
Using scenario smells to analyze scripted
communication scenarios in virtual learning

environments

Timo Overbeek

Supervised by:
Johan Jeuring

Raja Lala

May 2019

Contents

1 Introduction 4

2 Communication Education 7

2.1 Communication Training Software 7

2.2 Dialog Scenario Language . 9

2.3 Communicate . 10

3 Hypothesis and research question 15

3.1 Research Question . 15

3.2 Scenario Smells . 17

3.2.1 Example 1 . 17

3.2.2 Example 2 . 18

3.2.3 Scenario Smell . 19

3.3 Displaying Information . 21

3.4 Research Method . 22

1

4 Interviews 24

4.1 Interview Creation . 24

4.2 Interviewee . 26

4.3 Results . 27

4.3.1 Current Use . 27

4.3.2 Valid Scenarios . 28

4.3.3 Optimal Path . 31

4.3.4 Proposed Improvements 34

4.4 Conclusion . 39

4.5 Scenario Smells . 40

5 Implementation 42

5.1 Calculating the Optimal Path 43

5.2 Size of Search Space . 44

5.2.1 Basic Combinators . 44

5.2.2 Interleave Points . 48

5.3 Subject Monotonicity . 52

5.4 Calculating Scenario Smells 55

5.5 Scenario Smells Report . 58

6 End Interviews 59

6.1 Introduction . 59

2

6.2 Usability of Scenario Smells 60

6.3 Calculation Time . 63

7 Evaluation 65

7.1 General Scenarios . 66

7.2 A scenario with sequential subjects 68

7.3 A scenario with parallel subjects 69

7.4 A scenario with high subject complexity 71

8 Discussion 73

8.1 Answer Research Question . 73

8.2 Recommendations . 76

9 Future Research 79

9.1 Workflow of Scenario Writers 79

9.2 Pruning . 80

9.3 Learning Effect . 81

10 Conclusions 83

3

Chapter 1

Introduction

Face-to-face communication is an essential skill in many professions. Doctors
need to convey bad news to their patients; teachers inform parents about
the progress of their pupils; managers hold salary negotiations with their
employees; prison guards need to assess the aggression levels of detainees
correctly.

Many educational programs include communication skills in their curriculum
objectives. There are many ways these learning objectives can be reached,
but practicing these skills with role-playing sessions seems to be a particu-
larly effective method [1]. In these sessions, two or more students perform a
conversation. They each take on a predefined role, which can either be that
of a working professional or that of a client. A third person often watches
the conversation and provides feedback once the conversation is done.

To practice communication skills, a student can use a serious game. Such a
game often simulates role-playing sessions, but only one role is performed by
a player and the others are performed by the computer. Some communication
training software allows a player to write his statements [10], but most games
use scripted conversations [2, 3, 6]. In a scripted conversation, a player selects
an answer from a limited set of provided answers.

Communication experts possess the knowledge necessary to develop a scripted
conversation. To make developing scripted conversations as easy as possible,

4

a communication expert can use a special-purpose editor for developing sce-
narios. A game can then include the conversations developed by a commu-
nication expert. Using a special-purpose editor for developing conversations
means that authors do not need programming skills.

Directed acyclic graphs (DAGs) are a popular way to structure a dialog in
communication software [7]. In such a DAG every node represents a state-
ment, and the edges indicate the flow of the conversation. There are many
possible paths that can be taken through a DAG, and every path needs to
result in a plausible conversation. Depending on the size and complexity of
the dialog, this can make writing the required DAGs a complicated process.

Some games provide feedback to a player in the form of a score [?, 6]. This
may make writing a DAG even harder because an author will not only need to
make sure that a dialog is always plausible, but also that a scoring correctly
represents the player’s performance for every player choice. For example,
if every NPC node has one preferred player follow-up, and those preferred
player statements all have the same score, then the longest path will always
result in the highest score. The length of a path does not necessarily tell us
anything about its desirability and is therefore probably not a correct way
to measure player performance. A long path that yields a high score might
be desirable, but could also be an indication that something is wrong with
the scenario.

In computer programming, we sometimes talk about code smells [4]. With
a code smell, we refer to a common symptom of a certain error in a piece of
code. This error might be on a much deeper level than the symptom. For
example, the occurrence of very large classes is often referred to as a code
smell. There might be situations where a large class is required, but they are
often a symptom of bad class hierarchy. The duplicate code A code smell
does not necessarily imply bad code. However, a code smell is often much
easier to find than the actual problem, and code smells can, therefore, help
find these problems. As discussed before, if the longest path in a scenario
yields the highest possible score, there might be a problem. The scoring
could still be correct, the longest path might also be the most desirable path,
but this occurrence often indicates that something in the scenario is wrong.
This principle is similar to a code smell, and we will, therefore, refer to this
as a scenario smell.

5

We hypothesize that identifying scenario smells helps a scenario author to
create better training scenarios. In this study, we will attempt to identify
different kinds of scenario smells. We will also explore different ways in which
we can notify a scenario author of scenario smells. We will look both at the
desirability of these solutions and their technical feasibility.

We organized this study as follows. In chapter 2 we discuss the current state
of communication education by looking at the literature that is available on
the subject. In chapter 3 we explain our hypothesis of the perceived problems
and their possible solutions in further detail. In chapter 4 we describe various
interviews we conducted to verify our hypothesis. In chapter 5 we discuss
the technical possibilities and limitations of our solutions. In chapter 6 we
describe a second set of interviews we conducted. In chapter 7 we discuss
the practical performance of our methods. In chapter 8 we will make some
recommendations for Communicate. In chapter 9 we will discuss possible
further research. We will conclude our research in chapter 10.

6

Chapter 2

Communication Education

2.1 Communication Training Software

In this section we give a brief overview of different serious games that support
practicing communication skills. We focus on serious games that simulate a
conversation. In particular, we discuss the way a dialog is structured and
how decisions are made for an NPC.

Cláudio et al. [3] describe an application that teaches Pharmaceutical Science
student how they should communicate with their patients. The application
simulates a conversation between a player and one NPC. The game uses
scripted conversations and scenarios can be created in the Dialog Creator
Interface. The dialog is represented with a DAG, where every node represents
one statement. Statements alternate between player and NPC, and every
NPC node connects to exactly three player nodes. Player nodes have a score
parameter, which is used to generate a total score at the end of the game.

Bosse et al. [2] propose a way to make NPCs more realistic and less pre-
dictable by using a cognitive model and an aggression parameter. They start
from an application much like that of Cláudio et al. [3], where a dialog is rep-
resented with a DAG. Like Cláudio et al. they alternate between player and
NPC nodes, and every NPC node is connected to a fixed amount of player

7

nodes. They offer four connections, which are matched with the following
intentions: letting go, supportive, directive, and call for support. Bosse et
al. improve on this initial game, by adding an aggression parameter. The
value of this parameter is influenced both by prior statement choices and the
player’s real-life emotions. Every player node can be connected to multiple
NPC nodes and the computer makes a choice between them by looking at
the aggression parameter.

Wauters et al. [10] also make use of emotions in their deLearyous application.
They use the interpersonal circumplex model [9], which models behavior on
two axes; one axis representing submissive versus dominant, and one axis
representing cooperative versus antagonistic behavior. Submissive and dom-
inant behavior result in the opposite behavior in a conversation partner.
Cooperative and antagonistic behavior result in similar behavior in a con-
versation partner. DeLearyous leaves the player free to create his/her own
statements, and uses a natural language processing (NLP) module to pro-
cess a player statement. The NLP module classifies where on the circumplex
model a statement belongs, and also identifies the keywords in the player’s
statement. A finite state machine then combines these two to select a NPC
statement.

Figure 2.1: An example of a subject
hierarchy within Communicate

Communicate [6] separates its sce-
narios into subjects. Each subject
is in turn represented by one DAG.
Subjects need to be traversed in a
predefined sequence. However, sub-
jects can be interleaved, in which
case the player is free to choose be-
tween statements of the interleaved
subjects. This process is illustrated
in figure 2.1. The vertical axis rep-
resents the sequence of subjects. Subjects on the same horizontal line are
interleaved, and can be traversed in any order. All the subjects on one hor-
izontal line need to traversed, before the subjects on the next line become
available.

Communicate uses emotions in the animations of the NPCs, but not for
determining the flow of the conversation. The dialog flow can be controlled

8

by means of score parameters, which can be defined by the scenario author.
A player node can change score parameters. A player node can also have one
or more preconditions. A precondition allows a statement to be presented
only if the precondition is satisfied, for example if the scoring parameters are
within a certain range.

Leuski and Traum [8] propose to use a virtual human for other purposes
than communication training, such as guiding a tour, or perform secretarial
services. Like Wauters et al. [10] they use an NLP module for dialogs.
They do not use any control flow for dialogs. Instead the statements of the
NPC will try to give a correct answer to a player’s statement, by using an
individual knowledge base. Different NPCs might have different knowledge
bases, which results in different behavior.

Gebhard et al. [5] describe Visual Scenemaker, a tool that can be used to
create interactive applications with multiple NPCs. Like the application of
Leuski and Traum, Visual Scenemaker is not specifically build for commu-
nication education, but it can be used for that purpose. Gebhard et al.
separate the content, dialog statements, from the logic that describes the
dialog flow. They use a directed graph to create a dialog flow, but unlike the
other examples the graph does not have to be acyclic.

2.2 Dialog Scenario Language

There are a lot of similarities between the discussed applications. All the
applications that use a scripted dialogue make use of a graph to represent
the dialog flow. In most cases this graph takes the form of a DAG. Many
applications also make use of parameters that can be increased or decreased
during the conversation. Scenario author can use these parameters as a
feedback opportunity or as a way to represent emotions. In quite a few
applications the parameters also allow the scenario author to exercise more
control over the dialog flow.

Lala et al. [7] compare multiple applications and define a language that
can be used to compare different scripted conversation simulations. They
define the entire script as a scenario, that can consist of multiple subjects.

9

Every subject in turn consists of a DAG. Nodes in the DAG can have multi-
ple properties, the most important one is the statement, which contains the
actual dialog. Other components are also possible, for instance parameter in-
creases, emotion changes, player feedback or preconditions. The authors also
define an XML scheme called Utrecht University Dialogue Scenario Language
(UUDSL) that can be used to describe the structure of a scenario.

In this study we use UUDSL as much as possible. This makes our research
applicable in a wide array of communication training software. We use the
Communicate software as benchmark, because we have full access to its code.
We now provide an overview of the functions of Communicate for the unfa-
miliar reader.

2.3 Communicate

Communicate is a web based application that consists of a game and a sce-
nario editor. In the game students have a conversation with a single NPC.
The NPC statements are displayed in a text balloon and the possible player
statements are displayed at the bottom of the screen.

The game measures the performance of a player with scores. Each score
represents a skill or communication goal. For example, in a scenario where
a player needs to discuss with a NPC which movie they are going to see,
the game can measure the player performance in a goal score and a relation
score. The goal score indicates if the player succeeded in selecting the movie
he/she wanted. The relation goal shows how angry or happy the NPC is with
the player.

Choosing certain player statements will increase or decrease the scores. A
scenario author can decide if these score changes are immediately visible or
if they remain invisible. Either way, at the end of the game a player sees the
final scores, and a total score that is the weighted average of all the scores.
In the same screen a player also receives some feedback and can review the
entire conversation history.

Scenarios can be created in the scenario editor. When the editor is opened

10

Figure 2.2: An example screen of Communicate in use

an overview of the different subjects is shown. Figure 2.1 shows this screen.
Subjects on the same horizontal level are interleaved, which means they can
be traversed in any order. The vertical levels show the sequence of subjects.
A player needs to traverse all the subjects on a horizontal level before he/she
can progress to the next horizontal level.

The scenario author can click on a subject to view the DAG that represents
the subject. Figure 2.3 shows this screen. Red nodes are NPC nodes and
blue nodes are player nodes. The green node is the currently selected node
and the details of the node are displayed on the right-hand side of the screen.
Nodes that have no edges connected to them are nodes that can start the
subject. Multiple starting points are possible. Nodes that have no outgoing
edges end the subject, and allow a player to select a new starting node from
the currently available subjects.

NPC nodes can have three special labels. Firstly, they can be labeled as
the end of the conversation. This will end the game even if there are still
untraversed subjects. Secondly, they can be labeled as an early end point of
the subject. In that case the player can choose to continue with the current

11

Figure 2.3: An example of a DAG for a subject in Communicate

subject by choosing one of the connected player nodes. The player can also
choose one of the starting nodes of the other available subjects. Choosing the
second option will end the current subject. Thirdly, a node can be labeled as
a point on which the subject might be switched. This functions in a similar
way as the early end to subject option, apart from the fact that the subject is
not ended. Instead the connected player statements become available again
the next time the player needs to choose a new subject.

A lot of functions in Communicate are controlled with parameters. The
entire scenario uses the same set of parameters. The scenario author can
add parameters to and remove parameters from this set. Every parameter
has a name and a type. The type can be an integer, a string, a boolean

12

Figure 2.4: An example of a feedback screen within Communicate

or an enumerate. An Integer has a minimum value, maximum value, and
start value. Integers can also have a weight, which marks them as a scoring
parameter. The weighted total score is calculated using these weights.

Both scoring parameters and non-scoring parameters can be used to control
the dialog flow. Nodes can have preconditions. A node will only be available
if its preconditions are true. Preconditions take the following form: [param-
eter name] [=, 6=, <, >, ≤, ≥] [value]. If there are multiple preconditions
a scenario author can select if all preconditions need to be true or if one
precondition needs to true. Preconditions can be grouped together in which
case they are interpreted as a single precondition (being either true or false)
on the level above their own.

Both player and NPC nodes can have parameter changes attached to them.
Parameters can be increased or decreased with a certain value. Parameters
can also be set to a specific value. Emotions roughly work the same way.
We will therefore largely ignore them, and assume that everything that is

13

possible with parameters can be replicated with emotions.

14

Chapter 3

Hypothesis and research
question

3.1 Research Question

In our literature study we discussed that many serious games for commu-
nication education use DAGs to represent a scripted dialog. This is not
surprising, because DAGs are easy to understand for humans and traversing
a DAG does not require a lot of computer resources. However, when a DAG
becomes larger, it can become difficult to maintain an overview of the entire
graph.

To make maintaining an overview easier we would like to keep the visualisa-
tion of a node small. This allows us to see a larger part of the graph at the
same time. If an individual node has lots of properties, we will need to make
a choice between displaying all the information and keeping the node small.
A common solution to this problem is to have some information always visi-
ble within the node, and have some information only visible when a node is
selected. The problem with this solution is that it becomes more difficult to
see how some properties are influenced by multiple nodes.

Communication education software often uses parameters that can be in-

15

creased or decreased by individual nodes. In that case all the traversed
nodes have some some influence over the final score. It is therefore impor-
tant to keep an overview over the relation between different score increases
and decreases. The large amount of possible paths through a DAG can make
this hard. If some properties are hidden to improve overall visibility, this
becomes even harder.

