
Faculty of Science

STRIPAI: Determining the suitability of
implementing deep learning principles in new

domains

Master Thesis

Danny Knemeijer | Business Informatics

Supervisors:
Dr. Marco Spruit

Utrecht University - Faculty of Science

Dr. Matthieu Brinkhuis
Utrecht University - Faculty of Science

May 27, 2019

i

Abstract

Deep Learning and Reinforcement Learning are techniques that are being applied more and more.
However, the combination of the two techniques sees little use outside of the gaming domain. This
study aims to determine when and how these techniques can be used in new domains. This thesis
asks the question how the two techniques can be applied to applications in new domains in order
to improve the usability of these applications.
Based on the used methodology, a literature research on how to determine whether a domain is
actually suitable for the application of Deep Learning and Reinforcement Learning is conducted.
After this, a framework is shown which can be used to transform an application in such a way that
it represents a game with rules, inputs, and output. Lastly, the techniques will be applied to an
existing application in the prescriptive healthcare domain.
The results indicate that applying these techniques to the application in the prescriptive healthcare
domain did not lead to a significant increase in the effectiveness of the application. Furthermore,
theoretical results showed that there was also no significant increase in the efficiency of the applica-
tion. This means that the implementation of Deep Learning and Reinforcement Learning principles
did not lead to a significant increase in application usability. The results from this experiment can be
used in order to better determine which domains will be suitable for these kinds of implementations.

ii

Acknowledgements

Out of all of the chapters I had to write for this thesis, I never thought writing the acknowl-
edgements would be the hardest chapter out of all of them. Over the last period of time,
I have had the privilege to write this thesis, and to speak with a lot of people about the
topic I enjoy the most.
What started out as a great idea in the first half of 2018, has since turned into the thesis you
are reading today. And with my thesis defense around the corner, this chapter of my life is
coming to a close. It has been a great journey, and I would like to take this opportunity to
thank some of the people that have joined my journey.
First and foremost, I would like to thank my first supervisor, Dr. Marco Spruit. Together,
we have had many discussions about this topic, and his expertise on both the sector of
medical informatics, and data science, has helped a lot in writing this thesis. Also many
thanks to my second supervisor, Dr. Matthieu Brinkhuis. He has been a great help in
providing feedback along the way, and in refining the details of thesis.
As for more specific topics in this thesis, I would like to thank Ian Zhengru Shen for his
additional knowledge on the STRIP Assistant, and Edwin Brinkhuis for collaborating with
me on the technical aspect of this thesis. Without these two people, it would not have been
possible for me to perform any kind of experiment on the STRIP Assistant. Lastly, I would
also like to thank Ad Feelders, whose course Data Mining got me very interested into the
field of data mining, neural networking and machine learning.
I would like to thank my friends and fellow students, both for being challenging discussion
partners, as well as serving as a distraction for when I was stuck with writing this thesis.
A special thank you goes out to Study Association Sticky, where I could always drop in to
have a cup of coffee, and where I have done a lot of exciting things with my fellow students.
Lastly, I would like to thank my family and my girlfriend, for being there whenever I needed
them the most. Without their support, I would have never pulled off this amazing achieve-
ment.

- Danny Knemeijer, May 2019

CONTENTS iii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables viii

List of Acronyms x

List of Terms xi

1 Introduction 1
1.1 Research Context . 2

1.1.1 Applied Data Science . 2
1.1.2 Go: “The grand challenge of AI” . 2

1.2 Problem Statement . 3
1.3 Research Questions . 5

2 Research Methodology 7
2.1 Design Science Research . 7
2.2 Knowledge Discovery Process . 8
2.3 Research Framework . 9
2.4 Research Plan . 10
2.5 Literature Review Method . 11

3 Theoretical Background: Deep Reinforcement Learning Principles 12
3.1 Deep Learning . 12

3.1.1 Types of Deep Learning . 13
3.1.2 Artificial Neural Network . 13
3.1.3 Deep Neural Network . 14
3.1.4 Recurrent Neural Network . 15

3.2 Reinforcement Learning . 18
3.2.1 Q-Learning . 19
3.2.2 SARSA . 20

3.3 Deep Reinforcement Learning . 21

4 Determining the Suitability of New Domains 23
4.1 Challenges of Deep Reinforcement Learning 23

4.1.1 Big Data’s 4V model . 23
4.1.2 Implementation and Accountability 25
4.1.3 Domain Transparency . 25
4.1.4 Domain Transformability . 26

4.2 Selecting a Suitable Domain . 27

CONTENTS iv

5 Empirical Background: STRIP Assistant and the Medical Domain 29
5.1 Applying the 4VATT Suitability Model . 29
5.2 The Prescriptive Healthcare Domain . 30

5.2.1 Polypharmacy: When one pill turns into ten 30
5.2.2 STRIP: Methods for medication . 31

5.3 STRIP Assistant: From man-work to machine 33
5.3.1 User Interface . 33
5.3.2 Back-end . 34

6 CRISP-DRL 38
6.1 Understanding . 38
6.2 Preparation . 41
6.3 Modeling . 42
6.4 Evaluation . 43
6.5 Implementation . 44

7 Applying CRISP-DRL for STRIPAI 45
7.1 Understanding . 45

7.1.1 Application Understanding . 45
7.1.2 Domain Understanding . 45
7.1.3 Data Understanding . 46

7.2 Preparation . 46
7.2.1 Data Preparation . 46
7.2.2 Application Preparation . 49

7.3 Modeling . 50
7.4 Evaluation . 51

7.4.1 Non-aggregated Network Results . 52
7.4.2 Pre-aggregated Network Results . 57

8 Results 60
8.1 STRIPAI: Usability . 60

8.1.1 STRIPAI: Effectiveness . 60
8.1.2 STRIPAI: Efficiency . 61

8.2 Improving the 4VATT Suitability Model . 62

9 Conclusion 65

10 Discussion 66
10.1 Research Limitations . 66

10.1.1 Data Issues . 66
10.1.2 Implementation Issues . 67
10.1.3 4VATT Suitability Model . 68

10.2 Future Work . 69

11 References 71

CONTENTS v

Appendix A 4VATT Question List I

Appendix B Answered Questions for Prescriptive Healthcare Domain IV

Appendix C DRL Implementation VII

Appendix D Network Statistics XI
D.1 Personalia Network - Unaggregated . XI
D.2 Complications Network - Unaggregated . XIII
D.3 Medications Network - Unaggregated . XV
D.4 Personalia Network - Aggregated . XVII
D.5 Complications Network - Aggregated . XVIII
D.6 Medications Network - Aggregated . XIX

Appendix E Improved 4VATT Question List XX

LIST OF FIGURES vi

List of Figures

1 Diagram highlighting the difference between Data Science and Applied Data
Science (ADS). As shown in this diagram, Applied Data Science (ADS) has
a more distinct focus on the field between engineering and domain expertise. 3

2 Distribution of games played with DRL algorithm, showing that AlphaGo
Zero surpasses human-level play in 60% of the games played 4

3 Overview of the two different cycles in Design Science Research, as described
by Wieringa (2014) . 7

4 CRISP-DM, as described by Chapman et al. (2000) 8
5 Design Science Framework used for this thesis, as described by Spruit and

Lytras (2018), and its’ relationship to Applied Data Science 10
6 Research plan for this thesis . 11
7 Diagram illustrating a basic version of a Deep Learning implementation . . 13
8 A technical representation of a Deep Neural Network, as defined by Bengio

(2009) . 15
9 A global overview of a Recurrent Neural Network, as described by Mikolov,

Karafiát, Burget, Černockỳ, and Khudanpur (2010) 16
10 A technical breakdown of the unfolding process of a Recurrent Neural Net-

work, as described by Goodfellow, Bengio, and Courville (2016) 17
11 Overview of a Long Short-Term Memory (LSTM) network neuron (G. Chen,

2016) . 17
12 Diagram illustrating a basic Reinforcement Learning implementation 19
13 Example of a Markov Decision Process (MDP). The orange arrows represent

the rewards, the orange circles represent the actions, and the green circles
represent the states . 19

14 Diagram illustrating a basic Deep Reinforcement Learning implementation . 21
15 Diagram showing the 4V model, containing the four different components of

Big Data . 24
16 Screenshot ofMarI/O, a neural network implementation capable of autonomously

learning and playing Super Mario World . 26
17 An example of a visualization of the suitability scores per factor for two

different domains . 28
18 Domain Suitability Scores for the Prescriptive Healthcare domain 30
19 An example of a STOPP criterium. This criterium shows that patients with

COPD who use non-cardioselective beta-blockers have an (increased) risk of
bronchospasm . 31

20 Illustration of the STRIP method by Meulendijk et al. (2015) showing the
six different stages of the method . 32

21 Second section of the STRIP Assistant, which shows the complete medical
history of the patient . 33

22 Analysis section of the STRIP Assistant, which is comprised of multiple
subsections. This subsection shows the known medication, which can be
dragged and dropped on to known complications of the patient 34

LIST OF FIGURES vii

23 This subsection of the Analysis section of the STRIP Assistant shows the
Undertreatment tab, which lists all of the matching Screening Tool to Alert
to Right Treatment (START) criteria for the known medication-complication
combinations of the patient . 35

24 This subsection of the Analysis section of the STRIP Assistant shows the drug
reactions. The known medication-complication combinations of the patients
are matched against established guidelines on medication interactions . . . 35

25 Advice section of the STRIP Assistant. In this section, the user is shown an
overview of all of the complication-medication combinations for the patient,
and has the option of generating and downloading a detailed report 36

26 Decision section of the STRIP Assistant. In this section, the user can com-
ment on why certain medication is started, stopped or changed 36

27 UML Class Diagram of the Java packages within the STRIP Assistant, with
inter-package dependencies and inheritances 37

28 CRISP-DRL: A variation of CRISP-DM, aimed at Deep Reinforcement Learn-
ing, consisting of five main stages . 38

29 Overview of the different steps of CRISP-DRL, with their respective tasks
and outputs . 39

30 SQL statement to collect patient information 47
31 SQL statement to collect medical measurements from each patient 47
32 SQL statement to collect all used medication categories for each patient . . 48
33 SQL statement to collect all used complications for each patient 48
34 SQL statement to collect patient information 48
35 Code snippet that handles the creation of training sets and test sets 49
36 Visual representation of a trained neural network, where the gradient of an

edge represents the weight of the edge between two nodes 50
37 Overview of the sparse categorical cross-entropies of the three different net-

works, trained on the non-aggregated dataset, plotted over the training epochs.
A lower sparse categorical cross-entropy usually indicates a better performing
network . 53

38 Diagram showing how for a class ck, the four different classification results
can be obtained . 54

39 Diagram showing the number of occurrences per class label for each network
trained on non-aggregated data as bars, and showing the normal distribution
of these class labels per network as a line 54

40 Overview of the sparse categorical cross-entropies of the three different net-
works, trained on the aggregated dataset, plotted over the training epochs. A
lower sparse categorical cross-entropy usually indicates a better performing
network . 57

41 Diagram showing the number of occurrences per class label for each network
trained on pre-aggregated data, compared to the actual class labels 58

42 Domain Suitability Scores for the Prescriptive Healthcare domain, using both
the old 4VATT Model from Section 4.2, and the improved 4VATT model . 64

43 Python module for database connections between the STRIP Assistant Database
and the DRL Implementation . VII

LIST OF TABLES viii

44 Python module for preprocessing the data entering the STRIP Assistant DRL
Implementation . IX

45 Python module aiding in preprocessing of the data entering the STRIP As-
sistant DRL Implementation . X

List of Tables

1 Score distributions for the domains illustrated in Figure 17, showing that
different distributions can lead to an equal suitability score. 28

2 Score distributions for the suitability of the prescriptive healthcare domain 29
3 Tasks and goals of the Application Understanding step, which is part of the

Understanding stage . 39
4 Tasks and goals of the Domain Understanding step, which is part of the

Understanding stage . 40
5 Tasks and goals of the Data Understanding step, which is part of the Under-

standing stage . 40
6 Tasks and goals of the Data Preparation step, which is part of the Preparation

stage . 41
7 Tasks and goals of the Application Preparation step, which is part of the

Preparation stage . 42
8 Tasks and goals of the DRL Modeling step, which is part of the Modeling stage 43
9 Tasks and goals of the Evaluation step, which is part of the Evaluation stage 43
10 Tasks and goals of the DRL Implementation step, which is part of the Im-

plementation stage . 44
11 Table names and table descriptions of the main tables used within the im-

plementation of DRL principles into the STRIP Assistant 47
12 Final configurations for all three trained neural networks 51
13 Explanation of class labels used in classification matrices. The Meaning col-

umn indicates whether a START or STOPP rule would have fired in the old
STRIP Assistant . 52

14 Confusion matrices of the validation results for the trained personalia network
trained on the non-aggregated data . 55

15 Confusion matrices of the validation results for the trained complications
network trained on the non-aggregated data 56

16 Confusion matrices of the validation results for the trained medications net-
work trained on the non-aggregated data . 56

17 Confusion matrix of the validation results on the trained personalia network,
trained with aggregated data, showing the confusion between the two classes 58

18 Confusion matrix of the validation results on the trained complications net-
work, trained with aggregated data, showing the confusion between the two
classes . 59

19 Confusion matrix of the validation results on the trained medications net-
work, trained with aggregated data, showing the confusion between the two
classes . 59

20 Score distributions for the suitability of the prescriptive healthcare domain,
using the improved 4VATT Suitability Model 63

LIST OF TABLES ix

23 Confusion matrix of the validation results on the trained personalia network,
showing the confusion between the zero-class and the remainder class XI

24 Metrics for the confusion matrix shown in Table 23 XI
25 Confusion matrix of the validation results on the trained personalia network XI
26 Metrics for the confusion matrix shown in Table 29 XII
27 Confusion matrix of the validation results on the trained complications net-

work, showing the confusion between the zero-class and the remainder class XIII
28 Metrics for the confusion matrix shown in Table 27 XIII
29 Confusion matrix of the validation results on the trained complications networkXIII
30 Metrics for the confusion matrix shown in Table 29 XIV
31 Confusion matrix of the validation results on the trained medications net-

work, showing the confusion between the zero-class and the remainder class XV
32 Metrics for the confusion matrix shown in Table 31 XV
33 Confusion matrix of the validation results on the trained medications networkXV
34 Metrics for the confusion matrix shown in Table 33 XVI
35 Confusion matrix of the validation results on the trained personalia network,

trained with aggregated data, showing the confusion between the two classes XVII
36 Metrics for the confusion matrix shown in Table 35 XVII
37 Confusion matrix of the validation results on the trained complications net-

work, trained with aggregated data, showing the confusion between the two
classes . XVIII

38 Metrics for the confusion matrix shown in Table 37 XVIII
39 Confusion matrix of the validation results on the trained medications net-

work, trained with aggregated data, showing the confusion between the two
classes . XIX

40 Metrics for the confusion matrix shown in Table 39 XIX

List of Acronyms x

List of Acronyms

ADS Applied Data Science

AI Artificial Intelligence

ANN Artificial Neural Network

BP Back-propagation

CNN Convolutional Neural Network

CRISP-DM CRoss Industry Standard Process for Data Mining

CTC Collectionist Temporal Classification

DFF Deep Feed Forward

DL Deep Learning

DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

DSR Design Science Research

FNN Feedforward Neural Network

GIVE Gebruik, Indicatie, Veiligheid & Effectiviteit

GPU-MPCNN GPU-based MPCNN

KDD Knowledge Discovery for Databases

KDP Knowledge Discovery Process

LSTM Long Short-Term Memory

MAI Medical Appropriateness Index

MCST Monte Carlo Search Tree

MDP Markov Decision Process

MP Max Pooling

MPCNN Max Pooling Convolutional Neural Network

NDP Neuro-Dynamic Programming

List of Terms xi

NLP Natural Language Processing

POM Prescription Optimization Method

Q-Learning Quality-Learning

RL Reinforcement Learning

RNN Recurrent Neural Network

SARSA State-Action-Reward-State-Action

START Screening Tool to Alert to Right Treatment

STOPP Screening Tool of Older People’s Prescriptions

STRIP Systematic Tool to Reduce Inappropriate Prescribing

STRIPA STRIP Assistant

UISE Use, Indication, Safety & Effectiveness

List of Terms

Quality-Learning A Markov Decision Process (MDP) algorithm that uses a quality func-
tion to describe the quality of the state the algorithm currently is in

AlphaGo Zero An algorithm developed by Google Deepmind that is capable of playing
the game of Go without requiring any data from games played by humans, and by
using only the rules of the game as input

Applied Data Science The knowledge discovery process in which analytical applications
are designed and evaluated to improve the daily practices of domain expert

Artificial Intelligence A machine that mimics cognitive functions that humans associate
with other human minds, such as ‘learning’ and ‘problem solving’

Artificial Neural Network A computational model which is loosely inspired by the hu-
man brain as it consists of an interconnected network of simple processing units (ar-
tificial neurons) that learns from experience by modifying its connections

Back-propagation A method that is used to calculate the gradients used for the calcula-
tion of the weights used in a neural network

Convolutional Neural Network Multi-layered Neural Network specialized on recogniz-
ing visual patterns directly from image pixels (LeCun, Bottou, Bengio, & Haffner,
1998)

List of Terms xii

CRoss Industry Standard Process for Data Mining AKnowledge Discovery Process
used in the (Applied) Data Science field that consists of six different stages which al-
lows the user to streamline and standardize the Data Mining process

Data Science The extraction of actionable knowledge directly from data through a process
of discovery, or hypothesis formulation and hypothesis testing

Deep Feed Forward Same as regular Feed Forward, albeit with multiple hidden layers

Deep Learning A class of machine learning techniques that exploit many layers of non-
linear information processing for supervised or unsupervised feature extraction and
transformation, and for pattern analysis and classification

Deep Neural Network An Artificial Neural Network with multiple hidden layers

Deep Reinforcement Learning A type of machine learning algorithm in which a deep
learning algorithm represents the internal agent of a reinforcement learning imple-
mentation as a way to represent its’ policy function or notion of expected rewards.

Design Science Research Paradigm that seeks to extend the boundaries of human and
organizational capabilities by creating new and innovative artifacts

Feedforward Neural Network An Artificial Neural Network in which connections be-
tween the nodes form an acyclic graph (Zell, 1994)

GPU-based MPCNN See Max Pooling Convolutional Neural Network

Knowledge Discovery Process Process that creates the context for developing the tools
needed to control the flood of data facing organizations that depend on ever-growing
databases of business, manufacturing, scientific, and personal information

Long Short-Term Memory Long Short-Term Memory networks are a variant of Recur-
rent Neural Networks (RNNs) that are capable of storing long-term dependencies

Markov Decision Process A model for sequential decision making when outcomes are
uncertain (Puterman, 2014)

Max Pooling The procedure of taking an N ×N matrix, and converting it into a smaller
M ×M by means dividing the matrix into smaller sections and selecting the largest
value as the new value

Max Pooling Convolutional Neural Network Combination of Max Pooling and an
Convolutional Neural Network, which contains both convolutional and subsampling
layers

Neuro-Dynamic Programming A class of dynamic programming methods for control
and sequential decision making under uncertainty

List of Terms xiii

Recurrent Neural Network a type of Artificial Neural Network where connections be-
tween its components form a directed (a)cyclic graph, and keeps an unlimited history
which is represented by recurrently connected components (Mikolov et al., 2010)

Reinforcement Learning A general class of algorithms in the field of machine learning
that aims at allowing an agent to learn how to behave in an environment, where the
only feedback consists of a scalar reward signal

State-Action-Reward-State-Action An on-policy learning algorithm used for learning
Markov Decision Process policies

STRIP Assistant A web-based application that aims to assist General Practitioners (GPs)
and pharmacists with pharmacotherapeutic analysis of patients’ medical records (Meu-
lendijk et al., 2015)

1. INTRODUCTION 1

1 Introduction

Artificial Intelligence (AI) is defined by Russell, Norvig, Canny, Malik, and Edwards (2003)
as “a machine that mimics cognitive functions that humans associate with other human
minds, such as ‘learning’ and ‘problem solving’ ”. A survey by Gartner of 3160 CIOs from
almost 100 countries, shows that making progress with glsai initiatives is one of the top-five
priorities for 2018. 21% of the CIOs are already experimenting with it, or have short-
term plans for this, and 25% have medium- or long-term plans for this. As such, popular
technologies from the field of AI can be found in the Gartner Hype Cycle. Deep Learning
and Machine Learning are expected to hit the ‘Plateau of Productivity’ in 2 to 5 years.
This means that these technologies will be adopted by the mainstream. Another popular
AI technology, Reinforcement learning, is expected to hit this plateau in 5 to 10 years.
Deep Learning (DL) is defined by Deng and Yu (2014) as “a class of machine learning
techniques that exploit many layers of non-linear information processing for supervised or
unsupervised feature extraction and transformation, and for pattern analysis and classifi-
cation”. Reinforcement Learning (RL) is defined by van Otterlo and Wiering (2012) as “a
general class of algorithms in the field of machine learning that aims at allowing an agent to
learn how to behave in an environment, where the only feedback consists of a scalar reward
signal”.
Recently, these two technologies have been combined by Google to create AlphaGo Zero.
This AI uses a new approach that combines supervised learning from human expert games,
and reinforcement learning from games that it played against itself, to master the game of
Go, long seen as the hardest game to master for an AI due to the enormous search space
as described by Silver, Schrittwieser, et al. (2017). The combination of Deep Learning and
Reinforcement Learning is called Deep Reinforcement Learning (DRL). AlphaGo Zero has
also since mastered the game of (Japanese) Chess (Silver, Hubert, et al., 2017), but also
several asymmetrical games (Tuyls et al., 2018), and several different games on the Atari
2600 (Mnih et al., 2015; Wang et al., 2016).
Surprisingly, these technologies have mostly been applied in the gaming domain. They have
also been applied separately from each other for Natural Language Processing (NLP) (Bor-
des, Glorot, Weston, & Bengio, 2012; Socher, Huang, Pennin, Manning, & Ng, 2011), speech
recognition (Hinton et al., 2012; Seide, Li, & Yu, 2011), and computer vision (Krizhevsky,
Sutskever, & Hinton, 2012). Attempts have been made to implement these techniques
within the medical domain. This has been done for both deep learning (Valk, 2018), and
reinforcement learning implementations (Doorhof, 2018).
However, outside of the gaming domain, DRL has not yet been implemented widely. This
is due to the fact that for DRL to be implemented efficiently and effectively, the application
domain needs to be modeled as a game with a set of rules that transforms input to out-
put. For example, while breakthroughs in the medical domain are being made by Poplin
et al. (2018) on predicting cardiovascular risks through deep reinforcement learning and
computer vision using a dataset of retinal images, the application of these techniques in
this domain remains limited. However, the domain would most likely be well suited for
these technologies.
This thesis is ordered as follows. First, Chapter 2 gives an overview of the research method-
ology. Chapter 3 gives a technical, in-depth description more about Deep Learning and

1. INTRODUCTION 2

Reinforcement Learning, and how these two techniques can be combined into Deep Rein-
forcement Learning. Chapter 4 introduces a method of determining whether a domain is
predicted to be well suited for the implementation of DRL principles. Chapter 5 goes into
detail on the STRIP Assistant (STRIPA), a tool used into the patient-centric healthcare
domain to combat and prevent polypharmacy. Chapter 6 will introduce a method that
will help to try and implement Deep Reinforcement Learning into the STRIPA, after which
Chapter 7 will discuss the implementation process. Chapter 8 will present the results, after
which Chapter 9 and Chapter 10 will give a definitive answer to the main question of this
thesis.

1.1 Research Context

This section will aim to give further insights into which context this research will be con-
ducted, from both a technical and a domain perspective. This is done in order to explain
where this research is positioned, and will help put the problem statement into perspective.
Section 1.1.1 will first explain the domain perspective, and explain what kind of research
will be conducted. Then, Section 1.1.2 will highlight a technical implementation of Deep Re-
inforcement Learning that will serve as an example, and will show the technical perspective
of this research.
1.1.1 Applied Data Science.
This research will aim to apply Deep Reinforcement Learning into the patient-centric health-
care domain. The research involves a mix of domain expertise, engineering, and machine
learning. As such, it can be classified as an ADS problem. Applied Data Science (ADS)
is defined by Spruit and Jagesar (2016) as “the knowledge discovery process in which an-
alytical applications are designed and evaluated to improve the daily practices of domain
experts.” In the case, the STRIP Assistant is the analytical application that will be evalu-
ated (and hopefully improved by implementing DRL principles). The domain experts will
be the general practitioners, who will be using the STRIP Assistant. The workings of the
STRIP Assistant will be further discussed in Chapter 5.
Applied Data Science is based on Data Science, which is defined by Pritzker and May (2015)
as “the extraction of actionable knowledge directly from data through a process of discovery,
or hypothesis formulation and hypothesis testing.” The difference is highlighted in Figure 1,
which is based on (Pritzker & May, 2015; Spruit & Jagesar, 2016).
Both Data Science and Applied Data Science aim to solve problems involving a mixture of
domain knowledge, engineering, and statistics & machine learning. However, ADS is more
geared towards the use of analytical algorithms, such as machine learning techniques, to
solve problems.

