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Abstract

In this paper, we study the Maximum Remove-r Distance-d Inde-
pendence Set (MRrDdIS for short) problem. The goal of this problem
is to maximize the size of a distance d-independent set by removing
at most a specified number r of vertices from a given graph. This
problem generalizes the Maximum Distance-d Independent Set prob-
lem, where we look for a maximum size set of vertices for which the
minimum distance between every pair of vertices from the set is at
least d. The latter problem in turn generalizes the well known Max-
imum Independent Set problem. From this problem we derived two
more problems, which both revolve around finding sets of nodes that
we want to remove. One of them, called the d-Minimum Removal Set
(d-MRS for short) problem, is about finding a minimum set of nodes
to remove such that a given Independent Set becomes a Distance-d
Independent Set on a given graph. The other one, called the (r, d)-
Optimal Removal Set ((r, d)-ORS for short) problem, is about finding
a set of at most r nodes that when removed from a graph maximizes
its Maximum Distance-d Independent Set. In this paper, we prove
that the decision variants of the MRrDdIS problem and the d-MRS
problem are NP-complete. We present an algorithm for the MRrDdIS
problem that in the worst case runs in O(r2n3) time on trees. For the
d-MRS problem we not only present a linear time algorithm, but also
prove that a linear time algorithm can be generated for graphs with
bounded treewidth.
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1 Introduction

The Independent Set (IS) problem is a very well studied problem and one of
the first to be proven NP-complete. The Distance-d Independent Set (DdIS)
problem is a generalization of the Independent Set problem. A set is called
a DdIS if each pair of elements is at least distance d apart. If d = 2, then
it becomes the IS problem. Unlike the IS problem, the DdIS problem is not
as well know. Most of the research done on the DdIS problem is done in the
last two decades. Hence, the number of papers on this topic is not very large.

The problem that is considered in this thesis is the Remove-r Distance-d
Independent Set (RrDdIS) problem. The maximization variant is called the
Maximum Remove-r Distance-d Independent Set (MRrDdIS) problem. The
RrDdIS problem is a generalization of the DdIS problem, in which we allow
the removal of r nodes. By removing nodes from the graph, we try to get
a new graph for which we can find an even larger DdIS. If r = 0 then it
becomes the DdIS problem again, but if r = n (n being the amount of nodes
in the graph) then it becomes the IS problem. The latter is due to the fact
that for any IS we can remove its neighbourhood to completely isolate every
node in the set.

Finding the right set of nodes to remove can be seen as a whole new problem
on its own. The (r, d)-Removal Set ((r, d)-RS) problem is about checking if
a given set is an RrDdIS by finding the right set of nodes to remove, also
known as the (r, d)-RS. The minimization variant of this problem is the d-
Minimum Removal Set (d-MRS) problem. For this problem we want to find
the smallest set of nodes to remove from a graph to turn some given set into a
DdIS. The (r, d)-Optimal Removal Set ((r, d)-ORS) problem is about finding
a set of at most r nodes, that when removed creates the graph with the
largest Maximum Distance-d Independent Set (MDdIS). In other words, we
want to find the (r, d)-RS of some MRrDdIS. To the best of our knowledge,
neither the RrDdIS problem nor any of these removal set problems have been
studied before.

1.1 Previous work

While there seems to be no previous work done on the MRrDdIS problem,
there are several papers written about the MDdIS problem, most of which
very recent. The MDdIS problem was first introduced introduced by Eto
et al. [9]. They proved that the decision variant was NP-complete even for
planar bipartite graphs. Before they introduced the problem, Bhattacharya
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and Houle [4] already solved the MDdIS problem for trees. Since their main
focus was solving something called the dispersion problem, we do not con-
sider their work as an introduction to this problem. The dispersion problem
is about finding a set of size at least some given k ≥ 0 such that the distance
of the closest vertex pair in the set is maximized. Work on this problem has
also been done by [8, 16, 18].

Agnarsson et al. [1] observed that solving the MDdIS problem on a graph
G = (V,E) is equivalent to solving the MIS problem on the power graph
Gd−1 = (V,Ed−1) such that Ed−1 contains an edge between every vertex pair
that has a shortest path of distance at most d−1. They proved that it is pos-
sible to efficiently compute the power graph of certain geometric intersection
graphs in such a way that the power graph still belongs to the same class of
geometric intersection graph. Since polynomial time algorithms solving the
MIS problem already existed for these kind of graphs, it follows that a poly-
nomial time algorithm for the MDdIS problem is possible for these graphs as
well.

Unfortunately there are many graph classes for which powers of instances of
the class not necessarily belong to the class. For example the power graph
of a bipartite graph with a connected component with at least two edges is
never bipartite. Even worse, as proven by Eto et al. [9] for d ≥ 3, the DdIS
problem is NP-complete, even though the MIS problem was shown to be
polynomially solvable on bipartite graphs by Harary [12]. NP-completeness
was even proven for planar bipartite graphs with a maximum degree of 3.
Chordal graphs on the other hand remain chordal graphs for odd powers.
Since the MIS problem is polynomial solvable on chordal graphs, we can
polynomial solve the MDdIS problem for any fixed even integer d ≥ 2. It
was also proven that for all fixed odd integers d ≥ 3 the problem would be
NP-complete.

The power graph of a tree is not a tree. Fortunately, as shown by Bhat-
tacharya and Houle [4], the MDdIS problem can still be solved for trees in
subquadratic time. It was also shown by Turau and Köhler [19] that for any
odd integer d ≥ 3 we can also solve the MDdIS problem in polynomial time
using a distributed algorithm.

For several graph parameters, there exist polynomial time algorithms for
several problems on graph classes where the parameter is bounded by some
constant, see e.g. [13, 15, 17]. Also, work has been done by Bacso et al. [2, 3]
on subexponential algorithms for H-free graphs. Approximation schemes for
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certain graph classes were found by [10, 11, 14] or proven that certain ap-
proximation schemes were not possible unless P = NP.

1.2 Outline

In Section 2 we will give definitions for the different generalizations of the
Independent Set problem and the related Removal Set problems. After that
we look in Section 3 at the complexity of some of those problems for general
graphs. In Section 4 we prove using Courcelle’s theorem that the d-MRS
problem can be solved in linear time on graphs with bounded treewidth. In
Section 5 we give an algorithm that solves the d-MRS problem on trees (which
have bounded treewidth) in linear time, but also guarantee the algorithm to
run logarithmically in constant d. In Section 6 an algorithm is described
that solves the MRrDdIS problem for trees in polynomial time. Section 7
will summarize the found results, but also list directions for future research.

2 Definitions and preliminaries

Let G = (V,E) be a graph for which V is the set of vertices and E the set
of edges. We will assume throughout the paper that |V | = n and |E| = m.
We also denote the set of vertices of any graph G with V (G).

Let distG(u, v) denote the shortest path distance between vertices u and v
(the minimum number of edges of a uv-path) in G.
Let S ⊆ V , then distG(S, v) = distG(v, S) = minu∈S(distG(u, v)).
Let also S ′ ⊆ V , then distG(S, S ′) = minu∈S,v∈S′(distG(u, v)).
The diameter of G, denoted with diam(G), is the longest shortest path dis-
tance in G. More formally: diam(G) = maxu,v∈V (G)(distG(u, v)).

Let S ⊆ V , then G[S] = (S,E ∩ (S×S)) is the subgraph of G induced by S.
A component C is a connected subgraph of some graph G.

N(v) = {v′ ∈ V (G) | distG(v, v′) = 1} is the open neighbourhood of a vertex
v ∈ V (G).
N [v] = {v} ∪N(v) is the closed neighbourhood of a vertex v ∈ V (G).
N(S) = {v′ ∈ V (G) \ S | ∃v ∈ S : distG(v, v′) = 1} is the open neighbour-
hood of a subset S ⊆ V (G).
N [S] = S ∪N(S) is the closed neighbourhood of a subset S ⊆ V (G).
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2.1 Graph classes

A tree T = (V,E) is an undirected graph that is both connected and acyclic.
A rooted tree T = (V,E) is a tree with a single root node/vertex denoted
with root(T ) ∈ V . In most cases, when working with rooted trees, we drop
the word ”rooted” for brevity. A node/vertex v ∈ V of a rooted tree is an
ancestor of some node/vertex u ∈ V , if distT (u, root(T )) = distT (u, v) +
distT (v, root(T )). If v is an ancestor of u, then u is a descendant of v. This
means that a node v is both its own ancestor and descendant. If u and v are
also adjacent, then v is the parent of u and u is a child of v. Each node/vertex
v in the tree has a set of children denoted with CT (v) = {v1, v2, v3, ..., vk}
such that k is the amount of children of v. We will often use the nota-
tion C(v) instead, because it will be clear from the context which tree T
is meant. If |C(v)| = 0, then v is a leaf. If |C(v)| = 1, then v is a link-
point. If |C(v)| ≥ 2, then v is a branchpoint. A subtree of T = (V,E)
can be denoted as treeT (v) = (V ′, E ′) such that V ′ contains all descen-
dants of v in T , E ′ = E ∩ (V ′ × V ′), and v = root(T ′). The height
of a tree is zero if it only consists of a single node, else the height is:
height(T ) = 1 + max(height(T ′)|T ′ = treeT (v′) ∀v′ ∈ C(v)).

A graph G = (V,E) is p-partite if V =
p⋃

i=1

Vi and E ⊆ {Vi × Vj|∀1 ≤ i < j ≤

p} such that ∀1 ≤ i ≤ p we have that Vi 6= ∅.
If p = 2, then the graph is called bipartite and can also be denoted as
B = (V1, V2, E).
If p = 3, then the graph is called tripartite and can also be denoted as
G = (V1, V2, V3, E).

2.2 Problem definitions

Let G = (V,E) be a given graph, then:

• A set S ⊆ V is a DdIS (Distance-d Independent Set) of G, if for any
pair u, v ∈ S the distance distG(u, v) ≥ d.

• A set M ⊆ V is a MDdIS (Maximum Distance-d Independent Set) of
G, if M is a DdIS of G and for any DdIS S of G we have that |M | ≥ |S|.

• A set S ⊆ V is a IS (Independent Set) of G, if S is a D2IS.

