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1 Abstract

In cooperation with the Utrecht Medical Center (UMC), I built a 3D browser-
based MRI/CT e-learning system. I propose an improved way of defining correct
target volumes in 3D MRI and CT scans: instead of user-defined, handcrafted
target volumes in which the target contour of a specific anatomical structure
has to be traced by hand for each 2D image slice, this method introduces au-
tomatic interpolation between user-provided contours. This is achieved with a
new variant of the active contour method. As a result, only a subset of the
slices have to be segmented manually. This improves on similar contour-based
user-guided segmentation methods.

2 Introduction

The Utrecht Medical Center (UMC) currently uses an e-learning and examina-
tion system called VQuest. This software runs on their local computers, and
provides radiology teachers the ability to define anatomical questions (like ’point
to the liver in the following 3D CT’) based on 3D CT and MRI scans. The sys-
tem allows for the creation of questions that ask the student to put a marker
on certain desired anatomical target structures (eg. the liver or the stomach).
Teachers often manually draw the correct target region on each MRI, for each
slice in which the structure is present, even though they have an arsenal of semi-
automatic segmentation tools available that are supposed to ease this process
(The UMC uses MITK segmentation tooling).
In light of this, and to increase the accessibility and portability of their e-
learning, the UMC wanted to introduce a web-based, new system that is more
accessible and offers teachers a new user-guided segmentation tool that is very
easy to use, provide decent results and runs fast enough in a distributed client-
server architecture. A big part of the problem with their current system is
the complexity of the segmentation tooling: teachers get overwhelmed by the
amount of options, they have a number of different algorithms to choose from,
and the results are often undesirable. My effort is to create a single, coherent
segmentation tool that uses a new segmentation algorithm, allowing the process
of segmentation to become very easy. I will implement it in the context of the
novel e-learning environment which I develop in parallel. The method must run
relatively fast on modern systems. After the teacher provides 2D contour masks
on a number of slices of his/her own choice, my novel variant of active con-
tours provides a full segmentation of the dataset, using the masks the teacher
provided as constraints. This makes sure that each slice conforms to the local
image edges that are present in that slice. After the algorithm runs, the teacher
can look at the result and optionally decide to add a few defined 2D masks to
increase the accuracy of the segmentation. Part of the segmentation then gets
updated accordingly. The power of this new method lies in its simplicity: all
parameters and steps are pre-determined. The teacher only has to provide a
number of slice contours. The use of user-defined masks on an arbitrary amount
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of slices, and using this as input to an active contours method, is a novel way of
approaching the segmentation problem, so a close relation with the associated
teachers at the UMC is of vital importance. I will be gathering feedback and
conducting a user study to discover whether the new method is causing teach-
ers to more often use automatic segmentation, and how well they think the new
system functions. In short, my contributions are:

• A novel, web-based e-learning system to be used by the UMC

• A novel variant of a user-guided segmentation algorithm, developed specif-
ically for use in the new system

• A new segmentation tool to be used by radiology teachers

• A critical reflection and analysis of performance, mainly based on input
from the department of Radiology at the UMC

The segmentation tool must contain as little parameters and options to tweak
as possible. The tool must only be usable within the context of the e-learning
system. This way, it distinguishes itself from existing segmentation tooling, such
as Medical Imaging Toolkit (MITK), which is currently being used by the UMC
radiology department and has an overwhelming amount of options. The tool
must implement a novel user-guided segmentation algorithm, that is based on
existing work on 2D/3D segmentation.

3 Literature Review

3.1 (3D) segmentation of datasets

A well-established user-guided segmentation technique is called Active Con-
tours. Grounded in a 1988 study called ’Snakes: Active Contour Models’ [Kass
et al., 1988], the core idea of this method is that an initial (user-provided) con-
tour estimate is evolved until a certain energy is minimized. It allows rough,
user-drawn curves to automatically conform to the gradient of an image in a
natural, smooth way. An explicit, parametric representation is used to model
the curve. There are two types of energies considered: intrinsic and extrinsic.
Intrinsic energy is represented using the differentiation of the curve, and penal-
izes sharp corners and non-compact shapes. Extrinsic energy is derived using
information from the dataset (typically: the gradient), and awards parts of the
curve that follow edges in the data. From these energies, an ideal energy equa-
tion is derived, which, in practical implementations, must be discretized and the
curve updated iteratively to approximate the ideal energy. The idea of evolving
contours using energy minimization is very powerful, and has given rise to a lot
of different variants. In its most basic form, the algorithm is applicable to 2D
images and runs very fast, but different extensions have widely varying com-
plexity and applicability. An interesting extension first proposed in [Caselles
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et al., 1997] used mathematical concepts from geodesics to change the active
contours model. Using geodesics greatly increases the mathematical complexity
of the model, and decreases the running speed somewhat, but has an advantage:
it allows for changes in topology, meaning that contours can naturally split and
merge. This property is not required for the intended segmentation tool how-
ever: a single 3D contour that masks an anatomical structure is enough. The
idea of using geodesics is still interesting, and does not have to be combined with
an active contours model. For example, [Criminisi et al., 2008] used geodesics
to create a distance transformation of the image, and a probabilistic model to
segment the foreground from the background.
Because the only intended use is e-learning, the professors at the UMC explicitly
stated that a high segmentation accuracy is less important then the speed of the
tool. It needs to be as fast as possible: deviations from a perfect segmentation
in the form of noise is permitted. Considering an extension like geodesics must
be justified: it must increase the general segmentation quality while keeping
the running time relatively low. The e-learning system uses 3D datasets, so an
absolute requirement is that the method segments 3D contours. Analyzing stud-
ies that aim to extend regular active contours to three dimensions is therefore
justified. There have been a number of attempts to extend active contours to
three dimensions, with varying results. [Caselles et al., 1996, Way et al., 2006,
Yushkevich et al., 2006a]. [Way et al., 2006] is very promising: it combines ac-
tive contours with an automatic diagnosis system to classify the segmentations,
with very good results. The main idea is that the user provided a Volume Of
Interest (VOI), on which their variant of Active Contours (AC) is run. In the
energy equation of the original AC, the gradient of the image is used as an
energy, as well as the 2D curvature of the curve. Here, the energy equation is
extended to three dimensions by introducing the 3D gradient of the image, and
the 3D curvature. Now, each point (voxel) has an energy that is related to all
three dimensions, creating a continuity in the z-direction that 2D AC cannot
achieve. Furthermore, the system uses static parameters that are pre-set to
their most optimal values, creating a method that is very user-friendly, making
it interesting in context of this research. And, the method is generally applica-
ble, as it does not use shape priors or training based on a supervised set (this
way, any kind of pathology can be segmented). Letting the user only specify
a Volume of Interest (VOI) is not desired though: in the intended segmenta-
tion tool, the expert must be able to provide exact slice masks on a number of
slices, letting the system finish the remaining segmentation work automatically.
An interesting idea is to introduce additional energy terms which are derived
from the expert-drawn masks, so the 3D contour tends to move towards these
contours in the corresponding slices.

3.2 Implicit vs. explicit representation

In the landscape of AC methods, the different variants can be classified into
two different groups: explicit, parametric methods and implicit, level-set based
methods. Level-set based methods like [Osher and Sethian, 1988] [Malladi
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et al., 1995] [Chan and Vese, 2001], and the geodesic method described ear-
lier [Caselles et al., 1997] are generally more computationally involved, because
a single implicit function most be optimized over the entire image domain,
while explicit methods can iteratively update each discrete curve point. The
main benefit level-set methods have, namely the allowance of changing topol-
ogy (merging/splitting) does not justify their use in context of this research,
because changing topologies are not required. So, the question remains whether
level-set methods should be researched and considered at all in this context. The
original AC algorithm has some big limitations, mainly the need for the initial
contour to be very close to the final segmentation (because of the local image
gradient energy term). In my system, the expert will only provide a number
of slice masks, so a general Volume of Interest (VOI), or a coarse interpolation
method can be used as input to the main segmentation algorithm. [Guo et al.,
1995] [Vizireanu, 2005] are interesting morphology-based interpolation schemes
that could be helpful, but even then, there is no guarantee that the initial rough
estimated contour on each slice will be close enough to the final desired result.
Because of this fact, investigating implicit level-set methods as well as different
explicit extensions on AC can be fruitful: they each have different ways of solv-
ing the ’local convergence’ problem.
Level-set methods are generally slower than explicit representations. However,
there have been a few studies that spend a lot of resources on optimizing these
implicit solvers, with positive results. Sometimes, the speed of a level-set al-
gorithm even manages to come very close to algorithms like [Way et al., 2006].
A recurring problem of level-set solvers is the deviation from a perfect distance
function caused by discretization. The solvers only approximate an ideal level-
set evolution, thereby introducing an increasing error. An ideal implicit function
behaves like a signed distance function, meaning its gradient satisfies the eikonal
equation (the length of the gradient is 1, everywhere). To fix the error, a number
of studies perform ’reinitialization’, which basically forces the implicit function
to reset in such a way that it satisfies the signed distance constraint. [Peng
et al., 1999] [Fedkiw and Osher, 2002] This approach increases the chances of
the zero level-set to shift while it evolves, introducing a bias in the segmentation
result. It also increases the computational complexity, because of the expensive
reinitialization steps. [Li et al., 2005] and [Li et al., 2010] (continued work) solve
this problem elegantly by enforcing the level-set to always behave like a signed
distance function instead of periodically resetting it. A metric that measures
how much the function is like a signed distance function is embedded into the
energy functional and derives the entire algorithm. Because no re-initialization
is required, larger timesteps can be used, and a relatively (computationally)
simple solver using discrete differences. Extending the formulation to three di-
mensions is an interesting premise that would make this approach applicable
for use in context of the new segmentation tool. The amount of iterations the
solver requires to converge the contours is very impressive here (typically only
a few hundred). However, an extension to three dimensions is not straightfor-
ward, requires the gradient flow and every energy metric to be converted to a
higher dimensional space, and would significantly increase computation times.
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Active contours using explicit representations, like in [Way et al., 2006], is prob-
ably a more suitable method in light of the limited computational flexibility of
the environment in which the new method is to be implemented. 3D level-set
methods can be implemented in such a way that speed is acceptable, such as in
[Droske et al., 2001, Street et al., 2007]. The 2001 study [Droske et al., 2001]
presents a highly optimized algorithm that evolves a 3D segmentation from a
set of user-provided ’seed points’ (points within the desired structure). It uses
a volumetric, hierarchical grid to simplify the 3D space, and expands the seed
points using a technique they call ’adaptive fast marching’. It is a variant of reg-
ular fast marching, which is a widely used numerical algorithm to solve level-set
problems. While the idea of letting the user only specify a number of points is
interesting, and very easy from a user perspective, it has some severe limitations.
The user must be able to refine the segmentation, and in a system where only
individual points can be provided as input, this is very hard to do. Allowing
the specification of an arbitrary amount of correct slice masks is far more con-
venient. Another limitation of 3D level set methods like this one is their crude
approximations (a coarse grid in this case), which sacrifice general segmentation
quality. And, compared to other 3D algorithms like [Way et al., 2006], it still is
computationally more expensive. Limiting the use of image information is an
approach some studies have used to increase the speed of 3D level-set methods.
For example, [Heckel et al., 2011] let the user specify desired slice masks in
an arbitrary amount of slices, and from different perspectives. This is a very
powerful premise in context of the new segmentation tool. The different masks
are converted to a point cloud representation, from which a smooth surface is
generated using variational interpolation and Radial Basis Functions (RBSF’s).
While the results are decent (they showed that their method produces segmen-
tations which are, on average, 76 percent similar to fully manual segmentations),
not using gradient information from the image dataset causes a lot of fine details
to be lost in the final segmentation. The user must provide a lot of slice masks
in order to generate a decent segmentation, and the large amount of seed points
cause the method to be computationally expensive.
My conclusion about level-set methods in general is that their main advantages
are of minor importance in context of the intended new tool (asking users to
provide each topological change by hand increases the accuracy of the segmen-
tation and is not too demanding for the user). Their ability to allow for changes
in topology is not of vital importance, while their computational demands, even
with the many optimizations different authors proposed, still are relatively high
compared to similar explicit contour methods. Proposing a novel take on (3D)
explicit contour evolution seems like a more viable approach.