1.1.2 Go: “The grand challenge of AI”.
Using AI to learn how to play games and beat human players is not a new field. Thorp
and Walden used computer analysis in 1972 to research the principles of Go using smaller
versions of the classic 19×19 board. Instead, they started off with a very small board, then
increasing it. The largest achieved sizes were 1×5, 2×4, and 3×4. Since then, many games
have been mastered by means of computerized play. However, Go was long believed to
be the ‘grand challenge’ of Artificial Intelligence (Levinovitz, 2014; Silver, Schrittwieser, et
al., 2017). This is due to the extremely large complexity of Go, which has a state-space

1. INTRODUCTION 3

Figure 1 . Diagram highlighting the difference between Data Science and Applied Data
Science (ADS). As shown in this diagram, ADS has a more distinct focus on the field
between engineering and domain expertise.

complexity of 10172, and a game-tree complexity of 10320 (Van Den Herik, Uiterwijk, &
Van Rijswijck, 2002). Compare this to Chess, which is believed to be the second-most
complex game to crack for an AI, but has complexities of 1046 and 10123 respectively.
The state-space complexity of a game is defined by Allis (1994) as “the number of legal
game positions reachable from the initial starting position(s) of the game”. The game-tree
complexity of a game is defined as “the number of leaf nodes in the solution search tree of
the initial starting position(s) of the game”(Allis, 1994).
In 2015 however, the curtain fell for Go when AlphaGo, developed by Google Deepmind, won
5-0 against 3-time European Go champion Fan Hui (Silver & Hassabis, 2016). To achieve
this, Google used a RL algorithm with a Monte Carlo Search Tree (MCST) implementation.
Then, by combining this with a deep neural network as a guide, AlphaGo was able to
simulate thousands of possible moves in order to select the most optimal one. An improved
version called AlphaGo Zero was introduced in 2017 by Silver, Schrittwieser, et al.. This
version did not require any data from games played by humans, and was even stronger than
AlphaGo, and all of its successors after 40 days of learning.

1.2 Problem Statement

This section will highlight the current problem this research is aiming to solve. This is done
by explaining the current state of DRL, and how it is mostly applied within the gaming
domain. It then goes on to ask why this is not done in other domains, and will then
introduce the main problem statement for this thesis.
As stated, Deep Reinforcement Learning is mostly applied within the gaming domain. In
this domain, the algorithm is trained by applying it to several popular Atari Games, as
described by (Mnih et al., 2015). Figure 2 gives an overview of the games played by
AlphaGo Zero. As shown, 60% of the games played resulted in an AI capable of playing
above human-level play. The other 40% of games are ones that require a higher level of
planned strategy, which is not yet able to be grasped by any form of AI, including Deep
Reinforcement Learning (Mnih et al., 2015). However, DRL can not only be applied to
2D games, like the ones on the Atari, but also on 3D games. This is described in a paper

1. INTRODUCTION 4

by (Lample & Chaplot, 2017), who built an AI capable of outperforming human players in
the game DOOM.

Figure 2 . Distribution of games played with DRL algorithm, showing that AlphaGo Zero
surpasses human-level play in 60% of the games played

Both these 2D and 3D games share the same abstract structure. They can both be defined
as a piece of software that transforms input into output, according to a set of rules. In the
case of video games, (Prema & Ramadoss, 2008) describe the input as information such
as data or commands, that is entered into the game at run-time from an external source,
such as a player or another device. The output is described as information generated by
the game and outputted to an external source, but not used again as input to the game.
Deep Reinforcement Learning algorithms differ from this approach, as the output of the
algorithm is used again as input for a next step of the algorithm. As such, DRL is not used
in games, but rather used to construct ‘perfect’ AIs for specific games. This means that
the perfect AI for game A is not perfect for game B. This is why, even though the whole
domain shares roughly the same structure, DRL is not applied frequently; the algorithm

1. INTRODUCTION 5

needs to be tweaked differently for each and every game.
Outside of the domain, Deep Reinforcement Learning is applied even less frequently. While
the games in the gaming domain share the same structure, consisting of an input, an output,
and a set of rules, other domains lack this structure. When one wants to apply DRL to
a domain, the domain first needs to be modeled into a similar structure as the gaming
domain before DRL can even be applied to the domain. However, other domains can benefit
greatly from the application of DRL principles. While the benefits won’t be as large as the
improvements made in the gaming domain, as shown in Figure 2, considerable improvements
in terms of usability can be made with respect to the current situation by applying DRL
principles into different domains. This leads to the following problem statement:

How can new domains be translated in such a way that Deep
Reinforcement Learning principles can be applied more easily in
order to further improve the usability of the applications in the
new domain?

Here, usability is defined by the International Organization for Standardization (ISO) (2011)
as “the extent to which a product can be used by specified users to achieve specified goals
with effectiveness, efficiency, and satisfaction in a specified context of use”.

1.3 Research Questions

Given the main problem statement as introduced in Section 1.2, a research question has
been made, which is divided into multiple subquestions. This research question is as follows:

How can the principles of Deep Learning and Reinforcement
Learning be applied to applications in new domains in order to
improve the usability of these applications?

Q1: How can we determine whether a new domain would be suitable for the usage of Deep
Reinforcement Learning?

Q2: How can an application in a new domain be transformed in such a way that it repre-
sents a game with rules, input and output?

Q3: How can the combined principles of Deep Learning and Reinforcement Learning im-
prove the effectiveness of an existing application in a new domain?

Q4: How can the combined principles of Deep Learning and Reinforcement Learning im-
prove the efficiency of an existing application in a new domain?

Q5: How can the results of implementing principles of Deep Learning and Reinforcement
Learning be used to better determine whether a domain would be suitable enough for
these kinds of implementations?

1. INTRODUCTION 6

These question will be answered through a combination of literature research and a case
study where an actual implementation of a DRL will be made. This will be done for
an existing application in the patient-centric healthcare domain. Chapter 5 will give an
explanation on the STRIPA, and its position and relevance in the patient-centric healthcare
domain. In this research, the STRIP Assistant will be used. The case study will be carried
out as follows: A DRL solution will be developed, after which it will be ‘trained’ existing
rules and input. The generated output will then be compared with existing output of the
STRIPA, to see whether there is a difference in effectiveness. Additionally, statements about
the efficiency of the DRL solution will be made in order to give a view on how this compares
to the efficiency of the existing implementation. After this has been done, the results of
implementing DRL principles will be used in order to determine whether any changes can
be made to the method to determine whether a domain would be well suitable for these
kinds of implementations. This research will then result in several pieces of advice on how
to improve the current STRIPA, as well as an artifact; a way to apply DRL principles in
other domains.

2. RESEARCH METHODOLOGY 7

2 Research Methodology

This section aims to describe the used research methodology. This thesis will use a com-
bination of two research frameworks, namely the Design Science Research (DSR) frame-
work (A. Hevner & Chatterjee, 2010), and the Knowledge Discovery Process (KDP), specif-
ically CRISP-DM (Chapman et al., 2000). These two frameworks will be elaborated on in
Section 2.1 and Section 2.2 respectively. Section 2.3 will then discuss how these two frame-
works are combined to be used as the main research framework in this research. Section 2.4
will give an overview of the research plan of this thesis, and will show the relevant sub
questions from Section 1.3 in relation to the research framework from Section 2.3.

2.1 Design Science Research

This section will introduce the Design Science Research framework, which will be one of
the two frameworks that this research’ framework will be based on, which will be discussed
in Section 2.3.
The Design Science Research (DSR) paradigm “seeks to extend the boundaries of human
and organizational capabilities by creating new and innovative artifacts” (A. R. Hevner,
March, Park, & Ram, 2004). In IT, Design science is defined by Wieringa (2014) as “the
design and investigation of artifacts in context” (Wieringa, 2014). Wieringa distinguishes
between design problems and knowledge questions. Design problems call for a change in
the real world and requires an analysis of stakeholder goals, whereas knowledge questions
do not call for a change in the real world, but ask for knowledge about the world as it is
now (Wieringa, 2014). Another notable difference is that while design problems do not have
a definitive ‘correct’ answer, a knowledge question should have only one answer.
Design problems and knowledge questions both call for their own way of solving the proposed
problem. As such, these two have their own cycle, of which the simplified versions are
presented in Figure 3. Wieringa proposes the use of an engineering cycle (Figure 3a) for
a design problem, and the use of an empirical cycle (Figure 3b) for knowledge questions.
When handling a design problem, the treatment will not always be implemented. As such,
the Treatment Implementation in the engineering cycle can often be left out. The resulting
cycle is called a design cycle.

(a) Engineering Cycle (b) Empirical Cycle
Figure 3 . Overview of the two different cycles in Design Science Research, as described
by Wieringa (2014)

2. RESEARCH METHODOLOGY 8

2.2 Knowledge Discovery Process

This section will introduce the Knowledge Discovery Process framework, which will be the
other framework our research’ framework will be based on. More specifically, this section
will talk about CRoss Industry Standard Process for Data Mining (CRISP-DM).
The Knowledge Discovery Process (KDP), which is based on Knowledge Discovery for
Databases (KDD), “creates the context for developing the tools needed to control the flood
of data facing organizations that depend on ever-growing databases of business, manufac-
turing, scientific, and personal information” (Fayyad, Piatetsky-Shapiro, & Smyth, 1996).
While a number of different models have been developed, CRoss Industry Standard Process
for Data Mining (CRISP-DM) is widely considered to be the best KDP guideline to per-
form research in the Applied Data Science field with (Azevedo & Santos, 2008; Chapman
et al., 2000; KS & Kamath, 2017; Mariscal, Marban, & Fernandez, 2010). The process is
visualized in Figure 4.

Figure 4 . CRISP-DM, as described by Chapman et al. (2000)

CRISP-DM consists of six different stages, as described by Marbán, Mariscal, and Segovia
(2009). Business Understanding focuses on determining the business objectives, and deter-
mining how data should be gathered. Data Understanding is about gathering, exploring,
and describing the data that will be used to carry out the rest of the process. Here, the data
quality is also tested. Data Preparation handles the actual selection of the relevant data.
The data is cleaned, constructed, integrated and formatted. These steps will most likely be

2. RESEARCH METHODOLOGY 9

repeated multiple times and not necessarily in a strict order. Modeling is where the data
is taken, and modeling techniques are applied to the data set. Evaluation focuses on the
results of the modeling step, and checks whether the business objectives are met with the
modeled data. If not, the process is repeated again. Lastly, Deployment is the final step of
CRISP-DM, in which the model is implemented.

2.3 Research Framework

This section will introduce the research framework used within this thesis, which is the
framework as designed by Spruit and Lytras. This framework combines the principles of
the DSR framework introduced in Section 2.1, and the principles of CRISP-DM, which is a
KDP framework, introduced in Section 2.2.
In the context of this research, two different problems can be extracted. The first problem is
a design problem, which corresponds with sub questions (Q1) and (Q2), which asks whether
a domain is suitable for the application of Deep Reinforcement Learning techniques, and how
an application in this domain can be transformed in order to incorporate DRL principles into
the application. The second problem is more of a knowledge question, which corresponds
with sub questions (Q3), (Q4), and (Q5) from Section 1.3, which asks if an implementation
of DRL in an existing application can improve the usability of the application, and how
results from this implementation can better help determine the suitability of new domains.
As these problems differ from one another, they require a different solution, and thus a
different process to solve the problems. The first problem is best suited as a design, as
described by Wieringa (2014). As such, this problem requires a design cycle. The second
problem is best solved by using CRISP-DM, as described by Chapman et al. (2000), because
of the placement within the Applied Data Science field. To effectively solve both problems,
a combination of both processes is required. As such, the research framework by Spruit
and Lytras is used, which combines the principles of the design cycle of Wieringa with the
principles of CRISP-DM by Chapman et al., and which can be found in Figure 5 (Spruit
& Lytras, 2018). A design cycle is chosen over an engineering cycle, as the CRISP-DM
cycle implements the treatment as devised in the design cycle. As such, the Treatment
Implementation step from the engineering cycle is deemed obsolete.
In this figure, the right diagram represents the Applied Data Science, which was already
presented in Figure 1. The left diagram represents the research framework by Spruit and
Lytras (2018). In this framework, the six phases of CRISP-DM are represented by the outer
cycle. Unlike the standard CRISP-DM cycle from Figure 4, the cycle is complete, and does
not contain bidirectional connections anymore. The design cycle by Wieringa is tied to the
colors in the cycle. The first two steps of the cycle, which are colored red, correspond to
the first step of the design cycle. The yellow steps in Figure 5 correspond to the second
step of the design cycle, and the blue steps from the framework coincide with the last step
in the design cycle.
Within the context of this thesis, the Problem Investigation will be executed in Chapters 3, 4,
and 5. More specifically, Chapters 3 and 4 focus on the technical domain aspects of the
thesis, whereas Chapter 5 will focus on the patient-centric healthcare domain. While all
three aforementioned chapters are part of the Domain Understanding phase from CRISP-
DM, only Chapter 5 will discuss the Data Understanding phase. After the first phase
has been finished, the Treatment Design will be discussed in Chapter 6 and Chapter 7.

2. RESEARCH METHODOLOGY 10

Figure 5 . Design Science Framework used for this thesis, as described by Spruit and Lytras
(2018), and its’ relationship to Applied Data Science

This Chapter will cover both the Data Preparation and the Data Modeling steps from the
CRISP-DM cycle. Lastly, Chapters 8, 10, and 9 will focus on the Treatment Validation
phase. Within this phase, Chapter 8 will focus on the Model Evaluation, whereas Chapter 9
will be the Knowledge Deployment phase.

2.4 Research Plan

This section describes the proposed research plan for this thesis. The research will follow
the research framework for applied data science in patient-centric healthcare, as introduced
in Section 2.3 and as seen in Figure 5. This framework by Spruit and Lytras combines
CRISP-DM and Design Science Methodology. This is highlighted in Figure 6. This figure
shows the relationship between the phases of DSM and the phases of CRISP-DM in the left
figure, whereas the right figure shows which parts of the research framework answer which
sub questions.
As shown in Figure 6, the first phase of this research will focus on understanding the
domain of the research, and the data that this research will work with. This will answer
sub question (Q1), which asks whether a certain domain is suitable for the application of
DRL principles.
The second phase of the research focuses on the design of a treatment. This means that in
this research, the data in a domain will be prepared and transformed in such a way, that
it can be easily worked with. In this research, this step also covers the existing application
that will be transformed in such a way that DRL principles can be applied more easily. After
this step, sub question (Q2) can be answered, which asks how a domain can be transformed
in such a way that it resembles a game with rules, input and output.
Lastly, the third phase of this research covers the validation of the treatment. The proposed
DRL application will be evaluated, and knowledge on how to implement these principles

2. RESEARCH METHODOLOGY 11

Figure 6 . Research plan for this thesis

will be deployed. At the end of this phase, sub questions (Q3), (Q4), and (Q5) can be
answered. Sub question (Q3) will be answered through a statistical difference making
experiment, where the output of the proposed DRL application will be compared to the
existing output. Sub question (Q4) will be answered as thorough as possible through theory.
Lastly, the insights from implementing DRL principles will be used in order to answer sub
question (Q5).

2.5 Literature Review Method

This section describes how the literature for this research was gathered. By showing how
the literature for this research was gathered, the reproducibility of the research will increase.
For this research, principles from the literature gathering method called Snowballing have
been used. This method is described by Wohlin (2014) as “using the reference list of a
paper or the citations to the paper to identify additional papers”. However, where Wohlin
uses a systematic literature review for his method, this thesis uses an informal exploration
of literature in order to gather additional informational sources for this research.
The research makes use of both Forward Snowballing, where literature is gathered by looking
at which papers cite the current paper, and Backward Snowballing, where literature is
gathered by looking at which papers are cited by the current paper. Some of the starting
researches are (X.-W. Chen & Lin, 2014; LeCun, Bengio, & Hinton, 2015; Meulendijk et al.,
2015; Mnih et al., 2015; Silver & Hassabis, 2016; Silver, Schrittwieser, et al., 2017; Spruit
& Lytras, 2018)
In addition to this, literature is gathered on a case-by-case basis whenever new topics are
introduced within the thesis. This is literature that is not gathered by snowballing from
one of the starting researches, but is still vital to the thesis.

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 12

3 Theoretical Background: Deep Reinforcement Learning Principles

This section will discuss the principles behind deep learning and reinforcement learning,
and how these principles can be combined in order to create deep reinforcement learning.
First, the principles of deep learning and reinforcement learning will be discussed separately.
This will be done in Section 3.1 and Section 3.2 respectively. Afterwards, Section 3.3 will
discuss how these two algorithms can be combined. Note that this section will not discuss
the implementation of Deep Reinforcement Learning in the STRIP Assistant. This will be
done in Chapter 7.

3.1 Deep Learning

Deep learning is a term which is heard and used often in business. It is defined by Deng
and Yu as “a class of machine learning techniques that exploit many layers of non-linear in-
formation processing for supervised or unsupervised feature extraction and transformation,
and for pattern analysis and classification”. As stated in this definition, deep learning can
be implemented in either a supervised, unsupervised, or semi-supervised way. Supervised
learning is defined by Russell et al. as the act of learning a function that maps input into
output, based on a training set of input-output pairs. Where supervised learning used a
training set with a known structure, unsupervised learning does not use this. The goal of su-
pervised learning is learning a function that describes the properties of the dataset (Hastie,
Tibshirani, & Friedman, 2009). These two types of deep learning can also be combined into
semi-supervised learning. Semi-supervised learning combines both labeled and unlabeled
data in order to find a function that predicts future test data better than a function that
predicts from the labeled training data alone (Zhu, 2011).
Figure 7 gives a general overview of the workings of the deep learning algorithm. As shown,
the algorithm accepts input at the input layer, which is then converted, through the use
of (multiple) hidden layers, to the output layer. While Figure 7 gives an example of a
deep learning algorithm, in this case a Deep Feed Forward (DFF) network or Deep Neural
Network (DNN), many different types of deep learning exist. Schmidhuber lists multiple
popular deep learning algorithms in his paper. He states that LSTM trained by Collectionist
Temporal Classification (CTC), and Feedforward GPU-based MPCNNs (GPU-MPCNNs)
based on Convolutional Neural Networks (CNNs) with Max Pooling (MP) trained through
Back-propagation (BP) are the two most popular, cutting edge versions of deep learning
as of 2015. While this thesis will not go into detail on the specific inner workings of these
algorithms, Section 3.1.1 will address some of the more popular types of deep learning, and
go into detail on both the inner workings, as well as the advantages and disadvantages of
using these types.
Historically, the concepts of Deep Learning are based on Artificial Neural Networks (ANNs),
which is defined by Van Gerven as “a computational model which is loosely inspired by the
human brain as it consists of an interconnected network of simple processing units (artificial
neurons) that learns from experience by modifying its connections.” Based on this is the
Deep Neural Network (DNN), which is defined as an Artificial Neural Network with multiple
hidden layers between the input layer and the output layer. Figure 7 is an example of this.
The first mention of Deep Learning was published by Dechter in the machine learning
community in 1986 (Dechter, 1986). However, the first working algorithm for a multi-

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 13

Figure 7 . Diagram illustrating a basic version of a Deep Learning implementation

layered deep network in the field of deep learning was published in 1971 by Ivakhnenko
(1971).
In the field of computer vision, Back-propagation is first applied in 1989 in order to help rec-
ognize handwritten postal codes (LeCun et al., 1989). Back-propagation (BP) is a method
that is used to calculate the gradients used for the calculation of the weights used in a neural
network (Goodfellow et al., 2016). However, while this algorithm was functional, training
the algorithm required three days.
The next major improvement was made in 1992, when MP was first used in an applica-
tion (Weng, Ahuja, & Huang, 1992). Max Pooling is the procedure of taking an N × N
matrix, and converting it into a smaller M ×M by means dividing the matrix into smaller
sections and selecting the largest value as the new value (Graham, 2014).
In the field of speech recognition, most researched stopped using neural nets in favor of
LSTM. Long Short-Term Memory networks are a variant of RNNs that are capable of
storing long-term dependencies (Hochreiter & Schmidhuber, 1997).
However, in the regular industry, the impact of deep learning began in the early 00s. LeCun
et al. states that CNNs processed around 10 to 20% of all the checks written in the USA
at that time.

3.1.1 Types of Deep Learning.
As stated in Section 3.1, Deep Learning algorithms can be classified into three different
types: supervised, semi-supervised, and unsupervised learning algorithms. However, a spe-
cific algorithm can be implemented or trained in either a supervised, and/or an unsupervised
manner. For example, while a Neural Network are often classified as a supervised learning
algorithm, a Deep Neural Network can be trained in both an unsupervised, as well as a
supervised way. An example of this is the Artificial Neural Network (ANN).

3.1.2 Artificial Neural Network.
According to Zell (1994), ANNs are networks consisting of neurons, which can take input,
and generate output. These neurons can also change their internal state, which can change
the output of the neurons. By connecting the outputs of neurons to the inputs of other

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 14

neurons, a network can be created. The preferred connections between the neurons, as well
as the neurons’ triggers (or activation) to change their internal state, are governed by a
learning rule.
A neuron N in layer k with label m and an input pm(t) received from a previous neuron n
contains the following elements (Zell, 1994):

• An activation (or trigger) am(t), which depends on a time parameter t.

• Optional A treshold value θm

• An activation function f that calculates the new activation at the next time step t+1,
based on the current activation am(t), the current input pm(t), and the treshold θm.
As such, the activation for timestep t+ 1 is

am(t+ 1) = f(am(t), pm(t), θm) (1)

• The output function fout, for which the identity function is often used, calculates the
output from the activation function

am(t) = fout(am(t)) (2)

• Each connection between a neuron n and neuron m is given a weight wnm, which
determines which path between layers is found best by the algorithm.

• A propagation function, which computes an input pm(t) to a neuron m from all of the
connected neurons’ outputs on(t) from the previous layer:

pm(t) =
∑
n

on(t)wnm (3)

3.1.3 Deep Neural Network.
A Deep Neural Network (DNN) is defined as an Artificial Neural Network with multiple
hidden layers (Bengio, 2009; Schmidhuber, 2015). As such, the structure is not much
different from the structure of an ANN as described in the previous paragraph. The main
addition to DNNs is the relation between the different layers, which is illustrated in Figure 8.
A layer k, which computes a vector hk of neurons, can compute the input for layer k + 1
using the output of layer k − 1 as its own input. The input layer of the network, which is
defined as layer x in Figure 8 is specified as layer 0 with an output vector h0. The output
layer outputs a vector h`. To calculate the output vector of a layer hk, Equation (4)

hk = tanh(bk = W khk−1) (4)
is used. In this formula, a vector of offsets bk, a matrix of connection weights W k, and the
output vector of the previous layer hk−1 are used to calculate the output vector of layer
k. The tanh function is applied to each neuron in the layer, but can be replaced by other
non-linear functions, such as the sigmoid function.

sigm(u) = 1
1 + e−u

(5)

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 15

Figure 8 . A technical representation of a Deep Neural Network, as defined by Bengio (2009)

The final output vector h` is used as a predictor, and can be combined with a supervised
target y into a loss function

L(h`, y) = b` +W `h`−1 (6)

where the goal of the algorithm is to minimize the loss (in accuracy) for the output. For this,
the negative conditional log-likelihood L(h`, y) = − logP (Y = y|x) = − log h`y is often used.
The result of this calculation, a set of values over (x, y), should be as small as possible in
order to achieve a more accurate neural network. The input for this calculation is obtained
through the softmax function

h`i = eb
`
i+W `

i h
`−1∑

j
eb

`
j+W `

j h
`−1 (7)

where W `
i is the ith row of the matrix of weights for the output layer W `, h`i > 0 and∑

i h
`
i = 1.

3.1.4 Recurrent Neural Network.
A Recurrent Neural Network (RNN) is a type of ANN where connections between its com-
ponents form a directed (a)cyclic graph, and keeps an unlimited history which is represented
by recurrently connected components (Mikolov et al., 2010; Rumelhart, Hinton, & Williams,
1986). A global overview of a RNN is shown in Figure 9.