• A set M ⊆ V is a MIS (Maximum Independent Set) G, if M is a
MD2IS.
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• A set S ⊆ V is a RrDdIS (Remove-r Distance-d Independent Set) of
G, if there exists a set R ⊆ V \ S such that |R| ≤ r and S is a DdIS of
G[V \R].

• A set M ⊆ V is a MRrDdIS (Maximum Remove-r Distance-d Inde-
pendent Set) of G, if M is a RrDdIS of G and for any RrDdIS S of G
we have that |M | ≥ |S|.

• A set R ⊆ V is an (r, d)-RS ((r, d)-Removal Set) of a subset S ⊆ V , if
R ∩ S = ∅, |R| ≤ r, and S is a DdIS of G[V \R].

• A set M ⊆ V is a d-MRS (d-Minimum Removal Set) of a subset S ⊆ V ,
if M is a (|M |, d)-RS of S and for any r < |M | there exists no (r, d)-RS
for S.

• A set R ⊆ V is an (r, d)-ORS ((r, d)-Optimal Removal Set) of G, if it
is an (r, d)-RS of some MRrDdIS of G.

Let T = (V,E) be a given tree, then:

• A set R ⊆ V is a d-SMRS (Special Minimum Removal Set) of a subset
S ⊆ V , if R is a d-MRS of S and if a d-MRS M exists for S such that
if root(T ) ∈M , then root(T ) ∈ R, else we have for any d-MRS M that
dT [V \R](root(T ), S) ≥ dT [V \M ](root(T ), S).

• A set S ⊆ V is a (v, i, j, d)-Cell of T , if S is an RjDdIS of treeT (v) and
there is a (j, d)-RS R of S such that either v ∈ R or ∀s ∈ S we have
that dT [V \R](v, s) ≥ i.

• A set M ⊆ V is a (v, i, j, d)-MaxCell of T , if M is a (v, i, j, d)-Cell of
T and for any (v, i, j, d)-Cell S of T we have that |M | ≥ |S|.

• A set Ai = {Ai 0, Ai 1, ..., Ai r} is a (v, i, r, d)-Row of T , if ∀ 0 ≤ j ≤ r
Ai j is a (v, i, j, d)-Cell of T .

• A set Mi = {Mi 0,Mi 1, ...,Mi r} is a (v, i, r, d)-MaxRow of T , if ∀ 0 ≤
j ≤ r Mi j is a (v, i, j, d)-MaxCell of T .

• A set A = {A0, A1, ..., Ad−1} is a (v, r, d)-Array of T , if ∀ 0 ≤ i ≤ d− 1
Ai is a (v, i, r, d)-Row of T .

• A set M = {M0,M1, ...,Md−1} is a (v, r, d)-MaxArray of T , if ∀ 0 ≤
i ≤ d− 1 Mi is a (v, i, r, d)-MaxRow of T .
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• A set A = {A1, A2, ..., Ak} is a (v, p, r, d)-MaxRowSet of T , if 1 ≤
k ≤ |C(v)|, ∀ 1 ≤ i ≤ k we have that Ai is a (vi, pi, r, d)-MaxRow
of T , vi ∈ C(v), pi + 1 ≥ p, and that ∀i 6= j ∈ [1, k] we have that
pi + pj + 2 ≥ d.

• A set M = {M0,M1, ...,Mr} is a SemiMaxRow of A, if A is a (v, i, r, d)-
MaxRowSet of T and ∀0 ≤ j ≤ r we have that |Mj| ≥ |S| for every

S =
|A|⋃
k=1

Ak qk such that 0 ≤
|A|∑
k=1

qk ≤ j.

The problems below are just further generalizations of the DdIS problems
as defined in [9]. It is probably worth noting that r is one of the input
variables, meaning that r is not a constant. If r were a constant parameter
like d, then it might be possible to solve the RrDdIS problem by just trying
to remove O(cr) possible combinations of r vertices with constant c > 1 and
then solving the DdIS or MDdIS problem on the remaining graph. This might
be interesting to look into as well, but it would also mean that researching
the RrDdIS problem would be redundant, considering that we can simply
research the DdIS problem instead. Of course this is based on the conjecture
that we only need to look for O(cr) different sets to remove.

RrDdIS problem
Input: A graph G = (V,E) and positive integers k and r.

Question: Does G contain a RrDdIS of size k or larger?

MRrDdIS problem
Input: A graph G = (V,E) and a positive integer r.

Output: A MRrDdIS of G.

The problems below are somewhat different from the ones above. These
problems are derived from the observation that one could divide the RrDdIS
problems into a part where we find a set of vertices that we want to remove
from the graph and a part were we solve the DdIS problem on the new graph.
Even though they are derived from the above problems, they are not quite
the same. The (r, d)-RS problem is a decision problem. It decides whether a
given set S is a RrDdIS, by checking if an (r, d)-RS exists for S. The d-MRS
problem is a minimization version of this problem. Here we look for the
smallest (r, d)-RS for S, which is called a d-MRS. The (r, d)-ORS problem
is an optimization problem. It does not take a set S as input like the other
two problems. The goal of the algorithm is to find an (r, d)-RS for some
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MRrDdIS, which is called an (r, d)-ORS. Note that this problem does not
try to optimize the size of the output set.

(r, d)-RS problem
Input: A graph G = (V,E), a subset S ⊆ V ,

and a positive integer r.

Question: Does G contain an (r, d)-RS for S.

d-MRS problem
Input: A graph G = (V,E) and an Independent Set S ⊆ V .

Output: A d-MRS of S.

(r, d)-ORS problem
Input: A graph G = (V,E) and a positive integer r.

Output: An (r, d)-ORS of G.

3 Complexity of the Problem

The IS problem and its generalization the DdIS problem are known to be
NP-complete for general graphs. The RrDdIS problem is clearly an NP-
complete problem as well since it is a generalization of the DdIS problem,
but in Theorem 1 we will see that it is also true when r 6= 0.

Theorem 1. The RrDdIS problem is NP-complete for any d ≥ 2 and r ≥ 0
for general graphs.

Proof. If d = 2, then the RrDdIS problem becomes the RrD2IS problem. It
is clear that a RrD2IS is an IS and vice versa, which means that the RrD2IS
problem is the same as the IS problem, which is a known NP-complete prob-
lem.
We can prove NP-completeness for d ≥ 3 by a reduction from the DdIS prob-
lem. An instance of the DdIS problem will have as input a graph G = (V,E)
and a positive integer k. We transform the graph instance into G′ = (V ′, E ′)
such that V ′ = V ∪ C, E ′ = E ∪ (V ′ × C), and C is a set of vertices such
that C ∩ V = ∅ and |C| = r.
We claim that any RrDdIS of size greater or equal to 2 of G′ is a DdIS of
G and vice versa and prove it as follows. Let G′′ = G′[V \ R] such that
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R is some subset of V and |R| ≤ r. If R 6= C, then diam(G′′) ≤ 2. This
would mean that any DdIS of G′′ would have a maximum size of 1. So if a
RrDdIS of G′ has size greater or equal to 2, then it can only be a DdIS of G′′

if R = C. We will therefore assume from now on that R = C, which means
that G′′ = G. By definition we know that any DdIS of G′′ = G must also
be a RrDdIS of G′. We also know that any RrDdIS of G′ of size greater or
equal to 2 must be a DdIS of G′′ = G. So we have proven our claim.
Since any RrDdIS of size greater or equal to 2 of G′ is also a DdIS of G
and vice versa, we know that for k ≥ 2 that (G′, k) is a YES-instance of the
RrDdIS problem if and only if (G, k) is a YES-instance of the DdIS problem.

According to Theorem 2 the (r, d)-RS problem is NP-complete too when
d ≥ 4 and the Independent Set S has size greater than 2. The proof relies on
the the Vertex Cover problem being NP-complete on tripartite graphs, which
we proved in Lemma 3. When d = 2 it is trivial to solve, because the empty
set will always be the 2-MRS. When d = 3 the problem is trivial as well,
because we only have to list all nodes that neighbour at least two elements
of S. If the resulting set is larger than r, then we know that no (r, 3)-RS
exists for S. According to Lemma 2, we can solve the 4-MRS problem in
polynomial time if |S| = 2. This relies on the well known fact that the Ver-
tex Cover problem is polynomial solvable for bipartite graphs. The (r, d)-RS
problem is probably NP-complete for d > 4 and |S| = 2, but a proof has not
been found yet.

Lemma 1. C is a Vertex Cover of p-partite graph G = (V,E) ⇐⇒ M

is a (|C|, d) − RS of S for graph G′ =

(
S ∪ V,E ∪

(
p⋃

i=1

{si} × Vi

))
with

S ∩ V = ∅, d ≥ 4, and such that ∀1 ≤ i < j ≤ p we have that si 6= sj ∈ S.

Proof. If C is a Vertex Cover of G, then that means that by definition
∀(u,w) ∈ E that u ∈ C ∨ w ∈ C. This means that G′[S ∪ V \ C] =(
S ∪ V \ C,

p⋃
i=1

{si} × Vi

)
. This means that after removing C from G′ that

no paths are left from any element of S to any other element of S. This
makes C a (|C|, d)-RS of S for G′.
Suppose C is not a Vertex Cover of G, then there must be an edge (u,w) ∈ E
such that u /∈ C ∧ w /∈ C. Let i and j be such that u ∈ Vi and w ∈ Vj. We
know that i 6= j, because E ∩Vi×Vi = ∅. This means that < si, u, w, sj > is
a path of length 3. Since C does not contain any of those nodes, removing C
from G′ will mean that a path of length 3 between two elements of S remains.
This means that C is not a (|C|, d)-MRS of S for G′.
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Lemma 2. For a given graph G = (V,E) and Independent Set S ⊆ V such
that |S| = 2, we can find the 4-MRS of S in polynomial time.

