed
off the stack when applying an insertion. In Figure 3.1 we see how (untyped) edit script operations
affect the stack of trees when applying them. First, there is only one element in the stack. Then after
deleting the topmost node there, three trees end up on the stack. We then insert a node of arity 2,
which consumes two items from the stack. And then we do another insertion, consuming the rest
of the stack ending up with a single tree again.

3.1.1 Edit scripts
All the following code in this section are parameterised over the code of the datatype that we are
diffing:

module ES (σμ ∶ SOP) where

In our typed versions of this algorithm, we treat constants and constructors as the characters which
the edit script can insert, copy or delete. cof lets us treat constructors and constants as the same type.

cof ∶ Atom → Set
cof I = Constr σμ
cof (K κ) = ⟦ κ ⟧K

Because we know the structure of the datatype we are diffing, we do not have to keep track of arity
information in each edit operation explicitly. The arity of a node is already known. It is simply the
amount of fields the atom has. In the case of a a constructor, we can get the amount of fields through
calling the typeOf. Constants we treat as constructors with zero arguments.

18

Del ('there', 3) Ins ('cool', 2) Ins ('lel', 2)

there

yes no maybe

yes

no

maybe

cool

yes no

maybe

lel

cool maybe

yes no

Figure 3.1: Applying an edit script on an untyped tree

fields ∶ (α ∶ Atom) → cof α → Prod
fields I c = typeOf σμ c
fields (K κ) c = []

The edit script is parameterized over its source and target. It keeps track in its types how each
operation affects the stack of trees the edit script is going to operate on when applied .

data ES ∶ List Atom → List Atom → Set where
nil ∶ ES [] []
ins ∶ ∀ {i j α} (c ∶ cof α) → ES i (fields α c ++ j) → ES i (α ∷ j)
del ∶ ∀ {i j α} (c ∶ cof α) → ES (fields α c ++ i) j → ES (α ∷ i) j
cpy ∶ ∀ {i j α} (c ∶ cof α) → ES (fields α c ++ i) (fields α c ++ j) → ES (α ∷ i) (α ∷ j)

In the case of del, in order to delete an atomα from the stack, we will match the top of the stack against
the constructor c, and if it matches, delete it, and push all the fields of c on top of the stack. Hence
the rest of the edit script must at least handle the amount of fields that we just put on top of the stack,
signified by fields α c ++ i. Dually, insertions require to consume the fields fields α c of constructor c
of atom α in order to produce an α on top of the stack. The neat thing about keeping track of the size
of the stack at the type-level, is that this will aid us in enforcing a correct implementation of both diff
and apply.

3.1.2 Applying edit scripts
Because we now treat constants as constructors of zero arguments, we need slight variations of the
inj, sop and match functions from the previous section.

inj′ ∶ {α ∶ Atom} (c ∶ cof α) → ⟦ fields α c ⟧P (Fix σμ) → ⟦ α ⟧A (Fix σμ)
match′ ∶ {α ∶ Atom} (c ∶ cof α) → ⟦ α ⟧A (Fix σμ) → Maybe (⟦ fields α c ⟧P (Fix σμ))
sop′ ∶ {α ∶ Atom} ⟦ α ⟧A (Fix σμ) → Σ (cof α) (⟦_⟧A∗ ∘ fields α)

Instead of working on constructors Constr s, they now work on either constructors or constants
c ∶ cof α. And instead of using typeOf to get the fields of a constructor, we call fields to get the fields
of either a constructor or a constant.

19

Now, let us define a shorthand for a stack of trees, which will make our types slightly easier to
read.

⟦_⟧A∗ ∶ List Atom → Set
⟦_⟧A∗ xs = ⟦ xs ⟧P (Fix code) σμ

The types of insert and delete look as expected. In order to insert a constructor of atom α, we must
have a stack that contains all the fields of that constructor, which we then consume to produce the
atom. Dually, deletion pops off an atom α if α’s constructor indeed matches the constructor c, and
then pushes the remaining fields of c onto the stack. If the constructor of α does not match, deletion
fails.

ins∗ ∶ ∀ {α αs} (c ∶ cof α) → ⟦ fields α c ++ αs ⟧A∗ → ⟦ α ∷ αs ⟧A∗
del∗ ∶ ∀ {α αs} (c ∶ cof α) → ⟦ α ∷ αs ⟧A∗ → Maybe ⟦ fields α c ++ αs ⟧A∗

In order to implement insertion, we need to be able to split the stack of fields α c ++ αs into two,
thus popping of the fields we need to construct the atom. For this, we can use our split combinator
that we defined earlier.

split ∶ ∀ {a P} {l′ ∶ List a} (l ∶ List a) → NP P (l ++ l′) → NP P l × NP P l′

Insertion is then simply defined as popping the fields of the stack, and injecting them together with
the constructor, and putting the resulting value back on top of the stack.

ins∗ {α} c stack =
let (f , stack′) = split (fields α c) stack
in inj′ {α} c f ∷ stack′

For deletion, we need the dual of split. Given a set of fields and a stack, we push the fields on top
of the stack. Deletion is than just matching on the constructor c, and if there is a match, adding the
fields of the constructor to the stack.

appendNP ∶ ∀ {a P l l′ } → NP P l → NP P l′ → NP P (l ++ l′)
appendNP [] xs′ = xs′
appendNP (x ∷ xs) P xs′ = x ∷ appendNP xs xs′

del∗ c (x ∷ xs) = match′ c x >>= λ fields → just (appendNP fields xs)

Now to apply an edit script, we just recurse over the edit script and call ins∗ and del∗ in the appro-
priate places.

applyES ∶ ∀ {txs tys} → ES txs tys → ⟦ txs ⟧A∗ → Maybe ⟦ tys ⟧A∗
applyES nil [] = just []
applyES (ins c es) xs = ins∗ c ⟨$⟩ applyES es xs
applyES (del c es) xs = del∗ c xs >>= applyES es
applyES (cpy c es) xs = ins∗ c ⟨$⟩ (del∗ c xs >>= applyES es)

3.1.3 Naively generating edit scripts
To calculate the edit script between two sequences, we can naively enumerate all possibilities to
go from the source to the target tree, whilst keeping the edit script that is the least ’costly’. Here
we define cost as the length of the edit script, but one can also think of other cost functions. For

20

example, one might want to weigh how large the constants are that are being inserted and deleted
to find even shorter edit scripts.

cost ∶ ∀ {txs tys} → ES txs tys → ℕ
cost nil = 0
cost (ins c es) = 1 + cost es
cost (del c es) = 1 + cost es
cost (cpy c es) = 1 + cost es
_ ⊓ _ ∶ ∀ {txs tys} → ES txs tys → ES txs tys → ES txs tys
d1 ⊓ d2 with cost d1 ≤ ? cost d2
... ∣ yes = d1
... ∣ no = d2

Naively enumerating all options whilst comparing the options by their cost yields us an answer for
the ’best’ edit script.

diff ∶ ∀ {xs ys} → ⟦ xs ⟧A∗ → ⟦ ys ⟧A∗ → ES xs ys
diff [] [] = ES0
diff [] (y ∶∶ ys) = ins y (diff [] ys)
diff (x ∶∶ xs) [] = del x (diff xs [])
diff (x ∶∶ xs) (y ∶∶ ys) with sop′ x ∣ sop′ y
... ∣ cx , fx ∣ cy , fy ∣ with cx ≟ K cy
... ∣ cx , fx ∣ cy , fy ∣ yes refl = cpy cx (diff (appendNP fx xs) (appendNP fy ys))
... ∣ cx , fx ∣ cy , fy ∣ no = ins cy (diff (appendNP fx xs) ys) ⊓

del cx (diff xs (appendNP fy ys))

This method is very inefficient. Many sub-calculations are done over and over again. Just like with
the greatest common subsequence problem, we can utilise dynamic programming to speed up the
algorithm. By caching subresults in a lookup table, we get an algorithm that runs both in polynomial
space and time [15]. However, limits to both Agda’s interpreter and Agda’s Haskell code generator
make it hard to implement dynamic programming algorithms, as they do not have a good story for
sharing subresults [13]. Hence, we will implement an efficient implementation of this algorithm in
Haskell instead. We will go into further detail how to implement this in Section 4.3.

3.1.4 Merging
In order to implement a version control system, we not only need to support diffing between trees, we
also need to support merging of such diffs. Merging of patches is needed if two users concurrently
worked off some base-version O, but at a later point want to reconcile their work into one patch.
Though the work of Lempsink, Leather, and Löh [13] allows us to efficiently calculate diffs, it does
not cover the problem of merging. Vassena [31] wrote on the formalisation of a version control
system on top of gdiff. Two individual edit script operations can be merged into one, if they are not
in conflict with eachother. We mean conflicts in the classical sense, which we also know from the
classic diff3 algorithm. in conflict if:

• both perform an insert, but they do not insert the same value

• both perform a copy, but they are not copying the same value

• one performs a copy, and another a deletion, but they do not operate on the same value

21

Now, to compare two edit scripts and check if they are mergeable, we should pair up each indi-
vidual operation of one patch with another, and see if they conflict or not. However, simply pairwise
merging two edit scripts is usually not the best strategy. Instead, if one can identify which parts of
the edit script are operating on the same values, a merge will be more likely to succeed. Vassena
[31] define a notion of alignment, which inserts no-op edit operations into an edit script, such that as
many pairwise operations as possible are not on conflict. Alignment is defined formally as:

• Two edit operations are aligned, if and only if they have the same source value (and type).

• An edit script is aligned, if and only if their edits are pairwise aligned.

As an example, consider the following lists

o = [1]
a = [0, 1]
b = [1, 2]

We can then imagine the following two edit scripts being generated to go from o to a and b respec-
tively:

𝑒𝑠1 𝑒𝑠2 ∶ ES [List Int] [List Int]
𝑒𝑠1 = Ins (∶) $ Ins 0 $ Cpy (∶) $ Cpy 1 $ Cpy []
𝑒𝑠2 = Cpy (∶) $ Cpy 1 $ Ins (∶) $ Ins 2 $ Cpy []

These edit scripts are definitely not aligned. 𝑒𝑠1’s first operation produces a constructor, whilst 𝑒𝑠2
needs to consume a constructor, and hence the two patches are not aligned. However, if we introduce
a new edit operation, which trivially always operates on any source and destination value

Nop ∶ ES xs ys → ES xs ys

then we can re-introduce alignment by padding the two edit scripts with this constructor ”no oper-
ation” edit:

𝑒𝑠1 = Ins (∶) $ Ins 0 $ Cpy (∶) $ Cpy 1 $ Nop $ Nop $ Cpy []
𝑒𝑠2 = Nop $ Nop $ Cpy (∶) $ Cpy 1 $ Ins (∶) $ Ins 2 $ Cpy []

Now, the edit script is aligned. Furthermore, each pair of edit operations are not in conflict, and
hence the edit script can be succesfully be reconciled.

Vassena [31] claim that two edit scripts from the same origin can always be aligned by extending
the edit scripts with Nops. Alignment is also fundamental in the original diff3 algorithm. It is what
finds relevant parts in two patches that need merging, and what parts are trivially copyable. diff3
comes with all kinds of heuristics to figure out which parts of the file to actually compare on a line-by-
line basis. However, for gdiff the authors do not define a strategy for finding good alignments for two
edit scripts, but instead leave this as an unanswered problem. Non-deterministically enumerating all
alignments would be an option, but this would throw away any desired performance characteristics
of our gdiff algorithm.

Even if we assume that we can come up with an efficient algorithm for aligning edit scripts, there
is still one fundamental problem with this approach. Two edit scripts that are aligned, and also not
in conflict, can create a merged patch that is not well-typed. In the sense that applying the patch to a
value of a datatype does not guarentee that the outcome of the merge patch produces a well-formed
value of a datatype. This is problematic. Consider the following aligned patches over the List Int
datatype.

22

𝑒1 𝑒2 ∶ ES [] [List Int]
𝑒1 = [Ins (∶∶) , Nop, Ins 1 , Ins []]
𝑒2 = [Nop, , Ins [], Nop, Nop]

Then we can merge the two, as each consecutive edit operation is not in conflict with eachother.
Resulting in the following edit script:

merge 𝑒1 𝑒2 ≡ [Ins (∶∶) , Ins [], Ins 1 , Ins []]

However, this edit-script is not well-typed. If we apply it on 𝑒1, the value we get back is not a List Int.
The constructor (∶∶) does not take a list as its first argument, but an Int However, as its first argument
it is passed the empty list []. Hence, applying the resulting patch will fail as it does not produce a
well-typed value.

If we try to come up with a general type for merging edit scripts, it is hard to do so:

merge ∶ ES xs ys → ES xs zs → ES xs ?

Even though the two edit scripts are aligned, we do not know whether the merge will pick ys, zs,
or a combination of both to create the resulting edit script. It is thus impossible to decide whether
the resulting edit script actually produces one of the two, or any at all. This is an unfortunate con-
sequence of the fact that the edit script works on the pre-order traversal of trees, throwing away the
structured information of the shapes of the source and target tree.

3.2 Structured Diffs
Edit scripts are efficient to compute, but as it turns out are tricky to merge. The root cause of this
is that edit scripts do not preserve enough information about the structure of the trees they were
calculated from and hence it is hard to find out what parts of the edit script should be reconciled.
And even when we find these parts, we can not guarantee that the resulting patch still produces well-
formed trees. Miraldo, Dagand, and Swierstra [21] try to come up with a solution to this problem.
Instead of taking an efficient algorithm for diffs like MCES, and finding out how to encode this in
a datatype-generic way, and then hope to find a way to merge such a patch, they take the opposite
approach. What if instead we define a patch datatype, from which we know it preserves enough
structure about the trees it is patching, such that merging is easy. They accomplish this, by capturing
a notion of greatest common coproduct structure of two values that are being diffed.

3.2.1 Spine
The first part of the patch takes care of the sums in our sums-of-products view of datatypes. The
authors describe the spine of a patch, which is the largest common coproduct structure between two
pieces of data that are being diffed. Three different cases are distinguished in the spine that compares
values x and y. A Spine is parameterised over a type At that tells us how to patch atoms, and a type
Al that tells us how to align to sets of fields.

data S (At ∶ Atom → Set) (Al ∶ Prod → Prod → Set) (s ∶ SOP) ∶ Set where

We will now define each constructor of the spine step by step. First of all, the case where the sums
x and y are equal. We simply copy over the content without looking inside either value

Scp ∶ S At Al s

23

Next, we have the case where x, and y have the same constructor c, but some of the fields of x and y
might be distinct.

