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Abstract

Due to the increase in medical imaging and clinical radiation use, it is important to be

able to quantify the health implications from low doses of radiation delivered at low

dose rates. There is a lot of data available on the incidence of different types of cancer

as a response to high doses of radiation when delivered at high dose rates, and many

mathematical models have been developed from these data, however much less data

is available on the incidence of cancer caused by low levels of radiation received at

low dose rates. In this thesis we present a model to predict the incidence of cancer,

specifically murine AML as a function of dose and dose rate, and give recommendations

for DDREF functions (dose and dose rate effectiveness functions).
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Chapter 1

Introduction

People are exposed to ionising radiation through many different sources: for example

doctors performing X-rays on patients, patients receiving CT (Computed Tomography)

scans or radiotherapy, and workers in the nuclear power industry. Also ionising radiation

occurs naturally in the air from radioactive material such as radon, as terrestrial radia-

tion in the soil and as cosmic radiation from space [1]. Radiation can be very damaging

to living tissue, particularly at a cellular level, which will be the focus of this thesis.

High doses (above 1 Gy) delivered at high dose-rates (above 1 Gy/hour), cause exten-

sive damage that results in almost immediate cell death or many mutations that lead to

a high risk of cancer development, and it is quite easy to measure this damage since the

effects are usually observed quite soon after radiation exposure. Damage caused by low

dose and low dose-rate radiation often takes much longer to show up, since this damage

is usually induced by stochastic events, and therefore the health implications are much

harder to measure. It is very important to be able to quantify the risk to low dose and

low dose-rate radiation so that we can make developments in medical radiation proce-

dures, radiotherapy and radiation protection policies. The effective dose received from

X-ray imaging varies from 0.01 to 10 mGy. A CT scan delivers higher doses of between

1 and 20 mGy, depending on the part of the body [2]. As a comparison, the average

yearly dose of background radiation people receive is 3 mGy. Radiotherapy usually is-

sues a total dose of between 50 and 70 Gy, divided into small amounts of around 2 Gy

per day, five days a week. Figure 1.1 shows the percent of malignant cells killed, defined

here as tumor control, along with the healthy tissue damage as a response to dose [3].

Here it is clear that precision in dosage is required to effectively kill as many tumor cells

as possible without causing damage to healthy cells. Due to the limited available data

and difficulty of carrying out experiments, there is much uncertainty in the risk from

low dose and low dose-rate radiation exposure. Mathematical models have been built

1



Introduction 2

FIGURE 1.1: Tumor control and normal tissue damage responses to dose

from data known about high dose and high dose-rate risk, that enable extrapolation to

estimate low dose risk.

1.1 Overview of previous research

There are many different approaches that have been used to model radiation-induced

DNA damage as a function of dose, and the surviving fraction of a cell population [4].

One of the first approaches was Target Theory, which assumes that there are sensitive

targets in the cell and the modelling is based on the probability of the radiation track

hitting these specific targets in cells. Then came the Linear-Quadratic model devel-

oped by Kellerer and Rossi in 1972, which suggests that a lethal event, often called a

chromosome aberration, is caused by either one particle track, represented by a linear

component, or two independent particle tracks, represented by a quadratic component.

Equation 1.1 shows this relation, where NCA represents the number of chromosome

aberrations per cell, and D represents the dose of radiation received.

NCA = αD + βD2 (1.1)

Kellerer and Rossi also suggested that the surviving fraction of a cell population is re-

lated exponentially to the number of chromosome aberrations per cell, see equation 1.2,

where SF represents the surviving fraction.

SF = e−(NCA) (1.2)
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FIGURE 1.2: Taken from Chadwick (2017) [7], eqn 9 in this figure refers to cancer
induction from high dose-rate exposure, and eqn10 refers to cancer induction from
low dose-rate exposure. The diamonds are data points, and the dotted line shows the

Linear No-Threshold model.

From understanding about cellular responses to radiation exposure and epidemiological

data on cancer incidence from high doses at high dose-rates, for example survivors of

the Hiroshima and Nagasaki atomic bombings, models have been developed to predict

the risk of cancer from a given dose of radiation, assuming the radiation is delivered

all at once. For example, the Linear No-Threshold model describes a linear relationship

between dose and cancer risk, and was built for radiation protection purposes to extrap-

olate the risk to low dose radiation exposure [5]. This model suggests that the risk from

a given dose is the same regardless of the rate at which that dose is delivered, so that

separate exposure events can be summed to estimate the risk from the total accumulated

dose. However, there is much controversy about extrapolation by a linear dependency,

as this is thought to lead to over-estimations for low dose and low dose-rate risk [6].

To try and compensate for these over-estimations, the International Commission on Ra-

diation Protection (ICRP) proposed in 2007 a dose and dose-rate effectiveness factor

(DDREF) of 2, by which high dose-rate risk for a given dose is divided by this factor to

estimate low dose-rate risk. Even though a DDREF of 2 gives improved risk estimates

for some doses, this factor is thought to be quite different depending on the dose of

radiation received [7], as shown in figure 1.3.
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FIGURE 1.3: From figure 1.2, a DDREF for different doses is calculated by dividing
eqn9 by eqn10.

1.2 Motivation and Research Focus

The uncertainty in the health implications caused by low dose and low dose-rate radi-

ation exposure sparks the motivation for this thesis, which will try to understand more

about low dose and low dose-rate radiation exposure and make better risk estimates in

the consequences of this type of radiation. With a specific focus on the risk of murine

Acute Myeloid Leukaemia (AML), this thesis will investigate the dose-rate effects on cel-

lular damage and the formation of malignant cells, to present a dose-rate dependent

model for AML. As a starting point the dose dependent model developed by Dekkers et

al (2011) [8] will be considered, which predicts the incidence of AML for a given dose,

as shown in figure 1.4.

From the dose-rate dependent model for AML, a DDREF will be calculated which is

expected to vary for different doses.
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FIGURE 1.4: Predicted incidence of Acute Myeloid Leukemia by Dekkers et al (2011)
[8].



Chapter 2

Biological Background

This chapter will provide a background of biology in order to make the modelling section

clearer. It is fascinating that cells are able to identify significant damage to the DNA,

pause the cell cycle while repair takes place, and then continue the cell cycle once the

damage is sufficiently repaired. Repair of the damage occurs at a very high accuracy,

but since this is a natural process sometimes things can go wrong and the mis-repair of

DNA can sometimes lead to gene mutations, which can cause the onset of cancer.

2.1 What is Ionising Radiation

Radiation can be ionising or non-ionising. Ionising radiation consists of radiation waves

at the high frequency end of the electromagnetic spectrum: from γ-rays and X-rays

down to extreme UV light, whose wavelengths range from 10−5nm to 10nm. Heavy

particles such as alpha and beta particles are also a source of ionising radiation. These

particles have a very unstable outer electron shell, and therefore decay easily by losing

electrons and becoming ionised. The process of losing electrons generates waves of

ionising radiation. It is ionising radiation that causes damage to cells, because there is

enough energy to displace electrons from atoms, damaging the molecule. If the radiation

track hits a molecule in the DNA of a cell, this can have serious effects on the DNA

structure which can be fatal to the cell [9].

