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1 Introduction 
Increasingly large amounts of educational data are collected in online learning environments (OLEs). This trend 

is leveraged by a relatively new field of study, namely educational datamining and learning analytics. In this area, 

knowledge discovery and data mining techniques are used to gain insights from big datasets that are not easily 

interpreted by humans (Baker & Inventado, 2014). Examples are research on disengagement (e.g. attempts to 

game the system), knowledge assessment through cognitive tutors, and the development of distributed 

networked learning systems (Baker & Inventado, 2014). One challenge is to alleviate the work of domain experts 

or cognitive scientists who manually investigate response trajectories to gain insight into learning behaviour 

(Barnes, 2005). 

According to West (1971), the most fruitful diagnosis in teaching – specifically mathematics teaching –

is to investigate error patterns in four steps. First, systematic errors are distinguished from random and careless 

mistakes. Second, the nature of systematic errors is identified; third, the causes of those errors are identified. 

Finally, the appropriate intervention is applied. As will become apparent below, this research focusses on the 

automation of steps 1, 2, and to some extent 3. 

Systematic errors could arise because of a lack of knowledge regarding a concept or because a learner 

has established a false understanding of a concept (i.e. has developed a misconception). Research shows that 

arithmetic misconceptions occur when a learner confronts a difficult or unknown step in a procedure and 

replaces it with an erroneous step (Woodward & Howard, 1994; Pellegrino & Goldman, 1987; Resnick & Ford, 

1981; Brown & Burton, 1978; Van Lehn, 1982, 1988). The identification of misconceptions is important because 

of the implications for giving instructions (Radatz, 1979; Yetkin, 2003). If the identified misconception is 

disregarded, more practice related to the same concept might be suggested or the difficulty level might be 

adjusted. However, the learner can benefit more by using the newly gained knowledge in an appropriate context 

(Nesher, 1987).  

Early work towards automated misconception identification was done by Tatsuoka, who created the 

rule-space method. In this approach, the process of mapping learners’ knowledge states through their responses 

is automated (Tatsuoka, 1983). Tatsuoka noted that binary scoring (1 for the correct answer and 0 for any wrong 

answer) did not consider the erroneous rules that could produce an incorrect (or correct) answer. In addition to 

Tatsuoka, several studies that modelled typical misconceptions, focused on procedural errors (i.e. errors in ‘how 

to’ knowledge), were fruitful (Brown & Burton, 1978; Brown & Van Lehn, 1980). In this context, ‘bugs’ are defined 

as erroneous rules that the system can identify. The bugs are stored in bug libraries and notify the system when 

there is an indication of a misconception and the nature of this misconception. However, the way that OLEs are 

set up introduces inevitable information gaps about a learner’s knowledge state when assessing error responses. 

The systems that are designed to model procedural errors are different from typical OLEs, which makes the 

identification of misconceptions a costly and timely endeavour that requires specific domain expertise (Self, 

1990; Guzman et al., 2010).  

Identifying not only misconceptions but also their causes gives a more complete indication of a learner’s 

knowledge state and allows for appropriate intervention. For example, an erroneous transfer of knowledge that 

is applicable in one context to another context where such knowledge is not applicable directly can be the cause. 

Additionally, it is interesting to understand what concepts the learners are dealing with. Misconceptions can 

occur between several concepts, and where several concepts are applied, a single misconception can occur. 

Investigating the relationship between questions can help the expert to understand the questions that occur in 

the error responses.  

In summary, the identification of misconceptions in OLEs is a costly and timely endeavour that requires 

specific domain expertise. This research proposes a method for the semi-automatic identification of possible 

typical misconceptions and underlying causes, through analysing learning behaviour in an OLE. First, the research 

approach is outlined. Second, the experiment and its results are described. The thesis is concluded with a 

discussion of main outcomes, limitations and possible steps for future research. 
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1.1 Problem Statement  
Frequent patterns of learning behaviour can help the system to understand a learner’s knowledge state. In turn 

this enables it to  balance the level of difficulty, provide relevant hints or simply suggest the learner to continue 

practicing the same exercises (Guerra et al., 2014). In other words, the more information is extracted about the 

specific behaviour of a learner, the more effective interventions an adaptive system can produce to facilitate the 

learner’s learning needs.  

One aspect of learner modelling is the identification of typical misconceptions. In this regard overlay 

models and perturbation models are distinguished (Stansfield et al., 1976; Mayo, 2001). In overlay models, 

learner behaviour is compared to expert behaviour and the learner’s knowledge is thus modelled as a subset of 

expert knowledge (Figure 1.1). Differences are assumed to be gaps but are not specifically modelled. 

Perturbation models try to overcome this problem by acknowledging the difference in terms of quality and 

quantity of a learner’s knowledge pertaining to expert knowledge (Figure 1.2). 

 

 

              
FIGURE 0.2 PERTURBATION MODEL (MAYO, 2001) 

These models show that to better understand a learner’s knowledge state, one must investigate what a 

learner does or does not know, that is, the concepts; but also what a learner has learned incorrectly (i.e. 

misconceptions). Considering the latter, in environments where there is incomplete information about a 

learner’s learning behaviour, learner modelling is still a costly and timely endeavour (Self, 1990; Guzman et al., 

2010). The method proposed in this research attempts to apply knowledge discovery and data mining techniques 

to model typical misconceptions and their causes. Doing so can alleviate part of the costly and timely work 

associated with modelling learners in OLEs. 

  

FIGURE 0.1 OVERLAY MODEL (STANSFIELD ET AL., 1976) 
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2 Research approach 
2.1 Research Objective 
The objective of this thesis is to develop a method for the automatic identification of misconceptions and their 

possible underlying causes through the analysis of logged learning behaviour in an OLE. As in West’s (1971) 

diagnostic teaching method, first systematic erroneous learning behaviour is identified; second, the nature of 

systematic erroneous learning behaviour is investigated; and finally, the cause of systematic erroneous learning 

behaviour is investigated. This research focuses on response trajectories that are the result of answering 

arithmetic exercises. Since the researcher was interested in patterns, a data mining technique called association 

rule mining (ARM) was applied to find meaningful patterns in these response trajectories and a network analysis 

was done to enable the interpretation of these patterns. 
 

2.2 Research Questions 
The research objective led to the following main research question: 

 

[MRQ] How can we effectively identify misconceptions that cause frequent patterns of erroneous learning 

behaviour? 
 

First, systematic errors are investigated because these might be an indication of typical misconceptions. 

Therefore, the following research questions are proposed.  

 

[RQ1] Can systematic errors be distinguished from random and careless errors? 

[RQ2] What are the systematic errors caused by erroneous learning behaviour? 

Second, the underlying causes might be explained through investigation of the error patterns they relate to. 

Therefore, the following research questions were proposed.  

[RQ3] Can we effectively apply knowledge about systematic errors to identify underlying causes? 

Finally, to understand the systematic error patterns, an expert analysis was conducted. This expert analysis was 

expected to answer the following research question.  

 

 [RQ4] Can typical misconceptions be identified based on an expert analysis? 

2.3 CRISP-DM 
Feelders et al. (2000, p.272) noted that data mining – in this paper, association rule mining – is not only concerned 

about ‘the extraction of knowledge from really large datasets’. The authors emphasized the importance of study 

design for data mining processes. Following a proper data mining methodology for implementation of the 

proposed data mining techniques can help to identify important steps and the required expertise and tools, and 

can improve the quality and controllability of the process. Doing so is arguably vital to the ultimate success of 

the project.  

In Azevedo and Santo (2008), two of the most commonly used datamining methodologies are investigated: 

SEMMA and CRISP-DM. The overview shows that for a knowledge discovery process, CRISP-DM is the most 

elaborate data mining methodology. For this reason, it was selected as a framework for this research. CRISP-DM 

stands for CRoss Industry Standard Process for Data Mining (Wirth & Hipp, 2000). This section describes the 

phases of CRISP-DM (shown in Figure 2.1). The CRISP-DM methodology was applied to structure this research, 

as discussed under Experiment Design. Specifically, it allowed the contextualization of the proposed approach 

within a standardized method (see section 4.6, Process Overview). 
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FIGURE 2.1 CRISP-DM (WIRTH & HIPP, 2000)  

Business understanding: The initial phase focuses on understanding the objectives, requirements, and a plan to 

achieve those objectives. Since this methodology is used within a scientific context, domain understanding is 

more appropriate for the wording than business understanding.  

Data understanding: The second phase focuses on collecting, describing and exploring data and verifying data 

quality.  

Data preparation: The third phase focuses on the selection, cleaning, and formatting of the data.  

Modelling: The fourth phase focuses on the selection of the modelling technique, building the model and 

assessing the model.  

Evaluation: The fifth phase focuses on the evaluation of the results, a review of the process and determining 

what steps to take next.  

Deployment: The last phase focuses on the deployment in the real world, which is out of the scope of this 

project and is therefore not elaborated on. 
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3 Background 
3.1 Error analysis in Mathematics Education 
Error analysis in mathematics education refers to analysing learner errors. The purpose is to diagnose individual 

learning difficulties and improve understanding about the mathematical educational process (i.e. learning and 

teaching students in the mathematics domain). In a literature survey by Radatz (1979), errors in mathematics 

education were found to be mostly the result or product of previous experience in the mathematics classroom. 

The systematic, persistent and analysable nature of some of these errors are helpful in automating the diagnosis 

of such errors. Specifically, student errors: 

- are causally determined and often systematic 

- are persistent and last for several school years unless there is appropriate intervention 

- can be analysed and described as error techniques 

- have causes that can be derived through the evidence that learners provide by interacting in the 

educational environment 

Learners are thought to learn mathematics procedurally and conceptually. Procedural learning focusses on skills 

and step-by-step instructions, whereas conceptual learning focusses on ideas and generalizations that connect 

ideas. If procedures are taught without the learner appreciating the mathematical concepts, there is a risk these 

procedures will interfere with later meaningful learning (Ashlock, 2006). Some learners invent their own 

computational procedures that can result in erroneous answers; at other times the answers might be correct . 

Because these procedures sometimes are correct, students and teachers assume that a correct procedure has 

been implemented. These systematic procedures, which are often erroneous, create error patterns that reveal 

the misconceptions that were learned (Ashlock, 2006).  

Anderson (1989) distinguished three causes of errors: slips, importations of prior misconceptions into a 

new domain and within-domain misconceptions. Slips can be described as errors that are not reliably made (i.e. 

random errors) and errors that can be corrected when pointed out (i.e. careless errors). This can be the result of 

little practice and memory overload when implementing exercises (West, 1971; Anderson & Jeffries 1985; 

Anderson, 1989; Gowda et al., 2011; Fisher & Frey, 2012). Prior misconceptions into a new domain are errors 

caused by transferring erroneous knowledge from another domain (e.g. physics) to the domain that is 

investigated (e.g. mathematics). Anderson argued that if learners lack an abundance of conceptions, 

investigating such errors is redundant. For that reason, prior misconceptions into a new domain were disregarded 

in this research. Finally, within-domain misconceptions are misconceptions that do not arise through prior belief 

but through the learning that takes place in a domain. This research was focussed on within-domain 

misconceptions that occur in the multiplication domain. 

  

Each individual erroneous procedure can be interesting because of the many reasons learners tend to learn 

patterns of error. However, literature exists about how misconceptions are learned. Ashlock (2006) defined 

overgeneralization and overspecializing as possible approaches for generating misconceptions. 

Overgeneralization can be described as jumping to a conclusion before having accurate data. A learner might 

falsely transfer the knowledge from the concept of multiplying by 1 when multiplying by 0, resulting in a 

misconception. In this case, it would be ‘multiplying by 0 is the same as multiplying by 1’. The latter disregards 

the actual mathematical concepts of multiplication by 1 and multiplication by 0.  