Scns ∶ (c ∶ Constr s) → NP At (typeOf s c) → S At Al s

In that case, we will traverse the fields of x and y pairwise, and patch any field that differs using the
type of patches of atoms At. Note that the definition of Scns closely resembles the definition of ⟦ π ⟧P
in Section 2.2. Signifying that indeed our patch datatype follows the same tree-like structure as our
values. Graphically, an SCns looks as follows:

3 4

Two

Scp Scp

If the two trees do not have matching constructors, then we have to figure out how we change
the fields of the first constructor to the fields of the second constructor using Al. If we can indeed
change the fields of x into the fields of y then we can change the tree x into the tree y

Schg ∶ (c1 c2 ∶ Constr s) → {c1 ! = c2} → Al (typeOf s c1) (typeOf s c2) → S At Al s

Now given a spine and a value of our SOP representation, we can apply the patch to obtain a new
sum value. Lets assume for now we already know how to deal with atoms and alignments through
two existing functions applyAt and applyAl Then we can define applying a spine to a sum.

applyAt ∶ ∀ {α} → At α → ⟦ α ⟧A X → Maybe (⟦ α ⟧A X)
applyAl ∶ ∀ {π1 π2 } → Al π1 π2 → ⟦ π1 ⟧P X → Maybe (⟦ π2 ⟧P X)
applyS ∶ S At Al sop → ⟦ sop ⟧S X → Maybe (⟦ σsop⟧S X)

To apply a Cpy we simply copy over the left hand side.

applyS Scp s = just s

To apply a change in constructor, we first check whether the sum we are applying the patch on
has the same constructor as the source constructor of the Schg patch, and if its the case we replace
the constructor with the target constructor. Then, we convert the old fields to the fields of the new
constructor using applyAl

applyS (Schg C1 C2 p) s with sop s
... ∣ tag C3 p3 with C1 ≟ F C3
... ∣ yes refl = inj C2 ⟨$⟩ applyAl p p3
... ∣ no ¬p = nothing

If we are not changing the constructor, but only the fields, we check whether the patch’s constructor
and the sum we’re patching match, and if so, change the fields pairwise using At.

applyS (Scns C1 p1) s with sop s
... ∣ tag C2 p2 with C1 ≟ F C2
... ∣ no ¬p = nothing
... ∣ yes refl = inj C1 ⟨$⟩ mapNPM applyAt (zipNP p1 p2)

24

3.2.2 Alignment
To align two products, we define a type Al that looks very similar to the type of edit scripts of gdiff.
A very important distinction is that gdiff deals with constructors and products at the same time,
allowing the source and target stacks grow and shrink as we traverse the patch, whilstAl only strictly
deals with insertions and deletions of entire subtrees. It is really just converting one set of fields into
another set of fields, and nothing more. To match two constructors that have different arity, we can
delete fields from the source constructor using ADel or insert fields at the destination constructor
using AIns ys.

data Al ∶ (At ∶ Atom → Set) ∶ Prod → Prod → Set were
A0 ∶ Al At [] []
AX ∶ ∀ {a xs ys} → At a → Al At xs ys → Al At (a ∶∶ xs) (a ∶∶ ys)
ADel ∶ ∀ {a xs ys} → ⟦ a ⟧A → Al At xs ys → Al At (a ∶∶ xs) ys
AIns ∶ ∀ {a xs ys} → ⟦ a ⟧A → Al At xs ys → Al At p2 (a ∶∶ ys)

Here below, we see an example of such an alignment, where a value with 3 fields is aligned to a
value with 4 fields, by doing an extra AIns at the appropriate place, to align the fields of the two
constructors.

Two

Three

Applying an alignment to a product is easy. In case of an AX we need to transform an atom,
which we can do with applyAt. When we insert an atom with AIns we insert it in the resulting list,
and recursively continue applying the alignment. Dually, when we are deleting an atom, we remove
it in the resulting list, and continue applying the alignment recursively.

applyAl ∶ ∀ {π1 π2 } → Al At π1 π2 → ⟦ π1 ⟧P X → Maybe (⟦ π2 ⟧P X)
applyAl (AX at al) (a ∷ as) = _ ∷ _ ⟨$⟩ applyAt at a ⟨∗⟩ applyAl applyAt al as
applyAl (Ains a′ al) p = (a′ ∷ _) ⟨$⟩ applyAl applyAl al p
applyAl (Adel a′ al) (a ∷ as) = guard a′ ≡ a ∗⟩ applyAl applyAl al as

3.2.3 Atoms
Assuming for now how we are going to tie the recursive knot by means of some PatchRec , we can
define patches for Atoms. An atom can either point to a recursive position, or to an opaque type.
Because we know nothing about the structure of opaque types, the best we can do is describe the

25

source and destination value And for a recursive position, we use our assumed PatchRec to further
describe the patch.

data At (PatchRec ∶ Set) ∶ Atom → Set where
set ∶ ⟦ k ⟧K → ⟦ k ⟧K → At PatchRec (K k)
fix ∶ PatchRec → At PatchRec I

3.2.4 Tying the recursive knot
Now we will handle recursive positions. At the recursive level, three things can happen.

• We can have a change of constructor, which is handled by our spine datatype S.

• We can peel off a constructor and its fields, exposing a new recursive position

• We can wrap a recursive position with a constructor and extra fields

data Alμ ∶ Set where
spn ∶ {s ∶ SOP} → S (At Alμ) (Al (At Alμ)) s → Alμ
ins ∶ {s ∶ SOP} → (c ∶ Constr s) → Ctx (typeOf s c) → Alμ
del ∶ {s ∶ SOP} → (c ∶ Constr s) → Ctx (typeOf s c) → Alμ

Ctx is a list of fields ⟦ p ⟧P but with a hole in it pointing to an Alμ that tells how that specific field
should be patched further. It resembles much the idea of a Zipper. Graphically, a context looks like
this:

Tree(Int)

Leaf

()

Three 3 *

Tree(Int)

Leaf

()

Two

3 4 Scp Scp

In code, they are defined as follows. We either are at the hole (at a recursive position I) and have
a patch for that hole followed by the rest of the NP, or we have a single element of the NP followed
by a context which will eventually contain the hole. This way we have an NP with exactly one hole
in it.

data Ctx ∶ Prod → Set where
here ∶ ∀ {π} → (spμ ∶ Alμ) (atμs ∶ NP (λ α → ⟦ α ⟧A (Fix μσ)) π) → Ctx (I ∷ π)
there ∶ ∀ {α π} → (atμ ∶ ⟦ α ⟧A (Fix μσ)) (alμs ∶ Ctx π) → Ctx (α ∷ π)

To apply a deletion context, we match the constructor of the context against the constructor of the
value we’re patching. If they match, we delete the constructor and all the fields except the recursive
position that is pointed at by the context, and then we recursively apply our Almu patch on that

26

𝑂 𝐴

𝐵 𝑀

𝑝

𝑞 𝑞/𝑝

𝑝/𝑞

Figure 3.2: Incorperating the changes of 𝑝 into 𝑞 and applying it gives the same result as incoorper-
ating 𝑞 into 𝑝

exposed value. In a sense, we are peeling off a layer of recursion. Dually, an insertion context adds
an extra layer of recursion. Note that for insertion, we do not have to match its constructor, as we
are not removing things, but simply wrapping an extra layer around the existing datatype.

applyAlμ ∶ Alμ → Fix μσ → Maybe (Fix μσ)
applyAlμ (del C alμ) x = (matchCtx alμ ∙ match C) (unfix x)
matchCtx (here spμ atμs) (x ∷ p) = applyAlμ spμ x
matchCtx (there {α} atμ al) (at ∷ p) = matchCtx al p

With this, we have a patch datatype that closely follows the structure of the two trees it is con-
verting between. As we will see in the next section, this structure will make merging quite a bit
easier.

Patch ∶ SOP → Set
Patch s = S Atmu (Al (At Alμ)) s

3.2.5 Merging patches
The promise of structured patches is that they will provide a better story for merging. Let us recall
the idea behind a three-way merge [19]. When two persons edit the same tree O, one will end up
with tree A through patch p and the other will end up with tree B through patch q.

𝐵 𝑂 𝐴𝑝𝑞

Now, we want to produce a tree 𝑀 that contains the changes made in both 𝐴 and 𝐵. To do so, we
calculate a new patch 𝑝/𝑞, that has all the changes done by 𝑝, adapted to the changes that 𝑞 makes.
Such an operation is similar to 𝑎𝑝𝑝𝑙𝑦𝐴𝑙𝜇, which applies a patch to a tree. But now instead, we apply
the patch to the tree structue of another patch. However, it is important that this patch adapatation
function commutes for it to be a well-behaved merge. That is, we can either adapt 𝑝 to 𝑞 or 𝑞 to 𝑝,
and we will still end up with the same value 𝑀 if we apply them to 𝐴 or 𝐵 [25]. This is sometimes
called the residual of 𝑝 and 𝑞 [10, 22]. The commutative diagram illustrating this merge property is
shown in Figure 3.2.

Looking back at the example from the introduction, we noted that both patches were disjoint. At
all places where p and q were different, p would not restrict the domain of q, and q would not restrict
the domain of p. If two edits are disjoint, we can trivially apply the patch p to the patch q.

Miraldo [20] provides a Agda proof that if two patches p and q are disjoint, then p will indeed
apply to q.

merge ∶ {disj ∶ disjoint p q} → (p ∶ Alμ) → (q ∶ Alμ) → Alμ

27

Furthermore, they provide an Agda proof that this simple implementation of just applying the
changes of patch 𝑝 to patch 𝑞 is indeed commutative as in Figure 3.2 when the patches 𝑝 and 𝑞 are
disjoint. So, an effective and correct strategy for merging structured patches is:

• First, check if p and q are disjoint

• Second, either adapt p to q or q to p, depending on whether you want to go from 𝐴 to 𝑀 or
from 𝐵 to 𝑀

We will now briefly sketch the criterum of disjointness.

disjoint ∶ Alμ → Alμ → Set

First of all. A patch is never disjoint from itself.

disjoint (del C1 s1) (del C2 s2) = ⊥
disjoint (ins C1 s1) (ins C2 s2) = ⊥

An insertion context can be applied to any tree x. It does not restrict the domain of a patch in any
way. Hence, if p is indeed an insertion, then we can adapt q to incoorporate the insertion that p
performed, as long as the patch to which the insertion context of p points it disjoint from q.

disjoint (ins C1 s1) x = disjoint (getCtx s1) x
disjoint x (ins C1 s1) = disjoint (getCtx s1) x

Deletions do restrict the domain of a patch. However, there are still two cases where a deletion can
be disjoint from another patch. A deletion and an Scp node are disjoint. This is because Scp is a
patch that matches any size tree. If you ’delete’ something from an Scp, you will still end up with
an Scp. Not only is a deletion disjoint with an Scp, anything is trivially disjoint from an Scp

disjoint x (spn Scp) = ⊤
disjoint (spn Scp) x = ⊤

Finally, a deletion might be disjoint with a spine, if it happens to be that they operate on the same
constructor

disjoint (del C1 s1) (spn (Scns C2 at2)) = Σ (C1 ≡ C2) (λ {refl → disjCtxAt s1 at2 })
disjoint (spn (Scns C2 at2)) (del C1 s1) = Σ (C1 ≡ C2) (λ {refl → disjAtCtx at2 s1 })

In all other cases, a deletion is not disjoint.

disjoint (del C1 s1) x = ⊥
disjoint x (del C1 s1) = ⊥

Spines can be disjoint. We already saw that in particular, an Scp is always disjoint with another
patch. Moreover. two spines can be disjoint, if their chilrden are pairwise disjoint. If one spine is an
Scns C1 at and the other spine is an SChg C3 C4 al, then they will only be disjoint if it happens to be
that C1 ≡ C3 and at and al are recursively disjoint. If however both patches change the constructor
they are not disjoint.

disjoint (spn (Schg C1 C2 al1)) (spn (Schg C3 C4 al2)) = ⊥

We have only sketched the implementation of disjoint but have so far omitted the implementation
of merge itself. The implementation of merge will be very similar to that of applyAlμ, but instead
operates on patches instead of trees. A full implementation can be found in Chapter 4.

28

Discussion
One problem that remains is how we would generate such patches. Miraldo, Dagand, and Swier-
stra [21] do not define an efficient algorithm for generating patches. Instead, they define a non-
deterministic enumeration that enumerates all patches between two trees a and b. Garufi [9] show
that by doing a bounded search, using domain specific pruning rules, it is feasible to use non-
deterministic generation to find suitable patches. However, this is at a loss of generality, as specific
rules had to be created for a specific language . And even then, performance was still not great [9].
Furthermore, structured diffs as presented here only work for regular types. However, many pro-
gramming language ASTs require mutually recursive types to be correctly described. Limiting our-
selves to just regular types it too restrictive to use these diffs and merges in the real worlds. In
Chapter 4 we will present an efficient algorithm for generating structured patches, that does not
require the user to provide domain-specific information for the language that they want to perform
diff on, giving us truly best of both worlds. Efficient like gdiff, but also the possibility to easily merge
patches. Furthermore, the type of patches will be extended to support families of mutually recursive
datatypes, allowing us to perform structured diffs on a wide variety of programming languages.

29

4
Haskell Implementation

Motivation
Agda is a great tool for reasoning about code. However, its code-generation backend is still very
experimental. The GHC compiler, on the other hand, is an industry-strength compiler with a great
amount of optimization passes. Furthermore, Haskell is lazily evaluated and has a notion of sharing,
which is going to be key in making our implementation of diff fast. Recently, GHC has added many
language extensions to the language that bring its type system closer and closer to that of Agda [34].
In the future, GHC will even provide a fully dependently typed dialect of the Haskell language [6,
4]. However, as we will see, with the language extensions with which GHC ships today, we can
already port much of the Agda code from Section 2.2.

Also as already mentioned in Chapter 2, Haskell comes with a rich ecosystem of community-
provided packages through the Hackage package repository. Which would make a generic diffing
and merging tool written in Haskell applicable to hundreds of languages without much effort. This
motivates us to implement our generic diffing and merging tool in Haskell.

We will often abbreviate parts of code, omit certain type paramters, or only show the types of
certain functions to ease readability. A full working copy of the source code can be found at [27].

4.1 A generic representation for Abstract Syntax Trees
Writing algorithms in the style GHC.Generics is quite tedious. In Section 2.2 we defined a library for
generic types based on structured codes.This style of generic programming is particularly well suited
for the purpose of diffing, because not only the traversing but also the manipulation of datatypes
is easy. However, that generic universe limits us to just regular types. In order to diff and merge
programming language ASTs, we need a generic programming library that at least supports families
of mutually recursive datatypes, whilst retaining the ergonomics of the structured SoP universe. In
this section, we present an implementation of this generic universe in Haskell. The library we will
present is generics-mrsop [23]. Furthermore, we will show further improvements that we have
contributed to this library, and discuss remaining limitations.

4.1.1 Inspectible structure of representation
The generics-sop library by de Vries and Löh [32] implements a generic universe very similar to
that of the Agda universe presented in Section 2.2. It modifies the Generic typeclass by not letting it
determine the opaque representation Rep a directly, but instead it assigns each type a a structured
description of the type 𝐶𝑜𝑑𝑒𝑠𝑜𝑝 a ∶∶ [[∗]]. Each code is then interpreted as a concrete type by the
mapping 𝑅𝑒𝑝𝑠𝑜𝑝 (a ∶∶ 𝐶𝑜𝑑𝑒𝑠𝑜𝑝 a) ∶∶ ∗ [32]. The kind of codes is slightly different than the type for

30

codes in Agda. This is because generics-sop does not mark recursive positions explicitly. It does
this such that it can support a richer universe than just regular types. This is the same trick that
GHC.Generics employs to support more datatypes.

type 𝑅𝑒𝑝𝑠𝑜𝑝 code = ...
class Generic a where

type 𝐶𝑜𝑑𝑒𝑠𝑜𝑝 a ∶∶ [[∗]]
𝑓 𝑟𝑜𝑚𝑠𝑜𝑝 ∶∶ 𝑅𝑒𝑝𝑠𝑜𝑝 (𝐶𝑜𝑑𝑒𝑠𝑜𝑝 a) → a
𝑡𝑜𝑠𝑜𝑝 ∶∶ a → 𝑅𝑒𝑝𝑠𝑜𝑝 (𝐶𝑜𝑑𝑒𝑠𝑜𝑝 a)

Using DataKinds an PolyKinds [34], we can define the datatypes NP and NS similarly as we did in
Agda. By pattern matching on values of NS and NP, we learn about the structure of the code. This
allows us to shrink, increase, and manipulate codes, by manipulating the underlying values of the
representation.

data NP (p ∶∶ k → ∗) ∶∶ [k] → ∗where
NP0 ∶∶ NP p []
(∶∗) ∶∶ p x → NP p xs → NP p (x ∶ xs)

elimNP ∶∶ (∀x.f x → a) → NP f ks → [a]
elimNP f NP0 = []
elimNP f (k ∶∗ ks) = f k ∶ elimNP f ks

data NS (p ∶∶ k → ∗) ∶∶ [k] → ∗where
H ∶∶ p x → NS p (x ∶ xs)
T ∶∶ NS p xs → NP p (x ∶ xs)

elimNS ∶∶ (∀x.f x → a) → NS f ks → a
elimNS f (H p) = f p
elimNS f (T p) = elimNS f p

The representation of a code is then simply the composition of NS and NP. Because we do not
mark recursive positions explicitly, we can interpret our atoms by using the identity functor I. In
Figure 4.1 we see an instance ofGeneric for a family of datatypes. Of course, generics-sop supports
automatically deriving these instances using TemplateHaskell.

newtype SOP (p ∶∶ k → ∗) (code ∶∶ [[∗]]) = SOP (NS (NP p) code)
type 𝑅𝑒𝑝𝑠𝑜𝑝 a = SOP I (Code a)

de Vries and Löh [32] define many combinators over 𝑅𝑒𝑝𝑠𝑜𝑝 a, that allow the user to map over, trans-
form, shrink and grow representations. Above, we have defined two useful eliminators elimNS and
elimNP, that allow us to consume a representation all at once to some summary value. Using these
combinators, we can define generic functions with ease. Let us revisit our generic size function which
we introduced in Chapter 2.

gsize ∶∶ (Generic a,All2 Size (Code a)) ⇒ a → Int
gsize = sum ∘ elimNS ∘ elimNPC (Proxy ∶∶ Proxy Size) (mapIK size) ∘ from
instance Size Name where size = 0
instance Size Int where size = 0
instance Size a ⇒ Size [a]
instance Size Func
instance Size Stmt
instance Size Expr

Using the combinators elimNS and elimNP we can define the gsize function very tersely. The imple-
mentation of gsize has little to no boilerplate, except for the explicit marking of recursive positions
through the Size typeclass.