The goal of this study is to make it easier to write scenarios. It is our hypoth-
esis that assigning scores is the most difficult part of creating scenarios. It
can be hard to display all the relevant information, and scenario authors have
difficulty with combining smaller pieces of information in scenario wide infor-
mation. We will discuss different ways in which information can be displayed
in a DAG. This includes providing combined information, like the value of
a parameter over an entire path. We belief that a special focus should be
on scenario smells. Scenario smells are possible indications of errors in the
DAG. We want to notify the user of these scenario smells, so that the scenario
author can check if there is indeed is an error.

This hypothesis leads to the following research question:

• Can we provide scenario authors with the information they deem im-
portant for the improvement of scenario quality?

To answer this question, we want to answer the following sub-questions:

• Is scoring one of the more difficult parts of creating a scenario?

• What information might help with improving the scoring?

• What information can be calculated, both in theory and in practice?

In the rest of the chapter we explain our hypothesis more. We discuss why we
assume that scoring a DAG is difficult and how we think we can help scenario
authors. At the end of the chapter, we introduce our research method. We
provide the research results in chapter 4 to 7.

16

3.2 Scenario Smells

It is our hypothesis that the scoring of a scenario is important for the playing
experience. The scenario author creates a scenario with a certain learning
goal in mind. This learning goal often dictates which player options are pre-
ferred and which are undesirable. The player has implicit expectations about
what certain scores mean. It is important that the scores the player gets,
correctly represent how the scenario author values the players performance.
Otherwise the player can get frustrated or he/she can wrongly assume that
a certain wrong approach is correct. Either way, the learning goals will not
be accomplished.

There any many different paths through a scenario, and every path has its
own final scores. Most nodes lie on multiple paths. These nodes will therefore
contribute to multiple final scores. The scenario author needs to assign each
node a score change that provides the correct final score for every possible
path. This can be difficult. We illustrate potential difficulties with two
examples.

3.2.1 Example 1

We display the graph of our first example in Figure 3.1. Based on this
example we can assume that the scenario author favours player option B, D,
and F, because those three nodes lead to immediate score increases. By that
same measure we can assume that the author does not prefer node C, E, and
G. Both node B and D lead to a score increase, so we might conclude that
path A-B-D is preferred by the scenario author.

The path A-C-F leads to a final score of 20, which is the highest possible
score. We call this path an optimal path. We expect that a preferred path is
also an optimal path. In our example this does not seem to be the case. This
can have two explanations. Firstly, the scenario author might have made
a mistake. It could have been the intention to make A-B-D the optimal
path, but the scenario author assigned too high a score increase to node F.
Secondly, the assumption about the fact that A-B-D is the preferred path,

17

might be wrong. The author might have intended that option B provides
a quick win, while option C makes the player work harder for a larger final
reward.

We do not know if the first or second explanation is true. This is an example
of a ‘scenario smell’. Our assumptions seem to indicate that the scoring
might be wrong. However, the scoring might be correct, if our assumptions
are wrong. A scenario smell can therefore not be used to prove errors, but it
can be used to find them.

Figure 3.1: DAG of example 1

3.2.2 Example 2

Our second example uses the DAG displayed in Figure 3.2. This example
shows a design pattern that is used quite often in scenarios. The player first
needs to make a choice between a good option (B) and a bad option (C). If
the player choose the wrong option, he/she often receives a chance to make
up for their mistake. This is the case in our example. Even if the player
chooses B, the wrong option, he/she still has a chance to reach the positive
end node I.

18

The problem with the DAG in Figure 3.2 is that path A-B-I yields 10 points,
while path A-C-E-G-I yields 15 points. In other words, choosing the wrong
option C, is the best choice the player can make at node A. An explanation
for why this error exist, is that every positive choice adds 5 points to the
final score, and every negative choice does not change the score. A-C-E-G-I
has a higher score because the path is longer, and the player therefore has
more chances to choose a positive node.

Scenario authors indicate that they often accidentally make the longest path
the optimal path. Like in example 1, however, we cannot state with certainty
that this is the case in figure 3.2. We can think of examples where the
displayed DAG would be correct. In a salary negotiation the player might
need to refuse a salary offer, in order to receive a better one down the line.
The only thing we can state, is that there is scenario smell if the longest path
is also the optimal path. The smell might indicate an error, but is does not
have to.

3.2.3 Scenario Smell

Our examples illustrate that it is easy to make mistakes in assigning scores
to a DAG. The examples also illustrate that these mistakes can lead to un-
intended effects in the game. Lastly, the examples illustrate that it is often
impossible to say with certainty whether or not a mistake has been made.

We introduced three different definitions that can be used to describe sce-
narios. Firstly, we have the preferred path, which is the sequence of nodes
that, in the scenario author’s view, represents the preferred way to perform a
conversation. Secondly, we discussed the optimal path, which represents the
sequence of nodes that leads to the highest possible score. Thirdly, we coined
the term scenario smell, which refers to a symptom of a common mistake in
scenario writing, without guaranteeing that there is a mistake.

Our examples show two different kinds of scenario smells. A scenario smell
is based on assumptions. In both cases we start with the assumption that
the preferred path and the optimal path should be the same. In the first
example we also have another assumption. We assume that if we always
select the node with the highest score increase, we will have the preferred

19

Figure 3.2: DAG of example 2

path. This is an assumption that does not always hold true. However, if the
assumption holds true often enough, it can still provide us valuable feedback.
In such cases a scenario author needs to make sure that the assumption is
true for their own scenario, unless there is a compelling reason to ignore the
assumption.

The second example shows a common mistake. A scenario author often
accidentally turns the longest path into the optimal path. To avoid this
problem we could state that the longest path should never be the optimal
path, but that is not necessarily always true. It is better to state that if
the longest path is also the optimal path, that can be a sign of bad scenario

20

design. In other words, it is a scenario smell.

Other kinds of scenario smells probably exist. For example, it is a common
assumption that the maximal score, as defined by the scenario author, when
he defines the parameter, is equal to the highest possible score. If these differ
there might be something wrong with a scenario. However, this does not
always have to be the case. For instance, in a medical simulation the player
might need to warn the patient about possible side effects. This warning
can be given at different moments in the conversation, and might even be
given multiple times. Only one warning is required, however. In such a
case it would make sense to cap the maximum score, to ensure that giving
multiple warnings will not have a positive effect. Another possible scenario
smell might be that parameters should not have a lot of correlation, because
then they measure the same skill. Some scenario smells are more useful than
others. In chapter 4 we discuss the different kinds of scenario smells and how
we assess their usefulness.

3.3 Displaying Information

There are many ways in which creating scenarios can be made easier. We
can create scenario editing tools that are easier to use, design better teaching
methods to explain the editing tools, create design principles that we have
proven to be effective, and let players provide feedback on a scenario while
they are gaming. We focus on providing more information to a scenario
author. The question is what information we need to provide, and how we
visualize that information.

If we visualise a lot of information there is a risk of information overload. We
therefore not only need to decide what information to show, but also when
to show it. We categorise the timing of information in three ways. Firstly,
some information is always visible. For instance, in the current Communicate
editor, the edges connecting nodes are always visible. Secondly, there is
information that can be turned on and off. For example, there might be
a function that, when turned on, displays the parameter changes for every
node. Thirdly, there is information that is only available when specifically
asked for. In this last case requesting new information results in the removal

21

of the old information. For instance, in the Communicate editor, there is a
function that can show the editor the parents of a selected node. Only one
node can be selected at the same time, and when the editor requests the
parents of another node, the old information will disappear.

A simple way to provide more information, is to make more node properties
always visible. For instance, we can display the score changes inside the
nodes of the DAG. This creates the risk of the earlier discussed information
overload. The information overload can be decreased by collecting all the
separate score changes in one total score change, or by letting the author
turn the visibility of score changes on and off.

Displaying more information does not necessarily make it easier to assess how
the different nodes influence each other. We think that a scenario author not
only needs information about individual nodes, but also about the different
paths through the tree. There are an exponential amount of paths, however,
so displaying this information might be difficult.

To limit the amount of path information, we might, for instance, only display
the optimal paths. This function might be expanded upon, by letting the
author select a node, from which the optimal should be calculated. We can
show the least optimal paths instead. Both cases might help scenario authors,
because they can check how well the optimal paths and least optimal paths
correspond with their preferred path and least preferred path.

Lastly, it is possible to provide statistics about subjects or the entire sce-
nario. The three most useful statistics are probably the minimal value of a
parameter, the maximal value of a parameter, and the correlation between
different parameters. There are other statistics that might be useful, like the
deviation in possible scores over all the paths.

3.4 Research Method

In the previous sections we discussed our hypothesis that small errors in
the scoring parameters of a scenario can lead to unexpected and undesired
effects. We also hypothesized that finding these errors is difficult, but can be

22

made easier if a scenario editing tool automatically detects so called scenario
smells. It is important to verify that this hypothesis is true. We need to
verify that scoring is indeed a problem, maybe even the biggest problem,
with creating a scenario. We also need to verify that our proposed solutions
are seen as helpful by scenario authors.

We verify our hypothesis by holding multiple interviews with current users
of a scenario editor. We will ask how they create scenarios, what kind of
problems they experience with creating scenarios, and what they think of our
proposed improvements. In the same interview, we will also try to get a better
picture of the quality of a scenario. Chapter 4 describes these interviews.

Our goal is to propose improvements for the current authoring tools. An
improvement needs to be useful and implementable. The focus of our study
will be on finding out what information can be calculated about a DAG. We
will look both at the theory of the problem, and at practical implementations.
These calculations will help us inform what kind of improvements can be
made. Chapter 5 discusses the various calculations we want to develop.

The next step is to combine the information about desirability with the in-
formation about technical feasibility. We give several recommendations to
designers of scenario authoring tools. These recommendations can be imple-
mented in multiple different authoring tools. They should also be a good
guideline for creating new authoring tools. We apply our own recommen-
dations to Communicate, to demonstrate how they can be used. Chapter 8
gives these recommendations.

Lastly, we test if our recommendations satisfy the research question. We
do this by returning to our original interviewee. We will demonstrate a
prototype and ask them a few question about our recommendations. We
will ask them if they intend to use our improvements and how their scenario
design will be influenced by said improvements. We realise that an argument
can be made that the improvements can only be tested with a pre- and
posttest. However, this would mean that our study will only be applicable
for a specific scenario authoring tool, and with very specific improvements.
This motivated our choice for holding closing interviews instead. In Chapter
6 we explain the closing interviews in more detail and discuss their results.
In section 9 we make some recommendations for future research.

23

Chapter 4

Interviews

In the previous sections we discussed our hypotheses about the kind of prob-
lems that scenario authors experience in creating good scenarios. Before we
discuss possible solutions, it is important to find out if this hypotheses hold
in the real world. To determine this we decide to interview 6 scenario authors
with experience in writing scenarios for Communicate. We first discuss how
we decide on the type of questions in the interview. Then, in Section 4.2, we
discuss the results of the interviews. Lastly, in Section 4.3, we will summarize
the conclusions from performing the interviews. The exact questions of the
interview can be found in Appendix I.

4.1 Interview Creation

An interview consists of a mix of open and closed questions. The closed
questions allow us to combine different interviews, by collecting the various
answers in a single score. The risk of closed questions, is that they might steer
the thought process of an interviewee in a certain direction. For instance,
we want to know if the interviewee identify certain problems with scenario
creation, before we have mentioned them. We therefore include some open
questions at the start of the interview.

24

There are a couple of questions we want to answer with these interviews:

• Is scoring a substantial problem in the creation of scenarios?

• What kind of assumptions do the interviewees have about correct sce-
narios? If enough people have the same assumptions, would it be help-
ful if we notify scenario authors when those assumptions are not true
for their own scenarios?

• Assuming that the scenario correctly represents the intentions of the
scenario author, and therefore that the preferred path is also an optimal
path, what definition of the optimal path do we need to use to calculate
the preferred path?

• What kind of information would help a scenario author in creating
better scenarios?

• How does a scenario author want to receive that information?

The interview is split in 6 different parts. In the first part we collect some
general information about the interviewee. This mostly relates to how they
use Communicate. In the second part we ask a few open questions about
problems they experience while creating scenarios. Until this point, the in-
terviewee has not been notified of our specific research question. The third
part consists of closed questions about their assumptions of what makes a
scenario correct. In the fourth part we ask them a couple of closed questions
about what they consider to be the optimal path. The underlying question
here is whether or not there is a mathematical definition for the optimal path,
where the optimal path matches with the preferred path in correct scenarios.
In the fifth part we propose multiple enhancements to Communicate, and
ask our interviewee to review them. Lastly, in the six part, we give our inter-
viewee the chance to speak freely about what they think should be changed
in Communicate.

25

4.2 Interviewee

We briefly discuss the interviewees themselves. To preserve their anonymity
we will name them interviewee 1 to 6. All of the interviewees have some
experience with Communicate, but their experience differs from only cre-
ating a handful of simple scenarios to running a company specializing in
creating such scenarios. Most of them have no prior experience with other
communication training software, but do have some experience with real-life
roleplaying sessions

We interviewed three university teachers (interviewee 1, 3 and 6). All of
them teach a course on communication skills at Utrecht University. The
educational programs to which they contribute are medicine, pharmacy and
veterinary medicine. They all created a few scenarios and used them in their
courses. The complexity of the scenarios differ quite a lot. Interviewee 1
is known for creating complex and extensive scenarios. The developers of
Communicate often test new features on one of his scenarios, to make sure
that a new feature can handle the more complex scenarios. Interviewee 3 is
the opposite in that her scenarios are a lot simpler and do not make use of
subjects or preconditions. Interviewee 6 holds the middle ground and uses
subjects, but not preconditions.

Interviewee 2 is a student who uses Communicate as part of a honors pro-
gram. She created a few scenarios about general subjects, like a bad news
conversation and giving someone feedback. She herself did not use any of
the scenarios in a course, but interviewee 6 developed them further, and did
use some of them in a course. Interviewee 2 also had no prior experience in
creating roleplay scenarios, so we conclude that she probably has the least
experience in creating scenarios.

Our fourth and fifth interviewee are employees of DialogueTrainer B.V., a
company that specializes in creating Communicate scenarios and that is ac-
tively involved in the development of Communicate. Unlike the other inter-
viewees, they mostly develop scenarios for professionals, such as health-care
personnel and managers, who are already working in their respective field.
They often work together with players in improving a scenario. They have
created more scenarios than the other interviewees (more than a dozen each)

26

and can be considered experts.