3.3 Region-based methods

There are multiple ways to improve AC models by increasing the capture range
of image edges, so that the evolving contour is attracted to edges from fur-
ther away. The simplest idea is to use a Gaussian kernel to smooth the image,
thereby stretching the edges. Of course, beyond a certain point, the information
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about fine edges is lost, and the segmentation fails. Region-based methods are
an interesting approach [Chan and Vese, 2001, Wang et al., 2009, Nguyen et al.,
2012] that largely solve this problem, with some (varying) drawbacks unfortu-
nately. Similar to basic AC, an energy minimization is still being performed,
but the edge-based energy terms are dropped and replaced by region-based ones.
The essence of this approach is: the desired Region of Interest (ROI), or in the
case of 3D segmentation Volume of Interest (VOI), is divided into ’outside’ and
’inside’ points. On both sets, differences in intensity are penalized with large
energies. Algorithms that use this idea are not significantly slower then regular
AC, and can still provide decent segmentations on all types of images. The
approach allows for some convenient user-interaction to make the process more
interactive. For example in [Nguyen et al., 2012], the user can provide some
’inside’ and ’outside’ strokes to refine the final segmentation. This type of in-
teractivity is desirable: there will undeniably be cases where the segmentation
result is not good enough, and in those cases, letting the user refine the result
without requiring the use of vague parameters or settings is very powerful and
something the UMC is definitely interested in. Region-based methods have a
general limitation though: because local edge information is dropped and re-
placed by an aggregate (region), edges tend to follow the image gradient less
precisely. However, this effect can be very minimal: [Wang et al., 2009] for exam-
ple, uses a well-balanced mix of the aggregate image intensity information and
local image features, generating segmentations that increase the capture range
of structure edges while still maintaining acceptable accuracy. However, they
require a level-set representation to model the different energies correctly. As
discussed, this representation has a larger computational complexity compared
to explicit representations. The ITK-SNAP software (described in [Yushkevich
et al., 2006a]), which implements a large amount of cutting-edge (at the time)
segmentation algorithms, proves that level-set methods can be entirely justified
and optimized to the point of acceptable performance. Using their implementa-
tions is very fast on modern machines, even though their solvers use expensive
implicit curve representation. Their tools require the user to tune a (relatively)
large amount of parameters, and some of their algorithms need a lot of refine-
ment and guidance (by users). Another way of increasing the capture range of
edges is by using a technique called Vector Field Convolution [Xu and Prince,
1997, Yu and Bajaj, 2002, Li and Acton, 2007]. First introduced in [Xu and
Prince, 1997], this technique drops local edge energy terms and replaces them
by a global vector energy field that is pre-computed from the image. The vector
field is calculated using the gradient of the image and derivative computations
that make sure a vector direction is assigned to each point in the image (even
in homogeneous image regions with no gradient whatsoever). Calculating the
vector field slows the algorithm down, compared to regular AC, and a possible
extension to three dimensions (which would be required if the variant were to
be used in context of the new segmentation tool) would be even slower, because
of the volumetric differentiation calculations. But in its 2D implementation, it
can be used in context of this research as an external force in the AC model
that can increase the capture range of the new method.
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3.4 Model-based algorithms

Up to this point, only studies that can segment any kind of shape have been
presented. This is a desirable quality, because the segmentation tool will mainly
be used to segment pathological biological tissue. This kind of tissue does not
have a distinct shape, and can instead have any kind of form. However, studying
some works that use shape priors, training of a neural network or any other kind
of knowledge may provide some valuable insights, even though they cannot be
used directly to to the limitations they enforce on the kind of shapes that can be
segmented. A lot of studies present variations of segmentation algorithms that
first learn some statistical/geometrical data. Some notable ones are [Cootes
et al., 1995, 2001, Awad et al., 2007] [Heimann and Meinzer, 2009]. Most of
these methods are not user-guided, and provide a full segmentation of the en-
tire 2D/3D image. [Awad et al., 2007] for example segments the entire image
into gradient-based segments using an artificial neural net (SOM type) and a ge-
netic algorithm. The neural net is used to extract color features (grouped), and
on these features, a selection operator is applied and a population is mutated
through different generations using a genetic algorithm. Finally, a segmentation
of the input image is obtained. The method is applicable in a context where
full segmentations are required, but its large amount of tweaking, dependency
on the shape training database, and high computational complexity make it not
suitable for application in this research. Analogously, similar methods that use
a training database have severe limitations. Sometimes, a statistical model is
learned from the training examples that captures recurring shape information
and guides the segmentation process. But again, pathological anatomical stuc-
tures do not conform to known shapes. Studies like [Heimann and Meinzer, 2009]
do however allow for the specification of very general libraries of shapes. By
using basic shapes like ’oval’ or ’rectangular’, and combining them in a Principle
Component Analysis (PCA), a wide range of segmented shapes can be gener-
ated. Segmentations of common medical structures, like the heart or the liver,
can benefit greatly from such an approach. Often even pathological tissue can
be segmented correctly, because of its tendency to be somewhat circular. That
said, active contours still is a more usable approach: no shape information is
assumed, only the information the user provided, and the information from the
dataset itself is used to steer the segmentation in the correct direction. So, the
applicability of AC is much more general, allowing teachers to have good results
in a more wider spectrum of anatomical scans. General applicability is of vital
importance for the intended algorithm.

3.5 Existing segmentation tools

The most modern, up-to-date and widely used existing system that focuses on
user-guided active contour segmentation is from 2006 and is called ITK-SNAP
Yushkevich et al. [2006b]. My research emphasizes the need for a practical,
easy to use implementation that teachers and doctors around the world can use
without having to go through extensive configuration and understanding of the
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underlying algorithms. A reflective validation study Yushkevich et al. [2006b]
comparing hand-provided slice contours and the SNAP guided method shows
that SNAP provides great accuracy, comparable even to expert-drawn 3D con-
tours. Their method sometimes even outperforms fully manual 3D contours.
This is because when providing a manual contour, the user typically draws the
contours in a single perspective, progressive going through each slice. From an-
other perspective, the contour then appears jagged (staircase-artifact), which is
not desirable. With a semi-automatic method like SNAP, the generated contour
typically looks a lot smoother, with some loss of accuracy. Still, ITK-SNAP is
not being considered for application in medical e-learning. Its main problem is
that ITK-SNAP is difficult to understand, and requires a number of parame-
ters and settings to be changed in order to have good results (it is open-source,
so anyone can download the package at itksnap.org). Furthermore, most of the
tooling is based on the user providing a target region of interest, and then grows
this region to conform to local edges. For the intended segmentation tool, the
amount of parameters need to be very small, and the input needs to be a number
of fully hand-drawn image slice contours. There should be no learning curve:
teachers should immediately grasp the idea and start making segmentations.

MITK is another modern segmentation tool that has implementations of a
number of state-of-the-art segmentation algorithms and is widely used. Its inter-
face is relatively difficult to understand, again because of an extensive amount
of options and parameter settings. It is often used in situations where there is (a
lot of) domain knowledge from users. The e-learning environment I’m working
on is targeted at radiology teachers who generally do not have much knowledge
about segmentation algorithms, so the tooling can be as simple and straight-
forward as possible. The new segmentation method only needs to have a single
use-case: a user provides a number of slices and the system fills in the rest, so
this allows for much simplicity in its interface. MITK, just like ITK-SNAP, is a
bit too general and provides too many options, so the UMC stated that a tool
that is as simple as possible is very desired.

These are the two largest image segmentation tools in circulation right now,
with a lot of small tools that are not used in e-learning environments exist-
ing as well, IntSeg 3D for example, a surface-based segmentation tool. But an
e-learning system that only provides a single, very simple segmentation tool
does not publicly exist. The UMC uses MITK in conjunction with their lo-
cal e-learning, causing teachers to most often just specify each slice by hand,
overwhelmed as they are by the different options and parameters.

3.6 Conclusions

A new segmentation tool that is tightly integrated with a new e-learning system,
using a new variant of active contours, is a powerful combination. No segmenta-
tion tool has been created with this specific purpose in mind, and no algorithm
allows for the specification of a number of slice masks, filling in the rest of the
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Figure 1: MITK has a lot of options. Currently being used for VQuest at the
UMC

segmentation automatically and without setting parameters. By adapting 2D
active contours to include forces derived from user-provided masks, running AC
for each slice that needs to be generated, and incorporating the method into a
very simple, easy to use segmentation tool, I will have a concrete contribution
that has immediate practical applications.

