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1 Abstract

Insecurity concerning food resources has become a more and more serious problem.

Therefore an initiative of the Netherlands Cross, called the 510, wants to use data

to positively impact faster and more (cost) effective humanitarian aid. The goal

of this study is to create a machine learning model (in our case a Xgboost model)

that uses scalable features (like satellite imagery) to predict the transitions in food

insecurity with the 510. After optimization through resampling, feature engineering

and hyperparameter tuning we validated the Xgboost model by comparing it against

several baselines. The Xgboost model performance (f1 macro score of 0.526), on

average, got close to the benchmark (predictions of Famine Early Warning Systems

Network (2019), which had a f1 macro score of 0.637). Nevertheless our model

did identify improvements in food security (f1 score of 0.506) of livelihood zones

better than the benchmark (f1 score of 0.498). Other results of this study is that

the features that the Xgboost model identified as most relevant, corresponds with

the study of Misselhorn (2004), like climate and land drivers. Furthermore the

performance of the Xgboost model is also better for varying prediction intervals (4

or 12 months ahead) compared to the baselines. Lastly the Xgboost model also

revealed that there is a spatial dependency between livelihood zones, since similar

predicted livelihood zones seem to be clustered. All in all, this study showed that

our Xgboost model has predictive value, which gave new insights but also opens

new doors. There is potential to improve it further, by adding more features and

taking the spatial dependency into account. This can, in the future, hopefully get

us closer to optimizing the decision-making of the humanitarian assistance and give

more insight about the complex phenomena of food security.
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2 Introduction

Even in this modern age, with a rapidly growing population and tesla’s being

launched into space, 124 million people across 51 countries faced crisis levels of acute

food insecurity or worse in 2017 (Food Insecurity Information Network, 2018). Food

security exists when all people, at all times, have physical and economic access to

sufficient safe and nutritious food to meet their dietary needs and food preferences

for a healthy and active life (FAO, 2003). It is troublesome however that there

seems to be an upwarding trend in food insecurity since in 2017 an estimated of

124 million people faced acute food insecurity, compared to the 108 million people

in 2016 (Food Insecurity Information Network, 2018). More research is needed how

agencies active in the humanitarian aid can support and bring relief to these food

insecure regions more efficiently and what tools these agencies can use to optimize

their decision making.

2.1 Context description

The amount of data that has been collected over these past years has grown expo-

nentially. Usually the term Big Data has been used to define these large volumes of

data, which can be structured, unstructured or aggregated data sets (Kitchin, 2013).

Moreover, using these heaps of data to our advantage cannot only lead to just un-

derstanding patterns better, but also to forecasting these patterns. Subsequently,

when we forecast these patterns this could potentially also lead to taking action to

prevent these identified patterns from happening. This is relevant, because there is

a growing understanding that timely finance prior to a disaster can be more cost-

effective than post-disaster expenditures (Guimarães Nobre et al., 2018). Similarly

510, which is an initiative of the Netherlands Red Cross, wants to use data, to pos-

itively impact faster and more (cost) effective humanitarian aid. Moreover it wants

to shape the future by converting data into understanding, and put it in the hands

of humanitarian relief workers, decision makers and people affected, so that they can

better prepare for and cope with disasters and crises (510, 2018). To give a more

concrete example, 510 predicts impending disasters on vulnerable people that live

in areas prone to natural disasters. 510 calls this Impact Based Forecasting which

consists out of three steps (the Red Cross Red Crescent Climate Centre, GRC and

510, 2018). The first step is to understand the risk and to determine which areas

are most vulnerable. The second step is identifying the impact which should help
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to identify trigger level, so it can give an identification what level of risks need to

be reached to start the overall process of the Forecast Based Financing. The last

step is called Forecast Triggered Action, which means that when a certain threshold

has been reached funds will be released to allow people in the impending disaster

areas to get the means in order to protect themselves and take action. Our study is

closely related to this project (IBF), however in our case the focus is not on natural

disaster prediction, but on predicting food security.

Moreover finding a variable that could summarize food security also poses a

challenge. Fortunately, Famine Early Warning Systems Network (2019) has created

the Integrated Phase Classification (IPC) class, which consists out of 5 different

ordinal classes (see figure 17 in appendix A.1). The IPC classes have been created

by Famine Early Warning Systems Network (2019) in order to make the conceptu-

alization about food security easier. At first, different humanitarian agencies used

different variables to define food security. Having one more general definition made

it easier to share their conclusions with each other with regard to food security and

of course take action if need be. By creating this harmonized approach Famine

Early Warning Systems Network (2019) made sure that that this framework can be

used across countries and regions, and over time.

2.2 Problem Statement

Supporting areas that lack food security can be a big challenge. Organizations

like the Interchurch Organisations for Development Cooperation (ICCO) and the

Netherlands Red Cross (NLRC) try to increase and stabilize food security where this

is needed by intervening, creating development programs and supporting different

areas during a food crisis. Most of the humanitarian aid organizations use survey

data to measure the status of food security (Barrett, 2010b). The Household Food

Insecurity Access Scale (HFIAS) would be an example of a questionnaire used in

these situations (Swindsdale & Bilinsky, 2006). However the constraint with this

survey measurement is that it can take a lot of time, is not always available in every

region and mostly for small areas, and usually is not regularly updated (Barrett,

2010b). Secondly even though survey data can give an indication for food security

as a snapshot at that moment, it cannot predict food security.
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2.3 The Study

2.3.1 Goal of this study

The main goal of this study is to develop a model that can determine whether the

IPC improves or deteriorates in a livelihood zone in the future. A livelihood zone is

defined as a geographical area within which people share basically the same patterns

of access to food and income (that is, they grow the same crops, or keep the same

types of livestock), and have the same access to markets. So it basically divides

the country into homogeneous zones within which people share broadly the same

pattern of livelihood (HEA, 2018;Grillo, 2009) (see figure 1). We decided to call

the transition from one IPC state to another: a change event. By emphasizing on

these transitions, we want to determine which variables determine an improvement

or deterioration in food security. By predicting these transitions in the IPC, we can

get closer to the goal of optimizing the humanitarian assistance and contribute to

the effectiveness of the impact based forecasting.

Figure 1: A figure depicting the different livelihood zones, which is retrieved from

(Famine Early Warning Systems Network , 2009). In each of these homogeneous

zones people share broadly the same pattern of livelihood.

Moreover one of the sub goals is that the model should be scalable, in such

a way that it would be easy to make predictions for different countries. More

specifically, the features of the model have to be available for several countries

and be detailed enough so it can be aggregated on livelihood zone level. In order

to overcome these challenges we opted to use satellite imagery. Satellite imagery

should be detailed enough so we can aggregate the data on livelihood zone level and
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also be scalable. Another sub goal is to validate the model by testing it against

several baselines. These baselines do not use machine learning modelling, but are

for example based on heuristics. The baselines are important to determine whether

our model performs more effectively than chance and simple heuristics. With all

these goals in mind, it is important to note that this model will most likely not solve

the food insecurity problem. However it might at least give more insight, a better

situational awareness of food security and optimize the process to send humanitarian

assistance so intervention can be set up.

2.3.2 Scope of this study

The countries in Africa are highly relevant case studies because, these have the

highest prevalence (25 %) of people living in households where at least one adult

has been found to be severely food insecure, as a percentage of the total population

(FAO, IFAD, UNICEF, WFP and WHO, 2017). However due to time limitations, we

can’t test every country. Thus we opted to limit the geographical scope to Ethiopia.

To elaborate, Ethiopia is a good case study because it is prone to food insecurity.

More specifically a study from Geda and Stoecker (2011) showed that in the Sidama

Zone (which is one of the most populous zones in southern Ethiopia), a majority

of households were suffering from food insecurity. We are aware that in order to

validate the the model properly testing it on other countries would be a good option.

However due to time, we are forced to focus on one country.

Moreover, since our goal is to forecast change events a supervised machine learn-

ing method will be used. A supervised machine learning method allows us to be

more specific about the definition of the labels compared to an unsupervised tech-

nique. Fortunately, the ordinal multi classed IPC categories output label can be used

in this case to identify when transitions between states happen. To elaborate, the

IPC labels represent different classes of food security 1. The exact supervised learn-

ing technique that will be used to forecast these change events, will be determined

during the process of data collecting and preprocessing.

1for the exact meaning of these classes please refer to figure 17 in section A.3 in the appendix
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2.4 Research Question

With the problem statements in mind the research question that we want to answer

in this study is:

Can we create a valid model, that uses scalable features, to predict change events

in food security per livelihood zone in Ethiopia?

3 Literature review

3.1 Food Security

There are several dimensions to food security. According to Holloway (2003) these

dimensions can be categorized in four pillars. The first pillar is called availability and

refers to the availability of sufficient quantities of appropriate quality food (Bora,

Ceccacci, Delgado, & Townsend, 2011). To give an example a study from Hesselberg

and Yaro (2006) showed that a dry season can affect the availability of food. The

second pillar, called access, is whether people have the resources to access sufficient,

safe and nutritious food but also whether they have the resources (like infrastructure

or money) to either produce or buy food (Food Security Cluster, 2016;Godfray et al.,

2010;Rooyen, 2000;FFSSA, 2004). The third pillar, stability, is that people should

not experience a decrease in food security due to conflict, economic crisis, neutral

disaster or global climate change other shocks (Sassi, 2017; Cheeseman, 2016). The

last pillar is called utilization and refers to the ability to physically use the available

food, such as proper food preparation and feeding practices. Next to this this pillar

also refers to the biological ability to utilize the food that is consumed (so absence

of diarrhea or other diseases that could hinder the use of food) (Denny et al., 2018;

Connolly-Boutin & Smit, 2016). Interference with one or more of these pillars can

lead to food insecurity (Denny et al., 2018; Bora et al., 2011). All in all the literature

shows that food security itself is a complex phenomenon which consists of several

dimensions and complex interactions. First a framework for the drivers of food

security will be discussed, afterwards we will look into existing machine learning

models of food insecurity.
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3.1.1 Drivers of food security

Since food security is such a complex phenomenon with multiple dimensions, it is

to be expected that there are a wide range of drivers that influence food insecurity.

As a consequence, summarizing all these drivers is challenging. However a study

from Misselhorn (2004) tried to identify the most cited drivers of food insecurity in

Africa (see figure 2). Misselhorn (2004) made a distinction between direct and indi-

rect divers. Specifically, indirect divers could potentially initiate other drivers. From

these indirect drivers climate and environmental stressors but also social and polit-

ical unrest due to war have the highest citation rate. Moreover Misselhorn (2004)

shows that these drivers can be indicated as either a shock or chronic. Nevertheless

these direct and indirect drivers, found by Misselhorn (2004), account for around

80 to 81 percent of food security. Even though the study from Misselhorn (2004) is

slightly outdated it still seems to correspond with drivers identified by more recent

studies like that of Barron, Tharme, and Herrero (2013). An interesting note from

the study from Barron et al. (2013), is that there are complex interactions between

drivers which in turn can reinforce the impact of these drivers on food security. All

in all, these studies show that the drivers of food security have a complex relation-

ship (either direct or indirect) with each other that can be either chronic or as a

shock.