2.2 How Ionising Radiation causes damage to DNA

DNA is made up of nitrogenous bases and sugar-phosphate molecules, held together by

hydrogen bonds, wound tightly in a helix. Chromosomes are made of this tightly wound

6
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DNA, and can be thought of as an arm that becomes replicated during the process of cell

division. When an ionising track hits a sugar molecule of a DNA base, the displacement

of an electron from this sugar molecule disrupts the structure and causes damage to

the backbone of DNA, resulting in a single-stranded DNA break (SSB). If two SSBs occur

opposite each other within 10 base pairs, this causes a double-stranded break (DSB) [9].

If a cell nucleus receives a high number of DSBs in its DNA, this can lead to apoptosis

(programmed cell death). Experimental results show that on average, a human cell will

receive 35 DSBs per Gy of X-ray irradiation [10], irrespective of the dose-rate. The DNA

of a human diploid cell is known to contain 6.1 Giga base pairs (Gbp), so this gives a

yield of approximately 5.7 DSBs/Gy/Gbp [10], which is now a widely used constant for

all species.

2.3 Repair Pathways of DSBs

Cells cycle through different phases during their lifetime in order to carry out DNA repli-

cation and cell division, as shown in figure 2.1. DNA replication happens throughout

the synthesis (S) phase, and in the mitosis (M) phase the cell divides so both new cells

have non-replicated DNA again. There are a number of different repair pathways, some

which can only take place when the DNA is replicated and these have a higher accuracy

of repair. Therefore the current phase of the cell cycle upon radiation induced damage

can have an impact on the accuracy of repair. DNA that is replicated consists of chromo-

somes that have two identical copies, called sister chromatids, which are held together

by a centromere. The next sections will describe pathways of repair of radiation induced

double stranded breaks.

2.3.1 Non-Homologous End Joining (NHEJ)

In this repair pathway, the broken ends are identified, bound to by a protein and fixed

back together. This pathway is used when the DNA is not replicated, since there is no

template DNA available [9].

2.3.2 Homologous Recombination (HR)

This repair pathway can only take place when DNA is replicated. It uses the intact sister

chromatid as a template to repair the broken chromatid, meaning that this pathway

seldom makes errors. Even if DNA is replicated however, the NHEJ pathway can still

sometimes used [9].
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FIGURE 2.1: Cell Cycle phases [11]

2.4 Mutations

Despite the high accuracy of these repair processes, especially HR, errors can sometimes

be made. For example, the wrong base could be used, or the wrong ends joined back

together. This leads to different severities of repair errors. Those involving just a few

DNA bases are known as point mutations, see figure 2.2.

FIGURE 2.2: Genetic Mutations [12]
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Some examples of more severe mis-repair events that can occur to a whole chromosome

are:

• Dicentric Chromosome: Two chromatids both with a DSB, forming a dicentric

chromatid with two centromeres and the acentric part is lost.

• Ring: A chromatid has a break at both ends i.e. either side of the centromere, and

it repairs itself as a ring.

• Anaphase Bridge: A chromosome gets a break on each chromatid and repairs itself

as a bow-like structure, which upon division creates one long chromatid.

• Deletion: A chromatid receives two DSBs along a length of DNA and the ends are

repaired incorrectly, causing a chunk of a DNA to be lost, see figure 2.3. The lost

chunk of DNA could code for one or several genes.

FIGURE 2.3: Gene Deletion

These damages to chromosomes are known as chromosome aberrations, and math-

ematical models such as the Linear-Quadratic model as discussed in chapter 1, have

been developed to describe the number of chromosome aberrations formed per cell as a

function of the dose of radiation received.

All of these mutations result in that section of DNA code not being transcribed correctly,

therefore the gene that is coded for in this section will not be expressed fully, if at all.

Genes code for proteins, a process called the central dogma of biology, and proteins have

many important roles in the functioning of a cell. If some are not expressed, this can lead

to the malfunctioning of large cellular components. As described below, experimental

evidence shows that certain mutations are a likely pathway to the diagnosis of cancer

[13].
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Mutations can also occur spontaneously during DNA replication. Although DNA repli-

cation is extremely accurate most of the time, due to the large number of cell divisions

occurring throughout the lifetime of an organism, there is a small probability that repli-

cation sometimes induces some errors. Since this is a random event, these spontaneous

mutations are often modelled as a stochastic process, to estimate the chance of one

occurring in the lifetime of an organism.

2.5 Measurement of Cell Survival

A lot of damage in a cell can lead to apoptosis, a process of programmed cell death.

Therefore the higher the dose of radiation, the more DSBs and the more likely that the

cell will die.

Despite more recent models for cell survival that include DNA damage repair, the Linear-

Quadratic model developed by Kellerer and Rossi in 1972, as mentioned in Chapter 1,

remains the most widely used as it is seen to be the best fitting model to cell survival

data [4]. As described before, this model proposes that a lethal event (mis-repair of

DSBs leading to mutations or chromosome aberrations) occurs either by a hit from one

single ionising radiation track, or as the consequence of two ionising tracks. The number

of lethal events per cell, N , is hence proportional to αD+ βD2, where D represents the

dose of radiation, and hence β incorporates some dose-rate dependency as two ionising

tracks are more likely to lead to a lethal event if they happen within a shorter period of

each other, i.e. if the dose-rate is higher.

Kellerer and Rossi then proposed that the surviving fraction of cells decreases exponen-

tially with the number of lethal events, in the following relation:

Surviving Fraction (D) = e−(αD+βD2) (2.1)

Experiments on cells in petri dishes have been done in order to measure the surviving

fraction of a cell population exposed to radiation. These experiments involve exposing a

parallel dish seeded with cells to a dose of x-rays, incubating the dish for 1 to 2 weeks,

then counting the number of colonies that have grown. If an original cell has managed

to grow into a colony it still has its reproductive integrity intact. [9].

The fraction of surviving cells is then calculated by equation 2.2:

Surviving Fraction =
Colonies counted
Cells seeded ∗ PE

(2.2)
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where PE is the Plating Efficiency: the number of colonies counted as a fraction of the

number of seeds planted in a control experiment. The parameters α and β of equation

2.1 can then be inferred from the results of experiments like this.

Cell death can be defined as the loss of reproductive integrity, in the case when cells

cannot give rise to the differentiated cells they are meant to produce. A surviving cell

that is still able to produce the differentiated cell types indefinitely, is called clonogenic.

Since the model in this thesis focuses on stem cells of the blood known as hematopoietic

stem cells (HSCs), as the target cells of radiation absorption, the cell survival fractions

used in the model will relate to HSCs that still have their reproductive integrity, and

the fraction that has ”died” could still be present but they are not able to ”give birth” to

different cell types.

2.6 Genomic Instability

Genomic instability is central to carcinogenesis. It is well known that radiation can cause

an instability in cells that is inherited over many generations through DNA replication

and cell division. This instability can mean cells are more prone to errors during cell

division, and one consequence is an increased rate of chromosome aberrations [14].