4.3 Results

4.3.1 Current Use

At the start of the interview we asked some questions about the current use of
Communicate by the interviewee. Some users of Communicate know much
more about scenario development than others. For instance, when asked
about their use of the view parents and view parameters functions, multiple
users indicated that they were not aware of those functions. Meanwhile, oth-
ers noted that the view score function was overly complicated and difficult
to use. Interestingly, the people who are aware of these functions said they
used them quite often. Moreover, multiple users who did not use the func-
tions, told us they had troubles with assigning scores. Two users even went
so far as printing out their scenarios and calculating the possible end scores
by hand. This seems to indicate that creating scenarios could be made a lot
easier by providing better instructions and an easier user interface.

We also asked the interviewee how they went about creating scenarios. They
all told us that they often create the dialogue first and only add the pa-
rameters and emotions later. The interviewees differ in how much they split
up these tasks. Some go so far as to write out the entire dialog in a word
document before they even start working in Communicate. Others create
subparts of the scenario (dialog lines or entire subjects) and then add the
parameters.

Quite a few interviewees told us that they first create a perfect dialog path,
and then add possible mistakes. One person told us he played his own sce-
narios many times to check if the dialogue feels natural, and he then makes
incremental changes to the dialog to make the dialogue feel more natural.
Another person uses a similar principle, but uses test subjects to assess if the
flow of the dialogue feels natural.

27

4.3.2 Valid Scenarios

In the next part of the interview, we asked our interviewee what, in their
mind, constituted a valid scenario. To structure the outcome we prepared
some statements beforehand and asked them to score the statement with a
number between 1 and 5, where a 1 means they completely disagree with
the statement, and a 5 means they completely agree with the statement.
Interviewees often had difficulties in assigning an exact score to a statement.
In a few cases we therefore had to give the interviewee the possibility to
give a textual answer. We then interpolated a score from their total answer,
which we offered as a suggestion for their final answer. We think that these
problems do not have a large impact on the final conclusions because they
did not occur too often. The interviewees did not waver between two extreme
answers, but only between small differences, like a score of 1 or 2. The exact
scores can be found in 4.1.

Question I II III IV V VI Total
12 1 2 1 1 1 1 12
13 4 5 5 4 5 4 4.5
14 3 1 - 3 3 5 3.0
15 5 4 5 5 5 5 4.8
16 5 3 3 5 4 5 4.2
17 5 4 4 5 4 5 4.5
18 2 2 5 3 1 1 2.3
19 2 1 1 1 3 1 1.5
20 2 4 5 1 1 1 2.3
21 3 5 5 1 2 1 2.7
22 4 1 - - 2 1 2.0
23 1 5 - 1 1 5 2.6
24 1 5 1 5 2 5 3.0
25 1 3 5 2 1 5 2.9
26 2 1 1 1 1 5 1.8

Table 4.1: Questions about the validity of scenarios

We separate the statements into three groups based on the scores given. First
the statements with which the interviewees largely agree (a score of 4 or 5):

28

• If the player chooses the best option (the option with the highest score
increase) at every node, he / she should have the highest possible score
at the end of the scenario. [Question 13]

• It should be possible to get the maximal score. [Question 15]

• For every parameter there should be a path that generates the maximal
score. [Question 16]

• Every node (even those with prerequisites) should be reachable in some
way. [Question 17]

Then we have the statements with which the interviewees largely disagree (a
score of 1 or 2):

• The longest path should yield the highest score. [Question 12]

• The longest path should yield the lowest score. [Question 19]

• Parameters are always positive. [Question 26]

Many interviewees indicated that if the longest path does yield the highest
score, it often is a sign of bad scenario design. At the same time they do not
think this is necessarily always the case, which might explain why they did
not agree with the statement that the longest path should yield the lowest
score either.

Lastly, we have the statements with which the inerviewees neither agree nor
disagree (a score between 2 and 4):

• The sequence in which subjects have been dealt with, should not matter
for the end score. [Question 14]

• Parameters should have no correlations with each other. [Question 18]

• It should be possible to get the minimal score [Question 20]

• For every parameter, there should be a path that generates the minimal
score [Question 21]

29

• The player should sometimes sacrifice a scoring opportunity to receive
a better opportunity later on. [Question 22]

• Switching from subject is never a good idea. [Question 23]

• All the (scoring) parameters should use the same scale (1 – 10, 0 – 100
etcetera). [Question 24]

• It should be possible to score above 5% on every parameter. [Question
25]

We already discussed how many of the interviewees found it difficult to talk
in absolute statements about the validity of a scenario. This can also be
seen in the given scores. The statement “It should be possible to get the
maximal score” scores higher (score: 4.8), then the statement “For every
parameter, there should be a path that generates the maximal score” (score:
4.2). This seems weird, because the former statement can only be true if the
later statement is also true. Interviewee 1 also gives a score of 4 to both the
statement that “always choosing the best option should result in the highest
score” and the statement that “players should sometimes sacrifice a scoring
opportunity to receive a better opportunity down the line”. However, these
statements are each other’s opposite, and can therefore not be true at the
same time.

These discrepancies can partly have arisen because our subjects did not un-
derstand the question properly. Quotes like “I could imagine a situation,
where this is true”, seem to indicate, however, that while they broadly agree
with certain statements, they want to keep the option to deviate from them.
This shows that a scenario author should be able to choose to ignore the
recommendations of a tool. Scenario authors should also be able to make an
informed choice about whether or not they want to use any potential valida-
tion tool for a specific scenario. It should therefore be clear how such a tool
works, and what exactly is measured by the tool.

There are two different ways in which the interviewees look at scoring within
scenarios. Some interviewees seem to view the game as an assessment, even
though none of them ever used it in this way. They often say that players
should be able to reach the minimum and maximum score, and that parame-

30

ters should not have any correlation with each other. These are assumptions
that are also often used to check the validity of traditional assessments.

Other interviewees disagree though. In their opinion, the reachability of the
minimum and maximum scores, tell us very little about the validity of a
scenario. They also voiced opinions like: “scoring is not that important for
my scenarios” and “I use scoring mostly to make people aware of what is
happening, not to pass a judgement”. On further questioning, they often in-
dicated that they do see how certain statements can be useful for describing
a scenario, but they do not see the statements as a way to assess validity.
In the words of one interviewee: “As a scenario author, you need to under-
stand what you are doing, but correlation can also help you to refine small
differences in the effect of their (read: the player’s) choices.”

When asked which statements they found difficult to check in their own
scenarios we got many different answers. Some answers kept reappearing
though. Many interviewees found it difficult to check if the best (read: the
preferred) path also yielded the highest score. They also wanted to know
what the current maximums of their parameters were.

4.3.3 Optimal Path

We continued the interview by discussing the optimal path. We define an
optimal path as the path through the tree that generates the highest possible
score. In theory an optimal path should be the same as the preferred path of
the scenario author. The implicit assumption here is that the player should
value high scores, and that a high score should therefore be the reward for
good behaviour. Communicate displays the total score in a prominent way,
and this supports our implicit assumption. Communicate scenario authors
often distribute the scenario themself. In the instructions they provide to the
students, they can specify other goals than maximising the total score. This
could in turn invalidate our assumptions about the preferred and optimal
path. By discussing the optimal path with the interviewee we wanted to
find out if they think that maximising the total score is indeed the most
important goal of players, or if our definition of the optimal path should be
changed.

31

We again asked the interviewee to assess a couple of statements with a num-
ber between 1 and 5, where a 1 means they completely disagree and a 5 means
they completely agree. Question 35 is a bit different. In general, school grades
can be split into two categories, passing grades and non-passing grades. A
threshold (usually 5 or 6) is chosen to differentiate between the two cate-
gories. If a scenario author views her scenario as a test for the students, it
would make sense if such a threshold also exists for the scoring parameters.
For instance, imagine a situation where a player needs to maximize his/her
weighted average, but also keep all the individual parameters above a certain
threshold. For question 35 we took the definition of the optimal path that
was preferred by that individual interviewee, and asked them if they thought
that their preferred definition would improve if we added the amendment
that the player should also keep all the parameter scores above a certain
threshold. The results can be found in 4.2.

Question I II III IV V VI Total
29 4 4 3 1 4 5 3.5
30 1 2 4 2 4 1 2.3
31 4 4 5 5 5 3 4.3
32 1 1 1 1 2 1 1.2
33 1 1 1 1 3 1 1.3
34 1 1 1 1 1 1 1.0
35 No No Yes Yes No Yes

Table 4.2: Questions about the optimal path

In summary, we have one definition for the optimal path that is broadly seen
as useful:

• The optimal path is the path with the highest weighted average of all
the used parameters [Question 31]

Three definitions, which the interviewees are uncertain about:

• The optimal path is the path with the highest average over all the
parameters (no weights) [Question 29]

32

• The optimal path is the path that includes the highest score for any
individual parameter [Question 30]

• The definition of the optimal path would improve if we added the clause
that all the parameters should be above a predefined minimum. [Ques-
tion 35]

And three definitions that are seen as not useful:

• The optimal path is the path with the minimal number of nodes [Ques-
tion 32]

• The optimal path is the path that has the highest score on its lowest
parameter [Question 33]

• The optimal path is the path with the maximal number of nodes [Ques-
tion 34]

Definition 31 (“The optimal path is the highest weighted average of all the
current parameters”) is clearly the definition the interviewees most prefer.
This is the same definition that is currently used to calculate the total score
in Communicate. The total score is prominently displayed on the feedback
screen at the end of every game. It is possible that the interviewees favour
definition 31 because of its current prominent use, and that scenario authors
of other serious games will favour different definitions. Since we focus our
study on Communicate specifically, we will ignore this possibility, and assume
that scenario authors favour definition 31.

Many interviewees noted that there is no definition for the optimal path that
is applicable in every situation. The total score is the default measure to
represent player performance, but other measures might be possible. An
example that was given by one of the interviewees was a personality test,
where the player is not judged on his/her final score. Instead, the individual
scores of parameters would represent the personality of the player. In such
a case the definition of the optimal path should be changed, but only for
that particular scenario. It would, therefore, be nice if a scenario author can
indicate which definition should be used. If this is not possible, the scenario
author should at least know the definition used.

33

4.3.4 Proposed Improvements

In the last part of the interview, we asked the interviewees about their opinion
of possible improvements to Communicate. We told them that they should
feel free to make their answers as long or short as they wanted. Thus we
can not condense the answers into absolute numbers. This makes comparing
answers hard. We grouped the questions into four categories, which we will
discuss in turn. The exact questions can be found in appendix 1. At the
start of each section, we also give a short overview of the different questions.

Showing Scores

The first group contains question 37, 38 and 39. These questions are about
displaying the score changes directly in the tree. In question 37 we propose to
display all the parameter changes within the DAG itself. Question 39 follows
the same idea, but displays only the total score change, and not all the
individual parameter changes. In question 39 we asked the interviewees their
opinion on color coding the nodes on their netto total score changes. The
proposed improvements differ mostly on how much information we display
at the same time. In this way, we hope to find out if the scenario authors
see information overload as a problem.

The reactions of the interviewees ranged from lukewarm to positive. All
the interviewees thought that displaying the score change, would improve a
scenario, but they questioned how big this improvement would be. The fol-
lowing quote expresses this opinion: “It certainly offers something, but I do
not know how much it would actually help me personally”. The interviewees
seem to have two primary concerns on the usefulness of the proposed im-
provements. Will the improvements lead to information overload, and how
usefulness is the total score in practice.

Roughly half of the interviewees mentioned the problem of information over-
load. They did seem to think that this problem can be solved. Many sup-
ported the idea that you should be able to customize what changes are visible
at any given time. For instance, they proposed an option to select which pa-
rameters should be visible at any given time. The color coding system was

34

most popular, with every interviewee indicating that they liked the idea.

The other problem with the improvements proposed in our questions, is the
usefulness of the total score. Most interviewees did think that the total score
is important, but they said that they usually do not consider it much while
creating scenarios. They see it more as something they need to check after
the rest of the scenario is created, while the individual parameters are more
of a concern during scenario creation. Many interviewees would therefore
rather see that the proposed improvements do not show the changes in the
total score, but show the changes in individual parameters instead. Despite
this preference most interviewees indicated that the changes in total score
were still of some use. A few interviewees indicated that only displaying the
total scores would have no use for them at all.

Showing Optimal Path

The next group of questions (40, 41 and 42) all relate to showing the optimal
path while editing. We started with asking if the interviewees would like to
see the optimal path within one subject. In the next question we extended
this to the optimal path in the entire tree. In the last question we proposed
an improvement, that shows the optimal path starting from a node selected
by the user. Of course, these improvements depend on the definition of the
optimal path. This definition is not necessarily the same for every possible
scenario, which was something that the interviewees often mentioned.

Despite the problems with the definition of the optimal path, the general
reaction to our proposed improvements was very positive. We heard multiple
stories of people who were now calculating the optimal paths by hand or who
tried to visually arrange the tree in such a way that they could keep track
of the optimal path. The interviewees mostly indicated two motivations for
this:

First of all, they noted that it was difficult to return to working on a scenario
when they had not worked on it for a while. The visual cues helped them
remember their original ideas. This problem cannot only be solved by our
proposed improvements, but also by adding an option to annotate the optimal
path by hand. Although we should note that there is an important difference

35

between the numerical optimal path and the perceived best path, which
we call the preferred path. This problem seems to partially exist because
scenario authors have trouble quickly interpreting large trees. Improving on
the automatic tree arrangement might help alleviate this problem.

The second motivation for showing the optimal path is that the users can see
the maximal score this way. Later in the interview, we bring up the option
to show the maximum score ourselves. However, some interviewees brought
this up themselves before we had mentioned it, which underlines how helpful
this feature could be.

Most interviewees prefer to see the optimal for the entire tree, but they
understand that this might be very hard to implement. They indicated that
showing the optimal path within one subject, instead of in the entire tree,
would still be of some help. A few interviewees even told us they prefer to
only see the optimal path within one subject because it would give them
simpler and clearer feedback.

One thing all the interviewees agree on is that the option proposed in question
42 (a button, which, when clicked, shows the optimal path from a specified
node) is the most desirable of the three options because it would allow them to
not only see the optimal path, but also the paths that become optimal, once
a certain mistake has been made. This was something that was mentioned
quite a lot, not only with this question, but also on other questions. Almost
all the scenario authors want players to have the option to correct for a
mistake. This means that there need to be semi-optimal paths, which allow
a few errors, but still yield a high score. So while the scenario authors see
the optimal path as useful, they think that ranking all the different paths on
desirability would be even more useful.

We asked the interviewees about their opinion on two usability factors. First
there is the calculation time, the time that the computer would need to
recalculate the provided information, once the scenario author has made a
change in the scenario. Secondly, there is the margin of error. With margin of
error we mean both calculations that do not always yield the correct answer
and calculations that ignore certain factors of the scenario design, like for
instance preconditions. The interviewees told us that the time needed to
calculate any provided information is not that important. They think that

36

a couple minutes of calculation time is still tolerable. They are a lot stricter
on the margin of error though. Only one interviewee told us she would be
okay if the certainty was less than 100%. Ignoring preconditions might be
acceptable, but it would severely limit the usability in their opinion.