3.1.2 Models of food insecurity

There are already several models that predict food security. However most of these

work on a different scale like on household level. An example of such a model is the

study of Okori and Obua (2011) which showed that it is possible to classify famine

on household level (in this case in Ugunda). Another example is that some models

use more localized information. To be more specific, several models, like that of

Mbukwa (2013) and (Gubert et al., 2010), mainly use data from surveys, which can

be time intensive to collect, process and conduct (Barrett, 2010b). In our case we

want to use more scalable information that can be easy to collect, process and can

be used for several countries. Like we have discussed in the introduction, in order

to achieve this we chose to use satellite imagery. There are however other studies

that also tried to incorporate satellite imagery when predicting food security or the

closely related phenomenon famine.

First off, the study from A Quinn, Okori, and Gidudu (2010) created classifica-
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Figure 2: Adapted from the study from Misselhorn (2004). This table shows the

direct and indirect most cited drivers according to Misselhorn (2004) study. More-

over the table also has information about how these identified drivers related to the

access and availability pillars and whether these drivers are indicated as shocks or

chronic.
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tions of food security on household level by defining food insecurity as a calorific

intake of less than 1800 kcals/day. Subsequently they added household data (like

the size of the household or ownership of livestock) to satellite observation which

in return resulted in a better accuracy in making famine predictions at a household

level. The problem however with household level data is that it is usually not avail-

able for every region and not consistently updated. In our study we want to create

a model that is updated timely but also efficient with regard to data collection. As

a result our model won’t be using household data for now. Secondly, in the study

from (A Quinn et al., 2010) they only used the Normalized Difference Vegetation

Index and the Rainfall Estimation and they argue that adding more features to

satellite imagery could be beneficial for the model. Thus, it might be usefull to also

look for features outside satellite imagery. IPC Global Partners (2012) also make

a prediction for their IPC class quarterly. However, they don’t make predictions of

change events and would not be as flexible as our model that should be able to also

predict on a monthly basis instead of just on quarters. Moreover building a custom

model has the benefit of having more insight in what the model actually does which

results in having more confidence in decision making.

3.2 Knowledge Gap

Here we first showed that food security as a phenomenon is complex and multidi-

mensional. Because of this we have to take into account that there are a wide range

of drivers like the study from Misselhorn (2004) showed. Secondly, even though there

are already existing models that either try to predict food security or the closely

related famine, these models are either based on non scalable features (survey data)

or a non scalable target variable (calorific intake through surveys). Moreover these

studies usually operate on household level which in turn can be dependent from

the more time consuming data collection through data surveys. Next to all of this

the existing models don’t focus on the change events of the food security, or in

other words they don’t focus on the transitions. Lastly the model from IPC Global

Partners (2012) is not as flexible, scalable, doesn’t predict change events and can’t

predict on a monthly basis. All in all our goal is to create a model with scalable

features that can predict change events for larger areas in stead of household level.

Thus we want to be able to get a general impression of the change events per liveli-

hood zone with our model. It seems from the literature review that this is not

available yet.
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4 Design Approach

4.1 Design Approach

Figure 3 gives an overview of the different steps that will be taken during the project

with regard to the model. First we will have determine which data is available and

relevant to predict food security. After we have decided which sort of data we want

to collect we can process it in the correct format that we need it to be.

After this step we have to determine which metric we will use too optimize and

validate the model. Next to the metric, we have to also determine which algorithm

we are going to use, what kind of cross validation and how we are going to set up

baselines and a benchmark.

When we have determined all the concepts that we need, we will create a model.

We have to both optimize and validate the performance of the model. For optimizing

the model we will pay attention to three strategies; resampling, feature engineering

and hyperparameter tuning. During the research it will get more clear which strategy

(or combination of strategies) will be most useful. After optimization we will validate

the model by testing it against the baselines that we have determined and the

benchmark that we have created.

The last step is to get insight from the model. Which features are identified as

most important, is there any spatial dependency or spatial relationships and does

the model perform well for each prediction interval (can it predict one month ahead

but also 10 months ahead). Of course the overall performance of the model will also

give insight for further research and answer the research question.
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Figure 3: A research flow diagram which shows the different steps that this study

will go through.
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4.2 Sub-questions

In order to answer the research question outlined in section 2.4, it is now clear that

several sub-questions have to be addressed

1. Feature related sub-questions:

(a) Which features can we use to predict change events in food security?

(b) Are the found features scalable?

(c) Can we create usable features through feature engineering?

2. Modelling related sub-questions:

(a) Which modelling technique(s) is/are the most appropriate for this sce-

nario?

(b) Which metric should we use to validate the model?

(c) Which cross validation should we use?

(d) How can we optimize our model properly?

3. Validating and insight related sub-questions:

(a) Does the model perform better than the baselines and a benchmark?

(b) For which livelihood zones does the model predict the food security cor-

rectly (spatial aspect)?

(c) Does changing the prediction interval influence the performance of the

model (temporal aspect)?
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5 Methods

5.1 Data Availability

Many efforts have been made to make a good measure of food security and its four

dimensions. However, like Upton, Cissé, and Barrett (2016) explain, due to the un-

observability and multidimensionality of the food security status and the challenges

that arise when establishing measurements that can be aggregated from individu-

als to regions (and visa versa) it can be hard to maintain fidelity to these pillars

(Barrett, 2002; Barrett, 2010a; Headey & Barrett, 2015). In other words, there are

limitations and challenges with regard to data collection and aggregation for food

security, which in turn make it more difficult to make a reliable measurement. These

challenges in combination with the fact that we want to find scalable information

further limits the the data collection. However in order to find, collect and process

the data into the correct format, we have to decide on what aggregation level the

data should be, but also which kind of data is scalable and (openly) available.

First off the most relevant aggregation level, from a theoretical perspective, would

be the livelihood-zones. This is because the livelihood zones divide areas into zones,

in which people share the same pattern of access to food, income and the same access

to markets. In other words it makes it possible to classify geographical regions based

on the pattern of livelihood that these people share in these zones.

Secondly, since our goal is to create a model that is also easily scalable in the

future, data that is available on global level is preferred. However, this requirement

also limits the data types and data sets that we can use in this study. Thus, the

data should be detailed enough so we can aggregate it on livelihood zones yet also be

scalable (to other countries) for in the future. Next to the spatial aspect, the data

should also be detailed enough with regard to the temporal aspect. In other words,

the data should be updated regularly and also be timely. Another requirement is

that the data should be easily accessible using code, preferably through an API. As

this makes it easier to update the model when the data has been updated.

Lastly, since we want to use data that is easily accessible and available, this

limits our data to open data. This is because getting access to data sources that are

not open, cost either money or time (to get all the certificates of the companies in

order to use this data). As a result, this study will use open data.

In order to fulfill our three requirements, we have decided to mainly use (open)
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satellite imagery. More specifically, the Google Earth Engine (GEE) python package

was used to collect different sorts of satellite data. We made sure that the data that

we extracted from the Google Earth Engine for each variable had the same format,

so we can merge it easily. By using the GEE we have fulfilled the requirements of

scalable, yet detailed open data. Moreover using the GEE it is also possible that we

can aggregate the data on livelihood zones. Lastly, using the GEE we also solved a

more practical issue. Namely, we have used functions that run on the GEE cloud

engine, instead of your local machine. As so, this made it possible to reduce the

run time to process the satellite imagery in the correct format and download it.

Other data sources, than the GEE, that we might use should also fulfill the three

requirements.

5.2 Data Relevance

We first had to identify which satellite imageries we could use and were relevant for

predicting food insecurity. Using the results from the meta-analysis from Misselhorn

(2004) and the study from (Barron et al., 2013) we have chosen several satellite

imageries from the GEE database (see table 1 for a quick overview). As you can see

from the table, we did not succeed in identifying every single driver. This is due to

several reasons. First off, as we have told in the previous section, we want to identify

features that are scalable yet detailed enough to be aggregated on livelihood zones.

As a result this limited the types of data that we could use. Secondly, since we are

only working with open data, we are also limited by the data that is not sensitive.

Or in other words, finding open data about political unrest is challenging and up

to now we did not find that sort of data on the internet. Moreover finding data

about poverty also posed a challenge. For example, we were not able to identify a

data set on the gross domestic product that was scalable, timely updated and more

detailed than on country level. Nevertheless the framework from Misselhorn (2004)

and table 1 shows that we did succeed in identifying some of the most cited drivers

that should be relevant for predicting food security. For example, the climate and

land drivers that we have identified should give an indication of the climate and

environmental stressors which was cited the most by Misselhorn (2004) as a direct

driver.
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Table 1: An overview of the different features used for our model and the different

identified drivers found by the study of Misselhorn (2004) of food security. Even

though we did not succeed in finding every single driver as a scalable yet detailed

feature, we did identify most of the drivers that were cited the most according to

Misselhorn (2004).

Direct

Drivers

Cited in %

Indirect

Drivers

Cited in %

IPC

Climate

and Land

Drivers

Market

Prices
Infrastructure Demographical

Livelihood Zone

Characteristics
Conflict

Climate and

environmental

stressors

12 17 X X X

Increase in food prices 5 - X

Poor market access 4 - X

Poor distribution

networks and

Infrastructure

4 - X

Social and political

unrest or war
3 12 X

Insufficient

agricultural inputs
3 - X X

Population pressure - 3 X

Poverty 7 21

Absence of property

rights and land access
5 -

Unavailability

of employment
5 -

Lack of education 5 3

Pests and diseases of

crops and livestock
4 -

Poor human health 4 4

Low regional

cereal availability
4 -

in- and out-migration 4 4

Inflation 4 -

Sale of assets 3 4

Formal and informal

government policies
3 5

Low regional

cereal availability
- 4

Prevalence of

HIV/AIDS
- 5
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5.3 Data Collection and Data Processing

The first processing step took place before we could use and collect the data from

the GEE. To be more specific, we had to import the shapefile, containing the poly-

gons of the different livelihood zones, into the GEE so we can aggregate the data on

this level. After data has been collected, it still needs to be processed in the correct

format for the model, for which we used a technique called Spatial Reduction, which

is when we would aggregate each pixel of satellite imagery using different statistical

methods (which methods we used per variable are listed in the table) for each liveli-

hood zone using the polygons that we have created before. Before we continue with

explaining the processing steps that we have conducted for each feature, it is impor-

tant to note that table 2 gives an overview of all the different satellite imagery that

we have collected and processed for our model. This table also contains some other

variables that we retrieved from other sources than the GEE. These sources, like

the data set from Uppsala Conflict Data Program (2018), still fit the requirements

of being scalable, open and detailed enough.