2.7 Acute Myeloid Leukemia (AML)

Hematopoietic stem cells differentiate into myeloid or lymphatic types. Red blood cells

are formed from the myeloid lineage and make up the bone marrow tissue, and white

blood cells are formed from both the myeloid and lymphatic lineage and are produced as

a response to foreign bodies. Figure 2.4 shows the cell differentiation in the hematopoi-

etic system, and literature suggests that the target cells of radiation are either the HSCs

or the common myeloid progenitor cells [8].

AML is a cancer of the myeloid blood cells. Some symptoms of AML include unusual

bleeding, such as bleeding gums or nosebleeds, weight-loss and tiredness [16].

Exposures to levels of ionising radiation between 1 and 10 Gy primarily affect the

hematopoietic system (the blood system), one of the most radio-sensitive tissues in

the human body due to its highly proliferate activity [17]. One consequential effect

of radiation on the human hematopoietic system is the increased risk of AML, and ex-

periments on mice show approximately 25% incidence of AML after exposure to 3 Gy

of X-rays delivered at a high dose-rate, [8]. Since the mechanism that causes AML in
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FIGURE 2.4: HSC Lineages [15]

humans is not understood exactly and because of ethical limitations, mice are often used

in AML research because 99% of their protein-coding genes are the same as in humans.

Specifically, the CBA strain of mice are most commonly used since they show a very low

spontaneous rate of AML.

It has been found that in cases of AML in mice, more than 95% of these have a deletion

of one copy of the Sfpi1 gene on chromosome 2, [18]. Also, approximately 85% of these

cases have been found to hold a point mutation, typically a base substitution at codon

235, in the remaining copy of the Sfpi1 gene on the second allele of chromosome 2,

([18], [13], [19], [20]). Due to these observations it is assumed that this is the likely

molecular mechanism that causes the onset of AML.

The Sfpi1 gene codes for the protein PU.1 which is a transcription factor that controls

the differentiation of hematopoietic cells into their different cell lineages [20]. It also

plays a role in maintaining internal functional properties of the HSCs. Furthermore, the

disruption of PU1 in myeloid progenitors is seen to inhibit their maturation, which could

result in a depleted population of red blood cells, thus causing the onset of leukaemia

[20].
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2.8 Dose-Rate Effects

As mentioned in the introduction, there are observations of differences in cellular re-

sponses to radiation depending on whether it is received at a high dose-rate or a low

dose-rate. When DNA DSBs are formed, part of the repair process involves the phospho-

rylation of a histone protein called H2AX which is contained in the DNA chromatin,

causing H2AX to become γH2AX. The phosphorylation of H2AX can be measured

by fluorescent markers, enabling the measurement of DSBs. Experiments such as those

discussed in paper [21], show an increase of γH2AX foci with dose of radiation, but

the amount of γH2AX is reduced if the radiation is delivered at a lower dose-rate. Fig-

ure 2.5 is taken from this paper and shows graphical results of this experiment. This

motivates the further research into investigation of dose-rate effects on the incidence of

cancer.

FIGURE 2.5: Dose-rate effects on γH2AX levels [21].

The number of DSBs formed have been found to be proportional to the number of chro-

mosome aberrations that are induced [7], since if more DSBs are formed, the num-

ber of mis-repaired breaks is likely to be higher, leading to more chromosome aberra-

tions. Therefore there are differences in the number of chromosome aberrations that

are formed as a result of radiation delivered at different dose-rates. This observation

leads us to believe there are dose-rate effects on the incidence rates of Acute Myeloid

Leukemia.



Chapter 3

Simulating Stochastic Processes and

Parameter Estimation

In this chapter, a framework of some of the modelling and statistical methods used in

this thesis are defined.

3.1 Gillespie Algorithm

There are many algorithms that can be used to simulate a stochastic process. One that is

used a lot in chemical and biological systems of reactions is the Gillespie algorithm. This

algorithm simulates a feasible trajectory based on the stochastic dynamics of the system

and is ideal for systems that have only a few possible reactions.

For example, consider a simple reversible chemical reaction between two molecules A

andB that can form a compoundAB, and callK1 the forward rate andK2 the backward

rate, as defined in equations 3.1 and 3.2.

A+B →
K1

AB (3.1)

AB →
K2

A+B (3.2)

Let NA, NB and NAB be the numbers of molecules of A, B and AB respectively, and

define the current state of the system as x(t) = (NA(t), NB(t), NAB(t)). The total re-

action rate is calculated as Rtotal = K1NANB + K2NAB. See algorithm 1 for a formal

description of the algorithm.

14
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Algorithm 1 Gillespie Algorithm
Input: Initial conditions: x(0), rates of reactions: K1,K2.
Output: The resulting state of the system at desired end time T : x(T )

while t < T do
Monte Carlo step:
Pick u1 where u1 ∼ unif(0,1)
r1 = K1NA(t)NB(t), r2 = K2NAB

Rtotal = r1 + r2
dt = −log(u1)/Rtotal
Reaction threshold: z = r1/Rtotal
Pick u2 where u2 ∼ unif(0,1)
Update step:
t = t+ dt
if u2 < z then

x(t) = (NA − 1, NB − 1, NAB + 1)
else

x(t) = (NA + 1, NB + 1, NAB − 1)
end if

end while

This algorithm can be quite inefficient when simulating for long time periods if there

are many reactions. The Tau-leaping algorithm approximates the Gillespie algorithm by

taking a chosen time step τ and simulating all reactions a certain number of times, pro-

portional to their reaction rates. For example, given reactions pi and rates ri for i ∈ [1, n],

then defineMi ∼ Poisson(riτ) as the number of times reaction pi occurs during the time

interval [t, t + τ). Let the reactants in the system be defined as xj , for j ∈ [1,m]. Then

the state of the system is updated accordingly based on the numbers of each reaction

that took place. Let ui,j be the effect on reactant xj by reaction pi occurring, then the

new state of the system at time t+ τ is defined as x(t+ τ) = x(t)+
∑

iMiui,j . The value

of τ is chosen dependent on the size of the reaction rates at the given time; for example

during radiation exposure the rate of the Sfpi1 deletion occurring is much higher than

the rate of the Sfpi1 point mutation occurring post radiation exposure, therefore the

size of τ chosen in the post radiation exposure period is much larger than the size of τ

chosen for the radiation exposure period.
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3.2 Bayesian Inference

Bayesian Inference is a statistical method used to search for values of variables or pa-

rameters that are most likely, given some observed data, by making use of Bayes’ rule.

This method gives a probability distribution of the variables or parameters under consid-

eration, which is a function describing the probability of the parameter(s) taking certain

values, given the data that is observed. Some formal definitions are now introduced.

• Let X ∈ Rn be a set of data points,

• θ ∈ Rn a set of parameters,

• α ∈ Rn a set of hyper-parameters of the parameter θ’s distribution.

From these definitions, the following distributions are defined. Firstly, let p(a|b) denote

the conditional probability of an event a happening, given that an event b has happened.

For θ ∈ θ,

• Prior distribution: p(θ | α), is the probability distribution of the parameter θ

given its hyper-parameter α before any data is observed, therefore it represents

any prior knowledge about the value of θ.