Overspecialization, on the other hand, occurs when learners restrict the resulting procedures 

inappropriately (e.g. the answer must always end with two decimals). Additionally, Brown and Skow (2016) 

defined misconception of place value as a conceptual error, where the learner does not understand place value 

and answers in the wrong place-value position. Finding out the cause of erroneous knowledge transfer can help 

to construct a correct learner model, and affects the implications for instruction.  

For completeness sake, gaming the system should be mentioned as a possibility that yields an error response. 

Gaming the system refers to the exploitation of a system’s properties for help and feedback, instead of 

attempting to learn the proposed material (Baker et al., 2008). 
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3.2 Elicitation, diagnosis and the cause of systematic errors 
As noted by Guzman et al. (2010, p.245), ‘Most authors have focused on misconception diagnosis rather than on 

its elicitation, leaving this issue to the domain experts’. Distinguishing between misconception elicitation and 

diagnosis is important because of the difference between process and goal. In misconception diagnosis, the goal 

is to identify how learners learn procedural skills through subskills. Snapshots are taken of learners who are 

solving a problem, to acquire a relatively complete learner model. This process is illustrated in the cornerstone 

paper ‘Repair Theory: A Generative Theory of Bugs in Procedural Skills’ by Brown and van Lehn (1980). It goes as 

follows: 

generative theory of bugs → bugs → systematic errors 

In the above notation, the arrow (→) means ‘explains’. The generative theory  (i.e. a set of formal principles) is 

set up to understand what the cause of bugs is, based on bug ‘stories’ – which are informal explanations of bugs 

that occur when performing tasks. Bug stories could lead to a generative theory of bugs (e.g. bug stories → 

generative theory of bugs). After the generative theory is set up, bugs are generated in a bug library. Finally, the 

generated bugs are validated through systematic errors in the data. Doing so enables insight into what and why 

certain bugs occur and not others. In a similar fashion, an illustration can be made to explain the process of 

misconception elicitation:  

systematic errors → bugs → bug stories 

As can be seen, in the process of misconception elicitation, the goal is not to automate the identification of 

causes for misconception, but rather to automate a part of the process that domain experts need to perform to 

create informal bug stories. These bug stories can then be validated through misconception diagnosis (which was 

not part of this research). Although the goal of misconception elicitation is not to find the cause of 

misconceptions, one hypothesis in this paper is that the thorough investigation of systematic errors can give 

some explanation of the cause of systematic errors. 

The repair theory that was discussed by Brown and van Lehn (1980) and van Lehn (1983) is important 

for understanding how systematic errors occur. These authors argued that learners in the midst of solving a 

problem reach an impasse, a situation where they do not have the right knowledge to solve the problem 

correctly. At this moment, learners become inventive and try to repair the procedure instead of applying the 

correct one. The authors stated that bugs can thus often be best explained as ‘patches’.  

In this research, the sub-steps learners take to reach an erroneous answer are not available; therefore, 

the process of misconception elicitation can at most give an informal explanation about the underlying cause. 

However, as Ben-Zeev (1998) noted, not all errors can be accredited to learners encountering an impasse. 

Instead, methods like the repair method are overly focused on errors that occur during execution and do not 

focus enough on the learning acquisition phase. For example, learners sometimes transfer knowledge 

erroneously through real-life analogies (Graeber, 1993). This research did not include data on the learning 

acquisition phase and was focussed only on within-domain misconceptions. 

3.3 Misconception elicitation in the Educational Data mining domain 
As mentioned in the problem statement, considering overlay models alone limits the possibility of revealing 

learners’ misconceptions. The bug libraries that were introduced by Burton and Van Lehn (Brown & Burton, 1978; 

Brown & Van Lehn, 1980) were a leap forward in terms of automated misconception diagnosis. However, bug 

libraries remain difficult to set up by hand and are exhaustive; that is, unanticipated erroneous learning 

behaviour cannot be included in bug libraries. As a response to this problem, several attempts were made to 

extend bug libraries. The most notable attempt was by Sleeman et al. (1990), where two rule-based algorithms 

INFER* and MALGEN were implemented to elicit new rules, with and without student intervention, respectively. 

The latter algorithms both needed active participation of experts to decide whether the inferred rule was 

appropriate for the bug library. 

The first algorithm that was less reliant on experts was proposed by Baffes and Mooney (1996), using examples 

of students’ behaviour as input. Rules were modified until the behaviour was explained. More recently, Guzman 

et al. (2010) proposed a semi-automatic misconception discovery method by association rule mining erroneous 
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response trajectories. Although their technique helps teachers to discover misconceptions, the authors did not 

elaborate on how to deal with the abundance of rules or how to interpret the discovered rules effectively.  

Two research projects that do not fall under misconception elicitation but are interesting to mention 

are Buwalda et al. (2016) and Savi et al. (2018). Buwalda et al. (2016) developed a cognitive model that gives a 

comprehensible account of the errors made in single-digit multiplication problems, using the same dataset that 

was used in this thesis. Although the model elaborates common mistakes made in individual questions, it is an 

interesting account of explaining multiplication errors that should be considered. Second, Savi et al. (2018) 

proposed an approach to investigate the automation of diagnosing misconceptions in single-digit multiplication. 

The proposed method exploited known theoretical relations between misconceptions and errors as an indication 

of the probability of a misconception.  
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4 Experimental Design 
4.1 Math garden: web-based platform for adaptive training of 

elementary school subject 
This research is based on response trajectories collected in Math Garden, an OLE where children can practise 

arithmetic exercises (see Figure 4.1). Math Garden was initiated in 2007 and was designed to freely capture long 

and dense time-series data for cognitive development studies and mathematical development. Since its 

initiation, it has been extended to other domains, such as language learning, statistics and typing, using various 

games (Brinkhuis et al., 2018). This research was interested in the response logs collected in the games where 

multiplication is exercised.  

 

 

 
FIGURE 4.1 MATH GARDEN DOMAINS (MATH GARDEN, 2018) 

As shown in Figure 4.2, children are presented with a question or item. The wellbeing of the plant depends on 

the frequency of exercise in a domain, with each domain having its own plant. Children respond in an open 

format. Math Garden tries to match children with items at an appropriate level of difficulty. Hence, children are 

shown easier items if they cannot answer the question within a certain timeframe, or answer incorrectly but 

slowly, and they are served more difficult items if they answer the question quickly and correctly. Math Garden’s 

adaptive item selection focuses on facilitating learning and motivation rather than improving measurement 

precision, by considering the preferred difficulty level and response history (Brinkhuis et al., 2018). 
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FIGURE 4.2 MATH GARDEN MULTIPLICATION (MATH GARDEN, 2018)  

Math Garden applies two psychometric innovations, namely scoring rules and adaptive item selection. Scoring 

rules are applied to track and control the progress of learners. The scoring rules in Math Garden incorporate 

the correctness of the response and the time taken to respond. These features discourage guessing and 

enforce a speed–accuracy trade-off (Wickelgren, 1977; Maris & van der Maas, 2012). Each second that the 

game lasts, a coin is lost. When a learner answers correctly, they gain the remaining coins, which can be used 

to buy virtual prizes. Incorrect answers result in coins being subtracted. Children can answer with a question 

mark when they do not know the answer, and for a question-mark response they do not lose coins. However, 

to prevent gaming of the system, the use of question marks is restricted (Brinkhuis et al., 2018). 

Adaptive item selection estimates the multiplication performance of the learner and selects an item 

based on that assessment. This method is based on Elo ratings, which originated in the chess community. Elo 

ratings where vital to dynamically assess a chess player’s performance (Elo, 1978). In maths learning, it is used 

to predict the performance rating of a learner while considering the ratings of all participating learners. 

Because the Elo rating method allows many contestants to be compared in a dynamic environment, it is 

suitable for an OLE. Also, in OLEs, children’s abilities and item difficulties change dynamically over time. Using 

the Elo method means that items and a learner's ability can be assessed and enables items to be adaptively 

selected (Brinkhuis et al., 2018). 

4.2 Evidence model 
Guzmán et al. (2010) proposed a technique for misconception inference, in which concepts, tasks and 

misconceptions were included in an evidence-centred design (ECD) model. This ECD model is based on the 

learner modelling framework built for assessment tasks by Mislevy et al. (2003). The ECD model consists of three 

layers: the misconception layer, the task model and the concept layer (Figure 4.3). According to Guzmán et al. 

(2010, p. 249), ‘ECD models incorporate representations of what a learner knows and does not know, in terms of 

the results of his/her interaction performance (evidence) with assessment tasks’. In other words, a learner 

answering tasks creates an opportunity to investigate the learner’s knowledge state about performing a specific 

task. This model was used to define the relevant constructs and was extended with a relationship component. 
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FIGURE 4.3 ECD MODEL (GUZMAN ET AL., 2010; MISLEVY, 2003) 

The misconception layer consists of misconceptions that are made apparent through patterns of systematic 

errors which can be defined as ‘a repeatedly occurring incorrect response that is evident in a specific 

algorithmic computation’ (Cox, 1974, p.3). An example of a systematic error caused by a misconception in 

arithmetic multiplication exercises by children is that they do not multiply and place one of the multiplicands in 

the answer (Attisha & Yazdani; Cox, 1974). Additionally, literature state that three to five errors on a particular 

type of problem (e.g. multi-digit multiplication) indicate an error pattern (Brown et al., 2016; Howell, Fox, & 

Morehead, 1993; Radatz, 1979). An effective way to identify systematic error patterns is association rule 

mining, which is described in the next section. 

The task model represents any task that could expose a learner’s knowledge state. Here concepts are 

linked to tasks (i.e. questions) and possible typical misconceptions, and their underlying concepts. The links are 

illustrated by black lines. The main hypothesis is that typical misconceptions responsible for erroneous learning 

behaviour can be found through the automated investigation of response logs. These logs contain the results of 

tasks the children have performed.  

In addition to examining typical misconceptions, this research considers concepts to assess the 

knowledge state of a learner. This refers to the concept layer. Concepts could indicate the knowledge a learner 

possesses or the lack of knowledge. Identifying what the causes are, and concepts related to these causes, can 

give insight into what has sparked the erroneous knowledge transfer. The concept layer was derived through 

manual investigation and was not part of the approach.  

Finally, the relationship components are shown by the dashed lines in Figure 4.3. These illustrate the 

possible erroneous knowledge derived from a concept that can cause a misconception to arise. 
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4.3 Association Rule Mining 
An effective datamining technique for finding frequent patterns of erroneous learning behaviour, and the 

possible associations between these patterns, is association rule mining (Dogan & Camurcu, 2008). Association 

rule mining reveals how many times item X occurs with item Y in an item set (i.e. the support of an item set). It 

also determines how likely it is that item X occurs with item Y in an item set (i.e. the confidence of an item set).1 

This is formally written as 

   Support =  
𝑓𝑟𝑒𝑞(𝑋,𝑌)

𝑁
 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =

𝑓𝑟𝑒𝑞(𝑋,𝑌)

𝑓𝑟𝑒𝑞(𝑋)
 

where freq refers to frequency. Items are created by concatenating the question with an answer. For example, 

‘5x2’ and ‘5’ become ‘5x2=5’. Table 4.1 shows an example of a simplified dataset with response trajectories from 

four learners on four items. 

TABLE 4.1 EXAMPLE DATASET 

Response 

trajectories 

5x2 =5 2x3=2 4x2=4 4x5=4 

1 0 1 1 1 

2 1 1 1 0 

3 1 1 1 0 

4 0 1 0 0 

 

Item 5x2=5 occurs twice with 2x3=2 and 4x2=4, so the support is 2/4 = 50%. Item 4x5=4 occurs once with 2x3=2 

and 4x2=4, so the confidence is 0.25/0.75=33.3%. These thresholds allow for the identification of meaningful 

association rules – or more specifically, frequent patterns of erroneous learning behaviour that might indicate 

misconceptions (Table 4.2).  

