
Constructing an Explanation Ontology for the Communication and
Combination of Partial Explanations in a Federated Knowledge

Environment

Cornelis Bouter
Student number: 4030877

Daily supervisor: Barry Nouwt, MSc
First supervisor: prof. dr. mr. Henry Prakken
Second examinor: prof. dr. Rosalie Iemhoff

May 29, 2019

Contents

1 Introduction 1
1.1 Problem . 2
1.2 Purpose and goals . 3
1.3 Research questions . 7
1.4 Structure . 9

2 The domain: knowledge base explanation 10
2.1 Machine learning . 11

2.1.1 Taxonomies . 11
2.1.2 Extracting concepts . 18

2.2 Explanation in other knowledge bases . 20
2.2.1 Rule-based expert systems . 20
2.2.2 Bayesian networks . 21

3 Insights from the social sciences and philosophy 26
3.1 Insights from the social sciences . 26
3.2 Philosophical prescriptions . 27

4 Towards a reference ontology 30
4.1 Purpose and intended use . 30
4.2 Requirements . 31
4.3 Ontology modularisation . 31
4.4 Competency questions . 32

4.4.1 Fact explanation . 33
4.4.2 Explanation hierarchy . 33
4.4.3 Knowledge bases . 34

5 The technique: Description Logic 35
5.1 Syntax and semantics . 35
5.2 Additional expressive power . 36

6 Reference ontology design choices 39
6.1 Existing explanation ontologies . 39
6.2 Fact explanation . 41

6.2.1 Explanandum ontology . 42
6.2.2 Explanans ontology . 42

ii

6.2.3 Tree-based structures . 44
6.2.4 Rule-based structures . 45
6.2.5 Feature importance, salience maps and prototype selection 46

6.3 Knowledge base ontology . 47
6.4 Explanation tree ontology . 48

6.4.1 Descendant relations . 50
6.4.2 Revisiting rule-based explanation 50

7 Operational ontology and implementation 53
7.1 Serialisation . 53
7.2 OWL profiles . 55
7.3 Implemented ontology . 56

7.3.1 Explanation ontology . 57
7.3.2 Mortgage domain ontology . 59
7.3.3 ExplanationTree individual . 64

8 Ontology testing with competency questions 68
8.1 Verification and validation . 68
8.2 SPARQL . 69
8.3 Competency questions . 70

8.3.1 Explanation hierarchy . 70
8.3.2 Fact explanation . 71
8.3.3 Knowledge bases . 75

9 Proof of concept 78
9.1 Explainable Plasido . 78

9.1.1 Generic . 79
9.1.2 Domain specific . 82

9.2 Flow of control . 84

10 Conclusion 86
10.1 Discussion . 88
10.2 Future research . 88

Bibliography 90

Appendices 94

A SPARQL queries 94

Acknowledgements
First of all, I would like to thank Barry for our weekly discussion sessions, resolving
numerous Maven errors, and beating me at pingpong. A lot of thanks also goes out to
everyone else at Connected Business, especially my fellow interns Willem and Merle, for
making me enjoy my stay at TNO.

Secondly, I would like to thank Henry and Rosalie for the supervision and exam-
ination. Henry, you never failed to pinpoint the weaknesses in my writings. Rosalie,
although the examination part is relatively small, you helped with some personal re-
marks along the way.

Finally, I would like to thank some people who contributed in other ways: Fons for
matsen, my parents for support, and Kimberly for being lief.

This work was conducted using the Protégé resource, which is supported by grant
GM10331601 from the National Institute of General Medical Sciences of the United
States National Institutes of Health.

“We must be systematic, but we
should keep our systems open.”

Alfred North Whitehead,
Modes of Thought (1938)

Chapter 1

Introduction

This research was performed at the Data Science department of TNO as part of the
Early Research Program (ERP) Applied Artificial Intelligence. The Data Science de-
partment consists of three groups: Explainable Data Science (EDS), Responsible Data
Science (RDS) and Connected Business (CB). The EDS group develops methods to in-
terpret data science algorithms, whereas RDS is concerned with ethical issues such as
anonymising data. The CB group, where our research was performed, performs research
on interoperability, i.e. on developing tools and methods to increase the ease and effi-
ciency of linking and sharing data between various sources. As the title of our thesis
suggests, our research is also closely related to developments in the EDS group. We
place it at the intersection of explainable data science and interoperability.

Various human decisions are increasingly guided by automated processes. Especially
sensitive decisions such as the release of a suspect on parole (Angwin et al. 2016), the
diagnosis of a doctor, the decision to allow a potential house buyer a mortgage (Kvamme
et al. 2018), and many more are based on the output of knowledge bases (KBs). The
KB that guides the decision must be understood in its broadest sense. It can indicate a
rule-based expert system, but it can also indicate any kind of machine learning model,
a relational database, a Bayesian network, or another computational model. After all,
the collection of entries in a database, the probabilities of a Bayesian network, and the
decision boundary learned by a machine learning model can all be understood as a type of
knowledge that has been extracted either manually by a domain expert or automatically
by an algorithm from domain data. We will call the plural, an interconnected set of
knowledge bases, a federated knowledge environment.

During this thesis we will employ a running example of a bank that uses several
knowledge bases to decide whether to approve a mortgage application. The main KB
is a machine learning model comparing the applicant to previous applicants. It outputs
a prediction whether the person’s mortgage application should be approved. Two other
KBs are used to preprocess the data. First, a machine learning model infers the current
state of the economy from real-time stock rates. Second, a Bayesian network predicts the
job opportunities of the applicant given his or her job field, annual salary, and working
experience. The federated knowledge environment is configured as shown in figure 1.1.
The root KB deciding on a mortgage application uses the current state of the economy
and the applicant’s job opportunities as input, together with data on the applicant that
did not need preprocessing.

1

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 1.1: Configuration of the running example

1.1 Problem

The need to extract an explanation from the KB when it is applied on sensitive use cases
has already become apparent in the explainable AI (XAI) and explainable machine learn-
ing literature (DARPA 2016; Lipton 2016). It can have far reaching effects on a person’s
life when an incorrect or unjust decision is made during a mortgage application proce-
dure. However, the machine learning models that guide these decisions, are widely known
as “black boxes”, because they are notoriously difficult to interpret. In the same way,
the probabilities of a Bayesian network are hard to interpret for non-specialists (Timmer
et al. 2017). On the other hand, KBs purely consisting of rules are usually judged to be
interpretable, since a rule is a native concept to a non-specialist (Guidotti et al. 2018).
However, a KB consisting of hundreds of rules quickly loses its interpretability (Lipton
2016). In all these cases, if the KB would reject the mortgage application, the developer
nor the banking company would be able to interpret the classification beyond the output
value.

Various explanation algorithms have in the last few years been developed because of
the increasing abundance of machine learning applications (Biran and Cotton 2017). Our
research will follow this trend, so we will mainly consider explainable machine learning.
It will also include Bayesian networks (BN) for two reasons. First, we already mentioned
that BNs require explanation algorithms, because they are difficult to interpret. Sec-
ond, providing a solution that works for both machine learning and Bayesian network
explanation gives evidence that the solution works for an arbitrary knowledge base. The
goal of interoperability also is to connect various systems regardless of their type. We
include expert systems for another two reasons. First, the TNO framework we use in-
ternally operates as a rule-based reasoner. Second, expert systems are among the oldest
AI techniques, so various methods at explanation have already been developed (DARPA
2016).

An intuitive explanation algorithm is the feature importance algorithm. Given the
mortgage prediction to reject, we might ask the model for the decisive feature. If we
received an answer that either the applicant’s job opportunities or monthly wage is the

2 Chapter 1

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

most important feature, we would most likely consider it a correct prediction. On the
other hand, if the person’s surname or ZIP-code would turn out to be the deciding
feature, we would have reason to manually review the application and to adjust the
model. Given our domain knowledge, we know that a person’s ZIP-code or surname is
not a correct predictor for mortgage defaulting.

Without an explanation algorithm we would not have the possibility to interpret the
classification beyond its face value. Although interesting, our research does not attempt
to improve the explanation of a single algorithm. We will improve the explanatory power
by integrating the existing explanations of various sources. We need to provide a solution
where the whole explanation explains more than the sum of the partial explanations.

The explanation algorithms that have been developed thus far only consider the
output of a single knowledge base. However, our running example is a federated know-
ledge environment consisting of three knowledge bases predicting the correct mortgage
application decision, the state of the economy, and the applicant’s job opportunities,
respectively. The explanation of a prediction should include all three knowledge bases.
Without any work on interoperability, our system would resemble figure 1.2a. Both the
output and explanation of a KB have to be manually linked to the upper KB, resulting
in an inefficient and fault-sensitive procedure. The Connected Business group at TNO
already developed Plasido, a knowledge engine that allows for several independent KBs
to be interconnected (Nouwt 2016). The current state of Plasido is given in figure 1.2b.
The output of each KB is automatically used as an input for the appropriate KB one
level higher.

The problem we face is that Plasido has no functionality to communicate an expla-
nation. Any explanation a connected KB may produce is not automatically passed on
to the upper KB. Therefore, the process of combining the explanation is sensitive to
human error and lacks a well-defined standard. Moreover, the explanation of a single
KB may be crucial to the explanation of the whole system. For example, the feature
importance algorithm may return that the economic depression is the decisive feature. If
we could not give an explanation why the economy is predicted to be in a depression, we
still cannot explain the classification as a whole. If we cannot configure the knowledge
bases as shown in figure 1.2c, the lack of interoperability leads to insufficient explanatory
power.

1.2 Purpose and goals

Our goal will be to extend Plasido with functionality to automatically communicate and
combine explanations from the connected KBs. Semantic technology in the form of a
rule base and a reasoner are employed to combine the various KBs into an integrated
whole, such that a well-formed query automatically consults all connected KBs (Nouwt
2016). In effect, the knowledge residing in the individual KBs is combined to form a fed-
erated knowledge environment. Plasido is agnostic to the type of KB that is connected.
Therefore, it is perfectly suited for the various types of KBs we already identified in
section 1.1.

Figure 1.3a shows that, as of yet, Plasido has no functionality to communicate ex-
planations, but can only provide an answer. Therefore, to employ Plasido in situations
where an explanation is required, it should be expanded with functionality to commu-

Chapter 1 3

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

(a) Before interoperability

(b) Current state

(c) Future state

Figure 1.2: Three states of explainability software systems. The dashed lines indicate
that the operation has to be performed manually instead of automatically.
4 Chapter 1

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

(a) Current Plasido state

(b) Future Plasido state

Figure 1.3: The current and future state of the Plasido engine

Chapter 1 5

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 1.4: Plasido architecture

nicate and combine the explanation the external KBs may give. Figure 1.3b shows our
goal state where each single explanation is automatically processed by Plasido.

A detailed schematic view of Plasido is given in figure 1.4. Our research will concern
itself with the explainability ontology. An ontology is usually defined as an “implemen-
tation of a shared conceptualisation” (Gruber 1993). We can break this definition down
into three parts:

Implementation: The ontology has to be written in a formal language, because the
ontology has to be computer-readable. The Web Ontology Language1 (OWL)
is the W3C-recommendation for the implementation of ontologies, and the only
standard that is widely applied. So, one of our deliverables will be a formalisation
of the ontology in OWL.

Shared: An ontology defines a means of communication. It is useless if some KB would
not adhere to the ontology and another KB would. That would be similar to
humans each speaking a different language. Every KB in the application should
understand and speak the language of the ontology.

Conceptualisation: The ontology is a systematic description of the domain, dividing
it in concepts, relations, and individuals.

In short, the ontology will define the communication between Plasido and the individual
KBs. If the ontology were not shared between Plasido and the individual KBs they
would not understand each other. The conceptualisation defines what the content of the
messages may be.

Several procedures for the construction of ontologies have been developed (Obrst
et al. 2007; Vrandečić 2009). We will follow the guidelines for ontology construction
of SABiO: the Systematic Approach for Building Ontologies (Falbo 2014). This way

1https://www.w3.org/OWL/

6 Chapter 1

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 1.5: SABiO’s processes (Falbo 2014)

we use previous researchers’ experience at ontology construction. First of all, SABiO is
intended for the construction of domain ontologies, rather than high-level foundational
ontologies. Our ontology is also intended for a specific domain: knowledge base expla-
nation. A major part of SABiO is eliciting domain knowledge from the literature, which
is a task we also need to undertake. Second, SABiO grounds the domain ontology in
existing (foundational) ontologies to increase reuse. Third, figure 1.5 shows that SABiO
distinguishes between a reference ontology and an operational ontology. The former
is a conceptualisation of the domain that is as precise as possible. The latter is an
operationalisation where precision is traded for computational flexibility.

1.3 Research questions
Several research questions will guide the process. Our main research question is:

Main Question How do we leverage ontologies to integrate the various explanations
of a federated knowledge environment?

The explanatory capacity of the federated knowledge environment needs to be more

Chapter 1 7

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

than just the sum of the explanations of the individual knowledge bases. The main
question can be divided into two separate processes: 1) the construction of an ontology
for explanation and 2) the integration of the ontology into Plasido.

The processes of SABiO, especially the distinction between the reference ontology
and the operational ontology, help us define the subquestions on the construction of the
ontology. We begin with getting a grasp of the domain.

Subquestion 1 Which types of explanations are produced by knowledge bases?

Subquestion 2 Which types of explanations are useful according to philosophy and
social theory?

The reference ontology functions as the ideal conceptualisation precisely describing
the domain. It is constructed through a structured review of the relevant literature. The
process of SABiO instructs us to answer four questions in preparation of constructing a
reference ontology. The first question concerns the purpose and goals of the ontology,
which we have already answered in this chapter. The remaining questions are given in
subquestions 3.1 through 3.3. The competency questions of subquestion 3.3 are intended
to specify the information that can be extracted from the ontology. They serve as both
a proof of correctness and a tool for inspection.

Subquestion 3 What is the appropriate reference ontology?

Subquestion 3.1 What are the requirements we elicit from the literature?

Subquestion 3.2 How can we modularise the ontology?

Subquestion 3.3 Which competency questions characterise the information of the on-
tology?

Then, the reference ontology has to be implemented into a formal computer-readable
language. This process usually involves a trade-off between exactly implementing the
reference ontology and keeping desirable computational properties. When imposing too
much restrictions the ontology becomes undecidable. However, we want to use the
ontology to let a reasoner infer facts previously not in its knowledge base. This leads to
the following research question.

Subquestion 4 How should we implement the reference ontology to build the opera-
tional ontology?

Constructing the operational ontology by implementing the reference ontology in a
computer readable format, together with a demonstration that the operational ontology
can answer the competency questions, concludes SABiO’s processes. This leaves us with
the final goal of integrating the ontology into Plasido.

Subquestion 5 How do we incorporate the explanation ontology into the Plasido en-
gine?

The integration of several explanations into one explanation tree requires an algo-
rithmic solution. Therefore, a sub-question of the software development problem is:
Subquestion 5.1 How do we combine several instances of the ontology from various

sources to construct an explanation hierarchy?

8 Chapter 1

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

1.4 Structure
In the second and third chapter we introduce the reader to the domain of explanation.
The second chapter consists of both an overview of existing explanation algorithms, as
well as of several attempts at a categorisation of those. Simultaneously, we pinpoint
some requirements of the eventual ontology that the literature gives rise to. At the end
of chapter 2 we have answered the first subquestion. In the third chapter we continue
with the theory from philosophy and the social sciences on what a useful explanation is,
together with a discussion to what extent we should strictly follow either theory. Ther-
fore, chapter 3 answers subquestion 2. Speaking in processes of SABiO, the second and
third chapters perform the requirements elicitation. We collect our purpose, require-
ments, ontology modules, and competency questions in chapter 4, thereby answering
subquestions 3.1 through 3.3 and paving the way for the construction of the reference
ontology.

Having constructed the requirements in natural language allows us to introduce De-
scription Logic, the formalism underlying ontologies, in the closely related chapters 5
and 6. We introduce syntax and semantics as far as necessary for our purposes, during
which we construct the non-controversial basis of the eventual ontology. Chapter 5 does
not answer a research question by itself, but defines the logic we use in chapter 6.

Research subquestion 3 is answered in chapter 6. The chapter stars with a discussion
of previous attempts at an explanation ontology. The rest of chapter 6 concerns a for-
malisation of subquestion 3.1. The collection of Description Logic formulas constructed
in the chapter answers research subquestion 3.

Having constructed the reference ontology allows us to operationalise the ontology in
chapters 7 and 8. The seventh chapter makes the reader familiar with the Web Ontology
Language (OWL), the W3C standard for ontologies. It answers subquestion 4 by showing
the operationalisation of the reference ontology in OWL. Chapter 8 will conclude the
ontology design process by showing that the competency questions (subquestion 3.2) can
indeed be answered by the ontology.

We present our proof of concept in the penultimate chapter 9 to show that our
extensions to the Plasido framework enable the integration of explanations in the format
of the ontology. The general content of the chapter answers research question 5, while
a specific subsection answers subquestion 5.1. In our final chapter we conclude with an
answer to the research questions, some discussion, and directions for further research.

Chapter 1 9

Chapter 2

The domain: knowledge base
explanation

In this chapter we will introduce the domain of knowledge base explanation. We restrict
our research to machine learning models, Bayesian Networks, and rule-based expert
systems. The explanation of machine learning models was the cause of this research. We
cover Bayesian networks, because it is another important learning paradigm which does
not lead itself to intuitive explanation (Timmer et al. 2017). Rule-based expert systems
conclude the list for three reasons. First, these systems were the first AI systems to be
widely applied (DARPA 2016). Second, rule-based systems are typically judged to be
easily interpretable (Guidotti et al. 2018). Third, the Plasido framework uses rules to
define the hierarchy of knowledge bases. We will discuss the most relevant explanation
methods for each type of KB.

In terms of SABiO, figure 2.1 gives a schematic view of the first phase. We will
perform the roles of domain expert and ontology engineer. The role of ontology user will
not be filled by a natural person, but we will be filled by the project description and by
the TNO supervision. No concrete ontology user has been identified yet. The goal of
chapter 2 and chapter 3 is to formulate the domain, with chapter 2 presenting the domain
of KB explanation. Chapter 3 gives relevant lines of research from philosophy and the
social sciences. Chapter 4 will draw the purpose, requirements, ontology modularisation,
and competency questions from the domain study of chapters 2 and 3.

Figure 2.1: The first phase of SABiO (Falbo 2014)

10

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

2.1 Machine learning

Machine learning (ML) is typically divided into supervised learning, reinforcement
learning, and unsupervised learning. A supervised learning algorithm takes as its
input a set of data points with a target label. The algorithm “learns” a predictor such
that it can predict the label of a previously unseen data point. Although the learning
mechanism usually is probabilistic, the resulting predictor is deterministic. If there are
no labels present, we call it unsupervised learning, because the algorithm does not get
feedback. The algorithm resorts to a type of clustering. A reinforcement learner does
get feedback, but not as labels. Each state can be input to a fitness function to check
its value. A correct prediction is reinforced by an increase in the fitness function. In
our research we will consider supervised learning, because that is the only type which is
widely applied in practice.

Formally, we have a set of examples D = {z1, z2, ..., zn}, where each example is a
pair < ~x, y >. The set of examples is divided into a large training set and a small test
set. The input ~x represents a single data point with y its target label. The supervised
machine learning algorithm takes the training set as its input and learns a new function
f : XN → Y such that it can predict a class or value for another data point. The accuracy
of the new function is tested by running it on the test set. The exact implementation
depends on the particular algorithm, which can be sophisticated to the extent that
the developer may wonder why the algorithm learned a particular function. Therefore,
a machine learning algorithm is often called a black box. We will also use the term
“model” to refer to the function learned by the machine learning algorithm.

In the rest of this section we will describe three taxonomies or categorisations of
machine learning explanation algorithms. At the same time, we will already try to elicit
some general concepts. Then, we will turn to a more conceptual discussion on what
explainability or interpretability actually is.

2.1.1 Taxonomies

Biran and Cotton (2017) show the large variety of explanation algorithms in their
overview paper, giving a bottom-up view of the field. We, however, will focus on the
papers that use a top-down approach and that have provided a high-level view of the
kinds of explanation algorithms in use. If the high-level categorisation is correct, fitting
the ontology to capture all high-level concepts necessarily also captures the low-level
concepts.

We will first describe the taxonomy by Guidotti et al. (2018), because they provide
the most extensive categorisation yet. We will then compare it with the categorisations
given in Gilpin et al. (2018) and Lipton (2016).

Guidotti et al.’s taxonomy

Guidotti et al. (2018) provide the most extensive and fleshed-out taxonomy of explana-
tion algorithms, summarised in table 2.1. They propose a categorisation of explainability
algorithms based on four properties: 1) the type of problem, 2) the unboxing algorithm,
3) the machine learning algorithm, and 4) the type of input.

The first category type of problem shows the different approaches to explainability.

Chapter 2 11

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Type of problem Unboxing algorithm Type of input ML algorithm
Model explanation Decision tree Text Neural network

Outcome explanation Decision rules Tabular Tree ensemble
Model inspection Feature importance Images Support vector machine
Transparent box Salient mask Deep neural network

Sensitivity analysis
Partial dependence plot
Prototype selection
Neurons activiation

Table 2.1: Schematic view of Guidotti et al.’s taxonomy

On the one hand, we may have used a machine learning algorithm to construct a predic-
tor, that, afterwards, we apply an explanation algorithm on to interpret it. On the other
hand, we may construct a predictor that is by itself interpretable, and does not need an
additional method to explain itself. In the former case we need to reverse engineer an
ad-hoc solution to explain the model. In the latter case we face the problem of designing
a transparent box instead of a black box.

A reverse engineering solution is more easily constructed than a transparent box,
so is more widely applied. Therefore, Guidotti et al. subdivide the category of reverse
engineering.

Model explanation: An additional KB is learned to mimic the behaviour of the black
box, but with increased interpretability traded for a decrease in accuracy. The
original classifier can be run to compute the output, while the proxy algorithm
gives an approximation of its inner workings. We can interpret the complicated
KB through inspection of the proxy.

Outcome explanation: An additional algorithm is developed that takes the machine
learning model and a data point as input. It outputs an explanation for that
particular data point.

Model inspection: A graphical or textual explanation is constructed to explain the
black box as a whole.

The difference between model explanation and model inspection may need some elabora-
tion. In the former case we end up with two classification functions. One is the original
model trained for optimal performance. The other is an approximation of the original
with increased interpretability due to the decrease in complexity. The model inspection
problem does not need a second classifier, but may suffice with a graphical or textual
explanation of the network.