Proof. Let S = {s1, s2} and R = N(s1) ∩ N(s2). All elements of R have to
be elements of the 4-MRS. Let B = (V1, V2, F ) be a bipartite graph such that
V1 = NG(s1) \ R, V2 = NG(s2) \ R, and F = E ∩ (V1 × V2). G[V \ R] is a
graph for which all paths between s1 and s2 are of length at least 3. Since
we are only interested in the removal of nodes of paths with length at most
3, we can ignore all edges and nodes that are not on those paths. Graph
G′ = (S ∪V1 ∪V2, F ∪ ({s1}×V1)∪ ({s2}×V2)) only contains the nodes and
edges that are part of some path between s1 and s2 of length 3. This means
that a set M is a 4-MRS of G′ if and only if M is a 4-MRS of G[V \R]. We
know from Lemma 1 that a bipartite graph B can constructed for G′ such
that any MVC on the bipartite graph is also a 4-MRS.

Lemma 3. The Vertex Cover problem for tripartite graphs is NP-complete.

Proof. We will prove this through a reduction from the Vertex Cover problem
for general graphs. Let graph G = (V,E) and positive integer k ≥ 0 together
be an input instance of the Vertex Cover problem. Let G′ = (V ′, E ′) such
that V ′ = V ∪ V1 ∪ V2, V1 = {ve1|∀e ∈ E}, V2 = {ve2|∀e ∈ E}, and E ′ =
{(u, ve1), (ve1, ve2), (ve2, w), |∀(u,w) = e ∈ E}. Clearly G′ is a tripartite graph
where V ′ partitions into V , V1, and V2. Let tripartite graph G′ and positive
integer k′ = k+|E| together be an input instance of the Vertex Cover problem
for tripartite graphs. We claim that a Vertex Cover C exists for G such that
|C| ≤ k if and only if a Vertex Cover C ′ exists for G′ such that |C ′| ≤ k+ |E|.
Assume that C is a Vertex Cover of G such that |C| ≤ k. Then let C ′ =
C∪C1∪C2 such that C1 = {ve1 ∈ V1|∀(u,w) = e ∈ E∧w ∈ C} and C2 = {ve2 ∈
V2|∀(u,w) = e ∈ E ∧ v ∈ C ∧w /∈ C}. We know that |C1|+ |C2| = |E|, since
C covers all edges of E. This means that |C ′| = |C|+ |C1|+ |C2| ≤ k + |E|.
We also know that C ′ is a vertex cover, because ∀(u,w) = e ∈ E we get that:

• If w ∈ C, then edges (u, ve1) and (ve1, v
e
2) are covered by ve1 and edge

(ve2, w) is covered by w. Note that (u, ve1) could be covered by u as well.

• If u ∈ C ∧ w /∈ C, then edge (u, ve1) is covered by u and edges (ve1, v
e
2)

and (ve2, w) are covered by ve1.

Assume that C ′ is a Vertex Cover of G′ such that |C ′| ≤ k + |E|. Let
C = V ∩ C ′′ such that C ′′ = (C ′ \ V ′1) ∪ U , V ′1 = {ve1 ∈ V1|∀(u,w) = e ∈
E ∧ u,w /∈ C ′}, and U = {u ∈ V |∀(u,w) ∈ E ∧ u,w /∈ C ′}. We know that
whenever (u,w) = e ∈ E ∧ u,w /∈ C ′ that ve1, v

e
2 ∈ C ′, because C ′ is a Vertex

Cover of G′ and has to cover edges (u, ve1) and (ve2, w). This means that
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|C ′′| = |C ′| and |(V1 ∪ V2) ∩C ′′| ≥ |E|. Clearly C is a vertex cover of G. We
also know that |C| = |V ∩C ′′| = |C ′′|− |(V1∪V2)∩C ′′| ≤ |C ′|− |E| ≤ k.

Theorem 2. The (r, d)-RS problem with d ≥ 4 and |S| ≥ 3 is NP-complete
for general graphs.

Proof. We will prove this through a reduction from the Vertex Cover problem
for tripartite graphs. We know from Lemma 3 that the Vertex Cover problem
is NP-complete for tripartite graphs. Let tripartite graph G = (V1, V2, V3, E)
and integer k ≥ 0 together be the input instance of the Vertex Cover problem.
Let graph G′ = (S ∪ V1 ∪ V2 ∪ V3, E ∪ (s1 × V1) ∪ (s2 × V2) ∪ (s3 × V3)) and
s1, s2, s3 ∈ S such that s1 6= s2 6= s3 6= s1 together be the input instance of
the (k, d)-RS problem. From Lemma 1 we can conclude that we can find a
(k, d)-RS of S for G′ if and only if there is a Vertex Cover of size at most k
in G.

4 The d-MRS Problem on Graphs with Bounded

Treewidth

Theorem 1 proves that the (r, d)-RS problem is NP-complete in the general
case, making the d-MRS problem NP-hard. It is still possible though to solve
the d-MRS problem in linear time for certain graphs. Courcelle [7] states that
every graph property that can be defined in MSOL (monadic second-order
logic) can be decided in linear time on graphs of bounded treewidth. This
also known as Courcelle’s theorem. Borie et al. [5] present similar results, but
independent from Courcelle [7]. A survey was also made by Borie et al. [6]
on the topic, in which they show how these results can be used for various
well known NP-complete problems and graph classes.

We base our result on the terminology and description of the results by
Borie et al. [5]. For details, including the definition of what a regular graph
property is, we refer to [5]. We start by giving a number of results from [5]
upon which we build.

Theorem 3 (Borie et al. [5, Theorem 1]). Each of the following predicates
is regular:

1. v1 = v2 (vertex equality).

2. Inc(v1, e1) (vertex-edge incidence).

3. v1 ∈ V1 (vertex membership).
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4. e1 ∈ E1 (edge membership).

Theorem 4 (Borie et al. [5, Theorem 2]). The set of regular predicates is
closed under ¬, ∧, ∨, ∀, and ∃, where quantification is over variables which
range over vertices, edges, vertex sets, and edge sets.

Theorem 5 (Borie et al. [5, Theorem 3]). If P and Q are regular properties,
then each of the following predicates is a regular property:

P → Q ⇐⇒ ¬P ∧Q.

P ↔ Q ⇐⇒ (P → Q) ∧ (Q→ P ).

(∃x ∈ X)(P (x)) ⇐⇒ (∃x)(x ∈ X ∧ P (x)).

(∀x ∈ X)(P (x)) ⇐⇒ (∀x)(x ∈ X → P (x)).

Q(P (x)) ⇐⇒ (∃y)((y = P (x)) ∧Q(y)).

Theorem 6 (Borie et al. [5, Theorem 4]). Each of the following predicates
is a regular property:

1. V1 \ V2 = V3.

2. V1 ⊆ V2.

3. |V1| ≥ m.

4. Path(V1, E1) (this property expresses that the vertices in V1 and the
edges in E1 form a path together.).

Theorem 7 (Borie et al. [5, Theorem 5]). If x denotes a set and P (x) is
regular, then the following problem can be solved in linear time on graphs
with bounded treewidth:

min |x1| : P (x1).

Theorem 8. A linear time algorithm can be constructed to solve the d-MRS
problem on graphs with bounded treewidth.

Proof. Let us define the d-MRS problem for given graph G = (V,E) and IS
S ⊆ V as follows:

min |R| : d-RS(R, S, V,E).
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Using Theorems 3, 4, 5, and 6, we can show that d-RS(R, S, V,E) is a regular
property as follows:

E ′ = E − V ⇐⇒ (E ′ ⊆ E) ∧ (∀e ∈ E)

(e ∈ E ′ ↔ (∀v ∈ V )(¬Inc(v, e))).

dist(v1, v2, V, E) ≥ d ⇐⇒ (∀V ′ ⊆ V )(∀E ′ ⊆ E)

(((v1, v2 ∈ V ′) ∧ Path(V ′, E ′))→ |V ′| ≥ d).

DdIS(S, V, E) ⇐⇒ (∀s1 6= s2 ∈ S)(dist(s1, s2, V, E) ≥ d).

d-RS(R, S, V,E) ⇐⇒ (R ⊆ (V \ S)) ∧ (V ′ = V \R) ∧ (E ′ = E −R)

∧DdIS(S, V ′, E ′).

Each of the above predicates on the left is proven to be a regular property
by the MSOL on the right. Note that predicate d-RS(R, S, V,E) is true
if and only if R is a (|R|, d)-RS of S on G = (V,E). This means that the
minimization problem we defined is equivalent to the actual d-MRS problem.
So according to Theorem 7, we can solve the d-MRS problem in linear time
on graphs with bounded treewidth.

In the next section we will show how to solve the d-MRS problem in linear
time for trees. Trees have bounded treewidth, which means that we already
know how to construct a linear time algorithm for trees automatically. Note
that the algorithms constructed by Courcelle’s theorem are only linear in the
graph size. These algorithms will most likely have a factor that is exponential
in d for trees or other graphs with bounded treewidth. In Section 5 we will
present an algorithm that has a factor sub-linear in d.

5 The d-MRS Problem on Trees

Solving the d-MRS problem for a given tree T = (V,E) and set S ⊆ V can be
done in linear time, as shown in Section 4. The algorithm we present in this
section will also guarantee that it runs with a factor that is logarithmic in
d. The algorithm will achieve this by bottom-up computing values, ranging
from 0 to d, for all the nodes in a given tree. The values represent more or
less the distance to the closest descendant that is part of S. If a node v itself
is an element of S, then v is itself the closest descendant that is part of S
and gets therefore a value of 0.

For a node v ∈ V , we do not need to know exactly how far the closest de-
scendant u is, if u is really far away. If dT (u, v) ≥ d− 1, then we know that
for any node w /∈ treeT (v) that dT (u,w) ≥ d. In other words, w does not
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need to be separated from u. This means that node u can be ignored when
assigning values to nodes outside treeT (v). So instead of assigning dT (u, v)
to v, we will assign d − 1 to v. For example, a leaf or any node v ∈ V that
has no descendant u ∈ S would normally be assigned ∞, but now it will be
assigned d− 1.

If v ∈ V is a branchpoint and there are at least two descendant nodes u,w ∈ S
such that d(u, v) + d(v, w) < d, then those nodes are too close to each other
and have to be separated. By removing v we separate u and w and may
also separate other descendant nodes in S from each other and from ancestor
nodes in S. Instead of actually removing v, we will assign it a value of d.
When a node v is assigned a value of d, we know that it will be removed,
because otherwise it would have been given a value between 0 and d−1. Be-
cause we are removing v, any descendant of v can be ignored when assigning
values to nodes outside treeT (v).