TABLE 4.2 EXAMPLE ASSOCIATION RULES 

Association Rules 

Item 1 → Item 2, 

item 3 

Item 3 → Item 4, 

Item 5, Item 6 

Item X → Item Y 

 

In addition to support and confidence, another measure that might be important is lift. The lift is the confidence 

of a rule divided by the probability that a response trajectory contains X, the expected confidence. More formally, 

     𝐿𝑖𝑓𝑡 =  
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒
 

This is an indication of the probability that a response trajectory that contains X also contains Y, while considering 

the independence between X and Y. In other words, lift is a performance measure that incorporates how likely 

it is that the item will occur in the dataset. For example, if an item occurs only a few times in the dataset, it has 

a relatively high lift because it has a low expected confidence. A lift of 1 implies no association between X and Y; 

a lift greater than 1 implies a likely association between X and Y; and a lift smaller than 1 implies an unlikely 

association between X and Y. 

                                                                 
1 From now on, items refer to ‘question + answer’ instead of only ‘question’. 
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The found association rules give an indication of the relationship between the investigated items. They can help 

to distinguish systematic errors from random and careless errors, and can indicate patterns of erroneous learning 

behaviour from which typical misconceptions might be derived. The support and confidence enforce significance 

and interestingness of the patterns of erroneous learning behaviour.  

 

4.3.1 Association rule mining algorithm 
The most commonly known algorithm is the Apriori algorithm. This algorithm is relatively simple and can be 

described in two main steps. First, all frequent item sets must be found with a minimum support threshold. This 

is done iteratively in a so-called ‘level-wise search’. Here a frequent item set is any set that occurs n times. First, 

1-item frequent item sets are found; second, 2-item sets are found, and so on. In the second step the frequent 

item sets are used to generate association rules. Association rules are generated if they meet the set support 

and confidence threshold. Because association rule mining regularly generates many – that is, too many – results, 

it is important to set the right confidence and support threshold to find interesting patterns (Agrawal & Srikant, 

1994). In this research, the Pymining library was applied (Dagenais, 2015).  

 

4.4 Network analysis  
A collection of rules can be seen as a network. Here items can be considered as nodes and the connections 

between items as edges. This is helpful because it allows insight into the vast amount of rules that association 

mining typically produces. The following rules serve as an example: 

1) A,B → C 

2) C,D → E 

3) B,C → D 

4) H,I → J 

Rules 1, 2 and 3 are connected as a network 

through items C and E. Rule 4 does not 

contain any items that rule 1, 2 and 3 

possess, and is thus not connected (Figure 

4.4). Visualizing rules as a graph can help to 

identify communality between the items 

and separate items that are not connected 

in any way. However, simply connecting 

rules that are syntactically similar does not 

mean network visualizations will provide 

insight. First, syntactically similar items 

might not be semantically similar. For 

example, item 0 x 1 = 1 could be the result 

of learners applying multiplication-by-1 to 

multiplication-by-0 questions. It could also 

be the result of learners adding 0 to 1, or 

could be the result of transferring the 

multiplicand 1. When semantically 

different rules are connected based on 

syntactically similar items, the explicability of a group can become clouded quickly.  

 

Second, rules do not guarantee that items occur together. Any redundant item in a faulty rule can be the cause 

for smaller meaningful groups to be merged into larger inexplicable groups. The confidence and lift thresholds 

can be set to prevent this. However, as explained in the following sections, doing so does not completely solve 

these challenges. 

 

FIGURE 4.4 EXAMPLE NETWORK OF RULES 



13 
 

Finally, it is important to set some definitions to be able to discuss the network analysis in a specific manner. A 

subgraph is a subset of nodes in a network, with the edges linking these nodes. Any group of nodes can form a 

subgraph. A component subgraph is a portion of the network that is disconnected from another portion in the 

network (Tsvetovat & Kouznetsov, 2011). For example, Figure 4.4 shows two subgraphs, more specifically two 

component subgraphs.  

 

In the next section, community detection is discussed. This approach counters some of the challenges by enabling 

the discovery of relevant groups within a larger network. 

  

4.4.1 Community detection 
To understand how and why items relate to each other in a network of rules, community detection is applied. 

Community detection is the process of discovering strongly connected groups within a larger network. In real-

world networks, many examples of communities can be found around shared interests or themes; for example,  

communities may form around discussed topics in social networks, or voter communities around election 

candidates. The easy interpretability of these communities can be advantageous for misconception elicitation. 

Items that seem to be more connected with some items than others form communities of items, which allows 

the expert to interpret items and rules in a grouped manner. 

Many community detection algorithms are set up to optimize for modularity. This  is a metric that can 

be used to measure the quality of the cluster in terms of interconnectedness (Blondel et al. 2008; Clauset et al. 

2004; Newman,2004;2006). It is formally written as 

𝑀𝑐 = ∑  

𝑛𝑐

𝑐=1

[
𝐿𝑐

𝐿
− (

𝑘𝑐

2𝐿
)

2

] 

where nc represents the number of communities, Lc the number of links within a community, kc the total 

degree of nodes in a community, and L the total links in the network. The higher the modularity, the more 

optimal the clusters are. The modularity of a network is depicted in Figures 4.5 and 4.6. 

 

 

In Figure 4.5, the calculated Mc = [
9

24
− (

20

48
)

2

] +  [
6

24
− (

14

48
)

2

] + [
6

24
− (

12

48
)

2

] ≈ 0.55. By contrast, in Figure 4.6, Mc 

= [
4

24
− (

11

48
)

2

] +  [
8

24
− (

21

48
)

2

] + [
6

24
− (

12

48
)

2

] ≈ 0.44.  In other words, the more disconnected the communities 

are, the higher the modularity. 

FIGURE 4.5 OPTIMAL CLUSTERS FIGURE 4.6 SUBOPTIMAL CLUSTERS 
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In this research, the network of rules was treated as an undirected graph (such as in Figure 4.4). Hence, 

rules were treated as items that were likely to occur together. The if A then B relationship was disregarded to 

simplify the final visualizations for the expert. A greedy modularity-maximization algorithm, the Louvain 

algorithm implemented in NetworkX library, was used (Blondel et al., 2008; Aynaud, 2009). Legara (2016) 

presented a broader practical introduction of community structures in NetworkX. The next section discusses how 

association rule mining and community detection can further help the automation of the misconception 

elicitation process. 

4.4.2 Approach towards Misconception Elicitation  
The properties of a network have important implications for how the analysis is conducted and the results are 

interpreted. Examples are citation networks and product networks. In citation networks there clearly is a reason 

why a paper is cited, but in product networks people could be buying two unrelated products, causing many 

chance associations (Raeder & Chawla, 2011). In the case of children answering arithmetic exercises, some items 

are ambiguous but syntactically similar; in addition, redundant items may occur. The challenges in analysing 

these items must be targeted by an approach that takes these types of properties into account.  

Apart from the challenges that come with analysis, interpretability of the results is also important. The main goal 

is to present results that are interpretable for an expert in two ways: 1) in terms of numbers (i.e. too many results 

decrease the effectiveness of the tool in terms of time spent analysing); and 2) in terms of importance (i.e. the 

approach must show error patterns that can indicate misconceptions). The following approach was set up to deal 

with these challenges and goals. 

 

In an ideal situation, support and confidence thresholds are raised to a ‘high’ level. The precise meaning of ‘high’ 

is not examined here. This results in a limited set of rules with items that are highly likely to occur together. 

Applying community detection in this scenario is effective because of the disconnectedness of the rules. In such 

a scenario, the resulting communities are highly explicable. Unfortunately, this scenario will not result in many 

items that can be investigated, because some error patterns occur relatively often or are likely to occur together. 

These variations can be linked to several factors, such as the number of times a learner views a specific set of 

questions, the difficulty of the procedure, and the probability of the learner using an erroneous strategy. These 

variations have been shown to be advantageous in distinguishing the semantics of syntactically similar items.  

To find new items in rules, the support threshold must be lowered from the ‘high’-level ideal. Doing so leads 

to the following outcomes: 1) more interesting rules appear with new items; and 2) more redundant rules appear 

with already discovered items. Since redundant rules with already discovered items raise the interconnectedness 

of the network, they make it harder to find explicable communities. Therefore, it is better to prune these 

redundant rules altogether. Before lowering the thresholds, rules that contain syntactically similar items should 

be pruned to enable more interesting rules with new items and to prevent redundant rules with already 

discovered items. This process can be repeated until minimal support and confidence thresholds are met. To 

determine the measures by which the thresholds should be lowered, the quality of the cluster (i.e. the 

modularity) should be considered. These steps can be formalised in an algorithm which has the following steps: 

 

1) Set minimum support and confidence thresholds.   

2) Mine rules based on minimum support and confidence thresholds. 

3) Set number of steps and maximum number of allowed nodes in a cluster. 

4) Determine isup and icon (i.e. initial support and confidence thresholds). 

5) Determine X and Y (i.e. the number by which the support and confidence thresholds decrease in 

each iteration). 

6) Iterate. 

a. Lower support and confidence thresholds with X and Y based on the step number. 

b. Detect optimal communities. 

c. Return modularity, number of detected communities, rules, components and unique items. 

d. Prune rules that contain items from last iteration. 

e. If minimum set support and confidence threshold are met, go to (7). If not, go to (6). 
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7) Calculate average modularity, total number of detected communities, rules, component 

subgraphs and unique items per step. 

8) Repeat from (5) until average modularity no longer changes significantly. 

9) Select optimal step based on highest average modularity (k-core=3). 

10) If a community in an iteration has more than a maximum number of allowed nodes in a cluster, 

repeat from (4) but replace isup and icon with the support and confidence thresholds of that 

iteration. If not, stop. 

 

The proposed algorithm implies that  are four parameters that must be set: the minimal support and confidence 

thresholds, the initial support and confidence thresholds, the number of steps, and the maximum number of 

nodes in a community. There are various ways to approach setting the minimum support and confidence 

thresholds, and they depend on the preferences of the expert. If the expert is not specifically interested in how 

often a rule must be present in the data, an arbitrary number can be chosen and lowered until the number of 

rules becomes unmanageable. Alternatively, the expert can select a support threshold with a specific number 

based on other preferences (Raeder & Chawla, 2011).  

Determining the initial support and confidence is slightly different from determining the minimum 

support and confidence thresholds. When deciding the ideal icon and isup, the goal is to find the most explicable 

communities in terms of likeliness and semantics, and to disregard the diversity of items. This can be done by 

raising the confidence to an interpretable number of rules, and selecting the accompanied support threshold 

that optimizes for modularity so that the rules are optimally clustered. The isup and icon values are determined 

by finding the ideal values for both support and confidence. Here more interesting rules with new items can be 

found by lowering the thresholds over two dimensions, X and Y. This is formally written as 

 

𝑋(𝑖𝑠𝑢𝑝, 𝑠𝑡𝑒𝑝) =
𝑖𝑠𝑢𝑝 − 𝑚𝑖𝑛𝑠𝑢𝑝 

𝑠𝑡𝑒𝑝
 

𝑌(𝑖𝑐𝑜𝑛, 𝑠𝑡𝑒𝑝) =
𝑖𝑐𝑜𝑛 − 𝑚𝑖𝑛𝑐𝑜𝑛 

𝑠𝑡𝑒𝑝
 

where isup and icon refer to the initial support and confidence, minsup and mincon refer to the minimum 

support and confidence thresholds, step is the step number, and X and Y are the decrease of the support 

threshold per iteration. The step number increases by 1 each step, starting at 1. The number of iterations per 

step is equal to the step number (e.g. step 1 has 1 iteration, step 2 has 2 iterations, step n has n iterations). In 

other words, in one step the algorithm iterates and decreases X and Y until minsup and mincon are met. In this 

approach, decreasing the lift is not interesting, since the lift is applied only to find the significance of the mined 

rule (i.e. the rule is likely not found coincidentally).   