Furthermore, Guidotti et al. identify eight unboxing algorithms to open a black box.
We order them by the subtype of black box explanation (i.e. model explanation, outcome
explanation, and model inspection) the particular type of explanation usually belongs
to.

12 Chapter 2

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Model explanation

Decision tree: The machine learning model is probed with made-up input to test its
behaviour. The explainability algorithm outputs a decision tree based on the
model’s behaviour, such that the decision tree is an approximation of the machine
learning model. In other words, the explainability algorithm learns a simplified
proxy of the machine learning model that is supposed to be more interpretable
due to its lower complexity.

Decision rules: This kind of explanation algorithm is similar to the previous one. The
machine learning model is tested through a series of dummy data. The resulting be-
haviour is modelled as a set of decision rules. We gain an increase in interpretability
given the assumption that decision rules are inherently easier to interpret than a
machine learning algorithm.

Outcome explanation

Feature importance: When introducing machine learning, we showed that it tries to
find correlations between the several features of a data set. The feature importance
explainability algorithm tries to find the features that were the most important
for a given classification. The value of feature X may make no difference to the
classification of a data point, when a change in the value of feature Y would
change the classification. Therefore, feature Y is the more important feature.
The algorithm may give several important features, not necessarily only the most
important one. An example output is presented in figure 2.2.

Salience map: This explainability algorithm, which is also called a salient mask, ap-
plies a series of filters on top of the input to test which part elicits the strongest
response. It is usually applied on explanation of image recognition. The algorithm
shows which part of the input elicited a particular classification.

For example, figure 2.3 shows that the algorithm can identify which parts of the
input gave rise to each of the three predicted classes: labrador, electric guitar,
and acoustic guitar. Assuming the output of the algorithm is valid, the body of
the guitar caused the classification as acoustic guitar, whereas the neck caused
the classification as electric guitar. We may even infer that misclassification of an
acoustic guitar as an electric guitar is more likely than vice versa. After all, both
types have a similar neck, but a very different body. So, the salience map can
explain why an incorrect prediction is nevertheless based on a correct inference.

Moreover, the algorithm can also help detect a correct classification based on unre-
lated features. Figure 2.4 shows that the image of the husky is correctly classified
as a husky. However, the salience map algorithm shows that the snow in the
background elicited a stronger response than the husky itself. It actually is a real
problem in the field of image recognition that the classifier may base its classifi-
cation on watermarks or the environment instead of the actual content. However,
please note that the husky example was designed to illustrate this problem instead
of an accidental failure.

Chapter 2 13

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 2.2: Example of feature importance output (Adhikari 2018)

Prototype selection: This algorithm tries to find an element from the training set
that is most similar to the new input. Given the similarity, the prototype should
explain why the requested input received the same classification. Clearly, this
algorithm needs access to the training set and the machine learning model, while
most other explanation algorithms do not.

Model inspection

Sensitivity analysis: This method analyses the correlation between the uncertainty
in the output of the model and the uncertainty in the input.

Partial dependence plot: The method can visualise the correlation between an input
feature and the output. This way, it can be shown whether the correlation is linear,
monotonic, or more complex.

Neurons activation: Each node in each vertical layer outputs a certain value to the
next layer. The neurons activation algorithm shows for which input a specific
area of the network outputs higher values. This way we can compare inputs on
the areas where a strong response is elicited. By manually comparing the content
of the images, we may even observe which areas react to which stimuli. Clearly,
this algorithm is only applicable to neural networks, while most other explana-
tion algorithms are model agnostic, i.e. are applicable independent of the type of
algorithm.

The division of unboxing algorithm into the three types of problems (i.e. model explana-
tion, outcome explanation, and model inspection) is not as strict as presented above. A
decision tree proxy may perform the role of second classifier in model explanation, but
may also be employed to compute a single path to explain a particular data point.

Guidotti et al. also consider four machine learning models: 1) neural network, 2) tree
ensemble, 3) support vector machine, and 4) deep neural network. The last feature, type
of input, is divided into 1) text, 2) images, and 3) tables where each feature is either

14 Chapter 2

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 2.3: This example from Ribeiro et al. (2016) illustrates the application of a
salience map to find why the picture was classified as showing a labrador, an electric
guitar, and an acoustic guitar.

Figure 2.4: This example from Ribeiro et al. (2016) shows how a salience map can help
detect that the classifier bases its prediction on the wrong features.

Chapter 2 15

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

numerical, boolean, or categorical. This difference is not very relevant for our research,
because the type of data has little influence on the form of the explanation.

We would like to note that the categorisation of explainability algorithms could have
been more fleshed out. Guidotti et al. categorised the types of explanation independently
from the explanation extraction method. Their categorisation does not show which ex-
planation extraction method functions as which explanation type. They described in
natural language that, for example, both the decision tree and the decision rules algo-
rithms can function as both model explanation and outcome explanation. In the case
of model explanation, a decision tree algorithm would construct a tree simplifying the
knowledge base. In the case of outcome explanation, the decision tree algorithm would
construct a path explaining the outcome. On the other hand, the methods we described
as outcome explanation methods (i.e. feature importance, salience map, and prototype
selection) function necessarily as outcome explanation. Guidotti et al.’s category does
not contain this difference, but the authors explain it in the accompanying paper. Our
ontology should be computer readable, so cannot have an accompanying natural lan-
guage explanation. Therefore, we want the differences between the various explanation
extraction methods to be inherent to the ontology.

Concluding, Guidotti et al. argue that the type of problem, unboxing algorithm,
supervised learning algorithm, and type of input together characterise an explainabil-
ity case. For our purposes, their identification of the unboxing algorithms is the most
important, since that part decides the contents of the explanation that have to be cap-
tured in the ontology. However, we noted that we need a categorisation of explanation
algorithms that is more fleshed out than the one Guidotti et al. provides, although their
attempt does provide a starting point. Therefore, in the next section we will compare
Guidotti et al.’s work with Gilpin et al. (2018).

Gilpin et al.’s taxonomy

Gilpin et al. (2018) give a categorisation of methods to explain the processing of a Deep
Neural Network, i.e. a neural network with more than one hidden layer. Our definition
of a KB is broader, but the methods described by Gilpin et al. are model-agnostic. In
other words, they are independent of the machine learning model and not exclusively
suited to neural networks.

Gilpin et al. consider interpretability to be distinct from explainability. They first
provide a categorisation of interpretable models. They then provide methods they con-
sider actual explainability algorithms. Their categorisation of interpretability algorithms
is not unlike the categories Guidotti et al. (2018) provided for unboxing algorithms.
Linear proxy methods: As with all proxy methods, a simplification of the machine

learning model is learned. Linear proxy methods belong to the model explanation
category of Guidotti et al.’s categorisation, although the method can be adapted
to function as outcome explanation (Ribeiro et al. 2016). A linear function is
supposed to be easily interpretable compared to a neural network.

Decision trees: Explaining a model through a simplification modelled as a decision
tree is also an element of Guidotti et al.’s categorisation, where it can belong to
either the model explanation category or the outcome explanation category. Gilpin
et al. only consider the decision tree method for model explanation.

16 Chapter 2

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Salience mapping: Using a salience map to show which parts elicit the highest re-
sponse is also an element of Guidotti et al.’s categorisation. This category neces-
sarily belongs to Guidotti et al.’s outcome explanation category.

Automatic rule extraction: The fourth element of Gilpin et al.’s list occurs also in
Guidotti et al.’s categorisation as “decision rules”. It depends on the implementa-
tion whether automatic rule extraction belongs to model explanation or to outcome
explanation.

Gilpin et al. also provide three types of explanation-producing systems. These systems
are explicitly designed to be more explainable, while the interpretability algorithms are
applied in an ad-hoc fashion to models that are otherwise not interpretable at all. In
Gilpin et al.’s terminology these systems have advanced beyond mere interpretability to
be explainable.

Explicit attention: These systems use different techniques on different parts of the
input. For example, when classifying birds one layer may respond to features of
the body, whereas another may respond to features in the head of the bird (Xiao
et al. 2015).

Disentangled representation: This method tries to distinguish between neurons that
were meaningful from neurons that are independent of the classification.

Generated explanations: These systems generate a syntactically correct sentence
that is shown to the user. First, an explanation is generated, which is then put into
a sentence containing “because”. The language parts of the network are usually
trained on large sets of human written explanations.

However, the work on explainable models is still in its infancy compared to the work on
interpretable models.

In summary, Gilpin et al. find four kinds of interpretability algorithms of which three
are also explicitly mentioned in Guidotti et al.’s list of unboxing algorithms. The fourth
entry is the linear proxy method, which belongs to the model explanation category.
Gilpin et al. also mention three types of explainability algorithms, all of which do not
occur in Guidotti et al. When discussing Guidotti et al. (2018) we noted that the cat-
egorisation could be more precise, since we found similarities that were not reflected in
the categorisation. This is also true for Gilpin et al. Their list of interpretability meth-
ods contains three types of proxy methods. So, we should change the categorisation to
two high level categories: 1) proxy methods and 2) salience mapping. Explanation by
linear proxy, decision trees or decision rules become subtypes of the supertype “proxy
methods”.

Lipton’s taxonomy

The third and last categorisation we consider follows Lipton (2016). It can hardly be
considered a taxonomy given its small size. Lipton observes five types of interpretability
algorithms, all subtypes of black box opening algorithms rather than transparent box
design algorithms. Lipton prefers the term post-hoc interpretability for black box opening
algorithms. We consider his categories succinctly, because several overlap with categories
already described.

Chapter 2 17

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Text explanations: This category captures all explanations outputted in a pure text
format. It does not have a corresponding category in Guidotti et al.’s taxonomy,
but could fulfil the role of both outcome explanation and model inspection. It
fits well into Gilpin et al.’s generated explanations category, even though Lipton
considers it a post-hoc interpretation rather than a transparent design.

Visualisation: All methods that perform their explanation by presenting a set of visu-
alisations of the whole model belong to this category. Depending on the implemen-
tation it can be a sensitivity analysis, a partial dependence plot from Guidotti et al.
or another implementation of model inspection. It does not have a corresponding
element in Gilpin et al.

Local explanation: Lipton considers salience mapping a prime example of local expla-
nation. Although it uses images, it does not belong to the visualisations category
as it does not visualise the complete network. Rather, the salience map shows the
focus of the model on one particular input only. The salience mapping method has
a corresponding entry in both other taxonomies.
Another type of local explanation is LIME (Ribeiro et al. 2016), where a linear
model is learned on a subset around a particular point. This linear model is likely
to be simulatable, since it only aims to approximate the complete model on a
subset of the data. This type of local explanation has corresponding elements in
both other taxonomies.

Explanation by example: This category includes all explanations where a prototype
is presented. It corresponds to Guidotti et al.’s Prototype selection, but has no
corresponding element in Gilpin et al.

2.1.2 Extracting concepts

Having described three taxonomies, we will turn to an even more conceptual level. Sev-
eral researchers argue that the field of explainable ML cannot progress beyond its current
state if the field does not agree on a set of definitions for explainability (Guidotti et al.
2018; Doshi-Velez and Kim 2017; Gilpin et al. 2018; Lipton 2016). Most papers simply
propose an explanation algorithm without defining a priori what exactly constitutes an
explanation.

Explanation versus interpretation

On the highest level, even the definitions of explanation and interpretation are not
agreed upon. Gilpin et al. state that “explainable models are interpretable by default”,
but do not think the reverse holds. They consider interpretability merely as a first step
consisting of, for example, a salience map or a simplified proxy. True explainability is
only reached by KBs that can, for example, produce insight into the causes of their
classifications, can provide meaningful responses to why-questions, or can be audited.

Not all researchers agree with this distinction. Doshi-Velez and Kim (2017) and
Guidotti et al. (2018) define a model to be interpretable if it has the ability to explain its
mechanisms to a human. They equate interpretability with explainability. Miller (2019),
observing the problem from the viewpoint of the social sciences, also uses interpretability

18 Chapter 2

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

as a synonym for explainability. He differentiates between explainability (whether a
human can understand a model) and an explanation, which is the by-product of the
classification intended for the user. We will give an operationalisation of interpretability
in the next section.

Operationalisation of interpretability

In Guidotti et al.’s taxonomy we already noted the difference between the explanation
of an outcome and the explanation of the model. Constructing a simplified proxy to
explain a complex KB involves an important trade-off between interpretability and ac-
curacy or completeness. A decision tree, rule base, or linear model is often recognised as
interpretable (Guidotti et al. 2018, p. 8), so is also considered suitable to fulfil the goal
of learning an intelligible proxy. The goal of accuracy is to present the most accurate
explanation of the KB. Lipton (2016) divides interpretability into three parts:

Simulatable: Simulatability is transparency on the level of the whole model. Only if
a human subject can reproduce the computations performed by the actual model,
will we call it simulatable. For example, a decision tree with few sub-branches is
most likely simulatable, but doubling the number of nodes will cause it to quickly
lose the property.

Decomposability: We will call a model decomposable if it is understandable on the level
of individual features. The performance of inflexible classifiers, like linear models,
can often be increased by preprocessing the variables. A linear model can, as the
name suggests, only learn a line in two dimensions or a plane in three dimensions.
Transforming the data space by introducing new variables as the aggregate of some
original variables often increases the performance. While the original features of
a data set are usually trivially interpretable, that may not be the case for custom
features. So, introducing preprocessed features will very likely cause the model to
lose the decomposability property.

Algorithmic transparency: On the lowest level, Lipton identifies the algorithmic
transparency property. A model satisfies this property if we can in some way
visualise the learning process. According to Lipton, decision trees, rule sets, and
linear models have the algorithmic transparency property. After all, we can easily
visualise the construction of a decision tree or the transformations of a linear curve
for each added sample. These models are sometimes generally regarded as “easily
understandable and interpretable for humans” (Guidotti et al. 2018). Therefore,
the extra properties of simulatability and decomposability are especially helpful to
show the existence of specific linear models, decision trees, and rule sets that are
not easily interpretable for humans.

The goal of accuracy can be trivially satisfied by presenting all weights and parameters
of a system. This, of course, is not interpretable for humans. The more an explanation
is a simplification of the underlying KB, the less accurate an explanation it is.

This division of interpretability leads us to doubt the assertion that decision trees,
rules, and linear models are inherently interpretable. These models only satisfy the
algorithmic transparency property. They may be decomposable and probably are not

Chapter 2 19

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Category Variable Values
Focus evidence / model / reasoning

Content Purpose description / comprehension
Level micro / macro
Causality causal / non-causal
User-system interaction menu / predefined questions /

natural langauge dialogue
Commmunication Display of explanations text / graphics / multimedia

Expressions of probability numeric / linguistic / both
User’s knowledge about the
domain

no model / scale / dynamic
model

Adaptation User’s knowledge about the
reasoning method

no model / scale / dynamic
model

Level of detail fixed / threshold / auto

Table 2.2: Categorisation of explanation methods following Lacave and Díez (2002)

simulatable, even though simulatability is most needed to perform the role of an in-
terpretable proxy. Most machine learning models are very complex, such that a proxy
will either be too inaccurate to be a reasonable approximation or too complex to be
simulatable (Lipton 2016).

2.2 Explanation in other knowledge bases

Having described the field of machine learning explanation, we turn to Bayesian networks
(BN) and expert systems. Lacave and Díez (2002) present a survey of explanation in
BNs. They describe each type of explanation along the categories shown in table 2.2.
In Lacave and Díez (2004), they applied the same approach to explanation of expert
systems. Their approach was broader than ours, since they included probabilistic expert
systems, whereas we do not. It is already promising to see a single categorisation applied
on both BNs and expert systems. In the rest of this section we will first describe rule-
based expert systems and Bayesian networks. We will then take a look at Lacave and
Díez’s taxonomy and at two explanation methods for BNs: Elvira (Lacave et al. 2007)
and the Two-phase Method (Timmer et al. 2017).

2.2.1 Rule-based expert systems

A rule-based expert system consists of a knowledge base and an inference engine. The
knowledge base is divided into facts and rules. The facts represent the initial knowledge
of the system. The rules (p0, ..., pn → q) allow the inference of new facts. The reasoning
engine is an algorithm that searches for new facts that can be derived from the knowledge
base. As a means of explanation, the reasoning engine can track which rules it followed
to derive a new fact. If it fails to derive a particular fact, the reasoning engine may
return a collection of facts that would allow the inference of the new fact.

20 Chapter 2

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

2.2.2 Bayesian networks

A Bayesian network (BN) is an acyclic directed graph, where the nodes represent vari-
ables and the edges represent probabilistic dependencies. For each node the probability
is given of it being true, which together with the probability of being false should add
up to 1. These probabilities are given for every configuration of parent nodes. So, in
example 2.5 the node Rain needs only a probability for the chance of there being rain.
However, the Sprinkler node is dependent on its parent, so we should give the probabil-
ity of the sprinkler being on in both the case of rain and without rain. The node Grass
wet has two parents, so its parents can have four true-false configurations. The joint
probability can be computed through

Pr(G,S,R) = Pr(G|S,R)Pr(S|R)Pr(R)

where G, S and R stand for the nodes Grass wet, Sprinkler, and Rain respectively.
As an example we compute the case where the grass is wet, the sprinkler is turned on,
and it is raining:

Pr(G = T, S = T,R = T) = Pr(G = T |S = T,R = T)Pr(S = T |R = T)Pr(R = T)

= 0.99× 0.01× 0.2

= 0.00198

However, in most applications of Bayesian networks we are not interested in the joint
probability, since that requires us to know the value of each variable. Instead, we usually
only know the value of a proper subset. For example, we would like to know the chance
of rain when we have only observed that the grass is wet. In other words, we want to
compute the conditional probability that it is raining given that the grass is wet. We
use the conditional probability function:

Pr(X|Y) = Pr(X ∩ Y)
Pr(Y)

In this case we instantiate the variables as:

Pr(R = T |G = T) = Pr(G = T,R = T)
Pr(G = T)

This computation may still be intuitive, but computations on larger networks may
become complex, such that they are not understandable. Therefore, several methods
have been developed to explain the computation. This explanation concerns two aspects.
First, the flow of the probabilities through the network can be visualised to show via
which ancestor nodes the probability flowed to the end note. Second, we may show
how to interpret the exact numerical value outputted by the algorithm to explain the
difference between a probability of 1

10.000 and of 1
1.000.000 .

Chapter 2 21

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 2.5: Example Bayesian network

Taxonomy by Lacave and Díez

Table 2.2 shows the categories used by Lacave and Díez to characterise both Bayesian net-
work explanation (Lacave and Díez 2002) as well as expert system explanation (Lacave
and Díez 2004). It is divided into aspects concerning 1) the content of the explanation,
2) the communication between user and system, and 3) the real-time adaptation of the
explanation to the user.

The first variable is Focus, having three possible values: 1) evidence, 2) model, and
3) reasoning. The authors call a focus on explaining the evidence abduction, which is
reasoning from an observation backwards to the most likely explanation. Then, the
division of either explaining the model or explaining the reasoning closely mirrors the
division in XAI between model explanation and outcome explanation.

The categorisations concerning communication between user and system, and the
adaptation of the system’s explanation to the user, are not very useful to our purposes.
We admit that the way an explanation is offered to the user is “crucial” (Lacave and
Díez 2002), but the presentation is usually independent from the way the explanation is
extracted from the network. Only the generated explanations from Gilpin et al. (2018)’s
taxonomy springs to mind as an exceptions. However, our aim is to build an ontology
of explanation, rather than an ontology of explanation communication.

Elvira

Elvira (Lacave et al. 2007) is a program for the explanation of Bayesian networks. It
performs the explanation on three levels. First, Elvira can give an explanation on the
level of individual nodes. Figure 2.6 shows nodes Disease 1, Disease 2, Virus A, and
Virus B in the expanded mode, compared to the other nodes which are, at the moment,
contracted. The expanded view shows the prior and posterior odds. Second, the graphical
view automatically gives the links different colours based on the effect the link has. Edges
representing a positive link, where the occurrence of the parent increases chances that
the child occurs, are shown red, while negative links are coloured blue. Moreover, the
link becomes wider the stronger the association between the two variables is. Third,

22 Chapter 2

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 2.6: Example Elvira diagram (Lacave et al. 2007)

the network can output a natural language explanation summarising the explanation in
the nodes and in the links. For example, the network in figure 2.6 may be explained as
“The network represents the following information: The disease/anomaly Virus A has
neither causes nor risk factors represented in the network. It may cause the following:
DISEASES/ANOMALIES: Disease 1, SYMPTOMS: Symptom, SIGNS: Sign.” (Lacave
et al. 2007).

Moreover, the expanded node in figure 2.6 shows four bars for coloured bars for both
the case where the variable is present and where the variable is absent. The first bar,
coloured in green, represents the a priori probability of each node. The other three bars
represent manually added use cases. In a specific use case, the observed variables have
been entered, allowing the the network to compute the conditional probabilities of the
other nodes.

Timmer et al.

The method by Timmer et al. (2017) is based on argumentation theory. Whereas Lacave
et al. explain a BN through visualisations and textual explanation, Timmer et al. trans-
form the BN into a more intuitive structure. After all, the links in the BN represent
(causal) dependence, which may be either positive or negative. Timmer et al. elicit an
argumentation structure from the network to intuitively show which facts support other
facts. Figure 2.7 shows the support graph, which is the first step in their two-phase
transformation method.

The support graph performs the role of outcome explanation. Given a set of variable
instantiations we can construct a specification of the support graph to explain the value
of the output variable. Figure 2.8 shows an instantiation with a set of observed variables,
identifiable through the double borders. For the unobserved variables the expected value
together with the likelihood ratio measure of strength indicates the increase in strength
of a belief given the observed variables. Another option is to have these values reflect

Chapter 2 23

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 2.7: Support graph of a Bayesian network (Timmer et al. 2017)

Figure 2.8: Support graph instantiated with a set of observed variables (Timmer et al.
2017)

the posterior odds, which gives an absolute instead of a relative measure of strength.

Summary

Summarising this chapter we find the categorisation by Guidotti et al. (2018) to be
best suited for our purposes. First of all, it has already progressed beyond a simple
categorisation towards a taxonomy. Second, the taxonomies by Lipton and Gilpin et al.
are subsumed by Guidotti et al. Third, we can also capture explanation methods for
Bayesian networks in their taxonomy, showing that the taxonomy is applicable beyond
the domain of explainable machine learning. This leaves us to improve upon Guidotti
et al. by incorporating their natural language remarks in the ontology. After all, the
ontology is intended as a standard for communication by computers, so all information

24 Chapter 2

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

has to captured by the ontology.