4 Background

4.1 Active Contours: The basics

Active Contour Models were introduced in 1988 by Kass et al. [1988]. In essence,
a so-called snake is represented explicitly using a parametric formulation (there
are, as explored in the literature review, other representations, but the explicit
representation is used here). We consider the 2D version first. Its basic definition
is:

v(s) = (x(s), y(s)), s ∈ [0, 1] (1)

An energy functional assigns a certain energy value to the curve function. The
core idea is then to try to minimize this curve energy by morphing the parame-
terized curve into different shapes. This is where the curve gets its conventional
name: a snake, because it ’slithers’ into different configurations while the solver
tries to find an optimal solution. A general snake energy functional has the
following form:

Esnake =

1∫
0

Eint(v(s)) + Eimage(v(s)) + Econ(v(s)) ds (2)

In this equation, three types of energy are represented: internal energy,
image-derived energy and external constraint energy.

• The internal energy is derived from the shape of the curve itself, and causes
the energy minimization procedure to favor shapes that are more compact
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Figure 2: A lot of 2D-only e-learning is still being used in web-based situations

and round. This is achieved by taking derivatives of the curve function:
the first derivative ’awards’ compact shapes without many twists/turns
and the second derivative enforces the curve to behave like a thin plate,
meaning it does not contain sharp corners. Most often, a weighted average
is used between these two curve derivatives:

Eint = (α(s)|vs(s)|2 + β(s)|vss(s)|2)/2 (3)

Suitable values for α and β can be discovered empirically, and depend on
the context of application. This research will be using very low values for
them, around 0.05 (see results section).

• There are various ways to represent the second term in equation (2): the
image energy. Typically, the most important information that is extracted
from the image (which is represented as a grid of color or intensity values,
depending on the context) is the gradient, defined by ∇I(x, y), with I
being the image represented as an intensity map. By letting the snake be
attracted to large gradient value, it is attracted to level sets in the image.
The original Kass et al. [1988] study uses three different image terms:
the line, edge and termination functionals. Then, by using a weighted
combination of the three terms, the final image energy can be represented:

Eimage = wlineEline + wedgeEedge + wtermEterm (4)

Again, the weights in this formula need to be set to fixed values using
an empirical examination (The algorithmic details and parameters are
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devised in such a way that the resulting converged curves have general
acceptable quality). The definitions for the different subterms in the above
equation are:

– The line functional (Eline), this can simply be the intensity of the
image: I(x, y). Remember that in equation (2), the integral of the
energy over the entire curve domain is used. The solver will try to
minimize this integrated energy, meaning that for the intensity term,
the curve will favor darker parts of the image. That is, unless a
negative weight is used in equation (4), in that case the lighter parts
of the image will be favored.

– The edge functional (Eedge), this can simply be set to the negative
gradient of the image like this: Eedge = −|∇I(x, y)|2. As discussed
in the literature review, this has some limitations, mainly the local
convergence problem: the gradient will have a large spike at image
edges, so this functional will only have an effect when the curve is al-
ready close to an edge. Different extensions and improvements on the
different energy functionals will be discussed in the next subsection,
here we stick to the basics.

– The last part of equation (4) (Eterm) is the termination functional.
This one is slightly more involved, and will cause the curve to be
attracted to terminations of line segments and (sharp) corners. The
idea is to first smooth the image somewhat using a gaussian kernel:
C(x, y) = Gσ(x, y) · I(x, y), and then calculate the gradient angle of
the image, θ = tan−1(Cy/Cx), and the normal vector that is per-
pendicular to the gradient direction: n⊥ = (− sin θ, cos θ). Then, by
taking the derivative of the θ function and dividing it by the deriva-
tive of the perpendicular normal function ( ∂θ

∂n⊥ ), an energy term is
created that minimizes at sharp corners and line terminations in the
image.
This concludes the basic mathematical formulation of active con-
tours, that models a curve which follows lines and edges, is drawn
to terminations, and provides decent results for basic images (see 4.1
for an example of this basic model in action).

With the modeling of these three types of energy, a snake is created that
tries to maintain its general shape, and conforms to areas in the image, and
even terminations like lines. See figure 3 for an example of the original snake
model: the curve conforms nicely to lines and blobs in the image.

4.2 Constraints and extensions

There are many ways of extending the standard active contours model to im-
prove its performance. The original model has general applicability (on all sorts
of image data), just like the method for this research needs to have, but some
extensions have been created for a specific domain and increase performance
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Figure 3: The original Active Contours model in action [Kass et al., 1988].
The black blobs and lines are image parts, the thin black line is the converged
contour curve. The contour gets attracted to edges and termination points, as
can be seen here.

only for specific types of shapes/images. [Chen et al., 2002] presents such an
extension, that embeds the use of shape priors into the energy equation.
An extension that has general applicability and is used in this research, was
first introduced in [Li and Acton, 2007]. They call it Vector Field Convolu-
tion, and it solves the local convergence problem for a large part. Furthermore,
it improves the sensitivity of the contours to concavities, making them better
conform to rough, concave shapes in the image. The Vector Field Convolution
technique is used as a so-called static energy, meaning it does not dynamically
depend on the position of the curve but is a single, static vector field that is
generated purely using the image data once. This static field is calculated by
using discrete convolution: the edge map of the image is convolved with the
vector field kernel, which is defined like this: k(x, y) = [uk(x, y), vk(x, y)]. In
this kernel, all vectors point towards the kernel origin. This way, a free particle
that is placed in the field will move toward the origin of the kernel.
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Figure 4: A Vector Field Kernel with all vectors pointing towards the origin
(Source: Cambridge University Press)

And, when the kernel is convoluted over the edge map of the image, the
vectors will point towards nearby edges, since the contribution of the edge pixels
to the field will be significantly higher (edge pixels have larger image values).
To enforce a gradient that gets weaker as the distance to strong edges increases
(declining gradient), a decreasing positive function is multiplied with the vector
kernel: k(x, y) = m(x, y)n(x, y), in which m(x, y) is a linear function, which can
be m(x, y) = (r+ ε)−γ (the ε and γ are determined empirically). This increases
the capture range of edges, while still keeping their area of influence limited.

4.3 Discretization

The equations of active contours map curve functions to concrete energy values.
Aim is to find curve functions that have minimal energy values (by morphing the
curve shape), and to do this, a mathematical concept called the Euler-Langrange
formulation can be used. As an example, the Euler-Langrange formulation of
equation (2) and (3) has the following form:

0 = α · v
′′
− β · v

′′′′
+∇Eimage (5)

This basically states that the image forces balance the internal, derivative
based forces. In order to solve such formulations in practice, a mapping to a dis-
crete representation must take place, after which an approximate gradient solver
will iteratively optimize the target contour until an equilibrium is reached, and
the Euler-Langrange equation is satisfied. The most convenient way to represent
a 2D contour is by a polygon represented as a vector, in which each individual
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element represents a 2D point on the curve, and the vector as a whole is a route
through all successive curve points. In the 3D case, the contour can be stored
in a matrix in which each row represents a vertical slice. Once this discrete
representation is obtained, numerical methods are used to approximately calcu-
late the various forces (internal/image) at each iteration, and update the curve
points accordingly. When the α and β parameters are allowed to be different
for each curve point, as is typically the case, the discrete Euler formulation of
equation (6) has the following form (here, v is a finite vector of curve points):

0 =αi(vi − vi−1)− αi+1(vi+1 − vi) + βi−1(vi−2 − 2vi−1 + vi)

− 2βi(vi−1 − 2vi + vi+1) + βi+1(vi − 2vi+1 + vi+2)

+ (Eimagex(i), Eimagey(i))

(6)

Note that we use a closed curve here, so if index i− 1 is negative, the index
wraps to the other end of the curve vector. In the 3D case, instead of differences
between neighboring curve points, a volumetric neighborhood can be used to
approximate the derivatives for each curve point. Of course, the image forces
will then need to be defined in three dimensions as well. To solve equation (7),
all these values can be put in matrix form:

Ax+ Eimagex(xi, yi) = 0 (7)

Ay + Eimagey(xi, yi) = 0 (8)

These equations can be solved by matrix inversion like this (with introduc-
tion of timestep t and timestep size γ):

xt = (A+ γI)−1(xit− 1− Eimagex(xit− 1, yit− 1)) (9)

yt = (A+ γI)−1(yit− 1− Eimagey(xit− 1, yit− 1)) (10)

The vector of curve x positions is calculated separately from the curve y
positions each iteration. When the curve reaches a minimum (equilibrium),
the time derivative vanishes as the updated positions converge. During the
exploration of the method in the next chapter, an explicit Euler solver will be
used.

5 The Method

In this chapter, we provide a thorough description of the segmentation method,
breaking down its individual components and how they work together to gener-
ate the final segmentations. The method operates and is developed in parallel
with the creation of a new e-learning system for the Utrecht Medical Center.
First, a global overview of the structure of this system is provided, which is the
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context in which the method is developed, refined and tested. After this, the
Active Contours model that lies at the heart of the method is described. This
AC model consists of a number of relatively straightforward forces, and a few
more intricate ones, namely the Gradient Vector Field (GVF) force, and the
2.5D Shape Morphing force. They are described in their respective subsections.

5.1 System Infrastructure

The development of the new e-learning software and the specification and re-
finement of the new method have been tightly intertwined from the start. The
software provides a convenient framework, and a niche context against which
the method is specialized and adjusted. The idea of the software pilot is that
for the first time, teachers and students (of the UMC) can create and access a
library of radiology cases from anywhere, scroll through 3D datasets that are
highly optimized for use in browsers, and answer medical questions about them.
Teachers can create full segmentations, use the auto-complete function that lies
at the heart of this thesis, and upload 3D scans, all within a normal browser.
This means that the method operates in a client-server architecture. An ab-
stract flow of segmentation operations is provided in figure 5. Generally, a user
draws an incomplete segmentation on the client-side, and sends this data over
to the server. The server considers all user-specified segmentation slices fixed,
and generates the remaining inbetween slices, which are send back to the client.
After some potential refinement, the original user-specified slices along with the
refined generated ones are again send to the server, which repeats the process of
filling in missing slices. This iteration continues until the user is satisfied with
the result. This system overview is all contextual information that provides an
explanation and justification for some of the design decisions made throughout
the project, but keep in mind that the segmentation method can potentially be
decoupled from this context, should this be desired, and implemented for use in
another application.
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Figure 5: Implementation context of the method: Client/Server architecture

Figure 6: Interface in which users create their segmentations

All scan data is stored on the server, and send to clients in compressed form
to optimize loading speeds. Segmentations are send back and forward between
client and server, and are annotated with essential metadata. Each segmentation
slice can contain one or more contours. Each contour is represented as a list
of 2D points in the coordinate system of the scan. Each segmentation slice is
annotated with the name of the scan, the perspective (axial, coronal, sagittal),
and the slice index. This data representation of a segmentation has a very small
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footprint (typically only a few KB), making sure that transmission times are
minimal, even in low-bandwidth situations. In the remaining of the chapter,
a few terms will be used that require some explanation. When a ’contour’ is
mentioned, this means a single, closed 2D curve. When a ’slice segmentation’
is mentioned, this means one or more of these contours presented in a single
2D coordinate system (typically, an image slice). When a ’segmentation’ is
mentioned, this means on or more slice segmentations, which can be spread
across multiple image slices or even scan perspectives.