At the end of each iteration, the modularity of each iteration is summed with the modularity of the last 

step. At the end of each step, the total sum of modularity measures is divided by the number of iterations that 

were performed in that step (i.e. calculating the average modularity). This value indicates what step number 

obtained the highest quality of communities on average. The number of steps can be set to an arbitrary number 

that allows the algorithm to run until the average modularity no longer changes significantly. 

The modularity increases with a higher step number, such that a higher step number may mean fewer 

rules, sparser communities, and higher modularity. This scenario can give a false indication of quality. However, 

if no rules are found in an iteration, the modularity for that iteration is 0, which lowers the average modularity 

score satisfactorily. This penalty ensures the quality of the overall metric.  

Another counter-measure to prevent a false indication of quality is the implementation of k-core 

networks before calculating the modularity of the network. Implementing k-core networks prevents rules that 

are not connected to any other rules to be considered as communities, by generating a network for which all 

nodes have at least k edges. Although nodes with edges that are smaller than k can be interesting, this approach 

is set up to find the best set of groups of rules. Therefore, communities that are found with smaller than k edges 

are investigated but not considered when calculating the quality of groups. This makes communities of rules 

more explicable and minimizes the number of redundant rules. 
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To ensure that the found communities in each iteration are interpretable and are not too large, the 

number of nodes is limited a maximum number of allowed nodes in a cluster. If one of the communities seems 

larger than this number, the proposed algorithm is repeated with the support and confidence of that iteration 

replacing isup and icon. The latter step is also implemented to satisfy the goals in terms of numbers and 

importance.  

In summary, the surplus of items, rules and clusters of rules are reduced to an interpretable amount, which is 

relevant to the proposed research questions. Once the communities are detected, they can be visualized in a 

similar fashion as that shown in Figure 4.4. 

 

4.4.3 Ego networks 
To add more granularity to the approach, an additional type of network visualization is proposed, the ego 

network. An ego network revolves around a single node (Figure 4.7). In social network analysis, the goal is to find 

the most important actor (Everett & Borgatti, 2005). Normally, egos are determined based on the betweenness 

centrality, the node with the shortest path to all other nodes. In this approach the ego was determined based on 

degree centrality, the number of edges that enter or leave a node. The expert can decide whether it is interesting 

to see the node with the highest or lowest degree centrality. An expert could find the largest hub if interested in 

the most interlinked node in the community (illustrated in Figure 4.7), or could find the node with the least nodes 

to enable insight in edge cases.  

 

 

FIGURE 4.5 EXAMPLE OF EGO NETWORK 

After an ego is selected, an expert can interactively change the support and confidence thresholds without 

pruning any rules. Doing so will give a more complete picture around one item. In the previously discussed 

method, rules below a certain support and confidence threshold were pruned and were thus not included in the 

final community visualizations.  

4.5 Expert analysis 
The final community visualizations were interpreted based on a literature study. In isolation, the error patterns 

did not answer RQ3 and RQ4 as proposed in this research. In a case study by Brown et al. (2016), manual 

instructions were given to conduct proper error analysis in the mathematics domain. The steps were similar to 

those mentioned in an introduction by West (1971): 

1) Collect data – at least 3 to 5 errors to the same type of problem 

2) Identify error patterns 

3) Determine reasons for errors 

4) Use the data to intervene 

 

In the previous stages of this thesis, this approach was used with automation of steps 1 and 2. However, to 

understand what the reason is for an error pattern when learners solve mathematical problems, error types must 

first be understood. Brown et al. (2016) distinguished three error types: 

1. Factual errors: caused by lack of factual information 

2. Procedural errors: caused by incorrect performance steps 

3. Conceptual errors: caused by faulty understanding of principles and ideas (i.e. misconceptions) 
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These error types are all related to lack of knowledge or misunderstanding (Brown et al., 2016; Fisher & Frey, 

2012; Riccomini, 2014). Brown et al. (2016) illustrated the error types as follows in Table 4.3, 4.4 and 4.5.  

TABLE 4.3 FACTUAL ERRORS 

Factual errors Examples 

Has not mastered basic number facts 3 + 2 = 7, 2 x 3 = 7, 7 – 4 =, 8 / 4 = 3. 

Misidentifies signs 2 x 3 = 5 (sees a multiplication sign as an addition 

sign), 8 / 4 = 4 (sees a division sign as a minus sign). 

Misidentifies digits The student identifies a 5 as a 2. 

Makes counting errors 1,2,3,5 (the student skips 4). 

Does not know mathematical terms The student does not know what multiplication 

means. 

Does not know mathematical formulas The student does not know mathematical formulas 

(e.g. 2πr). 

 

 

TABLE 4.4 PROCEDURAL ERRORS 

Procedural errors Examples 

Regrouping errors 

Forgetting to regroup (carry): the student 

forgets to regroup (carry) when multiplying 

  56 

x  2 

102 

After multiplying 2 x 6, the student fails to 

regroup one group of 10 from the tens column.  

 

Regrouping across a 0: When a problem 

contains one or more 0s in the minuend (top 

number), the student is unsure what to do  

304 

- 21 

323 

After multiplying 2 x 6, the student fails to 

regroup one group of 10 from the tens column.  

 

Performing an incorrect operation: Although 

students understand operators, they often 

apply them incorrectly (e.g. multiplying instead 

of adding) 

3 

 x 2 

5 

The student added instead of multiplied. 

Fraction errors  

Failure to find common denominator when 

adding and subtracting fractions  

3/4 + 

1/3  

= 1/7 

The student added the nominators and then the 

denominators, without finding the common 

denominator. 

Failure to invert and then multiply when 

dividing fractions 

½ / 2 =  

½ * 2 

The student did not invert the 2. 

Failure to change the denominator in 

multiplying fractions  

2/8 * 

5/8 = 

10/8 

The student did not multiply the denominators. 

Incorrectly converting a mixed number to an 

improper fraction 

2 *1½ 

= 4/2 

To find the numerator, the student added 2 + 1 

+ 1 to get 4. 
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Decimal errors  

Not aligning decimal points when adding or 

subtracting 

120.4 

+63.21 

75.25 

The student did not align decimal points. 

Not placing decimal in appropriate place when 

multiplying or dividing  

Note: This could also be a conceptual error 

related to place value, as described in Table 4.5 

3.4 

x .2 

6.8 

The student aligns the decimal point in the 

product with the decimal point factors. 

 

TABLE 4.5 CONCEPTUAL ERRORS 

Conceptual errors Examples 

Misunderstanding of place value:  

The student does not understand place 

value, and records the answer so that 

numbers have inappropriate place values 

67 

+ 4 

17 

The student added all 
the numbers together. 

10 

+ 9 

91 

The student recorded 
the answer with the 
number reversed. 

Write the following as a number 

a) Seventy-six 

b) Nine hundred seventy-four 

c) Six-thousand, six hundred, 

twenty-four 

Student answer: 

a) 76 

b) 90074 

c) 600060024 

The student does not 
have the conceptual 
understanding of place 
value position for values 
beyond two digits. 

Overgeneralization:  

Because of a lack of understanding, the 

student incorrectly applies rules or 

knowledge to novel situations 

321 

+ 245 

124 

The student subtracts 

the number that is less 

than the greater 

number. 

Place in the right order from 

smallest to largest 

77/486, 1/351, 12/200 

The student does not 

understand the relation 

between the numerator 

and denominator.  

Overspecialization:  

Because of a lack of understanding, the 

student develops an overly narrow 

definition of a given concept, or of when 

to apply a rule or algorithm 

Which of the shapes are triangles? 

a) ◢ 

b) ◥ 

c) both 
 

Answer 

a) 

The student chooses ‘a’ 

just because of the 

orientation. 
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To determine why a student makes a particular error, Brown et al. (2016) proposed the following strategies: 

1) Interview the student 

2) Observe the student 

3) Look for an exception to the error pattern  

Interviewing is not applicable to large-scale OLEs, and observing the student is automated in this approach. 

Looking for an exception to the error pattern can be highly informative, since it can indicate whether a student 

has partial or basic understanding of the concept in question. When interpreting the final plots, exceptions are 

kept in mind.  

It must be noted that procedural and conceptual knowledge often overlap and are thus hard to 

distinguish (Brown et al., 2016; Rittle-Johnson et al., 2001; Riccomini, 2014). Also, procedural errors are most 

common and are therefore the most likely to be found (Brown et al., 2016; Riccomini, 2014). 

Accuracy  

To find out how accurate the proposed approach was, the precision and recall were calculated. The precision 

allows calculating how many of the found cases are relevant (i.e. factual, procedural or conceptual errors). 

Formally this is written as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 

where TP stands for true positives the correct found cases (i.e. are explicable misconceptions), and TN stands for 

true negatives the incorrectly predicted cases (i.e. procedural, factual errors). 

 

Recall allows to calculate how complete the results are, more formally written as 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where FN stands for false negatives for the incorrect cases that this approach (correctly) disregards (Powers, 

2011). Because the rules that are pruned are redundant, they will not form sensible groups (i.e. communities 

that indicate misconceptions, factual or procedural errors). Therefore, calculating the recall is more appropriate 

by using the number of unique items in the discovered communities (TP) and the number of unique items that 

are pruned away (FN). 

 

4.6 Process Overview 
Based on the CRISP-DM model, a process overview is created of the steps that are needed to investigate the 

research questions in a rigorous manner (see Figure 4.8). First, the data are selected and described, and popular 

errors are identified to understand what systematic errors might arise. Popular errors are errors that are common 

but not necessarily part of a pattern. Second, data are cleaned and prepared for association rule mining. This 

results in rules of erroneous responses. Finally, network analysis is performed to enable interpretation of the 

rules. After the network analysis, the expert can – based on the insights gained – continue investigating in an 

interactive manner. Finally, the expert analysis is performed while considering the concepts that occur in the 

arithmetic exercises. 
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FIGURE 4.6 PROCESS OVERVIEW 
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5 Data understanding 
5.1 Describing the dataset 
The dataset consisted of six relevant columns, as shown and described in Table 5.1. The data set was obtained 

on 19 March 2018, and contained 10,440,954 responses, 115,044 user IDs and 1,232 questions. Assuming the 

data were aggregated in a similar fashion as in Buwalda et al. (2016), learners were school children between 

5 and 13 years. Among all responses, 73% were correct and 27% incorrect. Some questions occurred more than 

others, as shown in Figure 5.1 – a point that should be considered. The occurrence of a question is shown on the 

y-axis and the specific questions are mapped on the x-axis. The labels on the x-axis removed as they were visually 

indistinguishable.   

Apart from giving numerical answers, users have the option to respond with a question mark if they do 

not know how to answer the question. This is indicated by an inverted question mark (¿). If a user did not answer 

a question within the set time period, the answer response is indicated by an ellipsis (…). The top three error 

responses were ¿ (29%), … (17%), and 1 (1%). 