5.4 Features

5.4.1 Target variable

The target variable that this model will be using is called the change event, which

is a derivative of the IPC class from the Famine Early Warning Systems Network

(2019). The IPC is an ordinal multi-class scale, containing information about the

state of food security (see table 17 in the appendix for the exact meanings of each

state). The change event is a variable containing information on whether the food

security of a livelihood zone improved, deteriorated, or stayed the same as before.

This change event makes it so that we emphasis on predicting when transitions

happens, instead of the absolute IPC value.

In order to create the change event, several steps had to be taken. First, each

IPC shapefile from the Famine Early Warning Systems Network (2019) 2010 until

2018 had to be downloaded. Afterwards we had to aggregate these shape files in the

correct format for the model. In order to achieve this, we had to change the IPC

shapefile to a raster so we could use spatial reduction. To be more specific, with

spatial reduction we could use the mode to determine which IPC class is the most

represented per livelihood zone. After the IPC class was aggregated per livelihood
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Table 2: Summary of the different features used in this study and where we retrieved

them from.

Retrieved from URL

IPC

Current Situation FEWSNET http://fews.net/fews-data/333

HA0 FEWSNET http://fews.net/fews-data/333

Climate and Land Drivers

NDVI GEE https://code.earthengine.google.com

Rain Precipitation GEE https://code.earthengine.google.com

Soil Moisture GEE https://code.earthengine.google.com

Elevation GEE https://code.earthengine.google.com

Market Prices

Food Market Prices (absolute) HDX https://data.humdata.org/dataset/wfp-food-prices-for-ethiopia

Infrastructure

Accesibility GEE https://code.earthengine.google.com

Friction GEE https://code.earthengine.google.com

Demographical

Population Density GEE https://code.earthengine.google.com

Population Count GEE https://code.earthengine.google.com

Livelihood Zone Characteristics FEWSNET http://fews.net/livelihoods

Main Crops FEWSNET http://fews.net/livelihoods

Main Stocks FEWSNET http://fews.net/livelihoods

livelihood zone Type FEWSNET http://fews.net/livelihoods

Conflict

UCDP Fatalaties UCDP https://ucdp.uu.se/
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zone, we could then transform these variables to change events which we express

through the following formula:

CEt = −(IPCt+n − IPCt)

In this formula t is the current month and n is the number of months ahead the

CE should express. With this formula in mind, whenever the IPC class got higher in

the next month (thus a deteriation of the food security) the class got a Deterioration

which we will from now one be called deterioration. Whenever the IPC class got

lower in the next month in a livelihood zone (a improvement of foodsecurity) it got

a 1, which we will refer to from now on as Improvement. And lastly, whenever the

IPC class stayed the same in the next month it got a 0 which will be called No

Change (see table 3).

Table 3: An overview of the change events and their corresponding value

Abbreviation Value

Deterioration -1

No Change 0

Improvement 1

It is important to note that the the periods of when the IPC class were released

were shifted since 2016. From the years 2010 until the end of 2015, the IPC classes

were released by Famine Early Warning Systems Network (2019) on January, April,

July and October. Unfortunately the period in which the IPC class was released was

changed starting from 2016 to February, June and October. This means that our

target variable differs, with regard to the temporal aspect, beginning with 2016. As

a result, we decided to interpolate the IPC class. Since the IPC classes are integers,

we had to round off the number when interpolating the IPC class. We’ve decided

to this for two reasons. One being that we can now use more information, since we

can collect the data from our features on a monthly basis instead of periods. The

other reason is that we now can merge the IPC classes from the periods 2010 until

2015 and 2016 until 2018.

We have also included the IPC with several time lags and the binary HA0 variable

from each shapefile of the Famine Early Warning Systems Network (2019). If HA0

is 1 then the IPC would most likely be at least one phase worse without current
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or programmed humanitarian assistance. Whereas, if HA0 is 0 this means that

humanitarian assistance is likely not significant enough to change the phase level

(Famine Early Warning Systems Network , 2019).

5.4.2 Climate and land drivers

Imagery from NASA’s Moderate Resolution Imaging Spectrometers (MODIS) satel-

lite surface reflectance composites is used for determining the Normalized Difference

Vegetation Index (NDVI). The NDVI might be relevant for food security since it

is estimated that yield or crop production to food availability is estimated at 60%

(Frelat et al., 2015). This index is generated from the Near-IR and red bans of each

scene with the following formula (NIR - Red) / (NIR + Red). After loading in the

satellite data our goal was to get the mean and median NDVI per region, per month

for the years 2010 until Decemeber 2018. In other words we wanted to do a spatial

reduction of the MODIS imagery. The end result was a dataframe containing the

mean and median NDVI for each month per livelihood zone. We decided to use

both metrics since usually the median is less sensitive for outliers due to for exam-

ple clouds. Since clouds can disrupt certain imagery from the satellite and influence

their quality (Alvera-Azcárate, Sirjacobs, Barth, & Beckers, 2012; Holben, 1986;

Champion, Le-Hir, Massera, & Bellaiche, 2017).

The rain precipitation was also extracted from the GEE using the same method

as for the NDVI. The satellite imagery from the TRMM was used ( Tropical Rainfall

Measuring Mission (TRMM), 2011). The TRMM uses an algorithm to produce a

single best-estimate precipitation rate and also a precipitation error estimate. Just

like the NDVI we opted to use the mean and median for each month.

Soil moisture’s mean and median per livelihood zone per month was also ex-

tracted through the GEE database. The NASA-USDA SMAP global soil moisture

data set provides soil moisture information across the globe. This data set was de-

veloped by the Hydrological Science Laboratory at NASA’s Goddard Space Flight

Center in cooperation with with USDA Foreign Agricultural Services and USDA

Hydrology and Remote Sensing Lab. Next to surface soil moisture this satellite

imagery also includes subsurface soil moisture, soil moisture profile ad surface and

subsurface soil moisture anomalies (E. Mladenova et al., 2017; Bolten & Crow, 2012

;Bolten, Crow, Zhan, Jackson, & Reynolds, 2010; Entekhabi et al., 2010 ;O’Neill,

Chan, Njoku, Jackson, & Bindlish, 2016).

Another driver that we have extracted is the elevation. The Global Multi-
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resolution Terrain Elevation Data from 2010 is used and contains elevation informa-

tion on global scale (Danielson & Gesch, 2011). This data is not regularly updated,

since the elevation doesn’t differ that much between a couple of years. As so we

have used the satellite imagery data from 2010 for each month for each year up to

June 2018. In this case we used the mean and median metric per livelihood zone

for this driver.

5.4.3 Market Drivers

Another important driver in which several prepossessing steps had to be done is

the food market prices from the World Food Programme (2019) (WFP). According

to Godfray et al. (2010) the global food prices are indicators for whether food is

available and whether people can afford and have access to world markets. In order

to preprocess this data in the correct format we first had to account for missing data.

More specifically, data was missing in certain months for some livelihood zones. In

order to overcome this problem we decided to linearly interpolate the missing values

instead of throwing them away. We also decided to only include the three most

traded products, namely wheat, maize and sorghum. The other products were not

well maintained, with regard to data collection by the World Food Programme

(2019) and contained a lot of missing values. Next to this we also included prices

for both retail and wholesale as separate features. We aggregated these six features

on admin level 1 with the livelihood zones. It is important to note that even though

this database is quite comprehensive, some smaller markets might not be included.

5.4.4 Conflict

It has been argued that one of the main drivers of the rise in food insecurity is the

increasing conflict and insecurity around the world (FAO, IFAD, UNICEF, WFP

and WHO, 2017; Food Insecurity Information Network, 2018). Thus, it would

only be right to also try to include a feature that could represent conflict. In

our case we can use the data set from Uppsala Conflict Data Program (2018).

Uppsala Conflict Data Program (2018) is a large database with a history of around

40 years. Moreover, this open database has global coverage and has a long time

series which get updated annually (Uppsala Conflict Data Program, 2018). The

Uppsala Conflict Data Program (2018) differentiate between two types of conflict.

First, minor conflicts are those that pass the 25 battle-related deaths thresholds but
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have less than 1000 deaths in a year. Secondly, major conflicts pass the 1000 annual

deaths threshold. Literature reveals that there are a lot of different predictors that

relate to conflict (Uppsala Conflict Data Program, 2018). Nevertheless, there are

some drawbacks with using this database. First, this data set is mostly based on

publicly accessible news reports which contain information about individuals killed

or injured. Like Uppsala Conflict Data Program (2018) already notes, that due to the

lack of (credible) information sources in many conflict zones, these numbers are low

and rough estimates and could be biased. Lastly Uppsala Conflict Data Program

(2018) also discusses that their estimations are partly dependent on estimates of

other sources. All in all there might be some reliability issues with regard to this

data set. Nevertheless, at this moment it seems that this data set would be our best

option to represent conflict as a feature.

In order to preprocess this data in the correct format we had to overcome several

issues. First, since the shapefile from the (Uppsala Conflict Data Program, 2018) is

worldwide data, we had to filter the data to Ethiopia. The next step was to assume

that conflict events, spread out over multiple years or months, had approximately

a constant number of fatalities per month within that time span. Afterwards we

could merge the data from Uppsala Conflict Data Program (2018) with the rest of

the data on our aggregated livelihood zone level.

5.4.5 Infrastructure

The GEE was also used to extract the accessibility to cities. The GEE database

contains satellite imagery in which the land-based travel time to the nearest densely-

populated area are calculated for the year 2015. These highly dense populated areas

are defined as continuous cells with a density of at least 1500 inhabitants per km2

or a majority of built-up land cover types coincident with a population centre of at

least 50000 inhabitants (J. Weiss et al., 2018). J. Weiss et al. (2018) created this

data set using a combination of data about roads, railways, rivers, water bodies,

land cover types, topographical conditions and national borders (J. Weiss et al.,

2018). Combining these maps they created a friction surface map which included

information about the travel based speed within pixels. Afterwards they used a

least-cost-path algorithms in combination with this friction map to calculate the

travel time from all locations to the nearest densely-populated area (J. Weiss et al.,

2018). In our model we have included the accessibility data set but also the friction

data set. One is used to determine how long the travel time would take to reach the
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nearest densely populated area, the other map to find out how fast the travel based

speeds are within certain pixels. We chose the friction map mostly with the reason

that if the travel based speed is fast, it probably means that within a livelihood zone

the infrastructure is better than in areas in which the travel based speed is slower.

It is important to note however that there might be a bias in this. If a livelihood

contains a big city in which presumably the infrastructure is better, and thus the

land based travel speed is faster, but also contains pixels in which the infrastructure

is worse this could potentially result in biased numbers. As a result this area might

get a number that seems to illustrates that the infrastructure is good for the whole

area, whereas the infrastructure is only good in a certain part within that area.