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 16

Figure 9 . A global overview of a Recurrent Neural Network, as described by Mikolov et al.
(2010)

As shown in this figure, a RNN functions similarly to a regular Feedforward Neural Network
(FNN), the same category of Neural Networks as ANNs and DNNs. The main difference is
the addition of a recurrent connection. This allows a RNN to form a short-term memory
in order to deal with input invariances. This is something that regular FNNs are not able
to achieve.
Like an ANN and a DNN, a RNN consists of an input layer x with input vector h0, one or
more hidden layers s with input vectors h1 to hi, and an output layer y with input vector
hk and output vector h`. As described by Mikolov et al. (2010), the input, hidden, and
output layers can be calculated using Equations (8), (9), and (10)

x(t) = w(t) + s(t− 1) (8)

sj(t) = f(
∑
i

xi(t)uji) (9)

yk(t) = g(
∑
j

sj(t)vkj) (10)

with f(z) being the activation function, which is analog to Equation (5), and g(z) being
the softmax function

g(zm) = ezm∑
k
ezk

(11)

Another thing that is possible within a RNN, is the ability to implement recursion. As
such, the history represented by the network can be infinite, only bound by PC processing
power. In order to ‘revert’ the recurrent network from a directed cyclic graph into a acyclic
graph, it has to be unfolded. Figure 10 gives an overview of the unfolding process.

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 17

Figure 10 . A technical breakdown of the unfolding process of a Recurrent Neural Network,
as described by Goodfellow et al. (2016)

In this figure, x is the input vector, which is passed to the hidden layer which has a vector
h, after which it is outputted as an output vector o. This value is used as an input to a
loss function L, which compares ŷ = softmax(o) to a target value y. U, V,W are all weight
matrices.
A special kind of RNN is a Long Short-Term Memory (LSTM). A LSTM is a variant of
RNNs that is capable of storing long-term dependencies. Its structure is similar to the
structure of a RNN, shown in Figure 9. The main difference is the addition of gates and
a memory cell. This allows the networks to store information within itself long-term in a
memory cell, as well as forget this information through a forget gate. The rest of the gates
allow the network to ‘shut down’ itself, by blocking or delaying signals that pass through
a neuron. Figure 11 shows an overview the inner workings of a neuron, with all of the
connections between the elements of a neuron, and its corresponding gates.

Figure 11 . Overview of a LSTM network neuron (G. Chen, 2016)

In this figure, a similar structure is shown to the left part of Figure 9. The main additions
are the gates, which have their own formulas, as described by Goodfellow et al. (2016)

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 18

and Zaremba, Sutskever, and Vinyals (2014). In these equations, Wq and Uq represent the
weights matrices of the input and the recurrent connections. q represents the input gate i,
output gate o, forget gate f , or memory cell c, depending on what is being calculated.

Γq = Wqxt + Uqht−1 + bq (12)

ft = σg(Γf) (13)

it = σg(Γi) (14)

ot = σg(Γo) (15)

ct = ft ◦ ct−1 + it ◦ σc(Γc) (16)

ht = ot ◦ σh(ct) (17)

In these equations, the ◦-operator is used as an entry-wise product. ht represents the output
vector of the LSTM network. σg represents a sigmoid function, analog to Equation (5). σc
and σh represent hyperbolic tangent functions. Lastly, b represents a bias vector.

3.2 Reinforcement Learning

In contrast to Deep Learning, Reinforcement Learning is not often heard in the media or
in business. However, (Deep) Reinforcement Learning is believed to be one of the top 10
emerging trends in the field of AI, according to Rao, Voyles, and Ramchandani (2018).
Reinforcement Learning (RL) is defined by van Otterlo and Wiering (2012) as “a general
class of algorithms in the field of machine learning that aims at allowing an agent to learn
how to behave in an environment, where the only feedback consists of a scalar reward
signal”. As stated by Sutton, Barto, and Bach (1998), RL differs from supervised learning,
as supervised learning is learning by examples that are provided by an external source,
whereas RL is learning by the own experience of the agent. However, as stated by Hilleli
and El-Yaniv (2018), RL has its flaws: “it either requires a realistic simulation of the
agent’s interaction with the environment or requires operating the agent in a real-world
environment, which can be quite costly”. Attempts have been made to implement RL into
applications in the medical domain by (Doorhof, 2018), but these have not been completely
successful.
The field of RL is relatively young. It is also known as Neuro-Dynamic Programming
(NDP), which is defined by Bertsekas (2008) as “a class of dynamic programming methods
for control and sequential decision making under uncertainty”. However, the first mention
of an algorithm that resembles RL was in 1959, when Samuel used machine learning in
order to let the computer play checkers. The algorithm was only provided with the game
rules, and a set of parameters, after which it took 8 to 10 hours of learning to surpass the
skill level of the person who wrote the algorithm Samuel (1959).
Figure 12 gives a schematic overview of a Reinforcement Learning algorithm. It contains an
Agent, which works in an Environment. Each tick of the algorithm, the Agent performs an
Action in the Environment. The result of this action is a tuple, containing an Observation
of the current state of the environment, as well as a Reward, which can be either positive
or negative.

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 19

Figure 12 . Diagram illustrating a basic Reinforcement Learning implementation

In essence, the elements of a RL algorithm make up a MDP. A MDP is defined as “a model
for sequential decision making when outcomes are uncertain” (Puterman, 2014). It consists
of decision epochs, states, actions, rewards, and transition probabilities. Figure 13 shows
an example of a MDP (Matiisen, 2015).

Figure 13 . Example of a Markov Decision Process (MDP). The orange arrows represent the
rewards, the orange circles represent the actions, and the green circles represent the states

The following sections will go into detail on the various different types of RL algorithms. As
stated, RL differs from supervised learning. For more information on supervised learning,
refer to Section 3.1. These sections will cover two of the more popular variants of RL.

3.2.1 Q-Learning.
Quality-Learning (Q-Learning) is one of the algorithms used in AlphaGo. Like all other
forms of RL, it is a MDP. As such, it follows the same general structure as shown in
Figure 12. The Q in Q-Learning stands for quality, as the function used in the algorithm,
the Q-function, describes the quality of the state the algorithm currently is in (Matiisen,
2015). Melo (2001) proved that for every finite MDP, Q-Learning will find an optimal policy

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 20

that maximizes the expected value of the total reward.
Q-learning functions by first summing all of the future rewards of the algorithm, which is
calculated in Equation (18).

Rt = rt + γ(rt+1 + γ(rt+2 + . . .)) = rt + γRt+1 (18)

Here, Rt is the total future reward from time step t, rt is the reward at time step t after
performing action at. However, not all rewards should be counted equally. The more in
to the future a rewards is (and thus, the more time steps it is away), the more the reward
may differ, and the less it should be counted. As such, a factor γ is used, which is a value
between 0 and 1. A γ of 0 will result in an algorithm that only looks at immediate rewards,
whereas a γ of 1 will result in a deterministic environment in which the same actions will
always lead to the same answers.
Q-Learning is then defined by Equations (19), (20), and (21).

Q(st, at) = max
π

Rt+1 (19)

π(st) = argmaxαtQ(st, at) (20)

Equation (19) represents the so-called quality function. Q(st, at) represents the quality
of the current state st after performing action at, and Rt+1 represents the future reward
as explained in Equation (18). The π represents the action policy, which is a rule that
determines which action should be chosen in what state. Equation (20) further explains
the Q-Learning policy. In this case, the policy is to just simply choose the action with the
highest result. Combining these two equations results in Equation (21)

Q(st, at) = rt + γmax
αt+1

Q(st+1, at) (21)

Q(st, at) = Q(st, at) + α [rt + γQ(st+1, a)−Q(st, at)] (22)

In this equation, it is shown that the maximum future reward of a state st after performing
action at is the immediate reward rt plus the maximum future reward of state st+1, weighed
by a factor γ. Equation (21) is also known as the Bellman equation. Often times, this
equation is written in the form as shown in Equation (22).

3.2.2 SARSA.
Another popular RL algorithm is State-Action-Reward-State-Action (SARSA), which was
proposed by Rummery and Niranjan (1994) under the name “Modified Connectionist Q-
Learning (MCQ-L)”. SARSA is defined as an on-policy learning algorithm used for learning
Markov Decision Process policies. It shows a large resemblance to Q-Learning, with the
exception of one detail, which is shown in Equation (23):

Q(st, at) = Q(st, at) + αt [rt + γQ(st+1,at+1)−Q(st, at)] (23)

While Q-Learning maximizes the reward by assuming it will perform action a in state
st+1, SARSA takes the action at+1 into account as well. This is highlighted in bold in
Equation (23).

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 21

3.3 Deep Reinforcement Learning

While both DL and RL have been applied separately from each other, the combined usage
of these algorithms is not widely used. The combination of these two types of algorithms is
called Deep Reinforcement Learning (DRL). A proposed definition for DRL is as follows:

Deep Reinforcement Learning is a type of machine learning algo-
rithm in which a deep learning algorithm represents the internal
agent of a reinforcement learning implementation as a way to
represent its’ policy function or notion of expected rewards.

DRL was first mentioned by Shibata and Okabe (1997), albeit not under the name Deep
Reinforcement Learning. This work describes how the performance of a RL implementation
improved considerably when guided by a RNN. DRL was later popularized by Mnih et al.
(2013), in which they described how DRL vastly improved over all previous approaches on
previous games, and beats a human expert in three different games. Later, this work was
generalized to more ATARI games (Mnih et al., 2015). More recently, AlphaGo Zero, an AI
developed by Google DeepMind, was able to master the game of Go without any previous
knowledge about the game (Silver, Schrittwieser, et al., 2017). It achieved this by using
DRL in combination with a MCST implementation.

Figure 14 . Diagram illustrating a basic Deep Reinforcement Learning implementation

3. THEORETICAL BACKGROUND: DEEP REINFORCEMENT
LEARNING PRINCIPLES 22

Figure 14 shows a global overview of a DRL implementation. Like Figure 12, the imple-
mentation consists of an Agent, which performs an Action in an Environment, for which
it obtains a Reward. An Observation of the outcome in the Environment can be made
by the Agent. The main difference from Figure 12 is that the agent is guided by a Deep
Neural Network, which is nested in the Agent. This is the DNN from Figure 7. The Action
performed by the Agent is based on the output layer of the DNN, whereas the Reward is
used in order to alter the input layer of the network.
A Deep Q-Network (DQN) is a type of network developed by Mnih et al., which combines
Reinforcement Learning with a Deep Neural Network. More specifically, it uses Q-Learning
as its’ RL algorithm. This approach combines the strengths of DL and RL approaches, and
complements each others’ weaknesses. It allows a DL algorithm to learn and improve itself,
whereas it allows a RL algorithm to approximate the optimal action-value function. The
implementation by Mnih et al. is shown in Equation (24).

Q∗(s, a) = max
π
E[rt + γrt+1 + γ2rt+2 + . . . |st = s, at = a, π] (24)

This formula gives the maximum sum of rewards rt discounted by γ at each timestep t.
This is achieved by a policy π = P (a|s), after making observation s and taking action a in
response.
There is one flaw in this approach, which is explained by Van Hasselt, Guez, and Silver
(2016). In this paper, it is highlighted that the value function and network weights (θt)
used to select an action are also used to evaluate that action. This results in an overop-
timistic value estimation. In order to prevent this, a second value function can be used,
which results in a second set of network weights (θ′t). This principle is called a Double
Deep Q-Network (DQN). The main difference between a regular DQN and a Double DQN
is shown in Equation (25) and Equation (26) respectively. Equation (25) functions the
same as Equation (24), but uses the notation from the paper of Van Hasselt et al. (2016),
which decouples the selection and evaluation into separate components. Note the difference
between the used network weights in the value function.

Y Q
t = Rt+1 + γQ(St+1, argmax

a
Q(St+1, a; θt); θt) (25)

Y DoubleQ
t = Rt+1 + γQ(St+1, argmax

a
Q(St+1, a; θt); θ′t) (26)

4. DETERMINING THE SUITABILITY OF NEW DOMAINS 23

4 Determining the Suitability of New Domains

This section will discuss how a suitable domain for the application of DRL principles can
be found. An informal exploration of literature regarding challenges of Deep Reinforcement
Learning has been performed. The main challenges that are presented from the literature
are presented in Section 4.1. These challenges will be used as a way to check whether a
domain would be suitable for the implementation of DRL principles into an application in
the domain. Section 4.2 will introduce the 4VATT Suitability model, which consists of a
set of questions to aid in estimating the suitability of a new domain.

4.1 Challenges of Deep Reinforcement Learning

As stated in Chapter 1, Deep Reinforcement Learning (DRL) is mostly applied in the gaming
domain. This is done to either beat complex board games (Silver, Hubert, et al., 2017;
Silver, Schrittwieser, et al., 2017), 2D videogames (Mnih et al., 2013, 2015), or even older
3D videogames (Lample & Chaplot, 2017). However, outside of this domain, the combined
principles of DL and RL have not been applied frequently. There are some challenges
for DRL in order to be applied more widespread, which have been identified through an
informal literature exploration on the challenges of implementing DRL principles into new
domains. These challenges are as follows:

• Factors corresponding to Big Data’s 4V model

– Volume
– Variety
– Velocity
– Veracity

• Accountability of decisions made by implementation

• Domain Transparency

• Domain Transformability

The next subsections will go more into the different factors of, and challenges for a successful
DRL implementation. These challenges are based on work by (Berman, 2013; X.-W. Chen
& Lin, 2014; IBM, 2018; Miotto, Wang, Wang, Jiang, & Dudley, 2017; Valk, 2018)

4.1.1 Big Data’s 4V model.
One of the most important factors of a successful DRL is the data that the implementation
is built on. In order to make a good representation of the data, the data itself must be
of high quality and quantity, as stated by Najafabadi et al. (2015). The amounts of data
needed in order to build a large scale, high quality implementation of DRL is often classified
as ‘Big Data’. Big Data in the context of this thesis is associated with 4 key concepts, which
are Volume, Variety, Velocity, and Veracity. These 4 concepts are also known as the ‘4 V’s
of Big Data’, or the ‘4V model’, which is visualised in Figure 15 (IBM, 2018).

4. DETERMINING THE SUITABILITY OF NEW DOMAINS 24

Figure 15 . Diagram showing the 4V model, containing the four different components of Big
Data

In order to make an accurate representation of the data, enough training data is needed. As
such, the Volume of the data within the domain is very important. According to Goodfellow
et al. (2016), at least 50000 training examples are needed to get ‘acceptable’ results out of
a DL Neural Network implementation, whereas 10 million training examples are needed in
order to achieve human-like results. However, while a successful DRL is dependent on a
high volume of data, the amount of data stored by Google, Microsoft, Yahoo! and other
large internet companies exceeds the data need for an implementation like this. According
to Council (2013), the stored data of these companies is measured in exabytes (1018 bytes).
Another factor is the Variety of the data. While DRL implementations are suited for han-
dling different kinds of data, this works best when the algorithm is presented with large
amounts of unstructured data. In this case, the algorithm can detect higher level complex-
ities and patterns in the data set, where other more shallow learning hierarchies fail to do
so (Najafabadi et al., 2015). For data that is semi-structured, fully structured, or has a lack
of variety, a DRL implementation might not outperform other machine learning algorithms.
However, this is not solely dependent on the variety, but also on other characteristics of the
data.
The Velocity of the data is also an important factor. It is described by Berman (2013) as
data that is “constantly changing through the absorption of complementary data collec-
tions, through the introduction of previously archived data or legacy collections, and from
streamed data arriving from multiple sources.” One of the challenges is to adapt a DRL
implementation to the changing speed of input, and to adapt it to streaming data.
Lastly, one of the aspects of Big Data deals with Data Veracity. Veracity, which was men-
tioned by IBM as the fourth V, represents the unreliability of data (Gandomi & Haider,
2015), along with the confidentiality, integrity, and availability of data (Kepner et al., 2014).
This means that the data, data analytics, and outcomes should be error-free and credi-
ble (Raghupathi & Raghupathi, 2014). According to Raghupathi and Raghupathi (2014),
this is especially critical in the healthcare domain, as “life or death decisions depend on hav-

4. DETERMINING THE SUITABILITY OF NEW DOMAINS 25

ing the accurate information, and the quality of healthcare data, especially unstructured
data, is highly variable and all too often incorrect.”
While some characteristics to the 4V model have been added over time, such as the Value
characteristic, these will not be considered in this thesis. As such, only the four charac-
teristics described in this section will be taken into consideration in the context of this
thesis.

4.1.2 Implementation and Accountability.
When implementing a DRL solution, one will deal with a lot of (Big) data. And with
data comes a responsibility. After all, data should be kept safe and secure. According
to Gantz and Reinsel (2012), 68% of the information is created or consumed by consumers,
yet enterprises have liability or responsibility for nearly 80% of the data. This imbalance
can create lots of privacy and accountability issues. Nature (2007) states that “any data on
human subjects inevitably raise privacy issues, and the real risks of abuse of such data are
difficult to quantify”.
Even when researches try to be cautious and thorough about following procedures, the
(intended) outcome from their research can sometimes be harmful. Gantz and Reinsel gives
the example of findings made by Emmens and Phippen (2010). In their research, they
found that there was a correlation between self-harm and suicide. In order to combat this,
they designed and tested an educational intervention to help prevent self-harm, and thus
to help prevent suicide. However, the research had an adverse effect and increased suicidal
thoughts under teenagers, after which the intervention was rolled back.
This is one of the examples in which accountability plays a large role. The dilemma with
implementations such as these, is who is to be held accountable when something goes
wrong. Should it be the people who gathered the data, the ones who made the models, the
ones implementing the solution, or should someone higher up in an organization be held
accountable for any mistakes? The more possible issues an implementation could bring up,
the less suitable a domain will be for such a ‘black box’ style implementation.

4.1.3 Domain Transparency.
Another factor which plays a role in determining the suitability of a new domain, is the
amount of transparency needed in a domain. This is slightly related to the issues highlighted
in Section 4.1.2. Because DRL is seen as a ‘black box’ algorithm, the decision making process
of the algorithm is either not known to, or not understandable for the user.
While the decision making process is not important in some domains, an example be-
ing the gaming domain, transparency is very important in other domains. For example,
the deeper decision making process is not very important in the gaming domain. For ex-
ample, SethBling (2015) created a neural network capable of playing Super Mario World
without any prior knowledge of the game controls and mechanics, similarly to how AlphaGo
Zero functions. In this case, the inner decision making process was not important. This
implementation is shown in Figure 16
However, as stated in Section 4.1.1 by Raghupathi and Raghupathi, the healthcare domain
deals with decisions about life our death, which depend on the correct information and
results. If a wrongful decision is made, it is critical to know why a certain decision was
made, in order to prevent this same decision to be made in the future.

4. DETERMINING THE SUITABILITY OF NEW DOMAINS 26

Figure 16 . Screenshot of MarI/O, a neural network implementation capable of au-
tonomously learning and playing Super Mario World

In light of the recent introduction of the GDPR, this currently is a large issue, as described
by Goodman and Flaxman (2016). Persons that are affected by decisions made by an AI,
now have a right to know on what grounds this decision is made. This poses a challenge
for Deep (Reinforcement) Learning, which is commonly described as a ‘black box’. Further-
more, Samek, Wiegand, and Müller (2017) states that it is a necessity for certain domains
to have insight in the decision making process of the AI, as small (, fixable) errors could
have a large outcome on the decision.
This issue is being solved from multiple perspectives. Explainable AI (XAI) aims to solve
this by ‘opening the black box’ and giving insight in the decision process of the AI. This
has been explored by Valk (2018), who researched an interpretable recurrent neural net-
work for heart failure re-hospitalization predictions. Gunning (2017) claims that there is a
need for Explainable AI, stating that it “will be essential if users are to understand, ap-
propriately trust, and effectively manage this incoming generation of artificially intelligent
partners”. However,while Bau, Zhou, Khosla, Oliva, and Torralba (2017) proposes a frame-
work to quantify interpretability of CNNs, the interpretability is not an axis-independent
phenomenon. This means that the framework does not work the same on every layer of
the neural network hidden layer, and that each hidden layer of the network disentangles
different abstraction levels of information. This has a significant effect on the representation
learned by different hidden levels.

4.1.4 Domain Transformability.
As stated before in Section 1.2, all of the previous examples share the same structure; “a
piece of software that transforms input into output, according to a set of rules”. As such, not
all applications within a domain are suitable for the application of DRL principles. Thus,
the ability to transform (an application within) a domain to a more structured, game-like
form, will aid in the process of implementing DRL.
This process consists of rewriting inputs in order to be of a certain structure, determining

4. DETERMINING THE SUITABILITY OF NEW DOMAINS 27

a reward function for the DRL algorithm, as well as the environment for the RL part of the
algorithm. Additionally, RL requires the application to be some kind of simulation, with a
time element involved in it (Hilleli & El-Yaniv, 2018). Thus, if the current application does
not have this structure, more transformations are needed.

4.2 Selecting a Suitable Domain

Based on the challenges and factors proposed in Section 4.1, this section will propose a model
that can aid the user in determining how suitable a domain is for the implementation of
DRL principles. This model, which will be called the 4VATT Suitability Model, consists
of a set of questions, divided over 7 different categories. The outcome of the model is a
suitability score, which gives an estimation of the suitability of the domain.
The core part of the 4VATT Suitability Model is the set of questions. The complete list
of questions can be found in Appendix A. Each question belongs to a factor or challenge
mentioned in Section 4.1. The answers to those questions are in the form of a five-point
Likert scale. For example, one of the questions on the topic of Transparency is as follows:
“What amount of governance of the application in this domain is needed or will be used?”,
where the answers range from “Very high” to “Very low”.
In order to calculate the suitability of a domain, all of the questionnaire answers have to be
transformed into a score. For some answers, it is desirable to have an inverted score. For
example, it is desirable to give a high score when the amount of work needed to transform
an application into one with a game-like structure is very low.
Once all of the answers have been converted, the scores of all of questions have to be added
up, and be divided by the maximum score in order to get a suitability percentage. This
is expressed by Equations (27) and (28), where Q represents the set of questions, and F
represents the set of factors.

υ =
∑
f∈F

∑
qf∈Qf

scoreqf
(27)

suitability = υ

max(υ) ∗ 100% (28)

A similar percentage can also be calculated for each individual factor. This is done by
summing the scores of a single factor, and dividing by the maximum score for that factor.
The result is a suitability score, a percentage which gives a rough indication of the suitability
for that factor. An example of the (random) suitability scores for two domains is shown
in Figure 17. In this example, both example domains have a suitability score of 75.6%.
However, the score distribution between the different factors is not the same. This is shown
in Table 1.
In Section 1.3, multiple research questions were posed. More specifically, (Q1) asked “How
can we determine whether a new domain would be suitable for the usage of Deep Reinforce-
ment Learning?”. With the 4VATT Suitability Model, a method is created which aids in
determining whether a domain is suitable for the implementation of DRL principles. By
receiving the aid of domain experts, or possible stakeholders with sufficient domain knowl-
edge, in order to answer the questions of the model, a rough indication of the domain
suitability can be given.

4. DETERMINING THE SUITABILITY OF NEW DOMAINS 28

Table 1
Score distributions for the domains illustrated in Figure 17, showing that different distribu-
tions can lead to an equal suitability score.

Category Domain A Domain B
Score Suitability Score Suitability

Volume 7 70.00% 9 90.00%
Variety 5 50.00% 10 100%
Velocity 6 60.00% 10 100%
Veracity 9 90.00% 10 66.67%
Accountability 14 93.33% 10 66.67%
Transparency 14 93.33% 10 66.67%
Transformability 13 86.67% 9 60.00%
Total 68 75.56% 68 75.56%

Figure 17 . An example of a visualization of the suitability scores per factor for two different
domains

While the success of a successful implementation of DRL principles in an existing application
depends on much more factors than the ones proposed in the 4VATT Suitability Model,
these are factors that are not challenges or aspects of the domain at hand. For example, a
success factor of an implementation could be the financial aspect of the implementation, or
whether there is enough computing power to carry out the calculations of the algorithm.
This, however, falls outside of the scope of the 4VATT Suitability Model.