Automatic Validation

Question 43, 44 and 45 are about automatic validation of scenarios. In
question 43 we discuss validation, where a validator selects a random node,
generates the optimal path from that node, and asks a scenario author to
validate this path. The improvements proposed in questions 44 and 45 are a
bit simpler, because they require less input from a scenario author. A scenario
author simply marks some nodes as desirable, in question 44, or undesirable,
in question 45. The drawback of this approach is that validation becomes
less robust.

At first many interviewees seemed confused about what we meant with these
questions, but after some more explanation they all came around and said
that they would really like such a function. This emphasizes the fact that
any validation tool should be very clear in its functionality and its possible
uses. While such a validation tool apparently has some worth, this worth is
not necessarily self explanatory. The risk exists that scenario authors will
simply ignore the validation option, because they do not understand how or
why they should use the option. Clear instruction and a good interface, are
of course always important, but they are especially required in this case.

In general, the interviewees liked the option to color code the nodes them-
selves more than the validating random paths option. This is not completely
surprising because these functions seem to align closely with how the inter-
viewee are currently creating scenarios. Almost all interviewees indicated
that they usually have a perfect path in mind while creating scenarios. They
often even start with creating this optimal path. One interviewee even asked
for a color coding function, but without the validation option, before we sug-
gested the option ourselves. He motivated his proposal by stating that color
coding would help him keep a better overview while creating scenarios.

The choice between indicating correct nodes or incorrect nodes seems to be a

37

toss-up. Many interviewees seem to prefer marking the nodes they see as the
correct or best option, because this aligns better with how they are currently
working. At the same time, they often see more use in marking incorrect
nodes. A combination between the two options might be preferable.

Interestingly, two interviewees independently proposed the same new idea.
They told us they would like it if the process works the other way around.
The editor should calculate all the paths and then rank them on their score.
This ranking would be displayed using different gradients of green and red.
The scenario author can then quickly assess if the ranking is correct.

In our questions, we introduced the different improvements as calculations
that would constantly be refreshed in the background. Later we asked the
interviewee if it was a problem if they needed to click on a button to start or
refresh the calculation. The interviewees all said that this was not a problem,
and quite a few even preferred the second option. We also asked if they would
rather see a validation that would encompass the entire scenario or just one
subject. Once again there was not one prevailing choice.

Statistics

Lastly, we asked the interviewees if they were interested in seeing general
statistics of their scenarios (question 46 and 47). The reactions were mixed.
Everybody would very much like to know the maximal score that can be
obtained in a scenario. They often even stated this right at the start of
the interview as a major problem of the current version of Communicate.
Their interest in other kinds of statistics was only lukewarm though. The
interviewees had some interest in the minimal score, and a few interviewees
were interested in the correlation between parameters, but there was no over-
whelming interest.

38

4.4 Conclusion

The most interesting finding of the interviews is the importance of the optimal
path. We define scenario smells by specifying what makes a scenario correct.
Quite a few scenario smells relate to the preferred and/or optimal path, and
the interviewees seem to mostly agree with the fact that those paths should
be the same in a correct scenario.

The importance of the optimal path can be seen in the reactions the inter-
viewees gave on the multiple proposed improvements of communicate. The
most preferred improvements all relate to different paths, both optimal and
suboptimal, in the dialogue tree. Mathematically, calculating the optimal
path, the least optimal path, and a sub-optimal path, are somewhat related.
Finding out whether or not it is possible to calculate the optimal path, and
if so, how this can be done, therefore also provides us with more information
about how we can calculate other paths.

Calculating the maximum score of a parameter is roughly the same problem
as calculating the optimal path. It would also be relatively easy for scenario
authors to find the maximal score themselves if they knew the optimal path.
Combine this with the lackluster interest in such a feature and we propose
that statistics should be ignored for now and that the focus should be on
calculating the optimal path.

The question whether or not the optimal path is computable is probably
not answerable with a strict true or false. It is very well possible that the
calculation is possible, but either takes a very long time or will require us
to sacrifice some accuracy. We, therefore, wanted to find out which of those
two would be the bigger problem for scenario authors.

In general, the interviewees indicate that they find accuracy more important
than calculation time. Quite a few interviewees told us that calculation
time does not matter at all. It is questionable if this is indeed the case if a
scenario authors is confronted with long calculation times, but for now we
can conclude that accuracy is more important than calculation time.

The accuracy requirement can itself be split into two sub-requirements. Does

39

an algorithm provide the correct answer, and does an algorithm take all the
information into account? The interviewees were very strict on the correct-
ness requirement, with almost all of them indicating that provided measure-
ments and paths should be correct. The completeness requirement is a lot
less strict. The interviewees are willing to accept an algorithm that only
works on one subject, and some interviewees are even willing to accept an
algorithm that ignores preconditions.

One last observation we have drawn from the interviews is how much the
requirements differ from user to user. Even when a proposed improvement
was well liked by the interviewees, they often still wanted the option to turn
it of. It is important that a user understands what a possible improvement
does, and that they can choose to turn it off, or at least ignore its effect. It
would be even better if a scenario author has a degree of control over the
functioning of an improvement. For instance, by selecting which definition
of optimal path an algorithm should use.

In conclusion, we think it is important to find out how the optimal path
through a dialog tree can be calculated. It will be useful to compare dif-
ferent methods and their limitations. This in turn can give us some insight
into which of the improvements can be realistically incorporated into Com-
municate, or what changes need to be made to Communicate to allow for
said improvements. Although other information beside the optimal path is
desirable, we think that it is best to focus on the optimal path first. The
interviews we conducted support this premise, so in the following sections,
we take a look at different possible implementations of algorithms to find the
optimal path. We will then compare their advantages and disadvantages.

4.5 Scenario Smells

In chapter 3 we discussed the possibility of using Scenario Smells to assist
scenario authors with creating scenarios. If we take the outcome of the
interviews we can create a first set of these scenario smells. It is important
that the absence of scenario smells aligns with a correct scenario in the eye
of scenario authors. We found the following scenario smells:

40

• Always choosing the optimal option does not result in the maximum
score

• A longest path does yield the maximum (or minimum) score

• A shortest path does yield the maximum(or minimum) score

• The maximum and minimum score are unobtainable

• Two parameter have a high correlation

• The sign of the correlation of two parameters does not match expecta-
tions

• A scenario is not subject monotone

41

Chapter 5

Implementation

In the previous section, we defined a list of scenario smells. If we compare
these scenario smells, it becomes clear that many of them reference specific
paths through the scenario. These paths are often optimized for a specific
requirement. We use phrases like “the shortest path” and “the best path”.
We call such a path an optimal path. The calculations for these optimal
paths are often variations of each other. Calculating the optimal path for
length (shortest or longest path) is a variation of calculating the optimal
path for overall score (best path).

We created an application that can find scenario smells by examining and
comparing different optimal paths. In this chapter, we discuss this applica-
tion and our reasoning behind the choices we made. We start by discussing
how we can calculate an optimal path. Secondly, we discuss how different
scenario aspects can influence the necessary calculation time. Thirdly, we
will discuss how we translate the different optimal paths into scenario smells.
Lastly, we will discuss how we can present the scenario smells found to the
scenario author.

42

5.1 Calculating the Optimal Path

An optimal path is a path through a scenario that returns a highest or
lowest score on specific parameters. These parameters can be scenario author
defined parameters or more abstract parameters, like the number of nodes.
Finding an optimal path is a kind of pathfinding algorithm. For efficiency
reasons, many pathfinding algorithms use a heuristic. Examples of this kind
of algorithms are algorithms like Dijkstra and a* [10, 11]. A heuristic is a
function that ranks possible paths in order of likelihood of being the desired
solution. A greedy search algorithm can then be used to find a solution
relatively fast.

When we use a heuristic, we need to make a tradeoff between accuracy and
speed. For some search problems it is possible to find a heuristic that always
results in a correct answer. In Communicate every node can contain an
addition or subtraction to a parameter. Communicate also allows nodes to
set parameters to a specific value. This means that the value of a parameter
in a node, gives no information about the possible values of that parameter in
the child nodes. If we cannot make accurate predictions about the parameter
values of child nodes, it is impossible to create a heuristic that always results
in a correct answer.

Applying Dijkstra’s algorithm [10] to a Communicate scenario gives an ex-
ample of this problem with heuristics. Dijkstra works with a DAG, where
every node can increase a parameter value. The algorithm is used to find
the path with the lowest parameter value. Dijkstra works with the heuristic
that the parameter value of child nodes will be equal or greater than that of
its parent node. We can therefore use a greedy search algorithm that always
explores the unexplored node with the lowest parameter value. When we
reach an end node in the DAG, we can safely assume that the found path
is the path with the lowest parameter value, because all unexplored child
nodes have a parameter value that is greater or equal to the found end node.
In Communicate a node can also decrease a parameter value. This invali-
dates the heuristic of Dijkstra’s algorithm. We can no longer make correct
assumptions about the parameter values of the unexplored child nodes.

Because of the problems with finding a heuristic, and because accuracy is

43

highly desired by scenario authors, we decided to implement a brute-force
method that traverses all paths. We then compare all paths to find the
optimal paths. This is computer resource intensive, but also ensures the
validity of the answer.

5.2 Size of Search Space

In the last section, we discussed our algorithm for finding an optimal path.
The total amount of possible paths greatly influences the calculation time.
In this section we discuss how we can calculate the total amount of possible
paths through a scenario. This will help us compare how different scenario
components influence the complexity of the optimization problem.

5.2.1 Basic Combinators

A Communicate scenario consists of a collection of statement combinators.
These combinators must be traversed in certain specific orders. We can rep-
resent this collection of combinators and their possible orders in a diagram.
An example of such a diagram can be found in 5.2. Such graphical repre-
sentations are helpful for understanding small dialog trees, but the images
for actual Communicate scenarios can be quite large and hard to interpret.
These diagrams also give us little information about the amount of possible
paths in a scenario. We, therefore, need an easy way to define a scenario in
a completely textual way.

The most basic connection in a scenario is a sequential combinator. One
statement is followed by another statement. We denote a sequential combi-
nator with the <*> symbol. If we want to state that statement N1 is always
followed by statement N2, we write this as N1 <*> N2. In Communicate
a statement is often not followed by one specific other statement. Instead
there exist multiple possible sequential connections, between which a player
must make an exclusive choice. We denote an exclusive choice with the <|>
symbol. If statement N1 can be followed by either N2 or N3, we write this
as N1 <*> (N2 <|> N3).

44

Figure 5.1: Node tree Figure 5.2: Subject tree

Besides the exclusive choice, there is also the parallel choice. A parallel
choice combinator connects multiple statements that all need to be traversed
but can be traversed in any other. The symbol for parallel choice is <||>.
Parallel choices are not necessary for defining a scenario, but they do improve
readability. For example, if we have a statement N1 that is followed by N2
and then N3, or first by N3 and then N2, we can write this as N1 <*>
((N2 <*> N3) <|> (N3 <*> N2)). However, the description is easier to
understand if we write N1 <*> (N2 <||> N3).

We can use this notation to define an example scenario. In figure 5.2 we
display an example subject structure. Every subject has a DAG similar to
that of figure 5.1. In our notation the entire scenario looks like this:

S1 <*> (S2 <II> S3) <*> S4
S1 = N1 <*> (

(N2 <*> (N5 <I> N6)) <I>
(N3 <*> (N6 <I> N7)) <I>
(N4 <*> (N7 <I> N8)) <I>

)
S2 = N9 <*> (

(N10 <*> (N13 <I> N14)) <I>
(N11 <*> (N14 <I> N15)) <I>
(N12 <*> (N15 <I> N16)) <I>

)

45

S3 = N17 <*> (
(N18 <*> (N21 <I> N22)) <I>
(N19 <*> (N22 <I> N23)) <I>
(N20 <*> (N23 <I> N24)) <I>

)
S4 = N25 <*> (

(N26 <*> (N29 <I> N30)) <I>
(N27 <*> (N30 <I> N31)) <I>
(N28 <*> (N31 <I> N32)) <I>

)

We can use the three defined combinators to calculate the total amount of
paths in a scenario. The total amount of paths of a sequential combinator,
for instance, is the product of the total amount of paths on the left and
right side of the connection. If there are 4 possible paths through S1 and
6 possible paths through S2, there are 24 possible paths through S1 <*>
S2. We calculate the amount of paths for an exclusive choice and sequential
combinator with the following formulas:

amountOfPaths (x <*> y) = amountOfPaths(x) * amountOfPaths(y)
amountOfPaths (x <I> y) = amountOfPaths(x) + amountOfPaths(y)

amountOfPaths(1 node) = 1

Where both x and y are subjects or (groups of) nodes.

For calculating the total amount of paths of a parallel combinator, there
are three important facts we need to consider. Firstly, as described before
every parallel combinator can be rewritten as an exclusive choice between
sequential combinators. For instance, S1 <||> S2 can be rewritten as (S1
<*> S2) <|> (S2 <*> S1). Secondly, sequential connections are evaluated
by taking the product of the left and right element. Thirdly, when we take
the product of a sequence of numbers, the order in we multiply them does not
matter. This means that the order in which we sequentially connect different
elements does not change the total amount of paths. S1 <*> S2 has the
same number of paths as S2 <*> S1. We can combine these three facts,
to determine the total amount of paths in a parallel connection. First, we

46

calculate how many paths there would be if all the elements were sequentially
connected. Then, we multiply that answer by the number of ways that the
elements can be sequentially connected.

When calculating the total amount of paths in a scenario, we can evaluate
every sequential and exclusive choice combinator on it own. This will not
work for a parallel combinator. We need to know exactly how many elements
are connected in parallel to calculate how many different ways there are to
sequentially connect the elements. We, therefore, need to evaluate all the
elements combined in parallel at the same time. We can do so with the
following formula: number of elements! * amount of paths if sequentially
connected. For example, take the scenario S1 <||> S2 <||> S3, where S1
has 4 possible paths, S2 has 6 possible paths, and S3 has 8 possible paths.
If we combine the subjects sequentially there are 192 (4*6*8) paths. In the
entire scenario, there are 1152 (3! * 192) possible paths.

We can use the introduced formulas to calculate the total amount of paths
through our example scenario. We start by calculating the total amount of
paths through S1. If we replace all the connections with their mathematical
formula we get: 1 * (1 * (1+1) + 1 * (1+1) + 1 * (1+1)) = 6. In our example
scenario, the DAG structure for every subject is the same. All the subjects,
therefore, have 6 possible paths. On the subject level, three elements are
connected in a sequential order. We already evaluated S1 and S4, but still
need to calculate the number of paths in S2 <||> S3. As described in the
last paragraph the number of paths is equal to 2! * (6 * 6) = 72. This means
that the total amount of paths for the entire scenario is 6 * 72 * 6 = 2592.