• Marginal likelihood: p(X | α) =
∫
p(X | θ) · p(θ | α) dθ, is the distribution of the

sample data set X, given parameter α, integrated out over the range of θ.

• Sampling distribution: p(X | θ), is the probability distribution of the sample data

set X, given the parameter θ.

• Posterior distribution: p(θ | X, α) = p(X|θ,α)·p(θ|α)
p(X|α) , the probability distribution

of the parameter θ given the sample data set X and the hyper-parameter α of θ,

which is calculated using Bayes’ rule.

Bayesian Inference generates posterior distributions of the parameters θ, which could

be parameters of a model, to improve the accuracy of the model. Any prior knowledge

known about the parameters can be entered in the prior distributions. The parameters

θ to be estimated need a defined starting value and a range of possible values that

the parameter can take. Samples are taken from the prior distribution to determine

the likelihood of the data set given the sampled values, which defines the sampling

distribution. Markov chain Monte Carlo (MCMC) methods are a family of algorithms

that sample from a probability distribution, therefore many Bayesian Inference methods

use MCMC algorithms.
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The package Stan is a package for R Studio that performs Bayesian Inference using

the No-U-Turn Sampler (NUTS) algorithm, which is an adaptation of the Metropolis-

Hastings algorithm. The steps of the Metropolis-Hastings algorithm are described below.

A starting value for the parameter is chosen, θ0, and an arbitrary symmetric probability

density Q(x | y) used for the proposal distribution. Usually Q(x | y) is taken as the

Gaussian distribution. Let f(x) be a function that is proportional to the desired posterior

distribution p(θ |X, α).

At each iteration t:

1. Pick a value θ′ from the proposal distribution Q(θ′ | θt)

2. Calculate the acceptance ratio α = f(θ′)/f(θt), which is also equal to p(θ′ |
X, α)/p(θt |X, α)

3. Generate a random number u from the uniform distribution, u ∼ [0, 1].

4. If u ≤ α, then the value θ′ is accepted and θt+1 = θ′, otherwise θt+1 keeps the

current value θt.

The sampling creates a trajectory, and the idea behind NUTS is that once the trajectory

begins to turn back on itself, the simulation is stopped.

3.3 Simulated Annealing

Simulated Annealing is a meta-heuristic of local search used for optimisation problems,

specifically to try and converge to the global optimum in a large search space. It is

a method derived from a physical problem of slowly cooling a material such that the

size of the crystals formed when the material solidifies are maximised and form a solid

structure with minimum free energy. If the material is cooled quickly, the crystals can

form an irregular structure with high energy, which is not favourable.

The method starts with an initial positive temperature T0 ∈ R+, and an initial start-

ing solution to the problem. An important concept of this method is that during the

search process, solutions that are worse than the current solution are accepted with a

small probability, to ensure that the search does not get stuck in a local optimum. The

temperature T is slowly decreased to zero with a fixed incremental factor α, while ac-

cepting worse solutions with a decreasing probability. The resulting solution should be

the global optimum if the correct parameters T0 and α are chosen.



Chapter 4

Modelling

This chapter will introduce some previous research on the dose-dependent incidence of

AML developed by Dekkers et al, and follow on to discuss the dose-rate dependent model

developed in this thesis to predict the incidence of AML.

It is important to note that other factors can also increase the risk of AML, such as genetic

disorders, blood conditions and smoking. The model in this thesis is only concerned with

the increased risk of AML due to radiation exposure, so if any of these other factors are

present the risk could be increased even more.

4.1 Previous research: A dose-dependent two-mutation model

of radiation-induced AML

Dekkers et al (2011) [8] developed a model that predicts the incidence of radiation-

induced AML in mice as a function of dose, from acute radiation exposure, i.e. radiation

delivered all at once. This model uses the two-mutational step molecular mechanism as

described in Chapter 2, and summarised below.

1. Deletion of the Sfpi1 gene produces an intermediate cell, denoted by I, which has

a growth advantage but is not yet fully malignant.

2. An I cell then receives a point mutation in the remaining copy of the Sfpi1 gene

(on the other copy of chromosome 2), leading to a malignant cell, denoted by M .

The model is built on the idea that radiation is issued instantaneously and causes an

initial number of healthy cells to become intermediate cells, dependent on the dose,

18
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FIGURE 4.1: Two-step molecular mechanism. Healthy cells (H) are transformed into
intermediate cells (I), which then transform into malignant cells (M). AML is diagnosed

some tlag after the appearance of the first malignant cell.

then over the rest of the mouse’s lifetime a background mutation rate can induce a

point mutation in the intermediate cells, causing them to become malignant. There is

assumed to be a time lag between the appearance of the first malignant cell and the

diagnosis of AML, which allows for significant growing of the malignant cell population.

The intermediate cells also grow with rate ε which is independent of the amount of

radiation. See figure 4.1 for a diagram of the mechanism used in this model.

The mutation rates take the form:

• Healthy cell to intermediate cell : µ1 = µ0,1[1 + a1D]e−p1D

• Intermediate cell to malignant cell: µ2 = µ0,2[1 + a2D]e−p2D

where µ0,1, µ0,2, a1, a2, p1, p2 ∈ R+ are all parameters to be estimated from fitting the

model to data, and D ∈ R+ represents the dose of radiation. µ0,1 and µ0,2 are back-

ground mutation rates of the deletion and the point mutation occurring, respectively. µ1
is deterministic and describes that the rate of the Sfpi1 deletion is linear with dose. The

exponential function accounts for the chance of cell killing, which increases with higher

doses. Since the point mutation is assumed to occur as a spontaneous mutation at some

point after radiation exposure, the dose D is then equal to zero so µ2 = µ0,2 and is

modelled as a stochastic process. The target cells, H, are taken to be the hematopoietic

stem cells, with an initial population size of 10,000.

Using Di Majo 1986 data from experiments on CBA/H mice, the optimum parameter

values were found with maximum likelihood. The ε, µ0 and tlag parameters were found

to have values with maximum likelihood (and 95% confidence intervals) of:

• Growth rate of intermediate cells: ε = 4 ∗ 10−3 per day, (3 ∗ 10−3 − 4 ∗ 10−3 per

day)

• Background mutation rate: µ0 ≤ 10−7 per day

• Time lag: tlag = 153 days, (139 - 154 days)
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Implementing the model using the Gillespie algorithm as defined in chapter 3 gives a

dose-response incidence curve seen in figure 4.2. The peak incidence rate is seen be-

tween 2 and 3 Gy, and for higher doses the incidence rate drops.
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FIGURE 4.2: Incidence of AML as a function of dose. Blue line shows incidence from
the simulation using the Gillespie algorithm, black dotted line shows model incidence

from the paper and the red dots are data points from Di Majo 1986.