5. EMPIRICAL BACKGROUND: STRIP ASSISTANT AND THE
MEDICAL DOMAIN 29

5 Empirical Background: STRIP Assistant and the Medical Domain

This section will introduce the medical domain and the STRIP Assistant, an application
within this domain. As stated within Chapter 1, Deep Reinforcement Learning principles
are not applied frequently within the medical domain yet. However, while applying these
principles could have a positive influence on the usability of applications within the domain,
it is not yet known whether the domain is really suitable for the implementation of DRL
principles.
Section 5.1 will see the 4VATT Suitability Model applied to the medical domain, in order
to determine whether this domain would be suitable for the application of DRL principles.
In particular, the scores on Transformability are important, as these will tie into both
Chapter 7, as well as research question (Q2).
Section 5.3 will give an introduction into the STRIP Assistant in the context of the medical
domain. The section will discuss its place within the domain, will go into detail on the
inner workings of the STRIPA, and how it helps to solve the problem of polypharmacy.

5.1 Applying the 4VATT Suitability Model

This section will discuss the suitability of the medical domain for the application of DRL
principles. More specifically, the prescriptive healthcare domain will be looked into, in which
the STRIP Assistant is positioned. This positioning will be discussed further in Section 5.3.
In order to determine the suitability of the prescriptive healthcare domain, the 4VATT
Suitability Model will be used. The outcome of the model will determine whether or not
DRL principles should be implemented into the STRIP Assistant. The answers to the
4VATT Question List are based on multiple sources on the STRIP Assistant itself, as
well as own experience from the medical domain as gathered during the development of
Valeas (Knemeijer, 2018). Appendix B shows the given answers to all of the questions of
the 4VATT Question List, complete with an explanation on how the answer is conceived.

Table 2
Score distributions for the suitability of the prescriptive healthcare domain

Category Prescriptive Healthcare
Score Suitability

Volume 7 70.00%
Variety 8 80.00%
Velocity 6 60.00%
Veracity 11 73.33%
Accountability 9 60.00%
Transparency 8 53.33%
Transformability 10 66.67%
Total 59 65.56%

Table 2 gives a detailed view of the Domain Suitability Scores per factor, as a result of
the answered 4VATT Question List. These results are visualized in Figure 18. The 4VATT
Suitability Model shows that the prescriptive healthcare domain has an expected suitability
of approximately 66%. This is mainly due to a relatively low score on the Transparency
factor, which is compensated by a relatively high score on the Variety factor.

5. EMPIRICAL BACKGROUND: STRIP ASSISTANT AND THE
MEDICAL DOMAIN 30

Figure 18 . Domain Suitability Scores for the Prescriptive Healthcare domain

While a percentage of 66% might not be considered to be very high, a slight improvement
in the Transparency factor will significantly improve the overall expected suitability of the
domain. As such, there is reason to believe the prescriptive healthcare domain would be
suitable for the implementation of DRL principles. The principles will be implemented in
the STRIP Assistant, which will be introduced in Section 5.3. A more detailed overview of
the implemented principles in the STRIP Assistant will be shown in Chapter 7.

5.2 The Prescriptive Healthcare Domain

This section will give an introduction to the prescriptive healthcare domain. More specifi-
cally, this section is an introduction to the problem of polypharmacy. Section 5.2.1 explains
the concept of polypharmacy. Section 5.2.2 will give insight in how this problem was at-
tempted to be solved in the past.

5.2.1 Polypharmacy: When one pill turns into ten.
Polypharmacy is described by Jansen and Brouwers (2012) as “the concurrent use of five or
more different drugs”. While positive consequences for this level of drug usage exist, such as
a longer life expectancy, polypharmacy also has negative consequences. The inappropriate
usage and dosage of drugs may have an adverse effect on the health of the patients, which is
caused by drug-drug, drug-disease, or adverse drug reactions (ADRs) (Jansen & Brouwers,
2012; Meulendijk et al., 2015).
Multiple issues are linked to polypharmacy, such as underprescription (Kuijpers, Van Marum,
Egberts, Jansen, & OLDY (OLd people Drugs & dYsregulations) Study Group, 2008; Sloane

5. EMPIRICAL BACKGROUND: STRIP ASSISTANT AND THE
MEDICAL DOMAIN 31

et al., 2004; Wright et al., 2009), inappropriate usage or over-treatment (Steinman et al.,
2006), and a decrease in drug adherence (Claxton, Cramer, & Pierce, 2001; Kuzuya et al.,
2000). A study by Claxton et al. (2001) shows that the percentage of patients’ drug ad-
ministration adherence drops from 79% for once daily administration to 51% for four-times
daily administration. The HARM study, a 2008 study performed in Dutch hospitals, shows
that the percentage of patients admitted into the hospital suffered from medication-related
problems is 5.6% (Leendertse, Egberts, Stoker, & van den Bemt, 2008). For elderly over
the age of 65, who make up half of the chronically ill polypharmacy patients (Meulendijk et
al., 2015), this percentage rises significantly to 16% (Jobse, Mulder, ter Borgh, & Grund-
meijer, 2009). However, it has been proven that GPs and geriatricians play a major role
in preventing or optimizing polypharmacy under elderly patients(Rollason & Vogt, 2003;
Sergi, De Rui, Sarti, & Manzato, 2011).

5.2.2 STRIP: Methods for medication.
Several different methods have been developed in order to aid GPs and geriatricians with
preventing or optimizing polypharmacy under elderly patients. These include both implicit
and explicit methods. Implicit methods make use of patient information, which is combined
with medical rules and knowledge in order to make an informed decision, whereas explicit
methods mostly consists of screening tools, question lists, and clinical interactions (Jansen
& Brouwers, 2012). The most popular implicit methods are the Medical Appropriateness
Index (MAI) (Hanlon et al., 1992), and the “Use, Indication, Safety & Effectiveness (UISE)”
(Dutch: “Gebruik, Indicatie, Veiligheid & Effectiviteit (GIVE)”) model as described in the
PHARM-study (Leendertse et al., 2011). The most popular explicit methods are the Beers
criteria (Campanelli, 2012), the Screening Tool of Older People’s Prescriptions (STOPP),
and the START criteria (Gallagher, Ryan, Byrne, Kennedy, & O’Mahony, 2008). The
STOPP and START criteria consists of lists of drugs that are possibly not suitable for
elderly people (Verdoorn, Kwint, Faber, Gussekloo, & Bouvy, 2016). Each criterium lists a
drug, a condition, and an explanation. An example is shown in Figure 19

Figure 19 . An example of a STOPP criterium. This criterium shows that patients with
COPD who use non-cardioselective beta-blockers have an (increased) risk of bronchospasm

In order to further combat polypharmacy under elderly people, some of the aforementioned
implicit and explicit methods have been combined into one single, systematic medication
review method, called the Prescription Optimization Method (POM). Drenth-van Maanen,
van Marum, Knol, van der Linden, and Jansen (2009) shows that the quality of prescriptions
by GPs for (elderly) polypharmacy patients is increased significantly by using the POM,
albeit in an experimental setting.
Today, the GIVE model, POM, STOPP, and START criteria have all been combined into

5. EMPIRICAL BACKGROUND: STRIP ASSISTANT AND THE
MEDICAL DOMAIN 32

a single method called the ‘Systematic Tool to Reduce Inappropriate Prescribing (STRIP)’
method. The STRIP method is a combination of several rules and methods that has been
designed to be a complete drug optimization process in primary care, taking the phar-
macotherapeutic analyses, as well as patients’ medical histories and preferences into ac-
count (Meulendijk et al., 2015). Since its creation, STRIP has been included in the Dutch
multidisciplinary guideline on polypharmacy in elderly patients (NHG & Verzorging, 2012).
Figure 20 illustrates the working of STRIP.

Figure 20 . Illustration of the STRIP method by Meulendijk et al. (2015) showing the six
different stages of the method

The STRIP method combines both the earlier described implicit (MAI, GIVE), and ex-
plicit (START, STOPP) methods, as well as the POM, into a singular pharmotherapeutical
analysis method. Most of these methods are performed in step 2 of the STRIP method,
as shown in Figure 20. Based on the pharmoterapeutic analysis (step 2), combined with
the drug history (step 1) of the patient, a treatment plan can be developed (step 3), which
can be tweaked according to the preferences of the patient (step 4). In order to determine
the effectiveness of the newly prescribed or stopped-usage drugs, a follow-up is required, as
well as monitoring of the patients’ health (step 5). In order to prevent polypharmacy from
scaling out of control, this process should be repeated yearly.

5. EMPIRICAL BACKGROUND: STRIP ASSISTANT AND THE
MEDICAL DOMAIN 33

5.3 STRIP Assistant: From man-work to machine

This section describes the STRIP Assistant, which is a tool that is currently being used to
apply the STRIP method in a more effective way. Where Section 5.2 gave insight in how the
problem of polypharmacy was solved in the past, this section describes how this problem
is currently aimed to be solved with current-day technology. Section 5.3.1 will show the UI
of the STRIP Assistant, whereas Section 5.3.2 will go into detail on the back-end of the
STRIP Assistant.
The STRIP Assistant is a web-based application that aims to assist General Practition-
ers (GPs) and pharmacists with pharmacotherapeutic analysis on medical records of pa-
tients (Meulendijk et al., 2015). It is based on the STRIP method, which is described
in Section 5.2.2. It uses the START and STOPP criteria, as well as established guide-
lines on clinical interactions, double-medication, contraindications, dosage strength and
frequency (Meulendijk et al., 2015).

5.3.1 User Interface.
The STRIP Assistant consists of five different sections. The first section, the Personalia,
has basic information about the patient, such as age and gender. This information can later
be used to help determine the best medication for the patient. The second section, which
is contains the medical History of the patient, is a list of all of the previous medication
and treatments the patient has received in the past, complete with additional information
such as frequency, duration, and medication strength. This is shown in Figure 21. It also
contains lists of previous medical conditions, measurements, adverse events, and scores.

Figure 21 . Second section of the STRIP Assistant, which shows the complete medical
history of the patient

The third section, which is the largest out of the five, is the Analysis section. This section
consists of multiple subsections, which is shown in a list on the right. The first subsection

5. EMPIRICAL BACKGROUND: STRIP ASSISTANT AND THE
MEDICAL DOMAIN 34

is the Medications tab. In this part of the STRIP Assistant, a list of patient complications
is shown, as well as a list of treatments. Users of the STRIP Assistant can drag the treat-
ments to the corresponding complications, as shown in Figure 22. The next two categories,
Undertreatment and Overtreatment, consists of the START and STOPP criteria that match
with the known complications and medication for the patient. This is shown in Figure 23.
The last four categories cover several different types of interactions. These interactions are
based on the previously mentioned established guidelines. This is shown in Figure 24.

Figure 22 . Analysis section of the STRIP Assistant, which is comprised of multiple subsec-
tions. This subsection shows the known medication, which can be dragged and dropped on
to known complications of the patient

After the analysis has finished, an advice report is generated, which is done in the Advice
section of the STRIP Assistant. This can be done in multiple different formats, to enable
the STRIP Assistant to work alongside other medical applications if needed. It shows a
complete overview of all of the current complications of the patients, with the corresponding
medication. The UI for this part of the STRIP Assistant is shown in Figure 25 When
generating an internal physician report, it also states all the started, stopped, and changes
medication of the patient. The last step in the proces is the fifth section of the STRIP
Assistant, the Decision section. This section is shown in Figure 26. Here, the user can
enter comments on why certain medication is stopped, started or changed.

5.3.2 Back-end.
The STRIP Assistant is an application, which is mostly written in Java. It is comprised of
ten different packages, with possible expansion possible if more data sources are coupled to
the STRIP Assistant. It is made up by five core packages. The complete set of packages can
be found in Figure 27. The strip.core package is the central package of the application.
It contains a definition for a basic servlet, which is a small Java program, running within
a Web server, that receives and responds to requests from Web clients (Oracle, 2015). The

5. EMPIRICAL BACKGROUND: STRIP ASSISTANT AND THE
MEDICAL DOMAIN 35

Figure 23 . This subsection of the Analysis section of the STRIP Assistant shows the Un-
dertreatment tab, which lists all of the matching START criteria for the known medication-
complication combinations of the patient

Figure 24 . This subsection of the Analysis section of the STRIP Assistant shows the drug
reactions. The known medication-complication combinations of the patients are matched
against established guidelines on medication interactions

package also contains definition for a SQLManager (to communicate with its’ database),
a patient manager (to handle patient data), and a class to create singletons of these two
classes.

5. EMPIRICAL BACKGROUND: STRIP ASSISTANT AND THE
MEDICAL DOMAIN 36

Figure 25 . Advice section of the STRIP Assistant. In this section, the user is shown an
overview of all of the complication-medication combinations for the patient, and has the
option of generating and downloading a detailed report

Figure 26 . Decision section of the STRIP Assistant. In this section, the user can comment
on why certain medication is started, stopped or changed

The second class, strip.model, is dependent on strip.core. Likewise, strip.core is de-
pendent on strip.model. This class contains all of the type definitions for the STRIP
Assistant, and acts similarly to a Model class from a Model-View-Controller (MVC) frame-
work. strip.input is dependent on both strip.core and strip.model, and is responsible

5. EMPIRICAL BACKGROUND: STRIP ASSISTANT AND THE
MEDICAL DOMAIN 37

Figure 27 . UML Class Diagram of the Java packages within the STRIP Assistant, with
inter-package dependencies and inheritances

for handling the autocomplete request received from the UI, and for serving an answer back
to the user. strip.exchange is responsible for the communication between the core of
the STRIP Assistant and external data sources, from which the STRIP Assistant receives
patient data. Coupled to this are multiple different exchange packages, which all have a
dependency on the strip.model package, and inherit their basic functionality from the
strip.exchange package. Lastly, the strip.analysis package is the package which takes
the patient data, and applies the START/STOPP to it. This will be the main focus of
Chapter 7, in which it will be looked to be replaced by implementing DRL principles.
The back-end of the STRIP Assistant is run on a Apache Tomcat 7.0 server. From here, the
application generates servlets, which generate valid HTML, JavaScript, and JQuery code.
The patient data is stored in a MySQL database, on a separate MySQL server. Additionally,
data about medication, complications, and dosages is also stored in this database.
It has already been shown that medication optimization improves significantly when using
the STRIP Assistant (Meulendijk et al., 2016). However, earlier validations of the STRIP
Assistant showed a decrease in efficiency, despite an improvement in effectiveness (Drenth-
van Maanen et al., 2009; Meulendijk et al., 2015). It is hypothesized by the author that the
implementation of DRL principles will improve the usability of the STRIP Assistant, and
will thus increase the efficiency, effectiveness, and satisfaction of the STRIP Assistant. The
implementation process will be discussed further in Chapter 6.

6. CRISP-DRL 38

6 CRISP-DRL

This chapter introduces a new variant on the CRISP-DM method, aimed at DRL. This
method will thoroughly be explained, with each of the stages, steps, tasks and outputs
listed. This chapter, combined with the next chapter, will also aim to answer research
question (Q2), which asks: “How can an application in a new domain be transformed in
such a way that it represents a game with rules, input and output?”.
The implementation of DRL principles into the STRIP Assistant will be carried out in a
method akin to the CRISP-DM method. An overview of this implementation methodology
can be seen in Figure 28. In this figure, five different stages can be made out, which are
shown with different colors. The tasks and output for each specific step of the implementa-
tion are laid out in Figure 29. In this figure, the colors of the elements match the colors of
the tasks in Figure 28. The stages, steps, tasks, and outputs are based on Chapman et al.
(2000).
The next subsections will go into detail on the different stages that make up this implemen-
tation methodology, which will be named CRISP-DRL within the context of this thesis.

Figure 28 . CRISP-DRL: A variation of CRISP-DM, aimed at Deep Reinforcement Learning,
consisting of five main stages

6.1 Understanding

The first stage, which is the Understanding stage, is about scoping out the application within
the domain, and the data this application handles. In order to aid the implementation
process, mapping out these three parts is vital. The three steps within this stage are
carried out simultaneously, and new insights within one stage might lead to changes within
the other stages.
Table 3 gives an overview of the tasks and output of the Application Understanding step.
This step is one of the two steps that has been added to CRISP-DM in order to create

6. CRISP-DRL 39

Figure 29 . Overview of the different steps of CRISP-DRL, with their respective tasks and
outputs

Table 3
Tasks and goals of the Application Understanding step, which is part of the Understanding
stage
Task Output

Application Structure ReportsDescribe Application Structure UML Class Diagrams
Explore Application Structure Application Exploration Report
Determine Key Application Sections List of Key Application Sections

CRISP-DRL. It consists of three different tasks. The first task is to describe the application
structure. When implementing DRL principles into an application, it is important to know
how this application works, and how it is structured. This task outputs an Application
Structure Report, and UML Class Diagrams. These two outputs will later be updated in
the Application Preparation step. This step will be discussed in Section 6.2.
The second task is to further explore the application structure. This is done in order
to further get a grip on the application, and to identify how the application functions at
runtime. This tasks results in an Application Exploration Report. Lastly, the final task of
this step is to determine the key sections of the applications. It is important to know which
parts (e.g. which classes or packages in a Java application) are to be enhanced or replaced
with a DRL implementation. This task outputs a list of key application sections.
The second step of this stage, the Domain Understanding step, was already present within
CRISP-DM, albeit under the name of Business Understanding. However, as shown by
Spruit and Lytras (2018), this can be exchanged with Domain Understanding as well. The
main tasks and outputs for this step are shown in Table 4.
The first task of this step is to determine the domain objectives. When implementing DRL
principles into an application within this domain, it is important to know how to make sure
this implementation goes according to plan. As such, it is important to gather information
about the domain at hand, and determine objectives and success criteria based on this
knowledge.

6. CRISP-DRL 40

Table 4
Tasks and goals of the Domain Understanding step, which is part of the Understanding stage
Task Output

Background
ObjectivesDetermine Domain Objectives
Success Criteria
Domain Suitability Percentage
RequirementsAssess Situation
Terminology
Data Mining GoalsDetermine Data Mining Goals Data Mining Success Criteria
Project Plan
Initial Assessment of ToolsProduce Project Plan
Initial Assessment of Techniques

After this has been established, the next task within this step is to assess the current domain
situation. Before proceeding with the implementation of DRL principles, it is important to
know whether the domain is suitable for this technology. If it is deemed suitable, then it is
important to gather requirements for the implementation, and to establish a terminology.
Determining a set of data mining goals is the next task within this step. This is done in
order to make sure that the right amount of correct data is being gathered in a structured
way, with minimal overhead. As such, this task results in a list of data mining goals, as
well as a list of data mining success criteria in order to test if the data mining process has
been carried out correctly.
The fourth and final task in the Domain Understanding step is the production of a project
plan. This is done to make sure all of the documentation is in a single place, and contains a
single version of the truth. The outputs for this task are the aforementioned project plan,
as well as initial assessments of the tools and techniques needed in order to carry out the
project plan, and thus the complete implementation.

Table 5
Tasks and goals of the Data Understanding step, which is part of the Understanding stage
Task Output
Collect Initial Data Initial Data Collection Report
Describe Data Data Description Report
Explore Data Data Exploration Report
Verify Data Quality Data Quality Report

The last step of the Understanding stage is the Data Understanding step. This step is all
about understanding the data that is used within the application, and the testing dataset
that will be gathered in order to train the DRL implementation. As shown in Table 5, it
consists of four tasks, each with one report as an output.

6. CRISP-DRL 41

6.2 Preparation

Once the first stage is complete, the whole application should be scoped out. The second
stage, which is the Preparation stage, aims to prepare the application and the data it uses
for the implementation of DRL principles. This stage involves rewriting data inputs, or
mapping out exactly where a DRL solution will be implemented within the application.

Table 6
Tasks and goals of the Data Preparation step, which is part of the Preparation stage
Task Output
Select Data Rationale for in-/exclusion
Clean Data Data Cleaning Report

Derived AttributesConstruct Data Generated Records
Integrate Data Merged Data
Format Data Reformatted Data

DatasetStep Output Dataset description

The first step of this stage is called the Data Preparation step. The main goal of this step
is to get a suitable dataset, with which the neural network will be tested and be ran in
production. As such, the main output of this step is a dataset, as well as a description of
said dataset. In order to achieve this, five different tasks have been selected, which is shown
in Table 6
The first task of this step is to select the correct data. Within the application, lots of
data is flowing from and to different endpoints. However, not all of this data is needed for
the implementation of DRL principles. For example, in the current version of the STRIP
Assistant, information about a patient’s name is stored within the database. This is useful
for the GP in order to know who is being treated. However, for a neural network, this
information is not needed. This task outputs a rationale for inclusion and exclusion of
data.
The next task in this step is to clean the data. In order to build an accurate DRL imple-
mentation, it is important to have correct data as an input, as this will greatly increase the
accuracy of the implementation. Thus, it is undesirable to have incorrect, incomplete, or
misplaced data in the dataset. After the dataset has been cleaned, this task will result in a
data cleaning report.
Next, the data can be constructed. In this step, new records can be generated if needed,
and new attributes can be added to the dataset. For example, when both a person’s body
weight and body length is present in a dataset, one can opt to add the ’Body Mass Index
(BMI)’ attribute to the dataset. Once this is done, the data can be integrated. The merging
of different datasets from different sources will result in one merged master data set. Lastly,
the data might need reformatting in order to be passed to the DRL implementation at a
later stage.
The other step in this second stage is called the Application Preparation step. This step,
which follows the Application Understanding step from the previous phase, was not present
in CRISP-DM. It consists of three different tasks, which are listed in Table 7.

6. CRISP-DRL 42

Table 7
Tasks and goals of the Application Preparation step, which is part of the Preparation stage
Task Output

Development LanguageDevelopment Language Selection Rationale
Alternate Data Flow
Updated Application Structure ReportsAlternate Data Flow Creation
Updated UML Class Diagrams

Adaptation of Key Application Sections Updated Key Application Sections

The first task of this step is to choose a development language for the implementation.
While the logical option might be to choose whichever language the application itself is
written in, this is not always the best option. Some languages might be preferable over
others. As such, this task outputs a development language, as well as a rationale for this
choice.
The next task is to create alternate data flows within the application. As discussed during
the data preparation step, data flows from and to lots of different endpoints within the
application. However, with the implementation of DRL principles, some flows might become
obsolete, or incorrect. As such, an alternate data flow should be created for these flows. The
outputs for this task are, apart from the alternate data flows, updated structure application
reports, and updated UML Class Diagrams.
Lastly, not only the data flows should be taken care of, the key application sections might
also need adaptation in order to correctly handle DRL. For example, model classes might
need to be rewritten in order to better accommodate the data structure that is needed for
a DRL implementation to work properly. The output for this task are the updated key
application sections. With this final task complete, the application and data should now be
fully prepared for the next stage, in which the modeling process will start.

6.3 Modeling

The Modeling stage involves creating training and validation data, training the DRL im-
plementation, and tweaking the parameters of the network if the results are unsatisfactory.
This stage has only one step, which is called the DRL Modeling step. This step has four
different tasks, which are listed in Table 8.
The first task in this step is to select a modeling technique. Like the selection of the
development language from the Application Preparation step, selecting a suitable modeling
technique can be quite a challenge, as some techniques are more favourable than others.
The output of this task is a modeling technique, as well as a list of assumptions made about
this technique, the model, the dataset, and the rest of the application.
Next, it is time to generate a test design. In order to correctly test whether the model
works, it is important to test its performance. After this task is completed, the resulting
output will thus be a test design.
When these two tasks are done, the model building can begin. This task is the part of the
step where the actual programming is done. The output for this step is the model, which
is the (conceptual) implementation of DRL, as well as a description for the model, and the

6. CRISP-DRL 43

Table 8
Tasks and goals of the DRL Modeling step, which is part of the Modeling stage
Task Output

Modeling TechniqueModeling Technique Selection Modeling Technique Assumptions
Generate Test Design Test Design

Parameter Settings
ModelBuild Model
Model Description
Model AssessmentAssess Model Revised Parameter Settings

parameters of the model.
In order to test whether the model is correct, the final task of the step needs to be performed,
namely to assess the model. This means tweaking the parameters of the model in order to
determine if the model gives correct answers. If this is not the case, parameter settings can
be revised. This task also outputs a model assessment. When this assessment is positive,
it is safe to proceed to the next stage.

6.4 Evaluation

After the training has been completed, the Evaluation stage starts. While the model has
already been evaluated somewhat in order to tweak the network parameters, this stage will
evaluate the final product, and will evaluate whether all domain needs have been satisfied. If
this is not the case, the complete process can be started again. If the evaluation is positive,
the final stage can begin.