Based on these calculations, we can order the different combinators on their
impact on the total amount of paths. Parallel combinators have the largest
footprint because they introduce a factor into the calculation. In our example
scenario, for instance, the one parallel connection that is included doubles
the total amount of possible paths. Sequential combinators use multiplica-
tion and have the next largest footprint. Exclusive choice combinators use
addition and have the lowest footprint.

47

5.2.2 Interleave Points

Interleave Points are statements where the user can switch to another subject
that is connected in parallel with the current subject. The remaining part
of the current subjects will still need to be traversed before the user can
move on to the next sequential subject. In our notation, we denote that a
statement is an interleave point by placing an exclamation mark after the
name of the statement. This notation keeps the scenario definition somewhat
compact. It is possible to give a definition of a scenario with an interleave
point, without using the interleave notation. We will sometimes use that
notation to make the calculations more clear.

To illustrate our points about interleave points, we will make use of a slightly
altered version of our previous example. The new definition for S2 looks like
this:

S2 = N9 <*> (
(N10! <*> (N13 <|> N14)) <|>
(N11 <*> (N14 <|> N15)) <|>
(N12 <*> (N15 <|> N16)) <|>

)

As can be seen in the definition, we marked statement N10 as a interleave
point. The rest of the scenario definition remains unchanged from our pre-
vious example.

If there are no interleave points a player needs to finish one subject, before
starting the next. This means that there exists no possible path where the
nodes of one subject are separated by other nodes. The existence of inter-
leave points changes this. Even then, there are groups of nodes that always
follow on each other, without the intrusion of nodes from other subjects. We
call such groups subject atoms. Every interleave point splits one subject
atom into three distinct subject atoms. The first subject atom contains all
the nodes from which the interleave point can still be reached. The second
subject atom contains all the nodes after the interleave point. The third
subject atom contains all the nodes from which the interleave point cannot
be reached. For instance, S2 can be separated into 3 subject atoms. The

48

Figure 5.3: Node tree with interleave point

first atom (A1) consists of N9 only. The second atom (A2) consists of N13
and N14. The third atom (A3) consists of N11, N12, N14, N15 and N16.
Notice that N14 is in two subject atoms.

The separation of a subject into atoms is useful for calculating the total
amount of paths. We can now separately calculate how many paths do not
include the interleave point, and how many paths do include the interleave
point. In the first situation, we can combine the atom before the interleave
point and the atom where no interleave point can be reached into a dummy
subject. In this dummy subject, the statement with the interleave point and
the paths leading to it are nonexistent. This dummy subject is connected to
other subjects in the same way as the original subject, and the total amount
of paths can be calculated via the established methods.

We will now explore how we can calculate the total amount of paths that
include the interleave point statement. As discussed before, we separated the
subject into two subject atoms. Atom 1 (A1) contains all the statements
up to and including the interleave point. Atom 2 (A2) contains all the
statements after the interleave point. The player can traverse atom 1, atom
2, and all subjects connected in parallel, in any order as long as atom 1 is

49

traversed before atom 2. Like with a normal parallel connection, we want
to find out how many sequences are possible for traversing all the different
subject atoms and subjects. We can accomplish this by writing a scenario
definition that does not use the interleave point notation. We illustrate this
with the S2 <||> S3 part of our example scenario. The scenario definition
without the interleave point looks like this:

(A1 <*> (A2 <||> S3))
<|>

(S3 <*> A1 <*> A2)

With our earlier formulas, we can calculate the total amount of sequences as
2! + 1 = 3. We can also calculate the amount of possible paths if S2 and S3
were sequentially connected, by using the formulas from the last section. We
then multiply the number of subject sequences with the number of possible
paths if the subjects were sequentially connected, to get our total amount of
paths through the parallel connection.

Writing a scenario definition without the interleave point notation, can be-
come more difficult in larger scenarios. For instance, consider the following
scenario:

S2 <||> S3 <||> S4

The scenario still includes one interleave point in S2. The scenario definition
without the interleave point looks as follows:

(A1 <*> (A2 <||> S2 <||> S3))
<|>

(S2 <*> A1 <*> (A2 <||> S3))
<|>

(S2 <*> S3 <*> A1 <*> A2)
<|>

(S3 <*> A1 <*> (A2 <||> S2))
<|>

(S3 <*> S2 <*> A1 <*> A2)

50

With this definition we can calculate that there are 3! + 2! + 1 + 2! + 1 =
12 possible subject sequences.

If there are four parallel subjects and one interleave point there are 60 possible
subject sequences. The calculation can be written as 4! + 3 * (3! + 2 * (2!
+ 1)). The calculation for the amount of subjects sequences with 3 parallel
subjects, can be written as 3! + 2 * (2! + 1). There is a pattern to the
different calculations. We can use the following formulas to calculate the
amount of paths in a scenario with one interleave point:

AmountOfSequences(0) = 0
AmountOfSequences(x) = x! + (x-1) * AmountOfSequences(x - 1)

AmountOfPaths = AmountOfSequences * PathsInSequentialConnection

Where x is the amount of subjects.

We now have enough information to calculate the total amount of paths for a
parallel combination with one interleave point. First, we separate the subject
with the interleave point into three subject atoms. Second, we calculate the
total amount of paths that do not include the interleave point by using a
dummy subject. Third, we calculate the total amount of sequences that do
include an interleave point with the pseudocode. Fourth we multiply the
number of sequences by the amount of paths in any one sequence to get the
total amount of paths with the interleave point. Lastly, we add the amount
of paths without the interleave point together with the amount of paths with
an interleave point.

In this section we only discussed how to calculate the total amount of paths if
there is one interleave point in a parallel combination. The exact calculation
will change if there are multiple interleave points. However, the described
method can be used to create new formulas for different amounts of interleave
points.

The impact of interleave points on the total amount of paths is quite high.
With every interleave point an extra subject atom is added to the parallel
combination. This means that adding an interleave point will have almost
the same effect as adding an extra subject. The actual impact is a little
lower, because the separation into atoms will reduce the subject complexity.

51

However, adding an interleave point is a lot less work for the scenario author
than adding a new subject. This means that interleave points can quickly
become the largest contributor to the total amount of paths.

5.3 Subject Monotonicity

Scenarios are often built over a period of time. Scenario writers often create
an initial scenario within a short time frame and then make small incremental
changes each time the scenario is used. In our interviews, the interviewees
noted that returning to an earlier created scenario can be difficult. It is
hard to remember good or bad dialogue paths over long periods of time, and
rereading the entire scenario is a lengthy process. This process might become
easier if we can separate the scenario into smaller autonomous parts.

We can use monotonicity to decide which parts of a scenario can be considered
autonomous. Our use of monotonicity is based on mathematical monotonic
functions. To determine if a function is a monotone function we look at any
two inputs, x and y, and their outputs, f(x) and f(y). If x ≤ y always means
that f(x) ≤ f(y) we call the function monotonically increasing. Likewise, for
a monotonically decreasing function we have that for all x and y, if x ≤ y
then f(x) ≥ f(y). There are multiple different ways to define monotonicity
within Communicate depending on the chosen input and output. We will
now discuss the three definitions we deem the most important.

For the first method, we can take the value of all the individual parameters
at the end of the scenario as input. The output is the total score at the end
of the scenario. In that case, a scenario is monotone if an increase of one
parameter’s end score leads to an equal or greater total end score. Likewise,
a decrease in one parameter should lead to an equal or lesser end score. We
call a scenario with this kind of monotonicity parameter monotone.

For the second kind of monotonicity, we take all the individual parameter
changes as input and the parameter values at the end of a scenario as output.
The scenario is monotone if an increase of a parameter change on one node
leads to a parameter end score equal to or greater than the previous end
score. Likewise, if we decrease a parameter change, the end score should be

52

equal or less than the previous end score. For example, take a scenario with a
parameter A. There are three nodes that change the value of A. The changes
are +3, +5 and +9. If we alter the first parameter change from +3 to +4,
the end value of A should be equal or greater than before. In this kind of
scenarios, we can change individual nodes without considering the rest of the
scenario. We, therefore, call this kind of scenario node monotone.

The third approach is somewhat similar to the node monotone approach. In
this case, we take the set of net parameter changes of a subject as input.
For instance, imagine a subject that only has two possible paths. The first
path has a parameter increase of 10 and a parameter decrease of 5. The net
value of this path would be +5. The second path has a parameter increase
of 10 and a parameter increase of 2. The net value of this path would be
+12. The set of net parameter changes would be +5, +12. The output of
our monotonicity function would be the parameter score at the end of the
scenario. An increase in the net change in one subject should mean that the
end value of the parameter is equal or greater than before. A decrease in
the net change in one subject should mean that the end value is lower or
equal than before. We call a scenario with this kind of monotonicity subject
monotone.

Let us further illustrate subject monotonicity with an example. Imagine a
subject that has one parameter, called A. There are 4 paths through the
subject. Parameter A has a start value of 10. The four different end scores
are 5, 15, 15 and 20. The set of net score changes for this subject is -5, +5,
+5, +10. If we increase one of the individual changes to A, all the values
in the set should also increase or stay the same. After the score change, the
new set of net score changes is -5, -5, +5, +10. This means that one of the
scores in the set has decreased. The subject is not monotone.

Of the three kinds of monotonicity, we consider subject monotonicity to be
the most important. If a scenario is subject monotone, we can safely consider
the subjects to be independent. We can make alterations to one subject, and
assume that the entire scenario will be effected in a similar fashion. For
instance, if we increase one of the parameter changes in a subject, we know
that the end value of that parameter will also increase, or at least stay the
same.

53

It is useful for scenario authors to know if a scenario is subject monotone.
There is nothing inherently wrong with a scenario that is not subject mono-
tone. In fact, there are many possible cases where subject monotonicity
is undesirable. For the inexperienced scenario writer, subject monotonicity
might still be a desired attribute. It is quite common for scenario writers
to make small changes to a scenario, after a test in a practical environment.
A scenario writer can quite easily miss how a change in one subject, has
unintended consequences for the gameplay or scoring in another subject.
Knowing that a subject can be changed without altering the other subjects,
can be reassuring to novice scenario writers.

Subject monotonicity also is a very useful property for calculating optimal
paths. If a scenario is subject monotone, we can consider each subject indi-
vidually. We can calculate an optimal path for every subject and concatenate
them together. This approach avoids the growth in the number of paths due
to parallel and sequential connections between subjects. It also shortens the
length of the paths we need to calculate.

A scenario without preconditions is always subject montone. In our earlier
example, we used a scenario with a single parameter called A. One of the
subjects in this scenario had the following net score changes: -5, +5, +5,
+10. We can increase one of the parameter changes in such a way that the
net score changes become: -5, +5, +5, +15. If all the other subjects only
contain increases or decreases to this parameter, parameter A should either
be 5 higher or the same as before the change. Either the player followed a
path that contained the score change, and parameter A will be 5 higher than
before, or the player took another path, and his/her score will be equal to
before. It is also possible that one of the other subjects contained a set op-
eration. In that case, the final value of A will always be the same, no matter
the changes in the earlier subjects. This same thought experiment can be re-
peated for decreasing parameter A, which means that without preconditions
a scenario will always be subject monotone.

The example in the previous paragraph also illustrate why a scenario with
preconditions is not subject monotonicity. In the example, we made a change
to parameter A in one of the subjects. If one of the other subjects has
a precondition based on parameter A, we can no longer be sure that the
scenario is monotone. There could be a situation where our change to the

54

earlier subject, results in the fact that this precondition is no longer met.
This means that a part of the latter subject is no longer available. This
part of the later subject can also have changes to parameter A. There now
exists a change to our example subject, where we increase the value change
of parameter A, but the overall score decreases because the player is locked
out of a part of a later subject.

Based on the previous examples we can state that a scenario is subject mono-
tone if it has no preconditions. However, this is not be the most useful
definition of subject monotony. We want to give the scenario writer new
information about how atomic the subjects are. The scenario author usually
already knows if a scenario uses preconditions or not. The strict definition
of subject monotony therefore provides no new information. A slightly more
useful version of subject monotonicity only allows for making alterations to
existing parameter changes, not for adding completely new ones. In that
case, a scenario with preconditions can still be subject monotone, as long as
the parameter used in the precondition is not altered outside of the subject
containing the preconditions. This is the definition and measurement we will
use for our experiment.

5.4 Calculating Scenario Smells

In chapter 4 we identified the following scenario smells:

• Always choosing the optimal option does not result in the maximum
score

• A longest path does yield the maximum (or minimum) score

• A shortest path does yield the maximum(or minimum) score

• The maximum and minimum score are unobtainable

• Two parameter have a high correlation

• The sign of the correlation of two parameters does not match expecta-
tions

55

• A scenario is not subject monotone

As described in section 5.1, the brute-force depth-first search tree is our
preferred way of identifying different paths. It is a method that provides a
hundred percent accurate answers, and that strikes a balance between the
use of work memory and processing power. We can use the depth-first tree
to find the paths with a maximal score, the paths with a minimal score, the
shortest paths, and the longest paths.

We also want to calculate all the paths in which the player always makes
the optimal choice. We define the optimal choice as the connected node
with the highest immediate total score increase. To accomplish this we use a
greedy depth-first search tree. This greedy tree only considers nodes which
are optimal choices. In order to limit calculation time, the program uses a
list of nodes that still need to be explored. This is problematic for some
scenarios. Mainly scenarios that are either very big or that include a lot
of nodes without parameter increases. We, therefore, included an option to
ignore the first scenario smell from the scenario smell calculations.

For calculating the correlation we use the Pearson correlation coefficient. To
accomplish this we need a list of all the possible end values of each parameter.
We can then calculate the Pearson correlation of each two parameters using
the following pseudo-code:

56

input: Parameter List one, Parameter List two, List length count
Result: Correlation between two parameters
while i < count do

totalSum += one[i].Value * two[i].Value ;
firstSum += one[i].Value ;
secondSum += two[i].Value ;
firstSquireSum += one[i].Value * one[i].Value ;
secondSquireSum += two[i].Value * two[i].Value ;
i++ ;

end
top = (count * totalSum) - (firstSum * secondSum) ;
bottomA = count * firstSquireSum - Sqrt(firstSum) ;
bottomB = count * secondSquireSum - Sqrt(secondSum) ;
Bottom = Sqrt(bottomA) * Sqrt(bottomB) ;
correlation = top / bottom ;

The last smell we calculate is subject monotony. The program uses two two-
dimensional bool arrays, where the first index corresponds with a subject id,
and the second index corresponds with a parameter. In these bool arrays,
we record if a subject has preconditions using a specific parameter. We also
record if a subject changes a certain parameter. For each found precondi-
tion the program checks if no other subject contains changes to the used
parameter. If this is the case the scenario is flagged as subject monotone.