Note that the algorithm will not only choose elements with value d to remove.
If v has a value less than d− 1 assigned to it and its parent is an element of
S, then the algorithm will remove that element as well.

To calculate the values for each node as intended, we will use a function
q : V → [0, d]. Let v be any node in the tree, C(v) = {v1, v2, v3, ..., vk} such
that k is the amount of children of v and q(vi) ≤ q(vi+1) for all 0 < i ≤ k,
then we compute q(v) as follows:

q(v) :=



0, if v ∈ S,

d− 1, if C(v) = ∅,
min(q(v1) + 1, d− 1), if C(v) = {v1},
d, if q(v1) + q(v2) + 2 < d,

min(q(v1) + 1, d− 1), otherwise.

(1)

After calculating all the values bottom up in O(n) time, we will add certain
vertices to a set R. All vertices with a value of d will be added to R. Vertices
with a value less than d − 1 will be added to R, if their parent has a value
of 0. After this is done, the algorithm will return R as the d-MRS of S,
assuming that S is an independent set.
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Algorithm 1: TMRS(T , S, d)

Input: A tree T , IS S ⊆ V and positive integers r and d.
Result: A d-MRS of S.
R← ∅;
compute q(v) bottom up for all v ∈ V ;
forall v ∈ V do

if q(v) = d then
R← R ∪ {v};

end
else if q(v) < d− 1 and v has a parent w such that q(w) = 0
then

R← R ∪ {v};
end

end
return R;

In Figure 1 we see an example of what the algorithm will do for a given tree
and IS S. The result is a 5-MRS R = {v3, v5, v15} of size 3. It is easy to see
that a smaller set is not possible in this example. Node v5 is the only node
connecting v10 and v11, so it must be removed to separate those two nodes.
The same can be said of v15, which is the only node connecting v10 and v18.
Node v3 is also necessary, because it is the only node connecting v7 with both
v12 and v17.

A node u ∈ V is a (d, S)-descendant of v, if u is a descendant of v, u ∈ S,
d(v, u) < d − 1, and ∀w ∈ V : d(u, v) = d(u,w) + d(w, v) we have that
q(w) 6= d.

Lemma 4. If q(v) < d−1, then there is a node u that is the (d, S)-descendant
of v, closest to v, such that d(u, v) = q(v). If q(v) ≥ d − 1, then v has no
(d, S)-descendant.

Proof. We can prove the above lemma through induction.

1. If v ∈ S, then q(v) = 0 < d− 1. Since v is a (d, S)-descendant of itself,
we have that d(v, v) = 0 = q(v).

2. If v /∈ S and v is a leaf, then q(v) = d − 1. Since v is a leaf, v itself
is its only descendant. But since v /∈ S it is not a (d, S)-descendant of
itself. So v has no (d, S)-descendant.
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3. If v /∈ S and v is a linkpoint with child w and we assume that above
statement is true for w, then it follows that it is true for v as well for
the following reasons:

• If q(w) < d − 2, then it follows that q(v) = q(w) + 1 < d − 1.
Let u be the (d, S)-descendant of w, closest to w, then u is also
the (d − S)-descendant of v, closest to v. We also know that
d(u, v) = d(u,w) + 1 = q(w) + 1 = q(v).

• If q(w) = d− 2, then it follows that q(v) = q(w) + 1 = d− 1. Let
u be a (d, S)-descendant of w, then u is not a (d− S)-descendant
of v, because d(u, v) = d(u,w) + 1 ≥ d− 1. Since v /∈ S we know
that v is not its own (d, S)-descendant, which means that v has
no (d− S)-descendant.

• If q(w) ≥ d− 1, then it follows that q(v) = d− 1. Since w has no
(d, S)-descendant and v is not its own (d, S)-descendant, we know
that v has no (d, S)-descendant.

4. If v /∈ S and v is a branchpoint and we assume that above statement
is true for all children of v, then it follows that it is true for v as well
for the following reasons. Let v′ be a child of v such that

q(v′) ≤ min(q(vi)|vi ∈ C(v)).

Let v′′ be a child of v such that

q(v′′) ≤ min(q(vi)|vi ∈ C(v) \ {v′}).

• If q(v′) + q(v′′) + 2 < d, then it follows that q(v) = d. Non of
the descendants of v can be a (d, S)-descendant, because for all
descendants u of v we have that d(u, v) = d(u, v) + d(v, v) and
q(v) = d.

• If q(v′) + q(v′′) + 2 ≥ d and q(v′) < d − 2, then it follows that
q(v) = q(v′) + 1 < d − 1. Let u be the (d, S)-descendant of v′,
closest to v′, then u is also the (d− S)-descendant of v, closest to
v. We also know that d(u, v) = d(u, v′) + 1 = q(v′) + 1 = q(v).

• If q(v′) + q(v′′) + 2 ≥ d and q(v′) = d − 2, then it follows that
q(v) = q(v′) + 1 = d − 1. Let u be a (d, S)-descendant of any
child w of v, then u is not a (d − S)-descendant of v, because
d(u, v) = d(u,w) + 1 ≥ d − 1. Since v /∈ S we know that v is
not its own (d, S)-descendant, which means that v has no (d−S)-
descendant.
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• If q(v′) + q(v′′) + 2 ≥ d and q(v′) ≥ d − 1, then it follows that
q(v) = d − 1. Since v′ has no (d, S)-descendant, we know that
non of the other children have one either. On top of that v is
not its own (d, S)-descendant, so we know that v has no (d, S)-
descendant.

5. From base cases 1 and 2, and induction steps 3 and 4 we can conclude
that the above statement is indeed correct.

Lemma 5. For a given tree T = (V,E), IS S ⊆ V , and positive integer
d ≥ 2, if root(T ) ∈ S, then any d-MRS of S is also a d-SMRS.

Proof. Since root(T ) ∈ S we know that for any d-MRS R that root(T ) /∈ R
and dT [V \R](root(T ), S) = 0.

Theorem 9. For a given tree T = (V,E), IS S ⊆ V , and positive integer
d ≥ 2, Algorithm 1 will find a (d)-MRS R in O(n) time.

Proof. Computing q(v) for all vertices v ∈ V bottom up, and constructing
set R using those values, can all clearly be done in O(n) time.

Instead of proving that the algorithm returns a d-MRS, we will prove that
it returns a special type of d-MRS called a d-SMRS. Let us assume that the
algorithm does not work, then one or more counterexamples should exist
for the algorithm. Let C = (T = (V,E), S ⊆ V, d) be a counterexample
for our algorithm. We choose C such that for any other counterexample
C ′ = (T ′ = (V ′, E ′), S ′ ⊆ V ′, d), C must uphold one of these constraints:

1. the height of T is less than height of T ′ or

2. the height of T equals height of T ′ and |V | ≤ |V ′|.

As a consequence we have that any input I = (T ′′ = (V ′′, E ′′), S ′′ ⊆ V ′′, d)
cannot be a counterexample, if at least one of the following constraints is
true:

1. the height of T is at least the height of T ′′ or

2. the height of T equals the height of T ′′ and |V | > |V ′′|.

Let v = root(T ). It is easy to check that v cannot be a leaf. If v ∈ S,
then v would be assigned q(v) = 0, which means that the algorithm returns
R = ∅. If v /∈ S, then v would be assigned q(v) = d − 1, which means that
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the algorithm again returns R = ∅. It is clear that for a graph consisting of
only a single node does not require any vertices to be removed.

Assume v is a linkpoint and that u is the child of v. Let T ′ = (V,E) be
a tree such that root(T ′) = u and I = (T ′, S, d) be another input for our
algorithm. Since the height of T ′ is less than the height of T , we know that
I can be solved by our algorithm. We can call R the returned set for input
C and R′ the returned set for input I. Since the only difference between T
and T ′ is their root, it is quite clear that R′ is a d-MRS for both C and I.
So if R = R′, then R must be a d-MRS as well. It is also clear that v cannot
be an element of any d-MRS. So if R = R′, then R would be a d-MRS. As it
turns out, we can show that R = R′.

Let v ∈ S and therefore q(v) = 0 for both input C and I, then we have that
all nodes except for u get assigned the same value for both C and I. This
means that for any node u 6= w 6= v such that w ∈ R′, we have that w ∈ R.
Since v ∈ S we know from Lemma 5 that any d-MRS is also a d-SMRS. To
show that R is a d-SMRS, we only have to check that u ∈ R if and only if
u ∈ R′:

• If q(u) = 0 for input C, then u, v ∈ S, which contradicts the fact that
S has to be an IS.

• If q(u) < d − 1 for input C, then u must have a child w such that
q(u) = q(w) + 1 for input C. For input I we should have the same
assigned value to w. This means that q(u) = d for input I, because
q(v) + q(w) + 2 < d. This means that u ∈ R′ and we also have that
u ∈ R.

• If q(u) = d − 1 for input C, then according to Lemma 4 that means
that u has no (d, S)-descendant. However, for input I we know that
v is a child of u, which leads to q(u) = 1 < d. Even though q(u) is
different for the two inputs, we still have that u /∈ R and u /∈ R′.

• If q(u) = d for input C, then u must have two children u1 and u2 such
that q(u1) + q(u2) + 2 < d. The same is true for input I, which leads
to u also being assigned value q(u) = d. So we have that u ∈ R′ and
u ∈ R.

Let v /∈ S and therefore q(v) = d−1 for input I, then we have that all nodes
except for u and v get assigned the same value for both C and I.This means
that for any node w such that w ∈ R′ and u 6= w 6= v, we have that w ∈ R.
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We know that v /∈ R because it is the root node and a linkpoint for input
C. We also know that v /∈ R′, because v is a leaf for input I. To show that
R is a d-SMRS, we have to check that u ∈ R if and only if u ∈ R′ and that
dT [V \R](v, S) is maximized:

• If q(u) = 0 for input C, then that means that u ∈ S, which means that
q(u) = 0 for input I as well. This means that u /∈ R and u /∈ R′.