Table 9
Tasks and goals of the Evaluation step, which is part of the Evaluation stage
Task Output

Assessment of DRL Implementation ResultsEvaluate Results Approved Models
Review Process Review of Process

List of Possible ActionsDetermine Next Steps Decision

Table 9 shows the tasks and output of the Evaluation step, which is the only step in the
equally named stage. It consists of three different tasks, the first of which is the evaluation
of the results. After the modeling has been done, the parameters have been tweaked, and
the remodeling has also been completed, the model is approved. This is the output of the
task, along with an assessment of the (preliminary) DRL implementation results.
The second task of this step is to review the complete implementation process. This is the
time to check whether everything has been carried out according to the project plan that
was produced as an output in the Domain Understanding step.
Lastly, the final task of this step is to determine the next steps. If the project was carried

6. CRISP-DRL 44

out successfully, the implementation is working as intended, and the results it produces are
correct, then it might be wise to automate this application further. However, if the process
has not gone as planned, and major design overhauls need to be made, it is possible to
decide to scrap all of the delivered work and to start all over again. In this case, the next
stage in the model is the Understanding stage.

6.5 Implementation

When the Evaluation stage has resulted in a positive decision, the final stage begins. In
this fifth and final stage, the Implementation stage, the final model is implemented into the
application.

Table 10
Tasks and goals of the DRL Implementation step, which is part of the Implementation stage
Task Output
Plan Deployment Deployment Plan
Plan Monitoring and Maintenance Monitoring and Maintenance Plan

Final ReportProduce Final Report Final Presentation
Review Project Experience Documentation

Apart from the deployment itself, which has not been listed here, there are four different
tasks that make up the DRL Implementation step. These tasks, complete with their output,
are listed in Table 10. The first task, which is the planning of the deployment, seems the
most logical to start with. This tasks not only covers when the implementation will take
place, but also where, in what way, and by who the implementation will be carried out.
After this has been completed, the next task is to plan monitoring and maintenance. Like
all pieces of software, the work doesn’t end when the software is released. It needs to
be monitored constantly and maintained regularly. As such, the output for this task is a
monitoring and maintenance plan.
After these plans have been set up, the application is running, being monitored, and being
maintained, it is time to produce a final report. This means gathering all of the previously
outputted plans, combining these into a single master document, and writing this in a
coherent, structured manner. This tasks does not only produce a final report as an output,
but can also output a final presentation.
Lastly, it is important to review the project. This can be done on many different levels,
such as development level, requirements level, or even on a personal level. By precisely
documenting what went good and what went not so good, mistakes that were made in the
past are less likely to happen again in the future.

7. APPLYING CRISP-DRL FOR STRIPAI 45

7 Applying CRISP-DRL for STRIPAI

This section describes the development process of the implementation of DRL principles into
the STRIP Assistant. The development process will follow the staged approach introduced
in Chapter 6. Each of the following subsections will discuss a stage of the CRISP-DRL
methodology, and will show the outputs for each of the tasks, albeit in a simpler version.
When spoken about a report in the output for a task, an explanation of what has been done
will be given instead. The fourth stage, the Evaluation stage, will not be discussed in here,
but will be discussed in Chapter 8. Lastly, as this is a thesis, the solution will not (yet) be
implemented. As such, the final stage of CRISP-DRL , the Implementation stage, will not
be discussed.

7.1 Understanding

The first stage of the development is the Understanding stage. The goal of this phase,
which is divided into three different steps, is to get a clear overview of the domain, the
application, and the data that will be used. While the steps within this stage can be done
in any particular order, the same order of steps from Section 6.1 will be used.

7.1.1 Application Understanding.
As described in Section 5.3, the STRIP Assistant is an application which is primarily written
in Java. It is based on the principle of servlets, which are small Java programs running on
a web server. The application is running these servlets on a Tomcat 7.0 server, and its data
is being stored in a MySQL database on a MySQL server. Figure 27 shows an overview of
the different classes that comprise the main part of the STRIP Assistant.
While looking further into the application, it was noted that the strip.core and strip.model
both play a large part in the STRIP Assistant, whereas the strip.analysis package has
a dependency on both of these classes. The last package is also where the rule engine is
located, which is responsible for taking the input, and firing rules that give a certain output.
As such, it is one of the locations where there should be searched for an implementation
possibility.
Lastly, while looking deeper into the application, some key application sections can be listed.
As mentioned before, both the strip.core and strip.model packages play a major role in
the STRIP Assistant, as well as the strip.analysis package. As such, these three packages
are listed as key application sections. In addition to this, the MySQL database is also a key
application section.

7.1.2 Domain Understanding.
As discussed in Section 5.2, the chosen domain is the prescriptive healthcare domain. The
main goal for the implementation is to help combat the concept of polypharmacy, which
is explained in Section 5.2.1. As such, the main objective for this implementation is to
improve the STRIP Assistant in order to help preventing polypharmacy. This is done
successfully when the usability of the ‘improved’ STRIP Assistant is significantly higher
than the usability of the ‘regular’ STRIP Assistant. Since usability is a construct of three
different variables, there are three different success criteria.

7. APPLYING CRISP-DRL FOR STRIPAI 46

As an assessment, a Domain Suitability Percentage has been calculated for the implemen-
tation of DRL principles in the prescriptive healthcare domain. Section 5.1 showed that the
prescriptive healthcare domain has an expected suitability of 66%.
It is vital for the ‘improved’ STRIP Assistant to be as correct or more correct as the current
version of STRIPA. This means that the number of false positives and false negatives of the
improved STRIPA should be equal to, or lower than the regular STRIPA. In addition to
this, the usability of the improved version needs to be significantly higher than the usability
of the regular version.
Because the implementation concerns principles of DRL, data is extremely important. Since
a DRL implementation best performs when presented with a large dataset, it is important to
gather as much data points as possible, while keeping the number of features relatively low.
This is done to prevent running into the so-called Curse of Dimensionality, a phenomenon
described by (Bellman, 2013) that states that the volume of the data space is defined as
the number of features times the number of data points used for training. A rule of thumb
proposed by (Theodoridis, Koutroumbas, et al., 2008) states that there should be at least
five training points for each feature in the dataset.
The main techniques that will be used for implementing DRL principles into the STRIP
Assistant will be the programming language Python (version 3), which will be working in
tandem with Tensorflow and Keras, two DL packages for Python. In addition to this, the
numPy and pandas packages will be used.

7.1.3 Data Understanding.
The initial data used is a testing dataset from the STRIP Assistant. While this does
concern testing data, the medical aspects are not randomly generated, and are thus deemed
as medically ’correct’. At a later stage, a larger dataset with real data is used.
The data in the STRIP Assistant’s database is divided over 39 different tables. However,
this also contains tables that are associated with end-user roles, or tables that contain data
such as chat logs, or medication-id-name translation tables. As such, not all 39 tables will
be used. The main tables that will be used are shown in Table 11.
The dataset contains data about 512 patients. This data has been reviewed by medical
experts connected to the OPERAM 2020 project. As such, the correctness of this dataset
is guaranteed, which makes the data quality very high.

7.2 Preparation

Once the preparation is complete, the second stage of the process can start: The Preparation
stage. The goal of this stage, which is divided into two steps, is to prepare the application
and the data for the implementation process. Just like the first stage, the steps in this stage
can be done in any particular order. However, the same order of steps from Section 6.2 will
be used.

7.2.1 Data Preparation.
As mentioned in Section 7.1, only seven of the 39 available tables will (partially) be used
within this implementation. Additionally, some data will be grouped together. For each set
of data, the relevant SQL statement will be given. Additionally, all Python scripts used for
the Data Preparation step can be found in Appendix C

7. APPLYING CRISP-DRL FOR STRIPAI 47

Table 11
Table names and table descriptions of the main tables used within the implementation of
DRL principles into the STRIP Assistant
Name Description
patient Contains all the relevant personal information about a patient, such as

their age and sex
medications Contains an overview of all of the known medication within the STRIP

Assistant
measurements Contains a set of medical measurements for each patient
treatments Contains a log of which patient uses what medication, for what complaint
complaints Contains a list of what patients suffers from which complaints
adverse-events Table that contains a translation from complaintID to natural language,

as well as a grouping code that merges multiple complaints into one cat-
egory

track A log of of which patient has been assigned what medication to treat
which complaint

Firstly, the patient data is gathered from the patient table. For each patient, their age,
ethnicity, and sex is collected. While more information is stored in the database (namely
the first and last names of the patients), this information is not queried from the database
for privacy reasons.

1 SELECT
2 `id`, `ethnicity`, `gender`, `age`
3 FROM
4 `patients`;

Figure 30 . SQL statement to collect patient information

The measurements table contains medical measurements for a patient. These measurements
can be a patient’s heart rate, or oxygen saturation levels.

1 SELECT
2 `patientID`, `measureID`, `value`
3 FROM
4 `measurements`;
5

6 /* Final Python output for single patient: ['1' '0' '78' '0' '0' '0' '0' '0' '0' '0'
7 '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0'] */

Figure 31 . SQL statement to collect medical measurements from each patient

Next, both the medications and the treatments table have been used in order to gather
all medication categories a patient uses. While using all medication instead of medication
categories might give a more accurate result, this has been done in order to prevent a

7. APPLYING CRISP-DRL FOR STRIPAI 48

massive increase in the feature space. In order to make sure only correct verified medication
is chosen, the medication status needs to be ‘ASCERTAINED’.

1 SELECT
2 `patientID`, `standardCode`
3 FROM
4 `medications` MDS
5 JOIN
6 `treatments` TRT
7 ON
8 MDS.id = TRT.medicationID
9 WHERE TRT.status = 'ASCERTAINED';

Figure 32 . SQL statement to collect all used medication categories for each patient

Like the medication categories, the complaint categories (from now on: complications) are
created by joining the complaints table with the adverse-events table. This merge is made in
order to constrain the amount of features the implementation needs to handle. TheWHERE
clause in the SQL statements make sure that only verified complaints are extracted from
the database.

1 SELECT
2 `patientID`, `standardCode`
3 FROM
4 `complaints` COM
5 JOIN
6 `adverse-events` ADV
7 ON
8 COM.adverseeventID = ADV.id
9 WHERE COM.status = 'ASCERTAINED';

Figure 33 . SQL statement to collect all used complications for each patient

Finally, in order to test the implementation, a query is done on the track table in order to
retrieve the firing of START and STOPP rules for each patient.

1 SELECT
2 `id`, `start`, `stopp`
3 FROM
4 `track`
5 WHERE `ruleKey` LIKE 'ST%';

Figure 34 . SQL statement to collect patient information

Now that all of the data is gathered from the database, it is loaded into the STRIP Assistant
by a MySQL connector. After all data has been loaded, it is transformed into a NumPy
array. The code for loading the data from the database into the application can be found
in Figure 43 and Figure 44.

7. APPLYING CRISP-DRL FOR STRIPAI 49

The data for complications and medications requires additional preprocessing, for a couple
of reasons. Within Tensorflow, which will be used within this implementation, and these
kinds of implementations in general, it is not possible to use input data with variable input
length. As such, it is not possible to feed the implementation 7 medications for the first
patient, 9 medications for the second, and so forth. It is also not possible to feed the
implementation both integer data and lists with variable input, for the reason explained as
above.
In order to remedy this, both the medication and complication sets have been transformed
into a multi-hot encoded vector. This is a vector consisting of only zeroes and ones, where
the one can occur more than once. This is in contrast to a one-hot encoded vector, where
a one can only occur once. Figure 45 shows an additional Python module that aids in
preprocessing the data. After this is done, the data is divided up into training sets and test
sets. A code snippet for this operation is shown in Figure 35.

1 ### BEGIN IMPORTS
2 from strip import input_preprocessor as sip
3 import numpy as np
4 import random as rd
5

6 ### END IMPORTS
7

8 personalia, complications, medications, target = sip.generateIO()
9

10 ### Start construction of the NN structure
11 ### First, generate the training and testing datasets
12 rd.seed(42)
13 trainingIndices = np.sort(random.sample(range(1,len(personalia)),

int(len(personalia)*0.9)))↪→

14 testIndices =
np.sort(np.array(list(set(range(1,len(personalia))).difference(trainingIndices))))↪→

15

16 #Then, construct training and test sets
17 def train_test(data, column='x'):
18 if column == 'x':
19 return (data[trainingIndices,:],data[testIndices,:])
20 elif column == 'y':
21 return (data[trainingIndices].flatten(), data[testIndices].flatten())
22

23 pers_x_train, pers_x_test = train_test(personalia)
24 comp_x_train, comp_x_test = train_test(complications)
25 med_x_train, med_x_test = train_test(medications)
26 y_train, y_test = train_test(target, 'y')

Figure 35 . Code snippet that handles the creation of training sets and test sets

7.2.2 Application Preparation.
As apparent from the Data Preparation step, the main development language for this im-
plementation will be Python. Python has been chosen over Java, the main development
language of the STRIP Assistant, for multiple reasons.

7. APPLYING CRISP-DRL FOR STRIPAI 50

The first and main reason is the choice of machine learning library. For this implementation,
both Tensorflow and Keras will be used. These libraries are both available for Python.
Next, the implementation will be developed parallel to the STRIP Assistant, and not in
the STRIP Assistant. This means that the data is pulled directly from the database, and
fed into the implementation. As a result, no changes need to be made to the list of key
application sections, the dataflows, and the class diagrams from Section 7.1.

7.3 Modeling

This stage and step of the process concerns the selection, building, and assessment of the
DRL model that will be built. The first task in this step is to select a modeling technique.
As a DRL implementation is built, the main modeling technique will be a neural network.
This network will be a fully connected neural network, with one input layer, one output
layer, and one or more hidden layers.
To train and test the network, an 80/20 split is made, where 80 percent of the data set is
reserved as training data, and 20 percent is used to verify the results. This is done by the
code snippet from Figure 35.
Once this split is made, the models are trained. One model is trained on personalia and
measurement data, one on medications, and one on complications. Each model is trained
for 20 iterations (or epochs), uses Tensorflow’s adam optimizer, and a sparse categorical
crossentropy as a loss function. Initially, each model is also trained with two (fully con-
nected) hidden layers, each consisting of 8 nodes. The output layer consists of four output
nodes, one node for each possible output class, which is activated by a softmax function. A
visual representation can be found in Figure 36.

Figure 36 . Visual representation of a trained neural network, where the gradient of an edge
represents the weight of the edge between two nodes

7. APPLYING CRISP-DRL FOR STRIPAI 51

Further revision of parameters results in a significant improvement in model results. These
results will be discussed in the next stage. The final parameters can be found in Table 12.

Table 12
Final configurations for all three trained neural networks

Personalia Medications Complications
Hidden Layer 1
- Nodes 4 16 16
- Regularization L2(0.001) NA NA
- Activation ReLu ReLu ReLu
Hidden Layer 2
- Nodes 4 16 16
- Regularization L2(0.001) NA NA
- Activation ReLu ReLu ReLu
Output Layer
- Nodes 4 4 4
- Regularization NA NA NA
- Activation SoftMax SoftMax SoftMax

7.4 Evaluation

This section will discuss the fourth stage of the method: the Evaluation Stage. This section
will present the results gathered by passing all of the testing data through the trained
networks that have been modelled in Section 7.3. First, results for the networks from
Table 12 will be shown. After this, a new set of networks will be trained and evaluated in
order to come to a better performing model.
After the completion of the Modeling stage, which was discussed in Section 7.3, a model has
been constructed, with a revised set of parameters. This model has been trained with 80%
of the available data, as discussed in Section 7.2. Using the remaining 20% for validating
this model results in a set of multi-class confusion matrices, as well as other measurements
about the model. These measurements can all be found in Appendix D, but the main results
will be presented in this chapter.
In order to determine the performance of the networks, multiple metrics are used. The first
one is the loss function of the network. As stated in Section 7.3, all three neural networks
used a sparse categorical cross-entropy as a loss function. The aim during training is to
reduce the entropy, without introducing overfitting. Overfitting is usually indicated by ‘flat-
lining’, which happens when the entropy does not increase or decrease during training after
a certain period of time.
Another set of metrics that can be used to determine how a network is performing is with
Confusion Matrices. These matrices, which are generated by passing the test data through
the network using Tensorflow, can give insights in the precision, recall, and accuracy of the
network.
To improve the readability of the confusion matrices, an integer coding is used to label the
output categories. Table 13 shows the definition of these class labels. This table also shows
how often a certain class label occurs within the complete dataset.

7. APPLYING CRISP-DRL FOR STRIPAI 52

Table 13
Explanation of class labels used in classification matrices. The Meaning column indicates
whether a START or STOPP rule would have fired in the old STRIP Assistant
Label Meaning Occurrence
0 No START, no STOPP 87
1 START, no STOPP 57
2 STOPP, no START 21
3 START and STOPP 347

As shown from this table, there is a severe class imbalance. The class with label 3, which
indicates that both START and STOPP rules have fired, represents 67.8% of the population.
When aggregating class labels 1, 2, and 3, this percentage rises to 83%. As such, there is
a high degree of skewness. In order to combat this, a technique called undersampling can
be performed on the majority class. This technique is defined by Japkowicz and Stephen
(2002) as “a sampling method in which the entities in the majority class will be, at random,
eliminated until a desired distribution is achieved”. In order to get a more accurate result,
a separate set of networks has been trained, which will be discussed in Section 7.4.2. For
these networks, the testing and training data class labels have been pre-aggregated to 0’s
and 1’s. This makes it possible to perform undersampling on the majority class.
The next subsection will describe the results for the networks that have been modelled
in Section 7.3. For the networks, it will show the overview of the sparse categorical cross-
entropy loss function plotted over time. Then, the results for each network will be presented.
These networks have been trained on non-aggregated data.

7.4.1 Non-aggregated Network Results.
This subsection will present the results for the trained networks from Section 7.3. As stated
in Section 7.4, there has been no aggregation of the data that has been performed. As a
result, there is a severe class imbalance within the dataset, as shown in Table 13. This will
most likely have an impact on the results of these networks, which means that a second set
of networks should be constructed. These networks will be discussed in Section 7.4.2.
As stated, one of the metrics to determine the performance of the networks is by looking at
the loss function. A lower value from the loss function, which in this case will be a sparse
categorical cross-entropy, usually indicates a better performing network. Figure 37 shows a
graph for the cross-entropies for both the training and validation data sets of each network.
As the output layer consists of four different nodes, a cross-entropy within the range of 0
to 3 is deemed acceptable.
The other metric, which are the confusion matrices for each network, will give insight in
how a network is performing. These matrices can be generated by feeding the testing data
into the network, and comparing the generated outputs to the actual outputs. For these
networks, two types of confusion matrices will be generated.
The first type is a binary confusion matrix, where the zero-class and the remainder class
will be compared. In this case, the remainder class is defined as the aggregation of the
remaining, non-zero classes. The second type of confusion matrix is a multi class confusion
matrix. In order to determine the classification results (True Positives, False Positives, False
Negatives, and True Negatives) for each class, the method described by Krüger (2016) is

7. APPLYING CRISP-DRL FOR STRIPAI 53

Figure 37 . Overview of the sparse categorical cross-entropies of the three different networks,
trained on the non-aggregated dataset, plotted over the training epochs. A lower sparse
categorical cross-entropy usually indicates a better performing network

used. This method is visualised in Figure 38.
For each network , the distributions for the predicted class labels can be compared to the
actual class labels. This is plotted in Figure 39. For each network, the number of occurrences
per class label for each network is shown as a bar, along with the normal distribution of
these class labels per network as a line.
From this figure, a few observations can already be made from this graph. Firstly, it can be
seen that the personalia and complications networks only ’predict’ class label 3. This means
that the network simply does not predict anything, but always returns that the network
always would say to fire both START and STOPP rules. Next, the medications network
does not contain class labels 1 and 2 in the predicted class labels. While this network
actually tries to predict results instead of outputting a single class label 100 percent of the
time, the results differ significantly from the actual class labels.
The next paragraphs will go further into detail on the results of the individual networks,
and will aim to show why a new set of networks should be trained that aims to fix the class
imbalance currently present within the dataset.

7. APPLYING CRISP-DRL FOR STRIPAI 54

Figure 38 . Diagram showing how for a class ck, the four different classification results can
be obtained

Figure 39 . Diagram showing the number of occurrences per class label for each network
trained on non-aggregated data as bars, and showing the normal distribution of these class
labels per network as a line

7. APPLYING CRISP-DRL FOR STRIPAI 55

Personalia Network.
The first constructed network uses the personal information of a patient combined with
medical measurements as input. 102 data points have been used as validation, of which the
result can be found in Table 14. The metrics for the confusion matrices from Table 14a and
Table 14b can be found in Section D.1.
Table 14
Confusion matrices of the validation results for the trained personalia network trained on
the non-aggregated data
(a) Confusion matrix of the validation results
on the trained personalia network, showing
the confusion between the zero-class and the
remainder class

Predicted
0 ∼ Total

Actual 0 0 18 18
∼ 0 84 84
Total 0 102 102

(b) Confusion matrix of the validation results
on the trained Personalia network

Predicted
0 1 2 3 Total

Actual

0 0 0 0 18 18
1 0 0 0 16 16
2 0 0 0 1 1
3 0 0 0 67 67
Total 0 0 0 102 102

As shown earlier, the network fails to predict any other value than the class label 3, which
indicates that both START and STOPP rules have been triggered. This is mostly due
to the class imbalance within the data. As such, the metrics that can be derived from
the confusion matrices don’t have a significant meaning. The accuracy derived from the
confusion matrix in Table 14a is 83.25%, which is higher than the accuracy as reported by
Tensorflow, which showed an accuracy of 68.46% on the training data, and only an accuracy
of 65.69% on the validation data. The overall accuracy of the larger confusion matrix in
Table 14b is 65.69%, which is in line with the accuracy that Tensorflow reports.

Complications Network.
The second constructed network uses the possible complications a patients has in order to
determine whether START or STOPP rules should fire. Again, 102 data points have been
used as validation. The results can be found in Table 15. The metrics for the confusion
matrices from Table 15a and Table 15b can be found in Section D.2.
As visible from Table 15a, the confusion matrix shows the same distribution as the personalia
confusion matrix, where the zero class is simply not predicted at all. This means that the
metrics, shown in Table 28 show the same metrics as the ones in Table 24. This is also
reflected in the larger confusion matrix from Table 15b, which shows the same distribution
as the personalia confusion matrix.

Medications Network.
Lastly, the third and final constructed network uses the medications used by patients in
order to determine whether START or STOPP rules should be fired. 102 data points
have been used as a validation, of which the resulting confusion matrix can be found in
Table 16.The metrics for the confusion matrices from Table 16a and Table 16b can be
found in Section D.3.

7. APPLYING CRISP-DRL FOR STRIPAI 56

Table 15
Confusion matrices of the validation results for the trained complications network trained
on the non-aggregated data
(a) Confusion matrix of the validation results
on the trained complications network, show-
ing the confusion between the zero-class and
the remainder class

Predicted
0 ∼ Total

Actual 0 0 18 18
∼ 0 84 84
Total 0 102 102

(b) Confusion matrix of the validation results
on the trained complications network

Predicted
0 1 2 3 Total

Actual

0 0 0 0 18 18
1 0 0 0 16 16
2 0 0 0 1 1
3 0 0 0 67 67
Total 0 0 0 102 102

Table 16
Confusion matrices of the validation results for the trained medications network trained on
the non-aggregated data
(a) Confusion matrix of the validation results
on the trained medications network, showing
the confusion between the zero-class and the
remainder class

Predicted
0 ∼ Total

Actual 0 8 10 18
∼ 6 78 84
Total 14 88 102

(b) Confusion matrix of the validation results
on the trained medications network

Predicted
0 1 2 3 Total

Actual

0 8 0 0 10 18
1 3 0 0 13 16
2 0 0 0 1 1
3 3 0 0 64 67
Total 14 0 0 88 102

As shown in these confusion matrices, the network performs better than the networks for
personalia and complications in the sense that the network does not ’predict’ class label 3
100 percent of the time. However, this network fails to predict class labels 1 and 2, which
ultimately results in a network that either does nothing, or fires both START and STOPP
rules. This makes the metrics for these confusion matrices highly unreliable.

7. APPLYING CRISP-DRL FOR STRIPAI 57

7.4.2 Pre-aggregated Network Results.
This subsection will present the results for three additional networks that have been trained
on a prepared dataset with no class imbalance. The aim of this subsection is to present
networks that perform better than their respective counterparts from Section 7.4.1.
As evident from Section 7.4.1, all three constructed networks did not perform well. The
networks for personalia and complications only returned class label 3 as a result, whereas
the network for medications never returned class labels 1 and 2. This is due to the class
imbalance present within the data. As explained in Section 7.4, one method to improve this
is through the use of oversampling. In order to get better results, three additional networks
will be trained.
The training dataset has been reduced to 138 entries. Exactly half of these entries has a
class label of 0, and the other half has a class label of 1. The testing dataset still has 102
entries, and contains a random distribution of 0’s and 1’s. With respect to Table 12, the
only changes that have been made are the amount of nodes in the hidden layers of the
Personalia network. The size of both hidden layer 1 and 2 have been increased to 8. The
training results can be seen in Figure 40.