Chapter 2 25

Chapter 3

Insights from the social sciences
and philosophy

In this chapter we will discuss approaches from the social sciences and philosophy, along
with their relevance to both our research and to KB explanation in general. Following
philosophical terminology we will divide an explanation into an explanandum (plural
explananda) and an explanans (plural explanantia). The former is the part that has to
be explained1. The latter refers to the part that does the actual explaining.

A large body of literature concerning explanation already exists in philosophy and
the social sciences, but a definite theory is nowhere to be found (Miller 2019; Strevens
2006). Both fields have quite different aims when defining explanation. Definitions
of explanation in the philosophy of science try to prescribe necessary and sufficient
conditions for scientific explanation. The social sciences view explanation as a social
act between at least two agents, and describe the types of explanations that result in
a situation where the social interaction ends with the explanation having caused an
increase in knowledge for at least one agent.

3.1 Insights from the social sciences

An explanation is often seen as a conversation between agents: “Someone explains some-
thing to someone” (Hilton 1990). Miller (2019) gives a survey of the social science where
it is relevant for XAI research. He wrote the paper after Miller et al. (2017) found most
XAI papers to be lacking in references to publications from the social sciences. Miller
draws the following four conclusions:

Explanations are contrastive: Asking “Why P?” is a shorthand for “Why P rather
than Q?”. Taken literally, the former question asks for the complete history that
led to event P . The latter only asks for a very particular difference in the causal
history of the observed event P compared to the expected event Q. We call the
observed state P the Fact and expected state Q the Foil. In conversations the foil
often is implicit.
We did not find contrastive explanation mentioned in the KB explanation survey,

1Compare it with promovendus as “he who should obtain his PhD”.

26

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

despite the intuitiveness of the type of explanation. Therefore, Miller took it upon
himself to formalise contrastive explanation for the advent of computational mod-
els (Miller 2018). Some of our TNO colleagues are among the few who constructed
an algorithm for contrastive explanation (van der Waa et al. 2018), showing that
the potential is acknowledged.

Explanations are selected: Humans are adept at selecting one immediate cause among
a set of relevant factors. The person receiving the explanation can extract the part
he or she judges to be the immediate cause, even when presented with a long string
of information. This conclusion implies that KB explanation algorithms are not
required to present one particular fact as explanation, but may present a collection
of facts among which the user can select the immediate cause.

Probabilities do not matter: A causal explanation is usually more satisfying to hu-
mans than a mere statistical relation. Referring to a probability in itself does not
say very much. This is already reflected in Elvira (section 2.2.2) and the Two-phase
Method (section 2.2.2), where the individual probabilities of the network are but
a small part of the complete explanation. Our survey of ML models also did not
include a method where probabilities play a large role.

Explanations are social: An explanation takes place in a conversation between agents,
where knowledge is transferred between both. The previous knowledge of the
agents influences what kind of explanation is helpful. In our survey of KB expla-
nation we found that systems responsive to the user’s knowledge have not been
developed yet. Lacave and Díez also included conversational explanation in their
taxonomy, but found no explanation method that uses it to a sufficient degree.

3.2 Philosophical prescriptions

Whereas social theory argues an explanation can be constructed by selecting an im-
mediate cause among a set of events, proponents of the deductive-nomological model
(Lat. nomos = law) are suspicious of causality. They consider it to lack a “precise con-
strual” (Strevens 2006) and therefore consider it not easily formalised. They argue that
a scientific explanation should consist of a set of facts, among which is at least one gen-
erally valid law (Strevens 2006). Moreover, we should be able to arrive at the conclusion
by consequently applying the generally valid law(s). For example, we should regard the
classical example of modus ponens as a valid explanation of Socrates’ mortality, because
any valid inference is seen as a valid explanation for the conclusion.

Socrates is a human.
Humans are mortal.

================
Socrates is mortal.

The syllogism provides humans with a clear explanation of Socrates‘ mortality, be-
cause the explanation follows causal relation. However, the explanation following the
causal direction is not a restriction placed upon the theory, but merely a property of the

Chapter 3 27

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

particular example. The DN-theory has received quite some criticism, because it allows
explanations that do not provide a causal relation (Lipton 1991).

For example, we may ask why the shadow of a flagpost measures five meter. The
combination of the fact that the flagpost is ten meter high, and the rule that the length
of the shadow of an object is half its length at a particular time of day, would be a valid
explanation. Using the rule we can deduce that the length of the shadow should indeed
be five meter. However, the general rule can also be stated the other way around:

the length of an object is double the length of its shadow.

Then we can use the fact that the shadow of the flagpost is five meter in length to
construct the following explanation for the length of the original flagpost:

The shadow of the flagpost measures five meter.
The height of a flagpost is double the length of its shadow.

===============
The height of the flagpost is ten meters.

The major difference is, of course, that the original rule describes a causal relation,
whereas the converse does not. However, the DN-model does not discriminate between
both explanations. Common sense would dictate us that an explanation with causal
relevance is more useful than one without.

The second cause of the weakness is that the DN-model does not impose a restriction
on the generality of the rules and facts. The following explanation is typically used to
illustrate this objection (Strevens 2006):

This salt has been hexed.
All hexed salt dissolves in water.

==============
This salt dissolves in water.

Although the rule does describe a causal relation, it is not considered to have explanatory
value. It is too specific, since the more general rule “all salt dissolves in water” is equally
applicable. We should consider an explanation to be better the more general its rules
and facts are. Again, the DN-model does not impose any restrictions or orderings.

As a consequence of these objections a re-evaluation of causality emerged, result-
ing in contrastive explanation as an operationalisation of causal explanation (Strevens
2006). The theory assumes that every question is implicitly contrastive (Miller 2019;
Lipton 1991). This way, we find a correspondence between the philosophy of explana-
tion and the social sciences. The philosophical account prescribes when a contrast is a
scientific explanation, which is done in a more sophisticated way than just calculating
the difference in causal history between fact and foil (Lipton 1990; Lipton 1991). How-
ever, the correspondence between philosophy and social theory shows that some types
of explanation can be both rigid and intuitive.

Still, we would like to give a disclaimer. We agree that the flagpost example provides
a strong philosophical objection against the deductive-nomological account, but our aim
is quite different from the philosophical goal. We need to provide a framework that
describes the structure of an explanation. The lofty philosophical goal is to construct
both necessary and sufficient conditions that define a satisfactory explanation, but our

28 Chapter 3

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

framework should also be able to capture insufficient explanations. First, it is up to
the operator to review the explanation on its explanatory value. It is not within our
scope to build an ordering on the quality of an explanation, though this may be an
interesting future extension. Second, our research is restricted to three types of KBs.
Our categorisation is not intended to cover each type of insightful explanation a human
might give. Especially in the case of expert systems, an explanation consisting of facts
and rules may be the best we can get, since that is exactly what an expert system consists
of. Therefore, we need to construct our ontology such that it can capture a rule-based
explanation. Also, the prominence of contrastive explanation in both philosophy and
the social sciences, together with its emergence in XAI, gives us reason to include it in
our framework.

Summary
In this section we covered how philosophy prescribes an explanation and how social the-
ory describes an explanation. We found a remarkable overlap in the form of contrastive
explanation: explaining a fact by pointing at the differences from an expected foil. It is
prominent in philosophy as an operationalisation of causation. The difference in causal
history between fact and foil can be considered a cause of the fact. In social theory a
contrast between fact and foil is observed in any “why”-question, even if not explicitly
stated. Its prominence in both philosophy and social theory gives us reason to include
contrastive explanation in our framework, even though an explanation algorithm using
contrastive explanations seems to be lacking.

Chapter 3 29

Chapter 4

Towards a reference ontology

In this chapter we will conclude the first phase of SABiO (figure 4.1) by drawing the
purpose, requirements, ontology modularisation, and competency questions from the
previous chapters. The purpose has not changed since the introduction. So, we will only
summarise the purpose and goals. The requirements we will draw from the main findings
of chapters 2 and 3. The ontology modularisation and the competency questions will
guide our way forward by giving a preliminary structure of the ontology, and by giving
the questions the ontology should answer.

4.1 Purpose and intended use

The purpose and intended use has not changed since our exposition in the introduction.
The ontology is intended to capture the kinds of explanations typically extracted from
KBs, and to combine the set of explanations into a hierarchical structure. The structure
of the explanation also needs to capture the dependencies of the federated knowledge
base from which the knowledge is drawn.

The ontology is intended to be employed in the Plasido knowledge engine, which is
based on the semantic technology of Apache Jena. Plasido performs all communication
to and from the independent KBs using a set of rules. Facts that are derived using an
external KB are added to Plasido’s own symbolic knowledge base. This set of rules is
run by a reasoning engine that traces which combination of facts and a rule were used

Figure 4.1: The first phase of SABiO again

30

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

to derive a particular conclusion.
Moreover, the explanation structure that is eventually outputted by the federated

knowledge environment should be in the ontology format. The strict ontology defini-
tion allows the construction of queries that transform the ontology to a simplification
containing only the requested data. An ontology is unreadable to non-professionals, but
even professionals use queries to consult an ontology instead of manually inspecting it.

4.2 Requirements

In chapter 2 we gave an overview of the knowledge base explanation domain. The on-
tology should at least capture all structures that the explanation methods may produce.
We identify five different types: 1) tree-based, 2) rule-based, 3) a set of items, 4) graph-
ical, and 5) textual. A graphical or textual explanation has little internal structure,
compared to a tree-based or rule-based explanation. Since we aim to provide a standard
for communication that is used in practice, the class for both tree-based and rule-based
explanation should have their internal structure fleshed out.

We also found that the structure of the explanation cannot be mapped one-on-one
to the type of explanation. A tree-based structure can play the role of both model
explanation as well as outcome explanation. In the former case we obtain a decision
tree summarising the ML model. In the latter case we may obtain a decision tree that
summarises a local sample of the data set. In the latter case we may also obtain a tree
path for a single outcome. We use the same tree-based structure in all three examples.
So, the ontology should have independent concepts for the structure and the four types
of explanation: 1) model explanation, 2) outcome explanation, 3) model inspection, and
4) transparent box.

We also drew various KB types from the domain description. Especially the dis-
tinction between ML model, expert system, and Bayesian network is important for our
purposes. We found that several KBs output an explanation of the same structure, so
the KB that conceptualised the explanation should be part of the ontology. Otherwise,
the difference between a rule-based proxy and a rule-based expert system would be lost.

The philosophical and social background showed us that an explanation can explain
not just one particular fact. It can also explain the contrast between an observed fact
and an expected foil. So, our ontology should model the difference between a contrastive
explanation and a simple non-contrastive explanation.

Finally, from our purpose and our goals we draw the requirement that the ontology
should capture a hierarchy of explanations. One explanation functions as the root, while
other explanations merely support the root explanation. A tree-based structure is the
most logical structure for the explanation hierarchy.

4.3 Ontology modularisation

We will first give our proposed ontology modularisation before giving the competency
questions, so we can order the competency questions by module. In figure 4.2 we give
our proposed modularisation, consisting of three modules.

Explanation of a fact: This module concerns the explanation of a single fact. It

Chapter 4 31

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 4.2: Modularisation of the ontology

should distinguish between the fact being explained (explanandum) and the struc-
ture that performs the actual explanation (explanans). The modelling of the ex-
planans should capture the structures that emerged from the literature survey as
we described in the previous section.

The internal structure of an ontology is a set of triples. So, a fact constitutes the
combination of a subject, a predicate, and an object. The concrete representation
of the ontology will be made more explicit in chapter 7.

Explanation hierarchy: Having defined an ontology for the explanation of a single
fact, the next step is to link these facts into a hierarchy. This module needs to
define the structure of a tree such that it can construct a hierarchy of explanations.
The nodes of the tree should be explanations of single facts. The edges should
connect a fact performing the explanation to its own explanation.

For example, a rule-based explanation may consist of a rule and three facts which
together explain a conclusion. The rule and facts themselves may also have an
explanation.

Knowledge base generalisation: This module will give the subset relations among
the types of KBs. It needs to specify which subtypes exist of particularly ML
algorithms, but should also include relevant sub-types of expert systems and BNs.
We will not make this ontology module more precise than is required by the use
case. The open world nature of ontologies allows future use cases to further specify
this module if needed.

4.4 Competency questions

The competency questions play a double role in the SABiO procedure. First, they force
us to define in natural language the information we want to be able to extract from the
eventual ontology. The formal implementation of the competency questions (chapter 8)
proves that the ontology can indeed answer these natural language questions. Second,
the implementation of the competency questions allows us to inspect the ontology. The
concrete representation of an ontology usually is unintelligible for both experts as well
as non-professionals. The competency questions extract the required facts from a large
collection of data.

We divide the competency questions into the three ontology modules.

32 Chapter 4

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

4.4.1 Fact explanation

The following competency questions are for the explanation of a single explanation. It
is mainly intended to extract information on the fact being explained, the structure that
does the actual explaining, and the KB that produced the fact.

User queries about a single explanation:

1. General:
(a) What fact is being explained?
(b) What is the function of the explanation? Does it simplify the model,

explain the outcome, or inspect the model?
(c) Which items does the explanation consist of?
(d) Which type of KB produced the fact being explained?

2. Model explanation:
(a) What is the proxy model?
(b) What type of KB is the proxy model?

3. Outcome explanation:
(a) What are the contents of the explanans?
(b) Which type of outcome explanation is the explanans an instance of?

4. Model inspection:
(a) What are the graphical or textual explanations?
(b) Is it a graphical explanation? Is it a textual explanation?

We can generalise the questions for model explanation, outcome explanation, and model
inspection. The first question asks the contents of the explanans. The second ques-
tion asks the subtype of the explanans. We aim to generalise the construction of the
ontology such that one formalised query can draw this information from the explanans
independent of the type of explanans.

4.4.2 Explanation hierarchy

The following competency questions are for an explanation tree. These questions con-
cern remodelling the tree to extract a subset of the information contained in it. After all,
the explanation tree contains information on the explanandum, explanans, and KB of
each individual explanation. Therefore, we construct three competency questions, with
one extracting the explananda, another giving the KB hierarchy, and a third showing
the explanantia. These three competency questions together show that the explana-
tion tree contains complete information of its individual explanations. Therefore, the
“competency questions” may more accurately be termed “competency instructions”.

Competency questions about the structure of the tree:

1. Construct a simplified fact-tree showing only the dependencies between ex-
plananda.

Chapter 4 33

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

2. Construct a simplified tree containing just the hierarchy of knowledge bases
where the facts are derived from.

3. Construct a simplified tree showing only the explanations that extract their
explanans from a machine learning model or Bayesian network. Explanations
that contain no explanans produced by an external ML model or BN are
derived by Plasido’s rule-based reasoner. This competency questions removes
the nodes that are produced solely by Plasido. Only the explanations that
are conceptualised by at least one external KB are retained.

In order to be able to construct the answers to these queries, we need to be able
to query the tree on a precise level. So, an ontology that constructs an arbitrary
tree structure should form the basis of the explanation tree. This structure should
be able to answer arbitrary questions about the depth, size, width, and similiar
properties of the tree.

4.4.3 Knowledge bases

The knowledge base ontology module is simpler than the hierarchy module and the fact
module previously described. We merely ask to which category of KBs an instance
belongs instead of asking its specific structure. The KB may exhibit a structure, but the
ontology is not concerned with the structure of the KB, because the explanation dissolves
the need to inspect the KB. Therefore, we only state two competency questions. The
first asks which general type of KB the instance belongs to. The second requests other
more specific types that identify the instance.

1. Is the KB a machine learning model, a Bayesian network, or an expert system?

2. Which combination of KB subcategories is the instance a type of?

Summary
In this chapter we ended the first phase of SABiO by stating our purpose and goals, the
requirements, the ontology modularisation, and the competency questions. The former
two look back on the previous chapters. The purpose and goals were a restatement of the
introduction. The requirements were a summary of the main points extracted from the
domain survey. The latter two provide a guide forward. The ontology modularisation
gives a preliminary structure of the ontology. The competency questions indicate when
the ontology can be considered sufficient. Namely, when the competency questions
formalised in a query language can extract the requested knowledge from the ontology
instance.

34 Chapter 4

Chapter 5

The technique: Description Logic

In this chapter we will describe Description Logic (DL), the formalisms underlying con-
ceptualisations. We will only cover the theory as far as relevant for our purposes. So,
we will not define the formal semantics, but we will explain it in natural language terms.
The first section introduces the standard Description Logic ALC. The second section
will introduce additional constructs that increase the expressiveness of ALC.

5.1 Syntax and semantics

Description Logic provides a formal language to describe subsumption relations between
concepts. Description Logic ALC (Attributive (Concept) Language with Complements)
is considered the basic instance, but can even be further reduced to AL, the Attributive
(Concept) Language without negation. It talks of concepts C, roles r and individuals
a. The concepts define all groups and subgroups of entities that exist in a domain. The
roles define the relations and functions that exist among concepts and individuals. The
individuals are instances belonging to certain groups, and having particular roles.

For example, in the domain of knowledge base explanation we might want to state
that each explanation has an explanandum and an explanans. Our model then consists
of at least three concepts (Explanation, Explanandum and Explanans) and two roles
(hasExplanandum and hasExplanans). An Explanation instance would require three
individuals: an Explanation individual, an Explanandum individual, and an Explanans
individual. The Explanation has its hasExplanandum role filled by the Explanandum
individual, and its hasExplanans role filled by the Explanans individual. In the rest of
this section we will show how we define in DL it necessary for an explanation to have
both an explanandum and an explanans.

We base our further survey on Baader et al. (2017). Our definition 1 is a direct
citation of them, because they provide a comprehensive textbook on Description Logic.
We will give a survey of the basic logic ALC, before extending it to increase its expressive
power. To construct a concept description we use the following definition (Baader et al.
2017, Definition 2.1).

Definition 1. Let C be a set of concept names and R be a set of role names disjoint
from C. The set of ALC concept descriptions over C and R is inductively defined as
follows:

35

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

• Every concept name is an ALC concept description.

• > and ⊥ are ALC concept descriptions.

• If C and D are ALC concept descriptions and r is a role name, then the following
are also ALC concept descriptions:

C uD (conjunction),
C tD (disjunction),
¬C (negation),
∃r.C (existential restriction), and
∀r.C (value restriction).

With a definition of an ALC concept, we can construct an ALC general concept
inclusions (GCI) to define necessary (C v D) and sufficient conditions (D v C) for a
concept C. This also allows us to define the necessary and sufficient conditions with the
shorthand D ≡ C for C v D ∧D v C.

This way, we can formalise the requirement that each Explanation necessarily consists
of both an Explanandum and an Explanans:

Explanation v ∃hasExplanandum.Explanandum u ∃hasExplanans.Explanans

In other words, an Explanation is anything that resides in the intersection of the things
that have an Explanandum as hasExplanandum-filler and have an Explanans as has-
Explanans-filler. In a set theoretic description, an explanation is something that is a
member of both the set of objects that have an Explanans and the set of objects that
have an Explanandum.

We can also use the disjunction: Explanation v Concept1 t Concept2. This means
the concept Explanation necessarily belongs to Concept1 or Concept2. It is important
to note that Concept1 and Concept2 are assumed to be disjoint. If we want Concept1
and Concept2 to be disjoint, we have to explicitly specify that.

The existential restriction in

∃hasExplanandum.Explanandum

is meant to denote the concepts that have at least one Explanandum that fills a hasEx-
planandum-role. The universal restriction

∀hasExplanandum.Explanandum

denotes the concepts for which all hasExplanandum-roles are filled by an Explanandum.
It does not exclude concepts with other roles than hasExplanandum. It merely specifies
that any role of the type hasExplanandum should be filled by an Explanandum. So, as
a special case, an element without roles satisfies any universal clause.

5.2 Additional expressive power
The GCI only allows the definition of subset relations, so we need to extend its expressive
capabilities to include, among other, transitive relations. All extensions we describe

36 Chapter 5

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

below strictly increase the expressivity of ALC. We will not cover the formal proofs for
each extension, these can be found in Baader et al. (2017, p. 37). Several more extensions
exist, but we will use these during formalisation of the ontology.

Transitive roles: The ALC logic cannot define a hasDescendant relation that is valid
for any two elements related via an arbitrary long chain of hasChild roles. We
therefore need to define hasDescendant as a transitive role:

Trans(hasDescendant)

The idea of the proof is to build a bijection between two ALC models. This
shows that both can be considered functionally equivalent. Then we show for
some sentence containing a transitive role that it is false on one model and true
on the other model in spite of the bijection. This result leads us to conclude that
the addition of transitive roles to ALC strictly increases its expressiveness.

SELF: There exists no way to define a concept that necessarily has some role filled by
itself. This construct also allows the construction of recursive roles.

Inverse roles: We denote the inverse of property r with r−, which means that if two
concepts c0 and c1 exist with <c0 r c1>, then also <c1 r− c0>. We can also
manually define isExplanansOf to be the inverse of hasExplanandum. This addition
allows us to define symmetric roles. It also allows us to define concepts that are
related via the inverse of an existing relation.

(Qualified) number restrictions: Number restrictions allow us to specify the exact
number of fillers of a specific role. For example, we can define that each Explana-
tion has at most one filler through an hasExplanandum role:

Explanation v ≤ 1 hasExplanandum

When the restriction is qualified it allows us to specify the concept for which the
number restriction counts. We can then specify that an Explanation has at most
one hasExplanandum-filler that is an Explanandum concept:

Explanation v ≤ 1 hasExplanandum.Explanandum

.

(Complex) role inclusion: This means that a tuple of two roles is subsumed by an-
other role. For example, isParent combined with isBrother is subsumed by isUncle.
In the explanation domain, we might state that an Explanandum is related to an
Explanans via the Explanation. We would write both examples as follows:

isParent ◦ isBrother v isUncle

hasExplanans− ◦ hasExplanandum v performsExplanationOf

Chapter 5 37

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Summary
In this chapter we gave the formal syntax and the informal semantics of Description
Logic, such that we can use it to construct the reference ontology. We also defined some
additional concepts to increase the expressiveness of Description Logic. This allows us
to add inverse roles and complex role inclusions, among others, to our Description Logic
axiomatisation.

38 Chapter 5

Chapter 6

Reference ontology design choices

In this chapter we will argue for our specific construction of the explanation ontology.
It functions as the second phase of SABiO (figure 6.1), where a formal axiomatisation is
constructed from natural language constraints. Therefore, we will describe the structure
we envision in natural language, which we will simultaneously translate into Description
Logic. The chapter contains a dedicated section for each of the ontology modules,
starting with single fact explanation and ending with the explanation hierarchy.