31

type Name = String
type Args = [Name]
data Func = Func Name Args [Stmt]
data Stmt = Set Name Expr ∣ Call Name [Expr]
data Expr = Var Name ∣ Int Int ∣ Add Expr Expr
instance Generic Expr where

type Code Expr = [[Name], [Int], [Expr,Expr]]
from ∶∶ Expr → Rep [[Name], [Int], [Expr,Expr]]
from (Var n) = SOP $H $ I n ∶∗ NP0
from (IntA i) = SOP $ T $H $ I n ∶∗ NP0
from (Add e1 e2) = SOP $ T $H $H $ I e1 ∶∗ I e2 ∶∗ NP0
to ∶∶ Rep (Code Expr) → Expr
to = {-analogous -}

instance Generic Func where {-analogous -}
instance Generic Stmt where {-analogous -}

Figure 4.1: An example of the generics-sop type universe

Figure 4.2: generic size function using generics-sop. If we want to use gsize on a type, we need to
write quite some boilerplate.

4.1.2 Explicit recursion for mutually recursive families of datatypes
Though generics-sop allows us to inspect and calculate with codes, it only allows us to observe one
layer of recursion at a time. Though the boilerplate of inspecting the SOP structure using typeclasses
is now gone, we still need a typeclass to explicitly tell where recursion takes place. Doing this for a
few types, as in Figure 4.1 is still manageable, but most programming languages have abstract syntax
trees that are orders of magnitude larger than this one. That adds up to quite a bit of boilerplate,
considering we need to define a typeclass for each generic function that we implement, and also
then for each generic function have to write an instance marking for each recursive position of each
datatype in our abstract syntax tree.

As we already saw in Section 2.1, we can explicitly mark recursive positions in the representation
of a datatype to remove the need of the Size typeclass. So, lets extend our language of codes to allow
for explicit recursive positions, analogously to the Agda code in Section 2.2.

data Atom (kon ∶∶ 𝜅 → ∗) = K kon ∣ I
class Generic a where

type 𝐶𝑜𝑑𝑒𝑠𝑜𝑝 a ∶∶ [[Atom kon]]

This definition will however limit ourselves to just regular datatypes. But, Expr is not a regular
datatype. It is a member of a family of mutually recursive datatypes. If we want to use gsize for
Expr, Stmt and friends, we need to handle mutual recursion as well. To do so, we make several to
changes. First of all, we do not assign a type a code, but assign a family of types a family of codes.

type family 𝐶𝑜𝑑𝑒𝑚𝑟𝑠𝑜𝑝 (fam ∶∶ [∗]) ∶∶ [[[Atom kon]]]

Second of all, recursive positions must now explicitly mention into which type of the family they
recurse, by means of an index into the family of types.

32

data Atom (kon ∶∶ 𝜅 → ∗) = K kon ∣ I Nat

Mapping indexes to types can then be accomplished with a type family that does a lookup into
type-level lists:

type family Lkup (xs ∶∶ [a]) (n ∶∶ Nat) ∶∶ a where

At first glance, the type of atoms seems to be too general. A recursive position can refer to any number
here, whilst we only want it to be able to refer to numbers 𝑛 such that 𝑛 < 𝐿𝑒𝑛𝑔𝑡ℎ𝑓 𝑎𝑚. This could
for example be accomplished with a finite type Fin n that has exactly n inhabitants, but this would
mean we would have to carry around the size of the family around everywhere, which becomes
quite unwieldy [23]. Luckily, this turns out not be a problem in practice. If we were to construct an
atom that has an index that is out of bounds for fam ∶∶ [∗], Lkup will fail with a type error at compile
time. Furthermore, end users will never directly use Lkup themselves, but is called by the functions
to and from directly. We can even customise the type error to be useful to the end user using GHC’s
support for custom type errors.

With these changes, The family of codes for Expr and friends will look as follows:

data Konstant = KName ∣ KArgs ∣ KInt
type 𝐶𝑜𝑑𝑒𝑚𝑟𝑠𝑜𝑝 (fam ∶∶ [∗]) ∶∶ [[Atom (Length fam) kon]]
type family instance 𝐶𝑜𝑑𝑒𝑠𝑚𝑟𝑠𝑜𝑝 [Func, [Stmt], Stmt,Expr, [Expr]] =

[[[K KName,K KArgs, I 1]] -- Func
, [[], [I 2, I 1]] -- [Stmt]
, [[K KName, I 3], [K KName, I 4]] -- Stmt
, [[K KName], [K KInt], [I 3, I 3]] -- Expr
, [[], [I 3, I 4]] -- [Expr]
]

Of course, if our codes change, we will also need to adjust the representation of codes. First of all,
we need to map Atoms to types. We do this with the datatype NA, that can interpret an Atom to a
type, given we tell it how to map constants to types through 𝜅, and how to map recursive positions
to types through 𝜑.

data NA (𝜅 ∶∶ kon → ∗) (𝜑 ∶∶ Nat → ∗) ∶∶ Atom kon → ∗where
NA_I ∶∶ (IsNat n) ⇒ 𝜑 n → NA 𝜅 𝜑 (I n)
NA_K ∶∶ 𝜅 k → NA 𝜅 𝜑 (K k)

We define an eliminator for NA similar to the eliminators for NS and NP. if we can map both 𝜑 n and
𝜅 k to a value b, then we can collapse an NA into a value b:

elimNA ∶∶ (∀k.𝜅 k → b) → (∀k.IsNat k ⇒ 𝜑 k → b) → NA 𝜅 𝜑 a → b

Then, our representation of codes is a very slight tweak of 𝑅𝑒𝑝𝑠𝑜𝑝, such that it is also parameterized
over 𝜅 and 𝜑.

newtype Rep 𝜅 𝜑 code = Rep {unRep ∶∶ NS (NP (NA 𝜅 𝜑)) code}

To eliminate a Rep to a single value, we combine elimNS, elimNP and elimNA.

elimRep ∶∶ (∀k.𝜅 k → a) → (∀k.IsNat k ⇒ f k → a) → ([a] → b) → Rep 𝜅 f c → b
elimRep kp fp cat = elimNS (cat ∘ elimNP (elimNA kp fp)) ∘ unRep

33

We want to set 𝜑 = Lkup fam, such that NA_I selects the correct type. However, this is not possible
because Lkup is a type family, and type families always need to be fully saturated in GHC. That
means that Lkup can not appear on its own, but must always have all its arguments applied. The
type system currently can not cope with partially applied type families. This might change in the
future however, with the introduction of Dependent Haskell [7]. To work around this issue, we
define a wrapper datatype around Lkup because datatypes can appear unsaturated.

data El ∶∶ [∗] → Nat → ∗where
El ∶∶ IsNat ix ⇒ Lkup ix fam → El fam ix

We also define a type family Idx ∶∶ ∗ → [∗] → Nat, which tells us the index of an element in a list.
Now, we can define our to and from functions, that convert a given type ty into its corresponding
Rep.

class Family 𝜅 fam codes ∣ fam → 𝜅 codes, 𝜅 codes → fam where
from ∶∶ (ix∼Idx ty fam,Lkup ix fam∼ty) ⇒ ty → Rep kon (El fam) (Lkup codes ix)
to ∶∶ (ix∼Idx ty fam,Lkup ix fam∼ty) ⇒ Rep kon (El fam) (Lkup codes ix) → ty

Note that we pass El fam as the interpretation of recursive positions to NA, but we do not pass an
interpretation for constants 𝜅 to NA in the above definitions. This is by design, so that the user of the
library can choose themselves how many constants their generic representation has. Any types that
are not part of the constants, automatically become part of the family of recursive datatypes when
the generics-mrsop library generates codes using TemplateHaskell. This allows the user to ’limit’
the depth of the recursive description of types. For example, a user might want to treat Strings as
atoms, instead of lists of characters. If we make sure Strings are constants in our generic universe,
the String type will not be deconstructed further. We define the interpretation of constants by means
of a singleton type, which relates each constant value to exactly one type-level code for constants [8].

data SKonstant ∶∶ Konstant → ∗where
SName ∶∶ Name → SKonstant KName
SArgs ∶∶ Args → SKonstant KArgs
SInt ∶∶ Int → SKonstant KInt

Even though Name is defined as [Char] and Args as [[Char]], both will be treated as constants in
our generic universe and will not be deconstructed further into SoP structures.

As we have already seen, if we mark recursive positions explicitly in regular datatypes, we can
transform a pattern functor f into a recursive datatype by taking the Fixpoint Fix f [26]. Swierstra,
Azero Alcocer, and Saraiva [30] show that a variant of Fix exists for two bifunctors f and g and this al-
lows us to define a recursive generic representation for families of two mutually recursive datatypes.
If we extend this pattern to trifunctors f, g, h, which allows for a familiy of three mutually recursive
datatypes, we see a clear pattern in the types of Fix emerge.

Fix ∶∶ (∗ → ∗) → ∗
𝐹𝑖𝑥2 ∶∶ (∗ → ∗ → ∗) → (∗ → ∗ → ∗) → ∗
𝐹𝑖𝑥3 ∶∶ (∗ → ∗ → ∗ → ∗) → (∗ → ∗ → ∗ → ∗) → (∗ → ∗ → ∗ → ∗) → ∗

Which, using exponentiation, we can write as

Fix3 ∶∶ ((∗3 → ∗))3 → ∗

Yakushev et al. [33] recognise this pattern, and define a Fix that is suitable for a family of any number
of mutually recursive datatypes. Using Fix n as the type with exactly n inhabitants, we can then
define 𝐹𝑖𝑥3 as:

34

𝐹𝑖𝑥3 ∶∶ Fin n → (Fin n → ((Fin n → ∗) → ∗)) → ∗

Reshuffling those arguments, we see that we have generalised a fixed point for endofunctors over ∗
to a fixed point for endofunctors over the indexed set Fix n → ∗ [33].

𝐹𝑖𝑥3 ∶∶ ((Fin n → ∗) → (Fin n → ∗)) → (Fin n → ∗)

However, as we already discussed, we opt to use Nat as a coarse representation for Fin n, such that
we do not have to carry around SNat n everywhere. We can then write the following type for Fix as:

data Fix ∶∶ ((Nat → ∗) → (Nat → ∗)) → (Nat → ∗) where
Fix ∶∶ f (Fix f) n → Fix f n

Though not immediately obvious, 𝑅𝑒𝑝𝑚𝑟𝑠𝑜𝑝, after reshuffling some arguments, is indeed a map-
ping from families of types to families of types, signified by the fact that its kind is (Nat → ∗) →
(Nat → ∗).

data RepF ∶∶ (kon → ∗) → [[[Atom kon]]] → (Nat → ∗) → (Nat → ∗) where
RepF ∶∶ Rep 𝜅 𝜑 (Lkup ix codes) → RepF 𝜅 codes 𝜑 ix

It is also an endofunctor, as we can define a mapping operation that adheres to the functor laws:

mapNS ∶∶ (∀ix.𝜑 ix → 𝜒 ix) → NS 𝜑 ks → NS 𝜒 ks
mapNP ∶∶ (∀ix.𝜑 ix → 𝜒 ix) → NP 𝜑 xs → NP 𝜒 xs
mapRep ∶∶ (∀ix.𝜑 ix → 𝜒 ix) → Rep 𝜅 𝜑 c → Rep 𝜅 𝜒 c
mapRep f = Rep ∘mapNS (mapNP (mapNA f)) ∘ unRep

This means, that we can turn the shallow representation𝑅𝑒𝑝𝑠𝑜𝑝 into a deep (recursive) representation,
by taking applying RepF to Fix:

Lkup fam ix ≡ Fix (RepF 𝜅 (𝐶𝑜𝑑𝑒𝑚𝑟𝑠𝑜𝑝 fam)) ix

However, in the rest of this thesis, we will instead use a version of Fix that inlines the definition
of RepF directly into its body, reducing the amount of pattern matching that we need to do when
working with recursive datatypes.

data Fix (kon → ∗) → [[[Atom kon]]] → (Nat → ∗) where
Fix ∶∶ Rep 𝜅 (Fix 𝜅 codes) (Lkup n codes) → Fix 𝜅 codes n

Analogous to the non-indexed Fix, we can define a generic fold, that allows us to collapse our
datatype using a provided F-algebra. Note though, that the values that our fold produce are now
indexed over ix. That is, we could choose a different return type for each member of the family. In
case that that is not desired, we can set 𝜑 ≡ K a, such that we return a for every possible index ix.

cata ∶∶ (∀iy.Rep 𝜅 𝜑 (Lkup iy codes) → 𝜑 iy) → Fix 𝜅 𝜑 ix → 𝜑 ix
cata f (Fix x) = f (mapRep (cata f) x)

Also, we can freely convert from a shallow representation to a deep representation using mapRep:

dfrom ∶∶ (Family 𝜅 fam codes, a∼Lkup fam ix) ⇒ a → Fix 𝜅 codes ix
dfrom = Fix ∘mapRep (dfrom ∘ unEl) ∘ from

We now have the benefits of the combinator-based generics-sop approach, but also the benefits
of working with a deep representation like in the regular library, whilst also supporting families of

35

mutually recursive datatypes. The expressiveness of generics-mrsop’s universe hits a sweet spot
for representing ASTs generically. Let us return to our example of gsize. With generics-mrsop, we
can now define gsize for Expr and friends, without explicitly marking their recursive positions using
an auxiliary typeclass Size. To do this, we write an algebra that collects integers. Note that we wrap
this integer into the constant functor K, such that for each member of the family of types, our algebra
returns the same type of value.