Figure 40 . Overview of the sparse categorical cross-entropies of the three different net-
works, trained on the aggregated dataset, plotted over the training epochs. A lower sparse
categorical cross-entropy usually indicates a better performing network

Because this data only contains the class labels 0 and 1 as output, a sparse categorical
cross-entropy between 0 and 1 is deemed as acceptable. As visible from Figure 40, all three
networks have a cross-entropy value lower than 1 after 20 training epochs. For each network,
the distributions for the predicted class labels can again be compared to the actual class
labels. This is plotted in Figure 41.

7. APPLYING CRISP-DRL FOR STRIPAI 58

Figure 41 . Diagram showing the number of occurrences per class label for each network
trained on pre-aggregated data, compared to the actual class labels

From this figure, it is visible that there is a difference between the predicted class labels
and the actual class labels, which are coloured blue in this figure. As visible in this figure,
there seems to be a significant difference between the results of the trained networks and
the actual class labels. These results will be explored in the next paragraphs.

Personalia Network - Aggregated.
As a variation to the network from Section 7.4.1, an additional network has been con-
structed. This network has been trained on less variables, has been aggregated, but contains
no skewness. The resulting network is validated with 102 data points. The results of this
validation can be found in Table 17.

Table 17
Confusion matrix of the validation results on the trained personalia network, trained with
aggregated data, showing the confusion between the two classes

Predicted
0 1 Total

Actual 0 9 9 18
1 1 83 84
Total 10 92 102

As shown in this confusion matrix, the network does not predict the label 1 every single
time any more, as was the case in the previous version of this network. This network has
an accuracy of 90.1%, but an f1-score of only 64%. While this does seem to suggest that
the network performs better than the network trained on non-aggregated data, the network
still does not perform optimally.

7. APPLYING CRISP-DRL FOR STRIPAI 59

Complications Network - Aggregated.
As a variation to the network from Section 7.4.1, an additional network has been con-
structed. This network has been trained on less variables, has been aggregated, but contains
no skewness. The resulting network is validated with 102 data points. The results of this
validation can be found in Table 18.

Table 18
Confusion matrix of the validation results on the trained complications network, trained
with aggregated data, showing the confusion between the two classes

Predicted
0 1 Total

Actual 0 14 4 18
1 21 63 84
Total 35 77 102

As shown in this confusion matrix, the network does not predict the label 1 every single
time any more, as was the case in the previous version of this network. This network has
an accuracy of 75.5%, and an f1-score of only 53%. This suggest that the network performs
better in the sense that it actually predicts instead of outputting a single value every time,
but worse in the sense that it has a lower accuracy than the previous network.

Medications Network - Aggregated.
As a variation to the network from Section 7.4.1, an additional network has been con-
structed. This network has been trained on less variables, has been aggregated, but contains
no skewness. The resulting network is validated with 102 data points. The results of this
validation can be found in Table 19.

Table 19
Confusion matrix of the validation results on the trained medications network, trained with
aggregated data, showing the confusion between the two classes

Predicted
0 1 Total

Actual 0 10 8 18
1 29 55 84
Total 39 63 102

As shown in the table, this network is more reserved, opting to not trigger any rules and
generating an output of 0 significantly more often than the actual class labels. This leads
to an accuracy of 63.7%, which is lower than the accuracy of the non-aggregated network
data, which showed an accuracy of 84.31%. Furthermore, the f1-score for this network is
35%, which is lower than the f1-score from the non-aggregated data network (50%). With
these metrics in mind, it seems that training the network on pre-aggregated data gives a
worse classifier than training the network with non-aggregated data, and applying post-
aggregation on the results.

8. RESULTS 60

8 Results

8.1 STRIPAI: Usability

This section will discuss the results gathered in Section 7.4. More specifically, this section
will aim to use the results gathered in the previous section in order to answer research
questions (Q3), (Q4), and (Q5) from Section 1.3. (Q3) will be answered in Section 8.1.1,
after which Section 8.1.2 will aim to answer (Q4). Lastly, the results from these two
questions will be used in order to give an answer to (Q5). This will be done in Section 8.2.

8.1.1 STRIPAI: Effectiveness.
This subsection aims to answer (Q3), which asks how the combined principles of Deep Learn-
ing and Reinforcement Learning can improve the effectiveness of an existing application in a
new domain. In order to answer this question, a null hypothesis first needs to be established.
Our hypotheses for this question are as follows:

H0 There is no significant difference in effectiveness in the current version of the appli-
cation, and the application with Deep Learning and Reinforcement Learning imple-
mented into it.

H1 There is a significant difference in effectiveness in the current version of the application,
and the application with Deep Learning and Reinforcement Learning implemented
into it.

In order to answer this hypothesis, a chi-squared test will be conducted on the confusion
matrices for the three networks, as presented in Section 7.4.2, in order to determine the
difference in effectiveness between the original STRIP Assistant, and the STRIPAI. For this,
a confidence level of 95% (α = 0.05) is used. The effectiveness will be tested for all three
constructed networks that have been trained on the pre-aggregated dataset. The networks
for personalia and complications from Section 7.4.1 will not be considered, as these networks
are all outperformed by their respective counterparts.
For the Personalia network, which’ confusion matrix is presented in Table 17, a chi-squared
test has been performed. Based on the data, there is a statistically significant difference in
the proportion of patients where no START or STOPP rules would have fired and patients
where those rules would have fired in the original STRIP Assistant versus the STRIPAI,
X2(1, N = 102) = 39.93, p = 0.000.
For the Complications network, which’ confusion matrix is presented in Table 18, a chi-
squared test has been performed. Based on the data, there is a statistically significant
difference in the proportion of patients where no START or STOPP rules would have fired
and patients where those rules would have fired in the original STRIP Assistant versus the
STRIPAI, X2(1, N = 102) = 18.31, p = 0.000.
For theMedications network, which’ confusion matrix is presented in Table 19, a chi-squared
test has been performed. Based on the data, there is no statistically significant difference in
the proportion of patients where no START or STOPP rules would have fired and patients
where those rules would have fired in the original STRIP Assistant versus the STRIPAI,
X2(1, N = 102) = 2.78, p = 0.096. In addition to this, a second chi-squared test has
been performed on the medications network that has been trained on the non-aggregated

8. RESULTS 61

dataset. For this network , which’ confusion matrix is presented in Table 16a, a significant
difference in the proportion of patients where no START or STOPP rules would have fired
and patients where those rules would have fired in the original STRIP Assistant versus the
STRIPAI was found, X2(1, N = 102) = 17.42, p = 0.000.
Based on the results from all networks, a significant difference between the outputs is shown
in all three networks. However, this significant difference is a decrease in effectiveness, and
is also largely dependent on whether the respective network is trained on pre-aggregated
data or normal data. For example, the medications network showed a significant difference
between the actual and predicted class labels when trained on the non-aggregated data, but
did not show this difference when trained on the pre-aggregated data, where there was no
class imbalance.
These significant differences, in combination with the confusion matrices from Section 7.4,
mean that the null hypothesis can be rejected. Using the STRIPAI in order to predict
START and/or STOPP rules being fired does not lead to an increase in effectiveness with
respect to using the old STRIP Assistant. However, based on the results from the Medi-
cations network, there seems to be a possibility that a significant increase in effectiveness
might be possible in the future.

8.1.2 STRIPAI: Efficiency.
This section will go into detail on the efficiency of the implementation. More specifically,
this section will theorize about the differences in efficiency between the original STRIPA,
and the STRIPAI, in order to give an answer to sub question (Q4).
Due to the nature of the implementation of the STRIPAI, it is not possible to statistically
compare both of the implementations on their runtime. The original STRIP Assistant is
written in Java, connects to a MySQL database server, and interfaces with a web front-end.
The STRIPAI is written in native Python version 3, connects to the MySQL database server,
but doesn’t have an interface. The implications will be further discussed in Chapter 10.
In order to determine which implementation is more efficient, one possible solution is to
look at the average computational complexity. This is written in the Big O notation. This
states that for an algorithm with n inputs, the algorithm will need O(x) amount of units
of time on average. Here, x can be any possible value that contains n, or can be equal to 1.
For the original STRIP Assistant, the firing ofm START and/or STOPP rules for n patients
has an average computational complexity of O(n∗m). This does not include any operations
that are performed on something else than the patient dataset, and does also not include
time waiting for the data to be retrieved from MySQL, or being pushed to the web front-end.
For the STRIPAI, the firing of the START and/or STOPP rules can be broken down into
two parts. The first part consists of training, and the second one consists of running data
through the network to get a result. Both parts depend on the characteristics of the network,
but can be generalized to answer the question.
To run data through a fully trained, fully connected network, one has to consider all the
weights w for all the nodes li in all the layers l. We can assume that our network is fully
connected. As such, the weights w can be defined as l ∗ li. Subsequently, the amount of
time for all data to pass through the network is O(n ∗ w).
For the training of the network, the computational complexity depends on the number
of training epochs e that are used for training the network. The implementation uses

8. RESULTS 62

backwards propagation to train the network, which has a complexity of O(n ∗ w), where
we assume that the network is fully connected. As this done a number of times, the total
complexity of training is defined as O(n∗e∗w). Thus, the total complexity of the STRIPAI
can be described as O(n(e ∗ w + w). Likewise, does not contain all the necessary steps to
extract, transform, and load the data.
In order to determine whether the STRIPAI performs more efficiently than the original
STRIPA, one needs to determine whether the number of weights times the amount of
training is larger than the amount of rules present in the original STRIPA. In other words,
we need to determine whether (e ∗ w + w) > m.
For the original STRIPA, there currently are 109 START/STOPP rules in place (Knol et al.,
2015). This is divided in 72 STOPP, and 39 START rules. This would mean that m = 109.
For the STRIPAI, 20 epochs were used. Furthermore, the smallest network used 3 layers,
with 4 nodes in each layer. This is not accounting for the input layer. As such, the smallest
network has 3 ∗ 4 = 12 weights in total. This means that (e ∗w +w) = 20 ∗ 12 + 12 = 252.
This means that in the best case, using the smallest network trained in Section 7.3, the
original STRIPA performs more efficiently than the STRIPAI implementation.
Another inefficiency within the STRIPAI, is that it is currently optimized to deal with
the small amount of patient data. This is further explained in Chapter 10. As such, any
medication or complication that is not yet present in the current dataset is not taken into
account to limit the search space of the application and to improve the network effectiveness.
This means that for each time an unknown medication or complication is presented to the
network, it needs to train the complete network all over again. This is in stark contrast to
the original STRIPA, of which the rules don’t need to be updated.
Based on these two criteria, we can conclude that the STRIPAI fails to perform more
efficiently than the original STRIP Assistant. The computational complexity is higher
in the STRIPAI, without taking the inefficiencies as described above taken into account.
While a smaller network, or less training epochs can be used to create a more efficient
implementation, this will go at the expense of the effectiveness of the implementation.

8.2 Improving the 4VATT Suitability Model

This section describes how the results from Section 8.1.1 and Section 8.1.2 can be used to
further improve the 4VATT Suitability model introduced in Section 4.2. By improving this
model, a more accurate estimation of the suitability of domains can be made. This will be
further exemplified by redetermining the suitability of the prescriptive healthcare domain,
from which it was determined in Section 5.1 to have an estimated suitability of 66%.
From the implementation process, some takeaways can be made, which will be discussed in
more detail in Chapter 10. For example, the data volume within the STRIP Assistant was
far lower than originally expected, due to the aggregations made. As such, the scores given
in Section 5.1 for the questions on Data Volume should have been lower, thus lowering
the overall suitability. Secondly, the application was not as transformable as previously
thought. This was also due to the original model not taking the application maturity level
into account.
In order to improve the 4VATT model, six different questions were added, divided over four
different categories. These questions are all answered with a Likert Scale, ranging from Very

8. RESULTS 63

high to Very low (or vice versa). The new questions are listed below, with their respective
keys showing which category the questions are added to.

• (Vol.3) What is the amount of features within the data an average application in this
domain receives as an input? (Very high - Very low)

• (Vol.4) What is the amount of time-based data that an average application within
this domain currently uses? (Very low - Very high)

• (Vel.3) What is the required speed that the data needs to travel through an appli-
cation in this domain? (Very high - Very low)

• (Ver.3) What is the amount of data preparation needed in order to feed application
data into a DRL solution for an average application in this domain? (Very high - Very
low)

• (Trf.4) What is the application maturity level of an average application in this do-
main? (Very low - Very high)

• (Trf.5) What is the level of clarity with respect to determining what is a ’good’
outcome of an average application within this domain? (Very high - Very low)

These questions, which have been added to the 4VATT model, are reflected in the improved
version of the 4VATT Suitability Model as presented in Appendix E. After the questions
have been added, the suitability percentage for the prescriptive healthcare domain was
calculated again. The result was an expected suitability of 53%. This is lower than the
results from the original 4VATT Model, which showed an expected suitability of 66%.
The distribution for the new suitability percentage is shown in Table 20. Furthermore, a
comparison between the ‘old’ and ‘new’ 4VATT Suitability Models is shown in Figure 42.

Table 20
Score distributions for the suitability of the prescriptive healthcare domain, using the im-
proved 4VATT Suitability Model

Category Prescriptive Healthcare
Score Suitability

Volume 10 50.00%
Variety 8 80.00%
Velocity 10 66.67%
Veracity 11 55.00%
Accountability 7 46.67%
Transparency 6 40.00%
Transformability 12 48.00%
Total 64 53.33%

As shown in Figure 42, the prescriptive healthcare domain scores a lower Domain Suitability
Score in nearly every category of the model when scored with the new 4VATT Model in
comparison to when scored with the old 4VATT Model, save for the Variety and Velocity.
This is in line with the results of sub questions (Q3) and (Q4), which showed that the

8. RESULTS 64

Figure 42 . Domain Suitability Scores for the Prescriptive Healthcare domain, using both
the old 4VATT Model from Section 4.2, and the improved 4VATT model

implementation principles did not lead to a significant improvement in effectiveness and
efficiency respectively.

9. CONCLUSION 65

9 Conclusion

This section will summarize all of the findings from this thesis in order to answer the sub
research questions introduced in Section 1.3. This will in turn answer the main research
question as introduced in Section 1.2.
In order to determine whether a new domain would be suitable for the usage of Deep Re-
inforcement Learning, the 4VATT Suitability Model can be used. This model can estimate
the suitability of (an application in) a domain by means of percentage. Initial results showed
that for the prescriptive healthcare domain, the estimated suitability percentage is 66%. In
order to transform an application in a new domain in such a way that it represents a game
with rules, input, and output, the CRISP-DRL framework can be used. This framework
will act as a guidance to support the complete implementation process, akin to CRISP-DM.
After implementing the combined principles of Deep Learning and Reinforcement Learning
into the STRIP Assistant, which has been dubbed as STRIPAI, the results show that these
principles do not lead to a significant improvement in effectiveness. Additionally, with the
use of computational complexity theory, it can be shown that these principles also do not
lead to a significant improvement in efficiency. As a result, the insights from this implemen-
tation have been used as input to improve the 4VATT Suitability Model. The model has
seen questions added to multiple categories. Calculating the suitability for the prescriptive
healthcare domain again now shows a percentage of 53%.
In conclusion, this thesis has shown how determine which domains would be suitable for
the usage of Deep Reinforcement Learning, and how to translate (an application in) a new
domain in order to implement the combined principles of Deep Learning and Reinforcement
Learning into it. However, this does not lead to a significant increase in usability.

10. DISCUSSION 66

10 Discussion

This chapter will aim to put the results from Chapter 8 into perspective. This chapter will
show what possible influences could have been in place on the performed experiment, and
how future research can help to further improve these results. This chapter will discuss
the limitations of the research, from both a technical and theoretical standpoint. These
research limitations will be introduced in Section 10.1. Section 10.2 will elaborate on how
and where this research can be improved and continued, taking into account the limitations
of the research as discussed in Section 10.1.

10.1 Research Limitations

This section will discuss all of the limitations to this research, which will help put the
results from Chapter 8 and the conclusion from Chapter 9 into perspective. This section
will introduce a multitude of possible factors, grouped into overarching themes, which will
each be discussed in their separate subsection.
The research did not turn out as expected. Applying DRL principles does not seem to
lead to significant improvements in the usability of the application it is applied in. This is
due to a multitude of possible factors, which will be explained in the following paragraphs.
Each factor is part of an overarching theme. These themes will be discussed in the next
subsections.

10.1.1 Data Issues.
This subsection will discuss the limitations of this research with respect to the theme of data
issues. Multiple issues arose during the execution of this research, which will be explained
in the following paragraphs.
The first possible factor is the choice of class label. By aiming to replace the STRIP
Assistants internal rule engine with a DRL-driven system, and thus choosing to predict
the firing of STOPP and START rules, several decisions and aggregations had to be made
with respect to data preparation. The data has been aggregated to a patient level, in
order to predict the changes to medication (and thus the firing of STOPP and START
rules). In addition to this, all of the different kinds of medication had to be aggregated into
medication categories, and all of the possible complaints within the system to complaint
categories (or complications). This is connected with another factor, namely the factor of
data dimensionality, which will be discussed in a further paragraph. Lastly all the separate
STOPP and START criteria are aggregated into the four class labels the implementation
has been trained on.
The aggregation of class labels (and connected to this, the aggregation of medications and
complaints) was done in an attempt to reduce the dimensionality of the DRL implementa-
tion. The original dataset contains data of only 512 patients. Every patient can have an
arbitrary amount of medications, and complications, and can trigger one of 60 STOPP/S-
TART criteria. If data would not be aggregated, the data that needed to be entered into
the network would have contained many more columns than it would have rows. Also, up
to 60 different outputs could have been possible. With this dimensionality, it is not possible
to train a well-performing DRL implementation. By aggregating the data, some level of
detail is lost, but this is compensated by a better performing network.

10. DISCUSSION 67

The issue of dimensionality is closely tied to the issue of data volume. As stated, the
dataset only contained data for 512 distinct patients. A part of this data can not be used
for training the implementation, as this is used for validation. In the case of this thesis, this
split was 80% training data, 20% validation data. This means that only 408 data points
were used to train the networks. However, the amount of columns within the dataset was
not proportionate to the amount of rows that was available for training or testing. As such,
it was very hard to train a network both performed well enough, yet also was effective
enough in predicting whether STOPP/START rules should fire.
Lastly, both the training data and the testing data contained a class imbalance. Only about
1/6th of the class labels indicated that no action needed to be taken with respect to firing
STOPP/START rules. In order to combat this, undersampling was performed in order to
alleviate the class imbalance within the dataset, albeit at the cost of the size of the training
dataset. However, due to the nature of the dataset, this class imbalance is to be expected.
All of the patients are situated within the field of polypharmacy, which means that all of
the patients take substantial amounts of different kinds of medicine. It is highly expected
that medication either has to be started, stopped, or changed for these patients.

10.1.2 Implementation Issues.
This subsection will discuss the limitations of this research with respect to the theme of
implementation issues. Multiple issues arose during the execution of this research, which
will be explained in the following paragraphs.
As explained in Section 10.1.1, the data dimensionality issues meant that data on complaints
and medications had to be aggregated. After aggregations, the data still contained more
columns than rows, but its dimensionality was reduced down considerably. In order to feed
the complications and medications into the implementation, further preprocessing of this
data was required. Our used implementation was not able to handle inputs with variable
length. This means that for the patient medication, the algorithm could not handle a list
of medications which had a length of 10 at one time, and then a length of 7 the next
time. In order to combat this, a multi-hot encoded (MHE) vector for both complaints
and medications needed to be constructed in order to properly feed the data into the
network. These vectors were highly sparse. This means that the vector consisted mostly of
zeroes, with non-zero values occurring very sparsely. The MHE vectors could also only be
constructed from the complete set of medication categories. The implementation also did
not handle mixed inputs, meaning that a combination of integers and lists is not possible
to enter into a DRL implementation.
In order to then further reduce the data dimensionality, all unused compaints and medi-
cation categories were pruned from the list before constructing MHEs. This meant that
the complications that did not occur within the dataset were not considered as possible
when constructing the MHE vectors, making the vectors themselves less sparse. While this
did show an increase in network effectiveness, this means that whenever a completely new
category is introduced in the network (i.e a category that was not present in the training
or test data), the whole network needs to be retrained. Retraining the network is some-
thing that should be done in order to keep fine-tuning the network with more data. This
in turn lowered the efficiency of the DRL implementation, as adding more patient data to
this system will inherently cause the STRIPAI to encounter ‘unknown’ complications or

10. DISCUSSION 68

medication categories.
Due to the lack of a clear reward function, the lack of simulation, and no goal, the current
version of the STRIPAI is not driven by a self-learning agent. As stated in Section 3.2,
these are criteria for implementing this style of algorithm into an application. The current
state of the application (including the data that resides in it) is not far enough for a self-
learning agent. For the STRIP Assistant, there is a goal, namely to minimize the amount
of unnecessary medication being taken by patients. However, it is not defined what the
criteria are to meet this goal, and what is done after this goal is achieved. Is the goal then
to optimize even further, all the way to zero? What if some medication is strictly needed
in order for patients to survive, how does the goal function cope with this? Furthermore,
this goal can be different for each patient group, or even for each patient. In order to set up
a realistic reward function, one needs to know whether the predicted set of medication is
‘good’. Is it better or worse to remove two medicine categories and add one, instead of solely
removing one? This is something that is also heavily dependent on the patients current set
of medication, complaints, and its medical data.
As of now, the current version of the STRIPAI can only predict whether a STOPP and/or
START rule should fire. However, because this is aggregated, it can not predict which
STOPP/START rule should fire. With the current data volume, it is not possible to train
a network that can reliably predict which STOPP/START rule should fire. However, when
more data becomes available, this might be possible.
Lastly, each patient has its own set of restrictions with respect to the medication (categories)
they can or can not take. This can be due to allergies, or religious beliefs. Although this
is also not accounted for within the original STRIP Assistant, it is an important factor
that may influence the possibilities of implementing DRL in the future, when it is done to
completely replace the General Practitioner instead of replacing a rule engine.

10.1.3 4VATT Suitability Model.
This subsection will discuss the limitations of this research with respect to the 4VATT
Suitability Model. Multiple issues arose during the execution of this research, which will be
explained in the following paragraphs.
Initally, the 4VATT Suitability Model was developed as a way to determine whether (ap-
plications in) a domain would be well suited for the implementation of Deep Reinforcement
Learning principles. The suitability calculated for the prescriptive healthcare domain was
initially calculated with the first version of the 4VATT Suitability Model. However, the re-
sult turned out to be a too high estimation of the suitability of the domain. The model did
not have enough focus on the data volume, data quality, and application transformability.
As such, the improved version of the 4VATT Suitability Model has more questions on these
topics, in order to give a better insight on the suitability.
The 4VATT Suitability Model is based on an informal exploration of the literature on
implementing principles of Deep Learning and Reinforcement Learning into applications.
However, outside of the refinement made to the model based on the results from implement-
ing these principles into the STRIP Assistant, no validation has been done. As a result, it
might be possible that critical factors are missing from the model, as they have not been
identified yet.
Because no validation on the model has been done as of yet, it is not possible to say what

10. DISCUSSION 69

results from the 4VATT Suitability Model can be classified as ‘good’ or ‘satisfactory’. For
example, the prescriptive healthcare domain scored 66% while using the first version of the
model. However, it was unknown whether this was actually deemed acceptable enough to
proceed.
The questions in the model are all scored on a Likert Scale of 1 to 5. All questions within
the model are equal, meaning that no weights are applied to any question, or question
category. This was done as to prevent the domain covered in this research to influence the
weight choices for the questions within the model. The model does not contain any control
questions, which might be of influence on the results of the model within this research.
From this research, it has become apparent that the data volume, domain transparency, and
domain transformability are the most important factors of the 4VATT Suitability Model.
However, as the questions within the model are all scored equal, relatively bad scores within
these categories can be compensated with good scores in the other categories. While weights
were not considered for this research, it is a possibility to look into adding knock-out criteria,
meaning that a minimum score needs to be achieved for certain categories in order to be
deemed ‘suitable’ enough to go ahead with implementing DRL.
The 4VATT Suitability Model has been developed in 2018, when DRL has not been imple-
mented widespread within applications outside of the gaming domain. Within the medical
domain, the retinal imaging solution as described by Poplin et al. (2018) is currently the
only well-described implementation of Deep Reinforcement Learning. However, as stated
by Gartner, both techniques will reach the plateau of productivity within 10 years. After
that, technological advancements within these two fields could have a severe impact on the
results of this model. For example, if a way is found to give insight into the exact decision
making process of a neural network, and this technique is standardized, then the questions
on domain transparency will become irrelevant.