Referring to established foundational ontologies can increase the quality of the on-
tology (Gangemi and Presutti 2009), since we then refer to concepts that already have
been tested in practice. Furthermore, constructing ontologies that are based on On-
tology Design Patterns (ODP) is considered a good design practice from the viewpoint
of ontology construction (Gangemi and Presutti 2009). Therefore, we will begin this
chapter with a survey of earlier attempts at constructing an explanation ontology, such
that we can build upon earlier attempts when constructing our ontology in the second
half of this chapter.

6.1 Existing explanation ontologies

We found just two papers on the intersection of explanation and ontologies: Su et al.
(2003) and Tiddi et al. (2015). The paper by Su et al. observes the problem from
an agent perspective, interpreting a federated knowledge environment as a multi-agent

Figure 6.1: The second phase of SABiO (Falbo 2014)

39

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 6.2: A model of the main concepts in Su et al.’s explanation profile

system. Their model is given in figure 6.2. An agent can give four types of explanations:
1) similar, 2) broader, 3) narrower, or 4) related-to. However, these explanations do
not give an idea why something is the case. The goal of Su et al. is to link various
independent ontologies adhering to different standards. While this may seem similar to
our problem, the aim of our explanation ontology is not to show the similarities between
knowledge bases. Our ontology needs to incorporate explanations for the output of a
KB. Moreover, our KBs are explicitly allowed to be as diverse as is the case. It is only
the output of a KB that has to adhere to the standard.

Neerincx et al. (2018), written by TNO-colleagues, also consider using Su et al. for
their research in constructing a framework for human-agent team performance. They
consider Su et al.’s ontology to be lacking in capturing goal based explanations, and
consider the ontology to be unable to capture reception of explanation. They use similar
arguments against Tiddi et al. (2015). We do not consider that a drawback for our
purposes, because our main goal is to model the contents of an explanation rather than
the reception. Therefore, Neerincx et al.’s objections give us no reason against using
Tiddi et al.’s framework.

Indeed, Tiddi et al.’s paper proved to be an important starting point for our re-
search. Their ontology for explanation is shown in figure 6.3. They use it to produce
an explanation in their linked data framework Dedalo1. They found a definition from
linguistics especially helpful:

When X happens, then, due to a given set of circumstances C, Y will occur because of
a given law L.

1The site previously hosting Dedalo is down and the hyperlink in Tiddi et al. (2015) is broken. The
OWL-file is available online: http://ontologydesignpatterns.org/wiki/Submissions:ExplanationODP.

40 Chapter 6

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 6.3: Tiddi et al.’s ontology

We may wonder why event X happens at a particular time. In two steps the framework
tries to construct the most likely explanation. First, it obtains a set of possible explanan-
tia by gathering all statistically related events. Then, it decides on the best explanans by
looking whether the event and the explanans appear in the same context. This procedure
is formalised by computing the distance of the linked data path connecting both.

Also, the authors present their ontology as an Ontology Design Patteren (ODP),
intending it to be re-used in other frameworks. In figure 6.3 it may seem that the con-
cepts Situation, Part, Event, and Theory are left undefined. However, all four concepts
are taken from the DOLCE + D&S Ultra Lite ontology (Presutti and Gangemi 2016).
Therefore, we will use Tiddi et al.’s ODP as a starting point for our ontology.

6.2 Fact explanation

We showed the design by Tiddi et al. to be a good starting point. However, we can also
pinpoint some limitations with Tiddi et al.’s design.

Explanandum and Explanans as an Event: Tiddi et al. have not given dedicated
concept classes to the Explanandum and the Explanans, but have defined both as
simply an Event, where the Event class is inherited from a foundational ontology.
The explanation produced by the KBs in our use case is static, and therefore not
suited as a subset of an Event concept.

A Situation as hasCondition filler: The second necessary condition for an Expla-
nation is having a Situation, inherited from the foundational ontology, as a has-
Condition filler. No concept in our domain plays the same role. If we would
extend Tiddi et al.’s ontology, we would need to give each Explanation a Situation
as hasCondition filler.

Even though the general structure of Tiddi et al.’s ontology fits our domain, their
necessary conditions have no correspondence in our domain. So, we will not directly
extend their ontology, but will draw inspiration from it. In particular, we will retain the
Explanation as the upper concept that has both a hasExplanandum and a hasExplanation
relation. However, we fill these roles with an Explanandum and an Explanans respec-

Chapter 6 41

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

tively. We will also retain the role isConceptualizedBy2 from the Dolce+D&S Ultralite
foundational ontology (Presutti and Gangemi 2016), since we consider the explanation
to be conceptualised by the particular KB. In Description Logic formalisation the basis
will look as follows:

Explanation ≡ ∃hasExplanandum.Explanandum u
∃hasExplanans.Explanans

(6.1a)

Explanation v ∃isConceptualizedBy.KnowledgeBase (6.1b)

6.2.1 Explanandum ontology

As we said in the previous section, Tiddi et al. have merely defined an Explanandum
as an Event, which has too little internal structure for our purposes. Although we have
stated reuse as a goal, it is not a goal in itself. We take from Tiddi et al.’s ontology only
what fits our purposes.

From the literature two types of explananda emerged: 1) contrastive and 2) simple.
The former consists of an observed fact and an expected foil. The explanation explains
the Fact through a contrast between fact and foil. A simple explanandum is just a fact
or rule that is explained by its corresponding explanans. These two forms of explananda
are disjoint: a simple explanandum cannot also be a contrastive explanandum. We
translate these statements into Description Logic:

Explanandum v SimpleExplanandum t ContrastiveExplanandum (6.2a)

SimpleExplanandum v ¬ContrastiveExplanandum (6.2b)

SimpleExplanandum v Fact tRule (6.2c)

ContrastiveExplanandum v ∃hasFoil.Fact u ∃hasFact.Fact (6.2d)

6.2.2 Explanans ontology

In our statement of the requirements we found that the ontology should capture the four
types of model explanation: 1) explanation by explainable proxy, 2) outcome explana-
tion, 3) model inspection, or 4) a transparent box. These four categories are the parts
that explain something. So, the union of these classes necessarily is an explanans.

ProxyExplanation t
OutcomeExplanation t

ModelInspection t
TransparentBox v Explanans

(6.3)

We explicitly model a sufficient condition for the Explanans concept instead of a
necessary condition, the converse. First of all, we do not want to restrict the types of

2The role is taken from the Dolce+D&S Ultralite foundational ontology, where it is written in Amer-
ican English with a “z”. When do not mean the concrete role but use the word in a general sense, we
will write the word with an “s” as is customary in British English.

42 Chapter 6

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

explanantia to these four types. More types may be developed, or may be necessary for a
future use case. Moreover, we want to allow an Explanans to belong to no sub-category
if the type of explanans does not belong to any established type.

The sufficient condition ensures that any concept belonging to one of the four cate-
gories is necessarily an Explanans, which it can only be if it performs the explanation
of some fact. In other words, the Explanans needs to be connected to an Explanation
concept. In chapter 5 we defined the inverse relation, which we use to formalise that an
Explanans should have an incoming hasExplanans role from an Explanation.

Explanans v ∃hasExplanans−.Explanation (6.4)

In the literature survey we found three types of explainable proxies, or, recalling our
discussion on algorithmic transparency (section 2.1.2), what some researchers suppose
are explainable proxies: 1) linear model, 2) decision tree, and 3) decision rules. It is
not relevant if these proxies are indeed as naturally interpretable as mainly Guidotti
et al. (2018) argues, or if these proxies quickly lose their interpretability when increasing
in complexity (Lipton 2016). We would like to remind the reader that our goal is to
increase the explainability through interoperability instead of by improving one specific
method.

We already used the ProxyExplanation concept in equation 6.3, but we have not yet
defined what exactly constitutes a ProxyExplanation. In natural language we can state
that something is a ProxyExplanation if it has an explainable proxy, of which we have
defined three types. This gives rise to the following two equations. The second equation
is a sufficient condition instead of a necessary condition since other types of explainable
proxies may be developed.

ProxyExplanation v ∃hasExplainableProxy.ExplainableProxy (6.5a)

LinearModel tDecisionTree tDecisionRules v ExplainableProxy (6.5b)

For the subtype of outcome explanation the literature gave rise to four types. We
will immediately write the four types into the DL formula instead of first enumerating
them in natural language, since we consider the process to be clear by now.

FeatureImportance t
PrototypeSelection t

SalienceMap t
LocalExplanation v OutcomeExplanation

(6.6)

For the same reasons as with the GCI for Explanans and for ProxyExplanation,
equation 6.6 is also modelled as a sufficient condition for OutcomeExplanation instead
of a necessary condition.

The LocalExplanation concept is intended to capture any explanation where the
classifier is applied locally: a set of rules from the rule-base that together allow the
derivation of the explanandum, the path extracted from a decision tree that shows how

Chapter 6 43

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 6.4: Tree ontology design pattern (Carral et al. 2017)

the tree was traversed to reach a particular conclusion, or a decision tree trained on a
local sample.

DecisionRuleDerivation t
DecisionTreePath t

DecisionTree v LocalExplanation

(6.7)

This leaves ModelInspection the only clause of equation 6.3 to be defined. We model
it as a necessary condition instead of a sufficient condition as we did with most previous
types, because any way of presentation can be captured in either images or text. So, the
concept captures possible improvements in providing textual or graphical explanation.

ModelInspection v TextualInspection tGraphicalInspection (6.8)

It may strike the reader that the DL formulas of this section have left quite some
concepts undefined. For example, in equation 6.6 we gave a sufficient condition for
OutcomeExplanation, but we have not defined what either FeatureImportance or Pro-
totypeSelection exactly is. In the following we will define in the DL formalism the
remaining important relations and concepts. Very detailed but nevertheless intuitive
concepts we will only define in the operational ontology.

6.2.3 Tree-based structures

We will first tackle the tree structure that is needed for tree-based proxies and for
outcome explanation via a tree path. We found an Ontology Design Pattern that fits
our purposes. Carral et al. (2017) produced an ontology for the abstract structure of a
tree. This ODP does not make assumptions that run against our proposed usage. We
need to specify which (combination of) relations form the edges of the tree, and which
(combination of) entities form the nodes.

Figure 6.4 shows that we have access to the following concepts: 1) leaf node 2) root
node, and 3) tree node. We can also employ the hasChild relation along with its family
members 1) hasDescendant, 2) hasParent, 3) hasAncestor, and 4) hasSibling.

44 Chapter 6

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 6.5: A small decision tree for deciding someone’s mortgage

Figure 6.5 gives a small example of a decision tree. It shows that any node is labelled
with the feature on which is being split. Also, each edge is labelled with a split value,
which can be either numerical or categorical. Moreover, a decision tree should completely
consist of decision tree nodes. A mix of DecisionTreeNodes with other types of nodes is
an unwanted mix of concepts.

DecisionTreeNode v TreeNode u ∃hasLabel.Feature (6.9a)

DecisionTreeEdge v hasChild u
(∃hasV alue.FeatureClass t ∃hasV alue.Numerical)

(6.9b)

DecisionTree ≡ DecisionTreeNode u ∀hasChild.DecisionTreeNode (6.9c)

We will not put restrictions on the number of edges per node. The tree may be
binary, or whatever suits the needs. In one case we may need to present the complete
tree as a form of model explanation, or model inspection. In another case, we may
simply give a path in the tree as outcome explanation. This would be a unary subtree
from a > 1-ary decision tree.

DecisionTreePath v DecisionTree u <2 hasChild.DecisionTreeNodeu
∀hasChild.DecisionTreePath

(6.10)

6.2.4 Rule-based structures

We can also use the tree structure ODP for a rule-based explanation. We see a rule
derivation (p → q, p/q) as a tree with the conclusion or consequent q as the root, the
rule p → q as a child and the antecedent p (or antecedents) as the remaining children.
Both the antecedent and the rule may themselves require an explanation.

The structure of a rule-based explanation is different in a model explanation context
than in an outcome explanation context. In the former, a set of rules is presented as
a simplified proxy. In the latter, a rule derivation is presented with the explanandum

Chapter 6 45

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

as the root. On the one hand we have a set rules, while on the other hand we have a
derivation tree of an arbitrary depth and size. We first model a simple set of rules.

DecisionRules v ∃hasRule.Rule u ∀hasRule.Rule (6.11)

To define a rule derivation we need to use the tree ODP, because a rule derivation has
a hierarchical structure instead of being a bag of items like DecisionRules. A derivation
necessarily has a fact child and a rule child.

DerivationNonLeafNode v TreeNode u ∃hasChild.FactNode u
∃hasChild.RuleNode u ∀hasChild.DerivationNode

(6.12a)

DerivationLeafNode v FactNode u LeafNode (6.12b)

6.2.5 Feature importance, salience maps and prototype selection

In this section we will describe the structure of the local explanation algorithms Feature
Importance, Salience Map and Prototype Selection, because the three algorithms share
remarkable similarities. Instead of a single local explanation in the form of a tree path
which uses the structure of the classifier, a set of explanation items is handed to the
user. Feature Importance gives the most decisive features, Salience Mapping shows
which properties of the data elicit a strong response, and Prototype Selection returns
the most similar data set entry. Moreover, mixing Prototype Selection and Feature
Importance into one explanation algorithm has been shown to be feasible by Adhikari
(2018).

As we showed in figure 2.2, an item of a feature importance explanation is charac-
terised by three variables: 1) the name of the feature class, 2) the exact value of the
decisive feature, and 3) a measure of the strength of the influence (i.e. how decisive was
the feature). A Salience Map item uses some of the same roles (figure 2.3): 1) the name
of the feature class, 2) the exact value of the feature, and 3) a measure of the certainty
of the classification. Concluding, a Prototype Selection item also uses some of the same
roles: 1) the prototype from the training set, 2) an integer showing the classification
label of the prototype, and 3) a measure of the strength of the similarity.

This way, we can reuse some roles for all three concepts. Equations 6.13a through 6.13c
define the types of explanations consisting of a set of items. Equation 6.14a defines a
measure indicating the strength of the association, which is shared by all three types.
Equation 6.14b defines the roles unique for a PrototypeSelectionItem.

FeatureImportanceExplanation v
∃hasFeatureImportanceItem.FeatureImportanceItem

(6.13a)

PrototypeSelectionExplanation v
∃hasPrototypeSelectionItem.PrototypeSelectionItem

(6.13b)

SalienceMapExplanation v
∃hasSalienceMapItem.SalienceMapItem

(6.13c)

46 Chapter 6

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

FeatureImportanceItem t PrototypeSelectionItem t SalienceMapItem

v ∃hasStrength.Integer
(6.14a)

PrototypeSelectionItem t hasPrototypeID.Integer
v hasSupportingClassification.Integer

(6.14b)

6.3 Knowledge base ontology
The second ontology module we formalise in DL is the knowledge base module. In
the literature we observed machine learning models, Bayesian networks, and rule-based
expert systems. Other types of KBs exist and may be incorporated in the ontology at a
later stage. Therefore, we model the concept inclusion as a sufficient condition.

MachineLearningModel t ExpertSystem tBayesianNetwork
v KnowledgeBase

(6.15)

The three knowledge bases are disjoint. A KB cannot be an instance of more than
one of these subtypes.

MachineLearningModel v ¬ExpertSystem (6.16a)

MachineLearningModel v ¬BayesianNetwork (6.16b)

ExpertSystem v ¬BaysianNetwork (6.16c)

Especially in machine learning models quite some different types exist. In the papers
we surveyed in chapter 2, next to a taxonomy for explanation, also a list of machine
learning algorithms was presented. Guidotti et al. surveyed papers on explanation for
the following KBs: 1) Neural network, 2) Deep neural network, 3) Tree ensemble, and
4) Support vector machine. They considered neural networks to be independent from
deep neural networks, but we will consider the latter a subtype.

MachineLearningModel v NeuralNetwork t
TreeEnsemble t
SupportV ectorMachine

(6.17a)

DeepNeuralNetwork v NeuralNetwork (6.17b)

The KBs Guidotti et al. considered inherently interpretable can also produce an
explanation through one of the model-agnostic explainers: 1) Decision tree, 2) Rules,
and 3) Linear model. So, the explainable proxies that are part of a ProxyExplanans, are
themselves also explainable knowledge base instances.

ExplainableProxy v KnowledgeBase (6.18)

Chapter 6 47

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 6.6: The explanandum of the subexplanation is identical the explanans of the
superexplanation.

For ML the type of input is also important. It is necessary that the ML algorithm
belongs to one of the following categories: 1) Supervised, 2) Semi-supervised, 3) Un-
supervised, and 4) Reinforcement. We consider the machine learning domain to be
encapsulated by these types, so we construct an equivalence instead of a concept in-
clusion. This does not mean a machine learning model that belongs to none of these
categories is forbidden to exist. By the open-world assumption we can infer that the
type of input is unknown instead of non-existent.

Supervised t
SemiSupervised t
Unsupervised t

Reinforcement ≡MachineLearningModel

(6.19)

This taxonomy can be made even more detailed, but a more detailed taxonomy is
not necessary for our purposes. We should not include arbitrary ML algorithms that
do not occur in the relevant literature. The open world assumption allows additional
concepts to extend the KnowledgeBase concept.

6.4 Explanation tree ontology

The central part of the ontology is the construction of the explanation hierarchy. We
again use the ODP for tree structures (figure 6.4) from Carral et al. (2017) as our basis.
The ODP leaves us to define what exactly constitutes an edge and what constitutes a
node.

Let us consider two explanations where one is directly dependent on the other (fig-
ure 6.6). The explanans of the upper explanation may itself require an explanation.
However, if the explanans requires an explanation, it becomes the explanandum of yet
another explanation. This way, a fact can fulfil the role of both explainer as well as
thing being explained. The “economic recession” node of the example fulfils the role of
both explanans and explanandum. It explains why someone’s mortgage application is
rejected, and is itself explained by the stock rates.

Our goal is to link these singular explanations together. Figure 6.7 gives a naive
implementation. We explicitly relate an Explanans part to the Explanation where it
has an identical Explanandum via the hasIdenticalExplanandum relation. This way,
the Explanans of the first Explanation and the Explanandum of the second Explanation

48 Chapter 6

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 6.7: Modelling problem. An identical entity occurs twice.

Figure 6.8: Modelling solution. We collapse the identical entities to show that
hasExplanans ≡ hasExplanation−.

may have different unique identifiers, but are inferred to be equal via the hasIdentical-
Explanandum role. However, referring to both with the same unique identifier would be
better, because both are in fact identical.

The improved modelling solution is given in figure 6.8. We collapse the Fact and
the Explanandum into one concept. This relieves us of the unnecessary and superfluous
hasIdenticalExplanandum relation. In technical terms we introduce in the next chap-
ter, we will give both the same Universal Resource Identifier (URI). With this solution,
the structure becomes less complicated. The function of the hasExplanation role also
becomes clear as the inverse of hasExplanandum.

hasExplanation ≡ hasExplanandum− (6.20)

Having defined how we will connect several independent Explanations, we can define
an Explanation to function as the node of an explanation tree. After all, the Explanation
concept is the main source that is connected to all parts of the explanation.

ExplanationTreeNode v Explanation uNode (6.21)

Since an Explanation necessarily has an Explanandum and Explanans, by transi-
tivity of the subset relation the ExplanationTreeNode also has an Explanandum and
Explanans. This leaves us to define the edge linking one Explanation to its child con-
cepts.

Chapter 6 49

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

6.4.1 Descendant relations

The variety of Explanans subconcepts complicates the linking of explanations. In fig-
ure 6.8 we can observe that a path between two Explanation object follows three roles:
1) hasExplanans, 2) hasFact, and 3) hasExplanation. We can also write the third role
as an inverse role: 1) hasExplanans, 2) hasFact, and 3) hasExplanandum−. The Ex-
planation class necessarily has both a hasExplanans filler and a hasExplanandum filler.
Only the hasFact role is specific to a type of Explanans. So, we need to make a gener-
alised role for hasFact, hasRule, and other parts of the Explanans that may themselves
need an explanation. We call the general role hasExplainablePart, to indicate that the
Explanans consists of several parts that themselves may need to be explained.

hasFact t hasRule v hasExplainablePart (6.22)

All explanans parts for other explanantia should also be subconcepts of the role
hasExplainablePart:

hasPrototypeSelectionItem t
hasFeatureImportanceItem t

hasSalienceMapItem t
hasExplainableProxy t
hasLocalExplanation v hasExplainablePart

(6.23)

This allows us to generalise the three roles that link an Explanation to its children.

ExplanationTreeEdge v
hasExplanans ◦ hasExplanansPart ◦ hasExplanandum− (6.24)

It leaves us to define what a Leaf of the explanation tree is. In a conversational
explanation we can ask “why?” ad infinitum, but a computationally produced expla-
nation should start with a set of axioms. If the explanation procedure is well defined,
these starting points should be self-explanatory. We will take this literally and model
an Axiom to have itself as its Explanans.

Axiom v ∃hasExplanans.SELF u Explanation (6.25a)

ExplanationTreeLeaf v Axiom (6.25b)

6.4.2 Revisiting rule-based explanation

Figure 6.9 shows the modelling solution we provided for rule derivation before we con-
structed the ExplanationTree concept. We want to revisit this modelling solution to reuse
the ExplanationTree concept, because each derivation contained in a DerivationTree can
also be seen as an explanation. The conclusion of the Derivation is the explanandum,
while the rule and the facts make up the explanans. In figure 6.10 we show the modelling
option were the explanation tree is reused.

50 Chapter 6

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 6.9: Initial modelling for rule-based outcome explanation

Figure 6.10: Optimal modelling through reuse of existing structures

Chapter 6 51

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

The modelling solution with ExplanationTree reuse is an improvement, because it
ensures that the same explanation structures is used throughout the tree. The previous
modelling solution (figure 6.9) may be more readable and simpler. However, human
readability is not a good argument for ontology construction, because the human read-
ability is provided by the formalised competency questions. The reuse of structures eases
the task of formalising competency question. Therefore, we model a derivation tree to
be a type of explanation tree.

DerivationNode v ExplanationNode (6.26)

Summary
In this chapter we used Description Logic to formalise the important concepts of the KB
explanation domain. An Explanation necessarily has an Explanans as hasExplanans-
filler and an Explanandum as hasExplanandum-filler. It also has a KnowledgeBase as
isConceptualizedBy-filler. The hierarchical structure of the explanation will be repre-
sented as an instance of the ontology design pattern defining a tree structure (Carral
et al. 2017). The edges of the ExplanationTree are defined as a complex role inclusion of
a hasExplanans, hasFact, and an inverse hasExplanandum, where a Fact plays the role of
both explanandum of an explanation and part of the explanans for another explanation.
In the next chapter we will turn these formulas into the computer-readable format of an
ontology serialisation. We also check whether the ontology has the desirable properties
of being decidable and complete.