The brute-force trees can find the optimal path for specified criteria. The
standard brute-force considers every single path while searching for this opti-
mal path. It is, therefore, possible to perform multiple searches at the same
time. In designing our program we needed to make a choice about which
search trees where combined. This is in large part a choice between more
extensive use of memory or processing power. It is also worth considering
that certain scenario smells are more related to each other and are, therefore,
more likely to be used at the same time. The last consideration is that we can
calculate some scenario smells for each parameter individually, while other
scenario smells can only be calculated for the total score. In our final imple-
mentation, we combined the calculations for the maximal score, the minimal
score, the shortest paths, the longest paths, and subject monotonicity. The
correlation calculations are done by a separate search tree.

57

5.5 Scenario Smells Report

Once the program has finished with calculating the scenario smells, it places
the results in plain text files. The text files are combined in a single directory
for easy access. The most important file is the main.txt file. In this file, we
give an overview of the different scenario smells. In general, we only note if
a given scenario smell is present or absent. At this point, we avoid giving
exact information. The only exception are the correlations since it is unclear
how large a correlation needs to be, to become a scenario smell.

If a scenario writer desires more information, they can take a look at the
more specific files. There is a plain text file for each parameter and one for
the total score. In these files, we give more information about the found
paths for the maximal score, and the found paths for optimal gain at every
choice. The report contains the found path, and also the final values of all
the parameters, including the total score.

Before the program is executed a scenario writer needs to make a choice
between displaying all the paths or only the first found path. Displaying
all the found paths, gives more accurate information, but can also make the
report harder to understand. This especially a problem for scenarios with a
large number of optimal paths. The default option, therefore, is to display
only the first found path.

58

Chapter 6

End Interviews

6.1 Introduction

The goal of the end interviews is twofold. The first goal is to find out how our
software performs on actual scenarios. The second goal is to investigate the
reaction of scenario authors to our software. We interviewed four scenario
writers. We asked each interviewee to send us one of their own scenarios.
We used these scenarios in the interviews, and also as a general test of our
software. Another two scenario writers were unavailable for interviews but
did supply us with scenarios.

In our original plan, we would create a full report for the supplied scenarios.
In practice, it became apparent that for some scenarios, this was impossible
within a reasonable timeframe. We, therefore, implemented restrictions on
the calculation time and computing resources. The creation of the report
could at the most use 4GB of working memory. The calculation time was
capped at 24 hours. If necessary, we adapted the scenarios, to stay within
these bounds. The anonymized scenarios can be found in the appendixes.

We started the interviews by showing the interviewee how the software works.
At this point, we also explained any changes to the scenario we had to make.
We then showed the interviewee the different functions of our program, and

59

how the results were presented in the scenario report. During this demon-
stration, we discussed the results with the interviewee. The focus was on
three different aspects:

• Is the result what you expected, and do you think this indicates a
problem in your scenario?

• If so, what kind of actions would you take to rectify the situation?

• Are you missing information, required for rectifying the situation?

We then tried to qualify the different scenario smells, by asking the intervie-
wee about their usefulness. Like in the earlier interviews, we asked them to
give each smell a rank between 1 and 5. A 1 represents a smell (or calcula-
tion) they would never use. A 5 represents a smell they would always use.
The goal of this chapter is to see if their earlier opinions have changed now
that they have seen the full product.

At the end of the interview, we discussed the full software with the intervie-
wee. We asked them if the liked the software and if they would use it. We also
asked them about the calculation time and the required computer resources.
Because the interviewees were quite opinionated about the calculation times,
we separated these results into a separate chapter.

6.2 Usability of Scenario Smells

The current scenario smell report has a lot of different aspects. We asked the
interviewee to rate how likely it is that they would use the different aspects.
A 5 represents a function they would definitely use. A 1 represents a function
they would definitely not use. The individual answers, as well as the average
answer, can be found in the following table.

The option to calculate the best path is clearly the most well-liked function.
It has the highest average (5) and the lowest variance (0). The interviewee
often emphasized how much they liked this function, by using phrases like
“absolutely”, and describing it as “very important”. Earlier we concluded

60

I II III IV Average Variance
Best Path 5 5 5 5 5 0
Worst Path 2 2 1 5 2.5 2.25
Longest Path 5 4 2 3 3.5 1.25
Shortest Path 2 1 1 3 1.75 0.69
Best Option 3 5 5 5 4.5 0.75
Longest Path 5 4 3 4 4 0.5
Shortest Path 2 1 2 4 2.25 1.19
Min and Max 4 5 5 5 4.75 0.19
Correlation 4 2 5 3 3.5 1.25
Subject Monotone 4 4 2 3 3.25 0.69

Table 6.1: Usability of Scenario Smells

that the best path is an important part of how scenario authors rate scenarios,
these interviews confirm this conclusion to be correct.

The least liked functions seem to be the option to calculate the shortest path.
It has the lowest average (1.75) and a pretty low variance (0.69). Multiple
interviewees told us they often include at least one short, clearly wrong path.
This makes calculating the shortest path quite easy. The interviewees often
said they already knew the shortest path, and that using the software for
this calculation would be a bit redundant.

It is notable that the grading of a few functions has quite a bit of variance.
Most notable: calculating the worst path (2.25), calculating the longest path
(1.25), matching the shortest path with the best or worst path (1.19), and
calculating correlation (1.25). After our earlier interviews, we concluded that
scenario authors have quite different approaches to scenario creation. This
could be an explanation for the high variance. In general, the interviewees
seemed more willing to use the functions that match there current scenario
creation process.

The interviewees often described how important it is that a scenario feels
correct. Factuality and correct grading are important. However, it is more
important that a scenario feels natural and fair. All the interviewees mostly
make training scenarios, and the scores seldom have actual consequences.
The interviewees, therefore, rate the experience of the player higher, than

61

the correctness of the scores. This is reflected in how they rate the different
functions of the scenario smell report. The option to calculate the best path
and the option to calculate the worst path, are equally important if the scores
are used for grading. However, the option to calculate the best path is rated
as much more important by the interviewee. In the words of one interviewee
“a student immediately notices when the maximal score in unobtainable,
they probably won’t notice if the minimum score is unobtainable.”

The interviewees had difficulties understanding some of the aspects of the
scenario smell report. Some functions (Best path, Worst path, Longest path,
Minimal and maximal score) were very clear, and at first, the interviewees
seemed to gravitate towards those functions. They often asked questions
about these functions and had ideas about how they could use them to
improve their scenarios. In general, the interviewees found it difficult to
understand what we meant with “the path where the player always makes
the correct choice”, and “subject monotonicity”. At first many interviewees
seemed to, therefore, regard these functions as unimportant. In the end, the
interviewees still have a generally favorable opinion about these functions.
They often stated that they could see why the functions were important
but would have difficulty in actually using these functions to improve their
scenario’s.

Summarising:

• There are many different ways to work on a scenario. It might be
a better approach to evaluate individual scenario smells, instead of a
global report.

• The function to calculate the best path and match these with the max-
imum score are well-liked and easy to understand. They should be the
main focus of any actual implementation.

• Scenario authors favor player experience above grading correctness.
Their choice of scenario smells reflects this. This should influence how
we approach our scenario smell report.

• The usefulness of a scenario smell is somewhat related to how easy it is
to understand and make use of it to change the scenario. Finding ways

62

to give more and better information about some smells, might improve
their usefulness.

6.3 Calculation Time

During the development process, we tested the scenario smell calculation
with our own test scenarios. The calculation times for these scenarios was a
matter of at most a couple of minutes. Our mathematical analysis of scenario
structures has shown that this might be different for scenarios that are in
actual use. Moreover, we stated we expect the calculation time growth to
be worse than exponential. Our tests with the scenarios of our interviewees
confirm this statement. We will discuss this in more detail in chapter 7.

The exponential growth of calculation time makes calculation time limits
an important discussion point. We asked the interviewees how long the
calculation of scenario smells might take. We also asked them if they were
more or less likely to use the software if it would remain separate from the
actual Communicate application. In their answers the interviewees seemed
to consider the following aspects:

• Do I use the scenario smell report to improve a scenario, or to prove
the correctness of a scenario?

• Does the resource use of the scenario smell calculation, hinder other
tasks of my computer?

For the scenario smell report to be useful in improving the scenario, the
calculation time should be relatively short. Most scenario authors prefer to
work on one scenario at a time. Their work would largely stay on hold,
while the scenario smells are calculated. A calculation time shorter than 15
minutes is preferred, and 1 hour is stated to be the limit. In some cases,
the calculation time limit could be stretched to 6 hours, but this is highly
dependent on the importance of the scenario and the scenario smell.

Many of the interviewees would also like to use the scenario smell report as
proof of correctness. In those cases, they are willing to wait a bit longer on

63

the results, since they can work on other projects in the meantime. For most
scenarios, the calculation time limit would be 24 hours in such cases. Some
interviewees were willing to stretch this to a couple of days for important
scenarios, but in those cases, the usefulness would be severely limited.

While working on a scenario, the interviewees do not necessarily need a com-
plete scenario smell report. They would prefer to focus on specific smells if
this would shorten the calculation times, and therefore improve their work-
flow of writing the scenario. The opposite is true for using the scenario smell
report as proof of correctness. In that case, a complete report is preferred.

The interviewees have no problem with using a program outside of Commu-
nicate. Even in its text-based form, they found the test program easy to
understand, and would use it for their own scenarios. The interviewees are
concerned that the required calculations would put a strain on their system.
They would prefer a built-in scenario smell calculation if this would mean
that the calculations are done on a server. If the calculations are done on
their own computer, the computer should remain usable. The use of working
memory should be limited, and they would prefer a calculation time shorter
than one night of sleep (8 hours).

64

Chapter 7

Evaluation

So far we discussed the theoretical possibilities and limitations and the user
experience of our demonstration program. One last factor to consider is the
practical performance. In this section we will discuss the performance of our
demonstration program on some actual, practically used, scenarios. We start
with shortly discussing a few average scenarios. Then we will discuss three
more extreme scenarios in greater detail

The first test scenario is a scenario we have created ourselves for testing
purposes. Communicate scenario authors have created the other scenarios.
These scenarios have also seen practical use. We created anonymized ver-
sions of these scenarios and included them in our demo code. The structure
of the DAG’s remain unchained, but we replaced all the text. For the ex-
treme scenarios, we also created multiple versions of the scenario, each one
increasing in complexity. The test scenarios, along with the program code,
can be found on: https://git.science.uu.nl/T.J.Overbeek/scenario-smells.

For the tests, we used a computer with an Intel Core i7 7700 (Quad core,
3.6 GHz) with DDR4 (1066 MHz) memory. One of the conclusions of our
interviews was that the calculation time should stay within specified limits.
Depending on the interviewee this calculation time limit Ranges from a cou-
ple of hours to 8 hours. We, therefore, decided to limit all of our tests to 24
hours. This limit gives us some extra room but also keeps the test within
the realm of actual use. Likewise, we decided to limit the memory use to 4

65

GB. The interviewee noted that they still would want to use their computer.
Since most computers nowadays have between 8 GB and 16 GB of working
memory, a limit of 4 GB should assure that this is the case.

7.1 General Scenarios

First, we want to discuss the 7 scenarios for which our program can generate
a complete scenario smell rapport within 24 hours. In table 7.1 we listed
the most important properties of these 7 scenarios. In table 7.2 we list
the calculation time and memory use of a best path calculation for the test
scenarios. In table 7.3 we list the calculation time and memory use of a
generating a complete scenario rapport.

Name
Number of
evaluated
parameters

Number of
subjects

Number
of parallel
subjects

Highest
Node count
in a single
subject

Test Scenario 1 2 5 3 20
Test Scenario 2 7 1 0 131
Test Scenario 3 2 4 0 24
Test Scenario 4 7 1 0 132
Test Scenario 5 8 4 2 20
Test Scenario 6 3 2 0 64
Test Scenario 7 4 4 0 72

Table 7.1: Properties of test scenarios

The first 6 test scenarios all show the same general behavior. The calculation
time for a complete scenario smell rapport is always well under one minute.
The memory use stays generally stays between 20 and 40 MB. The only two
exceptions to this rule are scenario 2 and 4. These two scenarios have a
somewhat similar structure. The most obvious between these two scenarios
and the other test scenarios is the high node count in a single subject. For
multiple scenarios, the program has an exact memory use of 23,9 MB when
calculating the optimal path. This seems to indicate that for these smaller
scenarios the memory use is mostly caused by overhead and that the actual

66

Name Calculation
Time (ms)

Calculation
Time (minutes)

Memory Use

Test Scenario 1 11,164 0.1861 1.1 GB
Test Scenario 2 3,108 0.0518 23.9 MB
Test Scenario 3 150 0.0025 23.9 MB
Test Scenario 4 2,846 0.0474 23.9 MB
Test Scenario 5 34 0.0006 21.6 MB
Test Scenario 6 74 0.0012 23.9 MB
Test Scenario 7 441,487 7.74 42.4

Table 7.2: Best Path Calculation

Name Calculation
Time (ms)

Calculation
Time (minutes)

Memory Use

Test Scenario 1 34,550 0.5758 2.2 GB
Test Scenario 2 30,711 0.5119 785.5 MB
Test Scenario 3 400 0.0067 33.2 MB
Test Scenario 4 28,897 0.4816 803.9 MB
Test Scenario 5 78 0.0013 25.2 MB
Test Scenario 6 271 0.0045 24.6 MB
Test Scenario 7 OUT OF MEMORY

Table 7.3: Complete Scenario Smell Analysis Calculation

scenario has little influence on memory use.

Overall we conclude that for most scenarios it is possible to generate a sce-
nario smell rapport within an acceptable calculation time and memory use.
This is even true for scenarios which are a bit more complex, for instance,
those with 4 subjects. If the subjects themselves are very complex, meaning
they have a high node count, the memory use seems to increase dramatically.
Calculation time will also increase, but stay well within acceptable bounds.
For three scenarios our program could not generate a scenario smell rapport
within the set time and memory limit. In the rest of this chapter, we will
discuss these three subjects in more detail.

67

7.2 A scenario with sequential subjects

Scenario 8 has 6 subjects. All subjects are sequentially connected. Most
subjects have reasonably high complexity. The highest node count in a single
subject is 58. The lowest node count in a single subject is 16. The scenario
is built to allow for replays. If a player makes a grave mistake, he/she will
receive feedback and is returned to an earlier part of the dialogue tree. This
means that the average length of a path is longer than usual for a scenario
of this size.

The goal of this test is to indicate the effect of sequentially connected sub-
jects. We made 6 different test cases. Each test case has one more subject
than the previous test case. We always start from the beginning of the sce-
nario. The third test case, for instance, contains the first three subjects of
the scenario. Subject 4 and 6 are smaller subjects, otherwise, the subjects
are roughly comparable.