4.2 Dose-Rate (and dose) Dependent Model

In designing a model that can take as input the dose and dose-rate and predict the

chance of AML, there are many possible routes to take. A discussion of the biological

aspects that could impact the development of AML are described below, and their out-

comes are described in the next chapter. For ease of notation, let Id cells denote HSCs

that have a deletion of the Sfpi1 gene, and let D and R denote the dose and dose-rate,

respectively, where D,R ∈ R+. As a basis of the model, the induction of Id cells is

modelled over a period of radiation exposure so that time T = D/R is the time at the

end of radiation exposure, then the induction of the point mutation in these Id cells is

modelled over the rest of the lifetime, in the absence of radiation. During the radiation

exposure period, there is the possibility of radiation-induced cell death.
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4.2.1 Assumptions

1. A rate at which the Sfpi1 deletion occurs per cell is an approximation to the true

biology, since this specific deletion is either induced in a cell or not during one time

interval. However, there is not enough data to produce a probability distribution

of this deletion, therefore as an approximation of the number of Id cells induced

in one time interval, one can take the rate of the Sfpi1 deletion per cell multiplied

by the size of the cell population of interest.

2. It is assumed that only the Id cell population has an increased net growth rate,

and that H cells have such a low rate of cell division that their growth rate can

be taken as zero. Therefore ”healthy” cells can only die due to radiation exposure,

and post irradiation the population of ”healthy” cells remains fixed.

3. Since CBA mice show a very low spontaneous rate of AML [22], it is assumed

that the induction of an Sfpi1 deletion in a cell can only occur during radiation

exposure, since it is quite a major aberration and would be very unlikely to occur

spontaneously.

4. Even though surviving cell populations are usually experimentally measured a few

days after radiation exposure, the values used for the surviving fractions in this

model can be considered the surviving population immediately after radiation ex-

posure has ended, since it can be assumed that the radiation damage immediately

causes the cell to lose its ability to function normally and replicate, even if the cell

is still technically alive.

5. Mice are irradiated at 100 days old which is when they are a fully grown adult,

and since this is near the beginning of their lifetime it is assumed that they are

unlikely to have acquired any spontaneous mutations at this age, i.e. all target

cells are free of the Sfpi1 deletion and the point mutation. On average mice live

for 2 years (730 days), and since there is an observed time-lag of 153 days from

the appearance of the first malignant cell to AML diagnosis, the model will be

simulated for 477 days from the start of radiation exposure.

6. In steady state conditions, healthy HSCs are seen to divide at a very low rate and

the cell population size remains at an almost fixed size [23], so for simplification

of the model the net growth rate of healthy HSCs is taken to be zero.

4.2.2 Biological aspects that could influence the model

This section details the biological aspects gathered from literature that could influence

cell dynamics and activity during the development of radiation-induced AML.
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1. Influence on net growth rate of the Id cell population: Experiments [20],[19]

show a positive feedback loop between levels of the PU.1 transcription factor and

lengthening of the cell cycle in hematopoietic cells, but it is unclear which is the

initial cause of this loop. Even so, if little or no PU.1 is present in HSCs, which

could be the case if the Sfpi1 gene is mutated or deleted, the cell is unlikely to

maintain a lengthened cell cycle, and these cells would likely have shorter cell

cycles than those with fully functioning Sfpi1 genes. A shorter cell cycle means a

higher rate of cell division. It is hard to conclude whether the net growth rate of

the Id cell population really increases from ”healthy” HSCs, since the effect on the

death rate is not known, however experiments [24] do show a general increase in

the percent of Id cells during the month after irradiation, although for 3 Gy the

percent increases and then drops 7 days post irradiation.

Also, it could be the case that other DNA damage in cells affects the length of the

cell cycle. Experiments [25] show a general increase in the percent of HSCs that

are cycling after exposure to 3 Gy of radiation, increasing from around 30% in the

absence of radiation, to 60%. Overall this means the division rate of HSCs is higher

after radiation exposure. This rate of division also increases as time post radiation

increases. This could mean that HSCs that didn’t receive the Sfpi1 deletion but

still gained some radiation-induced damage maybe also have increased net growth

rates.

2. Influence on the radiation-induced death rate: Since the Linear-Quadratic model

defined in equation 2.1 describes the surviving fractions of cell populations after

radiation absorption, introducing a dose-rate dependency and a time dependency

allows the Linear-Quadratic model to be used to describe the time-dependent num-

ber of cells dying due to radiation, which changes with dose and dose-rate. As

mentioned before, the Linear-Quadratic model suggests that the number of chro-

mosome aberrations NCA formed per cell after a dose D of radiation can be de-

scribed by the relation 4.1, where α, β ∈ R+ so that NCA is always non-negative.

NCA = αD + βD2 (4.1)

The surviving fraction is stated again as in equation 4.2.

SF = e−(αD+βD2) (4.2)

Figure 4.3 shows experimental data of surviving fractions from Matsuya et al

(2018) [26], for different dose-rates.
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FIGURE 4.3: Surviving Fraction data for different dose rates

Since the quadratic term (D2) in 4.1 and 4.2 represents the number of chromo-

some aberrations formed from two ionising tracks, this term is affected by the

dose-rate, since when the dose-rate is higher two ionising tracks are more likely

to be closer together and a chromosome aberration is more likely to be formed.

Therefore β needs to have some dose-rate dependency. Defining β as in 4.3 where

B,C ∈ R+, introduces a dose-rate dependency so that β eventually saturates with

increasing dose-rate.

β(R) =
B ·R
R+ C

(4.3)

Additionally, letting D = R · t where t ∈ R+ defines the time, gives the Linear-

Quadratic model a time dependency so that at time T , the end of radiation expo-

sure, the original form of the Linear-Quadratic model is recovered. Therefore, the

number of chromosome aberrations formed per cell during the radiation exposure

period, with respect to time, can be defined as in equation 4.4.

NCA(t) = αRt+ βR2t2, for t ≤ T (4.4)

From this, the surviving fraction with respect to time takes the form in equation

4.5.

SF (t) = e−NCA(t), for t ≤ T (4.5)

For time t > T , the constant time-independent values for NCA and SF are used,

as in 4.1 and 4.2.
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3. Influence on the rate of spontaneous point mutations: Much literature [14] [27],

talks of a genomic instability which is discussed in chapter 2, however there is no

dose or dose-rate specific response known so far as it is very hard to quantify this

instability experimentally. It is likely that the more damage induced in cells, the

more instability caused and the more cells are prone to errors in DNA replication,

meaning a point mutation could be more likely to occur. Also since spontaneous

point mutations occur during cell division, an increased cell division rate could

lead to a higher rate of the point mutation [25].

4. Influence on the rate of the Sfpi1 deletion: Literature suggests that the number

of chromosome aberrations is proportional to the number of DSBs, [7]. Since the

Sfpi1 deletion is a type of chromosome aberration, the rate at which an Id cell is

formed is likely to be proportional to the rate at which chromosome aberrations

occur per cell, which is suggested to be linear-quadratic by the Linear-Quadratic

model. However, McMahon et al [10] suggest a dose relationship between the

rate of large deletions per cell, which is linear for low dose-rates. Peng et al [24]

show experimental results of the percentage of Id cells after radiation exposure to

a high dose-rate of 0.5-1 Gy/minute. This relationship is almost linear with dose

in the dose range 0-2 Gy, showing a slight attenuation as dose increases, and it

is likely that the percentage would saturate for higher doses. It is also likely that

the percentage would increase with dose-rate, but also saturate. It is not explicitly

mentioned in the methodology whether the percentages are measured using only

surviving cells or including dead cells as well. However, under the assumption that

the measurements are of only the surviving cells, this data could be used to fit the

model at high dose-rates.