52 Chapter 6

Chapter 7

Operational ontology and
implementation

In this chapter, we will turn the reference ontology into an operational ontology. The ref-
erence ontology is intended to be as precise to the domain as possible. In the operational
ontology we will trade a decrease in precision for the useful computational properties of
decidability and completeness. Our ontology is defined in the Web Ontology Language
(OWL), which is the W3C standard for ontologies.

We will first introduce the reader to the concrete syntax or serialisation of an OWL-
file. Then we will compare three OWL profiles that restrict the expressiveness to obtain
good computational properties. We will explain that OWL DL fits our purposes best,
because OWL Full places no restrictions, while OWL Lite places too many restrictions.
This chapter will conclude with a graphical presentation of the several ontology modules
we constructed that together form the Explanation ontology. We also created a small
ontology for the mortgage domain, such that we can more easily visualise an Explana-
tionTree instance. The mortgage domain ontology will also be employed in the proof of
concept of chapter 9. We conclude the chapter with an instance of the ExplanationTree.

7.1 Serialisation

The serialisation or concrete internal representation of an ontology is a set of triples:
? sub j e c t ? p r ed i c a t e ? ob j e c t

The ?<name>-syntax denotes that the node is a variable. We can instantiate the vari-
ables to state that some entity called “Explanation” has another entity called “Ex-
planans” as its hasExplanans-filler.
https : //www. tno . n l /data/knowledgeBaseExplanation#Explanation

https : //www. tno . n l / onto logy /knowledgeBaseExplanation#hasExplanans
https : //www. tno . n l /data/knowledgeBaseExplanation#Explanans

Each variable is uniquely identified with a Uniform Resource Identifier1 (URI), which is
a superclass of the more commonly known Uniform Resource Locator2 (URL). The URI

1https://tools.ietf.org/html/rfc3986
2https://www.w3.org/Addressing/URL/url-spec.txt

53

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Domain s p e c i f i c
@pref ix tno : <h t t p s : / /www. tno . n l / o n t o l o g y / knowledgeBaseExplanation#> .
@pref ix tnoData : <h t t p s : / /www. tno . n l / data / knowledgeBaseExplanation#> .
@pref ix tnoPoc : <h t t p s : / /www. tno . n l / o n t o l o g y / knowledgeBaseExplanationPOC#> .
@pref ix tnoPocData : <h t t p s : / /www. tno . n l / data / knowledgeBaseExplanationPOC#> .

Ontology d e s i g n p a t t e r n s or f o u n d a t i o n a l o n t o l o g i e s
@pref ix dul : <http : / /www. o n t o l o g y d e s i g n p a t t e r n s . org / ont / dul /DUL. owl#> .
@pref ix t r e e : <http : / /www. odp . org / t r e e#> .

Ontology s e m a n t i c s
@pref ix owl : <http : / /www. w3 . org /2002/07/ owl#> .
@pref ix r d f : <http : / /www. w3 . org /1999/02/22 − rdf −syntax−ns#> .
@pref ix r d f s : <http : / /www. w3 . org /2000/01/ rdf −schema#> .
@pref ix xml : <http : / /www. w3 . org /XML/1998/ namespace> .
@pref ix xsd : <http : / /www. w3 . org /2001/XMLSchema#> .
@pref ix terms : <http : / / p u r l . org / dc / terms/> .

Listing 7.1: We use these namespace prefixes used throughout the remainder of this
thesis. The namespaces tnoData and tnoPocData are intended for individuals, whereas
namespaces tno and tnoPoc are intended for other resources. The namespaces containing
the infix Poc are for ontologies used in our proof of concept but not intended for a general
explainability purpose.

can be divided into a namespace before the number sign (#) and a local name following
it. The namespace functions as an identifier for the ontology as a whole. The local name
specifies a resource contained in the ontology. Repeating the namespace for each triple
gives us tediously long triples, so we commonly abbreviate the namespaces. Listing 7.1
gives the namespace prefixes we will use throughout the remaining chapters. This allows
us to shorten the above triple to

tnoData : Explanation tno: hasExplanans tnoData : Explanans

Each ontology resource can perform one of the following roles.

Concept: A concept is a subset of the domain that adheres to a particular set of
restrictions. An instance of a concept is called an individual.

DataType: A datatype is a set of values, for example integers, that exist independently
of the domain. An instance of a datatype is called a literal.

Object property: A relation between two concepts is called an object property.

Datatype property: A relation between a concept and a datatype is called a datatype
property.

Individual: An instance in the domain is called an individual.

The ontologies the prefixes (figure 7.1) refer to are categorised as follows.

Domain specific ontologies: In our case we have the Explanation ontology, of which
we already descriped the DL formalisation in chapter 6. Prefixes tno and tnoData
refer to this ontology. In this chapter we will introduce an ontology of the Mort-
gage domain to be used in our proof of concept. This ontology is referred to by
namespaces tnoPoc and tnoPocData.

54 Chapter 7

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Foundational ontologies and ontology design patterns: A design principle of on-
tology construction is to reuse existing design where possible (Gangemi and Pre-
sutti 2009). The prefix dul refers to the Dolce + D&S Ultralite foundational
ontology (Presutti and Gangemi 2016), which contains implemented concepts for
general entities. The prefix tree refers to the design pattern for tree based struc-
tures (Carral et al. 2017).

OWL and RDF specifications: The remaining namespaces provide the ground con-
cepts an ontology is made up of. For example, the subClassOf -relation and the
equivalentClass-relation have their own respective unique URIs:

rdfs: subClassOf
owl: equivalentClass

The different prefixes show that both relations are taken from a different names-
pace. The OWL namespace contains more intricate relations than the RDFS
namespace.

7.2 OWL profiles
The constructs provided by OWL and the Resource Description Framework Schema
(RDFS) allow the construction of a model that is decidable nor complete. In our case
this is undesired. There may exist an input for which the reasoner does not termi-
nate (undecidable), and there may exist formula φ for which neither φ itself nor its
complement ¬φ can be derived (incompleteness). Three OWL-profiles (OWL-species in
outdated terminology) constrain the use of too expressive constructs.

OWL Lite: McGuinnes and Harmelen (2004) describe the complete set of OWL Lite
restrictions. The profile is sufficient for ontologies that need little in way of rea-
soning capacities, such as our Mortgage ontology we describe later in this chapter.
The object properties OWL Lite forbids the use of are, among others, owl:unionOf
and owl:disjointWith. OWL Lite also restricts cardinality constraints to 1 or 0. We
used the owl:unionOf role in equation 6.16, so our formalisation does not follow
the OWL Lite constraints.

OWL DL: This profile puts the least of restrictions on OWL without making the on-
tology possibly undecidable or incomplete. First of all, it requires a seperation
between types. In other words, a unique name cannot be shared by a class and an
individual or property. The ontology also has to adhere to the global restrictions
stated in Motik et al. (2012, sec. 11), which we will explain shortly.

OWL Full: The OWL Full profile puts no restrictions on the ontology. However, we can
no longer use a reasoner to infer additional relations from our asserted relations,
because the ontology is not guaranteed to be decidable and complete. We want to
use a reasoner to infer subclass relations, inverse properties and possible equivalent
classes. OWL Full does therefore not fit our needs.

It is not uncommon that the ontology strictly following the Description Logic formal-
isation is not in OWL DL. Carral et al. (2017) also had to weaken their DL formalisation

Chapter 7 55

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

of a tree structure to keep the ontology decidable. The following DL formulas are part
of their axiomatisation:

hasChild v hasDescendant (7.1a)

Irreflexive(hasChild) (7.1b)

Irreflexive(hasDescendant) (7.1c)

Trans(hasDescendant) (7.1d)

OWL DL defines an object property to be simple if it has no direct or indirect
subproperty that is transitive or defined as a property chain (Motik et al. 2012). OWL
DL also defines a set of expressions, including irreflexivity, that are not allowed to
contain a non-simple property. The DL axiomatisation (equation 7.1) does not follow
this rule, because the irreflexive object property hasDescendant also is non-simple due
to its transitivity. The TreeODP is brought in OWL DL by removing the irreflexivity of
hasDescendant and hasAncestor.

The same restriction is the reason that our axiomatisation (chapter 6) is not in OWL
DL. We used the Tree ODP to define the edges and nodes of an explanation tree. We
recall the axiomatisation:

hasExplanans ◦ hasExplainablePart ◦ hasExplanation v hasExplanationChild
(7.2a)

hasExplanationChild v hasChild (7.2b)

The hasExplanationChild object property is not a simple property, because it is
defined as a chain of properties. The hasChild object property contains hasExplanation-
Child as a subproperty, so it is also a non-simple object property. In the Tree ODP it is
defined to be irreflexible. Therefore, we have an object property that is both non-simple
and irreflexible, which violates the OWL DL restriction.

The practical consequence for our ontology is that the hasExplanationChild role
cannot be inferred from the three individual roles, but has to be asserted. Otherwise, it
would be sufficient to define the hasExplanans, hasExplainablePart, and hasExplanandum
roles, and let the hasExplanationChild relation be inferred. Since the property chain
violates the OWL DL restriction, the construction procedure of the tree has to explicitly
assert the edges of the tree.

7.3 Implemented ontology

We begin this section with a presentation in both text and graphics of the Explanation
ontology we constructed from the Description Logic representation. The concrete OWL-
file can be found at the TNO ontology repository3. It is too large to be explained line
after line, so we will explain it through a series of graphical proxies. We will then show

3Repository: http://ontology.tno.nl
Our ontology: http://ontology.tno.nl/KnowledgeBaseExplanation.owl

56 Chapter 7

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Table 7.1: Meaning of symbols used in VOWL visualisations (Lohmann et al. 2016).
Each class is coloured blue, with external classes a deeper shade of blue. Datatypes are
coloured yellow. Datatype properties are coloured green.

the relatively simple Mortgage domain ontology. We implemented both ontologies using
the Protégé editor (Musen and Protégé Team 2015). To conclude this section we show an
Explanation individual for a rejected Mortgage application. In other words, we construct
an ExplanationTree individual with an Explanation containing the following triple as its
Explanandum:
tnoPocData : Corr i e tnoPoc : isApproved " f a l s e "^^ xsd : boolean

7.3.1 Explanation ontology

The graphical representation of the ontology was created with VOWL (Lohmann et al.
2016), except figure 7.2, which was constructed using the OntoGraf4 Protégé plugin.
The meaning of each symbol is given in table 7.1. All figures present a hierarchy of
classes instead of single individuals. Figure 7.1 gives the top level view containing the
Explanandum with its subclasses, and the general concepts Explanation, Explanans,
and Agent. These will be detailed in additional figures.

Figure 7.1 shows that the Explanandum has three subclasses, following the Descrip-
tion Logic formalisation. Additionally, the figure shows how we implemented a Rule and
a Fact by giving the datatype properties. Since Plasido internally operates on triples,
the fact we want to explain necessarily is in the form of a triple. So, the fact has to
define a triple by containing a subject, predicate, and object.

In figure 7.2 we give a detailed view of the Agent class. The subclasses are not
necessarily disjoint, since membership of some subclasses concerns the type of input
data, while membership of other subclasses concerns the type of classification algorithm.
We defined a Linear Model to be a subclass of both an Explainable Proxy and an
Explainable ML model, so those two classes are necessarily not disjoint. Otherwise, a
Linear Model individual cannot exist.

The Explanans class we explain in figures 7.3 and 7.4, with the former showing
the general layout of all subclasses except OutcomeExplanans. The latter figure is
solely dedicated to the OutcomeExplanans class and its subclasses. Figure 7.3 shows all
subclasses, of which Axiom is disjoint from its siblings. The ExplainableProxy subclass
shows that we modelled the three types of explainable proxies we considered in chapter 6.
We reuse our existing concepts DecisionTree, LinearModel, and DecisionRules from the
KnowledgeBase module, since a proxy is also a knowledge base. The DecisionTree class

4https://protegewiki.stanford.edu/wiki/OntoGraf

Chapter 7 57

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

∃

∃

∃

∃

∃

∃

string

Tree Ensemble

∪
double

Literal

Thing

Literal

Explanandum

string

string

string

∪

string

Literal

Support vecto...

Semi-supervis...

Explanation...

Fact

Prototype Selection...
2

Rule based e...

Local Explana...

RuleDerivati...

SalienceMapItem

Explanation

Graphical Mod...

DecisionTr...∩
DecisionTr...

Textual Model ...

Prototype Selection
1

Decision tree∪

Decision tree

Rule
Explanandum

Salience Map

DecisionTr...∩
DecisionTr...

Expert system kn...
1

Decision Rules Proxy
1

Fact
Explanandum

ExplanationT...Local Explanation
1

Tree Path

NonRootNode
(external)

Literal

Literal

RuleDerivati...

Contrastive
Explanandum

Feature Importance
1

Deep neural ...

RuleDerivati...

A Feature Importanc...
4

RootNode
(external)

2
∩

RootNode(external)2

DecisionTre...∩
DecisionTre...

Rule

RuleDerivati...

Decision Tree Proxy
1

Explainable proxy

Bayesian Network
1

ExplanationT...

Linear Model

Unsupervised...

Linear Model ...

DecisionTr...∩
DecisionTr...

Neural network

Supervised learning
2

Explanans

Literal

Reinforcement...

Decision rules
1∪

Decision rules1

Agent
(external)

Literal

ExplanationT...

string

integer

Rule Derivation

rdf:Literal U xsd:AnyURI

xsd:AnyURI
xsd:AnyURI

isExplaining

hasExplanans

hasFeatureName

hasMaskedInput

subject

hasExplai...

isExplainableProxyOf

isFeatureImportanceItemOf

hasFeatureImportanceItem

hasLocalExplanation

isLocalExplanationOf

hasPrototypeID

hasSupportingClassification

object

isConceptualizedBy

Conceptualizes

isSalienceMapItemOf

hasSalienceMapItem

Subclass of

Subclass of

Subclass of

hasPrototypeSelectionItem

isPrototypeSelectionItemOf

Subclass ofSubclass of
Subclass of

Subclass of

Subclass of

hasTextualInspection

hasExplanandum

hasExplanation

isFeatureImportanceItemOf

hasFeatureImportanceItem

isExplainableProxyOf

hasExplainableProxy

Subclass of

Subclass of

Subclass of

isLocalExplanationOf

hasLocalExplanation

Subclass of

Subclass of

hasGraphicalInspection

hasGraphicalInspection

predicate

hasTextualInspection

edge

isSalienceMapItemOf

hasSalienceMapItem

isFoilOf

hasFoil

hasStrength

hasRuleRepresentation

isPrototypeSelectionItemOf

hasPrototypeSelectionItem

rdf:object

rdf:predicate
rdf:subject

hasFact

isFactOf

Figure 7.1: Explanandum part of the Explanation ontology module

58 Chapter 7

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

is internally represented as a Tree instance from the Tree ODP5 (Carral et al. 2017).
The DecisionRules class is a set of Rule individuals related through the hasRule relation.
The LinearModel and ModelInspection classes have little internal structure, compared
to a tree or a bag of rules. So, the textual or graphical inspection merely has a string
datatype containing either the textual inspection itself or a textual representation of the
graphical inspection, either as a link or through some encoding.

Because of the size of the OutcomeExplanans we give it its own figure 7.4. Three of its
subclasses are bags of items: PrototypeSelection, SalienceMap, and FeatureImportance.
Each bag item is connected via object properties to the relevant bag concepts. The
datatype properties hasSupportingClassification and hasStrength are connected via an
intermediate node showing that the union of the three bag items has a role-filler along
both datatype properties.

The OutcomeExplanation can also be of a LocalExplanation type. We only modelled
a TreePath and a RuleDerivation as local explanation, since these were the main meth-
ods we drew from the literature (chapter 2), but this class may be extended by future
research. Both the TreePath and RuleDerivation class are instances of a the Tree ODP.
A tree path essentially is a unary tree. A rule derivation is a treelike structure showing
which combination of facts led the reasoner to derive a particular conclusion.

7.3.2 Mortgage domain ontology

We follow up on the running example of chapter 1 with a dummy data set. Since Plasido
internally works on triples, we built a small ontology for the mortgage domain consisting
of four main concepts: 1) the mortgage itself, 2) the lender, 3) the borrower, and 4) the
property being financed. The ontology is shown graphically in figure 7.5. It consists of
the following concepts, datatypes properties, and object properties:

Mortgage: This is the main concept that connects all parts of the mortgage. Each
Mortgage instance necessarily has the following properties:

hasApplicationDate: The borrower applied for the mortgage at a particular date
and time. The state of the economy corresponding to a mortgage application
is checked at this date.

hasConclusionDate: This property contains the date at which a decision is
reached on approving the mortgage.

hasInterest: A double value represents the interest rate of the mortgage.
isApproved: A boolean gives the final outcome on approving the mortgage ap-

plication.
hasBorrower: This object property contains the individual borrowing money

from the lender to finance some property.
hasLender: This object property contains the individual that lends money to the

borrower.
5The OWL file at http://www.ontologydesignpatterns.org seems to contain an error. The TreeNode

class has the expression not(RootNode) as an equivalent class. This restriction should be given to the
NonRootNode instead. Moreover, the OWL file is an implementation of the OWL Full axiomatisation.
For our purposes it needs to be brought in OWL DL by applying the changes we described in section 7.2.

Chapter 7 59

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure
7.2:

O
ntology

m
odule

for
know

ledge
bases

visualised
using

O
ntoG

raf.
T
he

arrow
s
represent

subclass
relations.

60 Chapter 7

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

∪

Feature Importance
1

Deep neural ...

Rule Based
1

RootNode
(external)∩

RootNode(external)

A Feature Importanc...
4

string

TreeNode
(external)¬

TreeNode(external)

string

Explainable Proxy

Model Inspection

Decision Tree Proxy

Prototype Selection...
2

Local Explana...

Linear Model

Literal

Linear Model
Proxy

SalienceMapItem

double

string

NonLeafNode
(external)¬

NonLeafNode(external)

∪

string

Explanans

Literal

string

Graphical Model
Inspection

Textual Model
Inspection

Prototype Selection
1

DecisionTree

Salience Map

Decision rules

Decision Rules Proxy

integer

LeafNode
(external)∩

LeafNode(external)

Outcome
Explanans

NonRootNode
(external)

Transparent Box

Axiom

Tree Path

Outcome
Explanans

hasFeatureName

hasExplainableProxy

hasMaskedInput

hasTextualInspection

isSalienceMapIt... hasFeatureImpor...

hasExplainableProxyhasExplainableProxy

Subclass of

Subclass of

Subclass of

hasPrototypeID

Subclass of

hasGraphicalInsp...

Subclass of
Subclass of

hasSupportingCl...

Subclass of

Subclass of

Subclass of

Subclass of

isFeatureImporta... Subclass of

hasSalienceMapItem

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of Subclass of

hasChild
(irreflexive)

hasParent
(irreflexive)

hasAncestor
(irreflexive) hasDescendant

(irreflexive, transitive)

hasOutDegree

hasSibling
(irreflexive, symmetric)

hasChild
(irreflexive)

hasStrength

isPrototypeSelect...

hasPrototypeSele...

Subclass of

Subclass of

Subclass of

Figure 7.3: Ontology module for the Explanans. The Outcome Explanation concept is
further specified in the next figure.

Chapter 7 61

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

∃
∃

∃

∀

∀

∀

∀

∀

∀

∃

∪

Feature
Im

portance

D
eep

neural...

R
ule

B
ased

R
ootN

ode
(external)
∩

R
ootN

ode
(external)

Feature
Im

portance
Item

string

TreeN
ode

(external)
¬

TreeN
ode

(external)

string

E
xplainable

P
roxy

2

M
odelInspection

D
ecision

Tree
P

roxy
1

P
rototype

S
election

Item

LocalE
xplanans

LinearM
odel

Literal

LinearM
odel...

S
alienceM

apItem

double

string

N
onLeafN

ode
(external)
¬

N
onLeafN

ode
(external)

∪

string

E
xplanans

12

Literal

string

G
raphicalM

od...

TextualM
odel...

P
rototype

S
election

D
ecisionTree

S
alience

M
ap

D
ecision

rules
1

D
ecision

R
ules

P
roxy

1

integer

LeafN
ode

(external)
∩

LeafN
ode

(external)

O
utcom

e
E

xplanans

N
onR

ootN
ode

(external)

TransparentB
ox

A
xiom

Tree
P

ath

O
utcom

e
E

xp...

hasFeatureN
am

e

hasE
xplainableP

roxy

hasM
askedInput

hasTextualInspection

isS
alienceM

apIt...

hasFeatureIm
por...

hasE
xplainableP

roxy
hasE

xplainableP
roxy

S
ubclass

of

S
ubclass

of

S
ubclass

of

hasP
rototypeID

S
ubclass

of

hasG
raphicalInsp...

S
ubclass

of
S

ubclass
of

hasS
upportingC

l...

S
ubclass

of

S
ubclass

of

S
ubclass

of

S
ubclass

of

isFeatureIm
porta...

S
ubclass

of

hasS
alienceM

apItem

S
ubclass

of

S
ubclass

of

S
ubclass

of

S
ubclass

of

S
ubclass

of
S

ubclass
of

hasC
hild

(irreflexive)

hasP
arent

(irreflexive)

hasA
ncestor

(irreflexive)

hasD
escendant

(irreflexive,transitive)

hasO
utD

egree

hasS
ibling

(irreflexive,sym
m

etric)

hasC
hild

(irreflexive)

hasS
trength

isP
rototypeS

elect...

hasP
rototypeS

ele...

S
ubclass

of

S
ubclass

of

S
ubclass

of

Figure
7.4:

O
ntology

m
odule

for
an

outcom
e
explanans

62 Chapter 7

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Fi
gu

re
7.
5:

O
nt
ol
og

y
of

th
e
m
or
tg
ag

e
do

m
ai
n

Chapter 7 63

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

providesFinancesFor: This object property contains the property that is fi-
nanced by the mortgage.

Property: This concept represents the property that is being financed by the mortgage.
It has one data type property:

hasValue: A non-negative integer represents the value of the property the mort-
gage provides finances for.

Lender: The mortgage has a Lender as the hasLender-filler. It represents the entity
that provides the loan. In our use case, the Lender concept has one subconcept:
Bank. A Bank has a data property RiskTaking related through the isRiskTaking-
role, which represents an instance of how much risk the bank takes when providing
a mortgage for persons who have a higher chance of defaulting.