• If q(u) < d−1 for input C, then u must have a child w such that q(u) =
q(w) + 1 for input C, but no child w′ such that q(w) + q(w′) + 2 < d.
For input I we should have the same assigned values to all children of
u. Since q(v) = d−1 for input I, we know that q(w′′)+q(v)+2 ≥ d for
any child w′′ of u. This means that q(u) computes to the same value
for input I as for input C. We therefore have that u /∈ R′ and u /∈ R.
We know that dT [V \R](u, S) is maximized and since u is the only child
of v, we know that dT [V \R](v, S) is maximized as well.

• If q(u) = d − 1 for input C, then according to Lemma 4 that means
that u has no (d, S)-descendant. Since q(v) = d − 1 for input I, we
have that q(u) = d − 1 for input I as well. So u /∈ R and u /∈ R′. We
know that dT [V \R](u, S) is maximized and since u is the only child of v,
we know that dT [V \R](v, S) is maximized as well.

• If q(u) = d for input C, then u must have two children u1 and u2

such that q(u1) + q(u2) + 2 < d. The same is true for input I, which
leads to u also being assigned value q(u) = d. So we have that u ∈ R′

and u ∈ R. Since u is the only child of v and u ∈ R, we know that
dT [V \R](v, S) =∞.

Assume v is a branchpoint. If v ∈ S, then any d-MRS is also a d-SMRS
according to Lemma 5. To find a d-MRS for C, we can split the problem
into smaller problems. For each child vi ∈ C(v) let Ii = (Ti, Si, d) such that
Vi = V (treeT (vi)) ∪ {v}, Ti = T [Vi] with root(Ti) = v, and Si = S ∩ Vi.
We know that inputs Ii can all be solved by our algorithm, because the trees
have the same height, but less vertices than T . We also know that the correct
output for input C is

⋃
vi∈C(v)

Ri, where Ri is the output of the algorithm for

input Ii. Since for both C and any Ii we have that v′ ∈ Vi gets assigned the
same value q(v′), we know that the output of the algorithm for input C must
be

⋃
vi∈C(v)

Ri.

If v /∈ S, then let v1, v2 ∈ C(v) such that v1 is assigned the lowest value over
all children and v′′ the second lowest value. Let Ii, Ti, Si, and Ri be defined
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as before. For any u ∈ Vi such that u 6= v, we have that q(u) is the same for
both input C and input Ii. So u ∈ Ri if and only if u ∈ R. So we only have
to show whether or not v ∈ R and if that makes R a d-SMRS of C or not.

• If q(v1) + q(v2) + 2 < d, then q(v) = d for input C. Therefore we know
that v ∈ R and that R = {v} ∪

⋃
vi∈C(v)

Ri. Since R1 is a d-SMRS and

v1 /∈ R1, then we know that dT1[V1\R1](v1, S) is maximized. Since R2 is a
d-SMRS and v2 /∈ R2, then we know that dT2[V2\R2](v2, S) is maximized.
This means that removing an additional vertex to separate the closest
(d, S)-descendants of v1 and v2 is necessary. This and the fact that
v ∈ R lead to the the conclusion that R is a d-SMRS.

• If q(v1)+q(v2)+2 ≥ d, then q(v) ≤ d−1 for input C. Therefore we know
that v /∈ R and that R =

⋃
vi∈C(v)

Ri. The closest (d, S)-descendants of

v are at least q(v′) and q(v′′) away. Since q(v′) + q(v′′) + 2 ≥ d, we
know that they are at least distance d apart from each other. This
means that R is a d-MRS for input C. We also know that for any Ii
that dTi[Vi\Ri](root(Ti), Si) is maximized, which means that for C that
dT [V \R](root(T ), S) is maximized. Thus R is also a d-SMRS.

For any type of root v and any assigned values to the child(ren) of v, we come
to the conclusion that C cannot be a counterexample. Thus contradicting
the assumption that a counterexample exists.

Note that Algorithm 1 actually has a worst case running time of O(log(d)n),
because we assign numbers that require O(log(d)) worst case time to assign.
Since d is a constant, we have omitted it from Theorem 9. It is worth
noting though, considering that in Section 4 we mentioned a way to generate
algorithms that have worst case complexity of O(n) too. Of course those
algorithms will most likely have a factor polynomial in d.
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Figure 1: An example of a tree for which every node is assigned a value
according to function q with input set S = {v7, v9, v10, v11, v12, v17, v18} (illus-
trated with a blue border) and d = 5. The 5-MRS found by our algorithm is
R = {v3, v5, v15} (illustrated with a red cross).
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6 The MRrDdIS Problem on Trees

Solving the MRrDdIS problem is somewhat more complicated, but it can be
achieved in polynomial time using dynamic programming. For each node v in
the tree we compute a (v, r, d)-MaxArray. By doing this bottom-up, we are
able to calculate it for each node in polynomially time. A (v, r, d)-MaxArray
can be seen as a 2-dimensional array of solutions for the MRrDdIS problem,
but with additional constraints. One of these constraints is that we are only
allowed to add vertices to our solution that are at least distance i away from
v, such that i can range between 0 and d − 1. The other constraint is that
we are allowed to remove at most j vertices, such that j can range between
0 and r. A more formal definition can be found in Section 2.

A depiction of a (v, r, d)-MaxArray can be seen in Figure 2. The top left cor-
ner, M0 0, is a MDdIS of treeT (v). The top right corner, M0 r, is a MRrDdIS
of treeT (v) and if v is the root of our tree T , then it is the solution to our
problem. Each element M0 j in the top row is a MRjDdIS of treeT (v). Cells
that are more to the right are allowed to remove more vertices and cells more
to the left less vertices. This is true for every row in the array. The height
of a cell carries a different type of constraint. The lower a cell, the further
all vertices in that cell have to be separated from v. So the top row, M0, is
the only row that allows v to be part of the solutions.

We solve the problem by splitting it into into three cases, such that the root
node is either a leaf, linkpoint, or branchpoint. This can be seen in Algo-
rithm 2.

M0 0 M0 1 ... M0 j ... M0 r

M1 0 M1 1 ... M1 j ... M1 r

... ...  ... ...

Mi 0 Mi 1 ... Mi j ... Mi r 

... ...  ... ...

Md-1 0 Md-1 1 ... Md-1 j ... Md-1 r 

Figure 2: An illustration of a (v, r, d)-MaxArray.
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Algorithm 2: TMaxArray(T , r, d)

Input: Some subtree T and positive integers r and d.
Result: A (root(T ), r, d)-MaxArray of T .
v ← root(T );
if |C(v)| = 0 then

M ← LMaxArray(T , r, d);
end
else if |C(v)| = 1 then

M ← LPMaxArray(T , r, d);
end
else

M ← BPMaxArray(T , r, d);
end
return M ;

Theorem 10. For any tree T = (V,E), d ≥ 2, and r ≥ 0 Algorithm 2
returns a (root(T ), r, d)-MaxArray.

Proof. We can prove that the algorithm works through induction.

1. If the root node of T is a leaf, then we call Algorithm 3, which according
to Lemma 6 returns a (root(T ), r, d)-MaxArray.

2. Assume that Algorithm 2 works for any subtree of T . If the root node
of T is a linkpoint, then we call Algorithm 4. According to Lemma 7 it
will return a (root(T ), r, d)-MaxArray, because Algorithm 2 works for
any subtree of T .

3. Assume that Algorithm 2 works for any subtree of T . If the root node
of T is a branchpoint, then we call Algorithm 5. According to Lemma 8
it will return a (root(T ), r, d)-MaxArray, because Algorithm 2 works for
any subtree of T .

4. From base case 1 and induction steps 2 and 3 we can conclude using
induction that Algorithm 2 will return a (root(T ), r, d)-MaxArray.
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6.1 Leaves

If root node v is a leaf, then it is trivial that we can just assign {v} to all
cells in the top row and ∅ to the others, as illustrated in Figure 3 and done
in Algorithm 3.

Algorithm 3: LMaxArray(T , r, d)

Input: Tree T = ({v}, ∅), r and d are positive integers.
Result: A (v, r, d)-MaxArray of subtree T = ({v}, ∅).
for i ∈ [0, d− 1] do

for j ∈ [0, r] do
Mi j ← ∅;
if i = 0 then

Mi j ← {v};
end

end

end
return M ;

Lemma 6. For any tree T = ({v}, ∅), d ≥ 2, and r ≥ 0 Algorithm 3 returns
a (v, r, d)-MaxArray.

Proof. Since T only consist of a single node, we know that any cell in the
(v, r, d)-MaxArray either contains {v} or ∅. Since we want to maximize each
cell of or array we pick {v} if it does not conflict with any constraints. Since
the top row has no conflicting constraints, we assign set {v} to the cells of
that row. All other rows do conflict with this set, so we assign ∅ to all the
other cells.

{v} {v} ... {v}

∅ ∅ ... ∅ 

... ...  ...

∅ ∅ ... ∅ 

Figure 3: The (v, r, d)-MaxArray of a leaf node v.
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6.2 Linkpoints

If the root node v is a linkpoint, then there are three possible ways we can
maximize the content of each cell in our array:

• Add v to the solution and pick from the child the largest solution set
that is at least distance d away from v (bottom row).

• Remove v from the tree and pick from the child the largest solution set
that has no distance restriction (top row), but with one less vertex to
remove (one column to the left).

• Just pick from the child the largest solution set that is sufficiently far
away from v (one row up).

In Figure 4 we see how each cell contains up to three different sets, generated
from above strategies. Note that the first strategy can only be performed on
cells in the top row, because all other rows do not allow v to be part of the
solution. The second strategy cannot be applied to cells in the left column,
because we are not allowed to remove nodes in the left column. The third
strategy works different for the top row compared to all other rows. In the
other rows we simply pick Mi−1 j for each cell M ′

i j of v. For the top row this
is not possible. The largest set we can pick for M ′

0 j is M0 j.

The left linkpoint of Figure 4 shows all possible strategies for each cell. As a
result we see in the blue and yellow areas some solutions that are at most as
large as other solutions. To be more precise, we know that for any 1 ≤ j ≤ r
that |M0 j−1| ≤ |M0 j|, which means that M0 j−1 can therefore be removed
from consideration, as shown in the right linkpoint of Figure 4. The actual
solution of each cell is the largest set of the ones we see in each cell. For each
cell in the green area there is only one possible solution.