Nevertheless, finding detailed (open) data for infrastructure posed a challenge and

for now this is the best that we could find. Like the climate drivers, we used the

mean and median metric for the accessibility map and also the friction map.

5.4.6 Demographical variables

Next to NDVI, rainfall, land-cover and accessibility, the GEE was also used to deter-

mine population density. The data set from (CIESIN, 2016) contains approximate

population density per grid cell. This data set from (CIESIN, 2016) has been ad-

justed to match the 2015 Revision of UN World Population Prospects country totals.

It is important to note that this data is available for the years 2005, 2010, 2015 and

a forecast for 2020. The same applies for the population count data set that we have

used from (Center for International Earth Science Information Network (CIESIN),

2016). Subsequently we decided to linearly interpolate the missing values for the

years in between for each month per livelihood zone. The same functions were used

to preprocess the data in the same format as the NDVI data (but obviously with a

different satellite imagery; the population density and count). However we opted to

use the sum and mean of the population as features for the model.

5.4.7 Livelihood zone Characteristics

The livelihood zone shapefile from the (Famine Early Warning Systems Network ,

2009) also contains extra information per livelihood zone. However, it is important to

note that this data is from 2009. There is however no other data available with regard

to these livelihood zones. Nevertheless, we have decided to include several features

from this shapefile into our model. These features that we have included contain
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information about the main stock, crops and also what kind of livelihood zone types

these areas are (for example urban or pastoral). For each of these features we had to

conduct several steps in order to process the data in the correct format. First, for the

main crops and stocks we had to parse the sentences containing information about

their crops and stocks. After we identified each unique crop and stock we assigned

a column to each of these and used binary values to indicate if a livelihood zone

either used the crop or stock (with a 1) or not (with a 0). Lastly we also included

a feature from the livelihood zone shapefile with information about what kind of

livelihood zone type this zone is. This contained several different type of zones

ranging from urban areas to pastoral. It also contained some missing information.

In other words, there were some livelihood zones that had the type ’unknown’. We

decided to keep this as a separate livelihood zone type and not fill these unknown

values with the median or mean, since this would probably not be representative for

these unidentified zones.

5.5 Feature Engineering

In order to make sure that each feature can be used to its full potential we have

also spent some time on feature engineering. First off we have created features with

regard to the different seasons of Ethiopia: the Belg, Kiremt and Bega seasons of

Ethiopia (as dummy variables). Next to this, we have also included time lags for

the IPC and HA0. In order to create this we have shifted each feature X with a time

period i. In our case i ranged from 1 till 6 months. We did not include the time

lags of the NDVI, rain precipitation, soil moisture and food market prices. This is

because we decided to smooth out these variables using the rolling mean metric. In

this case we use the mean value per feature for the four preceding months. Like said

before using this metric we can smooth out the rough edges of the data and hopefully

lead to more understandable data for the model. In order to visualize the effect of

the rolling mean, please refer to figure 4, in which the orange line is the rolling

mean and the blue line the normal mean value for the NDVI and food market prices

(100 kg). We have also created three different binary variables from the change

event. These three variables are a cumulative sum of the times a livelihood zone has

deteriorated, improved or changed (so both improved and deteriorated) with regard

to food security. Using this, we can give our model some more historical context.

We also decided to include the cumulative sum of the fatalities per livelihood zone

from the data set from Uppsala Conflict Data Program (2018). This should again
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also give an indication of the historical context with regard to conflict and stability

per livelihood zone.

Figure 4: These figures showcase the effect of a rolling window (orange lines) for

one livelihood zone (ET02) in the Afar region. This figure illustrates how the values

of the NDVI and food market prices get smoothed out because of the rolling mean.

The blue lines represent the original mean values.

Lastly we have also included a binary feature whether market prices went up or

down compared to the previous month. We did this for both retail and wholesale.

Table 4 shows an overview of all the different statistical metrics to express the

features that we have collected, processed and created.

5.6 Class imbalance

In order to overcome the class imbalance between the No Change compared to the

Deterioration or Improvement of the food security we have to use either weights or

a resampling technique to overcome this so the model can train better on the (train)

data. We opted to choose for a resampling technique called Adaptive Synthetic
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Table 4: Summary of the different metrics used to express our chosen features

Binary Mean Median Min Max Sum
Cumulative

Sum

Rolling

Mean

Time

Lags

IPC

Current Situation X

Change Event X X X

HA0 X X

Climate and Land Drivers

NDVI X X X X X

Rain Precipitation X X X X X

Soil Moisture X X X X X

Elevation X X

Market Prices

Food Market Prices (absolute) X X X X

Food Market Prices (binary) X

Infrastructure

Accesibility X X

Friction X X

Demographical

Population Density X X

Population Count X X

Livelihood Zone Characteristics

Main Crops X

Main Stocks X

livelihood zone Type X

Conflict

UCDP Fatalaties X X
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sampling approach (ADASYN) which is created by He, Bai, Garcia, and Li (2008).

This technique uses a weighted distribution for the minority class examples according

to their degree of difficulty in learning. Or in other words classes that are harder

to learn gets more synthetic data generated compared to classes that are easier to

learn (He et al., 2008). Like He et al. (2008) already notes, by using ADASYN we

can not only reduce the bias which can be introduced by the class imbalance but

also shift the decision boundary to the more difficult examples.

5.7 Metrics

Since it is important to validate the model properly we had to choose metrics that

are fitting to the problem itself and which can validate the model’s performance

reliably. As a result we decided to use the f1 and accuracy score to identify how the

model performs. However, to understand what the f1 metric is and what this means

for our validation process it’s important to shortly describe the components of the f1

score, namely precision and recall. Precision is the proportion of positive identifica-

tions that were actually correct (Google, 2019b). Thus it identifies proportion true

positives compared to all positives (true and negative). Recall is the proportion of

actual positives that was identified correctly (Google, 2019b). Thus, it identifies the

proportion true positives compared to samples it should have found (true positives

and false negatives). By combining these two metrics we get the f1 score which is

the harmonic mean of recall and precision. In order to validate the model properly

while having imbalanced classes we have decided to report the f1 values for each

class and also the f1 macro average score from the package Pedregosa et al. (2011).

Using the macro average score we give more weight to the less occurring classes

(Deterioration and Improvement) than with the non-macro alternative.

We will also use the accuracy score to get an overview of how well the model

can identify each livelihood zone. Google (2019a) defines accuracy as the fraction of

predictions the model got right. As, the number of accuracy basically shows the ratio

of which input samples it could predict correctly (true positives and true negatives)

compared to all input samples. The accuracy score in this case will be used to map

each region on the chart of Ethiopia to give an indication of the performance of

the model to correctly identify each livelihood zone’s change event. It is however

important to note that we won’t use this metric to either optimize our model nor

to validate it is performance over all regions. This is because our target variable is

imbalanced, in which the class No Change is more common compared to the other
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Table 5: Summary of the different Metrics used to validate the model. We will use

the f1 macro score as the primary optimization metric.

Definition Formula

Accuracy

The ratio of which input

samples it could predict correctly

compared to all input samples.

TP+TN
TP+TN+FP+FN

Recall

The proportion true positive

compared to all positives found

by the model.

TP
TP+FN

Precision

The proportion true positives

compared to the samples

it should have found.

TP
TP+FP

F1
The harmonic mean of recall

and precision.
2 × Precision×Recall

Precision+Recall

F1 macro
Calculate metrics for each label,

and find their unweighted mean.

n∑
i=1

(F1i)

n

two classes. This is the reason why we will use the f1 macro and f1 individual scores

to optimize an validate the model (see 5 for an overview of all the metrics that

we have discussed). All in all, using the f1 and accuracy scores should give us a

relatively good image of the performance of the model.

5.8 Machine Learning Algorithm

For our research we have decided to use an extreme gradient boosting algorithm

(Xgboost). Xgboost is an optimized distributed gradient boosting library designed

to be highly efficient, flexible and portable. (Python API Reference, n.d.;Chen &

Guestrin, 2016). In order to briefly explain the Xgboost algorithm we have to

understand two techniques, Gradient Descent and Boosting, and the combination

of the two namely, Gradient Boosted Models.

The Gradient Descent optimization will update and correct weights learned by

the model in order to minimize the cost, which is given by the cost function. A

cost function measures how close the actual vales are to the predicted values. Sub-

sequently the model weights are adjusted based on the cost function’s outputs.
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With Boosting an ensemble of weak learners is created, in which the missclassi-

fications are boosted in order to predict them correctly in later models.

These two techniques are used in Gradient Boosted Models, which are trees that

are built sequentially and of which the weighted sum is taken of multiple models.

The difference with normal Boosting is that in this case the weights assigned to

the models are not derived from missclassifications of the previous models but from

minimizing the cost function by using the Gradient Descent.

Xgboost can be seen as a implementation of Gradient Boosted Models but with

some improvements. As Chen and Guestrin (2016) explains, the most important

factor behind the success of Xgboost is its scalability and fast runtime compared

to other algorithms. One reason for this is that Gradient Boost Models are built

sequentially, while Xgboost is parallalized. Moreover using the Xgboost algorithm

also gives some more head space with regard to optimizing. This combined with the

success stories with different challenges hosted by machine learning competition site

Kaggel as noted by Chen and Guestrin (2016), makes this a solid machine learning

choice for our multi-classification problem.

5.9 Cross Validation and Optimizing

The first step in optimizing the model, but also validating the model is setting up

a proper pipeline for cross validation. Our first step will be to split the data into a

train set and a holdout set. The train data will range from 2010-01-01 until 2016-05-

31, the hold out set from 2016-05-31 until 2018-06-01. So basically our holdout-set

is two years. We will then use our train set to find the best parameters using a self

made grid search for the Xgboost classifier and optimize on the f1 scores (ideally

both the macro and f1 scores of each class individually).

Within this grid search we will use a time series cross validation, as a way to

do repeated cross validation while taking the temporal aspect into account. Firstly,

repeated cross validation is important because situations out of 2017 could poten-

tially differ greatly compared to situations in 2015. Thus in order to find the best

parameters and thus a robust model it is important to train on different periods and

test it on different periods as well. And secondly, taking the temporal aspect into

account is of vital importance for preventing information leakage from future data

points. As a result, we chose to do time series cross validation. To elaborate, the

train set will get larger with each k number of splits that we would choose before-

hand. The size of the test size will remain the same size but will however also slide
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over until the last k split. For each k step split we will resample the imbalanced

training set using the ADASYN algorithm which was explained briefly before. We

will then average the performance over these k number of splits and choose the best

parameters for optimizing the chosen metrics (see image 5 for an example of a time

series split).

Figure 5: An example of a time series split retrieved from Osipenko (2018). As you

can see each k split moves along the time line in which the train set expands while

the test set slides until all data has been used.