Borrower: This concept represents the entity that borrows money from the lender to
finance some property. In our use case the borrower is a person, who has the
following properties:

Age: An integer represents how old the person is.
Annual salary: An integer represents the income a person receives each year.
Capital: An integer represents the value of all property a person owns.
Job field: This object property contains an instance of the job field the person

currently works in.
Years working experience: An integer represents the number of years the per-

son has already worked in a particular job field.

Economy: This class contains instances of the current economic state, which can be
booming, normal, in a recession, or in a depression. Each instance has an atDate
relation for each date the economy was in that particular state.

Our data set consists of two Person individuals: 1) Barry and 2) Corrie. The re-
spective properties of both individuals can be found in table 7.2. Please note that the
concrete representation of the individuals is in a set of triples, rather than the database
format the tables suggest. Both individual have all roles filled, except the isApproved
role that should contain a boolean value representing the decision. Individual Barry
represents a mortgage of a high value, whereas individual Corrie represents a mortgage
to finance a property of relatively low value.

7.3.3 ExplanationTree individual

Using both the Explanation ontology and the Mortgage ontology we can construct an
ExplanationTree individual. The root Explanation of the individual (figure 7.6) explains
the fact that Corrie’s mortgage application is rejected. This exact ExplanationTree
individual is constructed in the proof of concept by the derivation collection algorithm
we will show in chapter 9. So, the individual is an instance of a combined explanation.
Each node called “Explanationn”, with n a number, is an instance of the Explanation

64 Chapter 7

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Barry Corrie
Job field IT-sector IT-sector

Annual salary 80.000 35.000
Age 50 25

Years working experience 20 2
Capital 150.000 5.000
Borrows MortgageHigh MortgageLow

(a) The two Person individuals
MortgageHigh MortgageLow

Interest 5.0 6.0
Conclusion date 2019-03-31 2016-01-01
Application date 2019-01-01 2016-01-01

Provides finances for House Apartment
Lender BankBank SocialBank
Borrower Barry Corrie
Approved <unknown> <unknown>

(b) The two Mortgage individuals
BankBank SocialBank

Risk taking Low High
Lends MortgageHigh MortgageLow

(c) The two Bank individuals
House Apartment

Value 500.000 170.000
Financed by MortgageHigh MortgageLow

(d) The two Property individuals

Table 7.2: The individuals of the dummy data set. The concrete repre-
sentation of the data is a set of triples: tnoPocData:Barry tnoPoc:borrows
tnoPocData:MortgageHigh.

Chapter 7 65

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

E
xplanation

E
xplanation0

E
xplanation1

E
xplanation2

E
xplanation3

E
xplanation4

E
xplanation5

E
xplanation6

R
ule

Feature
Im

portance
(x4)

P
rototype

(x2)

E
xplanation2

tnoP
O

C
:B

arry

tnoP
O

C
:isA

pproved

true

E
xplanation20

O
utcom

e
E

xplanation

E
xplanation60

E
xplanation61

E
xplanation62

P
roxy

E
xplanation620

Literal

Literal

Literal

P
lasido

P
lasido

B
ayesian

N
etw

ork

P
lasido

M
L

m
odel

M
L

m
odel

E
xplanation21

E
xplanation30

E
xplanation31

E
xplanation32

E
xplanation41

E
xplanation40

E
xplanation50

E
xplanation51

E
xplanatino52

hasFact

hasS
ubject

hasP
redicate

hasO
bject

hasFact

hasO
utcom

eE
xpl...

hasFact

hasFeatureN
am

e

hasS
trength

hasS
upportingC

l...

isC
onceptualizedB

y

isC
onceptualizedB

y

isC
onceptualizedB

y

isC
oncept...

isC
oncept...

isC
onceptualizedB

y

hasP
roxy

hasFact
hasFact

hasFact
hasFact

hasFact
hasFact

hasFact
hasR

ule

4x
hasFeatureIm

p...

2x
hasP

rototypeItem

hasFact

hasFact

hasFact

hasFact

hasFact

hasFact

hasFact

hasFact
hasFact

hasFacthasFacthasFact

Figure
7.6:

G
raphicalrepresentation

ofthe
individualthe

com
petency

questions
are

applied
on.

T
he

num
bering

ofthe
nodes

follow
s

figure
9.1.

66 Chapter 7

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

ontology module. The complete tree is an instance of the Explanation hierarchy ontology
module.

However, the graphical representation is a simplification of the concrete individual.
The figure is not large enough to host all classes and relations. Each Explanation node
is actually an instance of the Explanandum-Explanation-Explanans combination shown
in figure 7.1, where the Explanandum is a Fact individual with its three relations char-
acterising a triple. In the graphical representation only the root node has the necessary
relations specifying the fact being explained.

Moreover, each Explanation node has Plasido as an isConceptualisedBy-filler, which
the figure only shows for the root individual, Explanation2, and Explanation620, which
are also conceptualised by external knowledge bases. Moreover, the hasFact relation that
in the given figure stems from an Explanation, does in fact stem from the Explanans
object and has the Explanandum of the Explanation child as object. Without these
simplifications it is practically impossible to display all information contained in the
combined explanation for a use case of even a moderate size.

The impossibility of visualising an ExplanationTree individual that contains all rele-
vant information cannot be held against the ontology. The combined Explanation is not
intended to be intelligible through inspection. Already in chapter 4 we introduced com-
petency questions for a dual purpose: to prove that the ontology contains the required
information, and to extract the required information from the individual. We defined
a set of competency questions to extract the facts from the tree, another to extract
the knowledge bases, and a third to cut away parts of the tree that do not contain an
external explanation. In the next chapter we will show that the competency questions
are sufficient to inspect the ExplanationTree individual. This chapter already showed
that competency questions are necessary to inspect the tree.

Summary
In this chapter we showed that the Description Logic axiomatisation cannot be directly
translated to a corresponding OWL definition. In our case, the axioms defined an on-
tology that is not decidable and complete. Therefore, we did not implement the formulas
that caused the undecidability. We then showed how we did implement the several on-
tology modules. Our implementation is in the Web Ontology Language (OWL), but we
presented it graphically because of the size of the OWL implementation. Our presenta-
tion of an ExplanationTree individual showed that it contains too much information to
be easily visualised. We need competency questions to extract the required information
from the ExplanationTree individual.

Chapter 7 67

Chapter 8

Ontology testing with
competency questions

In this chapter we will evaluate the ontology by showing that it can answer the compe-
tency questions we constructed in chapter 4. We will first discuss the various types of
ontology evaluation, especially the difference between validation and verification. Then
we will introduce SPARQL1 (Sparql Protocol and RDF Query Language), which is the
language used to query RDF graphs. We translated the natural language competency
questions into the SPARQL syntax. In this chapter we will show their correctness by
giving the results for the individual we constructed in section 7.3.3. We follow the SABiO
procedure for ontology testing (figure 8.1) by answering the competency questions per
ontology module.

8.1 Verification and validation
The literature distinguishes ontology verification (Vrandečić 2009) from ontology valida-
tion (Obrst et al. 2007). Ontology verification concerns whether the ontology was built

1http://www.w3.org/TR/sparql11-overview/

Figure 8.1: The testing phase of SABiO (Falbo 2014)

68

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

in the correct way, and checks if the ontology correctly implements the requirements
that were specified. The competency questions primarily perform the verification part
of the evaluation rather than the validation. Another important part of verification is
checking whether ontology quality criteria are followed, and if established standards are
applied correctly (Falbo 2014, p. 11).

The OntOlogy Pitfall Scannner2 (OOPS!) (Poveda-Villalón et al. 2014) is is an ex-
ample of a method for verification. It performs a set of automated tests, checking the
implemented ontology for improper use of relations and annotations, and on failure to
follow established conventions. Its results are divided into suggestions and errors, the
latter of which are subdivided into critical, important, and minor errors. Our ontology
only returns a minor error for some concepts missing a label or comment, where in all
these cases the inverse concept does have a label and a comment. It also returns the
suggestion of making hasChild and hasParent symmetric or transitive, but that does not
capture the meaning of those relations.

Ontology validation, on the other hand, concerns whether the intended meaning of
the elements in the ontology does indeed correspond to the domain that is relevant for
the problem. In other words, it checks whether the right ontology was constructed. Some
attempts have been made to automate validation of data rich domains (Brewster et al.
2004), but no such data set exists for knowledge base explanation. Therefore, domain
knowledge is essential for validation (Falbo 2014). An instantiation or graphical repre-
sentation of the ontology becomes an important aid, since domain experts usually are
not ontology experts. However, in our study we perform the role of both domain expert
and ontology expert. Nevertheless, we present an instantiated Explanation individual
and a proof of concept (chapter 9) such that the reader who we do not expect to be an
ontology expert, can to some extent validate the ontology.

8.2 SPARQL

We ask questions to the OWL knowledge base through the SPARQL Protocol And RDF
Query Language (SPARQL). We show the syntax in figure 8.1. SPARQL explicitly does
not function as a reasoner. It merely looks for the existence of a triple pattern in the
graph representation. Horridge and Musen (2016) developed Snap SPARQL as a query
language with reasoning capabilities, but its syntax is not expressive enough for our
purposes.

The SELECT-clause is the heart of the query. It specifies the triple pattern a graph
node should contain to be returned. The SELECT query returns its answer as a set of
variable bindings. We also use a CONSTRUCT clause when we want to structure the data.

SELECT returns a table with for each possible answer a row entry containing the
variable bindings. Query A.1 (in the appendix) gives a simple example.

CONSTRUCT returns its answer as a set of triples forming a graph instance. The
first step tries to find a set of variable bindings following the WHERE pattern, similar
to a SELECT query. However, when a set of valid variable bindings is found, the
CONSTRUCT pattern is instantiated with the variable bindings. So, the result of

2http://oops.linkeddata.es/

Chapter 8 69

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Listing 8.1: Syntax of a SPARQL query (Della Valle and Ceri 2011, fig. 8.2)

the query is the combined set of triples for each valid set of variable bindings.
Query A.7 is an example that uses the CONSTRUCT operation.

8.3 Competency questions

In this section we will for each ontology module give the result of the SPARQL imple-
mentation for each competency question. We will first test the competency questions of
the Explanation hierarchy module. We will then focus on the Explanation module and
the Knowledge Base module. This way we start with a broad view which becomes more
detailed with each applied competency question. The questions are applied on the Ex-
planationTree individual given in figure 7.6. This ExplanationTree individual contains
too much information for its correctness to be quickly observed or for its contents to
be extracted by visual inspection. So, the competency question play a double role of
showing the correctness and extracting information.

8.3.1 Explanation hierarchy

We constructed three competency questions for the explanation hierarchy module. The
first query extracts the facts from the ExplanationTree, while discarding information
about the conceptualising knowledge bases and the explanantia. The second query
isolates the conceptualising KBs. The third query puts its focus on the Explanans
objects containing an explanation extracted from a machine learning KB or Bayesian
network. The three competency questions together show the Explanation Tree to contain
complete information about the facts, the knowledge bases, and the explanantia.

70 Chapter 8

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

A visual representation of the output of the competency question extracting the fact
tree is shown in figure 8.2. Each node is labelled with a description of the fact it contains.
The formal output contains for each node the URI uniquely identifying the Explanandum
individual containing the triple fact, allowing the competency question extracting a fact
from a single explanation to be consecutively applied. This competency question will be
covered in section 8.3.2.

The question extracting the knowledge bases produces a tree with a similar structure
(figure 8.3). However, this instance does not contain the facts, but contains the con-
ceptualising knowledge bases, such that it becomes clear which part of the explanation
consulted an external source. In the example output we coloured the Explanations that
extract an explanation from an external source. The concrete implementation gives each
Explanation node a label for the knowledge bases that produced the explanation. We
cannot use the exact structure as in the previous competency questions, because a single
KB may conceptualise more than one Explanation.

The last ExplanationTree competency question produces a tree containing only the
nodes that drew an explanation from an external knowledge base. Its output is graph-
ically shown in figure 8.4. Several Explanation nodes in the example individual (fig-
ure 7.6) are constructed by the ontology reasoner, because the reasoner has to infer, for
example, the value of the property a person wants financed by the mortgage. That triple
does not exist in the knowledge base, as the lack of a direct relation in the graphical
representation of the mortgage ontology (figure 7.5) shows. The derivation produced
by the inference is included in the Explanation individual for completeness sake, but in
most use cases the explanation of the external source is more important.

The competency question therefore selects the Explanations conceptualised by an
external knowledge base. It adds parent-child relations to the appropriate nodes, which
may not have had child-parent relations in the original individual. A parent-child re-
lation may be added to nodes that were originally connected through an intermediate
node which was cut because it did not have an Explanation drawn from an external
knowledge base. In the example individual (figure 7.6) node Explanation6 connects the
root node with node Explanation62 . The output of the competency question (figure 8.4)
shows that the intermediate node is replaced by a hasChild relation. The output also
closely resembles the graphical representation of the use case (figure 1.1), showing that
the intuitive configuration of the external knowledge bases can be extracted from the
explanation.

8.3.2 Fact explanation

The Explanation module competency questions allow us to zoom in on a single Explana-
tion individual instead of an ExplanationTree individual. These competency questions
extract the fact being explained, the type of explanation, the explainable parts, and the
conceptualising knowledge from the Explanation individual. The results do not exhibit
a treelike structure, so we use SELECT queries instead of CONSTRUCT queries.

We present the output for the root Explanation individual as an example, but the
competency question can similarly be applied to the other nodes of the tree. Table 8.1
shows the triple being explained in the root node. The contents of the Explanans are
divided among two competency questions. Table 8.2 gives the type of Explanans fol-

Chapter 8 71

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Mortgage

Capital

Salary

Job opportunities

Risk taking

Interest rate

Property value

Economic state

Experience

Salary

Person -
Mortgage

Mortgage -
Bank

Person -
Mortgage

Mortgage -
Property

Property - Value

Person -
Mortgage

Mortgage -
Interest

Person -
Mortgage

Mortgage -
Application date

Date -
Economy

Economic state

Bank -
Risk taking

Figure 8.2: Visual representation a simplified fact tree corresponding to SPARQL
query A.7. Each arrow represents a hasChild relation.

72 Chapter 8

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Explanation

Explanation0

Explanation1

Explanation2

Explanation3

Explanation4

Explanation5

Explanation6

Explanation20

Explanation21
Explanation30

Explanation31

Explanation50

Explanation51

Explanation52

Explanation40

Explanation41

Explanation60

Explanation61

Explanation62

Explanation620
Explanation32

Explanation22

Figure 8.3: Visual representation of the simplified knowledge base tree corresponding
to SPARQL query A.9. The mortgage explanation, job opportunities explanation, and
economy explanation are colored green, yellow, and dark blue, respectively, because these
explanations are conceptualised by external KBs. Each arrow represents a hasChild
relation.

Chapter 8 73

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Thing

Concept
(external)

Agent,
Agent

Thing

Thing

Organization

Project

Person,
Person, Person

PersonalProfi...

Spatial Thing
(external)

Online Chat A...

Online Gamin...

Thing

Thing

Thing

Online Account

Online E-com...

Document,
CreativeWork

Image,
ImageObject

Group

Mortgage
explanation

Job opportunities
explanation

Economy
explanation

interest

openid
(inverse functional)

work info homepage

past project

theme

knows

focus

phone

depiction

depicts

based near

topic

page

is primary t...
(inverse functional)

primary topic
(functional)

schoolHomepage

Subclass of

Subclass of

Subclass of

Subclass of

account service ...

logo
(inverse functional)

Subclass of

Subclass of

Subclass of
Subclass of

funded by

account

Subclass of

homepage
(inverse functional)

tipjar
topic_ interest

current project

account

thumbnail

weblog
(inverse functional)

image

maker

made

member

personal mailbox
(inverse functional)

publications

workplace homepage

hasChildhasChild

Figure 8.4: A visual representation of the simplified explanation tree corresponding to
the output of SPARQL query A.8. Each explanation node also has access to its related
Explanans, Explanandum, and KnowledgeBase.

74 Chapter 8

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

?explanation ?subject ?predicate ?object
tnoData:ExplanationIndividual tnoPocData:Corrie tnoPoc:isApproved false

Table 8.1: Which fact is being explained? Sample output of SPARQL query A.1 applied
on the root node of the ExplanationTree individual.

?explanation ?type
tnoData:ExplanationIndividual tno:OutcomeExplanationExplanans

Table 8.2: What is the role of the explanation? Sample output of SPARQL query A.2
applied on the root node of the ExplanationTree individual.

lowing the categorisation we constructed in chapter 2. The contents of the Explanans
are extracted as shown in table 8.3. In chapter 4 we stated the competency questions
per type of Explanans, but the definition of hasExplainablePart in chapter 6 allows us
to generalise the competency questions to a single SPARQL query.

The results of the fourth competency questions are shown in table 8.4. It returns
only the unique URI of the knowledge base. A specification of the knowledge base can
be obtained through the competency questions for the knowledge base module.

8.3.3 Knowledge bases

The SPARQL implementations of the competency questions for the knowledge base
module are simpler than the other queries, because the knowledge base module uses
very little reasoning. It is more of a taxonomy containing only subclass relations. So,
both SPARQL queries merely ask which concepts the KnowledgeBase individual belongs
to.

The first competency question returns which general subtypes of knowledge bases the
individual belongs to. It only returns whether the KnowledgeBase is a type of machine
learning model, Bayesian network, or expert system. The second competency question
gives a more detailed look by returning all concepts the individual belongs to. It only
excludes trivial results such as owl:Thing and dul:Agent. The former is trivial, because
it is the root concept that any custom concept necessarily belongs to. The latter is also
trivial, because it is the range of the isConceptualizedBy relation. The output is given in
table 8.5 and table 8.6 respectively. Both tables show the results for all KnowledgeBase
individuals in our use case.

Summary
In this chapter we presented the competency questions formalised in SPARQL, thereby
showing that both detailed facts as well as tree summaries can be extracted from an
ExplanationTree individual. In the next section we will give our proof of concept, de-
scribing how the Plasido framework constructs an ExplanationTree individual. The
SPARQL queries described in this chapter are applicable on any ExplanationTree indi-
vidual constructed by Plasido.

Chapter 8 75

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

?explanation ?part
tnoData:ExplanationIndividual tnoData:MortgageClassificationPrototypeSelectionItem1-
tnoData:ExplanationIndividual tnoData:MortgageClassificationPrototypeSelectionItem2-
tnoData:ExplanationIndividual tnoData:MortgageClassificationFeatureImportanceItem1-
tnoData:ExplanationIndividual tnoData:MortgageClassificationFeatureImportanceItem2-
tnoData:ExplanationIndividual tnoData:MortgageClassificationFeatureImportanceItem3-
tnoData:ExplanationIndividual tnoData:MortgageClassificationFeatureImportanceItem4-
tnoData:ExplanationIndividual tnoData:RuleIndividual
tnoData:ExplanationIndividual tnoData:ExplanandumIndividualLeaf0
tnoData:ExplanationIndividual tnoData:ExplanandumIndividual1
tnoData:ExplanationIndividual tnoData:ExplanandumIndividual2
tnoData:ExplanationIndividual tnoData:ExplanandumIndividual3
tnoData:ExplanationIndividual tnoData:ExplanandumIndividual4
tnoData:ExplanationIndividual tnoData:ExplanandumIndividual5
tnoData:ExplanationIndividual tnoData:ExplanandumIndividualLeaf6

Table 8.3: Which items does the the explanation consist of? Sample output of SPARQL
query A.3 applied on the root node of the ExplanationTree individual.

?explanation ?knowledgeBase
tnoData:ExplanationIndividual tnoData:PlasidoKnowledgeEngine
tnoData:ExplanationIndividual tnoData:ExplainableMortgageMachineLearningKB

Table 8.4: Which KB is the explanation derived from? Sample output of SPARQL
query A.4 applied on the root node of the ExplanationTree individual.

?knowledgeBase ?type
tnoData:ExplainableJobOpportunitiesBayesianNetworkKB tno:BayesianNetworkKnowledgeBase
tnoData:PlasidoKnowledgeEngine tno:ExpertSystemKnowledgeBase
tnoData:ExplainableEconomyMachineLearningKB tno:MachineLearningKnowledgeBase
tnoData:ExplainableMortgageMachineLearningKB tno:MachineLearningKnowledgeBase

Table 8.5: Which type among expert system, ML model, and Bayesian network does the
KB belong to? Output of SPARQL query A.5 applied on the complete ExplanationTree
individual.

76 Chapter 8

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

?k
no

w
le
dg

eB
as
e

?t
yp

e
tn
oD

at
a:
Pl
as
id
oK

no
w
le
dg

eE
ng

in
e

tn
o:
Ex

pe
rt
Sy

st
em

K
no

w
le
dg

eB
as
e

tn
oD

at
a:
Pl
as
id
oK

no
w
le
dg

eE
ng

in
e

tn
o:
R
ul
eB

as
ed

Ex
pe

rt
Sy

st
em

K
no

w
le
dg

eB
as
e

tn
oD

at
a:
Pl
as
id
oK

no
w
le
dg

eE
ng

in
e

tn
o:
Ex

pl
ai
na

bl
eK

no
w
le
dg

eB
as
e

tn
oD

at
a:
Ex

pl
ai
na

bl
eJ
ob

O
pp

or
tu
ni
tie

sB
ay
es
ia
nN

et
w
or
kK

B
tn
o:
B
ay
es
ia
nN

et
w
or
kK

no
w
le
dg

eB
as
e

tn
oD

at
a:
Ex

pl
ai
na

bl
eJ
ob

O
pp

or
tu
ni
tie

sB
ay
es
ia
nN

et
w
or
kK

B
tn
o:
Ex

pl
ai
na

bl
eK

no
w
le
dg

eB
as
e

tn
oD

at
a:
Ex

pl
ai
na

bl
eE

co
no

m
yM

ac
hi
ne

Le
ar
ni
ng

K
B

tn
o:
M
ac
hi
ne

Le
ar
ni
ng

K
no

w
le
dg

eB
as
e

tn
oD

at
a:
Ex

pl
ai
na

bl
eE

co
no

m
yM

ac
hi
ne

Le
ar
ni
ng

K
B

tn
o:
Ex

pl
ai
na

bl
eK

no
w
le
dg

eB
as
e

tn
oD

at
a:
Ex

pl
ai
na

bl
eM

or
tg
ag

eM
ac
hi
ne

Le
ar
ni
ng

K
B

tn
o:
Su

pe
rv
ise

dM
ac
hi
ne

Le
ar
ni
ng

tn
oD

at
a:
Ex

pl
ai
na

bl
eM

or
tg
ag

eM
ac
hi
ne

Le
ar
ni
ng

K
B

tn
o:
M
ac
hi
ne

Le
ar
ni
ng

K
no

w
le
dg

eB
as
e

tn
oD

at
a:
Ex

pl
ai
na

bl
eM

or
tg
ag

eM
ac
hi
ne

Le
ar
ni
ng

K
B

tn
o:
Ex

pl
ai
na

bl
eK

no
w
le
dg

eB
as
e

Ta
bl
e
8.
6:

W
hi
ch

co
m
bi
na

tio
n
of

su
bt
yp

es
id
en
tifi

es
th
e
K
B
?
O
ut
pu

to
fS

PA
R
Q
L
qu

er
y
A
.6

ap
pl
ie
d
on

th
e
co
m
pl
et
e
Ex

pl
an

at
io
nT

re
e

in
di
vi
du

al
.