5.2 Active Contours Model

The core of the method is based on the classic Active Contours model by Kass
et al. [1988]. As described in the background chapter, this model defines an
energy equation that consists of a number of terms. The model operates on
a single, closed, two-dimensional contour, which is presented parametrically by
v(t) = (x(t), y(t)), where t ∈ [0, 1]. The energy is integrated over the entire
contour:

Esnake =

1∫
0

Eint(v(t)) + Eext(v(t)) ds (11)

Eint and Eext stand for the internal and external energy components re-
spectively. The internal and external energies are derived by forces that are
defined for each point on the contour. The solution state of Active Contours is
a curve configuration for which the total integrated energy over the full curve is
minimized. In this method, there are four different internal forces: Elasticity,
Resistance to curvature, Expansion, and Stiffness:

Eint = (p1 · vt(t)2 + p2 · vtt(t)2 + p3 ∗ Eexp + p4 ∗ Estiff )/4 (12)

These are included in almost every variant of the Active Contours model.
They are as follows:

• Elasticity provides a force that resists stretching and is defined by the first
derivative of the curve (vt(t)).

• Resistance to curvature provides a force that resists bending (sudden
changes in curvature), and is defined by the second derivative of the curve
(vtt(t)).

• Expansion provides a force that grows the entire contour. It is defined on
each point on the curve, by using the normal vector as a force. It prevents
the curve from imploding too much.

• Stiffness provides a ’return home’ force: before starting the Active Con-
tours evolution process, a snapshot of the initial curve is recorded, so that
on each iteration and for each point on the curve, a force vector can be
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calculated that points towards the initial position of that point on the
curve.

The four parameters (p1 to p4) determine the relative strength of these ener-
gies, and will be determined empirically (see the result chapter for the analysis)
In addition to these internal forces, two external forces are defined, which are
refined and implemented in a specific and new way. The first one is a Gra-
dient Vector Field force (GVF), which is derived from the scan dataset.
It is a vector field that guides the curve towards scan areas of high contrast
(edges), and gradually increases in strength as the curve gets closer to edges in
the image. The scan, perspective and slice to load from disk is provided in the
metadata that is send along with each slice segmentation. These vector fields
cannot be cached for each dataset (to reduce calculation times), because they
are dependent on the window/level settings of the user (the user can adjust scan
window/level to increase contrast in desired anatomical shapes). Therefore, this
calculation can quickly become a bottleneck of the entire system. To optimize
it, an implementation is chosen that is very fast and applicable for any 2D im-
age, based on a study by [Han et al., 2007]. A subsection about the calculation
of this vector field will follow. The other external force is a 2D shape morph-
ing force. An important constraint of the entire method is that any missing
segmentation slice (on which Active Contours needs to run), has two nearest
user-created segmentation slices, one in both directions (on a higher and a lower
slice number). This constraint is enforced by only letting the system generate
slices between user-provided slices (as opposed to all the slices in the target
perspective). The idea is to match the closest contours on these two slices, and
morph them into each other. This morphing is done parametrically (t ∈ [0, 1])
and linearly: 0.5 represent a shape that is halfway inbetween the two boundary
shapes:

S = u1 · (1− t) + u2 · t (13)

S is the generated contour, u1 is the user-provided contour in one direction,
u2 the contour in the other direction. Using this morpher, reference shapes can
be generated that are used by Active Contours as an external attraction force
(by taking the normalized distance between the contour and the reference shape,
on each curve point). Details about the generation of these morphed shapes are
also presented in a subsection later this chapter.
To discretize the Active Contours model, each input curve is represented as an
array of curve points, for which the different forces are calculated. During a
few hundred iterations, the positions of these curve points are updated, after
which new forces are calculated. Depending on how many evolution iterations
are used, and the different parameters that derive the relative power of different
forces, the system reaches an equilibrium or not. In many cases cases it won’t,
but this is not a problem: reaching an equilibrium is not a constraint for a good
looking result. So, to provide an overview of a single Active Contours run, here
is some pseudo-code:
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Data: List of 2D points that form a closed contour; Morphed mask
target (list of 2D points)

Result: Discretely iterated, evolved new contour; a list of 2D points
with the same length

Calculate Gradient Vector Field;
for Iteration count (constant) do

for Each point in the input list of points) do
Calculate Curvature Force ;
Calculate Elasticity Force ;
Calculate Expansion Force ;
Calculate Stiffness Force ;
Calculate Image Force (using the GVF) ;
Calculate Morphed Mask Force (using the morphed mask
target);

end
for Each point in the input list of points) do

Update position of point by applying all the forces, multiplied by
their force multipliers (constant parameters);

end

end
Algorithm 1: A single run of the Active Contours implementation

The algorithm will be repeatedly executed for each slice that needs to be
generated. Each slice that needs to be generated is guaranteed to lie between
two user-provided slices (see Section 5.3 for further details). The input of the
algorithm is an initial contour guess, and a morphed mask target, which is gen-
erated from the shape morpher, that blends these two user-provided slices into
each other.
First, the algorithm calculates the Gradient Vector Field, using the correct im-
age data. This step is placed outside the loops, because this vector field is static:
it does not change as the contour evolves. Next, a loop is started that repeats
the inner steps ’iteration count’ times: this is a parametric constant. Then, for
each point on the current contour, all the different forces are calculated, after
which the positions of the contour vertices are updated. Notice that the forces
are calculated in a separate loop: this is because the Curvature, Elasticity and
Expansion forces use information about neighboring vertices, so they cannot be
updated together with the force calculation. After the algorithm is finished, it
returns back to the main segmentation algorithm that will be described later.

5.2.1 Fast Gradient Vector Field Calculation

This implementation is based on this study: Han et al. [2007]. The input of
the algorithm is the image from which the GVF needs to be calculated. Here,
it is pre-processed with the user-specified scan window and level. To optimize
running speed, the bounding rectangle around the contour that Active Contours
uses as input is used to cut out a portion of the scan image, with a 100 pixel
margin to increase convergence accuracy and capture range of the GVF calcu-
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lator. First, an edge map is generated from this pre-processed image rectangle.
Here, this is done using the well-known Canny Edge detector. For images that
can differ largely in contrast, details and scale, this detector provides the most
consistent and reliable results. From the resulting edge map, a horizontal and
vertical derivative map is extracted using convolution with Sobel kernels (x and
y). This is done because the GVF algorithm generates the X-component of the
output GVF separately from Y-component. The dimensions of the output GVF
is the same as the original image region (width · height)
The calculation of the gradient vector X and Y maps is done using a multigrid
solver. This entire pipeline is presented visually in figure 7.

Figure 7: The pipeline of the GVF algorithm, presented visually

During the extraction of the image region, the 16 bit scan is processed using
the Window/Level settings specified by the user, and normalized. During the
segmentation process, the user can impact the resulting generated segmentation
by actively Window/Leveling the dataset. The effect this can have on the final
Gradient Vector Field is illustrated in figure 8. Note that the active contour is
influenced by this GVF, so changing the Window/Level can have a visible effect
on the final segmentation.
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Figure 8: The impact using different Window/Level settings can have on the
resulting edge map, and therefore on the final GVF.

The difficult part of this algorithm lies in the implementation of the Multi-
grid solver, that takes the image gradient and outputs the converged GVF. As
described in the study by X. Han et al., this solver finds an equilibrium solution
to the following equation:

0 = 5(g(F )5 V )− p(F )(V − F ) (14)

In this equation, F is the input edge map (x and y gradients combined into
vectors), V is the desired output (the Gradient Vector Field), and p and g are
two weighting functions that determine the region of influence of edges, and how
close the GVF is to the input F :

g(F ) = e−(F/K)2 (15)

(K is a smoothing constant that determines the falloff of the edges in the
GVF. For this research, K is set to 4 as a result of empirical experimentation)
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p(F ) = 1− g(F ) (16)

As mentioned earlier, the GVF is solved in the X and Y dimension separately.
This is done by forming two PDEs (partial differential equations) from equation
14 of the following form:

0 = 5(g(x, y)5 u(x, y))− p(x, y)u(x, y)− r(x, y) (17)

Here, u is the component of the vector field that needs to be solved (x or y).
This equation can now be solved for the X and Y dimension. This is done by
using different so-called ’grid levels’ of the input image. At the finest grid level,
its dimensions are the same as the input image region. Both dimensions are
divided by 2 to obtain a smaller grid level, and the image values are restricted
to the new grid using a restriction operator (average of neighbors). This is
repeated until, at the coarsest level, the grid is only 2x2. The multigrid method
repeatedly ’relaxes’ the error of the target PDE on each level of the grid, by
averaging with neighboring grid elements. To transfer the values back to a
finer grid level, a prolongation operator is used (simply copies each value to
neighboring cells to obtain the finer grid). By relaxing the error on multiple grid
levels, finer parts as well as more global (smooth) parts of the error function are
minimized. The algorithm starts with an initial guess, which is set to be the
zero vector, and a desired result, which is set to be the input gradient vector.
The target PDE is a discretization of the differentiable part of (17), and looks
like this:

5 (g(x, y)5 u(x, y) =

(g[i+ 0.5, j] · (u[i+ 1, j]− u[i, j]))− (−g[i− 0.5, j] · (u[i, j]− u[i− 1, j]))

s

+
(g[i, j + 0.5] · (u[i, j + 1]− u[i, j]))− (−g[i, j − 0.5] · (u[i, j]− u[i, j − 1]))

s
(18)

s is the spacing of the current grid. To improve upon the current guess
u, an correction vector term is added to the current guess. This is set to be
the difference between the current guess, and the relaxed, discretized PDE:
diff = u− PDE.
These corrections are done repeatedly, on all grid levels, as to correct for finer
and more coarse errors in the resulting function. For more (implementation)
details about multigrid solvers, see [Han et al., 2007].