Now that we know which solutions we can consider for each cell, we can make
an algorithm that actually fills the array. In Algorithm 4 we try to do this
in such a way that the algorithm stays as compact and readable as possible.
To achieve this, we take advantage of some, but not all, of the optimizations
of the right linkpoint in Figure 4. In the first for-loop of the algorithm, we
fill all rows except the top row by considering all solutions we see in the left
linkpoint in Figure 4. After the first for-loop ended, we fill the top row, while
only considering the solutions we see in the right linkpoint in Figure 4.
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M0 0 
{v}∪M3 0 

M0 1 
M0 0 

{v}∪M3 1

M0 2 
M0 1 

{v}∪M3 2 

M0 3 
M0 2 

{v}∪M3 3 

M0 0
M0 1 
M0 0 

M0 2 
M0 1 

M0 3 
M0 2 

M1 0 M1 1 
M0 0 

M1 2 
M0 1 

M1 3 
M0 2 

M2 0 M2 1 
M0 0 

M2 2 
M0 1 

M2 3 
M0 2 

M0 0 M0 1 M0 2 M0 3

M1 0 M1 1 M1 2 M1 3

M2 0 M2 1 M2 2 M2 3 

M3 0 M3 1 M3 2 M3 3 

M0 0 
{v}∪M3 0 

M0 1 
{v}∪M3 1

M0 2 
{v}∪M3 2 

M0 3 
{v}∪M3 3 

M0 0 M0 1 M0 2 M0 3 

M1 0 M1 1 
M0 0 

M1 2 
M0 1 

M1 3 
M0 2 

M2 0 M2 1 
M0 0 

M2 2 
M0 1 

M2 3 
M0 2 

M0 0 M0 1 M0 2 M0 3

M1 0 M1 1 M1 2 M1 3

M2 0 M2 1 M2 2 M2 3 

M3 0 M3 1 M3 2 M3 3 

Figure 4: On the top we see the same linkpoint twice with its child on the
bottom. The (v, r, d)-MaxArray of the linkpoint gets computed by picking
the largest set in each cell. In the left linkpoint we see four areas coloured
from left to right, top to bottom: red , yellow , green , blue . Cells in the
red or blue area contain two sets to choose from, cells in the yellow area
can choose out of three different sets, but cells in the green area are always
assigned the same set. The yellow and blue areas in the left contain cells
with sets that do not need to be considered and are therefore removed at the
right. As a result there is no yellow area and both the green and red areas
expanded to the right.
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Algorithm 4: LPMaxArray(T , r, d)

Input: Some subtree T (with a linkpoint as the root) and positive
integers r and d.

Result: A (root(T ), r, d)-MaxArray of T .
v ← root(T );
A← TMaxArray(treeT (v1), r, d);
for i ∈ [1, d− 1] do

Mi ← Ai−1;
for j ∈ [1, r] do

if |Mi j| < |A0 j−1| then
Mi j ← A0 j−1;

end

end

end
M0 ←M1;
for j ∈ [0, r] do

if |M0 j| < |Ad−1 j ∪ {v}| then
M0 j ← Ad−1 j ∪ {v};

end

end
return M ;

Lemma 7. For any tree T = (V,E) with v = root(T ), d ≥ 2, and r ≥ 0
Algorithm 4 returns a (v, r, d)-MaxArray, if Algorithm 2 returns a (v1, r, d)-
MaxArray for inputs T ′ = treeT (v1), d, and r, where v1 is the only child of
v.

Proof. Algorithm 4 constructs M using a (v1, r, d)-MaxArray A. The algo-
rithm assigns Ai−1 0 to Mi 0 for any 0 < i < d. Since Ai−1 0 is a (v1, i−1, 0, d)-
MaxCell it is also a (v, i, 0, d)-MaxCell, which is what we want Mi 0 to be.

The algorithm assigns either Ai−1 j or A0 j−1 to Mi j for any 0 < i < d and
0 < j ≤ r. Obviously Ai−1 j is a potential candidate of being a (v, i, j, d)-
MaxCell. If we decide to add v to the removal set corresponding to A0 j−1,
then A0 j−1 is a potential candidate as well. So to show that one of them has
to be a (v, i, j, d)-MaxCell, we have to prove that no (v, i, j, d)-MaxCell exists
that is larger than either one of them. Assume a larger (v, i, j, d)-Cell exists
and it does not require us to add v to the corresponding removal set, then
it would also have been a (v1, i− 1, j, d)-Cell greater than Ai−1 j, which is in
contradiction with our assumption that Ai−1 j is a (v1, i − 1, j, d)-MaxCell.
Assume a larger (v, i, j, d)-Cell exists, but it requires us to add v to the
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corresponding removal set, then it would also have been a (v1, 0, j − 1, d)-
Cell greater than A0 j−1, which is in contradiction with our assumption that
A0 j−1 is a (v1, 0, j − 1, d)-MaxCell. This means that either Ai−1 j or A0 j−1
is a (v, i, j, d)-MaxCell.

The algorithm assigns either M1 j (= A0 j, because |A0 j| ≥ |A0 j−1|) or
Ad−1 j ∪ {v} to M0 j for any 0 ≤ j ≤ r. The two sets are both clearly
(v, 0, j, d)-Cells. We use the same type of proof as before, to prove that
at least one of the two is also a (v, 0, j, d)-MaxCell. Assume that a larger
(v, 0, j, d)-Cell exists and it contains v. If we remove v, then we get a
(v1, d − 1, j, d)-Cell greater than Ad−1 j, which is in contradiction with our
assumption that Ad−1 j is a (v1, d − 1, j, d)-MaxCell. Assume that a larger
(v, 0, j, d)-Cell exists and it requires us to add v to the corresponding removal
set, then it would also be a (v1, 0, j − 1, d)-Cell greater than A0 j−1, which is
in contradiction with our assumption that A0 j−1 is a (v1, 0, j−1, d)-MaxCell.
Assume that a larger (v, 0, j, d)-Cell exists and that does not contain v or add
it to the corresponding removal set. Such a set would also be a (v1, 0, j, d)-
Cell greater than A0 j, which is in contradiction with our assumption that
A0 j is a (v1, 0, j, d)-MaxCell. This all means that either A0 j or Ad−1 j ∪{v}
is a (v, i, j, d)-MaxCell.

6.3 Branchpoints

If v is a branchpoint, then computing the (v, r, d)-MaxArray becomes a bit
more complicated. Nevertheless we can apply similar strategies to it like we
did for the linkpoint. The first two strategies, where we either add v to the
solution or remove it from the tree, are mostly the same as with the linkpoint.
As Figure 5 illustrates, if we want to add v to the solution, then we cannot
combine it with solution sets that are less than distance d away from v. This
means that we can only pick solutions from the bottom rows of the children.
Figure 5 also illustrates that when we remove v, the opposite is true. When
v gets removed, we could pick solutions from any row in the children, but
if we want to maximize our solution, we should choose from the top row of
each child.
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v

w u

Sw Su 

1 1

d − 1 d − 1

v

Sw Su

1 1

Figure 5: Left we see a branchpoint that we decide to add to our solution.
As a result all child solution sets, Su and Sw, that we want to combine with
v to create a new solution, have to be at least distance d away from v. At the
right we see a branchpoint that gets removed from the tree. As a result we
can combine child solution sets that even contain the children themselves.

In Figure 6 we see an example where v has k ≥ 3 children. Nodes S1 to
Sk each represent a solution for v1 to vk. We want to combine these solu-
tions to create a new solution for v. Since we want the new solution to be a
(v, i, j, r, d)-MaxCell we have to keep a few things into account:

• We want to maximize the solution of v, so we should choose solutions
of the child nodes that are as large as possible.

• The child solutions must all be at least distance i away from v.

• The child solutions must be at least distance d apart from each other.

• The combined number of vertices that needs to be removed cannot be
more than j.

For now we will only focus on the first three points. The height of a solution
node in Figure 6 represents the maximum height of its highest element. If
a solution node is lower, then that means it is more restricted and possibly
smaller than when its higher and closer to v. So to maximize v we want the
solution nodes to be as high as possible. However, they must remain distance
d apart from each other, so they cannot all be high up in the tree. They also
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must remain distance i away from v. In Figure 6 we see two of the O(d)
configurations that satisfy our criteria. If we start with the left configuration
and lower S1, then we can raise S2 to Sk with the same amount. As a result
S1 may decrease in size, but S2 to Sk might increase in size. So the combined
solution could both increase and decrease. Once we have reached the con-
figuration on the right, we must stop or else solutions S2 to Sk would get to
close to each other. All the remaining configurations that satisfy our criteria
can be generated by repeating the process, but with swapped heights. This
means that we have to check O(dk) configurations.

v

v1 v2 vk 

v

v1 v2 vk 

S1
S2 Sk 

S1

S2 Sk

1
1

1 1
1

1

i − 1

d − i − 1d − i − 1

⌊ ⌋ − 1
d

2 ⌈ ⌉ − 1
d

2
⌈ ⌉ − 1

d

2

... ...

Figure 6: A branchpoint v, its child nodes v1 to vk and their respective
solution sets S1 to Sk. Algorithm 5 starts with the configuration on the left
and ends with the configuration on the right.

In Figure 7 we see an example where v has only two children. We could
treat this situation the same way as when v has k ≥ 3 children. However,
when we reach the configuration at the right of Figure 7, we could continue
instead of stopping. If we continue Sw and Su will still be distance d apart
from each other. If we decide to stop and then repeat with swapped heights,
then we would simply generate the same configurations as when we would
have continued, but in opposite order. So we can treat a branchpoint v with
2 children in the same way as a branchpoint with k ≥ 3 children.
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w u
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Sw
Su 

Sw

Su 

1 1 1 1

i − 1

d − i − 1

⌊ ⌋ − 1
d

2 ⌈ ⌉ − 1
d

2

Figure 7: A branchpoint v, its child nodes w to u and their respective solution
sets Sw to Su. Algorithm 5 starts with the configuration on the left and ends
with the configuration on the right.