Chapter 8 77

Chapter 9

Proof of concept

TNO is a research institution that operates at the intersection of scientific research and
business products. Especially the Connected Business group, where the internship took
place, provides, as the name suggests, corporate interoperability solutions. Therefore,
a proof of concept (POC) was expected as part of the deliverables. In this section we
will present the implementation of the POC to prove that our ontology can function
as intended. Since our POC adds explanation functionality to Plasido we will call it
Explainable Plasido.

First, we make the reader familiar with the architecture of Plasido (Nouwt 2016),
the framework developed at TNO to link various data sources. Plasido already makes
extensive use of functionality provided by Apache Jena1, which is a large open source
framework for semantic web and linked data applications. We want Explainable Plasido
to function as a plugin to Apache Jena instead of a Jena branch. So, we were forced
to work with the methods and classes already provided. This did not influence the
behaviour of the POC, but did make some functions to be less elegantly implemented
than if we would have changed the Apache Jena source.

This chapter describes our additions to Plasido, which can be divided into two cat-
egories: 1) generic and 2) domain specific. The generic parts ought to be reused in a
future use case. The domain specific parts are intended as a model to be followed in
a future use case. In the last section we describe the flow of control when querying
Explainable Plasido on a sample input.

9.1 Explainable Plasido

The current version of Plasido can only combine data from various outside sources, but
has no functionality to either draw or combine explanations from the external sources.
The communication of Plasido is performed by a reasoner operating on a knowledge base
consisting of a set of facts and a rule base. In our proof of concept the collection of facts
is a triple representation of table 7.2. The set of symbolic rules (p0, ..., p → q) defines
how to derive a previously unseen fact, possibly involving calling an external knowledge
base. The communication to an external source is performed by a so-called Builtin,
which is as an element of the body of a rule. Nouwt and Verhoosel (2018) showed how

1http://jena.apache.org

78

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Apache Jena Builtins can be leveraged to draw data from an external KB. We extended
the Builtin such that we can also query the explanation of the returned value. Each
explanation collected this way is a partial explanation. These are then combined by a
derivation collector and parsed into an individual of the ExplanationTree ontology.

9.1.1 Generic

Our additions contain three general classes that should be reused in a future use case: 1)
The DerivationCollector takes Apache Jena’s trace of which symbolic rules were followed
to derive a particular triple, and parses it into an instance of the ontology. During the
construction of the ontology instance, the Builtins are called for an explanation. 2) A
general abstract class DerivationBaseBuiltin defines the form of an explainable external
source. The construction of an abstract class allows the instantiations to inherit common
methods. It also allows the references in the DerivationCollector to be handled at runtime
by Java polymorphism. 3) A DerivationService class manages the flow of control. We
explain these classes in more detail.

DerivationCollector: This function takes as its input a trace of the rules it followed
to derive a certain fact. Each rule is turned into an Explanation instance. During
this process each external KB is called to provide an explanation for its output.
We assume that the explanation provided by the external KB already is in the
format defined by our ontology. After all, the goal of our thesis is not to de-
fine an automatic transformation into the language of the ontology. Writing the
explanation of the external KB remains a task to be done manually, although an
automation procedure can be constructed such that construction of the explanation
instance can be done semi-automatically. To be more precise, the DerivationCol-
lector should receive from the external KB an Explanans instance rather than a
complete Explanation instance.
During construction we give each node a uniquely identifying URI. If two individ-
uals have the same URI, an ontology reasoner regards both as identical. So, we
have to ensure that two nodes have a different URI unless we are certain both are
identical. To uniquely identify a tree node we use a suffix of n digits that is unique
for each position in the tree. The length of the suffix gives the depth. Digit c at
index i of the suffix means that we take the c’th child at depth i. The root node
has the empty suffix. Figure 9.1 gives an example.

DerivationBaseBuiltin: Plasido uses the Builtins provided by Apache Jena to connect
with an external KB. The Jena framework provides an abstract BaseBuiltin which
can call an outside KB with a set of variables, retrieve an output, and bind it
to an uninstantiated variable (Nouwt and Verhoosel 2018). The Builtin we use to
connect to an external explainable KB must provide additional functionality. First
of all, it should be able to return an explanation for the given input. Secondly, it
should return the KB the explanation is derived from.
To perform the additional functionality we programmed a DerivationBaseBuiltin
(listing 9.3). This abstract class provides methods to receive an instance of the KB
in the format of the ontology and an instance of the explanation in the format of

Chapter 9 79

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

1 # Rules us ing Bu i l t i n s to connect to an ex t e rna l KB
2 [economyRule :
3 (? mortgage tnoPOC : hasAppl icat ionDate ?dateTime) ,
4 ExplainableEconomyPredictor (? dateTime , ? economicState) −>
5 (? economicState tnoPOC : atDate ?dateTime)]
6 [oppor tun i t i e sRu l e :
7 (? person tnoPOC : hasYearsWorkingExperience ?yearsWE) ,
8 (? person tnoPOC : hasAnnualSalary ? annualS) ,
9 (? person tnoPOC : hasJobFie ld ? jobF) ,

10 Exp la inab l eJobOpportun i t i e sPred i c to r (?yearsWE ,
11 ?annualS , ? jobF , ? output) −>
12 (? person tnoPOC : hasJobOpportunit ies ? output)]
13 [mortgageRule :
14 (? person tnoPOC : hasCapi ta l ? c a p i t a l) ,
15 (? person tnoPOC : hasJobOpportunit ies ? promotions) ,
16 (? person tnoPOC : getPropertyValue ? propertyValue) ,
17 (? person tnoPOC : ge t In t e r e s tRa t e ? i n t e r e s tRa t e) ,
18 (? person tnoPOC : getEconomicState ? economicState) ,
19 (? person tnoPOC : getBankRiskTaking ? r i skTaking) ,
20 (? person tnoPOC : hasAnnualSalary ? annualSa lary) ,
21 Expla inableMortgagePred ictor (? cap i t a l , ? promotions ,
22 ? propertyValue , ? in t e r e s tRate , ? economicState ,
23 ? r iskTaking , ? annualSalary , ? r e s u l t) −>
24 (? person tnoPOC : isApproved ? r e s u l t)]

Listing 9.1: These rules direct the flow of knowledge through the network. Each rule
contains a Builtin as the last item of the body. Internally, the arguments of the Builtin
are passed on to request a value from an external KB. The return value is bound to the
last parameter of the Builtin, which is then unified with the last parameter of the head.
This way we obtain new knowledge from the Builtin and add it to the knowledge base.
The other triples in the body of the rules are used to draw existing data from the know-
ledge base. For example, the mortgage classification ML model takes the seven values
indicated by the Builtin parameters. The data is drawn directly from the knowledge
base or an intermediate rule from listing 9.2.

80 Chapter 9

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

1 # Rules ex t r a c t i n g data from the Mortgage domain onto logy .
2 [getPropertyValue :
3 (? mortgage tnoPOC : hasBorrower ? person) ,
4 (? mortgage tnoPOC : prov idesFinancesFor ? property) ,
5 (? property tnoPOC : hasValue ? propertyValue) −>
6 (? person tnoPOC : getPropertyValue ? propertyValue)]
7 [getEconomicState :
8 (? mortgage tnoPOC : hasBorrower ? person) ,
9 (? mortgage tnoPOC : hasAppl icat ionDate ?dateTime) ,
10 (? economicState tnoPOC : atDate ?dateTime) −>
11 (? person tnoPOC : getEconomicState ? economicState)]
12 [g e t In t e r e s tRa t e :
13 (? mortgage tnoPOC : hasBorrower ? person) ,
14 (? mortgage tnoPOC : ha s I n t e r e s t ? i n t e r e s tRa t e) −>
15 (? person tnoPOC : ge t In t e r e s tRa t e ? i n t e r e s tRa t e)]
16 [getBankRiskTaking :
17 (? mortgage tnoPOC : hasBorrower ? person) ,
18 (? mortgage tnoPOC : hasLender ?bank) ,
19 (? bank tnoPOC : isRiskTaking ? r i skTaking) −>
20 (? person tnoPOC : getBankRiskTaking ? r i skTaking)]

Listing 9.2: These rules extract data from the Mortgage domain ontology. These are
necessary because the triple representation of the mortgage ontology (figure 7.5) only
contains a concrete triple for direct relations. For example, figure 7.5 shows that a
Person does not have a role filled by a Property. Rather, the Property corresponding to
a person’s mortgage application can only be reached via the Mortgage. The steps from
Person to Mortgage, Mortgage to Property, and Property to a literal representing the
property value are exactly the three triples in the body of the getPropertyValue-rule.

Chapter 9 81

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 9.1: Use of suffixes to uniquely define the position in a tree

the ontology. An instance of the abstract class has to constructed for each Builtin,
which we will show in the next section on domain specific parts of the proof of
concept.

DerivationService: This class reads the triple queried by the user and searches the
knowledge base for an output value. It also gives the derivation tree to the Deriva-
tionCollector class to parse the derivation into an instance of the ontology.

1 abstract class Der iva t i onBaseBu i l t in extends BaseBui l t in {
2 abstract Model getExplanat ion (
3 Node [] bu i l t i nVa r i ab l e s ,
4 int argLength ,
5 Node [] b u i l t i n I n s t an t i a t e dVa r i a b l e s ,
6 S t r ing explanansUri ,
7 S t r ing s u f f i x) ;
8
9 abstract Model getKnowledgeBaseModel () ;

10
11 abstract Resource getKnowledgeBaseModel () ;
12 }

Listing 9.3: Abstract DerivationBaseBuiltin class

9.1.2 Domain specific

Three parts are domain-specific. We implemented these for our proof of concept to work
properly, and as an example for future use cases.

Reasoner rules: The rules in Plasido guide the output of a KB to the input of another
KB. The hierarchy of the KBs is configured in the rule base. The Plasido syntax
is quite broad with support for both backward reasoning and forward reasoning to
increase efficiency. We are currently not optimizing for efficiency, so we restrict the
syntax as shown in listing 9.4. In particular, we eliminate backward reasoning and
only allow rules with one head. These restrictions do not decrease expressivity.
The rules we define for the use case can be divided into 1) connecting to an outside
source and 2) gathering data from the triple store. Listing 9.1 gives the rules where

82 Chapter 9

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

1 Rule := [ruleName : bare−r u l e]
2
3 // forward ru l e
4 bare−r u l e := term , . . . , term −> term
5
6 // t r i p l e pattern or invoke a b u i l t i n
7 term := (node , node , node)
8 or b u i l t i n (node , . . . , node)
9
10 node := ur i−r e f // e . g . http :// foo . com/eg
11 or p r e f i x : localname // e . g . rd f : type
12 or <ur i−r e f > // e . g . <myscheme : myuri>
13 or ?varname // va r i ab l e
14 or ’ a l i t e r a l ’ // a p l a i n s t r i n g l i t e r a l
15 or ’ lex ’^^ typeURI // a typed l i t e r a l
16 or number // e . g . 42 or 25 .5

Listing 9.4: The restricted rules syntax for Explainable Plasido

an external KB is consulted. Typically, we define one rule per external KB, where
the other clauses of the rule extract data from the triple store. In listing 9.2
the rules are given which do not connect to an outside source, but collect triples
that are not explicitly stored in the knowledge base. For example, we first need
to get the associated mortgage to obtain the value of the property of a particular
borrower. In the concrete graph representation of the knowledge, we need to follow
the edges connecting the borrower to the mortgage, the mortgage to the property,
and the property to the integer connected via the hasValue role.

Knowledge bases connected through a proxy server: In a proper use case all data
sources are connected through endpoints on the web. We simulate this situation
by setting up a local server, which provides for all DerivationBaseBuiltin instances
an endpoint where both a value and an explanation can be requested.

Implementation of the abstract DerivationBaseBuiltin: The implementation of
the DerivationBaseBuiltin queries the internet location for an outcome value and
a corresponding explanation. This location is explicitly allowed to be an internet
location for interoperability purposes. That way, the explanation service can link
to data sources at other organisations.

In our proof of concept, we construct three instantiation of the abstract Deriva-
tionBaseBuiltin class:

ExplainableEconomyBuiltin: This Builtin returns as explanation an instance
of a rule-based proxy approximating the reasoning of the ML model underly-
ing the classification. Its rules are shown in listing 9.5.

ExplainableJobOpportunitiesBuiltin: As the measure of job opportunities is
computed by a BN, this Builtin returns an instance of Timmer et al. (2017)’s
support graph, shown in figure 9.2.

Chapter 9 83

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Figure 9.2: Instance of the support graph for job opportunities explanation

ExplainableMortgageBuiltin: The explanation of the mortgage classification
consists of both feature importance items and prototypes selected from the
training set. It consists of four feature importance items and two proto-
types items. This explanation is an example of what would be outputted by
Adhikari (2018)’s LEAFAGE method.

USA_Recession <- Dow_Jones < 15.000
USA_Booming <- Dow_Jones > 25.000
NL_Recession <- AEX < 450
NL_Blooming <- AEX > 550

Depression <- USA_Recession ^ NL_Recession
Recession <- USA_Recession
Booming <- USA_Booming ^ NL_Booming
Normal <- ~ Depression ^ ~ Recession ^ ~ Booming

Listing 9.5: Rule-based proxy of the economic state classifier

9.2 Flow of control

Let us ask Explainable Plasido whether individual Barry’s mortgage application is ap-
proved. Formally, we query whether the following triple is contained in the knowledge
base:

tnoPoc :Barry tnoPoc : isApproved "false "^^ xsd: boolean

The first step is the initialisation procedure. Explainable Plasido combines its facts
(i.e. the data about individuals Barry and Corrie) with the rules shown in listings 9.1
and 9.2. All derivations are computed at the initialisation step by using forward reason-
ing, instead of using backward reasoning which would derive only facts relevant to the
query. Forward reasoning decreases reasoning times for further queries. All Derivation-
Builtins contained in the rules are queried for an output value, although not yet for an
explanation. For each new fact its derivation sequence is kept track of.

84 Chapter 9

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

After deriving all facts from the knowledge base, it is checked whether the queried fact
is among those. If true, its derivation sequence is given to the DerivationCollector, which
parses the sequence into an instance of the Explanation ontology. The Derivation object
produced by Apache Jena contains which rules where followed to arrive at a particular
conclusion, so it only contains a rule-based explanation. The explanations from the
explainable Builtins are requested when a rule is found with a Builtin in its body. The
Builtins connect to a local server that provides the explanation as Explanans instances.
The DerivationCollector unifies the Explanans it receives from the Builtin with the
Explanans in the ExplanationTree by giving both the same unique suffix identifying
their position in the tree.

Finally, we need to apply a reasoner on the ExplanationTree individual. The Deriva-
tionCollector constructs the tree with just the necessary roles. An ontology reasoner
adds inferred relations, such as additional ancestor or descendant relations, and inverse
relations. For this goal we employ the HermiT reasoner (Glimm et al. 2014; Shearer
et al. 2008). The competency questions can be applied to the inferred tree.

Summary
In this chapter we outlined the explanation functionality that makes up Explainable
Plasido. Our main addition is an explanation combination algorithm that takes as its
input a derivation trace provided by Apache Jena. It turns the trace into an Explanation-
Tree structure, while simultaneously collecting explanations from the external knowledge
bases indicated by the trace. We also provided an implementation of the domain specific
parts of Explainable Plasido.

Chapter 9 85

Chapter 10

Conclusion

In this thesis we proposed an ontology for the combination and communication of ex-
planations in a federated knowledge environment. In this chapter we will formulate an
answer to the research questions, ending with an answer to the main research question.
We will then discuss how our research fits into the broader picture of current artificial
intelligence research. We end the chapter with directions for further research.

Subquestion 1 Which types of explanations are produced by knowledge bases?

We surveyed the literature on explanation for machine learning models and for
Bayesian networks (chapter 2), although the focus lay on machine learning explana-
tion. We found three machine learning explanation categorisations in the literature:
Guidotti et al. (2018), Gilpin et al. (2018), and Lipton (2016). Guidotti et al.’s was
the most extensive and provided a basis for our conceptualisation. They divide the
field of machine learning explanation into 1) model explanation through a simplified
proxy model, 2) outcome explanation by constructing a function that takes the input
and returns an explanation for that particular input, and 3) graphical or textual model
inspection. We found the other two categorisations to be subsumed by Guidotti et al.’s
categorisation. The two methods on Bayesian network explanation that we covered in
section 2.2.2 (Lacave et al. (2007) and Timmer et al. (2017)) also fit into the categori-
sation of Guidotti et al., showing that their categorisation is applicable to other black
boxes than just machine learning models.

Subquestion 2 Which types of explanations are useful according to philosophy and
social theory?

From both philosophy and social theory contrastive explanation emerged as a very
useful explanation. For philosophy it is an operationalisation of causation (Strevens
2006). In social theory contrastive explanation is a means to select a relevant explanation
from a host of explanations (Miller 2019). However, contrastive explanation has not yet
been used in a major explanation algorithm, making it unfeasible to disregard other
types of explanation in favour of contrastive explanation.

Subquestion 3.1 What are the requirements we elicit from the literature?

Subquestion 3.2 How can we modularise the ontology?

86

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Subquestion 3.3 Which competency questions characterise the information of the on-
tology?

We required the ontology to capture both the types of explanations we elicited from
the literature, as well as the internal structure the explanations exhibit. We identified five
types of internal structure: 1) tree-based, 2) rule-based, 3) a bag of items, 4) graphical,
and 5) textual. From the literature we also identified several types of knowledge bases.
On a high level we observed machine learning models, Bayesian networks, and expert
systems. On a more detailed level we observed various subtypes of machine learning
models. The final requirement was that the ontology should capture a treelike structure
to model a combined explanation consisting of multiple explanation instances.

From the requirements we drew three ontology modules: 1) the knowledge base
producing the explanation, 2) the explanation itself, and 3) the hierarchy of explanations.
The proof that the required information can indeed be extracted from the ontology was
given by the answers to a set of competency questions (chapter 8). From each explanation
tree and each explanation individual we want to extract the fact being explained, the
type and the contents of the actual explanation, and the conceptualising knowledge
bases.

Subquestion 3 What is the appropriate reference ontology?

We divided the explanation into an explanandum (the fact that is being explained)
and an explanans (the facts that perform the actual explanation). The types of machine
learning explanation categorised in the domain survey became subtypes of the explanans,
including a detailed conceptualisation of the explanation structure. For example, some
explanations are structured as a decision tree, while others consist of a set of rules. The
explanandum explains a fact, which is a triple in the context of ontologies.

Two singular explanations are combined into an explanation tree by unification of the
explanans of one with the explanandum of the other. After all, the fact that performs
the explanation may itself be subject to another explanation. The intermediate fact
then plays the role of both explanandum and (part of the) explanans. This allows us to
define a chain of relations that constitutes a child relation between two explanations.

Subquestion 4 How should we implement the reference ontology to build the opera-
tional ontology?

We implemented the Description Logic formalisation in the Web Ontology Language,
which required us to weaken the axioms to keep the ontology decidable. A chain of
relations was not allowed in a subrelation of a transitive relation. So, the operational
ontology is slightly less strict than the reference ontology.

Subquestion 5 How do we incorporate the explanation ontology into the Plasido en-
gine?

Subquestion 5.1 How do we combine several instances of the ontology from various
sources to construct an

Chapter 10 87

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

We expanded Plasido with explanation functionality to create Explainable Plasido
(chapter 9). This step functions as the proof of concept, showing that our ontology works
in practice, and fulfils the practical goal we set ourselves in the introduction. The major
addition to Plasido is an explanation combination algorithm. It takes as its input a
trace of Plasido indicating how it derived a particular outcome. The trace is turned into
an instance of the explanation ontology by querying the appropriate external knowledge
bases.

This allows us to answer the main research question:

Main question How do we leverage ontologies to integrate the various explanations of
a federated knowledge environment?

The ontology functions as a standard for communication. It is not merely a detailed
taxonomy or rough categorisation of explanations, but the OWL implementation defines
the exact format that corresponds to a particular explanation instance. The ontology is
strict enough for the explanation combination algorithm to operate on any instance of
the ontology. Also, the descriptive rather than prescriptive nature of ontologies makes
sure that our ontology definition is flexible enough to sufficiently capture new types of
explanation that are to be developed.

10.1 Discussion

Our research used the somewhat older technique of ontologies to provide an interoper-
ability solution for the more recent developments in explainable data science. The field
is usually called Explainable AI (XAI), but its techniques only consider explainable ma-
chine learning, because more and more data science applications keep getting developed,
many of which are used in additional sensitive domains like monitoring teenagers or
deciding whether kids go to the next grade. Our work, on the other hand, allows the
possible inclusion of other AI techniques based on logic or probability.

Our approach currently does not seem to function for interactive explanations, even
though this type may seem to be a promising way of explanation. After all, it can adapt
itself in real time to the specific needs of the subject. A possible solution may be that
we do not provide the explanation itself, but rather a link with arguments to load the
actual explanation. Via the link the user can access a web page or application where
the interactive functionality is present. However, a solution has to be found to include
facts upon which that explanation rests. When linking to an external source that is not
in the ontology format, we lose the ability to query the ontology.

10.2 Future research

Our first recommendation is to construct a graphical interface on top of the ontology.
The concrete ontology is just as unreadable to professionals as to non-professionals, but
the well-defined structure facilitates a mapping from ontology individual to graphical
representation. This interface has to be grounded in psychological research on how
people want an explanation administered to them (Miller 2019). Translating the ontology
into a visual tree should pose few problems given the SPARQL-implementations of our

88 Chapter 10

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

competency questions and the strict implementation of the ontology. This step is also
very useful if Explainable Plasido is to be used in future TNO-projects.