Because the amount of grid levels is logarithmic in the input image size,
and the algorithm only needs to relax the error a few times on each level, this
algorithm significantly increases the speed compared to a simple, iterative GVF
solver that simply repeatedly convolves the edge image with a 2D kernel until a
GVF is obtained. Speed that is very desired for this application: the user needs
to be able to make relatively quick edits to a segmentation and see the results
as responsively as possible.
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Before the calculated GVF is sent back to the Active contours model, it is pro-
cessed in the following way: each vector (corresponding to a pixel in the input)
that has a magnitude greater than one, is normalized. This makes sure that 1)
the field does not contain outliers that are too big, thereby having too much
effect on the contour, and 2) the effect of edges on the field degrades as the
distance to the edges increases. Both properties are desirable for the model this
research aims to create.

5.2.2 2.5D Shape Morphing Force

The algorithm that generates a morphing sequence between two user-provided,
closed 2D contours, represented as a list of points, is based on a study Yang
and Feng [2009]. This study described a generally applicable method to morph
two arbitrary shapes into each other based on matching features and an as-
rigid-as-possible interpolation. After experimentation and implementation of
the system as the study describes, it became clear that it presented some prob-
lems in the context of this research, the main problem being that the matching
algorithm that links parts of the two respective contours to each other, often
generated crossing lines and invalid links. The way in which the user-provided
contours are drawn helps to shed light on this issue: about every 5th slice is
user-provided, and because anatomical structures are fixed (don’t move as the
slice number increases), the correct matching of the contour vertices is local
instead of based on shape features. With this in mind, and the observation that
using an as-rigid-as-possible interpolation often favors the rigidity constraint
over an evenly spread interpolation (creating unwanted growing and shrinking
of the interpolated shape), we created the following shape morphing algorithm:

• Because both contours are densely sampled, for each contour, take every
15th vertex and label every group of inbetween vertices as ’features’ of the
shape.

• Use a recursive, dynamic programming algorithm to create a desired se-
quential, one-to-one matching between the features of both contours. If
one contour contains more features, features will be grouped in order to
create a one-to-one correspondence. The dynamic algorithm assigns a dis-
tance cost to each matching between the two contours. It sequentially goes
through all the feature points of the contour with the smallest amount of
feature points, and tries linking them with the feature points of the other
contour, always taking the minimum cost of using versus not using each
particular link option. By caching correspondence costs, the algorithm
becomes dynamic and provides a matching very fast (typically in around
half a second, on an Intel I7-4790K). The algorithm is very similar to, and
inspired by, existing minimal cost dynamic algorithms.

• Every pair of matched features is resampled so they contain the same
number of vertices (by linear interpolation). Now, the morphing sequence
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can be generated. Given an interpolation factor (0 <= t <= 1), the
two contours are morphed into each other by linear interpolation: every
matched feature now contains the same number of vertices whose locations
can be interpolated.

Figure 9: The two contours are split into features (black dots), and a best
match is generated using dynamic programming. Then, an inbetween morphing
sequence is created (here t=0.5)

The matching between the two contours is cached, so that a morphed shape
can quickly be calculated for each interpolation factor t.

5.3 Running in 2.5D

The system runs for each missing slice. Between every two user-provided slices,
a morphing sequence is generated. The resulting morphed masks are send along
with each active contours run. The first user-provided contour is copied to the
next slice, on which AC runs (using the morphed mask as input parameter).
The result of this run is then copied over to the next slice, after which the
process repeats until the next user-provided slice is reached. If there are still
slices missing, a new morphing sequence is generated, and the entire process is
repeated. See figure 10 for an overview of this pipeline.
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Figure 10: The pipeline of the segmentation system. Between every two user-
provided slices, a morphing sequence is generated. A number of discrete inter-
polated shapes is fed into each corresponding inbetween scan slice, on which,
together with the calculated Gradient Vector Field for that slice, and the other,
internal forces and parameters, Active Contours runs to provide the final con-
tour to return to the user.
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6 Results

The system relies heavily on an acceptable tuning of the different parameters,
where ’acceptable’ means a configuration that generally provides the best results
across the domain of 3D medical scans. This tuning process is of vital impor-
tance, mainly because all of the parameters are hidden from the user in the
final product. This section describes the structured approach that led to a fixed
choice for the parameters, with a side note: this final choice cannot be the abso-
lute best one. There is a huge parameter space to explore, because each variable
is unrestricted and may contain an arbitrary amount of decimal digits, and also
because there is an inherent semantic aspect to the segmentation of scans. The
active contours model does not have this semantic domain knowledge, and bases
its guess entirely on a number of concrete forces. Therefore, expert knowledge
has to be incorporated into the reflection process. This is done objectively and
subjectively. A radiology expert provides a number of hand-drawn segmen-
tations which are compared (using a distance measure) to an auto-completed
version of the same segmentation. This provides an objective accuracy measure.
The system is also evaluated subjectively, within the e-learning context it is de-
signed to work in. A few expert radiologists from the Utrecht Medical Center
judge the accuracy, ease of use and overall usability of the system, and their
findings are included later in this section. The performance and applicability of
the method are also examined in different subsections.

Figure 11: The software interface (the large yellowish button generates the
missing slices)
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6.1 Parameter exploration

To streamline the process of choosing parameter values, a development build
of the online environment is used that allows for the manual tweaking of each
parameter, and visualization of the forces that lead to the final shape of a
segmentation.

In Section 5, the steps, forces and formulations of the algorithm are described
in detail. It is there for a better understanding of the parameters and how they
drive and prioritize the different subsystems. Here, the parameters are simply
presented one by one, after which they will be tweaked individually and together.
The parameters of the active contours model are the following:

• Elastic force multiplier: this sets the strength of the resistance to
stretch force, meaning the larger this value is, the less the 2D contour is
able to stretch in different directions.

• Curvature force multiplier: this sets the strength of the resistance to
bending force, meaning the larger this value is, the smaller the integration
of the curvature over the curve will become.

• Expansion force multiplier: this sets the strength of the tendency of
the curve to expand. It is essentially the opposite of the elastic force, a
correct trade-off between these two forces is important.

• Image force multiplier: this controls the strength of the force derived
from the gradient vector field of the frame image (the parameters inter-
nal to the GVF subsystem have been set to their optimal values for this
application in an earlier stage. For details, see the ’Method’ section.

• Morphed mask force multiplier: for each missing slice that lies in
between two user-provided slices, a morphed shape is generated using the
algorithm described in the ’Method’ section. This parameter controls the
tendency of the active contour to move towards this morphed shape.

• Stiffness force multiplier: this determines the resistance to any change
from the mask of the previous slice. (Recall that active contours succes-
sively runs on each missing slice in ascending order).

• Number of iterations: this is simply the number of position updates
/ force recalculations each run of active contours consists of. The theo-
retical ideal situation is to let the curve iterate until the different forces
converge to an equilibrium, but for this practical exploration, smaller it-
eration counts are also considered (which generate a pre-converge state as
the final curve).

• Post-smooth: A parameter that sets the amount of smoothing (lapla-
cian) that needs to take place, after active contours runs.
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The different parameters can influence each other in a lot of different ways.
For example, if the image parameter is set so that it has an ever so slightly
stronger effect than the morphed mask strength on a specific slice, this can po-
tentially cascade to a larger domination of the image force over the course of
many iterations. The two forces that have the largest contribution to the overall
shape of the iterated contour are the image force and the morphed mask force.
These forces steer the contour toward the desired configuration, while the other
forces only refine it by smoothing and making small local adjustments. There-
fore, the strength of these shape-defining forces should be relatively higher com-
pared to the other three. In order to test the objective accuracy of each choice
of parameters, a number of different reference segmentations are used. These
are provided by radiology professors at the UMC, and represent the ’ground
truth’ the algorithm needs to approach as closely as possible. This is compared
against a version where part of the slices are left out, and the rest automatically
generated. The distance of the generated segmentation to the reference one, is
used as an objective accuracy measure. By experimenting with different combi-
nations of parameters, the overall average accuracy is minimized. This distance
value is calculated in the following way: for each slice in the segmentation, the
union of the generated mask and the reference (ground-truth) mask is taken,
and divided by the intersection of these same two masks. These values are
summed over all slices of the segmentation, normalized, and the resulting value
should be as close to 1 as possible (ideally, it should be exactly 1, when the
generated segmentation and reference segmentation are exactly the same). So,
the accuracy value then is the absolute difference between 1 and the calculated
distance value.
Before the parameters can be optimized, a suitable starting configuration needs
to be chosen. Recall that all force vectors are normalized during the active
contours process, so the parameters do not have a unit of measurement and
their relative relations are important. The starting configuration for the system
is based on some trial and error: the parameters are quickly tweaked until the
generated segmentations look somewhat acceptable, after which the fine-tuning
can begin. The initial configuration of parameters is the following:

• Elastic force: 0.15

• Curvature force: 0.2

• Expansion force: 0.25

• Image force: 0.2

• Morphed mask force: 0.2

• Number of iterations: 250

• Stiffness force: 0.1

• Smooth strength: 0.1
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6.1.1 Parameter: Curvature force

Using the analysis method described above, an objective accuracy measure can
be done on any of the segmentations provided by the hospital, using any config-
uration of parameters. The first parameter that will be tweaked is the curvature
force multiplier. This parameter is not expected to have a large impact on the
shape and therefore the accuracy of generated segmentations, and is there to
limit large spikes / changes in the overall shape of a segmentation. By zeroing
out all the other forces of the active contours model, the contribution of this
force can be seen visually. Figure 12 shows this contribution (recall that gener-
ated segmentation slices always lie inbetween user-provided segmentation slices,
which are green in this image):

Figure 12: The effect of using solely the curvature force on the shape of generated
masks (Using a CT abdomen scan)

To tweak this parameter, it is initialized at 0, and then gradually increased
while the resulting accuracy is tracked. It is then set to the optimum of the
tracked accuracy curve. The other parameters of the model are set to their start-
ing values, as provided earlier this section. The accuracies have to be calculated
using a segmentation that can represent a ’general’ anatomical structure. The
segmentation used for this analysis is a segmentation of an anatomical structure
called the ’Flexura Hepatica’, which contains some fast structural changes and
irregular shapes, as well as some more stable, larger shape areas. A problem is
that with other segmentations, the results may vary. For example, in the case of
a structure that grows a lot, setting the expansion force to a large value makes
sense and will increase the accuracy of the result. But, again, all parameters
should be hidden from the user and set only once, so per-segmentation tweaking
of parameters is not allowed.
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Figure 13: The influence of the curvature multiplier parameter on the accuracy
of the segmentation (scan: CT Abdomen, segmentation: Flexura Hepatica.
Every 4th slice is user-provided, the rest is generated. )

After running this analysis, it can be observed from figure 13 that 0.07 is
the optimal value for the curvature force.