The implementation of the algebra is succinct, due to the fact that there is a Num instance for
K Int a. This means we can use integer literal syntax to define values of type K Int a. We use
elimRep to collapse aRep into an integer value by providing it the eliminators for constants, recursive
positions and products. Constants are easy, as they will never increase the count and thus always
eliminate to 0. Recursive positions are a bit trickier. We need to provide an eliminator ∀iy.K Int iy →
K Int ix where iy is the index over which the algebra is indexed, which will vary for each layer of
recursion that cata goes through, and ix is the index of the final return value of gsize. Luckily, we
can trivially convert any K a x to a K a y, because the second type parameter of K is a phantom
parameter. For this, We can define

coerce ∶∶ K a x → K a y
coerce (K x) = K x

Haskell already comes with a more general definition of this function in the Data.Coerce module
that can convert between any two representationally equal types [3]. Now what is left is to provide
an eliminator for NP. For this, we can use the Prelude function sum ∶∶ Num a ⇒ [a] → a, using the
fact that K Int a has a Num instance. We now truly have a boilerplate-free implementations of gsize,
that works for any family of datatypes.

size ∶∶ (Family 𝜅 fam codes, IsNat ix, a∼Lkup ix fam) ⇒ a → Int
size = getK ∘ cata sizeAlg ∘ dfrom

where
sizeAlg ∶∶ ∀iy.IsNat iy ⇒ Rep 𝜅 (K Int) xs → K Int iy
sizeAlg = (1+) ∘ elimRep (const 0) coerce sum

4.2 Pattern matching
Programmers are used to working with datatypes through constructors and pattern matching. Just
like in the Agda implementation, we can provide the programmer with a view on our representation,
such that we can talk about values in terms of a constructor and its fields. In our Agda implemen-
tation, we defined constructors Constr as a function Constr ∶ (s ∶ SOP) → Fin (length s). However,
due to Haskell’s lack of dependent types, such a function is not possible to implement. Instead, we
define Constr as a relation between sums and Nat.

data Constr ∶∶ [k] → Nat → ∗where
CS ∶∶ Constr xs n → Constr (x ∶ xs) (S n)
CZ ∶∶ Constr (x ∶ xs) Z

We can then view a SoP sum as its constructor n and its fields Lkup n sum

data View (𝜅 ∶∶ kon → ∗) (𝜑 ∶∶ Nat → ∗) (sum ∶∶ [[Atom kon]]) ∶∶ ∗where
Tag ∶∶ IsNat n ⇒ Constr sum n → NP (NA 𝜅 𝜑) (Lkup n sum) → View 𝜅 𝜑 sum

sop ∶∶ Rep 𝜅 fam sum → View 𝜅 fam sum

36

sop (Rep rep) = go rep
where
go ∶∶ NS (NP (NA 𝜅 fam)) sum → View 𝜅 fam sum
go (H poa) = Tag CZ poa
go (T (go → Tag c poa)) = Tag (CS c) poa

Dually, given some constructor, and its fields, we can construct a value:

inj ∶∶ Constr sum n → PoA 𝜅 fam (Lkup n sum) → Rep 𝜅 fam sum
inj c = Rep ∘ go c

where
go ∶∶ Constr sum n → PoA 𝜅 fam (Lkup n sum) → NS (NP (NA 𝜅 fam)) sum
go CZ poa = Here poa
go (CS c) poa = There (go c poa)

The generics-mrsop library generates pattern synonyms for each constructor usingTemplateHaskell.
For example, for our Expr datatype, the following pattern synonyms are generated

pattern Var_ = CZ
pattern Int_ = CS CZ
pattern Add_ = CS (CS CZ)

In combination with the ViewPatterns language extension, we can very naturally program with the
representation of a datatype, as if it were a normal Haskell value. Say we have a function nonZero
that counts all Vals that are non-zero.

nonZero (Int n) = bool (n> 0) 0 1
nonZero (Var x) = 0
nonZero (Add e1 e2) = nonZero e1+ nonZero e2

We can write a similar function using sop and ViewPatterns:

nonZero = cata alg
where
alg ∶∶ Rep 𝜅 (K Int) xs → K Int ix
alg (sop → Tag Int_ (v ∶∗ NP0)) = bool (v> 0) 0 1
alg (sop → Tag xs) = elimNP sum xs

The implementation is very similar to that of the original nonZero. However, it has two benefits
from the original implementation. First of all, we didn’t have to write out recursion explicitly, but
could use cata to recurse for us. Second of all, note that the second line of Alg works for any con-
structor with recursive positions, not just Add. This means if we would refactor Expr to also have a
constructorMul e1 e2, we would not have to change our implementation of nonZero. In the following
sections, we will often use ViewPatterns and the sop function when writing code.

4.2.1 Discussion and remaining issues
Though generics-mrsop seems to be great in terms of both expressiveness and ease of use, there is
one very serious issue that we ran into when developing it. Compilation times and memory usage
of GHC when compiling code using generics-mrsop seem to grow exponentially with the size of
the codes needed to describe the types. This means that in practice, even comparetively small ASTs

37

like that of the Go language fail to compile because GHC runs out of memory. We have filed this
as an issue upstream 1 and hopefully in the future generics-mrsop will support larger datatypes.
After tracing GHC itself, we found out that most of the time seems to be spent in the exhaustiveness
checker, that tries to make sure that our from and to functions cover all branches. Disabling the
exhaustiveness checker has no effect however, as the act of disabling currently only seems to suppress
the warning, instead of fully disabling it.2.

Originally, we wanted to develop a diffing and merging tool that would be applicable to many
popular languages. However, this performance regression forced us to readjust our scope. Instead
we picked two languages with rather modestly sized ASTs. The first one being Clojure, given it was
also used in previous experiments on generic diffing and merging [9]. And the second one being Lua,
given it considerably more complex than the Clojure AST, and also actually uses mutual recursion
in its AST. Note that even though we have limited our research to only these two languages, the
framework that we will present in the coming sections is indeed fully generic over the AST. Once
the memory issue is fixed in GHC, it should be possible to apply our code to bigger amount of
programming languages.

4.3 Implementing an efficient diffing algorithm
In this section, we will show how we ported gdiff edit scripts from Agda to the generics-mrsop
library. We will also show how the algorithm is adjusted to generate edit scripts efficiently by using
dynamic programming. Lempsink, Leather, and Löh [13] already have an implementation for gdiff
in Haskell, but two things motivate us for a rewrite. First of all, the gdiff library is not directly com-
patible with any generic programming library, but uses its own encoding of generic programming
instead. By porting the algorithm to the generics-mrsop universe, we can diff any programming
language, for which there exists an AST on Hackage. The second reason is that our initial bench-
marks that we performed show that the original implementation of gdiff is not well-optimised, mak-
ing it unsuitable for diffing large trees.

4.3.1 Edit script
In the Agda implementation of edit scripts, constructors and constants were considered as the char-
acters of our edit script. For this, it introduced two functions cof ∶Atom → Set and fields ∶ (α ∶Atom)→
cof α → Prod that allowed us to calculate how many new ’characters’ an insertion or deletion of a
character would introduce on our stacks. In Haskell, writing a dependent function like fields is not
possible, so instead, we define a relation between Atoms and the type of their fields. We distinguish
two cases. A constant value 𝜅 k has no fields, and a constructor c has fields Lkp c (Lkup n codes)).

data Cof (𝜅 ∶∶ kon → ∗) (codes ∶∶ [[[Atom kon]]]) ∶∶ Atom kon → [Atom kon] → ∗where
ConstrK ∶∶ 𝜅 k → Cof 𝜅 codes (K k) []
ConstrI ∶∶

(IsNat c, IsNat n) ⇒ Constr (Lkup n codes) c
→ ListPrf (Lkup c (Lkup n codes))
→ Cof 𝜅 codes (I n) (Lkup c (Lkup n codes))

Note, that we also keep around a singleton list for the fields. As we will see, we need to carry around
this singleton to later be able to apply the edit script correctly. Using this definition, we can define
an SoP view of an atom that treats constants and recursive positions uniformly.

1https://gitlab.haskell.org/ghc/ghc/issues/14987
2https://github.com/VictorCMiraldo/generics-mrsop/issues/6

38

data ViewNA 𝜅 𝜑 codes a where
TagNA ∶∶ Cof 𝜅 codes a t → PoA 𝜅 (AnnFix 𝜅 codes 𝜑) t → ViewNA 𝜅 𝜑 codes a

sopNA ∶∶ NA 𝜅 (Fix 𝜅 codes) a → ViewNA 𝜅 𝜑 codes a
sopNA (NA_K k) = Match (ConstrK k) NP0
sopNA (NA_I (Fix (sop → Tag c poa))) = TagNA (ConstrI c (listPrfNP poa)) poa

Using this definition ofCofwe can now define a type for edit scripts that closely follows the definition
of the Agda version.

data ES (𝜅 ∶∶ kon → ∗) (codes ∶∶ [[[Atom kon]]]) ∶∶ [Atom kon] → [Atom kon] → ∗where
ES0 ∶∶ ES 𝜅 codes [] []
Ins ∶∶ Cof 𝜅 codes a fields → ES 𝜅 codes i (fields++ j) → ES 𝜅 codes i (a ∶ j)
Del ∶∶ Cof 𝜅 codes a fields → ES 𝜅 codes (fields++ i) j → ES 𝜅 codes (a ∶ i) j
Cpy ∶∶ Cof 𝜅 codes a fields → ES 𝜅 codes (fields++ i) (fields++ j) → ES 𝜅 codes (a ∶ i) (a ∶ j)

Recall that for applying an insertion, we required a split lemma, that allowed us to pop off the
fields of our stack, in order to build our atom a.

insCof ∶∶ Cof a fields → PoA (fields++ xs) → PoA (a ∶ xs)

However, Haskell is not dependently typed, so we cannot pattern match on the type-level list fields
in our implementation of split. Instead, split requires us to provide a singleton list value, that proves
that we can indeed construct a list that contains all fields.

data ListPrf ∶∶ [k] → ∗where
Nil ∶∶ ListPrf []
Cons ∶∶ ListPrf l → ListPrf (x ∶ l)

split ∶∶ ListPrf xs → NP p (xs++ ys) → (NP p xs,NP p ys)
split Nil poa = (NP0, poa)
split (Cons p) (x ∶∗ rs) =

let (xs, rest) = split p rs
in (x ∶∗ xs, rest)

Luckily we defined Cof to carry around a singleton list around inside. This is exactly the singleton
we need to supply to split in order to implement insCof

insCof (ConstrI c sfields) xs =
let (fields, xs′) = split sfields xs
in NA_I (Fix $ inj c fields) ∶∗ xs′

insCof (ConstrK k) xs = NA_K k ∶∗ xs

The implementation of delCof and applyES are exactly the same as their Agda counterparts.
The original Haskell implementation by Lempsink, Leather, and Löh [13], was built when Haskell

did not have support for DataKinds yet. Type-level list constructors were simply of kind ∗ Instead of
of kind [a].

data Cons x xs
data Nil

This meant that in order to make edit scripts, and functions operating on edit scripts well typed, the
edit scripts did not only have to carry around a singleton list proof for fields, but also a singleton list
proof for the rest of the stack.

39

Ins ∶∶ (Type f a) ⇒ IsList flds → IsList tys → f a flds → ES f txs (flds++ tys) → ES f txs (Cons a tys)
Del ∶∶ (Type f a) ⇒ IsList flds → IsList txs → f a flds → ES f (flds++ txs) tys → ES f (Cons a txs) tys

An implementation of diff now has to carefully construct and deconstruct these seemingly irrelevant
proofs. When we profiled the original gdiff implementation, we found out that actually most of the
time was spent constructing and deconstructing these seemingly useless singleton lists. Just by using
more modern features of GHC, we were able to get a serious gain in performance for free, whilst also
simplifying our implementation.

4.3.2 Dynamic programming
As we saw in Chapter 3, the naive approach of generating edit scripts it too slow. To overcome
this, Lempsink, Leather, and Löh [13] present a dynamic programming algorithm for generating
patches, which we have ported to generics-mrsop. The key observation is that the implementation
of diff performs many sub computations over and over again. By storing these sub computations
in a memoization table, subsequent execution steps can reuse previously evaluated results. We can
define such a memoization table as follows:

data EST (𝜅 ∶∶ kon → ∗) (codes ∶∶ [[[Atom kon]]]) ∶∶ [Atom kon] → [Atom kon] → ∗where
NN ∶∶ ES 𝜅 codes [] [] → EST 𝜅 codes [] []
NC ∶∶ Cof 𝜅 codes cy t → ES 𝜅 codes [] (cy ∶ tys)

→ EST 𝜅 codes [] (t++ tys)
→ EST 𝜅 codes [] (cy ∶ tys)

CN ∶∶ Cof 𝜅 codes cx t → ES 𝜅 codes (cx ∶ txs) []
→ EST 𝜅 codes (t++ txs) []
→ EST 𝜅 codes (cx ∶ txs) []

CC ∶∶ Cof 𝜅 codes cx t1 →
Cof 𝜅 codes cy t2 → ES 𝜅 codes (cx ∶ txs) (cy ∶ tys)

→ EST 𝜅 codes (cx ∶ txs) (t2++ tys)
→ EST 𝜅 codes (t1++ txs) (cy ∶ tys)
→ EST 𝜅 codes (t1++ txs) (t2++ tys)
→ EST 𝜅 codes (cx ∶ txs) (cy ∶ tys)

The table describes four different situations, depending on whether the source stack is empty, the
target stack is empty, or both are non-empty. TheCC case is the most interesting. Lempsink, Leather,
and Löh [13] provide the following visualization of the CC case.

cx,xs ::xss xs +++ xss ...

cy,ys ::yss

ys +++ yss

.

.

.

i

d

c

We can either insert cx, delete cy, or copy if cx and cy are equal. These three choices lead to three
subcomputation i, d and c. As is clear from the image above, both problems i and d potentially reuse

40

results from c. This is accomplished by always computing the sub-computation c, whether cx and
cy are equal or not.

Building the table is easy for the cases where either the source or the target stack is empty. In
case of an empty target stack, the only way we can proceed is by a deletion, and in case of an empty
source stack we can only proceed by means of an insertion.

diffT o NP0 NP0 = NN ES0
diffT o ((sopNA → TagNA c poa) ∶∗ xs) NP0 =

let d = diffT o (appendNP poa xs) NP0
in CN c (Del e (getDiff d)) d

diffT o NP0 ((sopNA → TagNA c poa) ∶∗ ys) =
let i = diffT o NP0 (appendNP poa ys)
in NC c (Ins c (getDiff i)) i

The interesting case is when both the source and target lists are non-empty. First we calculate the
the diff of the fields of cx and cy. We calculate this result regardless of whether we will emit a Cpy.
This seems wasteful at first, but as we can see in the image above, there is a big chance that the i
and d subcomputations will reuse parts of this computation c. By reusing this subresult, we are able
to eliminate two diffT calls that were present in the original algorithm. Next, bestDiffT will either
extend d with a Del cx extend, i with a Ins cy or extend c with a Cpy. The edit script with the lowest
cost is then returned.

diffT (x@(sopNA → TagNA cx fieldsx) ∶∗ xs) (y@(sopNA → TagNA cy fieldsy) ∶∗ ys) =
let i = extendi cx c

d = extendd cy c
c = diffT o (appendNP fieldsx xs) (appendNP fieldsy ys)
es = bestDiffT cx cy i d c

in CC cx cy es i d c

The extendi and extend helper functions take the shared subresult c, and extend it with an extra row
or column. Let us look at the case of extendi. The type is enlightening. We know that our sub-
computation c consumes all the fields t of atom a. Then, we extend this sub-computation c such that
it is an edit script that operates on the atom itself.

extendi
∶∶ (Eq1 𝜅,TestEquality 𝜅)
⇒ Cof 𝜅 codes a t
→ EST 𝜅 codes (t++ xs) ys
→ EST 𝜅 codes (a ∶ xs) ys

extendi cx i@(CN d) = CN cx (Del cx d) i
extendi cx i@(NN d) = CN cx (Del cx d) i
extendi cx d@NC { } =

case extracti d of
IES cy c →

let i = extendi cx c
in CC cx cy (bestDiffT cx cy i d c) i d c

extendi cx d@CC { } =
case extracti d of
IES cy c →

let i = extendi cx c
in CC cx cy (bestDiffT cx cy i d c) i d c

41

The cases for NN and CN are trivial. Because the target stacks are empty, it means we are at the
bottom row in the table. Thus we need to use CN to extend the edit script with a Del operation. In
the case that there are rows in the table, we want to add a cell to the left of each row. We use the
helper function extracti to pop off the row from d, and then extend this row with an extra cell CC.

data IES 𝜅 codes a xs ys where
IES ∶∶ Cof 𝜅 codes a t → EST 𝜅 codes xs (t++ ys) → IES 𝜅 codes a xs ys

extracti ∶∶ EST 𝜅 codes xs (a ∶ ys) → IES 𝜅 codes a xs ys
extracti (CC c i) = IES c i
extracti (NC c i) = IES c i

The type of extendd is analogous to the type of extendi. Its implementation is also analogous.
Except it works on the rows of the table instead of the columns of the table.

extendd ∶∶ Cof 𝜅 codes y t → EST 𝜅 codes xs (t++ ys) → EST 𝜅 codes xs (y ∶ ys)

We omit its implementation as it is very similar to that of extendi too.