 
TABLE 5.1 MATH GARDEN DATA DESCRIPTION 

Column name Description  Type Example 

user_id Unique user Continuous 1 

correct_answered Correct or erroneous 

response  

Binary 0 or 1 

difficulty Difficulty of item Continuous 0,1,2 

created Time relative from the 

previous item 

Continuous 2980353  

answer Specific answer Continuous 5, ¿, … 

question Specific question Continuous 1 x 2 

 

 

FIGURE 5.1 FREQUENCY OF UNIQUE QUESTIONS   

5.2 Building the ground truth  
In this section, popular errors are investigated. By investigating popular errors, hypotheses can be set up about 

what systematic error patterns might arise and thus which typical misconceptions might occur. The section that 

follows also explores the ground truth for the concepts that might occur. A data exploration is performed to 

enable hypothesizing about relationships between questions and item responses.  
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5.2.1 Popular Errors 
To understand what systematic erroneous responses might arise, popular errors across many questions must be 

investigated. In this data exploration, popular errors are defined as the largest proportion of error responses per 

question. Specifically, this refers to responses that account for more than 30% of the number of error responses 

per question. For example, Figure 5.2 shows the top five erroneous responses to 0 x 6, 0 x 64, 0 x 160 and 0 x 

4500. Responses that did not indicate anything about the nature of the error were excluded. These were answers 

that indicated either that a learner did not know the answer or that a learner had not answered the question 

within the allocated period.  

 

     0 x 6            0 x 64 

 

 

     0 x 160            0 x 4500   

FIGURE 5.2 EXAMPLES OF TOP FIVE POPULAR ERROR RESPONSES 

 

From the 378 questions, 151 questions had an error response that accounted for 30% of all error 

responses. By plotting the top five error responses when such a popular error arises, and by investigating those 

error responses, types of popular errors might be identified that indicate systematic errors. Table 5.2 describes 

the most popular error responses established through manual investigation. 

TABLE 5.2 TYPES OF POPULAR ERRORS 

ID Description  Example  Occurrence 

PE1 For questions that multiply by 0, the multiplicand that is not 

0 is used as an answer  

0 x 6 = 6 9 

PE2 The decimal point is ignored and treated as a regular 

multiplicand, with or without decimal point  

 0.8 x 10 = 0.80, 

0.13 x 2 = 26 

8 

PE3 The answer is incorrect by a power of 10    2 x 6000 = 120000 107 

PE4 Addition is applied instead of multiplication 3 x 3 = 6 5 

PE5 For questions that multiply by 1, 1 is inserted as an answer 500 x 1 = 1 16 

PE6 For questions that multiply by 10, the multiplicand that is 

not 10 is used as an answer 

10 x 8 = 8 10 
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PE7 For questions that multiply by 10, the first multiplicand is 

multiplied correctly, and the last number is concatenated 

10 x 11 = 111 3 

PE8 The multiplicand is used as an answer 2 x 2 = 2 1 

Total 151 

 

Popular errors differ from systematic errors in that a rule enforces systematic errors, whereas popular errors can 
arise because many people make a careless error or common guess. An error is not systematic unless a pattern 
can be found across many questions, as answered by the same person. In addition, many types of popular error 
can arise for one question. When looking for systematic errors, it is important to consider a question and answer 
together as an item. 
 
It must also be noted that the most popular error does not have to be the most interesting one. If the second 
most popular was systematic across many questions, it was more interesting in this research than if it was 
common for one question.  

At first glance, popular error types are reasonable and definitive. However, almost all pattern types can 
be interpreted in multiple ways. To illustrate this point, the proposed popular error types described in Table 5.2 
were examined with the accompanying examples. Doing so helped to hypothesize how these errors might have 
occurred and what rules might be implemented. Not all plots are included, and the difficulty of items is 
disregarded for the sake of brevity.  
When looking at the examples in Figure 5.3, the above description of how popular errors occur seems logical. 

However, other rules like PE4 or PE8 (see Table 5.2) might also be applied. By looking at common errors 

individually, there is no way to know if children were adding or transferring the multiplicand. Similarly, there is 

no way to know if PE2, PE3 or PE6 were applied, or whether the errors were are all part of PE3. To investigate 

this point further, the systematic error patterns of learners must be investigated. This reasoning is the premise 

behind the proposed approach to automated misconception elicitation. 

5.2.2 Exploring Concepts  
Two approaches are explored to find out what concepts underlie each question; that is, what knowledge is 

needed to answer the question. This helped to interpret the results. First, an attempt was made to automate the 

process through the clustering of concepts. This proved to be a challenge outside the scope of the research and 

is thus only briefly discussed. Second, the concepts were established by investigating the existing literature and 

scrutinising the questions.  

Attempt at automated concept elicitation 

Since the ability of a learner changes over time, a list of items per session was created to enable a snapshot of 

the learner’s knowledge state. Looking at a restricted period of 15 minutes allows for a snapshot of a user’s 

knowledge state and prevents the assessment of a user who has learned. These sessions were then transposed 

to allow for iteration through a matrix per data vector. After the data were cleaned, the input data were prepared 

to cluster the questions and their binary responses, with 1 denoting a correct response and 0 an incorrect 

response. However, this transposition caused many missing values, as shown in Figure 5.4. 
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FIGURE 5.3 EXAMPLE OF TRANSPOSED MATRIX OF ITEM RESPONSES 

To deal with missing values, several imputation methods were tested on a subset of the matrix (30 questions by 

400 responses). The subset was less sparse than the bigger matrix and was imputed with a k-nearest neighbour 

algorithm. By creating a filled matrix that is close to reality, values can be removed randomly and imputed 

afterwards. The mean squared error of the imputed matrix and the filled matrix (close to reality) yields the 

performance of the imputation method on this dataset. Although the filled matrix is a subset of the larger matrix 

and therefore an approximation of what would happen to the full matrix, the 30 carefully selected questions 

were representative of the 378 questions in the full matrix, in terms of difficulty.   

The following imputation methods were used: matrix completion by iterative soft thresholding of SVD 

decompositions (softImpute), matrix completion by iterative low-rank SVD decomposition (iterativeSVD), 

multivariate imputation by chained equations (mice), and matrix factorization (Mazumder et al., 2010; 

Troyanskaya et al., 2001; Buuren & Groothuis-Oudshoorn, 2010; Rubinsteyn et al., 2017). Gradually 10% of values 

were removed randomly and imputed with the imputation methods. For every 10%, the mean squared error was 

calculated. As shown in Figure 5.5, matrix factorization performed the best with the lowest MSE at 90% missing 

values. Therefore, matrix factorization was used to impute the entire transposed matrix. 

 

FIGURE 5.4 COMPARISON OF IMPUTATION METHODS BY MEAN SQUARED ERROR 

After dealing with the missing values, two problems arose that created difficulties. First, transposing the 

questions caused the dataset to have around 1 million sessions for each question. There are currently no 

(standardized) unsupervised clustering methods that can deal with this type of high-dimensional data. Applying 

unsupervised clustering on a smaller subset of the data seemed to affect the accuracy of concepts that clustered 

negatively, causing the tested clustering methods to return insignificant results. Although a distinction could be 

made between ‘hard’ and ‘easy’ questions, the results were not significant enough for a fully interpretable 
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concept per question. Second, transposing the matrix caused a dataset in which 97% of the values were missing; 

that is, most people did not answer most questions. Even if the imputation method that was applied was highly 

accurate, the input data for the clustering method would inevitably be noisy.  

Since the main goal of this thesis was to create an approach for automated misconception elicitation, and not 

concept elicitation, a manual approach to concept elicitation was considered, leaving the automated concept 

elicitation for future work. Manual concept elicitation will be discussed in the next section.  

Manual concept elicitation  

All 1,238 questions were investigated manually. Concepts were assigned based on the rule that the user 

performed to answer the question and the difficulty of the question. For example, ‘5 x 1’ can be performed with 

rules ´multiplying by 5´ and ´multiplying by 1´. Since ´multiplying by 1´ is less difficult, the question was assigned 

with the rule ́ multiplying by 1´. The difficulty of items was determined by the difficulty column and the guidelines 

by the Netherlands Institute for curriculum development (Noteboom et al., 2011; Noteboom et al., 2017). It must 

be noted that these concepts are a simplified version of reality, and are merely an indication that was used as a 

ground truth. The identified concepts are shown in Table 5.3 in ascending order of difficulty. 

TABLE 5.3 GROUND TRUTH CONCEPTS 

ID Concept 

C1 'Multiplying by 1' 

C2 'Multiplying by 10' 

C3 'Multiplying by 0' 

C4 'Multiplying by 2' 

C5 'Multiplying by 3' 

C6 'Multiplying by 4' 

C7 'Multiplying by 5' 

C8 'Multiplying by 6' 

C9 'Multiplying by 7' 

C10 'Multiplying by 8' 

C11 'Multiplying by 9' 

C12 'Multiplying by 11' 

C13 'Multiplying by 12' 

C14 ‘Decimal Multiplication’ 

C15 'Multiplying by 100 or 1000' 

C16 'Multiplying by 25' 

C17 'Multiplying by 50' 

C18 'Multiplying by 75' 
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6 Data preparation 
6.1 Data cleaning 
The data were cleaned by removing questions that garnered fewer than 10,000 responses (Figure 6.1). This 

applied to most of the questions. As in Figure 5.1, the question labels on the x-axis were removed as they were 

visually indistinguishable. Also, responses of users that were suspected to have gamed the system were identified 

and removed.  Sosnovsky et al. (2018) provided an elaborate description on anomaly detection and the criteria 

for establishing these anomalies. This step resulted in a cleaned dataset of 378 questions, with 9,518,226 

responses in total. 

 

 

FIGURE 6.1 REMOVED QUESTIONS THAT HAD UNDER 10,000 RESPONSES 

 

6.2 Pre-processing 
This section discusses what pre-processing steps were taken for the association rule mining and network analysis. 

Generally, it is essential that item questions and answers are concatenated (e.g. ‘5x2’ and ‘5’ become ‘5x2=5’). 

This enables direct insight into the types of errors the learners might be making. Responses that do not reveal 

anything about the nature of the error were excluded. These were answers that indicated that learners did not 

know the answer (¿) and responses indicating that a learner had not answered a question in the allocated period 

(…). Each response trajectory considered the entire user history. 

This approach is focused on the elicitation of misconceptions through systematic errors and therefore the correct 

answers are removed.  Although a misconception can lead to a correct answer, the vast number of results hinders 

any interesting insights. Because errors are unlikely to occur (Buwalda et al., 2016), they have more explanatory 

power than correct answers, especially when they are systematic. After the first pre-processing step, the dataset 

consisted of 183,811 response trajectories (user histories) with 1,374,900 erroneous responses. 
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7 Experiment Results 
7.1 Association rule mining 
This section discusses how the minimum support and confidence thresholds (i.e. minsup and mincon) were 

determined. It also illustrates why raising the support and confidence threshold was not an effective strategy to 

deal with the explosion of rules that result from association rule mining.  

As noted earlier, there are several ways to determine the minsup and mincon thresholds. It is important 

to understand what the goals are, to allow the set of thresholds to fulfil these goals. When thresholds are set 

high, interesting results can be missed; if they are set low, meaningful relationships are lost (Raeder, 2011). The 

goal for association rule mining in this research was to find systematic error patterns. Hence, reducing the 

explosion of rules was not the main priority at this stage. How to deal with the abundance of rules is discussed 

in the next section. 

The rules were mined with a minsup of 40 (0.0005%) and a minimum confidence threshold of 40%. This 

resulted in 183,811 rules with 587 unique items. This seems a substantial number of rules to test the approach 

proposed in this research, for the following reasons. Raising the support would possibly leave out interesting 

cases, and cases with support lower than 40 were unlikely to be interesting (i.e. at least 40 users must display 

the systematic erroneous learning behaviour). The mincon was set at 40%, which generated enough rules and a 

diverse enough set of items to test the proposed approach.  

The discovered rules were plotted along the dimensions of support, confidence and lift, as shown in Figure 7.1. 