4.2.3 Structure of the model

Cells will be defined to 3 states. Let H be a healthy HSC, Id be a HSC with the Sfpi1

deletion, and M be an Id cell that received a Sfpi1 point mutation: a malignant cell. See

figures 4.4 and 4.10 for a diagram of the transition rates between states. From now on

let β be defined as in equation 4.3. H(t), Id(t) and M(t) will be used to represent the

size of the population of each type of cell at time t, so that H(t), Id(t),M(t) ∈ Z+. The

initial conditions are taken to be Id(0) = 0 by assumption 5, and H(0) = 10000 from

literature [8].
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4.2.4 Radiation Exposure Period

Based on the assumptions above, two rates are to be defined during the period of radia-

tion exposure, as shown in figure 4.4. Firstly, the radiation-induced death rate of HSCs,

and secondly the rate of induction of Id cells from healthy HSCs.

H I

Deletion

DeathDeath

v(t)v(t)

Kd

FIGURE 4.4: Cellular states and rates of transition during radiation period, where Kd

is the rate of induction of Id cells and ν(t) is the radiation-induced death rate.

Radiation-induced death rate

Equation 4.5 describes the time-dependent surviving fraction of the original cell popula-

tion, so assuming no cell growth and death only due to radiation, the radiation-induced

death rate can be approximated by taking the derivative of equation 4.5, multiplied by

the size of the initial population of healthy cells. Since the derivative of equation 4.5 is

negative, defining ν(t) as in equation 4.7 gives a positive death rate.

˙SF (t) = −(αR+ 2βR2t)e−(αRt+βR
2t2) (4.6)

ν(t) = − ˙SF ·H(0) (4.7)

Now let h(t) = H(t)
H(t)+Id(t) and id(t) = Id(t)

H(t)+Id(t) be the fractions of healthy and interme-

diate cells respectively, out of the total current cell population. Then ν(t) · h(t) gives the

new number of H cells dying at time t, and ν(t) · id(t) is the new number of Id cells

dying at time t.

Using data on surviving fractions dependent on dose and dose-rate as shown in figure

4.3 [26], we can determine best-fit values for the parameters α, B and C, see section

on Bayesian Inference in chapter 3. The results are displayed fully in chapter 5, but

figure 4.5 shows predicted surviving fractions for different dose-rates using the optimum

parameter values. These results show that the surviving fractions are very similar for

dose-rates of 10 Gy/hour or higher, and also for dose-rates of 0.1 Gy/hour and lower,
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FIGURE 4.5: Surviving Fractions estimated by the Linear-Quadratic model

since at some point increasing the dose-rate does not have an effect on the rate at which

chromosome aberrations are formed.

Defining the death rate in this way only gives the numbers of cells dying from the original

population size, and therefore does not allow for cell growth during radiation exposure.

Using the derivative of the number of chromosome aberrations provides an approxima-

tion to the derivative of the surviving fractions of cell populations, and since the rate of

chromosome aberrations is defined per cell this allows the death rate to be defined per

the current population size, and hence allows for cell growth to occur.

Therefore, the death rate is defined as in equation 4.8, where α and β are the same

values determined from the Bayesian Inference, and φ ∈ R+. After radiation exposure,

so for time t > T , the death rate is set to zero since there are no more radiation-induced

chromosome aberrations formed.

ν(t) = φ · ˙NCA(t)

= φ · (αR+ 2βR2t)
(4.8)

Rate of induction of Id cells

To define the rate of induction of Id cells, denoted by Kd, a number of hypotheses

are tested to see the effect on the number of Id cells formed.
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Hypothesis 1

One plausible form of Kd, see biological aspect 4, is that the rate at which the Sfpi1 dele-

tion is induced per cell is proportional to the total number of chromosome aberrations

formed per cell at the end of radiation exposure, with respect to dose and dose-rate.

Taking the derivative of equation 4.4 multiplied by a proportionality constant, µd ∈ R+,

gives the rate of the Sfpi1 deletion occurring per cell at time t, see equation 4.9.

Kd(t) = µd · (αR+ 2βR2t) (4.9)

Multiplying 4.9 by the current size of the healthy cell population, gives the new number

of healthy cells gaining the deletion at time t. This leads to the ODE system:

Ḣ(t) =−Kd(t) ·H(t)− ν(t) ·H(t) (4.10)

˙Id(t) = Kd(t) ·H(t)− ν(t) · Id(t) (4.11)

Obtaining the solution Id(T ) to this system gives the number of cells with the Sfpi1

deletion at the end of the radiation period.

The absolute numbers and the percent of Id cells obtained using equations 4.7 and 4.9

in the above ODE system are shown in figures 4.6 and 4.7 respectively. In figure 4.7

the black dotted line shows the data from Peng et al [24], in which a dose-rate of 30-

60 Gy/hour was used, and µd was approximated from this data. These figures show

that the peak numbers of Id cells shift to the higher end of the dose range as dose-rate

decreases, but also that as the dose-rate increases the number of Id cells drops. The

percent of Id cells increases as the dose-rate increases from 0.5 Gy/hour to 30 Gy/hour,

then decreases again for higher dose-rates. As more cells are killed for higher dose-rates

these results could be biologically reasonable, although the observation of increasing

numbers of Id cells for doses above 4 Gy as dose-rate decreases seems unlikely.
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FIGURE 4.6: Number of Id cells present at the end of radiation exposure, for various
dose-rates, with Kd as in equation 4.9
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FIGURE 4.7: Percent of Id cells at the end of radiation exposure, for various dose-rates,
with Kd as in equation 4.9. Black dotted line shows data from Peng et al [24].

Hypothesis 2 Another possibility is that the rate of induction of Id cells is proportional

to the dose-rate at time t, (which is at a constant value R during radiation exposure and

zero after), due to the observation of a linear relationship between large deletions and

dose [10]. To include a saturation with increasing dose-rate, the term R/(R+γ) is used,

and to include the small chance of the deletion being caused by every ionising track of

radiation, a constant δ is added. The parameter µd ∈ R+ is used to scale the rate when

fitting the model to data [22]. Equation 4.12 shows the rate of Kd in this case.
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FIGURE 4.8: Number of Id cells present at the end of radiation exposure, for various
dose-rates, with Kd as in 4.12
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FIGURE 4.9: Percent of Id cells at the end of radiation exposure, for various dose-rates,
with Kd as in 4.12,

Kd = µd ·R · (δ +
R

R+ γ
) (4.12)

Figures 4.8 and 4.9 show the absolute numbers and percent of Id cells respectively,

obtained when defining the death rate as in equation 4.7 and the rate of induction of Id

cells as in equation 4.12.

This case shows absolute numbers of Id cells increasing with dose-rate, and the percent

of Id cells also increases with dose-rate. Biologically speaking it seems likely that the

absolute number of Id cells would start to drop before the dose-rate reaches as high
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as 300 Gy/hour, since the Linear-Quadratic model for cell survival shows a saturation

for dose-rates above 10 Gy/hour as shown in figure 4.5, so increasing the dose-rate

above 10 Gy/hour would be expected to not have much of an affect on the radiation-

induced death rate of cells. However the trends shown in this hypothesis still seem more

biologically reasonable than hypothesis 1, hence hypothesis 2 is used in the model.