Name Number
of
subjects

Total
number of
nodes

Calculation
Time
(ms)

Calculation
Time
(minutes)

Memory
Use

8A 1 39 9 0.0002 18.5 MB
8B 2 96 8,744 0.1457 23.1 MB
8C 3 154 21,631,454 360.52 123 MB
8D 4 170 OUT OF TIME

Table 7.4: Best Path Calculation

Name Number
of
subjects

Total
number of
nodes

Calculation
Time
(ms)

Calculation
Time
(minutes)

Memory
Use

8A 1 39 59 0.001 22 MB
8B 2 96 125,830 2.097 3.6 GB
8C 3 154 OUT OF MEMORY

Table 7.5: Complete Scenario Smell Analysis Calculation

For the best path calculation time is the limiting factor. The first subjects
have a very low calculation time (less than a minute) and a low memory re-
quirement. When we add a third or even fourth subject, both the calculation

68

time and memory requirement make a significant jump. However, the cal-
culation times growth is a lot higher than that of the memory requirements.
The calculation time of the best path in a scenario with three subjects is,
according to the interviewees, already problematic. Most interviewees stated
that they are willing to wait a few hours, but that a calculation time of more
than an hour hinders their productivity. Meanwhile, even with four sub-
jects, the memory requirements are well within acceptable bounds. Memory
becomes more of a problem with the complete rapport. With two subjects
the memory requirement is already up to 3,6 GB. The likely culprit is the
“always best option” tree, which is relatively memory intensive.

We conclude that a “best path” calculation for scenarios with multiple se-
quentially connected subjects is possible. However, the calculation time be-
comes problematic if there are too many sequentially connected subjects or if
the individual subjects have a high complexity. With the current implemen-
tation 3 or 4 subjects seems to be the maximal for this scenario. The number
of subjects could be improved if the implementation relied more on memory
use. The “always best option” calculation remains a problem for this kind of
scenario. Because the calculation time is already reasonably high, it is diffi-
cult to decrease memory use. From this, we conclude, that it is important to
allow the scenario author to disable “always best option” calculations from
the rapport.

7.3 A scenario with parallel subjects

In our analysis of the number of possible paths, we noted that in general,
subjects connected in parallel have the most significant effect on the number
of paths. We also noted that interleave points almost have the same effect as
an extra subject connected in parallel but require less work from the scenario
author. Scenario 9 has multiple subjects connected in parallel and contains
interleave points in each of those subjects.

The individual subjects of this test scenario are a lot less complex than those
of the first scenario. The highest node count in a single subject is 47. The
lowest node count in a single subject is 25. The lowest node count is 2. The
nodes themselves are mostly sequentially connected. With 2, sometimes 3,

69

nodes connected in an exclusive choice. The scenario contains 4 subjects that
are connected in parallel to each other. The scenario contains a total of 6
interleave points.

Name Number
of
subjects
connected
in parallel

Number
of
interleave
points

Calculation
Time
(ms)

Calculation
Time
(minutes)

Memory
Use

9A 1 0 193 0.0032 21.2 MB
9B 2 0 19,728 0.3288 21,1 MB
9C 2 1 26,502 0.4417 179.1 MB
9D 2 2 27,659 0.46 234.1 MB
9E 3 2 963,791 16.06 2.4 GB
9F 3 3 OUT OF MEMORY

Table 7.6: Best Path Calculation

Name Number
of
subjects
connected
in parallel

Number
of
interleave
points

Calculation
Time
(ms)

Calculation
Time
(minutes)

Memory
Use

9A 1 0 3,013 0.050 156 MB
9B 2 0 OUT OF MEMORY

Table 7.7: Complete Scenario Smell Analysis Calculation

With this scenario, memory is the limiting factor. If we have only two sub-
jects connected in parallel both memory use and calculation time easily stay
within acceptable bounds. There is a more substantial calculation time jump
when adding a second subject, and a more substantial memory use jump
when we add our first interleave point. Both calculation time and memory
use start to rise significantly when we add a third subject. However, with 16
minutes the calculation time is still quite acceptable. Meanwhile, the 2,4 GB
memory starts to become a problem. Once we add a third interleave point
the program reaches the memory limit of 4 GB.

As with calculating the best path, for the complete report memory also is the
limiting factor. The earlier discussed factors of a high memory footprint for

70

interleave points and the “always best option” calculation, play a part in this
problem. Another reason might be the parameter P4. Both in scenario 2B
and 2C, the OUT OF MEMORY occurs while calculating the greedy-search
tree for P4. Memory use of a greedy-search tree depends on the number of
parameter increases. At every node, the program remembers all the child
nodes with an equally optimal parameter increase. If no child node increases
the parameter(s) that are used for evaluating the paths, all nodes are placed
on the stack of the search algorithm. This means that some parameters are
more likely to result in memory problems than other parameters.

From this scenario, we can conclude that memory use is a problem. Both in-
terleave points, and infrequently used parameters contribute to this problem.
In this specific scenario, the calculation time is very low. It might, therefore,
be acceptable if the computer is unusable while running the program, which
would drastically increase the memory limit. The individual parameters also
seem to be a more significant problem than the total score. Providing the
users with an option to only calculate the total score, might alleviate the
memory problems.

7.4 A scenario with high subject complexity

Scenario 10 has 4 subjects. The complexity of these subjects is higher than
the subject complexity of the other test scenarios. The node count of the
subjects is 92, 65, 78 and 31. Three of the subjects have a higher node count
than any other subject in our test cases. Most nodes give the player a choice
between three different nodes. However, there are a few nodes that give the
player as many as eight choices.

Name Number
of
subjects

Total
number of
nodes

Calculation
Time
(ms)

Calculation
Time
(minutes)

Memory
Use

10A 1 92 45,574,251 759.57 26 MB
10B 2 157 OUT OF TIME

Table 7.8: Best Path Calculation

In our theoretical analysis, we noted that a high node count and a large

71

Name Number
of
subjects

Total
number of
nodes

Calculation
Time
(ms)

Calculation
Time
(minutes)

Memory
Use

10A 1 92 OUT OF TIME

Table 7.9: Complete Scenario Smell Analysis Calculation

number of parallel connections leads to a large number of paths. A high
path count, will not necessarily impact memory use, but will always impact
calculation time. The results of this test scenario support this thesis. Even
with one subject, the calculation time is already higher than most intervie-
wees are willing to wait. Meanwhile, with only 26 MB used, memory use is
not a problem.

We can only conclude that supporting scenarios with a high subject com-
plexity is very hard. Complexity is somewhat dependent on the number of
nodes within one subject. We recommend that the program preprocesses the
scenario, before it performs the optimal path calculations. If one of the node
counts is higher than a specified number, the user should receive a warning
about the possibly considerably large calculation time. Our current test data
would suggest a maximum node count of 60 if a couple of hours is acceptable,
and a node count of 50 if the calculation time should stay within one hour.

72

Chapter 8

Discussion

8.1 Answer Research Question

At the start of our research, we described the current state of dialogue train-
ing software and Communicate specifically. We noted that many dialogue
training software use structured dialogue scenarios, written by experts in the
area of communication skills. With the rapid advancement of computing
technology, interactions between computers and humans are becoming more
realistic. The decreasing reliance on new technologies means that individual
scenario authors have a more significant influence on the effectiveness of the
software.

We stated the following research question: Can we provide scenario authors
with the information they deem important for the improvement of scenario
quality? We formulated three smaller research questions to support this
bigger research question:

• Is scoring one of the more difficult parts of creating a scenario?

• What information might help with improving the scoring?

• What information can be calculated, both in theory and in practice?

73

We will now discuss the results for each of these questions, as well as the
overall research question.

By interviewing scenario authors, we obtained information about the cur-
rent possibilities and difficulties in creating Communicate scenarios. We
concluded that scoring is an important, and sometimes difficult part, in sce-
nario creation. Most scenario authors use Communicate as a learning tool
and not for an actual assessment. A 100% correct scoring is, therefore, not
required. However, the scenario authors also stated that the scoring is essen-
tial for the learning effect of a scenario and that it affects the player’s feeling
of fairness.

Scenario writers consider the optimal score to be one of the most important
aspects of a scenario. This is mostly because of the effect on the player’s
feeling of fairness. Currently, scenario writers often calculate the optimal
score by hand, to make sure it is correct. Other scoring effects, like the path
with the lowest score, or the longest path, are considered less critical. There
are also some scoring effects, like subject monotone and correlation, that
are difficult to calculate by hand. Considering these factors, we made the
optimal score our primary focus for this research.

To determine what information might help authors with improving the scor-
ing, we interviewed scenario authors about their inherent beliefs about correct
scoring in scenarios. While some common trends are visible in these beliefs,
there also is much variation. We compiled these beliefs into a list of scenario
smells. Scenario smells are scenario qualities that we define as an indication
of a possible faulty design. We based this approach on the use of code-smells
in software development. Scenario smells we found are:

• Always choosing the optimal option does not result in the maximum
score

• A longest path does yield the maximum (or minimum) score

• A shortest path does yield the maximum(or minimum) score

• The maximum and minimum score are unobtainable

• Two parameter have a high correlation

74

• The sign of the correlation of two parameters does not match expecta-
tions

• A scenario is not subject monotone

In investigating what information could be calculated, we focussed on the
optimal path. We concluded that a search algorithm using a heuristic is not
possible for Communicate scenarios, because there does not exist a reliable
prediction method of future parameter changes on a path. We need to use
a pathfinding algorithm, that uses brute-force to evaluate all the different
paths. We have shown, both in theory and in practice, that a brute force
method is feasible for most scenarios. For very complex scenarios, using brute
force leads to significant increases of calculation time and memory use. While
not impossible, using a brute force method in these cases seems inadvisable.

We looked at specific scenario aspects and how these influence calculation
time and memory use if a brute force method is used. We concluded that
parallel connections and interleave points have the biggest influence on cal-
culation time. In practice, sequentially connected subjects are the biggest
problem, because this type of connection is more common in actual scenar-
ios. Parallel connections are the biggest factor in memory use. Another
important aspect for memory use is the frequency with which a parameter is
changed by individual nodes.

We created a common language that can be used to talk about scenario
scoring and potential scoring pitfalls. We also created a program that creates
a report about a scenario, which scenario authors can use to improve the
scoring of a scenario. We conducted follow-up interviews, which show that
scenario authors appreciate our method, and believe that it would improve
the quality of scenarios. Limitations in hardware need to be considered
and might exclude us from using this method for specific complex scenarios.
Overall we conclude that for most scenarios it is possible to provide scenario
authors with better information about their scenario.

75

8.2 Recommendations

Overall we recommend the creators of dialogue training software to consider
implementing scenario smells into their tools. Our investigations have shown
it to be a good tool for assisting dialogue writers with creating a scenario.
The exact implementation can vary depending on the software and the user
requirements. We do have some general recommendations and considera-
tions.

We recommend the use of a brute force approach in calculating and evaluating
paths. The brute force approach is usable for every dialogue training software
that uses DAG’s. There are also no special conditions that need to be placed
on scenario design. Therefore, the brute force approach has the greatest
degree of freedom for both the programmer and the scenario writer. To
implement a brute force approach we also do not have to make any changes
to the existing software

The brute force approach has two big drawbacks. Firstly, it requires the
scenario writer to wait while the scenario is being processed. Secondly, the
approach can be (almost) unusable for more complex scenarios. However,
our investigations have shown that for most scenarios these drawbacks are
within acceptable limits. We, therefore, conclude that this approach is still
preferable to other methods.

There are some tradeoffs that might be considered to limit the drawbacks
of the brute force approach. Creators of dialogue training software might
consider limiting the scenario smell research to single subjects only. Our
initial interviews have shown that while considering the entire scenario is
preferable, limiting the investigation to single subjects is acceptable. In our
tests, we found no single subject for which the scenario smell analysis could
not be completed within a reasonable amount of time. In cases where it
is important that the scenario smell analysis would never fail to complete,
single subject analysis is preferable.

Another tradeoff that needs to be considered, is the tradeoff between calcu-
lation time and memory use. In general, we tried to limit memory use. The
only exception being the greedy search tree, where we save every node that

76

still needs to be explored. Any new implementation of a scenario smell anal-
ysis should reconsider the tradeoff between these two factors. The choice will
largely depend on if the software is run on a server or on a local machine of
the scenario author. If the analysis is completed on a personal computer, we
would recommend a bigger memory use and limiting the calculation time.
For most servers the memory use is already reasonably high, so we would
recommend our current implementation.

For implementations where memory use is a concern, we would also recom-
mend not to use a greedy search tree. Our investigation has shown this search
tree to have an overall worse performance than the depth-first tree. This is
especially true for memory use. Removing the greedy search tree would also
mean excluding the scenario smell “Always choosing the best option does
not result in the maximum score”. This scenario smell is rated pretty high
by scenario writers. This means that excluding the scenario smell is far from
preferable, but needs to be considered if the memory performance is an issue.

Overall we have concluded that it is acceptable if a scenario smell analysis
does not complete for every scenario. In practice, this would mean that
the analysis needs to be broken off after a certain time. Some scenario
elements cause exponential growth of the calculation time. This means that
the calculation time could potentially be days or weeks. We need an artificial
time limitation to ensure that the system does not become unavailable for an
unacceptable large amount of time. We used a limit of 24 hours. A limit of 7
hours would probably also suffice. In our investigation none of the analyses
that ran longer than 7 hours, finished within the larger limit of 24 hours.

We also recommend the scenario writer receives a warning if calculation time
is expected to be longer. The existence of a subject with more than 50 nodes
or two or more subjects connected in parallel are good indications of long
calculation time. Both can be detected in a preprocessing phase.

Lastly, we recommend that running a complete scenario smell analysis is not
the only option. The scenario writer should be able to perform an analysis
of a single smell or subject. The complete scenario smell analysis is the
most elegant solution for the problems with scenario writing. However, in
most cases, scenario writers will not use or need this complete tool, while
the performance is severely limited by performing a complete analysis. It is,

77

therefore, preferable, if smaller analyses are supported. In order to keep the
program simple and understandable, we would recommend that the complete
analysis remains the primary option and that smaller analyses are a back-up
or advanced option.

78

Chapter 9

Future Research

9.1 Workflow of Scenario Writers

In the recommendations chapter, we already discussed the trade-offs that we
need to make between calculation time, memory use and completion rate. A
better understanding of the influence of these three factors on the usability
of the analysis and the overall quality of scenarios can help us improve on di-
alogue training software. There is a broad scope of possible further research,
but two approaches stand out for us as having the most potential.

Firstly, we would propose a user study focused on scenario writers who have
experience with using scenario smells. In our research, the user studies were
limited to interviews with scenario authors about potential or relatively new
tools. A user study focused on scenario authors with some experience with
scenario smell analysis can provide us with more information about the rel-
ative importance of calculation time, memory use and completion rate.

A detailed analysis of the workflow of scenario authors could also make a
further distinction between practical and theoretical considerations. Our
current approach very much focused on how scenario authors view their pro-
cess, not on how these processes actually work. It could very well be that
there exist meaningful differences between these two.