Figure 14: The effect of using a low (0.01) curvature force on the shape of
generated masks (Using a CT abdomen scan). The rest of the parameters are
the defaults specified earlier.

Figure 15: The effect of using the found ideal (0.07) curvature force on the shape
of generated masks (Using a CT abdomen scan). The rest of the parameters
are the defaults specified earlier.
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Figure 16: The effect of using a high (0.2) curvature force on the shape of
generated masks (Using a CT abdomen scan). The rest of the parameters are
the defaults specified earlier.

When looking at some visual results (see above figures), it can be observed
that the influence of the curvature force on the shape of the segmentation is
very minimal. When using irregular shapes with spikes/high curvature areas,
the effect will be more visible, but in this example, other forces dominate, even
when the curvature force is relatively high. When zooming in, a small difference
can be observed: with a high curvature force, the contour becomes slightly more
rounded (and therefore compact). Notice that this result corresponds with the
created accuracy graph: the interval of the y-axis is very small, indicating a
small difference. Also, the segmentation used for the calculation of the accuracy
contains a lot more slices and some areas of high curvature change, so when
observing that entire segmentation, some noticeable differences in shape can be
observed on certain coupes.

6.1.2 Parameter: Elasticity force

The next parameter that needs to be tuned is the elasticity force multiplier.
This force also does not have a lot of influence on the overall shape of the gen-
erated segmentations, but the elastic property it adds tends to make generated
curves a bit more streamlined and compact (prevents curves from growing too
much, providing a counterpart for the expansion force which roughly does the
opposite). The same analysis method is used here, with the same segmenta-
tion (’Flexura Hepatica’) from which the total accuracy is calculated. The sole
influence of the elasticity force can be observed visually in figure 17. As can
be seen, the force tends to make the shape more compact and small by pulling
neighboring shape vertices to each other (watch the orange, generated contours).

Figure 17: The effect of using solely the elasticity force on the shape of generated
masks (Using a CT abdomen scan)
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Now there are two different options for choosing parameter values. The
curvature force has already been tuned, so the choice is using its initial value,
or its tuned value. The initial value is chosen here, and to compensate for
the influence changing one parameter can have on the rest of the system, all
parameters will be manually tweaked a bit after they have all been tuned and
saved.

Figure 18: The influence of the elasticity multiplier parameter on the accuracy of
the segmentation (scan: CT Abdomen, segmentation: Flexura Hepatica. Every
4th slice is user-provided, the rest is generated. )

After running this analysis, it can be observed from figure 18 that 0.024 is
the optimal value for the elasticity force.

Figure 19: The effect of using a low (0.01) elastic force on the shape of generated
masks (Using a CT abdomen scan). The rest of the parameters are the defaults
specified earlier.
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Figure 20: The effect of using the found ideal (0.024) elasticity force on the shape
of generated masks (Using a CT abdomen scan). The rest of the parameters
are the defaults specified earlier.

Figure 21: The effect of using a high (0.35) elasticity force on the shape of
generated masks (Using a CT abdomen scan). The rest of the parameters are
the defaults specified earlier.

The visual differences between using a low, medium and high value for elas-
ticity (with the rest of the parameters set to their defaults) can be observed
in the above images. Just like the curvature force, the elasticity force doesn’t
play a crucial role in determining the shape of the final contour on each gen-
erated slice. It ensures a regular spacing between contour vertices, but when
it is too high, it can create irregularities in the contour border (see the high
elasticity image). This force can be particularly helpful when successive slices
of a segmentation contain high-detail areas on different parts of the contour:
the elasticity force ensures that the vertices of the contour spread out better to
cover these changes.

6.1.3 Parameter: Expansion force

Next up is the expansion force. It is another minor force that prevents the
contours from getting too small and can help to push the edges towards the
desired shape. The effect it has on generated segmentation can be observed in
figure 22.
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Figure 22: The effect of using solely the expansion force on the shape of gener-
ated masks (Using a CT abdomen scan)

Again, the initial parameter configuration is used, and the expansion force
multiplier is increased from zero to 1 while the resulting generated segmentation
accuracy is tracked, using the Flexura Hepatica segmentation.

Figure 23: The influence of the expansion multiplier parameter on the accuracy
of the segmentation (scan: CT Abdomen, segmentation: Flexura Hepatica.
Every 4th slice is user-provided, the rest is generated).

The resulting optimal value is 0.13, after which the accuracy drops as a result
of over-extending the shape past the boundaries of the anatomical structure.
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Figure 24: The effect of using a low (0.02) expansion force on the shape of
generated masks (Using a CT abdomen scan). The rest of the parameters are
the defaults specified earlier.

Figure 25: The effect of using the found ideal (0.13) expansion force on the shape
of generated masks (Using a CT abdomen scan). The rest of the parameters
are the defaults specified earlier.

Figure 26: The effect of using a high (0.35) expansion force on the shape of
generated masks (Using a CT abdomen scan). The rest of the parameters are
the defaults specified earlier.

As can be seen in the above images, the expansion force plays an impor-
tant role in guiding the evolution of the contour towards edges of the image by
expanding it. The segmentation that uses a low expansion force becomes in-
creasingly too small, partly because the curvature force tries to make each slice
more compact. The expansion force can be seen as a helper of the image force:
it push the contour toward edges, where the image force is stronger and takes
over. It can be set too high, as is the case in figure 26. Here, the expansion
force dominates the other forces, even when the image force is at its maximum
(on an edge), creating contours that are too large.
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6.1.4 Parameter: Image force

The image force plays a big role in the morphing of the shape to conform to
desired edges. Recall the way the entire method functions: it generates the
slices inbetween two user-provided slices, and uses the result of active contours
on the previous (neighboring) slice as an initial contour for each slice that needs
to be generated. So, adding a force that attracts the shape to nearby edges can
have a cascading (large) effect on the entire segmentation, over the course of
multiple slices. Because of this, the force falls in a different category compared
to the three already tuned ones (the curvature, elasticity and expansion forces).
Therefore, the already tuned values are used as parameter configuration during
the accuracy analysis of this force. The remaining parameters (including the
morphed mask force, which is not tuned yet) are set to their initial values. This
is done to partly compensate for the influence different parameters can have on
each other.
In figure 27, the sole influence of the image force can be observed visually,
analogous to the previously tuned forces.

Figure 27: The effect of using solely the image force on the shape of generated
masks (Using a CT abdomen scan)

Observe that this image force on its own does a decent job of following the
desired edges of the anatomical contour, but has trouble conforming to larger
changes in curvature (like the left part of the anatomical structure in figure 27).
This force is tuned in the same manner as the other forces, starting from 0 while
tracking the resulting accuracy of the generated segmentations (again, using the
Flexura Hepatica segmentation). See figure 28 for this graph.
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Figure 28: The influence of the image multiplier parameter on the accuracy of
the segmentation (scan: CT Abdomen, segmentation: Flexura Hepatica. Every
4th slice is user-provided, the rest is generated. )

What is surprising about this result, is that the overall positive influence of
the image force is not very high: the accuracy of the segmentation is 0.82 without
using the image force, and 0.85 when it is used (at the optimum, which is at
0.08). But, note that for other segmentations the influence can be stronger, and
the fact that users can window/level the scan, thereby increasing edge strength
in the desired structure, can also increase the image force influence.

Figure 29: The effect of using a low (0.01) image force on the shape of generated
masks (Using a CT abdomen scan). The rest of the parameters are the defaults
specified earlier.

37



Figure 30: The effect of using the found ideal (0.08) image force on the shape of
generated masks (Using a CT abdomen scan). The rest of the parameters are
the defaults specified earlier.

Figure 31: The effect of using a high (0.4) image force on the shape of generated
masks (Using a CT abdomen scan). The rest of the parameters are the defaults
specified earlier.

The image force plays an important role in guiding the contour towards
structural (anatomical) edges. In the example segmentation that is used as a
visual demonstration here (see the above images), this effect can be observed.
The other forces, mainly the morphed mask force that steers the contour towards
slice 13, cause the contour to drift away from the anatomical bulge on the left
side of the image too fast. But, when using a large image force value, the contour
conforms to this visual structure, creating a better overall segmentation in this
case. In this visual example, it can even be argued that using a higher image
force (higher than the found ideal value) is better, but keep in mind that this is
only one example. In the larger segmentation that is used to determine the ideal
image force value, more and different kinds of structural changes are present.
When the image force is too strong, the contour can be drawn towards wrong
edges, or towards noise or irregularities in the image.

6.1.5 Parameter: Morphed mask force

The last vital parameter to tune is the morphed mask force multiplier. This
force determines how strongly the contour is pulled towards the morphed shape
trajectory generated inbetween user-provided slices. Its effect can be observed
visually in figure 32.
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Figure 32: The effect of using solely the morphed mask force on the shape of
generated masks (Using a CT abdomen scan)

The force plays a very important role in guiding the contour shape towards
the next user-provided goal slice. The morphed mask multiplier is an overall
constant that is applied to all generated slices, but the strength of this force
also linearly decreases as the distance to a user-provided slice increases. This
makes sense, because the further a provided slice is, the less reliable using the
morphed mask becomes. For the tuning of this parameter, it again starts at
zero and gradually increases while the resulting accuracies are tracked (with the
Flexura Hepatica segmentation). The result is presented in figure 33. Be aware
of the scale of the y-axis of this graph: the increase in accuracy that using the
morphed mask adds is about 0.1. As can be seen, the optimum lies around 0.23,
beyond that the curve roughly stays flat. This has to do with the attractive
strength of the morphed mask decreasing as the contour moves closer to it (the
strength of the morphed mask is also inversely proportional to the distance to
it, as described in the Method section), and the strength also decreasing as the
distance to user-provided slices increases.

Figure 33: The influence of the morphed mask multiplier parameter on the accu-
racy of the segmentation (scan: CT Abdomen, segmentation: Flexura Hepatica.
Every 4th slice is user-provided, the rest is generated. )
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Figure 34: The effect of using a low (0.01) morphed mask force on the shape of
generated masks (Using a CT abdomen scan). The rest of the parameters are
the defaults specified earlier.

Figure 35: The effect of using the found ideal (0.23) morphed mask force on
the shape of generated masks (Using a CT abdomen scan). The rest of the
parameters are the defaults specified earlier.

Figure 36: The effect of using a high (0.4) morphed mask force on the shape of
generated masks (Using a CT abdomen scan). The rest of the parameters are
the defaults specified earlier.