4.4 Structured Diffs
Porting the structured diff in Section 3.2, from Agda to Haskell is again rather mechanical and
straightforward. Instead of showing the entire Haskell implementation, we will show what needs
to change in order to support diffs over families of mutually recursive datatypes. The most notable
change is that a patch is now a relation between two types inside a family of types, because a patch
might change the underlying type of a value. All the subsequent changes to the patch type arise from
this change. Furthermore, some changes to the diff datatypes need to be made due to Haskell’s lack
of dependent types.

4.4.1 Spine
First thing to note, is that just like our port of ES to Haskell, we will have to carry around 𝜅 and
codes as type parameters everywhere. In Agda, this can be accomplished elegantly with module
parameters, but in Haskell we will have to unfortunately repeat ourselves in all our datatypes. In
cases where the values of 𝜅 and codes are irrelevant, we will omit them for brevity. Second of all,
in the Haskell implementation we do not have to pass in At and Al as arguments to Spine, but can
instead refer to them directly, because we can define multiple datatypes that are mutually recursive
within the same Haskell module.

data Spine (𝜅 ∶∶ kon → ∗) (codes ∶∶ [[[Atom kon]]]) ∶∶ [[Atom kon]] → [[Atom kon]] → ∗where
Scp ∶∶ Spine 𝜅 codes 𝑠1 𝑠1
SCns ∶∶ Constr 𝑠1 𝑐1

→ NP (At 𝜅 codes) (Lkup 𝑐1 𝑠1)
→ Spine 𝜅 codes 𝑠1 𝑠1

SChg ∶∶ Constr 𝑠1 𝑐1
→ Constr 𝑠2 𝑐2
→ Al 𝜅 codes (Lkup 𝑐1 𝑠1) (Lkup 𝑐2 𝑠2)
→ Spine 𝜅 codes 𝑠1 𝑠2

The definitions for Scp and SCns stay exactly the same. However the definition of SChg is slightly dif-
ferent. When dealing with a family of datatypes, a change of constructor means that the type of the

42

value may actually change. For example, a boolean expression could be changed into an if-statement.
The Agda implementation was abstracted over a single sum type, but our Haskell implementation
must actually allow for changing the underlying sum-type of the spine. Hence Spine is a relation on
sums. In order to apply the spine, we need to make sure that in the case of SCns the source and
target types of the patch are the same, otherwise the patch will not apply. For this, we need to pass
the source and target index of the patch as singleton values [8], such that we can pattern match on
them to check them for equality.

applySpine ∶∶ SNat ix
→ SNat iy
→ Spine 𝜅 codes (Lkup ix codes) (Lkup iy codes)
→ Rep 𝜅 (Fix 𝜅 codes) (Lkup ix codes)
→ Maybe (Rep (Fix 𝜅 codes) (Lkup iy codes))

applySpine ix iy (SCns 𝑐1 dxs) (sop → Tag 𝑐2 xs) = do
Refl ← testEquality ix iy
Refl ← testEquality 𝑐1 𝑐2
inj 𝑐2 ⟨$⟩ (mapNPM applyAt (zipNP dxs xs))

Alignments are the same as the Agda implementation, except for being parameterized over 𝜅
and codes, and not explicitly taking At as a parameter.

4.4.2 Atoms
The type for changes in atoms is no longer parameterized over a recursive valuePatchRec but instead
directly calls 𝐴𝑙𝜇 itself. Also note that At does not change the underlying type of the patch.

data At (𝜅 ∶∶ kon → ∗) (codes ∶∶ [[[Atom kon]]]) ∶∶ Atom kon → ∗where
AtSet ∶∶ (𝜅 kon, 𝜅 kon) → At 𝜅 codes (K kon)
AtFix ∶∶ (IsNat ix) ⇒ 𝐴𝑙𝜇 𝜅 codes ix ix → At 𝜅 codes (I ix)

4.4.3 Tying the recursive knot
Just like changing a constructor can now change the type on which the patch operates, inserting or
peeling off a constructor can also change the type. Hence, we will slightly adjust the definition of
Ctx to account for this fact. If the hole produces a type iy, than the Ctx itself should produce a type
iy as well.

data Ctx (𝜅 ∶∶ kon → ∗) (codes ∶∶ [[[Atom kon]]])
(almu ∶∶ Nat → Nat → ∗) (ix ∶∶ Nat) ∶∶ [Atom kon] → ∗where
H ∶∶ IsNat iy ⇒ almu ix iy → PoA 𝜅 (Fix 𝜅 codes) xs → Ctx 𝜅 codes p ix (I iy ∶ xs)
T ∶∶ NA 𝜅 (Fix 𝜅 codes) a → Ctx 𝜅 codes p ix xs → Ctx 𝜅 codes p ix (a ∶ xs)

Furthermore, insertion and deletions contexts need to be handled slightly differently. When we have
a Ctx iy that signifies a deletion, it means we will peel off that iy to expose some existential ix. Dually,
when we have a Ctx iy that signifies an insertion, it means we will insert a patch that produces an iy
for some existential ix. To encode this duality, we define a version of 𝐴𝑙𝜇 with its arguments flipped

newtype 𝐴𝑙𝜇− 𝜅 codes ix iy = 𝐴𝑙𝜇− (𝐴𝑙𝜇 𝜅 codes iy ix)

With this, we can define the notion of an insertion and a deletion context, and give the type of 𝐴𝑙𝜇,
which is a relation on family indices.

43

𝐹𝑖𝑥 𝑖𝑥 × 𝐹𝑖𝑥 𝑖𝑦 𝐿𝑖𝑠𝑡 (𝐴𝑙𝜇 𝑖𝑥 𝑖𝑦)

𝐹𝑖𝑥𝑎 𝑖𝑥 × 𝐹𝑖𝑥𝑎 𝑖𝑦 𝐴𝑙𝜇 𝑖𝑥 𝑖𝑦

𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒

𝒪 𝑏𝑒𝑠𝑡

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒

Figure 4.3: enumerating all patches versus choosing a patch through an oracle

type InsCtx 𝜅 codes = Ctx 𝜅 codes (𝐴𝑙𝜇 𝜅 codes)
type DelCtx 𝜅 codes = Ctx 𝜅 codes (𝐴𝑙𝜇− 𝜅 codes)
data 𝐴𝑙𝜇 (𝜅 ∶∶ kon → ∗) (codes ∶∶ [[[Atom kon]]]) ∶∶ Nat → Nat → ∗where
Spn ∶∶ Spine 𝜅 codes (Lkup ix codes) (Lkup iy codes) → 𝐴𝑙𝜇 𝜅 codes ix iy
Ins ∶∶ Constr (Lkup iy codes) c → InsCtx 𝜅 codes ix (Lkup c (Lkup iy codes)) → 𝐴𝑙𝜇 𝜅 codes ix iy
Del ∶∶ Constr (Lkup ix codes) c → DelCtx 𝜅 codes iy (Lkup c (Lkup ix codes)) → 𝐴𝑙𝜇 𝜅 codes ix iy

Applying and deleting insertions and deletion contexts is analogous to the Agda. Applying an
insertion context surrounds the recursive value x1 in a list of fields, and then applies the rest of the
patch on x1, and applying a deletion context picks a recursive position x out of a list of fields, and
then transforms it.

insCtx ∶∶ (IsNat ix,Eq1 𝜅) ⇒ InsCtx 𝜅 codes ix xs → Fix 𝜅 codes ix → Maybe (PoA 𝜅 (Fix 𝜅 codes) xs)
insCtx (H x 𝑥2) 𝑥1 = (𝜆x → NA_I x ∶∗ 𝑥2) ⟨$⟩ 𝑎𝑝𝑝𝑙𝑦𝐴𝑙𝜇 x 𝑥1
insCtx (T x 𝑥2) 𝑥1 = (x ∶∗) ⟨$⟩ insCtx 𝑥2 𝑥1
delCtx ∶∶ (Eq1 𝜅, IsNat ix) ⇒ DelCtx 𝜅 codes ix xs → PoA 𝜅 (Fix 𝜅 codes) xs → Maybe (Fix 𝜅 codes ix)
delCtx (H spu atmus) (NA_I x ∶∗ p) = 𝑎𝑝𝑝𝑙𝑦𝐴𝑙𝜇 (unAlmuMin spu) x
delCtx (T atmu al) (at ∶∗ p) = delCtx al p

With those two, we can define 𝑎𝑝𝑝𝑙𝑦𝐴𝑙𝜇. Note that we pass singleton SNat ix and SNat iy values to
applySpine.

𝑎𝑝𝑝𝑙𝑦𝐴𝑙𝜇
∶∶ ∀𝜅 codes ix iy.(IsNat ix, IsNat iy,Eq1 𝜅)
⇒ 𝐴𝑙𝜇 𝜅 codes ix iy → Fix 𝜅 codes ix → Maybe (Fix 𝜅 codes iy)

𝑎𝑝𝑝𝑙𝑦𝐴𝑙𝜇 (Spn spine) (Fix rep) =
Fix ⟨$⟩ applySpine (getSNat @ix Proxy) (getSNat @iy Proxy) spine rep

𝑎𝑝𝑝𝑙𝑦𝐴𝑙𝜇 (Ins c ctx) f@(Fix rep) = Fix ∘ inj c ⟨$⟩ insCtx ctx f
𝑎𝑝𝑝𝑙𝑦𝐴𝑙𝜇 (Del c ctx) (Fix rep) = delCtx ctx<=<match c $ rep

4.5 An efficient algorithm for structured diffs

Motivation
The gdiff algorithm provides us a quadratic algorithm for calculating edit scripts between datatypes.
However, when merging edit scripts, it is hard to figure out what parts of each edit script should be
reconciled. This is because edit scripts do not encode structure of the trees on which they operate.

We have shown that the structured patches by Miraldo, Dagand, and Swierstra [21] can be ex-
tended to support families of mutually recursive datatypes, giving us a patch structure that does
have an easy merge functions. However, no efficient algorithm exists yet to generate these patches.
Instead, the define a algorithm that non-deterministically enumerates all possible diffs between a

44

source and destination tree. From this list of patches, the best tree is then picked. This is the upper
path in the commutative diagram in Figure 4.3. Not only is enumeration very slow, answering the
question what constitutes as a best patch is not easy either. One could argue that the patch with the
biggest domain is the best, but this is very much an extensional statement.

Miraldo [20] conjectures that gdiff can be used as an oracle that drives an algorithm for generating
structured patches for regular datatypes. We use gdiff to annotate the source and target tree with
extra information, which allows us to then distill a structured patch. See the lower part of Figure 4.3.
In this section we show that this idea can be implemented in Haskell to get a quadratic algorithm
for calculating structured patches whilst also supporting mutually recursive datatypes.

4.5.1 Structured patches from annotated trees
The main idea behind the approach of Miraldo [20] is the following. If we know from the source tree
what parts are kept and modified, and from the target tree what parts are kept and modified, then by
traversing them in parallel we can distill a structured patch from this information. It is then the task
of some sufficiently efficient oracle (in our case, the gdiff algorithm) to provide these annotations on
the source and destination trees. To illustrate this approach, let us introduce the simple datatype of
two-three-trees and two inhabitants of that tree.

data TTT = Two Int TTT TTT
∣ Three Int TTT TTT TTT
∣ Leaf

𝑡1, 𝑡2 ∶ Fix CodesTTT Z
𝑡1 = dfrom $ Three 1 Leaf (Two 2 Leaf Leaf) (Two 3 Leaf Leaf)
𝑡2 = dfrom $ Three 1 Leaf (Two 2 Leaf Leaf) (Three 3 Leaf Leaf Leaf)

Let us now define a variation of Fix that carries an annotation at each recursive position and a type
for annotations that marks positions as either copied or modified. The reader might recognise this
as the cofree comonad over functors f ∶∶ (Nat → ∗) → (Nat → ∗).

data AnnFix codes (𝜑 ∶∶ Nat → ∗) (ix ∶∶ Nat) =
AnnFix (𝜑 ix) (Rep (AnnFix codes 𝜑) (Lkup ix codes))

data Ann = Copy ∣ Modify

The oracle then provides us with two functions. One that will annotate our source tree 𝑡1 and one
that will annotate our destination tree 𝑡2. Then given two of these annotated trees, we can calculate
these to a structured patch between 𝑡1 and 𝑡2 using the function translate. In figure 4.4, we see the
annotated versions of our trees 𝑡′1, 𝑡′2, and the result of calling translate on those trees. Important
to note here is that we want the yet to be defined translate function to operate in 𝑂(𝑛) time. We
already hinted that our oracle will be implemented in terms of the gdiff algorithm, which has a time
complexity of 𝑂(𝑛2). Because 𝑂(𝑛2) + 𝑂(𝑛) = 𝑂(𝑛2), we can freely then combine translate and gdiff
to end up with an algorithm that is still quadratic, but generates structured patches instead of edit
scripts.

translate ∶∶ AnnFix codes (K Ann) ix → AnnFix (K Ann) iy → 𝐴𝑙𝜇 ix iy
𝑡′1, 𝑡′2 ∶∶ AnnFix CodesTTT (K Ann) Z
𝑡′1 = oracleAnnotateSource 𝑡1
𝑡′2 = oracleAnnotateSource 𝑡2
𝑑14 ∶∶ 𝐴𝑙𝜇 CodesTTT Z Z
𝑑14 = translate 𝑡′1 𝑡′2

45

=

+

1 1

Three

Scp Scp Two 3 *

Leaf Three 3 *

Leaf Leaf

()

Scp

Leaf

Copy

Leaf

Copy

Leaf

Copy

Two 2

Copy

Leaf

Copy

Leaf

Copy

Leaf

Modify

Three 3

Modify

Three 1

Copy

Leaf

Copy

Leaf

Copy

Leaf

Copy

Two 2

Copy

Leaf

Copy

Leaf

Copy

Two 3

Modify

Three 1

Copy

Figure 4.4: Given we know from both the source and the target tree which parts are kept and which
parts are modified, we can create a structured patch in 𝑂(𝑛)

4.5.2 Implementing translate
The translate function starts by traversing the two trees pair-wise from the top. If both the left-hand
side and the right-hand side are annotated by a Copy, we know that we will have to emit a spine.

translate ∶∶ AnnFix Ann ix → AnnFix Ann iy → 𝐴𝑙𝜇 ix iy
translate x@(AnnFix Copy 𝑟𝑒𝑝1) y@(AnnFix Copy 𝑟𝑒𝑝2) =
Spn (translateSpine (getSNat @ix) (getSNat @iy) 𝑟𝑒𝑝1 𝑟𝑒𝑝2)

Spine

In Figure 4.4, we see that the toplevel recursive position has a Copy annotation in both trees, and
thus indeed a spine is emitted. In this case, an SCns is then emitted by translateSpine, as the toplevel
constructor in both 𝑡1 and 𝑡2 is equal. We then zip over the fields of 𝑡1 and 𝑡2, and for each pair of
fields, we call translate recursively. Given that the first few fields of 𝑡1 and 𝑡2 are all annotated with
Copy, these recursive calls will emit an Scp node, indicating that at those positions the fields are
simply copied from the source tree to the target tree. A good patch will try to have as many Scp
nodes as possible, as they increase the domain of the patch. An Scp matches any node and copies it
over verbatim. The more copies a patch contains, the higher the chance we will sucessfully merge it.