10.2 Future Work

From this thesis and the artifacts it presents, some takings can be made. This thesis
introduced the 4VATT Suitability Model, a way to determine whether a new domain would
be suitable for the implementation of Deep Reinforcement Learning principles. Within
this thesis, an improvement has been made to this artifact, based on the results from an
experiment to implement these principles into an application in the prescriptive healthcare
domain. For future research regarding this model, multiple paths can be taken. The first
path would be to further look into developing 4VATT. By adding more categories, or more
questions to the existing categories, a further deepening of the model can be mode. Another
possible solution is to add weights to the existing categories. This has not been done in the
current version of the model, as to not bias the model towards the prescriptive healthcare
domain. Lastly, as described, there is a possibility of adding ‘knock-out’ criteria to the
model.
Another path to take regarding 4VATT is to test its’ validity against other new domains.
Within the context of this thesis, only the prescriptive healthcare domain has been tested.
For further improving the model, and to put the results for the prescriptive healthcare
domain into perspective, a more widespread usage of the 4VATT model is needed. When
the model is used to determine the suitability of other domains, the accuracy should increase
as more tweaks are made to the model.

10. DISCUSSION 70

This thesis also introduced the CRISP-DRL framework. While this is named similarly to
CRISP-DM, it is by no means a standard framework yet. As future research, one can look
into standardizing this framework, or look into maybe adapting the CRISP-DM framework
itself.
Lastly, this thesis introduced the STRIPAI, which is the implementation of DRL principles
into the STRIP Assistant. While this implementation did not lead to a significant increase
in usability, it might me interesting for future research to try this experiment again at a
later date. Once both artifacts have matured, the STRIP Assistant has reached a higher
application maturity level, technology has advanced, and more patient data is present, the
experiment might give better results than it did today.
While this research did not show an improvement in usability, some additional research can
already be done on the STRIP Assistant. First, a similar implementation can be done on
a smaller or larger scale by tweaking the unit of analysis. For this research, the unit of
analysis was not in line with the possibilities in this domain.
Another possibility to help implement the principles of DRL into the STRIP Assistant is by
combining the foundation provided by this research with the work of Huibers et al. (2019),
which covers an improved version of the STOPP/START criteria, converted to XML. These
new criteria can be applied to any software application, and could serve as a fall-back for
the STRIPAI.

11. REFERENCES 71

11 References

Allis, L. V. (1994). Searching for solutions in games and artificial intelligence. Rijksuniversiteit
Limburg.

Azevedo, A. I. R. L., & Santos, M. F. (2008). KDD, SEMMA and CRISP-DM: a parallel overview.
IADS-DM .

Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dissection: Quantifying
interpretability of deep visual representations. arXiv preprint arXiv:1704.05796 .

Bellman, R. (2013). Dynamic programming. Courier Corporation.
Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends® in Machine Learning,

2 (1), 1–127.
Berman, J. J. (2013). Principles of big data: preparing, sharing, and analyzing complex information.

Newnes.
Bertsekas, D. P. (2008). Neuro-dynamic programming. In Encyclopedia of optimization (pp. 2555–

2560). Springer.
Bordes, A., Glorot, X., Weston, J., & Bengio, Y. (2012). Joint learning of words and meaning

representations for open-text semantic parsing. In Artificial intelligence and statistics (pp.
127–135).

Campanelli, C. M. (2012). American geriatrics society updated beers criteria for potentially inap-
propriate medication use in older adults: the american geriatrics society 2012 beers criteria
update expert panel. Journal of the American Geriatrics Society, 60 (4), 616.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000,
August). CRISP-DM 1.0 Step-by-step data mining guide (Tech. Rep.). The CRISP-DM
consortium. Retrieved from http://www.crisp-dm.org/CRISPWP-0800.pdf

Chen, G. (2016). A gentle tutorial of recurrent neural network with error backpropagation. arXiv
preprint arXiv:1610.02583 .

Chen, X.-W., & Lin, X. (2014). Big data deep learning: challenges and perspectives. IEEE access,
2 , 514–525.

Claxton, A. J., Cramer, J., & Pierce, C. (2001). A systematic review of the associations between
dose regimens and medication compliance. Clinical therapeutics, 23 (8), 1296–1310.

Council, N. R. (2013). Frontiers in massive data analysis. National Academies Press.
Dechter, R. (1986). Learning while searching in constraint-satisfaction problems. University of

California, Computer Science Department, Cognitive Systems Laboratory.
Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends® in

Signal Processing, 7 (3–4), 197–387.
Doorhof, D. (2018). Using reinforcement learning to improve clinical decision making in neonatal

care (Unpublished master’s thesis). Utrecht University.
Drenth-van Maanen, A. C., van Marum, R. J., Knol, W., van der Linden, C. M., & Jansen, P. A.

(2009). Prescribing optimization method for improving prescribing in elderly patients receiving
polypharmacy. Drugs & aging, 26 (8), 687–701.

Emmens, T., & Phippen, A. (2010). Evaluating online safety programs. Harvard Berkman Center
for Internet and Society.[23 July 2011].

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The kdd process for extracting useful
knowledge from volumes of data. Communications of the ACM , 39 (11), 27–34.

Gallagher, P., Ryan, C., Byrne, S., Kennedy, J., & O’Mahony, D. (2008). Stopp (screening tool
of older person’s prescriptions) and start (screening tool to alert doctors to right treatment).
consensus validation. International journal of clinical pharmacology and therapeutics, 46 (2),
72–83.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics.
International Journal of Information Management, 35 (2), 137–144.

Gantz, J., & Reinsel, D. (2012). The digital universe in 2020: Big data, bigger digital shadows, and

http://www.crisp-dm.org/CRISPWP-0800.pdf

11. REFERENCES 72

biggest growth in the far east. IDC iView: IDC Analyze the future, 2007 (2012), 1–16.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 1).
Goodman, B., & Flaxman, S. (2016). European union regulations on algorithmic decision-making

and a" right to explanation". arXiv preprint arXiv:1606.08813 .
Graham, B. (2014). Fractional max-pooling. arXiv preprint arXiv:1412.6071 .
Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects

Agency (DARPA), nd Web.
Hanlon, J. T., Schmader, K. E., Samsa, G. P., Weinberger, M., Uttech, K. M., Lewis, I. K., . . .

Feussner, J. R. (1992). A method for assessing drug therapy appropriateness. Journal of
clinical epidemiology, 45 (10), 1045–1051.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. In The elements of
statistical learning (pp. 485–585). Springer.

Hevner, A., & Chatterjee, S. (2010). Design science research in information systems. In Design
research in information systems (pp. 9–22). Springer.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems
research. MIS Quarterly, 28 (1), 75–105. Retrieved from http://www.jstor.org/stable/
25148625

Hilleli, B., & El-Yaniv, R. (2018). Toward deep reinforcement learning without a simulator: An
autonomous steering example. In Thirty-second aaai conference on artificial intelligence.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., . . . Kingsbury, B. (2012).
Deep neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 29 (6), 82–97.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9 (8),
1735–1780.

Huibers, C. J., Sallevelt, B. T., de Groot, D. A., Boer, M. J., van Campen, J. P., Davids, C. J., . . .
Meulendijk, M. C. (2019). Conversion of stopp/start version 2 into coded algorithms for soft-
ware implementation: a multidisciplinary consensus procedure. International Journal of Medi-
cal Informatics, 125 , 110-117. Retrieved from https://github.com/MichielCM/stoppstart
doi: 10.1016/j.ijmedinf.2018.12.010

IBM. (2018). Extracting business value from the 4 v’s of big data. Author. Retrieved
from https://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs
-big-data (Accessed October 4th, 2018)

International Organization for Standardization (ISO). (2011). ISO/IEC 25010:2011:. Systems and
Software Engineering-Systems and Software Quality Requirements and Evaluation (SQuaRE)-
System and Software Quality Models. Retrieved from http://www.iso.org/iso/catalogue
_detail.htm?csnumber=35733

Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems,
Man, and Cybernetics(4), 364–378.

Jansen, P. A., & Brouwers, J. R. (2012). Clinical pharmacology in old persons. Scientifica, 2012 .
Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent

data analysis, 6 (5), 429–449.
Jobse, L., Mulder, M., ter Borgh, J., & Grundmeijer, H. (2009). Polyfarmacie. Huisarts en

wetenschap, 52 (12), 599–602.
Kepner, J., Gadepally, V., Michaleas, P., Schear, N., Varia, M., Yerukhimovich, A., & Cunningham,

R. K. (2014). Computing on masked data: a high performance method for improving big data
veracity. In High performance extreme computing conference (hpec), 2014 ieee (pp. 1–6).

Knemeijer, D. (2018, February 5). Valeas - early warning system for the critically ill. [YouTube
video]. Retrieved from https://www.youtube.com/watch?v=3qZIh3TAnhE (Accessed Octo-
ber 31st, 2018)

Knol, W., Verduijn, M. M., Lelie-van der Zande, A., van Marum, R. J., Brouwers, J., van der
Cammen, T. J., . . . Jansen, P. A. (2015). Onjuist geneesmiddelgebruik bij ouderen opsporen.

http://www.jstor.org/stable/25148625
http://www.jstor.org/stable/25148625
https://github.com/MichielCM/stoppstart
https://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data
https://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
https://www.youtube.com/watch?v=3qZIh3TAnhE

11. REFERENCES 73

de herziene stopp-en start-criteria. Nederlands Tijdschrift voor Geneeskunde, 159 .
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional

neural networks. In Advances in neural information processing systems (pp. 1097–1105).
Krüger, F. (2016). Activity, context, and plan recognition with computational causal behaviour

models (Unpublished doctoral dissertation). University.
KS, D., & Kamath, A. (2017). Survey on techniques of data mining and its applications. International

Journal of Emerging Research in Management & Technology, 6 (2), 198–201.
Kuijpers, M. A., Van Marum, R. J., Egberts, A. C., Jansen, P. A., & OLDY (OLd people Drugs

& dYsregulations) Study Group. (2008). Relationship between polypharmacy and underpre-
scribing. British journal of clinical pharmacology, 65 (1), 130–133.

Kuzuya, M., Endo, H., Umegaki, H., Nakao, M., Niwa, T., Kumagai, T., . . . Iguchi, A. (2000).
Factors influencing noncompliance with medication regimens in the elderly. Nihon Ronen
Igakkai zasshi. Japanese journal of geriatrics, 37 (5), 363–370.

Lample, G., & Chaplot, D. S. (2017). Playing fps games with deep reinforcement learning. In Aaai
(pp. 2140–2146).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521 (7553), 436.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D.

(1989). Backpropagation applied to handwritten zip code recognition. Neural computation,
1 (4), 541–551.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE , 86 (11), 2278–2324.

Leendertse, A. J., de Koning, F. H., Goudswaard, A. N., Jonkhoff, A. R., van den Bogert, S. C., de
Gier, H. J., . . . van den Bemt, P. M. (2011). Preventing hospital admissions by reviewing
medication (pharm) in primary care: design of the cluster randomised, controlled, multi-centre
pharm-study. BMC health services research, 11 (1), 4.

Leendertse, A. J., Egberts, A. C., Stoker, L. J., & van den Bemt, P. M. (2008). Frequency of and risk
factors for preventable medication-related hospital admissions in the netherlands. Archives of
internal medicine, 168 (17), 1890–1896.

Levinovitz, A. (2014). The mystery of go, the ancient game that computers still can’t win. Wired
Magazine.

Marbán, Ó., Mariscal, G., & Segovia, J. (2009). A data mining & knowledge discovery process
model. In Data mining and knowledge discovery in real life applications. InTech.

Mariscal, G., Marban, O., & Fernandez, C. (2010). A survey of data mining and knowledge discovery
process models and methodologies. The Knowledge Engineering Review, 25 (2), 137–166.

Matiisen, T. (2015). Demystifying deep reinforcement learning. Computational Neuroscience LAB.
Melo, F. S. (2001). Convergence of q-learning: A simple proof. Institute Of Systems and Robotics,

Tech. Rep, 1–4.
Meulendijk, M. C., Spruit, M. R., Drenth-van Maanen, A. C., Numans, M. E., Brinkkemper, S.,

Jansen, P. A., & Knol, W. (2015). Computerized decision support improves medication review
effectiveness: an experiment evaluating the strip assistant’s usability. Drugs & aging, 32 (6),
495–503.

Meulendijk, M. C., Spruit, M. R., Willeboordse, F., Numans, M. E., Brinkkemper, S., Knol, W., . . .
Askari, M. (2016). Efficiency of clinical decision support systems improves with experience.
Journal of medical systems, 40 (4), 76.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., & Khudanpur, S. (2010). Recurrent neural
network based language model. In Eleventh annual conference of the international speech
communication association.

Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare:
review, opportunities and challenges. Briefings in bioinformatics.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.
(2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 .

11. REFERENCES 74

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . Hassabis, D.
(2015). Human-level control through deep reinforcement learning. Nature, 518 (7540), 529.

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E.
(2015). Deep learning applications and challenges in big data analytics. Journal of Big Data,
2 (1), 1.

Nature. (2007, Oct). A matter of trust [editorial]. Nature, 449 (7163), 637âĂŞ638. Retrieved from
https://doi.org/10.1038/449637b (Accessed October 9th, 2018)

NHG, N. H. G., & Verzorging, L. E. V. (2012). Multidisciplinaire richtlijn polyfarmacie bij ouderen.
(Accessed November 16th, 2018)

Oracle. (2015). Servlet (java(tm) ee 7 specification apis. Author. Retrieved from https://docs
.oracle.com/javaee/7/api/javax/servlet/Servlet.html (Accessed January 8th, 2019)

Poplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., . . . Webster,
D. R. (2018, 2). Prediction of cardiovascular risk factors from retinal fundus photographs via
deep learning. Nature Biomedical Engineering, 1–7. Retrieved from http:https://doi.org/
10.1038/s41551-018-0195-0 doi: 10.1038/s41551-018-0195-0

Prema, P., & Ramadoss, B. (2008). A classification scheme for game input and output. World
Academy of Science, Engineering and Technology, International Journal of Computer, Elec-
trical, Automation, Control and Information Engineering, 2 (6), 1870–1876.

Pritzker, P., & May, W. (2015). Nist big data interoperability framework (nbdif): Volume 1:
Definitions. NIST Special Publication, 1500 (1).

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential.
Health information science and systems, 2 (1), 3.

Rao, A., Voyles, J., & Ramchandani, P. (2018, Jan). Top 10 artificial intelligence (ai) technology
trends for 2018. PwC. Retrieved from http://usblogs.pwc.com/emerging-technology/
top-10-ai-tech-trends-for-2018/ (Accessed July 7th, 2018)

Rollason, V., & Vogt, N. (2003). Reduction of polypharmacy in the elderly. Drugs & aging, 20 (11),
817–832.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. nature, 323 (6088), 533.

Rummery, G. A., & Niranjan, M. (1994). On-line q-learning using connectionist systems (Vol. 37).
University of Cambridge, Department of Engineering Cambridge, England.

Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., & Edwards, D. D. (2003). Artificial intelligence:
a modern approach (Vol. 2) (No. 9). Prentice hall Upper Saddle River.

Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable artificial intelligence: Understanding,
visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296 .

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal
of research and development, 3 (3), 210–229.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61 ,
85–117.

Seide, F., Li, G., & Yu, D. (2011). Conversational speech transcription using context-dependent
deep neural networks. In Twelfth annual conference of the international speech communication
association.

Sergi, G., De Rui, M., Sarti, S., & Manzato, E. (2011). Polypharmacy in the elderly. Drugs & aging,
28 (7), 509–518.

SethBling. (2015, June 13). MarI/O - machine learning for video games. [YouTube video]. Retrieved
from https://www.youtube.com/watch?v=qv6UVOQ0F44 (Accessed October 10th, 2018)

Shibata, K., & Okabe, Y. (1997). Reinforcement learning when visual sensory signals are directly
given as inputs. In Neural networks, 1997., international conference on (Vol. 3, pp. 1716–
1720).

https://doi.org/10.1038/449637b
https://docs.oracle.com/javaee/7/api/javax/servlet/Servlet.html
https://docs.oracle.com/javaee/7/api/javax/servlet/Servlet.html
http:https://doi.org/10.1038/s41551-018-0195-0
http:https://doi.org/10.1038/s41551-018-0195-0
http://usblogs.pwc.com/emerging-technology/top-10-ai-tech-trends-for-2018/
http://usblogs.pwc.com/emerging-technology/top-10-ai-tech-trends-for-2018/
https://www.youtube.com/watch?v=qv6UVOQ0F44

11. REFERENCES 75

Silver, D., & Hassabis, D. (2016). Alphago: Mastering the ancient game of go with machine learning.
Google AI Research Blog.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., . . . Hassabis, D. (2017).
Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815 .

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., . . . Bolton, A.
(2017). Mastering the game of go without human knowledge. Nature, 550 (7676), 354.

Sloane, P. D., Gruber-Baldini, A. L., Zimmerman, S., Roth, M., Watson, L., Boustani, M., . . .
Hebel, J. R. (2004). Medication undertreatment in assisted living settings. Archives of
Internal Medicine, 164 (18), 2031–2037.

Socher, R., Huang, E. H., Pennin, J., Manning, C. D., & Ng, A. Y. (2011). Dynamic pooling and
unfolding recursive autoencoders for paraphrase detection. In Advances in neural information
processing systems (pp. 801–809).

Spruit, M., & Jagesar, R. (2016). Power to the people! In Proceedings of the international joint
conference on knowledge discovery, knowledge engineering and knowledge management (pp.
400–406).

Spruit, M., & Lytras, M. (2018). Applied data science in patient-centric healthcare. Elsevier.
Steinman, M. A., Seth Landefeld, C., Rosenthal, G. E., Berthenthal, D., Sen, S., & Kaboli, P. J.

(2006). Polypharmacy and prescribing quality in older people. Journal of the American
Geriatrics Society, 54 (10), 1516–1523.

Sutton, R. S., Barto, A. G., & Bach, F. (1998). Reinforcement learning: An introduction. MIT
press.

Theodoridis, S., Koutroumbas, K., et al. (2008). Pattern recognition. IEEE Transactions on Neural
Networks, 19 (2), 376.

Thorp, E., & Walden, W. E. (1972). A computer assisted study of go on m× n boards. Information
Sciences, 4 (1), 1–33.

Tuyls, K., Perolat, J., Lanctot, M., Ostrovski, G., Savani, R., Leibo, J. Z., . . . Legg, S. (2018).
Symmetric decomposition of asymmetric games. Scientific reports, 8 (1), 1015.

Valk, M. (2018). Interpretable recurrent neural networks for heart failure re-hospitalization prediction
(Unpublished master’s thesis). Utrecht University.

Van Den Herik, H. J., Uiterwijk, J. W., & Van Rijswijck, J. (2002). Games solved: Now and in the
future. Artificial Intelligence, 134 (1-2), 277–311.

Van Gerven, M. (2017). Computational foundations of natural intelligence. Frontiers in computa-
tional neuroscience, 11 , 112.

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double q-learning.
In Aaai (Vol. 2, p. 5).

van Otterlo, M., & Wiering, M. (2012). Reinforcement learning and markov decision processes. In
Reinforcement learning (pp. 3–42). Springer.

Verdoorn, S., Kwint, H.-F., Faber, A., Gussekloo, J., & Bouvy, M. (2016). Stopp-start-criteria
kunnen medicatiebeoordeling niet vervangen. Huisarts en wetenschap, 59 (10), 439–442.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016). Dueling network
architectures for deep reinforcement learning. In International conference on machine learning
(pp. 1995–2003).

Weng, J., Ahuja, N., & Huang, T. S. (1992). Cresceptron: a self-organizing neural network which
grows adaptively. In Neural networks, 1992. ijcnn., international joint conference on (Vol. 1,
pp. 576–581).

Wieringa, R. J. (2014). Design science methodology. Springer.
Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in

software engineering. In Proceedings of the 18th international conference on evaluation and
assessment in software engineering (p. 38).

Wright, R. M., Sloane, R., Pieper, C. F., Ruby-Scelsi, C., Twersky, J., Schmader, K. E., & Hanlon,

11. REFERENCES 76

J. T. (2009). Underuse of indicated medications among physically frail older us veterans at
the time of hospital discharge: results of a cross-sectional analysis of data from the geriatric
evaluation and management drug study. The American journal of geriatric pharmacotherapy,
7 (5), 271.

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329 .

Zell, A. (1994). Simulation neuronaler netze (Vol. 1). Addison-Wesley Bonn.
Zhu, X. (2011). Semi-supervised learning. In Encyclopedia of machine learning (pp. 892–897).

Springer.

A. 4VATT QUESTION LIST I

A 4VATT Question List

This appendix contains all of the questions for the 4VATT Suitability Model (see Sec-
tion 4.2). The questions are sorted by their respective factors in the leftmost column.
Identification keys are noted prior the questions, in order to be able to refer to specific
questions in other appendices or from within the main body of this thesis. The other 5
columns indicate the answer on a five-point Likert Scale and its corresponding score for
that question.
When spoken about an application, there should be referred to a chosen example applica-
tion within the domain the 4VATT Suitability Model is filled in for. When spoken about
an implementation, there should be referred to the same application, but with Deep Rein-
forcement Learning built into it.

Question Score
1 2 3 4 5

Volume
(Vol.1) What is the data volume the
application in this domain is capable
of handling?

Very
high

High Moderate Low Very
low

(Vol.2) What is the data volume the
application in this domain receives as
input?

Very
high

High Moderate Low Very
low

Variety
(Var.1) What is the current level of
data variety in an the application in
this domain?

Very
high

High Moderate Low Very
low

(Var.2) What is the expected level
of change in data variety after
implementing DRL principles into the
application in this domain?

Very
high

High Moderate Low Very
low

Velocity
(Vel.1) What is the number of data
sources the application receives data
from?

Very
high

High Moderate Low Very
low

(Vel.2) What is the speed of the
data that enters the application in
this domain?

Very
high

High Moderate Low Very
low

A. 4VATT QUESTION LIST II

Question Score
1 2 3 4 5

Veracity
(Ver.1) What is the average data
quality level within this domain?

Very
low

Low Moderate High Very
high

(Ver.2) What is the level of variety
in data quality the application within
this domain receives as input?

Very
high

High Moderate Low Very
low

(Ver.3) How major is it that the
data fed into the application is
completely correct (i.e. fault-free)?

Very
major

Major Moderate Minor Very
minor

Accountability
(Acc.1) What is the expected
seriousness level of an accountability
issue after implementing DRL
principles into the application in this
domain?

Very
high

High Moderate Low Very
low

(Acc.2) What is the expected
amount of people involved in an
accountability issue after
implementing DRL principles into the
application in this domain?

Very
high

High Moderate Low Very
low

(Acc.3) What is the total expected
amount of accountability issues after
implementing DRL principles into the
application in this domain?

Very
high

High Moderate Low Very
low

A. 4VATT QUESTION LIST III

Question Score
1 2 3 4 5

Transparency
(Trp.1) What amount of governance
of the application in this domain is
needed or will be used?

Very
high

High Moderate Low Very
low

(Trp.2) How major is it to know the
exact decision making process for the
application in this domain?

Very
major

Major Moderate Minor Very
minor

(Trp.3) What is the amount of
sensitive data the application will be
dealing with?

Very
high

High Moderate Low Very
low

Transformability
(Trf.1) What is the amount of
similarity in structure between the
implementation in this domain, and
an implementation in the gaming
domain?

Very
low

Low Moderate High Very
high

(Trf.2) What is the expected
difficulty level of transforming the
application in this domain into one
having roughly the same structure as
a game?

Very
high

High Moderate Low Very
low

(Trf.3) What is the level of
connectedness of the application to
other applications in this domain?
(e.g what is the number of
applications this application is
embedded in, or connected to?)

Very
high

High Moderate Low Very
low

B. ANSWERED QUESTIONS FOR PRESCRIPTIVE HEALTHCARE
DOMAIN IV

B Answered Questions for Prescriptive Healthcare Domain

This appendix contains the answered 4VATT Question List from Appendix A, concerning
the prescriptive healthcare domain. The first column of the table contains the question ID,
which can be used to look up the question itself. The next two tables contain the answer
to the question, and its respective score. The last column gives an explanation on how the
given answer is conceived.