The main role of the morphed mask force is to ensure the evolution of the
contour is evenly spread across all the inbetween slices that need to be generated.
When it is set too low, like in image 29, the contour can fall increasingly behind,
creating a large, undesirable jump (see difference between slice 12 and 13) in the
contour shape. On the other hand, when this force is set too high, it can create
irregularities in the contour boundary due to overshooting, and it can overrule
the image force, causing the contour to ignore small structural changes in the
image dataset.
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6.1.6 Parameter: Remaining parameters

The remaining mentioned parameters of the active contours model, namely the
stiffness force, the smoothing strength and the number of iterations, can be
tuned by hand, without extensive analysis. These parameters provide some
small improvements that slightly prettify the overall look of resulting segmenta-
tions, while playing almost no role in deriving shape and structure. The number
of contour iterations was initially set at 250, and because all other values are
tuned based on this value, it does not need to change much. While using the
tuned parameters and observing results, increasing the curve smoothing and
slightly decreasing the contour stiffness improved the result visually, so the val-
ues for these parameters finally became 0.02 for the stiffness force and 0.2 for
the smoothing strength. Also, giving the algorithm a little more contour itera-
tions seemed to slightly improve the results too, so the contour iterations were
tuned to 270. A more extensive subjective analysis of the system is provided
later this section, because the subjective judgment (the ’niceness’ of the system)
is essentially worth more than an objective analysis: radiology teachers are the
users of the new method and will judge the usability of the results purely visually.

6.1.7 Combining parameters and measuring accuracy

So, after this tweaking and optimizing, and adjusting for the influences the
parameters have on each other (mainly the image and morphed mask parameters
need to be tuned optimally, because they mainly define the shape of the final
segmentation), the final values for the different parameters became the following:

• Elastic force: 0.03

• Curvature force: 0.068

• Expansion force: 0.035

• Image force: 0.13

• Morphed mask force: 0.14

• Number of iterations: 275

• Stiffness force: 0.02

• Smooth strength: 0.2

The objective accuracy of the reproduced segmentations (using the distance
measure to the reference segmentation described earlier) using these parameters
is generally good: most often, it lies around 80 percent when letting the user
provide about every 4th slice. As expected, this accuracy decreases as the
distance between user-provided slices increases, because of the system having to
generate more slices based on less data. See figure 37 for a plot of this effect.
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Figure 37: As the distance between user-provided slices increases, the accuracy
of the generated reproduction decreases (scan: CT Abdomen, data for three
different segmentations provided by the UMC)

The values chosen here are as general as possible, yielding acceptable results
across the entire domain of anatomical segmentations, but by not allowing any
tweaking for different types of scenarios, a significant amount of accuracy is
sacrificed. For example, here are some comparisons of accuracy results of three
different UMC-provided segmentations, using the fixed, tuned parameters versus
optimized parameters for that specific segmentation (each parameter tweaked
until a local maximum is reached).

• Colon descendens, every 5th slice is user-provided, fixed parameters accu-
racy: 0.771, optimized parameters accuracy: 0.845

• Flexura hepatica, every 5th slice is user-provided, fixed parameters accu-
racy: 0.791, optimized parameters accuracy: 0.852

• Rectum, every 4th slice is user-provided, fixed parameters accuracy: 0.912,
optimized parameters accuracy: 0.934

In conclusion: to optimize the different active contours parameters as much
as possible, as much domain knowledge as possible should be taken into account.
For the application this thesis is aimed at, the chosen fixed values generally
provide acceptable results, but could potentially be improved for individual
cases.
Some visual results of using the optimized parameters can help clarify the strong
and weak points of the method. Below are some examples that help illustrate
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the observation that sometimes, the generated segmentation can look very nice
and accurate, and sometimes less so. An automatic parameter tuning system
could help alleviate this variance in usability.

Figure 38: Five successive slices of the reference segmentation ’Rectum’ isolated
and compared with an auto-generated version of the same slices, using the tuned,
fixed parameters.

Figure 39: Five successive slices of the reference segmentation ’Concha Nasalis’
isolated and compared with an auto-generated version of the same slices, using
the tuned, fixed parameters.
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Figure 40: Five successive slices of the reference segmentation ’Coecum’ isolated
and compared with an auto-generated version of the same slices, using the tuned,
fixed parameters.

As can be deduced from these visual examples, the method performs best
when no large per-slice differences in shape are present (as expected). The
Rectum segmentation even shows improvement compared to the user-provided
reference version: the contour fits more tightly around the anatomical structure.
A side-effect of using fixed parameters can be observed in the Concha Nasalis
segmentation: the image force is set too low in that case. A larger value would
improve the accuracy. The Coecum segmentation is relatively good, but would
need one or two additional edits to let the contour conform to the lump at the
bottom part of the structure.

6.2 Performance overview

The system consists of a number of separate components. The time-complexity
of these can be analyzed independently. The core system, namely the active
contours model, has linear complexity in the number of contour vertices (the
number of contour iterations is constant). There are three main variables that
are subject to change from use case to use case: the number of vertices in the
segmentation, the number of slices that need to be generated, and the 2D res-
olution of the 3D dataset (this is relevant for the GVF algorithm that is run
on each slice). The shape morphing algorithm only scales with the amount of
vertices of the source and target masks, which does not provide a bottleneck
in all practical cases. This is because segmentation slices typically only contain
a few hundred vertices, for which generating a morphing sequence is relatively
fast (typically under half a second, tested on an I7-4790K). The Gradient Vector
Field algorithm runs in O(n · log(n)), where n is the resolution of the input im-
age. Most medical scans are around 512x512, and because of the added region
optimization (only the area including and around the segmentation contour is
used as input to the algorithm), a single run of GVF typically takes about 0.4
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seconds). Within the active contours model, the elasticy, expansion and curva-
ture forces are calculated in constant time, so the bottleneck of the system is
expected to be the repeated execution of the GVF algorithm on each separate
inbetween slice. As is apparent from figure 41 and 42, the running time of the
entire system grows linearly in the number of slices that are generated, and
this is expected: it consists of successive repeats of the same sub-algorithms
with the same complexity, because the result of the previous slice is copied to
the next slice for use as initial guess (so the number of vertices stays the same
across slices). When the number of vertices in the generated inbetween slices,
and thereby also the the size of the contour (the contour is pre-processed so
that roughly is uniformly sampled), is plotted against the running time (on a
single slice) of the algorithm, the resulting curve is a little less linear. This is
mainly because the input size of the GVF algorithm grows with the contour,
introducing a growing component with non-linear complexity that is influencing
the running time of the whole algorithm to some extend. This effect can be seen
in figure 43

Analysis of the total running time of the algorithm:

Figure 41: The relation between the number of generated (inbetween) slices,
and the running time, for a contour with 184 vertices
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Figure 42: The relation between the number of generated (inbetween) slices,
and the running time, for a contour with 309 vertices

Figure 43: The relation between the number of vertices in the active contour,
and the running time (single slice)

Providing some tables with running times of the core parts of the system can
expose the bottleneck of the system as a whole. The following three tables are
recorded using three different segmentations provided by the UMC, and contain
the running times of the active contours iterations, the GVF calculation and the
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morphed mask generation. Note that the running time of the morphed mask
generation does not change when the distance between user-provided slices in-
creases. This is because it does not matter how large this distance is: there is
always one morph sequence between two user-provided shapes. There are a few
minor parts of the system that are not included in this table, like the laplacian
curve smoothing and the morphed mask generation (because the morphed mask
generation does not scale with the amount of generated slices: there only is one
morphing sequence between any two user-provided slices). Their contribution
to the total running time is negligible and can be left out.

No. of slices Active Contours time GVF time Total time
1 0.15s 0.45 0.848
2 0.27s 1.01s 1.531s
3 0.41s 2.04s 2.71s
4 0.64s 2.74s 3.66s
5 0.88s 3.6s 4.781s
6 1.08s 4.43s 5.82s
7 1.14s 5.01s 6.5s
8 1.39s 5.62s 7.42s
9 1.69s 6.07s 8.19s
10 1.88s 6.39s 8.71s
11 2.11s 7.1s 9.67s
12 2.45s 7.78s 10.74s

Table 1: Running times on segmentation Flexidura Hepites (on an I7-4790K).
The number of generated slices is the same as the distance between user-provided
slices: basically all the slices that are left open and therefore need to be gener-
ated.
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No. of slices Active Contours time GVF time Total time
1 0.32s 1.05s 1.752s
2 0.61s 2.01s 3.011s
3 0.91s 3.14s 4.454s
4 1.13s 4.14s 5.679s
5 1.47s 5.04s 6.928s
6 1.81s 6.11s 8.355s
7 2.12s 7.19s 9.79s
8 2.47s 7.98s 10.944s
9 2.71s 8.95s 12.16s
10 3.01s 9.43s 12.952s
11 3.29s 10.11s 13.925s
12 4.02s 10.86s 15.421s

Table 2: Running times on segmentation Rectum (on an I7-4790K). The number
of generated slices is the same as the distance between user-provided slices:
basically all the slices that are left open and therefore need to be generated.

No. of slices Active Contours time GVF time Total time
1 0.08s 0.35s 0.55s
2 0.17s 0.6s 0.903s
3 0.28s 1.01s 1.431s
4 0.35s 1.41s 1.916s
5 0.46s 1.71s 2.334s
6 0.56s 2.05s 2.788s
7 0.61s 2.46s 3.27s
8 0.62s 3.14s 3.99s
9 0.73s 3.34s 4.314s
10 0.8s 4.01s 5.059s
11 0.95s 4.31s 5.52s
12 1.01s 4.86s 6.136s

Table 3: Running times on segmentation Iliocaapklep (on an I7-4790K). The
number of generated slices is the same as the distance between user-provided
slices: basically all the slices that are left open and therefore need to be gener-
ated.

Note that, as expected, the repeated GVF calculations are the bottleneck
of the entire system, with some distance. These vector fields cannot be cached
and retrieved, because they are different for each separate window/level setting.
Earlier tests, with a version that does not only calculate the GVF for a given
target region but instead for the entire image frame, were even more extreme;
now, the GVF calculations at least are within the same rough magnitude as the
other parts of the system. There definitely still is room for improvement: al-
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lowing quick edits of segmentations with quick feedback from the system largely
contributes to user satisfaction and usability. Currently, the system has a big
memory overhead: it needs to load each image into memory, every time a spe-
cific slice from a specific dataset is requested. A memory caching system that
smartly preloads different images may improve the speed of the GVF system.

6.3 Applicability

The segmentation tool, presented as part of the new e-learning system and 3D
scan viewer developed for the UMC, is evaluated by a number of radiologists
and developers currently working at the UMC. They are used to working with
their old environment (MITK for segmentations, an offline software package for
e-learning and examination), so they can provide a fair comparison.