Secondly, we propose to extend the ontology with classes to capture types of expla-
nations not yet captured. The open-world nature of ontologies explicitly allows adding
additional concepts that inherit from existing concepts. Another researcher can easily
extend our Explanans-class with a new subclass, because our ontology is located at an
online TNO-repository. Our ontology for the various types of knowledge bases can be
fleshed out in much the same way. Explanation for case-based reasoning may seem an
interesting type of knowledge base to capture, since its structure may overlap with types
of machine learning explanation that use examples (Leake and McSherry 2005).

The last, and probably most interesting, line of research we would like to mention is
the PAL-project (Neerincx et al. 2016), where ontologies are used to provide children with
diabetes, as well as their parents and their doctors with an explanation of why the child
should at a particular moment inject insulin. Our ontology can be extended with classes
that define which explanations are satisfactory for children, which for their parents,
and which for medical professionals. We already gave the structure of an explanation a
detailed conceptualisation. It would for example take little effort to define a maximum
number of rules a rule-based proxy may consist of for it to be considered a satisfactory
explanation for children. Similarly, we can define the maximum depth of a tree-based
proxy that is presented to the patient. The capabilities of the ontology reasoner allow
the automatic inference of whether an explanation is judged to be interpretable for the
patient, the parents, or the medical professionals.

Chapter 10 89

Bibliography

Adhikari, Ajaya (2018). “Example and Feature Importance-based Explanations for
Black-box Machine Learning Models”. Master’s thesis. TNO/TU Delft.

Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner (2016). “Machine bias”.
ProPublica. url: https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing (visited on 05/09/2018).

Baader, Franz, Ian Horrocks, Carsen Lutz, and Uli Sattler (2017). An Introduction to
Description Logic. Cambridge University Press.

Biran, Or and Courtenay Cotton (2017). “Explanation and justification in machine learn-
ing: a survey”. In: International Joint Conference on AI. Workshop on Explainable
AI, pp. 8–13.

Brewster, Christopher, Harith Alani, Srinandan Dasmahapatra, and YorickWilks (2004).
“Data driven ontology evaluation”. In: Proceedings of the Fourth International Con-
ference on Language Resources and Evaluation. Ed. by Maria Teresa Lino, Maria
Francisca Xavier, Fátima Ferreira, Rute Costa, and Raquel Silva. ELRA.

Carral, David, Pascal Hitzler, Hilmar Lapp, and Sebastian Rudolph (2017). “On the
ontological modeling of trees”. arXiv:1710.05096.

DARPA (2016). Explainable Artificial Intelligence Program. Tech. rep. http://www.
darpa.mil/program/explainable-artificial-intelligence: DARPA.

Della Valle, Emanuele and Stefano Ceri (2011). “Querying the semantic web: SPARQL”.
In: Handbook of Semantic Web Technologies. Ed. by John Domingue, Dieter Fensel,
and James A. Hendler. Springer Science & Business Media, pp. 299–364.

Doshi-Velez, Finale and Been Kim (2017). “Towards a rigorous science of interpretable
machine learning”. arXiv:1702.08608v2.

Falbo, Ricardo de Almeida (2014). “SABiO: systematic approach for building ontolo-
gies”. In: Proceedings of the 1st Joint Workshop ONTO.COM/ODISE on Ontologies
in Conceptual Modeling and Information Systems Engineering, co-located with the
8th International Conference on Formal Ontology in Information Systems (FOIS).
CEUR.

Gangemi, Aldo and Valentina Presutti (2009). “Ontology design patterns”. In: Handbook
on Ontologies. Springer, pp. 221–243.

Gilpin, Leilani H., David Bau, Ben Z. Yan, Ayesha Bajwa, Michael Specter, and Lalana
Kagal (2018). “Explaining explanations: an approach to evaluating interpretability
of machine learning”. arXiv:1806.00069v2.

Glimm, Birte, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang (2014). “Her-
miT: an OWL 2 reasoner”. Journal of Automated Reasoning 53 (3), pp. 245–269.

90

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://www.darpa.mil/program/explainable-artificial-intelligence
http://www.darpa.mil/program/explainable-artificial-intelligence

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Gruber, Thomas R. (1993). “Toward principles for the design of ontologies used for
knowledge sharing”. International Journal Human-Computer Studies 43, pp. 901–
928.

Guidotti, Riccardo, Anna Monreale, Franco Turini, Dino Pedreschi, and Fosca Giannotti
(2018). “A survey of methods for explaining black box models”. arXiv:1802.01933.

Hilton, Denis J. (1990). “Conversational processes and causal explanation”. Psychological
Bulletin 107 (1), pp. 65–81.

Horridge, Matthew and Mark Musen (2016). “Snap-SPARQL: a Java framework for
working with SPARQL and OWL”. In: Ontology Engineering. Ed. by Valentina
Tamma, Mauro Dragoni, Rafel Gonçalves, and Agnieszka Ławrynowicz. Spring,
pp. 154–165.

Kvamme, Håvard, Nikolai Sellereite, Kjersti Aas, and Steffen Sjursen (2018). “Predicting
mortgage default using convolutional neural networks”. Expert Systems with Appli-
cations 102 (15), pp. 207–217.

Lacave, Carmen and Francisco J. Díez (2002). “A review of explanation methods for
Bayesian networks”. The Knowledge Engineering Review 17 (2), pp. 107–127.

— (2004). “A review of explanation methods for heuristic expert systems”. The Know-
ledge Engineering Review 19 (2), pp. 133–146.

Lacave, Carmen, Manuel Luque, and Francisco J. Díez (2007). “Explanation of Bayesian
networks and influence diagrams in Elvira”. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 37 (4), pp. 952–965.

Leake, David and David McSherry (2005). “Introduction to the special issue on expla-
nation in case-based reasoning”. Artificial Intelligence Review 24 (2), pp. 99–102.

Lipton, Peter (1990). “Contrastive explanation”. In: Explanation and its Limits. Royal
Institute of Philosophy Supplement. Ed. by Dudley Knowles. Vol. 27, pp. 247–266.

— (1991). Inference to the Best Explanation. Routledge, London.
Lipton, Zachary C. (2016). “The mythos of model interpretability”. arXiv:1606.03490.
Lohmann, Steffen, Stefan Negru, Florian Haag, and Thomas Ertl (2016). “Visualizing

ontologies with VOWL”. Semantic Web 7 (4), pp. 399–419.
McGuinnes, Deborah L. and Frank van Harmelen (2004). “OWL web ontology language

overview”. W3C Recommendation. url: https://www.w3.org/TR/owl-features/.
Miller, Tim (2018). “Contrastive explanation: a structural-model approach”. arXiv:-

1811.03163v1.
— (2019). “Explanation in artificial intelligence: insights from the social sciences”. Ar-

tificial Intelligence 267, pp. 1–38.
Miller, Tim, Piers Howe, and Liz Sonenberg (2017). “Explainable AI: beware of inmates

running the asylum. Or: how I learnt to stop worrying and love the social and be-
havioural sciences”. In: IJCAI-17 Workshop on Explainable AI, pp. 36–42.

Motik, Boris, Peter F. Patel-Schneider, and Bijan Parsia (2012). “OWL 2 web ontology
language. Structural specification and functional-style syntax (second edition)”.W3C
Recommendation. url: https : / / www . w3 . org / TR / 2012 / REC - owl2 - syntax -
20121211/.

Musen, Mark A. and Protégé Team (2015). “The Protégé project: a look back and a look
forward”. AI Matters 1 (4), pp. 4–12.

Neerincx, Mark A., Frank Kaptein, Michael van Bekkum, Hans-Ulrich Krieger, Bernd
Kiefer, Rifca Peters, Joost Broekens, Yiannis Demiris, and Maya Sapelli (2016).

Chapter 91

https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

“Ontologies for social, cognitive and affective agent-based support of child’s diabetes
self-management”. In: Artificial Intelligence for Diabetes. 1st ECAI Workshop on
Artificial Intelligence for Diabetes at the 22nd European Conference on Artificial
Intelligence (ECAI 2016), p. 35.

Neerincx, Mark A., Jasper van der Waa, Frank Kaptein, and Jurriaan van Diggelen
(2018). “Using perceptual and cognitive explanations for enhanced human-agent
team performance”. In: Engineering Psychology and Cognitive Ergonomics. Ed. by
Don Harris. Cham: Springer International Publishing, pp. 204–214.

Nouwt, Barry (2016). Plasido Architecture. Tech. rep. TNO.
Nouwt, Barry and Jack Verhoosel (2018). “Integrating heterogeneous data sources using

rule-based reasoning, backward-chaining and custom built-ins”. In: Proceedings of the
Posters and Demos Track of the 14th International Conference on Semantic Systems
- SEMANTiCS2018 (Vienna, Austria). CEUR Workshop Proceedings.

Obrst, Leo, Werner Ceusters, Inderjeet Mani, Steve Ray, and Barry Smith (2007). “The
evaluation of ontologies. Toward improved semantic interoperability”. In: Semantic
Web. Revolutionizing Knowledge Discovery in the Life Sciences. Springer, New York,
pp. 139–158.

Poveda-Villalón, María, Asunción Gómez-Pérez, and Mari Carmen Suárez-Figueroa
(2014). “OOPS! (OntOlogy Pitfall Scanner!): an on-line tool for ontology evaluation”.
International Journal on Semantic Web and Information Systems 10 (2), pp. 7–34.

Presutti, Valentina and Aldo Gangemi (2016). “Dolce+D&S Ultralite and its main on-
tology design patterns”. In: Ontology Engineering with Ontology Design Patterns:
Foundations and Applications. IOS Press, pp. 81–104.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2016). “Why should I trust
you? Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM
Special Interest Group on Knowledge Discovery in Data (SIGKDD) International
Conference on Knowledge Discovery and Data Mining. ACM, pp. 1135–1144.

Shearer, Rob, Boris Motik, and Ian Horrocks (Oct. 2008). “HermiT: a highly-efficient
OWL reasoner”. In: Proceedings of the 5th International Workshop on OWL: Expe-
riences and Directions (OWLED 2008 EU). Ed. by Alan Ruttenberg, Ulrile Sattler,
and Cathy Dolbear. Karlsruhe, Germany.

Strevens, Michael (2006). “Scientific explanation”. In: Encyclopedia of Philosophy. Ed.
by D. M. Borchert. 2nd ed. Macmillan Reference, Detroit.

Su, Xiaomeng, Mihhail Matskin, and Jinghai Rao (2003). “Implementing explanation
ontology for agent system”. In: IEEE/WIC International Conference on Web Intel-
ligence, pp. 330–336.

Tiddi, Ilaria, Mathieu d’Aquin, and Enrico Motta (2015). “An ontology design pat-
tern to define explanations”. In: Proceedings of the 8th International Conference on
Knowledge Capture. Association for Computing Machinery.

Timmer, Sjoerd T., John-Jules Ch. Meyer, Henry Prakken, Silja Renooij, and Bart
Verheij (2017). “A two-phase method for extracting explanatory arguments from
Bayesian networks”. International Journal of Approximate Reasoning 80, pp. 475–
494.

Vrandečić, Denny (2009). “Ontology evaluation”. In: Handbook on Ontologies. Ed. by
Steffen Staab and Rudi Studer. 2nd ed. Springer, pp. 293–313.

92 Chapter

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

Waa, Jasper van der, Marcel Robeer, Jurriaan van Diggelen, Matthieu Brinkhuis, and
Mark Neerincx (2018). “Contrastive explanation with local foil trees”. arXiv:1806.-
07470v1.

Whitehead, Alfred North (1938). Modes of Thought. MacMillan, New York.
Xiao, Tianjun, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and Zheng

Zhang (2015). “The application of two-level attention models in deep convolutional
neural network for fine-grained image classification”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 842–850.

Chapter 93

Appendix A

SPARQL queries

All SPARQL queries use the prefixes defined in figure 7.1.

1 SELECT ? exp lanat ion ? sub j e c t ? p r ed i c a t e ? ob j e c t
2 WHERE
3 { ? exp lanat ion rd f : type tno : Explanation ;
4 tno : hasExplanandum ?_explanandum .
5 ?_explanandum
6 rd f : s ub j e c t ? sub j e c t ;
7 rd f : p r ed i c a t e ? p r ed i c a t e ;
8 rd f : ob j e c t ? ob j e c t
9 }

Listing A.1: What fact is being explained?

1 SELECT DISTINCT ? exp lanat ion ? type
2 WHERE
3 { ? exp lanat ion rd f : type tno : Explanation ;
4 tno : hasExplanans ?_explanans .
5 ?_explanans rd f : type ? type .
6 ? type r d f s : subClassOf tno : Explanans
7 }

Listing A.2: What is the function of the explanation?

1 SELECT ? exp lanat ion ? part
2 WHERE
3 { ? exp lanat ion rd f : type tno : Explanation ;
4 tno : hasExplanans ?_explanans .
5 ?_explanans tno : hasExpla inablePart ? part
6 }

Listing A.3: Which items does the the explanation consist of?

94

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

1 SELECT DISTINCT ? exp lanat ion ?knowledgeBase
2 WHERE
3 { ? exp lanat ion rd f : type tno : Explanation ;
4 tno : i sConceptua l i zedBy ?knowledgeBase
5 }

Listing A.4: Which KB is the explanation derived from?

1 SELECT DISTINCT ?knowledgeBase ? type
2 WHERE
3 { ?knowledgeBase
4 rd f : type tno : ExplainableKnowledgeBase ;
5 rd f : type ? type ;
6 dul : c on c ep tua l i z e s ?_explanation .
7 ?_explanation
8 rd f : type tno : Explanation
9 VALUES ? type { tno : BayesianNetworkKnowledgeBase
10 tno : ExpertSystemKnowledgeBase
11 tno : MachineLearningKnowledgeBase }
12 }

Listing A.5: Which type among expert system, ML model and Bayesian network does
the KB belong to?

1 SELECT DISTINCT ?knowledgeBase ? type
2 WHERE
3 { ?knowledgeBase
4 rd f : type tno : ExplainableKnowledgeBase ;
5 rd f : type ? type ;
6 dul : c on c ep tua l i z e s ?_explanation .
7 ?_explanation
8 rd f : type tno : Explanation
9 FILTER (((? type != owl : NamedIndividual) &&
10 (? type != dul : Agent)) &&
11 (? type != t r e e : TreeNode))
12 }

Listing A.6: Which combination of subtypes identifies the KB?

Chapter 95

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

1 CONSTRUCT
2 {
3 ?node rd f : type t r e e : TreeNode .
4 ?node t r e e : hasChi ld ? ch i l d .
5 ?node t r e e : hasOutDegree ? outDegree .
6 ?node r d f s : l a b e l ? l a b e l .
7 ?node rd f : type owl : NamedIndividual .
8 ? root rd f : type t r e e : RootNode .
9 ? l e a f rd f : type t r e e : LeafNode .

10 }
11 WHERE
12 { ?_explanation
13 rd f : type tno : Explanation ;
14 tno : hasExplanandum ?node ;
15 t r e e : hasOutDegree ? outDegree
16 OPTIONAL
17 { ?_explanation
18 tno : hasExplanat ionChi ld ?_explanat ionChi ld .
19 ?_explanat ionChi ld
20 tno : hasExplanandum ? ch i l d
21 }
22 OPTIONAL
23 { ?_explanation
24 rd f : type t r e e : RootNode ;
25 tno : hasExplanandum ? root
26 }
27 OPTIONAL
28 { ?_explanation
29 rd f : type t r e e : LeafNode ;
30 tno : hasExplanandum ? l e a f
31 }
32 }

Listing A.7: Construct a simplified fact tree.

96 Chapter

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

1 CONSTRUCT
2 {
3 ?node rd f : type t r e e : TreeNode .
4 ?node rd f : type owl : NamedIndividual .
5 ?node tno : i sConceptua l i zedBy ?kb .
6 ?node t r e e : hasOutDegree ? outDegree .
7 ?node t r e e : hasChi ld ? ch i l d .
8 ? l e a f rd f : type t r e e : LeafNode .
9 ? root rd f : type t r e e : RootNode .
10 }
11 WHERE
12 { ?node rd f : type tno : Explanation ;
13 tno : i sConceptua l i zedBy ?kb ;
14 t r e e : hasOutDegree ? outDegree
15 OPTIONAL
16 { ?node tno : hasExplanat ionChi ld ? ch i l d }
17 OPTIONAL
18 { ? l e a f rd f : type tno : Explanation ;
19 rd f : type t r e e : LeafNode
20 }
21 OPTIONAL
22 { ? root rd f : type tno : Explanation ;
23 rd f : type t r e e : RootNode
24 }
25 }

Listing A.8: Construct a simplified knowledge base tree.

Chapter 97

Ontologies for Explanation Master’s Thesis - Utrecht University/TNO

1 CONSTRUCT
2 {
3 ? e x p l a n a t i o n r d f : type tno : Explanation .
4 ? e x p l a n a t i o n r d f : type tno : ExplanationTreeNode .
5 ? e x p l a n a t i o n r d f : type owl : NamedIndividual .
6 ? e x p l a n a t i o n t r e e : hasOutDegree ? outDegree .
7 ? e x p l a n a t i o n tno : hasExplanans ? explanans .
8 ? e x p l a n a t i o n tno : hasExplanandum ? explanandum .
9 ? e x p l a n a t i o n tno : hasExplanat ionChi ld ? descendant .

10 ? l e a f r d f : type t r e e : LeafNode .
11 ? r o o t r d f : type t r e e : RootNode .
12 }
13 WHERE
14 { ? e x p l a n a t i o n r d f : type tno : Explanation ;
15 tno : hasExplanandum ? explanandum ;
16 tno : hasExplanans ? explanans ;
17 tno : i s C o n c e p t u a l i z e d B y ?kb .
18 ?kb r d f : type ?kbType
19 VALUES ?kbType { tno : BayesianNetworkKnowledgeBase tno : MachineLearningKnowledgeBase }
20 OPTIONAL
21 { ? e x p l a n a t i o n t r e e : hasDescendant ? descendant
22 FILTER EXISTS { { ? kbPrime dul : c o n c e p t u a l i z e s ? descendant ;
23 r d f : type tno : MachineLearningKnowledgeBase
24 }
25 UNION
26 { ? kbPrime dul : c o n c e p t u a l i z e s ? descendant ;
27 r d f : type tno : BayesianNetworkKnowledgeBase
28 }
29 FILTER NOT EXISTS { ? middle r d f : type tno : Explanation ;
30 tno : i s C o n c e p t u a l i z e d B y ? kbPrimePrime
31 { ? kbPrimePrime
32 dul : c o n c e p t u a l i z e s ? middle ;
33 r d f : type tno : BayesianNetworkKnowledgeBase
34 }
35 UNION
36 { ? kbPrimePrime
37 dul : c o n c e p t u a l i z e s ? middle ;
38 r d f : type tno : MachineLearningKnowledgeBase
39 }
40 ? middle t r e e : hasDescendant ? descendant ;
41 t r e e : hasAncestor ? e x p l a n a t i o n
42 }
43 }
44 }
45 OPTIONAL
46 { ? l e a f r d f : type tno : Explanation ;
47 tno : hasExplanandum ? explanandum ;
48 tno : hasExplanans ? explanans ;
49 tno : i s C o n c e p t u a l i z e d B y ?kb .
50 ?kb r d f : type ?kbType
51 VALUES ?kbType { tno : BayesianNetworkKnowledgeBase tno : MachineLearningKnowledgeBase }
52 FILTER NOT EXISTS { ? treeDescendant
53 t r e e : hasAncestor ? l e a f ;
54 tno : i s C o n c e p t u a l i z e d B y ? kbPrimePrimePrime
55 { ? kbPrimePrimePrime
56 dul : c o n c e p t u a l i z e s ? middle ;
57 r d f : type tno : BayesianNetworkKnowledgeBase
58 }
59 UNION
60 { ? kbPrimePrimePrime
61 dul : c o n c e p t u a l i z e s ? middle ;
62 r d f : type tno : MachineLearningKnowledgeBase
63 }
64 }
65 }
66 OPTIONAL
67 { ? r o o t r d f : type tno : Explanation ;
68 tno : hasExplanandum ? explanandum ;
69 tno : hasExplanans ? explanans ;
70 tno : i s C o n c e p t u a l i z e d B y ?kb .
71 ?kb r d f : type ?kbType
72 VALUES ?kbType { tno : BayesianNetworkKnowledgeBase tno : MachineLearningKnowledgeBase }
73 FILTER NOT EXISTS { ? t r e e A n c e s t o r
74 t r e e : hasDescendant ? r o o t ;
75 tno : i s C o n c e p t u a l i z e d B y ? kbPrimePrimePrimePrime
76 { ? kbPrimePrimePrimePrime
77 dul : c o n c e p t u a l i z e s ? middle ;
78 r d f : type tno : BayesianNetworkKnowledgeBase
79 }
80 UNION
81 { ? kbPrimePrimePrimePrime
82 dul : c o n c e p t u a l i z e s ? middle ;
83 r d f : type tno : MachineLearningKnowledgeBase
84 }
85 }
86 }
87 }

Listing A.9: Construct a simplified tree hierarchy.
98 Chapter

	Introduction
	Problem
	Purpose and goals
	Research questions
	Structure

	The domain: knowledge base explanation
	Machine learning
	Taxonomies
	Extracting concepts

	Explanation in other knowledge bases
	Rule-based expert systems
	Bayesian networks

	Insights from the social sciences and philosophy
	Insights from the social sciences
	Philosophical prescriptions

	Towards a reference ontology
	Purpose and intended use
	Requirements
	Ontology modularisation
	Competency questions
	Fact explanation
	Explanation hierarchy
	Knowledge bases

	The technique: Description Logic
	Syntax and semantics
	Additional expressive power

	Reference ontology design choices
	Existing explanation ontologies
	Fact explanation
	Explanandum ontology
	Explanans ontology
	Tree-based structures
	Rule-based structures
	Feature importance, salience maps and prototype selection

	Knowledge base ontology
	Explanation tree ontology
	Descendant relations
	Revisiting rule-based explanation

	Operational ontology and implementation
	Serialisation
	OWL profiles
	Implemented ontology
	Explanation ontology
	Mortgage domain ontology
	ExplanationTree individual

	Ontology testing with competency questions
	Verification and validation
	SPARQL
	Competency questions
	Explanation hierarchy
	Fact explanation
	Knowledge bases

	Proof of concept
	Explainable Plasido
	Generic
	Domain specific

	Flow of control

	Conclusion
	Discussion
	Future research

	Bibliography
	Appendices
	SPARQL queries