As expected, the support of the rules increased when the confidence decreased. That is, if the constraints for the 

likeliness of items to occur together drops, item sets will occur together more often. Also, the lift generally 

decreased as the confidence decreased, which was also expected. That is, if the constraints for the likeliness of 

items to occur together drops, a smaller expected confidence is necessary to lower the lift. 

 

 

 

 

 

 

 

 

 

 
    Support (absolute) 

FIGURE 7.1 DISCOVERED ASSOCIATION RULES WITH MINSUP = 40 AND MINCON = 40% 

The explicability of the rules having the lowest interestingness thresholds were investigated. The top 10 for 

lowest support, confidence and lift (in that order) are shown in Table 7.1. The rules in Table 7.1 seem to indicate 

systematic erroneous patterns that are interpretable. For example, there are several rules with indicative items 

that give hints regarding the erroneous learning process. First, items 2 x 4 = 4 and 2 x 2 = 2 indicate that learners 

are possibly transferring the multiplicand. Second, items 2 x 4 = 6, 10 x 10 = 20, 3 x 3 = 6 and 1 x 1 = 2 indicate 

that learners are possibly adding the multiplicands instead of multiplying them. Finally, items 0 x 6 = 6, 10 x 0 = 

10, 0 x 64 = 64, 0 x 1 = 1, 700 x 0 = 700, and 4 x 0 = 4 can indicate both errors. The lift value seems to be bigger 

than 1 for rules with minsup = 40 and mincon = 0.4.  
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TABLE 7.1 TOP 10 RULES WITH THE LOWEST SUPPORT, CONFIDENCE AND LIFT  

Antecedent (X) Consequent (Y) Sup Con Lift 
  0 x 6 = 6, 2 x 4 = 6, 10 x 0 = 10      700 x 0 = 700, 15 x 0 = 15    40 0.4 3.21 

  2 x 2 = 2, 0 x 6 = 6, 10 x 0 = 10, 0 x 64 = 64, 0 x 1 = 1      0 x 160 = 160, 15 x 0 = 15    40 0.4 3.3 

  0 x 64 = 64, 4 x 0 = 4, 0 x 1 = 1, 10 x 10 = 20      700 x 0 = 700, 0 x 6 = 6    40 0.4 3.4 

  0 x 6 = 6, 10 x 0 = 10, 2 x 4 = 6      700 x 0 = 700, 0 x 1 = 1    40 0.4 3.43 

  2 x 2 = 2, 10 x 10 = 10, 10 x 0 = 10, 0 x 1 = 1      0 x 160 = 160, 0 x 6 = 6    40 0.4 3.5 

  0 x 64 = 64, 4 x 0 = 4, 0 x 1 = 1, 10 x 10 = 20      0 x 6 = 6, 15 x 0 = 15    40 0.4 3.71 

  1 x 1 = 2, 700 x 0 = 700, 4 x 0 = 4      0 x 6 = 6, 15 x 0 = 15    40 0.4 3.71 

  10 x 10 = 20, 3 x 3 = 6, 0 x 64 = 64      4 x 0 = 4, 10 x 0 = 10    40 0.4 3.76 

  1 x 1 = 2, 700 x 0 = 700, 4 x 0 = 4      15 x 0 = 15, 0 x 64 = 64    40 0.4 3.77 

  2 x 4 = 4, 4 x 0 = 4, 0 x 64 = 64      0 x 6 = 6, 10 x 0 = 10    40 0.4 3.91 

 

To investigate the rules with the lowest lift, a top-10 list of the rules with the lowest lift values was compiled 

(Table 7.2). Here, the minimum lift again appeared larger than 1. Learners were transferring the multiplicand, 

adding instead of multiplying, or simply applying multiplication-by-1 to multiplication-by-0 questions. Although 

these rules indicate systematic erroneous behaviour, individually they could mean several things.  

TABLE 7.2 TOP 10 RULES WITH THE LOWEST LIFT 

Antecedent (X) Consequent (Y) Sup Con Lift 
  0 x 4500 = 4500, 0 x 6 = 6, 0 x 64 = 64, 0 x 1 = 1, 15 x 0 = 15      0 x 160 = 160, 700 x 0 = 700, 10 x 0 = 10, 4 x 0 = 4    46 0.4 1.7 

  0 x 4500 = 4500, 10 x 0 = 10, 0 x 64 = 64, 0 x 1 = 1, 15 x 0 = 15      0 x 160 = 160, 0 x 6 = 6, 700 x 0 = 700, 4 x 0 = 4    46 0.41 1.72 

  0 x 4500 = 4500, 0 x 64 = 64, 4 x 0 = 4, 0 x 1 = 1, 15 x 0 = 15      0 x 160 = 160, 0 x 6 = 6, 700 x 0 = 700, 10 x 0 = 10    46 0.41 1.75 

  0 x 4500 = 4500, 10 x 0 = 10, 0 x 64 = 64, 0 x 160 = 160, 0 x 1 = 1      0 x 6 = 6, 700 x 0 = 700, 15 x 0 = 15, 4 x 0 = 4    46 0.41 1.77 

  0 x 4500 = 4500, 700 x 0 = 700, 0 x 64 = 64, 4 x 0 = 4, 0 x 1 = 1      0 x 160 = 160, 0 x 6 = 6, 10 x 0 = 10, 15 x 0 = 15    46 0.4 1.79 

  0 x 4500 = 4500, 0 x 6 = 6, 700 x 0 = 700, 0 x 64 = 64, 15 x 0 = 15      0 x 160 = 160, 4 x 0 = 4, 0 x 1 = 1, 10 x 0 = 10    46 0.4 1.84 

  0 x 4500 = 4500, 0 x 6 = 6, 10 x 0 = 10, 0 x 64 = 64, 15 x 0 = 15      0 x 160 = 160, 700 x 0 = 700, 0 x 1 = 1, 4 x 0 = 4    46 0.43 1.85 

  0 x 4500 = 4500, 700 x 0 = 700, 10 x 0 = 10, 0 x 64 = 64, 15 x 0 = 15      0 x 160 = 160, 0 x 6 = 6, 0 x 1 = 1, 4 x 0 = 4    46 0.4 1.85 

  0 x 4500 = 4500, 0 x 160 = 160, 4 x 0 = 4, 0 x 1 = 1, 15 x 0 = 15      0 x 6 = 6, 700 x 0 = 700, 10 x 0 = 10, 0 x 64 = 64    46 0.4 1.85 

  0 x 4500 = 4500, 0 x 6 = 6, 10 x 0 = 10, 0 x 160 = 160, 15 x 0 = 15      700 x 0 = 700, 0 x 1 = 1, 4 x 0 = 4, 0 x 64 = 64    46 0.41 1.85 

 

At first glance, the lowest ranking rules might indicate that the rules that were mined are meaningful. However, 

after investigating more rules with low thresholds, various side cases were found that indicated redundant rules. 

An example was rule 2 x 5 = 6 → 0 x 1 = 1. This rule was probably not the result of a systematic approach but 

rather a guess (2 x 5 = 6) that occurs often with a highly occurring item (0 x 1 = 1). Another example is rule 3 x 3 

= 12, 3 x 3 = 6 → 10 x 0 = 10. Here, the learner is likely implementing multiplication by 3 through recall instead 

of having a conceptual understanding of multiplying 3 by 3 (e.g. 3 * 3 = 3 + 3 + 3 = 9). A final example is 10 x 10 = 

10, 1 x 19 = 1 → 3 x 3 = 6. Here, transferring (‘10 x 10 = 10, 1 x 19’) could be applied together with addition (‘3 x 

3 = 6’), or the learner simply does not have conceptual understanding of multiplication. If the mined rules are to 

be useful, redundant and ambiguous rules must be pruned.  

Simply raising the support or confidence thresholds does not solve these problems optimally, as this reduces the 

variety of items substantially (see Figure 7.2), leaving the expert with only a few insights. The next section 

discusses how the support and confidence thresholds can be applied to improve the rules’ interestingness, 

without losing possible interesting items.  
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                          (A) MINCON = 40%, VARYING SUPPORT        (B) MINSUP = 40, VARYING CONFIDENCE 

FIGURE 7.2 NUMBER OF UNIQUE ITEMS DISCOVERED AT VARYING LEVELS OF CONFIDENCE AND SUPPORT  

7.2 Network Analysis 
The main goal was to allow the expert to reduce the time spent analysing the rules. Since the association rule 

mining resulted into 183,811 rules that were potentially interesting, this would not be a good prospect for a 

domain expert who was trying to elicit these rules. Therefore, in the following section, the rules are reduced to 

an analysable quantity in terms of number and importance. Items alone are limited in terms of explicability; 

meaningful rules are more explanatory, but meaningful groups of rules can be interpreted in a manner that 

aligns with the research objective.  

First, community detection was explored to understand why the quality of a cluster of rules (i.e. modularity) 

was important. Second, the data were investigated by iterating over support and confidence thresholds, and 

noting what relevant clusters were found through communities, based on the average modularity metric (k-

core =3) and maximum number of nodes in a cluster. Finally, ego networks were plotted for a few items, 

allowing singular items to be investigated more granularly. 

In this network, the direction of the rules was neglected (e.g. rule A,B→C leads to the same subgraph as rule 

A,C→B). Hence, the number of rules with a similar item set was reduced to 52,639, reducing the number of 

rules by almost 30%.  This process also automatically pruned rules that were subsets (e.g. rule A,B→C does not 

give more information in terms of edges and nodes than A,B,C→D). Appendix A.1 and A.2 shows the number of 

rules and unique items varying over minimum support and confidence thresholds. 

7.2.1 Community detection 
Modularity explains the quality of a cluster. To illustrate why it is important to consider the quality of a cluster, 

rules were categorized based on a local maximum of 5 component graphs with minsup = 60 and mincon = 50% 

(Appendix B.1). The plot is shown in Figure 7.3. The global maximum of 6 was found between minsup 150 and 

200 with mincon = 70%, but these thresholds were neglected because of the sparsity of rules accompanying them 

(Appendix B.1). As shown in Figure 7.3, varying the support and confidence thresholds to optimise the number 

of component subgraphs did not consider the quality of grouped rules. The first blue and green components still 

contain most of the rules, whereas the purple and yellow components represent only one rule. To find the 

optimal groups, the quality of the groups must be considered. 

 

FIGURE 7.3 GROUPED RULES BASED ON LOCAL MAXIMUM NUMBER OF COMPONENT GRAPHS 
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However, trying to optimise for modularity has certain pitfalls. One is the resolution limit, which biases algorithms 

against finding small communities (Fortunato & Barthelemy, 2007). Instead of stopping at the optimal smaller 

communities, the algorithm accepts larger communities. Additionally, using syntactically similar items but 

different semantics and redundant rules does not help to find meaningful groups, but clouds the explicability of 

communities through connections that should not exist. The result can be seen in Appendix B.2, where the global 

maximum was increased only to seven communities; similarly, on investigation it was noted that the rules were 

not optimally clustered, but rather two large groups of rules contained most of the rules. To find more meaningful 

communities, the network must have more meaningful connections; that is, fewer items should become 

incorrectly connected. The next section shows that these challenges can be overcome. 

7.2.2 Approach to misconception elicitation 
The minimum confidence and support thresholds, minsup and mincon, were determined in section 7.1. In this 

section, the optimal initial support and confidence threshold, isup and icon, are determined. It is necessary that 

the items are highly likely to occur together; therefore, mincon is approximated as at least 80% (i.e. items are at 

least 80% likely to occur together). Setting this threshold limits the isup to between 40 and 130. To determine 

the support value, the support of 90 with the highest modularity (Mc = 0.56, Appendix B.1) was chosen (isup = 

90, icon = 80%). This resulted in four communities, as depicted in Figure 7.4. As shown in community 3 and 4 of 

Figure 7.4, item ‘2 x 2 = 2’ was linked to item ‘0 x 6 = 6’ , ‘0 x 64 = 64’, ’10 x 0 = 10’ and ‘0 x 1 = 1’. The rest of the 

items in community 4 were more highly interconnected, allowing community 3 to be separated.  