The code for translateSpine is defined below. In order for translateSpine to work for mutually
recursive types, we need access to the type indices ix and iy. When the types do not match, the only
way to emit a spine is by means of a change in constructor (such that the old constructor lives in ix,
and the new constructor lives in iy). Note however, that in our toy example, ix and iy will always
be equal, as TTT is not mutually recursive. If the two trees are part of the same type, then we check
whether the constructors are equal. If they are equal, we proceed by emitting an SCns, as already

46

described above. If they are not equal, we proceed the same way as we would when ix and iy are not
equal. We emit an SChg, and have to recursively produce an alignment Al between the fields of the
two values.

translateSpine
∶∶ ∀codes ix iy.

SNat ix
→ SNat iy
→ Rep (AnnFix Ann) (Lkup ix codes)
→ Rep (AnnFix Ann) (Lkup iy codes)
→ Spine (Lkup ix codes) (Lkup iy codes)

translateSpine six siy 𝑠1@(sop → Tag 𝑐1 𝑝1) 𝑠2@(sop → Tag 𝑐2 𝑝2) =
case testEquality six siy of
Just Refl →

if (eq1 ‵on‵ mapRep forgetAnn) 𝑠1 𝑠2
then Scp
else case testEquality 𝑐1 𝑐2 of
Just Refl →
SCns 𝑐1 (mapNP (𝜆(a × b) → translateAt a b) (zipNP 𝑝1 𝑝2))

Nothing → SChg 𝑐1 𝑐2 (translateAl 𝑝1 𝑝2)
Nothing → SChg 𝑐1 𝑐2 (translateAl 𝑝1 𝑝2)

Alignments

In the original implementation of diffing by Miraldo, Dagand, and Swierstra [21], alignments were
a difficult thing to compute. Their strategy was to non-deterministically enumerate all options, and
then choose the best one. However, now that we have the information about what parts of the source
and what parts of the target trees are copied an kept, generating alignments becomes trivial.

translateAl ∶∶ PoA (AnnFix Ann) xs → PoA (AnnFix Ann) ys → Al xs ys

To produce an alignment we traverse the two lists in parallel. If both heads of the list are a Copy,
an AX x is emitted and we recurse on the rest of the fields. If the left-hand side is a Copy and the
right-hand side is a Modify, we emit an insertion AIns x. Dually, if the left-hand side is a Modify, we
insert a ADel x. If either the left-hand side or the right-hand side is empty, we pad the alignment
with AIns or ADel respectively to compensate. An example of a produced alignment can be seen in
Figure 4.5.

Contexts

In the case that source tree is annotated with a Copy and the destination tree is annotated with a
Modify, we will produce an insertion context. However, to which part of the tree do we make the
context point at? We want to point to a field that maximises the chance that traversing it with out
source patch x will emit an Scp, because copies increase the domain of our structured patch, making
it more likely to merge. Note however, that this is a greedy heuristic. Making a choice now might
affect the amount of reuse further down the tree, so this method is not guaranteed to give us the
best patch possible. If we have such a function, named pointToMaxCopies, we can define translate as
follows:

47

Three

Two

3 4 Scp Leaf

()

Leaf

Copy

Leaf

Modify

Leaf

Copy

Three 3

Copy

Leaf

Copy

Leaf

Modify

Two 4

Copy

+

=

Figure 4.5: Generating an alignment

translate ∶∶ AnnFix Ann ix → AnnFix Ann iy → 𝐴𝑙𝜇 ix iy
translate x@(AnnFix Copy) y@(AnnFix Modify (sop → Tag cy ys))

∣ countCopies y> 0 = Ins cy (pointToMaxCopies CtxIns x ys)
∣ otherwise = stiff x y

translate x@(AnnFix Modify (sop → Tag cx xs)) y
∣ countCopies x> 0 = Del cx (pointToMaxCopies CtxDel y xs)
∣ otherwise = stiff x y

The function

countCopies ∶∶ AnnFix Ann ix → Int

recursively counts the number of Copys that a given tree contains. The pointToMaxCopies function
will point out exactly one recursive position with the most copies. However pointToMaxCopies is
partial. If there are no recursive positions inside ys then there is nothing to point to. But because we
assert that countCopies y > 0, we are sure that when we call pointToMaxCopies there is at least one
recursive position with copies in ys. If there are no copies in y, we generate a stiff patch from x to y.
A stiff patch is a patch that totally fixes the domain of x and then produces y. It’s a patch that has no
reuse or merge-potential whatsoever.

Let us define two helper functions in order to define pointToMaxCopies. First, we have

maximumOn ∶∶Ord k ⇒ (∀x.f x → k) → NP f xs → NS f xs

which gives us the maximum element in a list. The typeNS can be seen as an injection into NP. It
not only tells us the maximum value, but also tells us where it is located inside the list. Given such
a location and a list of fields we can then punch a hole in that list of fields at that location to produce
the context. Note that we can use punchHole to both produce insertion and deletion contexts. The
only difference between the two is whether we continue with translate x y or translate y x.

punchHole ∶∶ NS f ys → PoA Fix ys → Fix Ann ix → InsOrDel almu → Ctx almu ix ys
punchHole (Here) (NA_K ∶∗) = error "we never reach this case."
punchHole (Here) (NA_I y ∶∗ ys) x CtxIns = H (translate x y) ys
punchHole (Here) (NA_I y ∶∗ ys) x CtxDel = H (𝐴𝑙𝜇− (translate y x)) ys
punchHole (There xs) (y ∶∗ ys) x iod = T y (punchHole xs ys x iod)

48

We can then combinemaximumOn and punchHole to define pointToMaxCopies, which punches a hole
at the location with the most copy potential.

pointToMaxCopies ∶∶ PoA (AnnFix Ann) xs → AnnFix Ann ix → InsOrDel almu → Ctx almu ix xs
pointToMaxCopies = punchHole (maximumOn countCopies)

4.5.3 Making translate efficient
Calculating the amount of copies each subtree has over and over again makes the translate function
prohibitively slow. To solve this, we perform a prepreocessing step over our annotated trees, that
augments each recursive position with an extra annotation that tells how many copies there are in
the children of that node.

For this can define a function synthesize, which given an algebra annotates each recursive posi-
tion of the tree with the value of the algebra at that point. If cata is a generalisation of foldr, then
synthesize is a generalisation of scanr. It is also similar to the notion of synthesized attributes in attribute
grammars [11].

synthesize ∶∶ ∀𝜅 𝜑 codes ix
. (∀iy.𝜒 ix → Rep 𝜅 𝜑 (Lkup iy codes) → 𝜑 iy)
→ AnnFix 𝜅 codes 𝜒 ix
→ AnnFix 𝜅 codes 𝜑 ix

synthesize alg =
cata $ 𝜆ann xs → AnnFix (f ann (mapRep (𝜆(AnnFix a) → a) xs)) xs

We then define an algebra that counts the number of copies in a node.

copiesAlgebra ∶∶ K Ann ix → Rep (K Int) xs → K Int ix
copiesAlgebra (K Copy) = (1+) ∘ elimRep 0 coerce sum
copiesAlgebra (K Modify) = elimRep 0 coerce sum

And then use synthesize to get a version of our tree that tells whether it is a Copy or a Modify but also
tells us how many of its children have Copy nodes.

withCopies ∶∶ AnnFix Ann ix → AnnFix (Int × Ann) ix
withCopies = synthesize (copiesAlgebra × const)

Now we can replace our countCopies function which was 𝑂(𝑛) with a version that is 𝑂(1):

countCopies (AnnFix (c ×)) = c

With that, translate is now 𝑂(𝑛) as well.

4.5.4 Using gdiff to annotate trees
To use the gdiff algorithm as an oracle to generate annotations, we first produce an edit script between
the source and target tree. We then traverse the edit script two times. One time, we traverse it
together with the source tree, and the second time we traverse it with the target tree, leaving us with
two annotated trees. Let us look at the case of traversing the source tree first. The base case is trivial.

annSrc′ ∶∶ PoA Fix xs → ES xs ys → PoA (AnnFix (K Ann)) xs
annSrc′ NP0 ES0 = NP0

49

Then, when we encounter a deletion, we annotate the node x as Modify. As a deletion is performed
by modifying the source tree to get a value for the target tree. And if we encounter a copy edit
operation, we annotate x with a Copy. Note that our usage of fromJust is safe here as we assume that
the edit script that we feed to annSrc is the edit script that was generated from diffing xs and ys. Here
insCofAnn is a variation of insCof that allows us to set the annotation in the case the atom is an NA_I.

annSrc′ (x ∶∗ xs) (Del c es) =
let poa = fromJust $matchCof c x
in insCofAnn c (K Modify) (annSrc′ (appendNP poa xs) es)

annSrc′ (x ∶∗ xs) (Cpy c es) =
let poa = fromJust $matchCof c x
in insCofAnn c (K (annSrc′ (appendNP poa xs) es)

Insertions do not change the source tree in any way, and hence when we encounter one, we simply
skip it and continue traversing the tree and the edit script.

annSrc′ (x ∶∗ xs) (Ins c es) = annSrc′ (x ∶∗ xs) es

Dually we define

annDest′ ∶∶ PoA Fix ys → ES xs ys → PoA (AnnFix (K Ann)) ys

which has exactly the same implementation as annSrc′ but skips deletions, and emits Modify when
ecountering insertions. This is because a deletion will not require anything from the target tree at all,
but an insertion does require something from the target tree. Note that the type of annSrc′ operates
on the source stack xs, whilst annDest′ operates on the target stack ys. No special care has to be taken
to support mutual recursion, as the edit scripts already operate on families of mutually recursive
datatypes.

We can then calculate our annotated trees 𝑡′1 and t1y using annSrc′ and annDest′, yielding the
trees in Figure 4.4, and then feed the annotated trees into translate to get our structured patch.

es ∶∶ ES [I Z] [I Z]
es = gdiff 𝑡1 𝑡2
𝑡′1, 𝑡′2 ∶∶ AnnFix CodesTTT (K Ann) Z
𝑡′1 = annSrc′ (𝑡1 ∶∗ NP0) es
𝑡′2 = annDest′ (𝑡2 ∶∗ NP0) es
𝑑12 ∶∶ 𝐴𝑙𝜇 Z Z
𝑑12 = translate (countCopies 𝑡′1) (countCopies 𝑡′2)

Discussion
Note that the entire algorithm still operates in 𝑂(𝑛2) time. Generating the edit script takes 𝑂(𝑛2).
Then using the edit script to annotated the source and target tree takes another 𝑂(𝑛). Then counting
the amount of copies on the source and target tree also takes 𝑂(𝑛). Then translating these annotated
trees to structured patches also takes 𝑂(𝑛). In total, this gives us a complexity of 𝑂(𝑛2) + 3𝑂(𝑛) =
𝑂(𝑛2). We have thus successfully implemented a quadratic algorithm for generating structured
patches. However, there is a caveat. We made the choice to always pursue the path that maximizes
the amount of copies in that path. However, we do not know whether this is the best strategy to
generate the best structured patches. We already mentioned that reasoning about what constitutes

50

a ”good” patch is hard. In Chapter 5 we will perform an empirical evaluation on real-world data,
to see whether the patches we generate are good enough to be mergeable. Miraldo [20] provides
a proof for regular types that this method of generating structured patches produces well-behaved
patches. Formally, that is

apply (diff source dest) source ≡ dest

We did not prove whether our implementation, which operates on mutually recursive types instead,
also has this property. However, we did check whether this property holds using QuickCheck. Also,
we checked this property on all mined data that was used in Chapter 5. This gives us confidence
that our implementation is indeed correct.

4.6 Merges
In the Agda implementation of merges that was presented in Chapter 3, the merge p q function that
incorporates the changes p into the changes of q was total if we had a proof that p and q were disjoint.
However, due to Haskell’s lack of dependent types, we can not carry around the disjointness proof
to make merge a total function. Instead, we adjust the type of merge to return a Maybe 𝐴𝑙𝜇.

𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 ∶∶ 𝐴𝑙𝜇 ix iy → 𝐴𝑙𝜇 ix iy → Maybe (𝐴𝑙𝜇 ix iy)

When two patches are not disjoint, we return Nothing, otherwise, we apply the change p onto the
changes of q, similarly to how we would apply a patch to a tree. Furthermore, we have to account
for the fact that we are now merging mutually recursive types instead of regular types. This means
we have to expand on what we consider to be disjoint patches. We will highlight those places where
this matters in the following subsections.

4.6.1 Merging fixpoints
Merging at the recursive level is the most intricate. First of all, let us handle the easy cases. Namely,
a patch is never disjoint from itself, and hence we can never reconcile an insertion with an insertion,
or a deletion with a deletion.

𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 Ins { } Ins { } = Nothing
𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 Del { } Del { } = Nothing

As we already know, insertions are always allowed, as they do not restrict the domain of the
patch in any way. We want to apply the insertion to a patch, instead of a tree. The insertion would
have caused an extra constructor to appear on the destination tree, so to our new patch we add an
extra constructor c1. However, an SCns is of type 𝐴𝑙𝜇 ix ix. It does not change the type of the patch.
Hence, we can only do this if we assert that ix∼iy. Or in other words, we can only do this merge if
insertion did not cause the destination type of the patch to change.

𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 (Ins 𝑐1 𝑠1) y = do
Refl ← testEquality (getSNat @ix Proxy) (getSNat @iy Proxy)
Spn ∘ SCns 𝑐1 ⟨$⟩ 𝑚𝑒𝑟𝑔𝑒𝐶𝑡𝑥𝐴𝑙𝜇 𝑠1 y

Dually, any patch can be applied to an insertion, by simply wrapping the resulting patch with the
said insertion.

51

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑥

/ 𝑦 =

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑥/𝑦

𝑦 /

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑥

=

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑥/𝑦

Figure 4.6: Merging insertions

𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 x (Ins 𝑐2 𝑠2) = Ins 𝑐2 ⟨$⟩ 𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇𝐶𝑡𝑥 x 𝑠2

The type of 𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇𝐶𝑡𝑥 is as follows.

𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇𝐶𝑡𝑥 ∶∶ 𝐴𝑙𝜇 𝜅 codes ix iy → InsCtx 𝜅 codes ix xs → Maybe (InsCtx 𝜅 codes ix xs)

The 𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇𝐶𝑡𝑥 function takes the patch 𝐴𝑙𝜇 ix iz to which the insertion context points, and then
tries to merge it with the provided patch 𝐴𝑙𝜇 ix iy. Important to note here, is that the insertion
context points to some patch 𝐴𝑙𝜇 ix iz where z is existential. We do not know what type this iz points
to yet. Hence, we have to explicitly check that iy∼iz. Because we can only merge the patch with the
hole if they both have the same source and destination type. Again, this is an additional constraint
that the original implementation of disjointness for regular types did not have. In Figure 4.6, we see
a visual representation of these two cases.

There are two cases where a deletion is disjoint with another patch. First of all, a deletion is
disjoint from a copy. Intuitively, this makes sense. If you delete a part from a patch that matches
anything, what is left is still a patch that matches anything. In Figure 4.7 we see a graphical depiction
of this scenario.

Second of a all, a deletion is disjoint from an SCns if they happen to operate on the same con-
structor. To merge the two, we will have to merge the fields of the deletion context with the fields
of the constructor, and make sure that we can merge the patch to which the context points with the
corresponding patch in the fields of the SCns.

𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 (Del 𝑐1 delCtx) (Spn (SCns 𝑐2 fields)) = do
Refl ← testEquality 𝑐1 𝑐2
mergeCtxAts delCtx fields

𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 (Spn (SCns 𝑐1 𝑎𝑡1)) (Del 𝑐2 𝑠2) = do
Refl ← testEquality 𝑐1 𝑐2
Del 𝑐1 ⟨$⟩ mergeAtsCtx 𝑎𝑡1 𝑠2

52

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑥

/
𝑆𝑐𝑝

=
𝑆𝑐𝑝

𝑆𝑐𝑝
/

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑥

=

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑥

Figure 4.7: 𝑆𝑐𝑝 can be merged with anything, including deletions

The mergeCtxAts function overlays the deletion context over the list of fields, and at the place where
the hole of the context overlaps with a field, checks that field for disjointness with the hole, and
returns the resulting patch of that.

mergeCtxAts ∶∶DelCtx iy xs → NP At xs → Maybe (𝐴𝑙𝜇 𝜅 codes ix iy)

The implementation is as follows. We distinguish two cases. In the case that we have not yet en-
countered the hole, we keep traversing.

mergeCtxAts (T almu′ ctx) (x ∶∗ xs) = mergeCtxAts ctx xs

If we do find the hole, however, we recursively diff the patch at the hole on the left-hand side with
the corresponding patch on the right-hand side. Note that this only works if both patches agree
on their destination type. That is, the both return a type iy. Also, because the source type of the
resulting patch is existentially quantified, we must make sure the source type is indeed ix. This is
again an extra property that our original notion of disjointness on regular types did not have.

mergeCtxAts (H (𝐴𝑙𝜇− almu′) rest) (AtFix almu ∶∗ xs) = do
Refl ← testEquality (almuDest almu) (almuDest almu′)
x ← 𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 almu′ almu
Refl ← testEquality (almuSrc x) (getSNat @ix Proxy)
guard (and $ elimNP identityAt xs)
pure x

Dually, mergeAtsCtx projects out theDelCtx onto the list of fields, merges the 𝐴𝑙𝜇 where they overlap,
and use that 𝐴𝑙𝜇 to construct a new DelCtx. A graphical depiction of these two dual scenarios can
be found in Figure 4.8.

mergeAtsCtx ∶∶ NP At xs → DelCtx iy xs → Maybe (DelCtx iy xs)
mergeAtsCtx (AtFix almu ∶∗ xs) (H (𝐴𝑙𝜇− almu′) rest) = do
Refl ← testEquality (almuDest almu) (almuDest almu′)
almu″ ← 𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 almu almu′

53

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑥

/

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑦

=
𝑥/𝑦

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑥

/

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑦

=

c 𝑎1 ∗ ⋯ 𝑎𝑛

𝑥/𝑦

Figure 4.8: Merging deletions with an 𝑆𝐶𝑛𝑠

guard (and $ elimNP identityAt xs)
pure $H (𝐴𝑙𝜇− almu″) rest

mergeAtsCtx (x ∶∗ xs) (T a ctx) = do
T a ⟨$⟩ mergeAtsCtx xs ctx

In any other case, a deletion is not disjoint and hence can not be merged.

𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 Del { } (Spn SChg { }) = Nothing
𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 (Spn SChg { }) Del { } = Nothing

4.6.2 Merging spines
Spines might be disjoint.

Now, if we have two spines, we follow the coproduct structure, check if they match, and then
compare the product values for disjointness.

𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇 (Spn 𝑠1) (Spn 𝑠2) = Spn ⟨$⟩ mergeSpine (getSNat @ix) (getSNat @iy) 𝑠1 𝑠2

The mergeSpine function takes the source and target families ix and iy its first arguments, because
we need to inspect them whilst reconciling changes in constructors.

mergeSpine ∶∶ SNat ix
→ SNat iy
→ Spine 𝜅 codes (Lkup ix codes) (Lkup iy codes)
→ Spine 𝜅 codes (Lkup ix codes) (Lkup iy codes)
→ Maybe (Spine 𝜅 codes (Lkup ix codes) (Lkup iy codes))

When either side is a Scp, the two spines are trivially disjoint, as an Scp matches anything.

54

mergeSpine Scp s = pure s
mergeSpine s Scp = pure Scp

If the two spines have matching constructors, it means they share a common structure, and we can
continue merging. If both sides have an SCns, then we thus need to make sure they both operate on
the same constructor. And if that is the case, we can simply we can merge their fields pairwise.

mergeSpine (SCns cx xs) (SCns cy ys) = do
Refl ← testEquality cx cy
SCns cx ⟨$⟩ mergeAts xs ys

The mergeAts function traverses the lists in parallel, and calls mergeAt for each pair of atoms.

mergeAts ∶∶ Eq1 𝜅 ⇒ NP (At 𝜅 codes) xs → NP (At 𝜅 codes) xs → Maybe (NP (At 𝜅 codes) xs)

A more interesting case, is when the left-hand side does not change the type of the patch (SCns ∶∶
Spine ix ix) and the right-hand side does (SChg∶∶Spine ix iy). We can turn a Spine ix ix into a Spine ix iy,
if both patches agree on the same source constructor, and we can merge the changes of the fields on
the left-hand side with the alignment on the right-hand side through mergeAtAl.

mergeSpine (SCns cx xs) (SChg cy cz al) = do
Refl ← testEquality cx cy
SChg cy cz ⟨$⟩ mergeAtAl xs al

Dually, if we have an SChg and we want to adapt it with an SCns we can do so if the source construc-
tors match. However, this is only possible if the target type of the SChg matches the type of the SCns.
When merging regular datatypes, this is always the case, but because we are merging families of mu-
tually recursive datatypes, we need to perform an extra check to make sure that the SChg produces
the correct target type. For spines, this is the only difference between the Agda implementation.

mergeSpine ix iy (SChg cx cy al) (SCns cz zs) = do
Refl ← testEquality ix iy
Refl ← testEquality cx cz
SCns cy ⟨$⟩ mergeAlAt al zs

When both patches change the constructor, they are never disjoint.

mergeSpine ix iy SChg { } SChg { } = Nothing

4.6.3 Merging alignments
When one of two patches is a change in constructor, whilst the other one is not, we need to adapt
the alignment of the one to the changes of the other. This means that we have to check whether an
alignment Al xs ys is compatible with an NP At xs, producing an NP At ys, or dually, check whether
a list NP At xs is compatible with an alignment Al xs ys, producing an Al xs ys.

mergeAlAt ∶∶ Al xs ys → NP At xs → Maybe (NP At ys)
mergeAtAl ∶∶ NP At xs → Al xs ys → Maybe (Al xs ys)

When we want to reconcile an insertion with a change of fields, we insert a change in atom At that
matches the atom at trivially. For this we use a helper makeIdAt which produces the identity edit for
at.

55

mergeAlAt (AIns at al) xs = (makeIdAt at ∶∗) ⟨$⟩ mergeAlAt al xs

To reconcile a deletion with our list of changes, the head of our list of changes must be the identity
edit. If it is, we pop it off, shrinking the list by one.

mergeAlAt (ADel at al) (x ∶∗ xs) = guard isIdentityAt x ∗⟩ mergeAlAt al xs

Finally, if the alignment is anAX, we simply zip the two changes 𝑎𝑡1 and 𝑎𝑡2 and see if they are disjoint
pairwise.

mergeAlAt (AX 𝑎𝑡1 al) (𝑎𝑡2 ∶∗ xs) = (∶∗) ⟨$⟩ mergeAt 𝑎𝑡1 𝑎𝑡2 ⟨∗⟩ mergeAlAt al xs

Again, due to the fact that merge is symmetric, we need to implement the opposite case as well.
The implementation of mergeAtAl is analogous to that of mergeAlAt, but instead, we produce an
alignment Al instead of consuming one.

mergeAtAl ∶∶ NP At xs → Al xs ys → Maybe (Al xs ys)
mergeAtAl NP0 A0 = pure A0

An insertion can be trivially merged with the list of Ats, as it leaves the fields untouched. Just like
with insertions at the recursive level.

mergeAtAl xs (AIns at al) = AIns at ⟨$⟩ mergeAtAl xs al

A change x is only disjoint with a deletion, if x happens to be the identity edit. Otherwise, we have
a conflict.

mergeAtAl (x ∶∗ xs) (ADel at al) =
guard identityAt x ∗⟩ ADel at ⟨$⟩ mergeAtAl xs al

And in the case of an AX we zip the two changes together, and see if they elements are disjoint
pairwise.

mergeAtAl (x ∶∗ xs) (AX at al) = AX ⟨$⟩ (mergeAt x at) ⟨∗⟩ mergeAtAl xs al

Merging atoms is straightforward. Two constants are disjoint of each other, if and only if one of the
two is the identity edit. And if we have two recursive positions, we simply recursively call 𝑚𝑒𝑟𝑔𝑒𝐴𝑙𝜇.

mergeAt ∶∶ At 𝜅 codes a → At 𝜅 codes a → Maybe (At 𝜅 codes a)

Discussion
We successfully implemented a simple merging algorithm for structured patches. We had to extend
the specification for merges by Miraldo [20] to support families of mutually recursive datatypes. We
did not prove that this transformation still adheres to the merge properties from Figure 3.2. But
we did use QuickCheck [5] to see whether we could find counter-examples for this property. This
turned out to be an instrumental tool to weed out bugs in our implementation. Furthermore, we
tested for each merge conflict mined for the experiments in Chapter 5, whether the merge commuted
as expected. This gives us confidence our implementation is correct.

56

5
Experiments

5.1 Data collection
We conducted experiments over a large set of real-world patches, to measure the effectiveness of
our approach. We used the same method of collecting data as Garufi [9]. To demonstrate that our
approach is truly generic, we collected real-world data for multiple languages. Clojure was chosen
because Garufi [9] performed experiments on Clojure as well, and allows us to compare results. Lua
was chosen because it is a statement-based language with a much more complex AST than Clojure,
whilst still being small enough to not run into memory issues of the GHC compiler. In the future we
would like to perform a more comprehensive study with more programming languages, but that is
currently blocked on the issues in GHC.

Using the data-mining scripts provided by Garufi [9], we mined twenty popular Clojure and
twenty popular Lua repositories for conflicts. Repositories were ranked by a combination of num-
ber of collaborators and number of stars. A high number of collaborators hopefully increases our
chances of finding merge conflicts, as multiple people are working on the same project at the same
time, and a high number of stars might be an indicator of the quality of the code, and hopefully gives
a selection of repositories from different domains [9].

For each repository, the history was scraped for commits with two ancestors. So called merge
points. Let us denote these two ancestor commits as 𝐴 and 𝐵. We can traversed the commit tree
upwards until the moment that the two branches 𝐴 and 𝐵 diverged, and saved that version of the
repository as 𝑂. We then performed a three-way merge using diff3 for each triple of files inside the
file trees 𝑂 𝐴 and 𝐵. If diff3 would report a conflict for such a triple of files, we saved that conflict
to our dataset.

Note that this approach is not perfect. Some repositories do not use explicit merging as their
workflow, but instead squash multiple edits into one commit, or rebase the history instead of merging.
Though in these workflows people will encounter merge conflicts, the git history is being rewritten
and from an outside observer it is not possible to find out whether conflicts were present at the time.

Of the tens of thousands of commits mined, we only recovered 1263 conflicts for Lua and 1515
commits for Clojure. However, this is in line with expectations. Merge commits are rare compared
to normal commits, and it is even more rare that someone has to manually intervene in such a merge,
as postulated by Mens [19]’s 90/10 rule.

5.2 Diff performance
We performed an evaluation of performance of our diffing algorithm. For each pair 𝑂𝐴 and 𝑂𝐵,
we measured the time it took to evaluate the produced gdiff patch into normal-form. We then
stored this measurement, together with the size of the source and target trees. Note that we did not

57

Language Solved diffs Solved pairs of diffs by Garufi [9]
Lua 1062 / 1263 x
Clj 1297 / 1515 452 / 616

Table 5.1: Amount of conflicts mined per language. Note that Garufi only counted solved pairs of
diffs. That is, the cases where both 𝑂𝐴 and 𝑂𝐵 succeeded.

include the conversion to structured patches in the time measurements. For each diff, a memory
limit of 12GiB was set. If the memory usage exceeds that point, the diff would be marked as failed.
No timeout was set on the diff operation.

In Table 5.1 we show the amount of solved diffs versus the amount of available pairs of 𝑂𝐴 and
𝑂𝐵. We see that we were able to solve around 85 percent of all diffs. The other cases ran out of
memory. Garufi [9] was able to solve around 72 percent of diffs before running out of memory
or running out of a 60 second time limit. This shows that our algorithm indeed seems to perform
slightly better. No further performance data like running times were collected by Garufi [9] so any
other comparison between performance is hard to make.

The maximum observed running time of our diff algorithm is around 25 seconds. At that point,
the memoization table would be bigger than 12 GiB. We thought of adding more RAM to our test rig
such that we could have a timeout of 60 seconds, just like Garufi [9], however due to memory usage
being quadratic, we gave up on that endeavour. Even though, with our average timeout being way
lower than that of Garufi [9], we still solved more diffs, which sounds promising.

The theoretical worst case algorithmic complexity of the dynamic programming algorithm for
diffing ordered trees is 𝑂(𝑛1𝑛2 min (𝑑1, 𝑙1)min (𝑑2, 𝑙2)), where 𝑛1 and 𝑛2 are the amount of nodes
in each tree, 𝑑1 and 𝑑2 are the depth of the tree, and 𝑙1 and 𝑙2 are the number of leaves in the tree
[15]. We expect 𝑛1 and 𝑛2 to be similar in size in the majority of cases, because we speculate that
most edits in source control are updates to existing code, instead of large insertions or deletions of
code. Looking at the histogram in Figure 5.1 indeed shows that in the majority of cases there is only
a small difference.

In Figure 5.2, we plotted the amount of nodes in the tree against the running time of the algo-
rithm. The axes are in log-log form, which is convenient because monomial formulas (of the form
𝑦 = 𝑎𝑥𝑘) show up as straight lines with slope 𝑘 in such plots. We see from the plot, that there is a clear
linear trend in the worst-case performance. The slope of this trend is around 𝑘 = 2, which indicates
that our observed worst-case performance is within our expectations, namely around 𝑂(𝑛2). Next,
we see that our best-case performance also shows a linear trend, with slope 𝑘 = 1. This is also within
our expectations, as in the best case scenario, two trees are basically the same, and omit only copies
in 𝑂(𝑛) time. There are no samples outside of these two trend lines, which is reassuring. It shows
that our algorithm is performing as expected.

5.3 Merges
Next, we measured how many merges we could actually complete. For each triplet (𝐴,𝑂, 𝐵) we again
calculated the 𝑂𝐴 and 𝑂𝐵 patch, and then calculated the merge patch 𝑀 from those. Because now
we have to calculate two patches in parallel, we had to run experiments on a machine with more
RAM available. We removed the memory limit from the test-suite, and instead added a two minute
timeout to each run. In Table 5.2 we see the results of these experiments. For Clojure, we were able
to solve around 15 percent of conflicts that diff3 could not solve automatically. Whilst for Lua we
were able to solve around 13 percent of conflicts automatically.