So far we have treated the child solutions of a branchpoint as if they were
part of a pulley system, but note that this does not always have to be the
case. In Figure 8 we see a situation in which all child nodes are forced to
be so far down, that they always remain at least distance d apart from each
other. In that case we only have to check the configuration shown in Figure 8.

v

v1 v2 vk 

S1 S2 Sk

1
1

1

...

⌈ ⌉ − 1
d

2

i − 1

Figure 8: A branchpoint v, its child nodes v1 to vk and their respective
solution sets S1 to Sk. This is the only configuration Algorithm 5 checks
when i ≥

⌈
d
2

⌉
.
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Algorithm 5: BPMaxArray(T , r, d)

Input: Some subtree T (with a branchpoint as the root) and
positive integers r and d.

Result: A (root(T ), r, d)-MaxArray of T .
v ← root(T );
for u ∈ C(v) do

Pu ← TMaxArray(treeT (u), r, d);
end
M ← Pv1 ;

for i ∈ [dd
2
e, d− 1] do

lowrows ← ∅;
for u ∈ C(v) do

lowrows ← lowrows ∪{Pu i−1};
end
Mi ← ORSD(lowrows, r);

end
for w ∈ C(v) do

for i ∈ [1, dd
2
e − 1] do

for k ∈ [i− 1, bd
2
c − 1] do

highrows ← {Pw k};
for u ∈ C(v) do

if u 6= w then
highrows ← highrows ∪{Pu d−k−2};

end

end
S ← ORSD(highrows, r);
for j ∈ [0, r] do

if |Mi j| < |Sj| then
Mi j ← Sj;

end

end

end

end

end
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toprows ← ∅;
for u ∈ C(v) do

toprows ← toprows ∪{Pu 0};
end
X ← ORSD(toprows, r);
for i ∈ [1, d− 1] do

for j ∈ [1, r] do
if |Mi j| < |Xj−1| then

Mi j ← Xj−1;
end

end

end
M0 ←M1;
bottomrows ← ∅;
for u ∈ C(v) do

bottomrows ← bottomrows ∪{Pu d−1};
end
O ← ORSD(bottomrows, r);
for j ∈ [0, r] do

if |M0 j| < |Oj ∪ {v}| then
M0 j ← Oj ∪ {v};

end

end
return M ;

Lemma 8. For any tree T = (V,E) with v = root(T ), d ≥ 2, and r ≥ 0
Algorithm 5 returns a (v, r, d)-MaxArray, if Algorithm 2 returns a (v′, r, d)-
MaxArray for inputs T ′ = treeT (v′), d, and r, for all v′ ∈ C(v).

Proof. In the algorithm we see that the first for-loop stores the (v′, r, d)-
MaxArray of each child v′. After that M is assigned one of the arrays, to
ensure that M contains valid solutions (besides them not being the maxi-
mum) to compare against later on.
In the second for-loop we explore possible solutions for each (v, i, j, d)-MaxCell
with dd

2
e ≤ i ≤ d − 1 and 0 ≤ j ≤ r. None of these solutions contain

v or require v to be removed. Each solution is created by combining the
(v′, i − 1, r, d)-MaxRows of each child v′ using Algorithm 6. We know that
since i ≥ dd

2
e that the solutions of the children will be at least distance

i− 1 + i− 1 + 2 ≥ 2 · dd
2
e ≥ d. We also know that we cannot pick solutions

higher in the array to create a larger solution, because either the solution

34



does not become larger or it contains elements too close to v. We know from
Lemma 11 that Algorithm 6 will combine them in the most optimal way.
Since we only assign a single solution to each cell and the previous values
were just meant as place holders, we can assign the results without checking
for improvements.
In the third for-loop we explore possible solutions for each (v, i, j, d)-MaxCell
with 1 ≤ i ≤ dd

2
e − 1 and 0 ≤ j ≤ r. None of these solutions contain v or

require v to be removed. For one child w we select a (w, k, r, d)-Row, while
we select for each other child u a (u, d − k − 2, r, d)-Row. Just like before
we use the ORSD algorithm to combine them optimally. We do this for all
i − 1 ≤ k ≤ bd

2
c − 1. Since k ≥ i − 1 we ensure no elements will be too

close to v and k ≤ bd
2
c − 1 ensures that we do not create solutions with two

elements that are to close together. This can be shown as follows:

• The distance between two elements of the children for which height
d− k − 2 was chosen is at least d− k − 2 + d− k − 2 + 2 ≥
d + (d− 2 · (bd

2
c − 1))− 2 = d + (d− 2 · bd

2
c) ≥ d.

• The distance between an element of the child with height k and an
element of a child with height d−k−2 is at least k+d−k−2 + 2 = d.

Since we are exploring multiple solutions per cell, we have to check for each
cell if a new solution improves the old one, unlike before.
The fourth and fifth for-loops explore solutions for which the root node gets
removed. They explore these possible solutions for each (v, i, j, d)-MaxCell
with 1 ≤ i ≤ d and 1 ≤ j ≤ r. Since we remove v, we can guarantee that
solutions of the children will not be too close to each other or to v, whatever
we choose. This means that we should pick solutions the top rows from each
child and combine them with the ORSD algorithm. The resulting row of
solutions gets stored in X. Since we removed a node, we have to assign the
j − 1-th element of X to the j-th cell of each row.
So far we have yet to explore actual solutions for the top row. As it turns
out, we can just assign everything from the second highest row to the top
row. When we explored the solutions were v was removed, we were able to
treat all rows exactly the same, so we can treat the top row the same too.
The solutions where v is not removed from the tree or added to the solution
are a different case. This is because we cannot choose rows higher than the
top row from the child arrays. As a result we have that the best solutions
for the top row are the same as for the second row. Except for solutions that
include v. The last for-loop explores this case. If we add v to the solution,
then we must keep the child soltuions distance d away from v. This means
we can only combine the bottom rows with v.
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After the algorithm has finished, several possible solutions have been explored
for each cell Mi j. For i = 0 and j > 0, we have explored all possible solutions
except the ones where in the second for-loop, since they would have broken
the distance constraints. For i = 0 and j = 0, we have explored the same
solutions, except the ones were v (or any other node) gets removed. For
1 ≤ i ≤ dd

2
e − 1 and j = 0 we have explored the same solutions as for

i = 0 and j = 0, except the ones were v was included in the solution. For
1 ≤ i ≤ dd

2
e − 1 and j > 0 we have explored the same solutions as for

i = 0 and j > 0, except the ones were v was included in the solution. For
dd
2
e ≤ i ≤ d− 1 and j = 0, we have explored only the solutions of the second

for-loop. Exploring the third for-loop was unnecessary, since the solutions
would have been smaller than the ones we already found. The other for-loops
would explore solutions were we either removed v from the tree or added v to
the solution, which would not have been valid solutions. For dd

2
e ≤ i ≤ d− 1

and j > 0, we have explored the same solutions, but also the ones were v
gets removed from the tree.

We assume that from the definition of a (v, r, d)-MaxArray and the ideas
behind the algorithm, that it is clear how we try to solve the problem and
why it is correct. That is why we prove the correctness of Algorithm 5 by
listing for each cell in the array of branchpoint v, which solutions are explored
and which are not. By showing that the algorithm works as intended, we
hope to convince the reader the correctnes of the algorithm. A formal proof
would have had to check a lot of different case, considering that there are 4
different types of solutions we explore and the fact that there are 6 groups
of cells such that cells from different groups explore a different subset of
solutions.

6.4 Distributing the removal set

We have seen that for a branchpoint with k children there are O(dk) height
configurations that need to be checked. Besides deciding height configura-
tions, we also need to decide how to distribute the amount of vertices we are
allowed to remove among the children. To do this we use Algorithm 6. As
input it takes a row from each child and as output it generates a row for
v. The way it works is illustrated in Figure 9 and Figure 10. Note that the
rows in the figures do not contain sets of vertices, but set sizes. So instead
of combining two sets, we add two numbers together.

When we combine rows with each other, we have to keep in mind that so-
lutions more to the right of a row are always bigger, but also require more
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vertices to remove. So if we are not allowed to remove any vertices then we
can only combine the leftmost elements of all input rows. If we are allowed to
remove j vertices, then there are O(jk) possible ways to distribute j among
the k children. Fortunately, we can use dynamic programming to solve this
problem in polynomial time as well. Instead of finding the ideal distribution
for k children, we start by finding the ideal way to do so for 2 children. Once
we have done this, we get a new row.

Figure 10 illustrates how a new row is created. The (j + 1)-th cell from the
left of the output row is created by combining the (j′ + 1)-th cell from the
left of one row with the (j − j′+ 1)-th cell from the left of the other row, for
some 0 ≤ j′ ≤ j ≤ r. We choose j′ to maximize (j + 1)-th cell. Note that in
Algorithm 6 we do not bother to fill a whole array with numbers, but just
iterate through all the possible combinations illustrated by Figure 10 and
pick the best.

Having found a whole row of distributions for two children opens the door
for distributions with three children. In fact if we have computed a whole
row of distributions for k − 1 children we can easily compute such a row for
k children. We just combine our computed row with an input row that we
have not used yet. This is exactly what we do in Algorithm 6 and what we
illustrate with Figure 9.
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0 1 2 3 4 5

0 0 2 2 4 8

3 3 4 4 4 4

2 4 6 8 8 9

0 1 2 3 4 5

0 1 2 3 4 8

 3   4   5   6   7  11

 5   7   9  11 12 13

Figure 9: An example of how Algorithm 6 works. On the left we see a
representation of a (v, p, r, d)-MaxRowSet for r = 5 and some v, p, and d.
Each row comes from a (v, r, d)-MaxArray of a child of v. Each cell contains
the size of a solution instead of the solution itself. On the right we see
the largest set sizes you can create by combing an input row and an earlier
created row. On the bottom right is the final result.