We will conduct this grid search stepwise for the Xgboost on our train data. In

the first step we will determine the n estimators that we will use for determining the

other parameters. After we have determined the n estimators we will start with a

relative large learning rate. After this we will optimize some tree based parameters

namely the max depth, min child weight, gamma, subsample and colsample bytree

(for a short description of each of these parameters please refer to documentation of

the Xgboost from (Python API Reference, n.d.)). After we have determined which

parameters of each of these work the best for our metric, we will run a grid search to

optimize the regularization parameters to control the complexity of the model. The

last step in this optimizing process is to increase the n estimators and try different

learning rates in order to reduce overfititng and further control the complexity of

the model.

Using these found hyper parameters we will then retrain on our train set and

test on our hold out set, how well our model generalizes and performs. In order to

validate the model we will also look at the performance of the model with regard
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to the temporal and spatial aspect. For the temporal aspect we will use different

prediction intervals (for example predicting one month ahead and 8 months ahead)

and measure the performance of the model. For the spatial aspect we want to

determine which livelihood zones are predicted the most accurate and the least.

5.10 Baseline Models

A good way to compare our model’s performance on the holdout set is to compare

it to more simple heuristic models that can function as a baseline. Subsequently, we

decided to create several baseline models that uses simple heuristics to determine

how the performance of our Xgboost is.

The first heuristic model (called DCS) is based on the dummy classifier from

sklearn which uses the stratified option. This model generates predictions by re-

specting the training set’s class distribution (Pedregosa et al., 2011). The second

heuristic model (HN) uses the historical norm. In other words it tests the assump-

tion that the mode of the change event (CE) over the train period per livelihood

zone is sufficient to predict the CE in the next period. More specifically, it uses the

historically most occurring situation. The third heuristic model (called FP) assumes

that the future equals the present. Or in other words the most recent history of a

livelihood zone can predict the livelihood zone in the future. It is important to

note that there is a chance that the second and third model give the same result.

This is due to the fact that usually the Historical Norm for each livelihood zone is

that there is no transition or change event. If there is no change event this means

that the future equals the present. The fourth model called (called HNT) uses the

same assumption as model 1 (the historical norm) however in this case it takes the

temporal aspect into account. In other words, it is the historically most occurring

situation in a specific month. The last model (called RO) uses the assumption that

the most recent observation for a livelihood zone with the months taken into account

is a good prediction for the future. The different baselines models are summarized

in table 6.

5.11 Benchmark

In order to get an indication how well our model performs compared to other models

we have also decided to create a benchmark. This benchmark is based on the

performance between the actual change events from Famine Early Warning Systems
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Table 6: Summary of the different baseline models that we are going to use to

validate the model.

Abbreviation Description

Model 0 DCS
A dummy classifier that generates predictions

by respecting the the training set’s class distribution.

Model 1 HN

This model test the assumption that the mode of

the CE over the train period per livelihood zone is

sufficient to predict the CE in the next period.

Or in other words the historical norm.

Model 2 FeP Future equals the present.

Model 3 HNT
The historical norm

which takes the temporal aspect into mind.

Model 4 RO

The most recent observation for a livelihood zone

with the months taken into account is a

good prediction for the future.

Network (2019) (which are a derivative of their actual IPC values) and the forecast

that Famine Early Warning Systems Network (2019) have made for the change

events for these months. It is important to note that this is only an indication, since

their model slightly differs from ours since the benchmark that we have created, using

their predicted and true values, is based on data that is updated on the months 2,

6 and 10 while our model is based on monthly data. Nevertheless it should at least

give us an indication how our model performs compared to theirs.

6 Results

6.1 Results Data

In order to get a better understanding of the patterns of the change events we have

first visualized the mean change events for all livelihood zones in Ethiopia for the

existing time scale. Since our model can basically predict for different monthly

prediction intervals, we for now have decided to only predict 4 months ahead, since

otherwise the study would get to large. Nevertheless we will give an indication of

the performance of the model for other prediction intervals than 4 months in the

temporal insight section. To first get an idea if there is any seasonality in these

change events we will first analyze how the change events fluctuate over the years.

In order to do this we will take the mean change event per month and plot this
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which resulted in figure 6. The image reveals that from 2010 until 2011 there were

less improvements due to the mean not peaking as high as the other years. Moreover

there seems to be some sort of seasonality with the change events. As figure 6 reveals,

in Q1 of each year there seems, on average, to be more deterioration compared to

no change of the food security state and improvements of the food security. In

the middle (Q2 and Q3) of each year there are more improvements of the food

security states on average compared to deteriorations and no change events. The

state slowly declines at the end of year (Q4) from, on average, more improvements

to more deteriorations. It is however interesting to see that the seasonality does

change especially if you look at the year 2015 until 2017. The image makes clear

that usually the peak is around Q3 and sometimes between Q2 and Q3. However

for the year 2015 until 2016 this peak is not present. Subsequently, this change in

seasonality could potentially make the readability of the target variable harder for

our model.

Figure 6: This image visualize the aggregated mean (of the change event) per month

for Ethiopia from 2010 until 2018. This reveals that there is some periodicity. It

is however also the case that these fluctuations can differ from year to year. More

specifically, if you look at the year 2015 until 2016 you can see that there is some

change in the fluctuations with regard to the change event. The peak that is usually

in Q2 or (beginnning of) Q3 is not present between the years 2015 and 2016.
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Since this was just an overview of the fluctuations over the whole country we will

also take a look to the fluctuations per livelihood zone. In order to visualize this

properly we have decided to calculate the standard deviation per livelihood zone and

map this on the chart of Ethiopia (see figure 7). This reveals that livelihood zones

in the north western part of Ethiopia look pretty stable and its standard deviation is

close to zero. However, the livelihood zones in the mid and eastern part of Ethiopia

change more frequently. Moreover the livelihood zones in the mid-northern part of

Ethiopia seems to change most often.

Figure 7: This image visualizes the aggregated variability (standard deviation) of

food security changes per livelihood zone, with a time window of 4 months for

all livelihood zones in Ethiopia from 2010 until 2018. Livelihood zones in the north

western part of Ethiopia almost never change when we look at the short term change

event. Other livelihood zones are in the mid northern part change more frequently

when we look over the whole time period
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6.2 Modelling

6.2.1 Optimizing the model

The first step which might lead to improvement of performance of the model is

feature engineering and resampling. In order to test this we will run 100 different

Xgboost models (by randomizing the seed) using a time series split with 3 number

of splits and average the scores over our train set (2010-01-01 until 2016-01-31). We

will do this for 4 different data sets. One data set contains the original data without

any resampling strategy or feature engineering (called ORG). The second data set

contains the original data but resampled using the ADASYN algorithm (called RES).

The third strategy that we will test is the data set including the engineered features

(time lags, cumulative sum, binary food market prices and rolling window) and also

resampled which is called the RESFE strategy. The last strategy is GS, in which we

have tuned the hyper parameters for the dataset of the RESFE strategy using a grid

search time series cross validation (for the exact steps see appendix A.4). The best

parameters that we have found during the grid search and have used for measuring

the performance of this strategy are listed in table 7. In order to identify which

strategy is the most effective we have first calculated the descriptive statistics for

the f1 macro score and individual f1 scores for each class.

Table 7: Summary of the best hyper parameter combination that we have found in

our grid search time series cross validation (GS strategy).

Hyperparameters

max depth 4

min child weight 7

gamma 0.1

subsample 0.45

colsample by tree 0.75

n estimators 400

learning rate 0.01

reg alpha 0.00001

reg lambda 10

As figure 8 visualizes, the strategy RESFE is more effective (M = 0.534; SD =

0.005) compared to the RES (M = 0.488; SD = 0.005). The difference between
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Figure 8: This figure shows the per-

formance of the f1 macro score for the

different strategies, including the grid

search test performance score (GS).

For each strategy we have run a boot-

strap of 100 models. This figure indi-

cates that the each strategy increased

the performance more than the ORG

strategy. However the leap from RES

and RESFE in performance is larger

than the performance increase from

the RESFE to GS.

Figure 9: This figure shows the per-

formance of the train test difference

score (with regard to the f1 macro)

for the different strategies, including

the grid search test performance score

(GS). For each strategy we have run

a bootstrap of 100 models. Even

though the performance of the f1

macro did not increase, the train test

difference with regard to the f1 macro

score did decrease. This in turn indi-

cates that the model is now overfitting

less after the GS strategy.
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strategies is even more apparent when we compare the RESFE strategy with the

ORG strategy (M = 0.448; SD = 0.006). Moreover when we compare the GS

strategy (M = 0.549; SD = 0.004) with the RESFE a small improvement takes

place. Next to this improvement, using the GS strategy also resulted in a smaller

difference between the train and test score (M = -0.362) compared to the RESFE

strategy (-0.425) for the f1 macro score (see figure 9). In other words the GS strategy

controlled the complexity of the model a bit better which as a result lead to slightly

less overfitting.

Table 8: The descriptive statistics of the f1 score for each of three different and for

each strategy. ORG is the dataset withouth any feature engineering or resampling.

RES is the ORG dataset but resampled using the ADASYN algorithm. RESFE

is the RES dataset but includes extra features that have been created through

feature engineering. Lastly the GS strategy is the RESFE strategy but of which the

hyperparameters have been tuned.

Group Class M SD CI (95%) n

ORG Deterioration 0.132 0.013 0.129 - 0.134 100

ORG No Change 0.835 0.003 0.835 - 0.836 100

ORG Improvement 0.378 0.009 0.376 - 0.379 100

RES Deterioration 0.174 0.011 0.172 - 0.176 100

RES No Change 0.800 0.005 0.799 - 0.801 100

RES Improvement 0.491 0.006 0.490 - 0.492 100

RESFE Deterioration 0.274 0.012 0.271 - 0.276 100

RESFE No Change 0.829 0.003 0.828 - 0.829 100

RESFE Improvement 0.502 0.006 0.501 - 0.503 100

GS Deterioration 0.347 0.009 0.346 - 0.349 100

GS No Change 0.792 0.002 0.792 - 0.793 100

GS Improvement 0.508 0.004 0.507 - 0.509 100

Not surprisingly, if we look at the individual f1 scores the scores for the GS for

the class Deterioration (M = 0.347; SD = 0.006) and Improvement (M = 0.485; SD

= 0.002) are higher than all the other strategies (see table 8). The class No Change

however, has the lowest f1 individual score (M = 0.792; SD = 0.002) compared to

the other strategies. It is however interesting to see that the ORG strategy has the

highest f1 score for the class No Change. Looking at the individual scores, shows
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that as we push to the more difficult classes the majority class (No Change) gets a

lower performance.