The last column in the tables, labeled OOM indicates the amount of merges that did not complete

58

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

𝛿 (𝑛1, 𝑛2)

nu
m

be
ro

fd
iff

s

Clojure

0 0.2 0.4 0.6 0.8 1
0

200

400

600

𝛿 (𝑛1, 𝑛2)
nu

m
be

ro
fd

iff
s

Lua

Figure 5.1: Normalized difference between number of nodes in source and target tree, where 𝑛1 and
𝑛2 are the number of nodes in the source and target tree respectively and 𝛿 (𝑛1, 𝑛2) = ∣𝑛1−𝑛2 ∣

𝑛1+𝑛2

101 102 103 104
10−4

10−3

10−2

10−1

100

101

Number of nodes (𝑛1 + 𝑛2)

D
ur

at
io

n
(s

)

Fast Clojure

Duration

101 102 103 104 105

10−4

10−3

10−2

10−1

100

101

Number of nodes (𝑛1 + 𝑛2)

D
ur

at
io

n
(s

)

Fast Lua

Duration

Figure 5.2: Log-log plot of execution time vs node size. A clear quadratic trend is visible

59

within the specified timeout or ran out of memory. We see that a large percentage of merges did not
complete. The algorithm is not only quadratic in time but also in memory, and increasing the timeout
any further causes the algorithm to run out of memory on our machines. Furthermore, even if we
did not run out of memory, we think that increasing the timeout will not give us many more solved
conflicts. Trees that are similar are more likely to produce patches that will merge without conflict
as they will generate patches with many copies nodes. Also, trees that are similar are more likely
to not hit the wort-case complexity of the algorithm. So the longer the diff algorithm runs, the less
likely it is that the produced the 𝑂𝐴 and 𝑂𝐵 patches will actually merge successfully.

Clojure
Repository Total Merged Timeout
aleph 45 10 3
boot 13 0 5
cascalog 68 5 10
clj-http 15 1 3
compojure-api 18 2 3
duckling_old 22 2 3
friend 2 1 0
frontend 33 7 0
incanter 95 5 15
kibit 10 3 1
lein-figwheel 9 3 1
leiningen 45 6 2
liberator 20 2 10
Midje 29 9 0
onyx 197 36 49
overtone 73 20 10
pedestal 37 10 2
quil 10 0 1
riemann 7 1 0
ring 43 6 0

Totals 790 118 187

Lua
Repository Total Merged OOM
Algorithm-Impl 0 0 0
awesome 5 1 0
busted 9 0 0
CorsixTH 25 3 15
garrysmod 1 0 1
hawkthorne-journey 182 40 25
kong 206 24 18
koreader 30 3 16
luakit 43 6 16
luarocks 46 12 1
luci 0 0 0
luvit 4 0 0
minetest_game 0 0 0
nn 4 0 1
Penlight 6 3 0
rnn 8 2 2
snabb 134 19 47
tarantool 114 8 58
telegram-bot 5 1 0
vlsub 0 0 0

Totals 823 105 297

Table 5.2: Amount of solved conflicts per language

60

6
Conclusion and Future work

6.1 Conclusion
We have created a type-safe structured diffing and merging tool in Haskell. We have shown that
structured patches can be extended to work on families of mutually recursive datatypes, allowing
us to diff and merge a wide variety of programming languages. Also, we have shown that we can
use gdiff to drive an algorithm that generates structured patches in 𝑂(𝑛2) time.

We have shown that using this algorithm, we can generate patches of good enough quality that
they allow us to automatically resolve many conflicts found in real world Lua and Clojure reposi-
tories, even with a rather simply merge strategy. This sets a baseline for the amount of merges a
structured merge tool should be able to solve.

However, some issues remain. First, though in theory our tool should work for any programming
language for which we have a parser in Haskell, in practice we can only use our tool for languages
with relatively small ASTs. This is due to the bug in GHC (Section 4.2.1) which we hope will be fixed
in the future. Secondly, the tool does not solve conflicts of files in real-time. In order for a structured
merge tool to be adopted by developers, merges should take milliseconds instead of seconds, which
is currently not the case. We think there is some interesting future work to explore, that might solve
remaining issues that we currently face.

6.2 Future work

Diff between unordered collections

The gdiff algorithm only works on ordered trees. However, for many parts of files, ordering of
elements might be irrelevant. Think for example of the build-depends fields in a Cabal file. Algo-
rithms exist that generalise the greatest common subsequence problem. The assignment problem is
a classical linear programming problem that can find an optimal matching between unordered col-
lections. However runtime complexity is even worse than that of the gdiff algorithm, which might
turn out problematic. It is also not clear to us how one would express a linear programming prob-
lem elegantly in Haskell, whilst maintaining the same well-formedness guarantees throughout the
implementation of the algorithm like in the gdiff implementation.

Better merging algorithm

Using disjointness as a means of merging sets a baseline benchmark, but there are many obvious
cases that we currently miss. For example, two trees that are permutations of each other should be
trivially mergeable if we have a diff structure that can describe swaps of arguments, but are currently

61

always considered conflicts in our algorithm. The notion of merges of patches should be studied
more formally, so that more conflicts can be solved without the need of domain specific knowledge.

Fast Patches through Merkle trees

Miraldo and Swierstra [24] have designed a new diffing algorithm built on top of Merkle trees. Using
the synthesize functionality from generics-mrsop, we can annotate each node in an AST with a hash
of itself and its children. Using this hash, we can very efficiently identify common subtrees between
two trees. Using this idea, Miraldo and Swierstra [24] come up with a structured diff that can be cal-
culated in 𝑂(𝑛) space and time. The algorithm uses a new patch datatype. This patch datatype does
not consist of deletions and insertions throughout the tree, but instead projects out all the places that
are not deleted at once, and then assigns these to places in the destination tree. Each projected sub-
tree is assigned a metavariable, where subtrees with the same hash get the same variable assigned.
This allows us to describe more rich operations, like contractions and swaps of subtrees. Using this
richer patch datatype, more conflicts can potentially be solved automatically. Initial experiments
have been run on the same dataset as ours and the results are promising. Patches can be constructed
in under 200 milliseconds and the authors are able to solve about the same amount of conflicts as
we currently can.

62

Bibliography
[1] Sven Apel et al. “Semistructured Merge: Rethinking Merge in Revision Control Systems”. In:

Sept. 2011. doi: 10.1145/2025113.2025141.
[2] Richard S. Bird and Lambert G. L. T. Meertens. “Nested Datatypes”. In: Proceedings of the Math-

ematics of Program Construction. MPC ’98. London, UK, UK: Springer-Verlag, 1998, pp. 52–67.
isbn: 3-540-64591-8. url: http://dl.acm.org/citation.cfm?id=648084.747162.

[3] Joachim Breitner et al. “Safe Zero-cost Coercions for Haskell”. In: Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming. ICFP ’14. Gothenburg, Sweden:
ACM, 2014, pp. 189–202. isbn: 978-1-4503-2873-9. doi: 10.1145/2628136.2628141. url: http:
//doi.acm.org/10.1145/2628136.2628141.

[4] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. “Associated Type Syn-
onyms”. In: Proceedings of the Tenth ACM SIGPLAN International Conference on Functional Program-
ming. ICFP ’05. Tallinn, Estonia: ACM, 2005, pp. 241–253. isbn: 1-59593-064-7. doi: 10.1145/
1086365.1086397. url: http://doi.acm.org/10.1145/1086365.1086397.

[5] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN International Conference on Func-
tional Programming. ICFP ’00. New York, NY, USA: ACM, 2000, pp. 268–279. isbn: 1-58113-202-6.
doi: 10.1145/351240.351266. url: http://doi.acm.org/10.1145/351240.351266.

[6] Richard A. Eisenberg. “Dependent Types in Haskell: Theory and Practice”. In: CoRR abs/1610.07978
(2016). arXiv: 1610.07978. url: http://arxiv.org/abs/1610.07978.

[7] Richard A. Eisenberg. “Dependent Types in Haskell: Theory and Practice”. In: CoRR abs/1610.07978
(2016). arXiv: 1610.07978. url: http://arxiv.org/abs/1610.07978.

[8] Richard A. Eisenberg and Stephanie Weirich. “Dependently Typed Programming with Single-
tons”. In: Proceedings of the 2012 Haskell Symposium. Haskell ’12. Copenhagen, Denmark: ACM,
2012, pp. 117–130. isbn: 978-1-4503-1574-6. doi: 10.1145/2364506.2364522. url: http://
doi.acm.org/10.1145/2364506.2364522.

[9] Giovanni Garufi. “Version Control Systems - Diffing with Structure”. 2018.
[10] Gérard Huet. “Residual theory in 𝜆-calculus: a formal development”. In: Journal of Functional

Programming 4.3 (1994), pp. 371–394. doi: 10.1017/S0956796800001106.
[11] Donald E. Knuth. “The Genesis of Attribute Grammars”. In: Proceedings of the International Con-

ference WAGA on Attribute Grammars and Their Applications. London, UK, UK: Springer-Verlag,
1990, pp. 1–12. isbn: 3-540-53101-7. url: http://dl.acm.org/citation.cfm?id=645938.
671208.

[12] Ralf Lämmel and Simon Peyton Jones. “Scrap Your Boilerplate: A Practical Design Pattern
for Generic Programming”. In: Proceedings of the 2003 ACM SIGPLAN International Workshop on
Types in Languages Design and Implementation. TLDI ’03. New Orleans, Louisiana, USA: ACM,
2003, pp. 26–37. isbn: 1-58113-649-8. doi: 10.1145/604174.604179. url: http://doi.acm.
org/10.1145/604174.604179.

[13] Eelco Lempsink, Sean Leather, and Andres Löh. “Type-safe Diff for Families of Datatypes”. In:
Proceedings of the 2009 ACM SIGPLAN Workshop on Generic Programming. WGP ’09. Edinburgh,
Scotland: ACM, 2009, pp. 61–72. isbn: 978-1-60558-510-9. doi: 10.1145/1596614.1596624.
url: http://doi.acm.org/10.1145/1596614.1596624.

[14] Olaf Leßenich, Sven Apel, and Christian Lengauer. “Balancing precision and performance in
structured merge”. In: Automated Software Engineering 22.3 (Sept. 2015), pp. 367–397. doi: 10.
1007/s10515-014-0151-5. url: https://doi.org/10.1007/s10515-014-0151-5.

63

[15] Antoni Lozano and Gabriel Valiente. “On the maximum common embedded subtree problem
for ordered trees”. In: In C. Iliopoulos and T Lecroq, editors, String Algorithmics, chapter 7. King’s
College London Publications. 2004.

[16] José Pedro Magalhães et al. “A Generic Deriving Mechanism for Haskell”. In: Proceedings of the
Third ACM Haskell Symposium on Haskell. Haskell ’10. Baltimore, Maryland, USA: ACM, 2010,
pp. 37–48. isbn: 978-1-4503-0252-4. doi: 10.1145/1863523.1863529. url: http://doi.acm.
org/10.1145/1863523.1863529.

[17] COnor McBride and James McKinna. “The view from the left”. In: Journal of Functional Pro-
gramming 14.1 (2004), pp. 69–111. doi: 10.1017/S0956796803004829.

[18] Erik Meijer, Maarten Fokkinga, and Ross Paterson. “Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire”. In: Proceedings of the 5th ACM Conference on Functional
Programming Languages and Computer Architecture. Cambridge, Massachusetts, USA: Springer-
Verlag New York, Inc., 1991, pp. 124–144. isbn: 0-387-54396-1. url: http://dl.acm.org/
citation.cfm?id=127960.128035.

[19] T. Mens. “A State-of-the-Art Survey on Software Merging”. In: IEEE Trans. Softw. Eng. 28.5 (May
2002), pp. 449–462. issn: 0098-5589. doi: 10.1109/TSE.2002.1000449. url: https://doi.
org/10.1109/TSE.2002.1000449.

[20] Victor Cacciari Miraldo. 2018. url: http://github.com/VictorCMiraldo/stdiff.
[21] Victor Cacciari Miraldo, Pierre-Évariste Dagand, and Wouter Swierstra. “Type-directed Diff-

ing of Structured Data”. In: Proceedings of the 2Nd ACM SIGPLAN International Workshop on Type-
Driven Development. TyDe 2017. Oxford, UK: ACM, 2017, pp. 2–15. isbn: 978-1-4503-5183-6. doi:
10.1145/3122975.3122976. url: http://doi.acm.org/10.1145/3122975.3122976.

[22] Victor Cacciari Miraldo and Alejandro Serrano. “Sums of Products for Mutually Recursive
Datatypes”. Utrecht, The Netherlands, 2018.

[23] Victor Cacciari Miraldo and Alejandro Serrano. “Sums of Products for Mutually Recursive
Datatypes: The Appropriationist’s View on Generic Programming”. In: Proceedings of the 3rd
ACM SIGPLAN International Workshop on Type-Driven Development. TyDe 2018. St. Louis, MO,
USA: ACM, 2018, pp. 65–77. isbn: 978-1-4503-5825-5. doi: 10.1145/3240719.3241786. url:
http://doi.acm.org/10.1145/3240719.3241786.

[24] Victor Cacciari Miraldo and Wouter Swierstra. “An Efficient Algorithm for Type-Directed
Structural Diffing”. 2019.

[25] Victor Cacciari Miraldo and Wouter Swierstra. Structure-aware version control A generic approach
using Agda. Tech. rep. UU-CS-2017-002. Utrecht University, 2016.

[26] Thomas van Noort et al. “A Lightweight Approach to Datatype-generic Rewriting”. In: Pro-
ceedings of the ACM SIGPLAN Workshop on Generic Programming. WGP ’08. Victoria, BC, Canada:
ACM, 2008, pp. 13–24. isbn: 978-1-60558-060-9. doi: 10.1145/1411318.1411321. url: http:
//doi.acm.org/10.1145/1411318.1411321.

[27] Arian van Putten. 2019. url: https://github.com/arianvp/generics-mrsop-diff.
[28] Alejandro Serrano and Victor Cacciari Miraldo. “Generic Programming of All Kinds”. In: Pro-

ceedings of the 11th ACM SIGPLAN International Symposium on Haskell. Haskell 2018. St. Louis,
MO, USA: ACM, 2018, pp. 41–54. isbn: 978-1-4503-5835-4. doi: 10.1145/3242744.3242745.
url: http://doi.acm.org/10.1145/3242744.3242745.

[29] Tim Sheard and Simon Peyton Jones. “Template Meta-programming for Haskell”. In: SIGPLAN
Not. 37.12 (Dec. 2002), pp. 60–75. issn: 0362-1340. doi: 10.1145/636517.636528. url: http:
//doi.acm.org/10.1145/636517.636528.

64

[30] S. Doaitse Swierstra, Pablo R. Azero Alcocer, and João Saraiva. “Designing and Implementing
Combinator Languages”. In: Advanced Functional Programming. Ed. by S. Doaitse Swierstra, José
N. Oliveira, and Pedro R. Henriques. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 150–206. isbn: 978-3-540-48506-3.

[31] Marco Vassena. “Generic Diff3 for Algebraic Datatypes”. In: Proceedings of the 1st International
Workshop on Type-Driven Development. TyDe 2016. Nara, Japan: ACM, 2016, pp. 62–71. isbn: 978-
1-4503-4435-7. doi: 10.1145/2976022.2976026. url: http://doi.acm.org/10.1145/
2976022.2976026.

[32] Edsko de Vries and Andres Löh. “True Sums of Products”. In: Proceedings of the 10th ACM SIG-
PLAN Workshop on Generic Programming. WGP ’14. Gothenburg, Sweden: ACM, 2014, pp. 83–94.
isbn: 978-1-4503-3042-8. doi: 10.1145/2633628.2633634. url: http://doi.acm.org/10.
1145/2633628.2633634.

[33] Alexey Rodriguez Yakushev et al. “Generic Programming with Fixed Points for Mutually Re-
cursive Datatypes”. In: Proceedings of the 14th ACM SIGPLAN International Conference on Func-
tional Programming. ICFP ’09. Edinburgh, Scotland: ACM, 2009, pp. 233–244. isbn: 978-1-60558-
332-7. doi: 10.1145/1596550.1596585. url: http://doi.acm.org/10.1145/1596550.
1596585.

[34] Brent A. Yorgey et al. “Giving Haskell a Promotion”. In: Proceedings of the 8th ACM SIGPLAN
Workshop on Types in Language Design and Implementation. TLDI ’12. Philadelphia, Pennsylvania,
USA: ACM, 2012, pp. 53–66. isbn: 978-1-4503-1120-5. doi: 10.1145/2103786.2103795. url:
http://doi.acm.org/10.1145/2103786.2103795.

65