4.2.5 Post Radiation Exposure Period

The chance of the point mutation occurring in Id cells is modelled until death of the

organism, and is allowed to occur during radiation exposure, even though very unlikely

since the radiation exposure period is small in comparison to the life time of the mouse.

The H cell population is ignored after the end of the radiation exposure period. The

cellular transitions are shown in figure 4.10.

I M

Point 
mutation

AML

Time 
lag 

Growth of cells

Approx. 153 
days

FIGURE 4.10: Cellular states and rates of transitions for post irradiation period, where
Kp is the rate of the Sfpi1 point mutation and the growth rate of Id cells is defined as

gI .

Two rates need to be defined here; the rate of a spontaneous point mutation and the net

growth rate of the Id cell population, as discussed in biological aspect 1. Let Kp denote

the rate of the Sfpi1 point mutation occurring per cell. Assuming that the rate of sponta-

neous point mutations is increased if more damage is induced in cells during radiation

exposure [25] [14], and that the number of chromosome aberrations accumulated per

cell (NCA(t)) during radiation exposure (so for 0 < t ≤ T ), can be used as a measure

of the amount of damage induced, then Kp can be defined proportional to (NCA(t)).

After radiation exposure, so for t > T , the total number of accumulated chromosome

aberrations remains fixed at NCA(T ).
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FIGURE 4.11: Rate of point mutation Kp proportional to the number of chromosome
aberrations, as defined by equation 4.13

Figure 4.11 shows Kp when taking the form in equation 4.13. It seems biologically rea-

sonable however, that the rate would saturate with increasing number of chromosome

aberrations (which increase with increasing dose and dose-rate), since theoretically as

D → ∞, Kp → ∞ in equation 4.13. Using the arctan function here provides a way to

include this saturation, shown in figure 4.12. Here Kp takes the form in equation 4.14

where µp, η ∈ R+ are parameters to be estimated using a Simulated Annealing method

when fitting the entire model to data [22].
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FIGURE 4.12: Rate of point mutation defined by equation 4.14 for different dose-rates.
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Kp(t) = µp ·NCA(t) (4.13)

Kp(t) = µp · arctan(η ·NCA(t)) (4.14)

Ban and Kai [25] also suggest that the increase in cell divisions as time post irradiation

increases causes the chance of the point mutation to become more likely, but since this

would increase Kp the same amount irrespective of dose and dose-rate, it is ignored for

simplification of the model.

Net growth rate of Id cells

Let the net growth rate of Id cells be defined as gI . As discussed in biological aspect

1, it is not clear exactly the effect on this growth rate. It seems certain that the growth

rate must be larger than the rate of a spontaneous point mutation, and that since the

remaining H cells are ignored after radiation exposure, a logistic growth of Id cells is

assumed to ensure the number of Id cells does not grow to a population higher than

10000. Under the assumption that the net growth rate increases with a higher amount

of radiation-induced damage, gI is also taken to be proportional to the number of chro-

mosome aberrations. Hence gI is defined as in equation 4.15.

gI = εI ·NCA(t) · (1− Id(t)/104) (4.15)

4.2.6 Model Summary

To summarise, the model rates are defined as in 4.16, 4.17 and 4.18, where Kd is

defined as in 4.12 and Kp is defined as in 4.14. To clarify, for t > T , ν(t) = 0, Kd = 0

and NCA(t) = NCA(T ).

Ḣ = Kd ·H − ν(t) ·H (4.16)

˙Id = Kd ·H − ν(t) · Id+ gI · Id−Kp · Id (4.17)

Ṁ = Kp · Id (4.18)

The same value of 153 days is used as in the dose-dependent model [8], for the lag time

between the existence of the first malignant cell and the diagnosis of AML. The end time

(tend) of the simulation is set to 477 days as described in assumption 5. To simulate the

time of AML diagnosis, the Tau-Leaping algorithm as described in chapter 3 is used to

track the time of existence of the first M cell, defined as tM1 ∈ R+. If 0 < tM1 < tend,

then it is assumed that AML will develop at time tM1 + 153. In order to estimate the

incidence of AML for a given dose and dose-rate, the simulation is run a high number of

times to count the number of cases where AML is diagnosed.
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A Simulated Annealing method is used to find the optimum values for parameters

φ, µd, δ, γ, µp, η and εI , using data from Major 1979 [22]. See chapter 3 for a description

of this method.



Chapter 5

Results

This chapter presents the results from the parameter estimations for the Linear-Quadratic

model, the model predicted incidence of AML and recommendations for DDREFs for

AML.

5.1 Parameter Estimation of the Linear-Quadratic Model us-

ing Bayesian Inference

Using data on surviving fractions in response to dose for different dose-rates [26], the

parameter values α, B and C were estimated using a Bayesian Inference method. The

package RStan was used, a package for R that implements the No-U-Turn Sampler algo-

rithm, as described in Chapter 3. Prior distributions of the parameters were set as:

α ∼ unif(0, 1) (5.1)

B ∼ unif(0, 1) (5.2)

C ∼ unif(0, 10) (5.3)

The algorithm was run using a warm up of 1000 iterations and another 20000 iterations

for the full sampling. The posterior distributions of the parameters are displayed in

figures 5.1, 5.2 and 5.3, and show Guassian shaped distributions, therefore the median

values from these distributions are chosen for the parameter values of the model.

Figure 5.4 shows the trace plots of the sampling of the parameter spaces, where theta[1],

theta[2] and theta[3] refer to α, B and C respectively. The grey shaded area shows the

warm up period.

34
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FIGURE 5.1: Posterior Distribution of α

FIGURE 5.2: Posterior Distribution of B

FIGURE 5.3: Posterior Distribution of C
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FIGURE 5.4: Trace Plot of Bayesian Inference

The surviving fraction model predictions are shown in figure 5.5 for different dose-rates,

along with the 2.5 % and 25 % percentiles of the parameter posterior distributions.



Results 37

((A)) dose-rate = 60 Gy/hour

((B)) dose-rate = 18.6 Gy/hour ((C)) dose-rate = 10.8 Gy/hour

((D)) dose-rate = 1.5 Gy/hour ((E)) dose-rate = 0.186 Gy/hour

FIGURE 5.5: Model predictions showing 2.5% and 25% percentiles of parameter pos-
terior distributions for various dose-rates.

Figure 5.6 shows the combined predicted surviving fractions and the 2.5 % and 25 %

percentiles.
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FIGURE 5.6: Surviving fractions estimated by Bayesian Inference for dose-rates from
Matsuya data [26], showing the data points as circles, the 25% and 2.5% percentiles
by the shaded regions and the model estimates using median parameter values by the

dark lines.

5.2 Parameter estimation for model using Simulated Anneal-

ing

The results from Simulated Annealing yield the following parameter values for the dose-

rate dependent model.