Question ID Answer Score Explanation
Volume

(Vol.1) Moderate 3 While not being able to handle excessive
amounts of data, applications within the
prescriptive healthcare domain can handle a
regular amount of data

(Vol.2) Low 4 The amount of data the STRIP Assistant
handles is low, as only during visits to a GP
more data is passed to the system
Variety

(Var.1) Low 4 The current data variety is low; only patient
data on medication, treatments, complaints,
and medical measurements is stored. The
first three are categorical data, the last one
is continuous data

(Var.2) Low 4 The data that is stored and handled in the
system will not change after an
implementation of DRL principles
Velocity

(Vel.1) High 2 The application receives input from multiple
sources; amongst those are medical
measurement devices, START rules, STOPP
rules, and different kind of contra-indication
rules

(Vel.2) Low 4 The data enters the application periodically,
namely every time a patient visits a GP

B. ANSWERED QUESTIONS FOR PRESCRIPTIVE HEALTHCARE
DOMAIN V

Question ID Answer Score Explanation
Veracity

(Ver.1) Very high 5 The data is generated by carefully
constructed START and STOPP rules, by
reliable medical instruments, or entered by a
GP with a high level of medical knowledge

(Ver.2) Low 4 While a perfect level of quality cannot be
guaranteed, there is little variety in data
quality

(Ver.3) Major 2 Algorithmic decision making cannot
completely guarantee a foolproof decision
making process. As such, a set of decision
made by an algorithm will contain false
positives and/or false negatives. Within the
medical field, it is vital to minimize these
false results

Accountability
(Acc.1) High 2 Whenever something goes wrong in this

domain, someone needs to be held
accountable. Usually, when something goes
wrong in this domain, it ends in a patient
dying a preventable death

(Acc.2) Low 4 In this domain, the amount of people that
can be held accountable is usually pretty
slim, as only a select group of people will
prescribe medicine to patients

(Acc.3) Moderate 3 Ideally, the algorithm will make a perfect
prediction every time. However, as this is
not possible, GPs will not be replaced by
algorithms, but instead will be supported by
them

B. ANSWERED QUESTIONS FOR PRESCRIPTIVE HEALTHCARE
DOMAIN VI

Question ID Answer Score Explanation
Transparency

(Trp.1) High 2 If a decision is made by a GP, it needs to be
clear exactly why this decision is made.
Likewise, if an algorithm is in charge for this
decision, it needs to be known why a certain
decision has been made, as this could be a
vital decision that could impact someone’s
life

(Trp.2) Moderate 3 For most decisions, it is not major to know
exactly how a decision is made. However, in
some instances, it is very major to know the
exact decision making process (i.e. why is
certain medication chosen in favour of other
medication)

(Trp.3) Moderate 3 The implementation will be dealing with
medical measurements of a patient, as well
as complaints and medications of a patient.
While this is data about a patient, it is not
highly sensitive data which can be used to
uniquely identify a single patient

Transformability
(Trf.1) Low 2 Most implementations in the gaming domain

offer both a state and a goal. Usually, this
goal is to get a high score, or a low time.
However, the domain of the application lacks
a clear goal, and has no overall ‘state’ in
which the application resides

(Trf.2) Low 4 It is expected that the amount effort to
reform the application into a game-like
structure is low.

(Trf.3) Low 4 The application itself functions as a
standalone application. As such, it is
connected to little to no other applications.
The main connections this application has,
are to databases with patient data and rules

C. DRL IMPLEMENTATION VII

C DRL Implementation

1 import mysql.connector
2 from mysql.connector import errorcode
3

4 ### Import the config file for the STRIP Assistant Database
5 from .python_mysql_dbconfig import read_db_config
6

7 ### Get the config for the local MySQL instance ###
8 config = read_db_config()
9

10 def connect_to_db():
11 try:
12 cnx = mysql.connector.connect(**config)
13 except mysql.connector.Error as err:
14 if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
15 print('Something is wrong with your username or password')
16 elif err.errno == errorcode.ER_BAD_DB_ERROR:
17 print('Database error, it seems that your database is non-existent')
18 print(err)
19 else:
20 print(err)
21 else:
22 return cnx
23

24 def query_db(cnx, query):
25 cursor = cnx.cursor()
26 cursor.execute(query)
27 result = cursor.fetchall()
28 cursor.close()
29 return result
30

31 def multi_query_db(cnx,queries):
32 result = {}
33 for key, query in queries.items():
34 result[key] = query_db(cnx,query)
35 return result
36 ### End database connection classes ###

Figure 43 . Python module for database connections between the STRIP Assistant Database
and the DRL Implementation

1 from strip import dbc as sdbc
2 from strip import MHE_vectorify as smhe
3 from queries import query_dict
4

5 import tensorflow as tf
6

7 import numpy as np
8 import pandas as pd
9

10 from sklearn.preprocessing import MultiLabelBinarizer

C. DRL IMPLEMENTATION VIII

11

12 ### Get all the data from the database
13 cnx = sdbc.connect_to_db()
14 db = sdbc.multi_query_db(cnx, query_dict)
15

16 (patients, medications, complications, measurements, startstop, _,_,_) = db.values()
17 all_measurements = [x[0] for x in db["all_measurements"]]
18 all_medications = [x[0] for x in db["all_medications"]]
19 all_complications = [x[0] for x in db["all_complications"]]
20

21 cnx.close()
22

23 ### Empty (MHE)vectors for measurements and medications:
24 empty_medications = np.zeros(len(all_medications), dtype=int)
25 empty_measurements = np.zeros(len(all_measurements), dtype=int)
26

27 ### Empty vector for complications
28 mlb = MultiLabelBinarizer()
29 temp_comps = dict(smhe.listCombiner(complications))
30 df = pd.DataFrame(mlb.fit_transform(temp_comps.values()), columns = mlb.classes_, index =

temp_comps.keys())↪→

31 c_empty = list(np.zeros(len(np.array(df.iloc[[0]].values).flatten())))
32

33 ### Dictionary containing all medications per patient
34 medications_dict = smhe.createSTRIPdict(medications, all_medications)
35

36 ### Function to build a list of result data
37 def getResultDict(data):
38 resultdict = {}
39 for r in data:
40 (k, start, stopp) = r
41 if k not in resultdict:
42 if start > 1:
43 resultdict[k] = ['START']
44 elif stopp > 1:
45 resultdict[k] = ['STOPP']
46 elif start < 2 and stopp < 2:
47 resultdict[k] = ['NONE']
48 if k in resultdict:
49 if start > 1:
50 resultdict[k] = resultdict[k] + ['START']
51 elif stopp > 1:
52 resultdict[k] = resultdict[k] + ['STOPP']
53 elif start < 2 and stopp < 2:
54 resultdict[k] = resultdict[k] + ['NONE']
55

56 for k, v in resultdict.items():
57 u = list(set(v))
58 if 'START' in u and 'STOPP' in u:
59 resultdict[k] = 3
60 elif 'START' not in u and 'STOPP' in u:
61 resultdict[k] = 2
62 elif 'START' in u and 'STOPP' not in u:
63 resultdict[k] = 1
64 elif 'START' not in u and 'STOPP' not in u and 'NONE' in u:

C. DRL IMPLEMENTATION IX

65 resultdict[k] = 0
66 else:
67 resultdict[k] = 0
68 return resultdict
69

70 ### Function to get all the measurement values
71 def getMeasurements(pID):
72 if pID not in measurements[0]:
73 return empty_measurements
74 else:
75 result = ()
76 rowindex = 0
77 patientMeasures = [row for row in measurements if row[0] == pID]
78 for index, item in enumerate(all_measurements):
79 if all_measurements[index] in patientMeasures[1]:
80 result = result + (int(patientMeasures[rowindex][2]),)
81 rowindex += 1
82 else:
83 result = result + (0,)
84 return result
85

86 def generateIO():
87 input, complications, medications, output = [],[],[],[]
88 result_dict = getResultDict(startstop)
89 for row in patients:
90 (pID,_,_,_) = row
91 input.append(list(row[1:]) + list(getMeasurements(pID)))
92 try:
93 c = np.asarray(df.loc[[pID]].values)
94 c_flat = [item for sublist in c for item in sublist]
95 complications.append(c_flat)
96 except KeyError:
97 complications.append(c_empty)
98 if pID in medications_dict:
99 medications.append(medications_dict[pID])

100 else:
101 medications.append(empty_medications)
102 if pID in result_dict:
103 output.append([result_dict[pID]])
104 else:
105 output.append([0])
106

107 return np.asarray(input),np.asarray(complications), np.asarray(medications),
np.asarray(output)↪→

Figure 44 . Python module for preprocessing the data entering the STRIP Assistant DRL
Implementation

1 import numpy as np
2 def totuple(a):
3 try:
4 return tuple(totuple(i) for i in a)

C. DRL IMPLEMENTATION X

5 except TypeError:
6 return a
7

8 def listCombiner(inputList):
9 firstrow = 1

10 previousPatient = 0
11 targetList, totalList = [], []
12 for row in inputList:
13 pID, tID = row
14 if firstrow == 1:
15 targetList.append(tID)
16 firstrow = 0
17 else:
18 if pID == previousPatient:
19 targetList.append(tID)
20 else:
21 totalList.append((previousPatient, targetList))
22 targetList = []
23 targetList.append(tID)
24 previousPatient = pID
25 totalList.append((previousPatient, targetList))
26 return totalList
27

28 ### Function to transform a query into a multi hot encoded vector
29 def toMHEvector(query, totalSet):
30 MHEvector = []
31 for x in totalSet:
32 if x in query:
33 MHEvector.append(1)
34 else:
35 MHEvector.append(0)
36 return MHEvector
37

38 def massMHEvector(input, superset):
39 result = []
40 vec = []
41 for row in input:
42 patientID, y = row
43 vec = toMHEvector(y, superset)
44 result.append((patientID, vec))
45 return result
46

47 def createSTRIPdict(x, x_set):
48 return dict(massMHEvector(listCombiner(x), x_set))

Figure 45 . Python module aiding in preprocessing of the data entering the STRIP Assistant
DRL Implementation

D. NETWORK STATISTICS XI

D Network Statistics

This appendix contains additional metrics for the networks that have been constructed in
Chapter 7. While the main results for the networks are already presented in Section 7.4,
these metrics are meant as supporting data for these results. The following sections will
house the metrics and supporting tables for each subsection from Section 7.4.

D.1 Personalia Network - Unaggregated

Table 23
Confusion matrix of the validation results on the trained personalia network, showing the
confusion between the zero-class and the remainder class

Predicted
0 ∼ Total

Actual 0 0 18 18
∼ 0 84 84
Total 0 102 102

Table 24
Metrics for the confusion matrix shown in Table 23
Metric Formula Value
Accuracy (TP + TN) / total 0.8235
Error rate (FP + FN) / total 0.1765
Sensitivity TP / (FN + TP) 0.0000
Specificity TN / (TN + FP) 1.0000
Precision TP / (FN + TP) Error
False Positive Rate FP / (TN + FP) 0.0000
f1-score 2 ∗ Precision∗Sensitivity

Precision+Sensitivity Error

Table 25
Confusion matrix of the validation results on the trained personalia network

Predicted
0 1 2 3 Total

Actual

0 0 0 0 18 18
1 0 0 0 16 16
2 0 0 0 1 1
3 0 0 0 67 67
Total 0 0 0 102 102

D. NETWORK STATISTICS XII

Table 26
Metrics for the confusion matrix shown in Table 29
Metric Acronym Class 0 Class 1 Class 2 Class 3
True Positive TP 0 0 0 67
False Positive FP 18 16 1 0
False Negative FN 0 0 0 35
True Negative TN 84 86 101 0
Metric Formula Class 0 Class 1 Class 2 Class 3
Accuracy (TP + TN) / total 0.8235 0.8431 0.9902 0.6569
Error rate (FP + FN) / total 0.1765 0.1569 0.0098 0.3431
Sensitivity TP / (FN + TP) Error Error Error 0.6569
Specificity TN / (TN + FP) 1.0000 1.0000 1.0000 Error
Precision TP / (FP + TP) 0.0000 0.0000 0.0000 1.0000
False Positive Rate FP / (TN + FP) 0.1765 0.1569 0.0098 Error
f1-score 2 ∗ Precision∗Sensitivity

Precision+Sensitivity Error Error Error 0.7929

D. NETWORK STATISTICS XIII

D.2 Complications Network - Unaggregated

Table 27
Confusion matrix of the validation results on the trained complications network, showing
the confusion between the zero-class and the remainder class

Predicted
0 ∼ Total

Actual 0 0 18 18
∼ 0 84 84
Total 0 102 102

Table 28
Metrics for the confusion matrix shown in Table 27
Metric Formula Value
Accuracy (TP + TN) / total 0.8235
Error rate (FP + FN) / total 0.1765
Sensitivity TP / (FN + TP) 0.0000
Specificity TN / (TN + FP) 1.0000
Precision TP / (FP + TP) Error
False Positive Rate FP / (TN + FP) 0.0000
f1-score 2 ∗ Precision∗Sensitivity

Precision+Sensitivity Error

Table 29
Confusion matrix of the validation results on the trained complications network

Predicted
0 1 2 3 Total

Actual

0 0 0 0 18 18
1 0 0 0 16 16
2 0 0 0 1 1
3 0 0 0 67 67
Total 0 0 0 102 102

D. NETWORK STATISTICS XIV

Table 30
Metrics for the confusion matrix shown in Table 29
Metric Acronym Class 0 Class 1 Class 2 Class 3
True Positive TP 0 0 0 67
False Positive FP 18 16 1 0
False Negative FN 0 0 0 35
True Negative TN 84 86 101 0
Metric Formula Class 0 Class 1 Class 2 Class 3
Accuracy (TP + TN) / total 0.8235 0.8431 0.9902 0.6569
Error rate (FP + FN) / total 0.1765 0.1569 0.0098 0.3431
Sensitivity TP / (FN + TP) Error Error Error 0.6569
Specificity TN / (TN + FP) 1.0000 1.0000 1.0000 Error
Precision TP / (FP + TP) 0.0000 0.0000 0.0000 1.0000
False Positive Rate FP / (TN + FP) 0.1765 0.1569 0.0098 Error
f1-score 2 ∗ Precision∗Sensitivity

Precision+Sensitivity Error Error Error 0.7929

D. NETWORK STATISTICS XV

D.3 Medications Network - Unaggregated

Table 31
Confusion matrix of the validation results on the trained medications network, showing the
confusion between the zero-class and the remainder class

Predicted
0 ∼ Total

Actual 0 8 10 18
∼ 6 78 84
Total 14 88 102

Table 32
Metrics for the confusion matrix shown in Table 31
Metric Formula Value
Accuracy (TP + TN) / total 0.8431
Error rate (FP + FN) / total 0.1569
Sensitivity TP / (FN + TP) 0.4444
Specificity TN / (TN + FP) 0.9286
Precision TP / (FN + TP) 0.5714
False Positive Rate FP / (TN + FP) 0.0714
f1-score 2 ∗ Precision∗Sensitivity

Precision+Sensitivity 0.5000

Table 33
Confusion matrix of the validation results on the trained medications network

Predicted
0 1 2 3 Total

Actual

0 8 0 0 10 18
1 3 0 0 13 16
2 0 0 0 1 1
3 3 0 0 64 67
Total 14 0 0 88 102

D. NETWORK STATISTICS XVI

Table 34
Metrics for the confusion matrix shown in Table 33
Metric Acronym Class 0 Class 1 Class 2 Class 3
True Positive TP 8 0 0 64
False Positive FP 6 0 0 24
False Negative FN 10 16 1 3
True Negative TN 78 86 101 11
Metric Formula Class 0 Class 1 Class 2 Class 3
Accuracy (TP + TN) / total 0.8431 0.8431 0.9902 0.7353
Error rate (FP + FN) / total 0.1569 0.1569 0.0098 0.2647
Sensitivity TP / (FN + TP) 0.4444 0.0000 0.0000 0.8533
Specificity TN / (TN + FP) 0.9286 1.0000 1.0000 0.3143
Precision TP / (FP + TP) 0.5714 Error Error 0.7273
False Positive Rate FP / (TN + FP) 0.0714 0.0000 1.0000 0.6857
f1-score 2 ∗ Precision∗Sensitivity

Precision+Sensitivity 0.5000 Error Error 0.7853

D. NETWORK STATISTICS XVII

D.4 Personalia Network - Aggregated

Table 35
Confusion matrix of the validation results on the trained personalia network, trained with
aggregated data, showing the confusion between the two classes

Predicted
0 1 Total

Actual 0 9 9 18
1 1 83 84
Total 10 92 102

Table 36
Metrics for the confusion matrix shown in Table 35
Metric Formula Value
Accuracy (TP + TN) / total 0.9010
Error rate (FP + FN) / total 0.0990
Sensitivity TP / (FN + TP) 0.9000
Specificity TN / (TN + FP) 0.9011
Precision TP / (FN + TP) 0.5000
False Positive Rate FP / (TN + FP) 0.0989
f1-score 2 ∗ Precision∗Sensitivity

Precision+Sensitivity 0.6429

D. NETWORK STATISTICS XVIII

D.5 Complications Network - Aggregated

Table 37
Confusion matrix of the validation results on the trained complications network, trained
with aggregated data, showing the confusion between the two classes

Predicted
0 1 Total

Actual 0 14 4 18
1 21 63 84
Total 35 77 102

Table 38
Metrics for the confusion matrix shown in Table 37
Metric Formula Value
Accuracy (TP + TN) / total 0.7549
Error rate (FP + FN) / total 0.2451
Sensitivity TP / (FN + TP) 0.4000
Specificity TN / (TN + FP) 0.9403
Precision TP / (FN + TP) 0.7778
False Positive Rate FP / (TN + FP) 0.0597
f1-score 2 ∗ Precision∗Sensitivity

Precision+Sensitivity 0.5283

D. NETWORK STATISTICS XIX

D.6 Medications Network - Aggregated

Table 39
Confusion matrix of the validation results on the trained medications network, trained with
aggregated data, showing the confusion between the two classes

Predicted
0 1 Total

Actual 0 10 8 18
1 29 55 84
Total 39 63 102

Table 40
Metrics for the confusion matrix shown in Table 39
Metric Formula Value
Accuracy (TP + TN) / total 0.6373
Error rate (FP + FN) / total 0.3627
Sensitivity TP / (FN + TP) 0.2564
Specificity TN / (TN + FP) 0.8730
Precision TP / (FN + TP) 0.5556
False Positive Rate FP / (TN + FP) 0.1270
f1-score 2 ∗ Precision∗Sensitivity

Precision+Sensitivity 0.3509

E. IMPROVED 4VATT QUESTION LIST XX

E Improved 4VATT Question List

This appendix contains an improved version of the 4VATT Suitability Model from Sec-
tion 4.2. Like the version of the model presented in Appendix A, the questions are sorted
by their respective factors in the leftmost column. Identification keys are noted prior the
questions, in order to be able to refer to specific questions in other appendices or from within
the main body of this thesis. The other 5 columns indicate the answer on a five-point Likert
Scale and its corresponding score for that question.
When spoken about an application, there should be referred to a chosen example applica-
tion within the domain the 4VATT Suitability Model is filled in for. When spoken about
an implementation, there should be referred to the same application, but with Deep Rein-
forcement Learning built into it.

Question Score
1 2 3 4 5

Volume
(Vol.1) What is the data volume the
application in this domain is capable
of handling?

Very
high

High Moderate Low Very
low

(Vol.2) What is the data volume the
application in this domain receives as
input?

Very
high

High Moderate Low Very
low

(Vol.3) What is the amount of
features within the data an average
application in this domain receives as
an input?

Very
high

High Moderate Low Very
low

(Vol.4) What is the amount of
time-based data that an average
application within this domain
currently uses?

Very
low

Low Moderate High Very
high

Variety
(Var.1) What is the current level of
data variety in an the application in
this domain?

Very
high

High Moderate Low Very
low

(Var.2) What is the expected level
of change in data variety after
implementing DRL principles into the
application in this domain?

Very
high

High Moderate Low Very
low

E. IMPROVED 4VATT QUESTION LIST XXI

Question Score
1 2 3 4 5

Velocity
(Vel.1) What is the number of data
sources the application receives data
from?

Very
high

High Moderate Low Very
low

(Vel.2) What is the speed of the
data that enters the application in
this domain?

Very
high

High Moderate Low Very
low

(Vel.3) What is the required speed
that the data needs to travel through
an application in this domain?

Very
high

High Moderate Low Very
low

Veracity
(Ver.1) What is the average data
quality level within this domain?

Very
low

Low Moderate High Very
high

(Ver.2) What is the level of variety
in data quality the application within
this domain receives as input?

Very
high

High Moderate Low Very
low

(Ver.3) How major is it that the
data fed into the application is
completely correct (i.e. fault-free)?

Very
major

Major Moderate Minor Very
minor

(Ver.4)What is the amount of data
preparation needed in order to feed
application data into a DRL solution
for an average application in this
domain?

Very
high

High Moderate Low Very
low

Accountability
(Acc.1) What is the expected
seriousness level of an accountability
issue after implementing DRL
principles into the application in this
domain?

Very
high

High Moderate Low Very
low

(Acc.2) What is the expected
amount of people involved in an
accountability issue after
implementing DRL principles into the
application in this domain?

Very
high

High Moderate Low Very
low

(Acc.3) What is the total expected
amount of accountability issues after
implementing DRL principles into the
application in this domain?

Very
high

High Moderate Low Very
low

E. IMPROVED 4VATT QUESTION LIST XXII

Question Score
1 2 3 4 5

Transparency
(Trp.1) What amount of governance
of the application in this domain is
needed or will be used?

Very
high

High Moderate Low Very
low

(Trp.2) How major is it to know the
exact decision making process for the
application in this domain?

Very
major

Major Moderate Minor Very
minor

(Trp.3) What is the amount of
sensitive data the application will be
dealing with?

Very
high

High Moderate Low Very
low

Transformability
(Trf.1) What is the amount of
similarity in structure between the
implementation in this domain, and
an implementation in the gaming
domain?

Very
low

Low Moderate High Very
high

(Trf.2) What is the expected
difficulty level of transforming the
application in this domain into one
having roughly the same structure as
a game?

Very
high

High Moderate Low Very
low

(Trf.3) What is the level of
connectedness of the application to
other applications in this domain?
(e.g what is the number of
applications this application is
embedded in, or connected to?)

Very
high

High Moderate Low Very
low

(Trf.4) What is the application
maturity level of an average
application in this domain?

Very
low

Low Moderate High Very
high

(Trf.5) What is the level of clarity
with respect to determining what is a
’good’ outcome of an average
application within this domain?

Very
low

Low Moderate High Very
high

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	List of Terms
	Introduction
	Research Context
	Applied Data Science
	Go: ``The grand challenge of AI''

	Problem Statement
	Research Questions

	Research Methodology
	Design Science Research
	Knowledge Discovery Process
	Research Framework
	Research Plan
	Literature Review Method

	Theoretical Background: Deep Reinforcement Learning Principles
	Deep Learning
	Types of Deep Learning
	Artificial Neural Network
	Deep Neural Network
	Recurrent Neural Network

	Reinforcement Learning
	Q-Learning
	SARSA

	Deep Reinforcement Learning

	Determining the Suitability of New Domains
	Challenges of Deep Reinforcement Learning
	Big Data's 4V model
	Implementation and Accountability
	Domain Transparency
	Domain Transformability

	Selecting a Suitable Domain

	Empirical Background: STRIP Assistant and the Medical Domain
	Applying the 4VATT Suitability Model
	The Prescriptive Healthcare Domain
	Polypharmacy: When one pill turns into ten
	STRIP: Methods for medication

	STRIP Assistant: From man-work to machine
	User Interface
	Back-end

	CRISP-DRL
	Understanding
	Preparation
	Modeling
	Evaluation
	Implementation

	Applying CRISP-DRL for STRIPAI
	Understanding
	Application Understanding
	Domain Understanding
	Data Understanding

	Preparation
	Data Preparation
	Application Preparation

	Modeling
	Evaluation
	Non-aggregated Network Results
	Pre-aggregated Network Results

	Results
	STRIPAI: Usability
	STRIPAI: Effectiveness
	STRIPAI: Efficiency

	Improving the 4VATT Suitability Model

	Conclusion
	Discussion
	Research Limitations
	Data Issues
	Implementation Issues
	4VATT Suitability Model

	Future Work

	References
	Appendix 4VATT Question List
	Appendix Answered Questions for Prescriptive Healthcare Domain
	Appendix DRL Implementation
	Appendix Network Statistics
	Personalia Network - Unaggregated
	Complications Network - Unaggregated
	Medications Network - Unaggregated
	Personalia Network - Aggregated
	Complications Network - Aggregated
	Medications Network - Aggregated

	Appendix Improved 4VATT Question List