 

 

 

 

COMMUNITY 3 (RED) AND 4 (BLUE)  
FIGURE 7.4 COMMUNITIES (ISUP = 90, ICON = 80%) 

COMMUNITY 1  COMMUNITY 2 
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The communities found at (isup = 90, icon = 80%) only contained 27 unique items of the total 587 unique items 

found at (mincon = 40, mincon = 40%). To find more interesting rules with new items, the support and confidence 

thresholds must be decreased with X and Y. As shown in Figure 7.5, the optimal X and Y were found at step 2 for 

both the average modularity of the k-core = 2 and k-core = 3 networks (Appendix C.1, Table C.1). This meant that 

in terms of the quality of communities with nodes having at least a degree of 2 or nodes having a degree of 3, 

both were optimal at step 2.  

  

 

FIGURE 7.5 DETERMINING OPTIMAL X AND Y FOR FINDING COMMUNITIES (ISUP = 90, ICON = 80%) 

Both the first and second iteration of step 2 meet the limit of maximum nodes in a community and would result 

in the communities shown in Appendix C.2, Figures C.1 and C.2. The last iteration of step 2, however, was clouded 

with communities that had over 30 nodes.  

To improve the explicability of the communities discovered in the last iteration of step 2, the approach was 

repeated with isup = 65, icon = 0.60, minsup = 40 and mincon = 0.40. Step 2 of Figure 7.6 shows that both the 

average modularity of the k-core = 2 and k-core = 3 networks could be improved by decreasing the support below 

65 and confidence below 60% in a more granular manner (Appendix C.1, Table C.2). The discovered communities 

in Appendix C.2, Figure C.3 and C.4 were far more explicable in terms of number and importance. 

 

FIGURE 7.6 DETERMINING OPTIMAL X AND Y TO FIND COMMUNITIES (ISUP = 65, ICON = 60%) 

After each iteration was optimized for the maximum allowed nodes in a cluster, the final X and Y are depicted in 

Table 7.3. The discovered communities are shown in Appendix C.2. There were 26 communities found in total. 
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TABLE 7.3 OPTIMAL X AND Y 

Support  Confidence X (absolute) Y (percentage) Communities Figure 

90 80 25 20 4 C.1 

65 60 12.5 10 6 C.2 

52.5 50 12.5 10 8 C.3 

40 40 - - 8 C.4 

 

7.2.3 Ego networks  
Ego networks allow the expert to inspect the found communities in a more granular way by selecting an individual 

item (node) and decreasing the support and/or confidence thresholds around that item. In section 7.2.2, at each 

iteration of a step, items were pruned and decreased by a fixed threshold (X and/or Y). Implementing ego 

networks enables the expert to have more freedom so that no items are pruned when decreasing the thresholds, 

and the granularity of decreasing can be determined interactively. For example, an expert could manually 

decrease the confidence threshold by 1% or 50% and see how it affects the relationship with other nodes. 

To illustrate how an ego network analysis can be performed, the items with the highest degree of 

centrality were investigated. Items 0 x 6 = 6, 10 x 0 = 10, 0 x 64 = 64 and 0 x 1 = 1 had a similar high-degree 

centrality of 8. Since any of these items would suffice, 0 x 6 = 6 was selected as an ego. The results are plotted in 

Figures 7.5, 7.6 and 7.7.  

In Figure 7.5, learners seem to apply an erroneous strategy to no items other than multiplication-by-0 

items. When lowering the support by 5 and the confidence by 5%, cases of transferring the multiplicand emerged 

(e.g. 2 x 2 = 2 and 10 x 10 = 10). Finally, lowering the support by 10 and confidence by 10% more showed that 

addition was also implemented instead of multiplication (e.g. 3 x 3 = 6, 10 x 10 = 20, 1 x 1 = 2) together with node 

0 x 6 = 6. What this means is that, when considering node 0 x 6 = 6, the most likely and most apparent nature of 

the systematic error is an erroneous strategy applied to multiplication-by-0 questions. Less likely and less 

apparent are cases of transferring the multiplicand, and finally, least likely and apparent are cases of addition 

instead of multiplying. 
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FIGURE 7.5 EGO NETWORK ‘0 X 6 = 6’ (SUPPORT = 80, CONFIDENCE = 80%) 

 

FIGURE 7.6 EGO NETWORK ‘0 X 6 = 6’ (SUPPORT = 75, CONFIDENCE= 75%) 
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FIGURE 7.7 EGO NETWORK ‘0 X 6 = 6’ (SUPPORT = 65, CONFIDENCE = 65%) 
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7.3 Expert analysis 
The following tables describe the interpretation of the discovered communities (Appendix C.2), the involved 

concepts and possible error types. Communities that are similar or connected are discussed in the same bug 

story.  

Communities Bug story 

Involved concepts Error type Learners have trouble counting the correct 

number of decimal places in the product or 

placing values in the right places. It could be a 

procedural decimal error or a misconception of 

place value.  

The respondents do not seem to ignore the 

decimal point, but rather miss the right answer 

by a factor of 10. This makes the error seem 

procedural rather than being a misconception. 

 

Decimal multiplication Procedural decimal error/ 

Misunderstanding of place value 
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Communities Bug story 

Involved concepts Error type Blue 

Learners likely have trouble with times-zero 

multiplication, since the entire community 

comprises items linked to times-zero 

multiplication with a very high confidence. 

For questions that multiply by 0, the 

multiplicand that is not 0 is used as an 

answer. Multiplication by 0 is likely a new 

concept and the learner thus applies rules 

incorrectly to novel situations (i.e. 

overgeneralizes).  

 

Red 

Notably across the different concepts of 

multiplication by 0, 10 and 2, the 

multiplicand is transferred. These items are 

highly likely to occur together, but exist 

across various concepts. Hence, it seems 

that when transferring, the main concept of 

multiplication is disregarded.  

Blue 

Multiplying by 0 Overgeneralization 

Red 

Multiplying by 0, 

Multiplying by 10, 

Multiplying by 2 

Transferring the number 
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 Communities Bug story 

Involved concepts Error type Learners seem to multiply by 10 

instead of 100, and by 100 instead of 

1000. The errors seem to occur with 

times -10, -100 and -1000 

multiplication only. (This includes 

items 6000 x 700, 700 x 80 and 3000 

x 80 = 24000 as times-100 and times-

1000 for brevity purposes). 

Multiplication seems to be done 

correctly but appears out by a power 

of 10. Therefore, these errors also 

seem procedural in nature. 

Multiplication by 10, 

Multiplication by 100, 

Multiplication by 1000 

Procedural error: incorrect by a power of 10  
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Communities Bug story 

Involved concepts Error type These communities seem to be the most 

clouded ones. The result shows a mesh of 

procedural errors in decimal multiplication 

and multidigit multiplication, by 10 or 100, 

and a redundant item (9 x 12 = 118) that does 

not seem to indicate any type of systematic 

erroneous behaviour. The communities 

separate the rules into a red and green 

cluster, but the semantic reason is unclear. 

Both clusters contain similar error types. The 

yellow cluster is added to this bug story as it 

also contains both procedural errors in 

decimal multiplication and multidigit 

multiplication by 10 or 100. 

 

Decimal multiplication, 

Multiplication by 10, 

Multiplication by 100 

Procedural decimal error/ 

Misunderstanding of place value / 

Procedural error: out by a power of 10  
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Communities Bug story 

Involved concepts Error type Learners seem to misunderstand place value where the 

last 0 is missed. Since this approach is specifically 

targeted at a single concept, the data likely reflect a 

misconception. 

Multidigit multiplication Misunderstanding of place value 

 

 

 

 

 Communities Bug story 

Involved concepts Error type Learners seem to add instead of multiplying. The error occurs 

throughout several concepts (e.g. multiplication by 5, 10 and 3) 

and the main task is multiplication. Therefore, it can be assumed 

that the skill level of these learners is low and they do not 

understand what multiplication means. However, since it is done 

systematically, this is likely to be a strategy for learners derived 

from 2 x 2 = 4, where addition comes to fruition when applied to 

equal multiplicands.  

Multiplication by 5, 10 

and 3,  

Multiplication,  

Addition 

Overgeneralization: 

addition 
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Communities Bug story 

Involved concepts Error type Except for the redundant item 2 x 50 = 80, learners seem to add 

the single-digit multiplicand to the first number of the multidigit 

multiplicand, and concatenate the zero. The redundant item 

indicates answering by recall (2 x 50 = 80 is likely inspired by 2 x 

40 = 80) and occurs often with item 2 x 40 = 60 (which could be 

inspired by 2 x 30 = 60). However, the other items are all 

interconnected, whereas the redundant item is not. Hence these 

items all tend to co-occur with each other. Therefore, it is likely 

that an erroneous strategy is applied instead of the error merely 

being an act of erroneous recall. Since this approach is specifically 

targeted at a single concept, the error is likely a misconception. 

Multidigit multiplication Adding the first 

multiplicand and 

concatenating the 

zero 
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Communities Bug story 

Involved concepts Error type Learners seem to transfer a multiplicand that does not equal 2 as 

a strategy to answer multiplication-by-2 questions. Since this 

approach is specifically targeted at a single concept, it likely 

reflects a misconception.  

Multiplication by 2 Transferring the 

number 

 

 

 

 

 

Communities Bug story 

Involved concepts Error type Learners seem to transfer the multiplicand (1) as a strategy to 

answer multiplication-by-1 questions. Since this approach is 

specifically targeted at a single concept, it is likely a 

misconception. 

Multiplication by 1 Transferring 1 

 

 

 



42 
 

 

 

  

Communities Bug story 

Involved concepts Error type Purple 

Learners seem to multiply with the first multiplicand only, and 

concatenate the second multiplicand. Although there is no 

question with 25 as a multiplicand, the concept ‘multiplication by 

25’ is regarded as similar in terms of conceptual understanding. 

The learner understands times-2 multiplication, but is probably 

inspired by multiplication-by-10. In multiplication-by-10, only the 

first number of the multiplicand is used for an answer; the learner 

tries to apply this principle to times-25 multiplication. This 

therefore seems a case of overspecialization. 

 

Yellow 

Learners seem to multiply by the first multiplicand and 

concatenate the second multiplicand, or multiply by the second 

multiplicand and concatenate the first multiplicand (e.g. 2 x 22 = 

24). This exception indicates that it differs from the previously 

identified community. 

 

Multiplying by 10, 

Multiplying by 25 

Overspecialization: 

Multiply with the first 

multiplicand and 

concatenate the 

second multiplicand 
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Communities Bug story 

Involved concepts Error type Gray  

Equivalent to previous bug story on 

procedural decimal error and 

misunderstanding of place value. 

 

Brown  

Equivalent to previous bug story on   

procedural error: out by power of 10. 

 

Blue 

Learners seem to be concatenating 1 

in front of the multiplicand that is not 

10. Although the cause is hard to 

determine, this approach is 

specifically targeted at a single 

concept, and therefore is likely a 

misconception. 

Purple 

Learners seem to separate the 

multiplicand and multiply by 10 first, 

and then multiply by the remaining 

number of the multiplicand (e.g. 12 x 

10 = 10 x 10 x 2 = 200). This approach 

is specifically targeted at a single 

concept, and therefore is likely a 

misconception. 