φ = 1.5, (5.4)

δ = 0.001, (5.5)

γ = 5, (5.6)

µd = 5.9, (5.7)

µp = 1.5e−8, (5.8)

εI = 3.395e−5, (5.9)

η = 2 (5.10)

These results make sense biologically; the parameter for the rate of the point mutation

occurring (µp) in an Id cell is much lower than the parameter for the rate of net growth

of Id cells (εI).
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5.3 AML Incidence

In this section the predicted incidence of AML from the model is presented. Firstly, some

observations from available data are discussed [28][22][29]. For high dose-rates such

as 5 Gy/minute and single body exposure, the incidence is seen to peak at a dose of

between 2 and 3 Gy with incidence rates between 10% and 30%. The incidence is seen

to drop for dose-rates of 0.57 Gy/minute but a peak is still observed between 2 and 3 Gy.

At lower dose-rates such as 0.04 mGy/hour, the incidence is seen to be more uniform

for different doses, with a lower incidence rate of around 5%.

Figure 5.7 shows the model predictions of AML incidence for dose-rates used in Major

1979, and the data points of Major 1979.
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FIGURE 5.7: Model predictions of the incidence of AML, where dose-rates are in
Gy/hour, with Major 1979 data plotted as circles. [22].

To see the effect of even lower dose-rates, figure 5.8 shows the predicted incidence of

AML from the model for dose-rates down to 0.01 Gy/hour.

The trends from the data are also visible in the model predictions, where the incidence

becomes lower for lower dose-rates.
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FIGURE 5.8: Model incidence of AML for different dose-rates, where dose-rate is
Gy/hour.

5.4 Dose and Dose-Rate Effectiveness Factors

This section provides recommendations on dose and dose-rate effectiveness factors for

the incidence of AML. Figure 5.9 shows the dose-rate effectiveness factors for AML, with

a dose-rate of 100 Gy/hour as a reference. Focusing on the low dose region of less than

1 Gy, the results show that as the dose-rate is lowered, the effectiveness factor becomes

higher. This means that the risk of AML from a dose-rate of 100 Gy/hour should be

divided by a higher value as the dose-rate lowers. For a dose-rate of 0.05 Gy/hour, the

model suggests that the DDREF could be between 30 and 50 for doses less than 1 Gy,

much higher than the current DDREF of 2. However, as the total absorbed dose increases

above 1 Gy, the model suggests that the dose-rate has less of an effect on the risk of AML

and the dose-rate effectiveness factor lowers significantly. This suggests that much more

attention should be given to estimating the risk of low dose radiation.
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Conclusion and Discussion

This chapter will summarise the results found in this thesis, and discuss recommenda-

tions on further research.

6.1 Conclusion

In this thesis a dose and dose-rate dependent model for murine Acute Myeloid Leukaemia

(AML) has been developed. From this model, risk estimates of radiation-induced AML

from low dose and low dose-rate radiation can be deduced. As stated in the introduc-

tory chapter, current risk estimates for low dose and low dose-rate radiation use a factor

(DDREF) of 2, whereby the risk from high doses at a high dose-rate is divided by this fac-

tor. This DDREF is used very generally for all types of radiation damage, and is therefore

thought to lead to over or under estimations [7] [5].

The model developed in this thesis shows a non-linear response to dose and non-linear

dose-rate effects, where for example given a dose of 3 Gy, the estimated incidence rate

at low dose-rates is much less than half of the incidence rate for high dose-rates. This

suggests that the DDREF of 2 should be replaced with a dose and dose-rate effectiveness

function so that risk from any given dose and dose-rate can be better estimated. The

model provides an estimate of the incidence from a given dose and dose-rate, but as a

development of this a function could be derived to calculate the dose-rate effectiveness

factor for a given dose.

42
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6.2 Recommendations for further research

This section will describe some possible improvements to the model and some other

biological observations that could be included which could effect the incidence of AML.

Firstly, adding to the model the chance of an H cell obtaining an Sfpi1 point mutation

first, and then the Sfpi1 deletion, could have an effect on the dose or dose-rate response

to murine AML. This was ignored for simplification of the model but this route could

be possible for low dose-rates. Another detail that could be included in the model is

the effect of cell cycle sensitivity [9]. Since cells show variations in sensitivity when

in different phases of the cell cycle, the phase that the cell is currently in when hit by

radiation could affect the chances of the Sfpi1 deletion or a point mutation occurring.

The Linear-Quadratic model for cell survival predicts that at low doses, the dose re-

sponse decreases in a linear fashion and the dose-rate effects are negligible. Other

literature [30],[31],[32] suggests that there is a hyper radio-sensitivity at doses of less

than 1 Gy, as shown in figure 6.1.

FIGURE 6.1: Hyper radio-sensitivity observed in cell survival for low doses [32] shown
by the solid black line, and the dotted line is extrapolation from the Linear-Quadratic

model

This observation is also a contradiction to the linear no-threshold model, in which sepa-

rate exposures to radiation and their risks are added up in order to give a risk estimate

for the cumulative dose received. In fact the hyper radio-sensitivity observed here sug-

gests that the risk of two separate exposures adding up to a particular dose could be

higher than the risk of receiving the total dose instantaneously. For example, the cell
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FIGURE 6.2: Hyper radio-sensitivity observed in cell survival for very low doses [30].

damage upon receiving a dose of 0.2 Gy is very similar to the cell damage upon receiv-

ing a dose of 0.4 Gy, suggesting that more damage could be done by receiving a dose of

0.4 Gy split over two sessions, than receiving 0.4 Gy all at once.

Figure 6.2 also shows an observed hyper radio-sensitivity at very low doses of less than

0.1 Gy, which is a particularly interesting observation applicable to medical imaging. For

example, this observation suggests that receiving one CT scan containing 0.1 Gy would

cause much less damage than receiving 2 CT scans containing 0.05 Gy each. Therefore,

to improve further the risk estimates of low dose radiation, this hyper radio-sensitivity

could be used to better describe the cell survival at low doses.

The data set used [22] contains a small number of data points and there is no indication

of the size of possible errors in the experiments, so this is a limitation to the reliability

of the parameter estimation of the model. With a larger data set the model parameters

could be better estimated. Once more experiments are carried out that monitor the

induction of the Sfpi1 deletion in healthy cells after absorption of radiation at different

dose-rates, then there can be some clarification on the dynamics of Id cell formation.

Also experiments tracking the numbers of Id cells for a period after radiation exposure

at different doses and dose-rates would potentially give more insight into the growth

rate of these cells, and whether the dose affects the growth rate.

As a development of this model, it would be interesting to look at the effect of radiation

delivered at a fractionated dose-rate in order to give recommendations to radiotherapy

procedures, as it could be that differences are observed when the same dose is delivered

continuously or fractionated, due to possible adaptation of cell repair mechanisms. It
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would also be particularly useful and interesting in the future to be able to improve the

applicability of this model to the incidence of human AML.

As a last remark and self-reflection, this thesis has taught me some very useful statistical

techniques, improved my programming skills greatly and allowed me to learn a lot of

interesting cell biology. My interest in the biology meant that it took me a while to

narrow down a specific topic of research, and upon doing the process again, I would

define a research problem earlier to enable further development of the model.
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