79

Secondly, we would propose an extensive analysis of real-life scenarios. Our
research focused on mathematically analyzing how different scenario elements
impact the calculations. We then tried this out on a few actual scenarios.
Repeating this experiment on a larger scale, with significantly more scenarios,
could help us better understand the actual impact of scenario elements. If
the limits of scenario smell analysis can be better defined, a better warning
system could be developed.

9.2 Pruning

We have described why most traditional path-finding algorithms will not
work for Communicate scenarios. Because of the lack of a viable heuristic
and the requirement that the algorithm is 100% correct, we used a brute-
force algorithm. The limiting factor of this approach is the size of the search
space. If the search algorithm were to be improved, we need a way to limit
this search space.

One possible way to achieve this is by using pruning. With pruning we disre-
gard partly explored paths that are redundant, because their result is equal
to that of another already explored path. If the 100% correctness require-
ment is relaxed even paths that are unlikely to result in an optimal path
can be removed. This approach would decrease the search space and, there-
fore, the required calculation time. There would, however, be an increase of
calculation time because of overhead. The memory use would also increase
because more paths need to be remembered.

The actual effects of such pruning would need to be investigated. As stated
pruning does have some negative effects on memory use and calculation time.
For pruning to still be an effective measure, the number of pruned paths
needs to be large enough. A study of current Communicate scenarios might
determine how big a pruning can be performed. Alternatively, a new scenario
smell analysis tool could be developed that uses pruning. We could then
compare how the two tools perform on similar scenarios.

We expect that the most successful pruning method would be pruning be-
tween sequentially connected subjects. There is a clear division between

80

nodes that precede and succeed such a pruning point. We would propose
that the algorithm prunes every path with the exact same parameter scores.
This would guarantee the correctness of the algorithm, which is an important
requirement. A drawback of this method is that it becomes less effective if
there are a lot of parameters. An advantage of this method is that it is most
effective if parameters receive little change. Our current algorithm performs
very badly if parameters are rarely changed, so this type of pruning could
potentially solve this issue.

9.3 Learning Effect

Our research has focused on the needs of scenario authors. How can we help
scenario authors better perform their job, without limiting their freedom in
scenario design? The underlying assumption is that scenario authors are
experts in their fields and therefore the best source of information. In prac-
tice, this might not always be the case. Not all scenario authors are equally
knowledgeable about either their field of practice or communication skills
education. Further research might investigate if the use of scenario smells
can not only help scenario authors but also improve the actual quality of
scenarios.

One approach for investigating the quality of scenarios and the use of scenario
smells is by looking at the learning effect, as popularized by Hattie [13]. A
potential study might ask a scenario author to create a new scenario for
a specific function. A group of students will then use this scenario as a
training method. Afterward, they will partake in an assessment. We then
introduce the scenario author with our tool and the defined scenario smells.
The scenario author will improve on the scenario. A new group of students
will use the improved scenario as a training method. They will also make
an assessment. Afterward, we compare the assessments of the two groups to
calculate the learning effect size.

Another approach that could be taken is comparing different playthroughs.
This experiment would also need a new scenario, which the scenario authors
then improves on with the help of our tool. The question is if there is
a noticeable difference in play style between players who play the original

81

scenario and those who play the improved scenario. A possible measurement
of these playthroughs might be Cronbach’s alpha. We would expect that
the consistency between the playthroughs would increase for the improved
scenario because the players would take the higher scoring paths more often.

These two approaches can also help scenario authors get a better understand-
ing of what design principles are effective in dialogue training scenarios. In
programming, code-smells are often used in combination with software de-
sign patterns. The development of scenario design patterns alongside sce-
nario smells will give scenario authors even more tools for creating effective
dialogue training scenarios.

82

Chapter 10

Conclusions

In this thesis, we described the current state of Communication Education
Training. We hypothesized that assigning accurate scoring parameters to
Communicate is difficult, time-consuming and prone to errors. Our research
has shown that this is indeed the case. Scenario authors describe working
with parameters as time-consuming. The scenario authors also stated that
they often avoid the more complex features of Communicate. Two common
reasons for this avoidance is the lack of perceived worth compared to the
effort and the fear of making faults.

To remedy the problems with scoring in Communicate scenarios, we proposed
the concept of Scenario Smells. Scenario smells are properties of scenarios
that indicate a possible fault in the scoring of a scenario. An essential aspect
of scenario smells is that an editor can validate them automatically, lessening
the workload of scenario authors. Based on interviews with scenario authors
we created a first set of scenario smells. Further interviews have shown that
scenario authors see these scenario smells as useful. Scenario authors also
believe that the scenario smells can improve the quality of scenarios.

We created a sample program that can evaluate the existence of possible sce-
nario smells. Our research has shown that, for most scenarios, this program
can generate a scenario smell rapport within a timeframe that is acceptable
for scenario authors. However, our research has also shown that for more
complex scenarios the calculation time and memory use increase at a rapid

83

rate. In these cases, the use of scenario smells is impracticable but possible.

We recommend that the creators of Communicate, and other dialogue train-
ing software, implement our proposal of Scenario Smells. For most scenarios,
the use of scenario smells will have a positive effect on the working experience
of the scenario author and the usefulness of the scenario. We also recommend
that the evaluation program informes the scenario author of possible prob-
lems with complex scenarios, by generating warnings based on the properties
of a scenario.

84

Bibliography

[1] Marianne Berkhof, H. Jolanda van Rijssen, Antonius J.M. Schellart, Jo-
hannes R. Anema, and Allard J. van der Beek. Eective training strategies
for teaching communication skills to physicians: An overview of system-
atic reviews. Patient Education and Counseling, 84(2):152–162, 2011.

[2] Tibor Bosse and Simon Provoost. Integrating conversation trees and
cognitive models within an eca for aggression de-escalation training. In
Qingliang Chen, Paolo Torroni, Serena Villata, Jane Hsu, and Andrea
Omicini, editors, Proceedings PRIMA 2015: the 18th International Con-
ference on Principles and Practice of Multi-Agent Systems, volume 9387
of LNCS, pages 650–659, 2015.

[3] Ana Paula Cláudio, Maria Beatriz Carmo, Vı́tor Pinto, Afonso Cavaco
and Mara Pereira Guerreiro. Virtual Humans for Training and Assess-
ment of Self-medication Consultation Skills in Pharmacy Students. In
Proceedings ICCSE 2015: the 10th International Conference on Com-
puter Science Education, pages 175–180, 2015.

[4] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: improving the design of existing code. Addison-
Wesley Professional, 1999.

[5] Patrick Gebhard, Gregor Mehlmann, and Michael Kipp. Visual scene-
maker—a tool for authoring interactive virtual characters. Journal on
Multimodal User Interfaces, 6(1):3–11, 2011.

[6] Johan Jeuring, Frans Grosfeld, Bastiaan Heeren, Michiel Hulsbergen,
Richta IJntema, Vincent Jonker, Nicole Mastenbroek, Maarten van der

85

Smagt, Frank Wijmans, Majanne Wolters, and Henk van Zeijts. Com-
municate! — a serious game for communication skills. In Proceedings
EC-TEL 2015 Design for Teaching and Learning in a Networked World:
10th European Conference on Technology Enhanced Learning, volume
9307 of LNCS, pages 513–517. Springer International Publishing, 2015.

[7] Raja Lala, Johan Jeuring, Jordy van Dortmont, and Marcell van Geest.
Scenarios in virtual learning environments for one-to-one communication
skills training.

[8] Anton Leuski and David Traum. NPCEditor: Creating Virtual Human
Dialogue Using Information Retrieval Techniques. AI Magazine from the
Association for the Advancement of Articial Intelligence, 32(2):42–56,
2011.

[9] Jonathan Posner, James A. Russell, and Bradley S. Peterson. The cir-
cumplex model of affect: An integrative approach to affective neuro-
science, cognitive development, and psychopathology. Development and
Psychopathology, 17(3), pp. 715–734, 1980.

[10] Jeroen Wauters, Frederik Broeckhoven, Maarten Overveldt, Koen En-
eman, Frederik Vaassen, and Walter Daelemans. delearyous: An inter-
active application for interpersonal communication training. In Serious
Games: The Challenge: Joint Conference of the Interdisciplinary Re-
search Group on Technology, Education, and Communication, and the
Scientic Network on Critical and Flexible Thinking Ghent, volume 280
of Communications in Computer and Information Science, pages 87–90.
Springer, 2012.

[11] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik 1(1), pages 269-271, 1959.

[12] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions on
Systems Science and Cybernetics 4, no. 2, pages 100-107, 1968.

[13] Hattie, John. Visible learning for teachers: Maximizing impact on learn-
ing. Routledge, 2012.

86

First Interview

General Information

1. What is your profession, what is your working domain?

2. How many scenarios have you created with Communicate?

3. Have you used Communicate in a class room situation?

4. Do you make use of the validate option?

5. Do you make use of the see parents option?

6. Do you make use of the calculate points option?

7. Do you usually work node for node (completing, the dialogue, prereq-
uisites, emotions, parameters) or do you first write all the dialogue and
then at parameters and prerequisites?

Their Ideas

8. What kind of problems do you experience in creating Communicate
scenario’s?

9. Are there problems that are specific to scoring?

10. Do you have any ideas how we could solve those problems?

11. What kind of steps do you take to avoid problems in scoring?

87

Assumptions

I now would like to ask you some questions about scenario’s. The editor gives
you a lot of freedom in how scenarios should work. This can be a problem
for creating validation tools. We can try to make some assumptions about
scenario’s however that can help us define what is a ‘good’ scenario. Can
you describe how true you think the following assumptions are. You have the
following options: always true, mostly true, can’t say, mostly false, always
false.

12. The longest path yields the highest score.

13. If the player chooses the best option (the option with the highest score
increase) at every node, he / she should have the highest possible score
at the end of the scenario.

14. The sequence in which subjects have been dealt with, should not mater
for the end score.

15. It should be possible to get the maximal score.

16. It should be possible to get the maximal score on every parameter, but
not necessarily the maximal end score.

17. Every node (even those with prerequisites) should be reachable in some
way.

18. Parameters should have no correlations with each other.

19. The longest path should yield the lowest score

20. It should be possible to get the minimal score

21. It should be possible to get the minimal score on every parameter, but
not necessarily the minimal end score.

22. The player should sometimes sacrifice a scoring opportunity to receive
a better opportunity down the line.

23. Switching from subject is never a good idea.

88

24. All the (scoring) parameters should use the same scale (1 – 10, 0 – 100
etcetera).

25. It should be possible to score above 50

26. Parameters are always positive.

Can you tell me the three assumptions that you currently find the hardest to
validate in your own scenario’s? Are there any assumptions we have missed?

Optimal Path

In discussions about (dialog) trees we often talk about optimal paths. This
is a term that usually described the sequence of nodes that rewards us with
the most wins (in games like chess) or the highest score. We could therefore
conclude that the path with the highest overall score is the optimal path in
the case of Communicate, but this is not necessarily satisfactory. I will now
state a couple of ways in which we could determine the optimal path. Can
you tell me for each definition if you agree or disagree that this would be a
workable definition?

27. The highest average of all the parameters (no weights)

28. The path that includes the highest score for an individual parameter

29. The weighted highest average of all the current parameters (current
total score)

30. The quickest path

31. The path that has the highest score on the lowest parameter.

32. The slowest path

33. Same as one of the above, but with the extra requirement that all the
scores need to be above a certain threshold

Which of these definitions do you thinks works the best? Are there any other
possible definitions that we didn’t think of?

89

Solutions / UI

I know want to talk about possible improvements of Communicate. These
are hypothetical improvements, so we don’t need to think about feasibility.
For each of this improvements, can you tell me what you think about the
following aspects:

• Will using it improve your scenario’s?

• Do you think you would make use of this improvement?

• How much margin for error is there, ea. the tools needs to give me an
exact answer, the tool needs to give me a reasonable answer etcetera.

• Would it be okay if we ignore some part (requirements, subjects etcetera)
of the scenario in the tool?

You don’t need to give me an exact answer, so feel free to give me all your
thoughts.

34. Visually displaying all the parameter changes for every node.

35. Color coding all the nodes based on the parameter changes. Green for
a positive effect on the overall score, orange for no effect and red for a
negative effect.

36. Visually displaying the change in the overall score for each node

37. A button which shows the optimal path through a subject

38. A button which shows the optimal path through the entire tree

39. A button which shows the optimal path from a specified node

40. An option to repeatedly show optimal paths from different start nodes,
whereby the start points are randomly chosen by the computer.

41. An option to mark nodes as desirable and to get a warning if a desirable
node isn’t included on the optimal path

90

42. An option to mark nodes as undesirable and to get a warning if a
desirable node is included on the optimal path

43. Statistics about the scores like correlation, minimal value, maximal
value etcetera

44. A profile of every subject that shows you how often a parameter is
used in that subject, what the maximum changes (both positive and
negative) are etcetera.

Finishing Thoughts

That was my last prepared question. Now that we have finished the entire
interview, do you have any last thoughts. Did you think of any new possible
improvements that could be made to Communicate in respect to scoring?
Did is miss something important in the discussion about this subject?

91

Second Interview

General Information

1. How many scenarios have you created with Communicate?

2. Are you currently using Communicate in a classroom situation?

3. What is the context of your example scenario?

Demonstration

We will now demonstrate the pathfinder. Afterwards, we want to discuss the
different scenario smells. We want to focus on the following aspects:

• Was the result similar to what you expected?

• If not, what was different?

• Would you make changes to this scenario after seeing the result?

We will discuss the scenario smells in this order:

4. Always choosing the best option does not result in the maximum score

5. A longest path does yield the maximal score

6. A shortest path does yield the maximal score

92

7. Is it possible to obtain a parameter value lower than the specified min-
imum value?

8. Is it possible to obtain a parameter value higher than the specified
maximum value?

9. Is there any correlation between parameters?

10. Is the scenario subject monotone?

Our Program

The example program we are about to demonstrate has multiple features.
We want to know how interested you are in each of them. Can you describe
how likely it is you would use these functions by giving a number between
1 and 5, where a 1 means “would not use at all”, and a 5 means “would
definitely use”?

11. Calculating the best path (overall score)

12. Calculating the worst path (overall score)

13. Calculating the longest path

14. Calculating the shortest path

15. Checking if always choosing the best option will lead to the maximal
score

16. Checking if the longest path will also be the best path

17. Checking if the shortest path will also be the best path

18. Checking if the minimal and maximal value of a parameter is attainable

19. Calculating the correlation between different parameters

20. Checking if a scenario is subject monotone

93

Conclusion

21. Do you think that the demonstrated program might help you improve
your scenario’s?

22. Are you likely to use the program if it remains separate from the Com-
municate website?

23. Are you more likely to use the program if it is integrated in the Com-
municate website?

24. Where the calculation times a problem for you?

25. For your personal use, what would be the most useful feature of the
current program?

26. Are there any features that you would like us to expand on?

94