All in all, the results indicate that compared to the other strategies GS strategy

(which is basically the RESFE but with a grid search) was the most effective in

terms of performance, by pushing to the minority classes (Deterioration and Im-

provement). Even though this resulted in a worse score for the majority class (No

Change), it also resulted in less overfitting since it has a lower difference between

the train test score.

6.2.2 Validating

Using the best found parameters (which are listed in table 7) we will now retrain

the model on the train set (2010-01-31 until 2016-01-31) and test it on our hold-

out set (2016-01-31 until 2018-06-31). In order to make sure that the values of our

performance are as reliable as possible we will bootstrap the model 100 times and

create confidence intervals. We will also calculate a train score of the model and a

test score so we can identify how well our performance generalizes between training

and testing. Nevertheless the results show that our Xgboost model (XGB) scores

0.526 on the f1 macro.

Table 9: Summary of the performance (f1 macro score) of the XGB model test,

train and also the grid search time series cross validation (GSTSCV) test scores for

a distribution of 100 models for each. The table shows that our model does overfit

slightly, since there is a difference between the train and test score. Between the

grid test score and our test score on the hold out the difference is smaller. The f1

score of class 1 is even beter for the test score than the grid test score.

Performances

GSTSCV Train Test

M SD CI M SD CI M SD CI

f1 score

Average
0.549 0.004 0.548 - 0.550 0.722 0.002 0.721 - 0.722 0.526 0.003 0.526 - 0.527

f1 score

Deterioration
0.347 0.009 0.346 - 0.349 0.645 0.003 0.644 - 0.645 0.302 0.008 0.300 - 0.304

f1 score

No Change
0.792 0.002 0.792 - 0.793 0.845 0.001 0.845 - 0.846 0.772 0.002 0.771 - 0.772

f1 score

Improvement
0.508 0.004 0.507 - 0.509 0.675 0.003 0.647- 0.675 0.506 0.005 0.505 - 0.507
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Before validating the model against the baselines and benchmark we will first

compare the test score of the XGB with the train score of the XGB to get an idea

if the model overfits (see table 9). The results indicates the the model over fits

slightly since the train f1 macro score is higher (M = 0.722; SD = 0.002) compared

to the test score (M = 0.526; SD = 0.003). An option to reduce could be that we

would push the XGB to the lowest train test difference score even further however

we would most likely underfit and under perform. As so for now this seems to be an

acceptable difference between the macro scores, which again is most likely also the

effect of the (historical) data limitation. Table 9 also contains information about the

test score from the grid search time series cross validation (GSTSCV) that we have

conducted on the train set in the previous section. The score of the grid search (M

= 0.549; SD = 0.004) is pretty close to our hold out score which is a good sign since

this means that we have been able to identify a set of parameters that generalizes

(compared to the grid search) pretty well. Notably the f1 score of class Improvement

is almost identical (M = 0.506; SD = 0.005) for our hold out test compared to the

grid test score (M = 0.508; SD = 0.004).

In order to further validate the performance of the model we have to also look

at the different baselines that we have set up (see table 10). We have only run our

baseline ones, since most of the baselines will score the same score every time (with

exception of the DCS model).

Table 10: Summary of the performance (f1 macro score) of the XGB model and

the baselines on the hold out set. From the table it becomes clear that our model

performs better than the baselines.

f1 macro

average

f1 score

Deterioration

f1 score

No Change

f1 score

Improvement

XGB 0.526 0.302 0.772 0.506

DCS 0.337 0.124 0.754 0.132

RO 0.329 0.115 0.762 0.111

HNTEMP 0.321 0.082 0.808 0.072

FeP 0.289 0.000 0.868 0.000

HN 0.289 0.000 0.868 0.000

Nevertheless when we compare our model to these baselines the Xgboost model

scores higher (M = 0.526; SD = 0.003) when comparing it to the baselines, of which
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the highest one (DCS) scores a f1 macro score of 0.337. If we look at the individual

classes, not surprisingly, classes Deterioration and Improvement score substantially

better than the baseline. As an example the highest score the baselines got for the

Deterioration class is 0.124, while our model scores higher (M = 0.302; SD = 0.008).

The Xgboost model even performs beter for the class Improvement (M = 0.506;

SD = 0.005). This is quite impressive since the highest scoring baseline, is 0.132.

Our Xgboost model however does under perform for the class No Change (M =

0.772; SD = 0.002) compared to three different baselines (FeP, HN and HNTEMP).

Nevertheless this part shows that Xgboost model can predict food security to some

extent. Finding No Change events, looks to perform worse than the baselines. This

could however be a side effect of us focusing so much on optimizing the model for the

minority class and making the data set more balanced. Moreover the scores indicate

that the model finds improvements of food security better than deterioration. As

you may have noticed the scores for the baseline HN and FeP are identical. This is

because the historical norm is that usually livelihood zones food security does not

change, hence it will always be the class No Change. This same rule applies for our

third baseline. If we assume that the future equals the present, tomorrow is the

same as today which means there is no change, hence it will always be the class

No Change. It is however important to note that this reasoning, has a chance to

not always hold. In other words, there can be a situation in which the historical

norm might be different than the FeP model for a region in the future, thus we still

included it in the table.

Table 11: Summary of the performance (f1 macro score) of the XGB model on

the hold out set and the benchmark that we have created using the predictions of

Famine Early Warning Systems Network (2019).

f1 macro

average

f1 score

Deterioration

f1 score

No Change

f1 score

Improvement

XGB 0.526 0.302 0.772 0.506

FEWSNET 0.637 0.564 0.848 0.498

To also give an indication how the performance of the Xgboost model compares

to the prediction of Famine Early Warning Systems Network (2019), we have also

calculated the performance of their prediction of the change events (which is a

derivative of their IPC prediction) compared to the real change events (which is also
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a derivative of but in this case of the actual IPC values at that current moment).

This will serve as a benchmark. Moreover, we have only run the benchmark once,

thus we don’t have a distribution of the scores. That being said, the results shows

that our Xgboost model, with a f1 score average score of 0.526, does not perform

as well as the benchmark which scores 0.637 on the f1 macro (see table 11). Our

model also performs worse compared to the benchmark for the classes Deterioration

score and the No Change on the f1 score. It is however interesting to see that the

f1 score of the Improvement class does perform better for our model compared to

the benchmark.

6.2.3 Feature insight

In order to identify which features are the most important for our model we have

saved the feature name and its corresponding feature importance when we had

bootstrapped the XGB model over a distribution of 100 models (see figure 10, for

the full list of features and their importances please refer to the appendix and figure

20). Afterwards we have aggregated the mean values of each feature over these 100

runs. Not surprisingly, the features that hold either information about the IPC class

(named CS in the graph) or information about how many times a livelihood zone

had a deterioration previously are important to the model. Moreover features with

regard to the soil moisture (ssm mean and smp mean), food market prices and the

features holding information about the season are also relative important. Lastly

the precipitation and population density also have a respectable feature importance

compared to the rest of the features of the model.

6.2.4 Spatial Insight

In order to understand for which livelihood zones the model predicts best and which

were the most difficult, we will map the different findings from our prediction and

compare this to the real values. To elaborate, we will compare the predictions

against the actual value for each of 100 models that we have run. In order to do

this, we will calculate the accuracy score per livelihood zone (which is the correct

number of predictions divided by all predictions). This in turn should give us an

indication of how many times the model found a livelihood zone correctly. In order

to identify these regions we will first map the accuracy score for each region over

the geometry of Ethiopia (see figure 11).
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Figure 10: This image shows the average feature importances of the bootstrapped

model that are larger than 0.015. It makes clear that that CS (IPC class), the

CS time lags (CS-1 up to CS-6) and the number of times that a Deterioration

change event happened before in a region are important. Moreover the soil moisture,

seasonality, food market prices, precipitation and NDVI also have a relatively high

importance.
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Figure 11: This map gives an indication which region were predicted correctly and

which weren’t. The regions in the north western were the easiest for the model to

identify (thus an higher accuracy). The regions that are darker are more difficult to

identify compared to regions that have a lighter colour(higher accuracy).
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The result shows that especially regions in the western part of Ethiopia were

more often correctly identified compared to the other regions. They even had an

accuracy score of 100 procent. The most difficult livelihood zones (that have the

darkest colors) are clustered around the southern part of Ethiopia and also at the

northern part of Ethiopia. All in all, even though the model doesn’t find each

livelihood zone with a high accuracy, it does find each livelihood zone at least once

over a distribution of 100 models. Moreover these results also show there seems to

be strong spatial dependency for food security in Ethiopia as the performance to

identify livelihood zones correctly looks to be clustered in some areas.

6.2.5 Temporal Insight

Even though we specifically tuned the hyper-parameters of our model in order to

predict change events in food security four months into the future, we will also test

how the model performs when we change this prediction interval. It is however

important to note that the performance might be higher if we would do grid search

optimization for each different prediction window. However, if we would do this the

runtime would increase substantially, we would have to do the grid search for 12

different models. Nevertheless this section should at least give an indication of the

performance of the model for different prediction intervals.

Figure 12: This image shows the performance for each of the different models that

we have tested with regard to the f1 macro score. The Xgboost classifier (XGB)

performs better for each prediction window when compared to the baselines. You

can even see that the performance increases as the prediction interval expands.
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In order to give an indication of the performance for different prediction intervals,

we will also test our XGB model against the different baselines. We couldn’t test

the benchmark against the different prediction intervals, because the benchmark

that we have created is only available for a prediction interval of 4. As figure 12

shows, our XGB model outperforms the different baselines that we have created if

we compare these on the f1 macro score. You can see that as the prediction interval

increases the performance of the XGB also increases.

In order to get more insight we will also have a look at the performances of the

individual classes. These figures show that firstly the performance of the individual

f1 scores are better for the class Deterioration and Improvement compared to the

baselines. Moreover the same pattern exist as with the f1 macro average score, as

the prediction interval increases the performance increases (figures 15 and 13). It

is however interesting that if we look at the performance of the class No Change

(figure 14). The performance decreases as the prediction interval expands. If we

compare the XGB model with the baselines it performs worse when the prediction

interval is smaller than 4 months. However after the prediction interval increases

beyond 4 it performs better than the dummy stratisfied classifier (DCS) and the

recent observation (RO) baseline. At prediction interval 6 it also outperforms the

historical norm with temporal aspect in mind (HNT). It is interesting that the class

No Change under performs when the prediction interval increases, because it shows

that as the prediction interval increases and the minority classes get more samples

the majority class gets less samples and thus decreases in performance. In order to

validate this argument we have plotted the count for both our train data for each

class in figure 16. This figure shows that the number of counts (for the train data

without resampling) for the classes Improvement and Deterioration increases as the

prediction interval expands. The counts for the class No Change decreases over time

while the counts for the other two classes Deterioration and Improvement increases.
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Figure 13: This image

shows the f1 performance

for the class Deteriora-

tion for each of the differ-

ent models that we have

tested. The Xgboost

classifier (XGB) performs

better for when the pre-

diction interval expands

compared to the base-

lines.