5 6 7 8 9 13

7 8 9 10 11 -

9 10 11 12 - -

11 12 13 - - -

11 12 - - - -

12 - - - - -

 3   4   5   6   7  11

2

4

6

8

8

9

Figure 10: An example of how Algorithm 6 computes the final row of Figure 9.
On the top and left we see the two input rows. Each cell in the table contains
the sum of an element of each row. The circled numbers are the highest
numbers in their diagonal and are therefore picked by the algorithm.
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Algorithm 6: ORSD(A, r)

Input: Input A is a (v, p, r, d)-MaxRowSet for some vertex v and
integers p and d. Input r is some positive integer.

Result: A SemiMaxRow of A.
M ← A1;
for i ∈ [2, |A|] do

M ′ ←M ;
for j ∈ [1, r] do

for k ∈ [0, j] do
if |Mj| < |M ′

k ∪ Ai j−k| then
Mj ←M ′

k ∪ Ai j−k;
end

end

end

end
return M ;

Lemma 9. For any (v, p, r, d)-MaxRowSet A and r ≥ 0, such that v is some
vertex and 0 ≤ p and d ≥ 2 are integers, Algorithm 6 returns a SemiMaxRow
of A.

Proof. We can prove that at the end of each iteration of the for-loop that M
is a SemiMaxRow of Ai = {Aj ∈ A|0 ≤ j ≤ i} using induction:

1. When M = A1, then M is a SemiMaxRow of A1, because:

• A1 is clearly a (v, p, r, d)-MaxRowSet.

• Since |A1| = 1, we know that ∀0 ≤ j ≤ r that |A1 j| ≥ |S| such
that S = A1

1 q1
= A1 q1 with 0 ≤ q1 ≤ j.

2. Let 2 ≤ i ≤ |A| Assume that M ′ is a SemiMaxRow of Ai−1. As a
result we get ∀0 ≤ j ≤ r that Mj is the maximum sized element of
{M ′

k ∪ Ai j−k|0 ≤ k ≤ j}. We know that M must be a SemiMaxRow
of Ai, because:

• Ai is clearly a (v, p, r, d)-MaxRowSet.

• Let S =
i⋃

k=1

Ak qk for some 0 ≤ j ≤ r such that 0 ≤
i∑

k=1

qk ≤ j. Let

S ′ =
i−1⋃
k=1

Ak qk and 0 ≤
i−1∑
k=1

qk = j′ ≤ j , since M ′ is a SemiMaxRow
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of Ai−1, we know that |M ′
j′ | ≥ |S ′|. This would mean that:

|Mj| ≥ |M ′
j′|+ |Ai j−j′ | ≥ |S ′|+ |Ai j−j′| ≥ |S ′|+ |Ai qi | = |S|.

The last inequality is true, because j′ + qi ≤ j, which means that
|Ai j−j′ | ≥ |Ai qi |.

3. From base case 1 and induction step 2 we can conclude using induction
that M is a SemiMaxRow of Ai = {Aj ∈ A|0 ≤ j ≤ i} at the end of
each iteration of the for-loop.

6.5 Complexity analysis

Now that we have validated the algorithms for finding a MRrDdIS, we can
measure their complexity.

Lemma 10. Algorithm 6 runs in O(kr2n) worst case time for which k = |A|.

Proof. Algorithm 6 iterates over k − 1 elements of A during which the algo-
rithm iterates another O(r2) times. Over some of those O(r2k) iterations,
the algorithm will assign a set of worst case size O(n). This means that the
algorithm runs in O(kr2n) worst case time.

Theorem 11. Algorithm 2 runs in O(d2r2n3) worst case time.

Proof. We can prove the above statement using induction:

1. If we call Algorithm 3, then the running time will be O(dr).

2. Algorithm 4 has a for-loop that iterates d times over r iterations in
which an assignment of worst case size O(n) is done. So the whole for-
loop has a worst case of O(drn) time. The other for-loop clearly requires
only O(rn) worst case time. Besides those two for-loops, the algorithm
also calls Algorithm 2 for a tree with one node less. If we assume the
above statement is correct for smaller trees, then Algorithm 4 also has
a worst case running time of O(d2r2n3).

3. Algorithm 5 has multiple for-loops, but the third one clearly takes the
longest time. The for-loop iterates O(d2k) times such that k is the
number of children of v. Each iteration it performs a series of tasks
of which two for-loops and a call to Algorithm 6 clearly take the most
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time. The first for-loop takes O(rn) time, because each iteration we
append O(r) set of worst case size O(nu) such that u ∈ V (c) and nu

is the amount of nodes in treeT (u). Since
∑

u∈C(v)

nu = n we have that

the for-loop takes O(rn) worst case time. The other for-loop also takes
O(rn) running time if we assume the assignments take O(n) time over
O(r) iterations. According to Lemma 10, it will take O(kr2n) time
to run Algorithm 6. So in the worst case the for-loop would run in
O(d2r2n3) when k = O(n) and one of the children of v has an array of
which O(rd) cells have O(n) sized solutions.
Besides all those for-loops, the algorithm also calls Algorithm 2 for all
its children. If we assume the above statement is correct for smaller
trees, then we have that

∑
u∈C(v)

O(d2r2n3
u) ≤ O(d2r2n3). So Algorithm 5

also has a worst case running time of O(d2r2n3).

4. From base cases 1 and 2 and induction step 3 we can conclude using
induction that the algorithm runs in O(d2r2n3) time in the worst case.

Note that d is a constant, which means that we can omit it to get a worst
case running time of O(r2n3). We included d in our analysis to show that
this algorithm is polynomial even if d were variable. It is clear that Algo-
rithm 2 is not very efficient. If we consider that r is a variable that can be of
size O(n) in the worst case, then that would mean that our algorithm takes
O(n5) in the worst case.

The ORSD algorithm is the main reason for the inefficiency of our algorithm.
So we either have to call it less or make it more efficient. Calling it less might
be difficult, but it can significantly affect the efficiency. From each child we
choose the same row O(kd) (k is amount of children of the root node) times
to combine. If we could do it only once instead, then that would save us
a worst case factor of O(n) time. We can achieve this by doing all needed
computations with the ORSD algorithm in bulk, storing the results in an
array, and then choose which results get assigned to which cells. We are not
going into much detail on how to store and retrieve the results, but we will
explain how we can reduce the amount of calls and the cardinality of input
A to a constant size.

For starters we want for each child, that the rows of certain height of all other
children are combined. An easy way to achieve this is by combing the rows of
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Figure 11: A more optimized approach of calling Algorithm 6. Each square
on the left represents a row from a child. The number tells us which child.
Note that the squares with the marked numbers represent higher rows from
the same children. The arrows represent the use of the ORSD algorithm
to combine squares into rectangles. The arrows going up and down add a
single square to an earlier created solution. The arrow pointing to the right
combines three solutions to find the optimal distribution of removal nodes
for the configuration on the right.

the leftmost children in all possible O(k) ways and the rightmost in all possi-
ble O(k). Since we can do this iteratively, we would only need to combine two
results at a time using the ORSD algorithm a total of O(k) times. Figure 11
illustrates this at the left. This operation results in worst case running time
of O(kr2n). Then to compute the actual results for child l, we take the result
of the l−1 leftmost children, the l-th child, the k− l rightmost children, and
combine all three of them. We do this for O(k) children and since |A| = 3
each call only takes O(r2n) time. On the left of Figure 11 we see how this
is done for l = 3, to create the optimal distribution for the configuration
on the right. This operation will also take O(kr2n) time in the worst case
or O(n4) considering that both k and r can be of size O(n) in the worst
case. We only have ignored that there are O(d2) different configurations to
explore, but since d is a constant, we can ignore this. So with these opti-
mizations, we would probably get an algorithm of worst case O(d2r2n2) time.

Another idea to even further improve the algorithm is to reduce the amount
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of assignments. We could do this by only assigning the largest set instead of
assigning a set each time we find one that is bigger. We could also reduce
the assignment operation itself by introducing a new data structure that
instead of storing the whole set, stores references to the child solutions that
are combined to make the whole set. This would change an assignment of
worst case O(n) time to one of O(k+log(n)) time. This may not seem a large
improvement since O(k) = O(n) in the worst case. But note that the total
amount of children of all nodes must be n − 1, which would mean that an
assignment of size O(k + log n) for each node would result in a total running
time of O(n + n log n) instead of O(n2 + n log n).

7 Conclusion

We have introduced a new problem called the MRrDdIS problem, which is a
general. This problem has not been studied before to the best of our knowl-
edge. We also introduced the d-MRS problem and the (r, d)-ORS problem,
which are all related to the MRrDdIS problem. We have proven that the
decision variants of the MRrDdIS problem and the d-MRS problem are both
NP-complete for general graphs, but we also presented algorithms that solved
both the MRrDdIS and the d-MRS problem in polynomial time for trees. In
fact, we were even able to prove that the d-MRS problem can be solved in
linear time for all graphs with bounded treewidth.

7.1 Summary of the results

In summary, what we have shown:

• The RrDdIS problem is NP-complete for general graphs.

• The (r, d)-RS problem is NP-complete for general graphs.

• The d-MRS problem can be solved in linear time on graphs with bounded
treewidth.

• An algorithm solving the d-MRS problem in O(n) time on trees.

• An algorithm solving the MRrDdIS problem in O(d2r2n3) time on trees.

7.2 Future research

We introduced the RrDdIS problem such that r is an input variable, but it
might also be interesting to look into a variation where r is constant. It would

43



probably be not too hard to prove, using Courcelle’s theorem, that this new
problem can be solved in linear time on graphs with bounded treewidth.

While the algorithm we used to solve the MRrDdIS was not very efficient,
it might be possible to modify it in such a way that it can be used on more
general graphs. We could also look into optimizing the algorithm.

The (r, d)-RS problem was proven to be NP-complete, but for certain specific
cases it is still unknown whether this is true. Namely if the given IS S has a
size of 2 and distance d ≥ 5. Even though it is solvable in polynomial time
for |S| = 2 and d = 4, we expect the problem to be NP-complete for d = 5,
but a proof has yet to be constructed.

While we also introduced the (r, d)-ORS problem, we did not proof it to be
NP-hard or found any algorithms solving it. In the future, it might be worth-
while to focus on this problem on its own, considering that we could combine
it with results from the MDdIS problem to solve the MRrDdIS problem. We
could for starters look into approximation schemes on graph classes for which
algorithms solving the MDdIS problem already exist.
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