Gray 

Decimal multiplication Procedural decimal error/ Misunderstanding of 

place value 

Brown 

Multiplication by 10, 

Multiplication by 100, 

Multiplication by 1000 

Procedural error: out by power of 10  

Blue 

Multidigit multiplication 

by 10 

Concatenating 1 in front of the multiplicand that 

is not 10 

Purple 

Multidigit multiplication 

by 10 

Multiplying by 10 first and then multiplying with 

the remaining number 
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7.3.1 Accuracy  
Precision 

Precision is determined by the discovered cases that are misconceptions (TP) and procedural or factual errors 

(TN). Where doubt exists whether a community indicates misconceptions or procedural errors, the community 

is counted as procedural error.   

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
=

10

10 + 16
≈ 39%  

Recall 

Recall is determined by the number of unique items in the discovered communities that indicate misconceptions 

(TP) and the number of unique items that are pruned away (FN). Similarly, where there is doubt if communities 

are the cause of misconceptions or procedural errors, communities are counted as procedural errors.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=  

42

42 + (587 −  185 − 42)
 ≈ 10%  

 

  

Communities Bug story 

Involved concepts Error type This community seems to indicate two types 

of systematic errors. Namely, transferring 

(e.g. 6 x 10 = 10 and 3 x 10 = 3) and adding 

(e.g. 1 x 1 = 2, 1 x 6 = 7). This could be 

because this community was discovered in 

the last iteration with the lowest support and 

confidence thresholds, making it harder to 

ensure likeliness between items. 

Multiplication-by-10 questions are the first 

type of questions presented to learners. 

These communities likely indicate learners 

who are struggling with the main concept of 

multiplication. Taking that into account, it 

must be noted that in the ‘top’ group, 

learners transfer the multiplicand 10; 

learners in the ‘bottom’ group transfer the 

multiplicand that is not 10. Since these two 

subgroups are connected only via 1 x 1 = 2, 

which is a redundant item, the two 

subgroups can be seen as two separate 

erroneous strategies. 

Multiplication by 10, 

Multiplication by 1, 

Multiplication 

Transferring the multiplicand that is 10, 

transferring the multiplicand that is not 10 
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8 Conclusion 
This section discusses the proposed research questions in section 2.2, and provides a conclusion for each 

question.  

 

[RQ1] Can systematic errors be distinguished from random and careless errors? 

Through investigating erroneous responses that resulted from arithmetic exercises, this research has shown 

that systematic errors can be distinguished from random and careless errors.  By means of association rule 

mining and the accompanying minimum support and confidence thresholds, this research has shown that 

systematic error patterns arise.  

 

[RQ2] What are the systematic errors caused by erroneous learning behaviour? 

The expert analysis presented in section 7.3 describes the systematic error patterns that were caused by 

erroneous learning behaviour.  

[RQ3] Can we effectively apply knowledge about systematic errors to identify underlying causes? 

This approach has allowed for the nature of systematic errors to be explained and partly interpreted in terms 

of their likely causes. Specifically, the proposed approach in this research allowed misconceptions to be 

identified and distinguished from factual and procedural errors. In cases where the cause of the systematic 

error was unclear, the nature of the systematic error was clear, which allowed the expert to continue the 

investigation in a focused manner.  

 

[RQ4] Can typical misconceptions be identified based on an expert analysis? 

This approach allowed systematic error patterns to be interpreted informally, through the identified 

communities and the expert’s expertise. The error patterns could then be described in a bug story. Based on 

this bug story, a generative theory of bugs can be set up to implement a bug diagnosis that can verify the 

informal analysis in a formal manner.  

[MRQ] How can we effectively identify misconceptions that cause frequent patterns of erroneous learning 

behaviour? 

This approach effectively identified misconceptions that caused frequent patterns of erroneous learning 

behaviour. It did so through identifying and grouping systematic error patterns, while also considering 

redundant items, ambiguous items, the number of interpretable results, and the relevance of the results that 

are presented to an expert. The expert can thus investigate an adequate series of misconceptions, provide 

context through items and their links, understand whether systematic error patterns occur in one or many 

concepts, and identify exceptions that would not have been considered when looking at a single systematic 

error pattern. Hence, this approach has achieved its goal of helping to alleviate part of the costly and time-

consuming work associated with modelling learners in OLEs. 
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9 Discussion 
9.1 Limitations 
This section discusses the limitations of the proposed approach. First, errors are hard to find and therefore hard 

to examine systematically (Buwalda., 2016; Lebiere, 1999). This approach might not be as effective when a 

smaller dataset is used. The main limitation was thus related to using a single dataset in a single domain. 

Second, working with a large dataset implies a complex set of teaching strategies that make a learner 

behave in a certain manner. Since there is no possibility to learn about the precise educational context in which 

every data entry has been produced, this approach lacks some of the context of the learning environment of 

individual students.  

Third, this approach assumes that certain variations in the data can be leveraged to distinguish 

syntactically similar and semantically different items, by iteratively decreasing the support and confidence 

thresholds. These variations pertain to the number of times a learner is presented with a specific set of questions, 

the difficulty of the procedure, and the probability of the learner implementing an erroneous strategy. However, 

changing the thresholds does not account for syntactically similar error patterns that occur around similar 

support and confidence thresholds, which means syntactically similar items might occur with semantically 

different items.  

Finally, the analysis could have been improved if experts had been interviewed. In other words, the 

analysis could have been based not only on a literature study but also on interview information from experts 

with several years of experience in error pattern analysis. 

9.2 Future work 
This section discusses possible directions for future work. First, association rule mining and community detection 

are the most commonly used algorithms in this field of study. There is room for improvement both in optimizing 

the results for rules with more interestingness measures (Tan et al., 2004) and in using different types of 

community detection algorithms (Yang, 2016). However, the approach is kept simple so that experts can explore 

more optimized solutions while using the proposed approach as a foundation. 

Second, another improvement that could be explored is to add more interactivity to the tool than just 

filtering based on support and confidence. The tool could include a feature that allows the expert to test its 

intuition. The expert could filter based on a specific item or question, and explore what causes these rules might 

have. Similarly, there could be a filter based on concepts and the ability to select multiple items, to examine 

which items co-occur (e.g. above a minimum confidence threshold).  

Third, the proposed approach can work for any response trajectory that has redundant and syntactically 

similar but semantically different items. It could be interesting to investigate misconception elicitation in other 

domains. For example, in the domain of division, learners could be answering questions with the dividend that 

is not 0 (e.g. 4 ÷ 0 = 4). There is no way of knowing whether the learner transferred digits, confused the ÷ symbol 

with a – symbol, or simply applied division-by-1 to a division-by-0 question. Either way, the learner failed to 

understand that division by zero is not possible. Although theoretically this approach is generalizable, it must be 

validated with several datasets from different types of OLEs.  

Fourth, methods to increase the evidence from the tasks could be interesting. Insight into a learner’s 

thinking when the learner is solving a problem can be a rich source of information about what the learner does 

and does not understand, and might change the implications for instruction.  

Fifth, the causes of the found bugs must be tested through a bug diagnosis. As noted in section 3.2, 

finding the actual cause is only possible through investigation of the sub-steps a learner performs when solving 

a problem. Systematic errors are demonstrated in these sub-steps. It could be revealing to try the proposed 

approach on a dataset that includes not just final student responses but also their solution steps. 

Finally, it would be interesting to study the optimal number of nodes for a community. Such knowledge 

would enable an expert to effectively investigate these communities. 
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Appendix A – Results ARM 
 

A.1 Number of rules variating over minimum support (x) and 
confidence thresholds (y) 

 

 

A.2 Number of unique items variating over minimum support (x) 
and confidence thresholds (y) 

FIGURE A.1 NUMBER OF RULES VARIATING OVER MINIMUM SUPPORT (X) AND CONFIDENCE THRESHOLDS (Y) 

FIGURE A.2 NUMBER OF UNIQUE ITEMS VARIATING OVER MINIMUM SUPPORT (X) AND CONFIDENCE THRESHOLDS (Y) 
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Appendix B– Results Community 
detection 
 

B.1 Number of component graphs variating over minimum support (x) 
and confidence thresholds (y) 

 

B.2 Modularity variating over minimum support (x) and confidence 
thresholds (y) 

  

FIGURE B.1 NUMBER OF COMPONENT GRAPHS VARIATING OVER MINIMUM SUPPORT (X) AND CONFIDENCE THRESHOLDS (Y) 

FIGURE B.2 MODULARITY VARIATING OVER MINIMUM SUPPORT (X) AND CONFIDENCE THRESHOLDS (Y) 
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B.3 Number of communities variating over minimum support (x) and 
confidence thresholds (y) 

 

 

  

FIGURE B.3 NUMBER OF COMMUNITIES VARIATING OVER MINIMUM SUPPORT (X) AND CONFIDENCE THRESHOLDS (Y) 
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Appendix C – Results approach to 
misconception elicitation 
C.1 Determining optimal X and Y  
 

TABLE C.1 RESULTS DETERMINING OPTIMAL X AND Y (ISUP = 90, ICON = 0.80, MINSUP = 40, MINCON = 0.40) 

Step Average Modularity 

(K-core = 2)  

Average Modularity 

(K-core = 3) 

Communities Rules Component 

graphs 

Unique 

items 

1 0.56 0.54 10 6683 4 406 

2 0.63 0.60 18 668 13 271 

3 0.54 0.48 22 555 17 245 

4 0.55 0.49 27 169 23 190 

5 0.52 0.31 29 178 25 187 

6 0.49 0.24 31 134 29 179 

7 0.41 0.20 28 95 26 141 

8 0.45 0.12 30 79 29 137 

9 0.38 0.03 31 82 28 144 

10 0.42 0.14 31 67 31 136 

11 0.38 0.07 30 74 28 132 

12 0.38 0.03 32 54 32 127 

13 0.36 0.08 35 72 31 137 

14 0.35 0.00 32 58 31 127 

15 0.37 0.00 36 48 35 126 

16 0.34 0.00 36 57 34 130 

17 0.12 0.00 13 16 13 43 

18 0.27 0.02 31 52 31 118 
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TABLE C.2 RESULTS DETERMINING OPTIMAL X AND Y (ISUP = 65, ICON = 0.60, MINSUP = 40, MINCON = 0.40) 

Step Average Modularity  

(K-core = 2) 

Average Modularity 

(K-core = 3) 

Communities Rules Component 

graphs 

Unique 

items 

1 0.62 0.59 17 660 12 271 

2 0.66 0.62 26 183 20 185 

3 0.68 0.33 29 155 25 173 

4 0.70 0.26 30 135 27 158 

5 0.61 0.25 30 136 26 158 

6 0.60 0.13 30 131 27 158 

7 0.60 0.12 33 124 29 151 

8 0.53 0.11 33 128 29 154 

9 0.17 0.00 9 14 9 32 

10 0.40 0.09 33 126 30 154 

11 0.33 0.08 32 126 28 148 

12 0.06 0.00 5 7 5 16 

13 0.25 0.00 22 26 21 69 

14 0.05 0.00 4 5 4 13 

15 0.04 0.00 4 5 4 13 

16 0.07 0.00 10 12 10 31 

17 0.06 0.00 9 10 9 27 

18 0.04 0.00 5 6 5 15 
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C.2 Communities  

 

 

FIGURE C.1 COMMUNITIES (SUPPORT = 90, CONFIDENCE = 80%) 
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FIGURE C.2 COMMUNITIES (SUPPORT = 65, CONFIDENCE = 60%) 
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FIGURE C.3 COMMUNITIES (SUPPORT = 52.5, CONFIDENCE = 50%) 
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FIGURE C.4 COMMUNITIES  (SUPPORT = 40, CONFIDENCE = 40%) 
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