Figure 14: This image

shows the performance

for the class No Change

for each of the differ-

ent models that we have

tested. The Xgboost

classifier (XGB) performs

worse than most of the

baselines and only per-

forms better compared to

the other models after

prediction interval 4. The

performance decreases as

the prediction interval ex-

pands.

Figure 15: This image

shows the f1 performance

for the class Improvement

for each of the differ-

ent models that we have

tested. The Xgboost

classifier (XGB) performs

better for each prediction

window when compared

to the baselines. You

can even see that the

performance increases as

the prediction interval ex-

pands.
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Figure 16: This image visualizes the count of the samples for each class of the

train data. You can see the same pattern, as with the test data. As the prediction

interval increases the number of instances for the minority classes (Deterioration

and Improvement) increase while the majority class (No Change) decreases.

7 Discussion

The goal of this study was to create a model that can predict the change events

(transitions in food security) for the livelihood zones in Ethiopia using scalable

features. After collecting and processing scalable features, selecting our machine

learning algorithm (Xgboost), metric (f1 macro score), the type of cross validation

and optimizing we finally reached our goal. Even though this model is not per-

fect yet, the results show that our Xgboost model does have predictive value. It

performs better than the baselines when we look at the f1 macro average score.

The results also showed that our Xgboost model performs better than our baselines

when predicting Deteriorations of the food security (negative change events) and

Improvement in the food security (positive change events). Even though the f1 score

of the No Change is higher than the other two classes, it does not perform better

than most of our baselines. This is an example of why a baseline can be valuable:

a high score alone is not enough to conclude whether the performance of a model

can be considered as sufficient. We have also compared our Xgboost model with

a benchmark that we have created using the predictions of Famine Early Warning
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Systems Network (2019). The results showed that our Xgboost model is not as good

as the predictions of Famine Early Warning Systems Network (2019) yet, however

we did get close to the benchmark. Moreover when we look at the individual classes

we even beat the benchmark for the class Improvements. However our model did

not perform as well for the class Deterioration and No Change compared to the

benchmark.

The results of the feature insight section showed that the importance’s of our

features (IPC, change event history, soil moisture, food market prices, seasonality,

rain precipitation and population density) mostly reflects the study of (Misselhorn,

2004), in which climate, environmental stressors were one of the most cited drivers.

Even though you can argue that the cumulative Deterioration variable that we have

created through feature engineering (which is basically the history of a livelihood

zone: how many times has there been a deterioration of the food security), contains

some indirect information about whether a livelihood zone is stable or not. It is

still surprising that fatalities did not have a big impact as that we would have

expect. Social and political unrest or war was cited quite some time in the study of

Misselhorn (2004) as a indirect driver. Moreover, like we have discussed before, it has

been argued by organizations like the FAO, IFAD, UNICEF, WFP and WHO (2017)

and the Food Insecurity Information Network (2018) that conflict is one of the main

drivers of the rise in food insecurity. Nevertheless, apart from conflict, most features

that got a relative high importance correspond with the study from (Misselhorn,

2004). With regard to features, this study also succeeded in using features that

are scalable in our model. These features that we have collected and the tools that

we have created should be relatively easy to implement for other countries. The

features that we have created through feature engineering also resulted in a better

performance for the Xgboost model.

The results also showed that there is a spatial dependency with regard to the

performance of the model. To elaborate the livelihood zones in the north western

part of Ethiopia were more easier to identify correctly compared to the livelihood

zones in the other areas. The areas in the north western part of Ethiopia even got a

score of 100 percent. In order to identify why this happened we checked the change

events for these regions for the time frame of our hold out set (which is from 2016-

01-31 until 2018-06-01). We realized that during this period these regions never

changed. The same rule applies for the other three regions that have close to 100

percent of accuracy that are at the eastern side of Ethiopia and the small area in the
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southern side of Ethiopia. In other words these areas never changed with regard to a

food security state. This can be a result of either not having enough historical data

about this region so we can test on a larger time interval, or maybe these regions

really don’t have that many transitions, and thus are more stable. Nevertheless we

would have preferred to have more train data and more test data so that we would

have a more complete image of the historical trend and seasonality of these regions.

Lastly our results also showed that the Xgboost model overall performs better

for longer prediction intervals. There are probably several reasons why this effect

took place. First, the smaller the prediction interval, the smaller the chance that the

Xgboost model can actually predict a change within that window. In other words if

the prediction interval is larger this means that the Xgboost model is less likely to

make a mistake, to correctly identify the change event at an exact time moment. For

example if the model would predict one day ahead, the chance that the model would

be able to find the change event exactly on a daily scale would be almost impossible.

In order to make this easier to understand we will compare this with an analogy

between two soccer teams. Assume there is a soccer game between two teams: team

A and team B. Team A is presumably way better, since they have better players and

a better goal difference compared to team B. In other words, you are pretty sure that

Team A is more likely to win from Team B within a 90 minute game. However if we

would have to predict in which time window of 5 minutes team A would score this

would be harder (since there are 18 possibilities), compared to when we would want

to predict within a time window of 45 minutes when team A would score against

team B (2 possibilities). This is the same for our model. If would predict for a longer

time interval it is easier to predict (since there are less possibilities) whether there

is a transition in food security compared to when there is a shorter time interval.

Second, the train data set gets more balanced. The reason for this is that there are

more likely to be more change events in the long term (longer prediction interval)

compared to the short term (smaller prediction interval). Subsequently because of

the larger train data, the resampling strategy could also be more effective since it

has more examples per class that it can synthetically create. Lastly, it could also be

the case that our features that we are using to predict the change events are more

effective in identifying changes in the food security state in the long term compared

to the short term.
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7.1 Further Research

During the study some suggestions and questions have come to light. In order to

validate the Xgboost model further and find out whether it actually predicts food

security some different steps have to be taken, which unfortunately were not possible

in the time frame that this study had. First, questions have to be raised with regard

to the IPC variable (which we have used to create the change event) from Famine

Early Warning Systems Network (2019) in combination with our Xgboost model.

Specifically, in order to test how well this model generalizes and performs in other

countries, it might be a good idea to test its performance in a different country

like Kenya. We would suggest Kenya because figure 21 (in the appendix A.5) shows

that the fluctuations in Kenya are less volatile with regard to the change event mean

(which means that there are less moments in which the food security state improves

or deteriorates) compared to Ethiopia. Testing the Xgboost model on data that

is presumably more stable, according to data of Famine Early Warning Systems

Network (2019), might be interesting to further validate the generalizability of the

model. Another way to validate the Xgboost model, would be to use an alternative

target variable. Talking to an expert at the Red Cross it became clear that they

might get access to the woreda hotspot clarification, which is an alternative metric

for food security. Using a different target variable that should roughly express the

same concept could also validate the model further. A severe drawback however,

using the hotspot woreda’s, would be that this variable is only available for Ethiopia

while the IPC is available for most countries.

This study also has some suggestions how the performance of the model can be

increased. First, there are limitations to using open data, not every feature that

might be important to predict these change events in food security might be open

data. Thus it might be a good idea to also try to incorporate non open data for the

model so it can improve its scores. To give an example, we expected conflict (the

data set from Uppsala Conflict Data Program (2018) to have a bigger impact on the

model than our results show. The data set from Uppsala Conflict Data Program

(2018) had a minor effect on our model (see figure 20). A issue with this data set

is that it contains the death tolls due to conflict which is collected through news

outlets. News outlets however can be biased, since there is a chance that not every

news event gets reported, thus the reliability of this set can be questioned. In order to

overcome this, an option would be to find a different data set or source which is more

reliable The problem however with a concept like conflict, is that there is not a lot of
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open data available about this sensitive topic. So a suggestion for a non open data

source for this information is the tool developed by DHL called Resillience360. This

tool gives organizations the option to visualize and track relevant early warnings

and emergency incidents near-real time around the world (DHL, 2019). Another

potential data set would be through the International Committee of the Red Cross.

However, the problem with this would be that this data set is probably not open

data and might thus be difficult to get, since it contains sensitive data.

Secondly, adding even more features, not surprisingly, could also improve the

performance of the model. Features that could potentially increase the performance

of the model are land cover, soil quality and types and poverty. The problem

with satellite imagery of land cover is that we could not find a data set that has

been updated recently. The most up to date data set of of land cover went up to

2016. Moreover, we could also not find a data set that had information about the

soil quality and types in the GEE. A different feature that could potentially also

increase the performance of the model is poverty. Since poverty is also a sensitive

topic, the questions remains whether we could express this concept through open

data. However, a potential candidate to express poverty to a certain extent is using

city lights as a proxy for poverty. Composite light data sets have been used, by

studies like that of Yu et al. (2015), to predict poverty. However in our case we

did not include this, since the data from the composite light data set of the GEE

started started from 2012. Subsequently, this would mean that we would have

need to throw away 2 years of data (since our target variable started from 2010).

In hindsight we could have also treat these composite light data sets as a constant

factor. Nevertheless it would still be interesting to see how city light satellite imagery

would influence the models performance.

Another way of achieving more performance for the model is to get in contact

with Famine Early Warning Systems Network (2019) in order to get more infor-

mation on what kind of scale their variables are (what is the granularity that they

use). To be more specific, it could potentially be the case that the data that Famine

Early Warning Systems Network (2019) uses to create the IPC is not as detailed as

satellite imagery. Clarification about the granularity could increase the performance

of the model, since we than know on what kind of scale they operate and what kind

of variables we have to search for.

Another option to increase the performance of the model is to spend even more

time on feature engineering. Techniques like the condition index from the study
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of Kogan (1990) could potentially increase the performance of the model. This is

an index that compares the current value at a given location with the historical

data. This can be benefcial since according to Sannier, Gilliams, Ham, and Fillol

(2015) there is a need to compare the current value at a given location with the

historical data. Sannier et al. (2015) argues that it is not possible otherwise to

determine whether for example, the vegetation conditions are better or worse than

normal. Next to condition index, it might also be more beneficial to get more

domain knowledge, or get in contact with more experts, to determine what features

and feature engineering could potentially increase the performance of the model.

Another suggestion is using a different aggregation level. For now the livelihood

zone areas seem to be the most relevant from a more theoratical view. However

from a more practical view the admin level 3, which basically divides Ethiopia

in geographical provinces, divides the country in smaller regions compared to the

livelihoodzone. Subsequently, this could potentially increase the performance of the

model since the aggregation level is on a more granular scale than the livelihoodzone,

and thus results in more data per region.

As the spatial insight and the data exploration results showed, there seems to

be some spatial dependency and relationship. There seems to be a strong clustering

with regard to the change events of food security. Using more spatial information

could potentially lead to an increase of performance. To give two examples we have

only tested the model on Ethiopia and presumed that It is an isolated country. How-

ever deriving features based on neighboring regions (to better take network effects

into account, or to see how food insecurity spreads) might increase the performance

of the model.

Moreover, even though our model can predict what kind of transition of the food

security states takes place, for now it can’t differentiate between different transitions

(transition from IPC 1 to 3 or IPC 1 to 2) and what kind of IPC value these

transitions had. Due to time, we only decided to focus on the first step, a model that

can predict the transitions. However, expanding the model to give more information

back would be beneficial if the Netherlands Red Cross wants to use this model for

decision-making, but also get more insight when and why these transitions happen.

Another suggestion for further research is building a model that can predict the

more extreme cases (transition from IPC class 4 to 5). We couldn’t make this for

Ethiopia, or test for the simple reason that IPC class 5 has never been measured in

Ethiopia. Moreover, these extreme cases almost never happen and our thus super
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imbalanced. Building a model to detect these transitions will be a challenge.

There were also several issues that this study ran into that might need some

more clarification in further research. First, the question can be asked on how much

data the XGB model we train on. To put it differently, how much years of historical

data do we need to train in order to predict in the future. On the other hand it

could also be the case that there is not enough historical data and that we simply

need more data. Unfortunately this is of course limited by the target variable which

started in 2010. Secondly, there are many different type of models that you can

use. We chose the Xgboost because it is flexible and performs well. However the

question remains how other type of models perform. That being said, this study did

try to use a Random Forest as well, however since the performance of the Xgboost

was better at default settings we opted to continue our analysis with the Xgboost

model.

8 Conclusion

This study aimed to create a model using scalable features that can predict changes

in food security per livelihoodzone in Ethiopia. As the result and discussion have

shown, our Xgboost model can predict transitions of food security states for liveli-

hood zones in Ethiopia better than the baselines. And even though we don’t perform

better (on average) yet than the benchmark (which we created using the predictions

of Famine Early Warning Systems Network (2019)), we believe that further im-

provements of this model can increase the performance so that it performs better

than or similar to the benchmark. Overall our Xgboost model can identify regions

that improve with regard to food security better than areas that deteriorate or stay

the same. Nevertheless even though this tool might not optimize the decision mak-

ing of the Netherlands Red Cross right away, it does show great potential. Moreover

we have also gained more insight and a better situational awareness of what kind of

features contribute in predicting food security, that there is a spatial dependency in

livelihood zones that needs more investigation and that performance of predicting

change events might differ for different prediction intervals. Even more we have

also succeeded in collecting and using scalable features that can be used for other

countries. This can be highly valuable for the Netherlands Red Cross since they can

use this tool to extract satellite data more easily for other countries and potentially

even use it for their own Community Risk Assessment Dashboard.
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All in all this study showed that using Artificial Intelligence and state of the art

techniques can be relevant in the humanitarian sector and potentially, in the future,

get us closer to optimizing the humanitarian assistance so that we can support and

relieve food insecure regions more efficiently.
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A Appendix

A.1 Reflection

During this study I’ve utilized my coding, critical evaluation, statistical and team

skills, which I’ve acquired during my master Artificial Intelligence, to create a model

that predicts the change events in food security. Even though a part of this study

was collecting data and processing it, I have learned a lot about making sure that

the model learns the correct patterns and how easy it is to make mistakes with

regard to information leakage in time series models (processing data correctly is

very important). Next to this, I’ve also learned a lot about choosing the right

metrics, optimizing the model (in this case a Xgboost) itself and validating the

model properly. Next to cross validation, having both a baseline and benchmark is

of utmost importance to determine how well the performance of the model actually

is. Lastly, I have also learned a lot about how to translate numbers to understanding.

Making figures, like in the spatial aspect section, can give a lot of insight where the

model performs strongly and where it doesn’t.

A.2 Why is Artificial Intelligence relevant for this study?

If you think about Artificial Intelligence, you will probably not think directly about

the humanitarian sector, but big companies like Google or Tesla with its self driving

cars. However this study has shown that using Artificial Intelligence in the hu-

manitarian sector has a lot of potential. To be more specific, by creating a model

that predicts the transitions of food security, humanitarian organizations can better

estimate which areas are the most in need of help. By using the state of the art tech-

niques and Artificial Intelligence in this study, we are a step closer to the purpose

of the 510. Namely, using data to positively impact faster and more (cost) effective

humanitarian aid. This in turn can lead to timely finance prior to a disaster which

can be more cost-effective than post-disaster expenditures (Guimarães Nobre et al.,

2018). Doing research, with regard to Artificial Intelligence, can in the future get us

closer to optimizing the humanitarian assistance, so that organizations can support

and relieve food insecure regions more efficiently.
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A.3 IPC Definitions

Figure 17: Definitions of the different IPC classes (IPC Global Partners, 2012)
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A.4 Hyperparameter Tuning

The first step in optimizing the model was to initialize a data set containing all

features and our target variable (change event within the next 4 months). Afterwards

we will split the data set like we have discussed in the methods so that the train set

consists of data from 2010-01-01 until 2016-01-31 and the holdout set consists out

of data from 2016-01-31 until 2018-02-01. We in turn use the train set to find the

best set of parameters using a self built grid search time series cross validation. The

first step was to determine the best optimal number of estimators. We have chosen

to test 10, 20, 40, 80, 100, 200, 300, 400, 500, 800, 1000, 1500 of estimators, while

keeping the rest of the parameters as default, with the exception of the learning rate

(0.01), colsample by tree (0.8) and subsample (0.8).

Figure 18 shows that the score of the f1 macro increases as the n estimators

increases up to around 400 estimators (f1-macro = 0.547) and afterwards slowly

decreases again. You can see the same pattern if we look at the individual f1 scores

of each class (see table 12). Nevertheless, increasing the n estimators also increases

the chance to overfit. We have visualized this in figure 19, in which you can clearly

see that as the n estimators increases the difference between the f1 macro train

score and test score of the grid search also increases. We will however choose 400

n estimators since it has the largest score for this intersection of parameter space.

However, it is important to note that the optimal n estimators might change when

we have optimized the other parameters in the next sections.

Using 400 n estimators we will first optimize the tree based parameters. More

specifically we will iterate over different combination of parameters which are listed

in table 13. Our goal is to find the parameters parameters that give a high f1 macro

score while keeping a check on imbalanced results between the individual class scores.

With the chosen parameters (which are underscored in table 13), we have been able

to increase the f1 macro score to 0.551 which is an small improvement over the score

that we got when we increased the n estimators to 400 (0.543). If we look at the

individual classes, the f1 score of class Deterioration increased from 0.326 to 0.348.

Class Improvement also increased from 0.489 to 0.509. However class No Change

slightly decreased from 0.814 to 0.795.

The next step is to tune the regularization reg alpha and reg lambda to increase

the performance, reduce the chance of overfitting by reducing the complexity of the

model itself. In this case we will use the found tree based parameters that have been

identified in the previous section. For reg alpha we have tested 5 different values
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Figure 18: The performance increases

as the estimators are increasing. How-

ever after 400 estimators the perfor-

mance slowly decreases again. The f1

score represents the averaged f1 macro

score over 3 time series splits for the

f1 macro average,

Figure 19: The difference in train and

test macro scores in the grid search.

As the number of estimators increases

the difference between the train and

test score also increases. Thus, this

shows that increasing the number of

trees results in overfitting with the

current learning rate (0.01)
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Table 12: Summary of the different f1 scores of the individual classes and macro av-

erage over all classes. From the table it is apparent that as the number of estimators

is increasing the performance also increases up to 500 number of estimators.

n estimators
f1 score

Deterioration

f1 score

No Change

f1 score

Improvement

f1 macro

average

10 0.310 0.629 0.458 0.466

20 0.286 0.667 0.480 0.478

40 0.304 0.649 0.474 0.476

80 0.285 0.664 0.478 0.476

100 0.295 0.671 0.494 0.487

200 0.324 0.721 0.494 0.513

300 0.345 0.765 0.500 0.537

400 0.330 0.794 0.518 0.547

500 0.306 0.812 0.505 0.541

800 0.287 0.824 0.500 0.537

1000 0.273 0.831 0.499 0.535

1500 0.277 0.830 0.500 0.536

Table 13: Summary of the found tree based hyper parameters in our grid seach time

series cross validation. The hyperparameters that gave the best score for our chosen

metrics in this iteration are underscored.

Hyperparameters

max depth 3 5 7

min child weight 1 3 5 7

gamma 0 0.1 0.3

subsample 0.5 0.7 0.8

colsample by tree 0.5 0.7 0.8

n estimators 400

learning rate 0.01
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Table 14: Summary of the different parameter used in order to tune the regulariza-

tion parameters and reduce the chance of overfitting. The parameters that we have

chosen are underscored.

Hyperparameters

max depth 4

min child weight 7

gamma 0.1

subsample 0.45

colsample by tree 0.75

n estimators 400

learning rate 0.01

reg alpha 0.00001 0.01 0.1 1 100

reg lambda 0.5 1 5 10

(0.00001, 0.01, 0.01, 1 and 100). For reg lambda we have tested three different

values, namely 0.5, 1, 5 and 10. The grid search had identified that a reg alpha of

0.00001 and a reg lambda of 10 lead to the best f1 macro score which was increased

to 0.555 from 0.551 (score of previous step in the grid search). Moreover looking at

the individual f1 scores, class Deterioration further increased to 0.356 from 0.348.

Class No Change decreased to 0.794 from 0.795 and class Improvement increased to

0.514 from 0.509. However in order to identify whether overfitting decreases we will

calculate the difference between the f1 macro scores between the train and test sets.

Or in other words we will identify how big the difference is between the train and

test phase of the model. After we had optimized the tree based parameters the train

and test score was -0.363. However after we had tuned the alpha and lambda score

of the Xgboost the difference score improved to -0.357. In other words using these

regularization parameters we could slightly improve the performance score but also

reduce overfitting.

The last step is tune the n estimators in combination with the learning rate to

further reduce overfitting and the complexity of the model. For the grid search we

have used 500, 1000, 2000, 4000, 8000 and 10000 n estimators. For the learning rate

we have used 0.01, 0.005, 0.003, 0.001 and 0.0001. For the other parameters we have

used the parameters that we have identified during the previous steps in our grid

search. During this grid search 400 estimators in combination with a learning rate
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of 0.010 lead to the most optimal performance compared to the other combination

of hyper parameters. This combination of estimators and learning rate is the same

as the previous step. The performance is thus almost the same (slightly variations

due to randomness), so we won’t go into depth about the exact scores.

A.5 Extra Figures

Figure 20: This image shows that the mean score for both Ethiopia and Kenya of

the change events. This thus shows that there are more fluctuations for Ethiopia

(on average) compared to Kenya.
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Figure 21: Feature Importances for all features.
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