6.3.1 Short description of the interface

In order to better understand the way people use the system and interact with it,
a description of the interface that wraps the segmentation method and presents
it to the user is in place.

Figure 44: The interface the users use to interact with the segmentation method

This interface lets the users create masks (contours) on slices, correct them
by adding/subtracting parts, and generate inbetween missing slices by using the
large yellow button. The algorithm is then executed on the server, after which
the segmentation gets updated: generated slices are labeled as orange. When an
edit is made on a generated mask, it switches its label from ’generated’ to ’user’,
so that if the user runs the algorithm again, the new correction is taken into
account (when running the algorithm, only user-generated slices are kept). This
way, the user can continually update the segmentation, editing the inbetween
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slices where necessary, until satisfied.
Now, more details about how users interacted with the system and their insights
can be discussed.

6.3.2 General remarks

The users (testing group of two radiologists and two software developers cur-
rently at work at the UMC) agreed that the interface is easy to understand and
clear. The creation and editing of segmentations is simple, and can be done in
three different perspectives (axial, coronal, sagittal). It is clear how the segmen-
tation method is intended to be used, and the ’one button design philosophy’
is appealing. While segmenting, iteratively editing slices and auto-generating
again is convenient, but could be more responsive: when generating more slices,
the waiting time can become frustrating. The users emphasized the possibil-
ity of applying the segmentation method to other e-learning and examination
systems: its portability and ease of use can be exploited in similar medical
applications. The fact that information from multiple perspective cannot be
combined (segmentation reconstructions and use of that data during automatic
completion) is a limitation. Automatically handling changes in topology would
improve the usability of the method as well.

6.3.3 Use cases

Here, some use cases and observations are discussed that describe how the sys-
tem (and the segmentation method in particular) is received within the context
of application.

• User 1: The first user that tested the system is a software developer cur-
rently working for the radiology department at the UMC. He had a basic
understanding of the interface and the intended use of the auto-complete
feature, and started by choosing an arbitrary anatomical structure to seg-
ment. After drawing six slices by hand (single contours, no multiple topol-
ogy areas), leaving a space of around five slices between every two drawn
slices, he used the auto-generate button. He was satisfied with the re-
sult. With another segmentation (a more irregular shape), he mentioned
that the generated contours did not exactly follow the image boundary.
Most likely, this is due to the image force being too low for that particular
case. He suggested that a simple slider that lets the user balance the mor-
phed mask force against the image force might improve the results. Even
though this goes against the design intentions, using a single simple slider
to balance the two most important forces of the model might provide ben-
efits that outweigh the disadvantage of the added complexity. The user
also noticed that the system only generating slices between user-provided
slices, and not running active contours on the user-provided slices them-
selves, can be inconvenient. He wanted the possibility to roughly draw the
contours, refine them using active contours with a high image force (and
no morphed mask force), after which the rest of the slices get generated.
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The workflow can be quicker this way: users can provide estimates instead
of pixel-perfect segmentation slices. But overall, while testing a number
of segmentations, this user noticed the auto-complete feature can save a
significant amount of time, mainly when segmenting parts that are not too
irregular and have a constant topology (no splits / joins). When segment-
ing a structure that changes in topology, the user remarked that the center
of gravity coupling technique (contours on different slices are matched and
morphed into each other by minimizing the distances between their center
of gravities) worked correctly. The requirement that any two successive
slices containing a change in topology must both be user-provided, could
be enforced by providing the user with an error (currently, the algorithm
simply does not run). The user considered not being able to utilize seg-
mentation data from multiple perspectives and not allowing the generation
of changing topologies two limitations of the system.

• User 2: The second user was a professional radiologist. She had a different
way of using the system and different requirements. In general, she needed
more precision: almost pixel-perfect segmentations. The initial observa-
tion that, because the main application for the method is e-learning, very
precise segmentation would not be necessary because over-estimations are
acceptable, does not entirely hold: she mentioned the desire and require-
ment of a radiologist to be precise, and iteratively edited generated slices
until the segmentations were nearly pixel-perfect. She also used the Win-
dow/Leveling tools a lot more than the first user, to improve the usability
of the image force by increasing the contrast on the desired anatomical
structure. With simple structures, generated segmentation were accurate
(using a spacing of around five slices), only requiring a few small edits.
With longer, smaller structures that are more irregular, she edited bigger
parts of the boundary before being satisfied. In general, she remarked
that structures that have a direction perpendicular to the viewing angle
(axial, coronal, sagittal) seem to get segmented best, probably because of
the increased gradient clarity. In cases where a lot of edges lie very close
to each other in the dataset, she had to make more adjustment as parts of
the contour drifted away from the correct edge. Another added feature she
would have liked to see is the allowance of holes in segmentations (double
boundaries): this currently is not possible, as each contour is a single list
of 2D points. Another case that does not work ideally is one in which an
anatomical boundary is not clearly visible in the dataset (absorbs the ra-
diation at the same wavelength as surrounding tissue). On automatically
generates slices, this means that the contour edge on such cases often is
not entirely correct. Expert knowledge is required to specify the exact
tissue boundary, for each slice in which the gradient is not clear. This
problem is only solvable with models that have knowledge about common
anatomical structures (which introduce a lot of added complexity). But,
in a lot of cases, the method performed very well. She was surprised by
the performance when segmenting the pancreas, as this is an irregular
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contour that quickly changes shape across slices. Only a few small edits
were necessary here. Overall, the method is usable in a lot of cases, and
increases the speed in which segmentations can be made, but would be
even more usable if changes in topology are allowed, and reconstructions
in multiple perspectives.

• User 3: The third user is another developer at the UMC. He did not
use the Window/Level feature as much as the previous user, and mainly
focused on creating segmentations of large structures. For example, he
segmented the liver, drawing every tenth slice, and found the resulting
generated segmentation to be quite accurate (only a few edits were nec-
essary), despite of the large distance between user-provided slices. He
remarked that the viewer and segmentation tool felt responsive, the gen-
eration tool finished fast enough, but suggested the user of a parameter
balancing slider (just like user 1). In a number of cases, the image force
or morphed mask force seemed too strong. Letting the user slide a single
slider to tune the relative strength of those two main forces could improve
the resulting segmentation significantly: the correct balance is dependent
on the specific case. For example, in a structure that is very rough (a lot
happens between user-provided slices), the image force needs to be very
strong to compensate for this.

When the software is more widely used by teachers (at the UMC), for which
there are concrete plans, more insights can be gathered. For now, it is enough
to recognize the potential of the segmentation method and point out its strong
and weak points.

6.4 Fail cases

As mentioned earlier, the algorithm runs in a single perspective, and cannot
handle topological changes. This means that on every slice where a change in
topology is present, the teacher is required to fill in the segmentation manu-
ally. This implies that if a slice has multiple segmentation parts, a one-to-one
correspondence with the next user-provided slice is required. The parts that
correspond are matched using their center of gravity as a distance measure.
The algorithm works well if successive image slices don’t have large structural
changes (rapid changes in shape). If, on the other hand, large per-slice changes
in the image are present, the stiffness and shape morphing forces, as well as
noise in the gradient vector field of the image, cause the contour to fall behind
the rapidly changing anatomical structure. See figure 45 for some examples of
this artifact.
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Figure 45: When the dataset contains rapidly changing shapes, generated slices
can fall behind. Here are a few examples of such artifacts.

Another situation that may generate undesirable segmentations, is one in
which multiple anatomical structures with defined edges lie very close to each
other. The resulting gradient vector field will be influenced by these structures,
and steer (parts of) the active contour in the wrong direction. This effect
is demonstrated in figure 46 (here, an anatomical structure that is very close
attracts the left side of the active contour in the wrong direction).

Figure 46: When the dataset contains multiple contrast-rich edges, parts of the
contour may be drawn to the wrong shape

As demonstrated during the exploration of the parameters, the accuracy of
the provided reconstruction drops rapidly as the distance between user-provided
slices increases. This makes the system unsuitable for cases in which a larger
amount of inbetween slices need to be accurately generated (more then about 4
slices). The use of domain knowledge about likely evolution patterns of anatom-
ical structures could improve upon the system. For example, an extra force
could be added called ’anatomy force’, that is derived from a database of likely
progressions of the target shape. Alternatively, these likely progressions could
be generated using a neural network. In short, the fact that the system does
not use any medical domain knowledge, is a limiting factor. The choice to use
fixed parameters can also be limiting. The requirement of not providing any
parameter settings to the user as to increase usability still leaves room for ex-
perimentation. For example, the parameters could be set automatically for each
segmentation by analyzing the user-provided slices and feeding them to a neural
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net that outputs parameter settings, and is trained on a database of reference
segmentations. This may decrease the running speed of the algorithm, but the
added accuracy can make a big difference.

7 Discussion

From the start of the project, the method has been designed for use within the
context of the new UMC e-learning environment. Its main contribution is the
the ’one button design philosophy’: as opposed to software the UMC currently
uses for the creation of segmentations for educational use, the new system only
has a single button that automatically generates missing slices. The parameters
and different steps of the algorithm are all hidden from the user, making the
method very easy to use. The segmentation system is tightly integrated in the
created online 3D viewer. Because the web-based viewer and the segmentation
system have been developed in parallel, they are loaded as a single module
that is available to all teachers. Even though the method (or ideas from it)
could potentially be used in another context, its niche application is the use
in a medical e-learning application that requires teachers to create structural
segmentations. The main two reasons for this are:

• It has a focus on ease-of-use, thereby sacrificing the added accuracy per-
case that parameter tweaking can provide. This is justified by the applica-
tion context and the people who will use the new system: the context is a
learning application that students can use to improve their radiology skills,
implicating that exact, pixel-perfect boundaries of segmentations are not
required, and the radiologists who create the questions want to be able
to do this as quickly and efficiently as possible, without any knowledge of
the meaning of subsystems and parameters

• It has a specific way of use that is required to get optimal results. Teach-
ers are asked to choose a scan viewing perspective, and then draw about
every fifth slice (or less/more depending on the morphology of the target
structure). All missing slices are automatically generated using the sys-
tem, after which teachers can correct/redraw/remove the segmentation at
will. As described, the method only operates in a single perspective, so it
cannot use mask information from multiple views to generate segmenta-
tions.

During the development of the algorithm, the department of Radiology at
the UMC Utrecht remained involved. The software they currently use for the
creation of segmentations is MITK, which is a program with many options, pa-
rameters, types of algorithms and segmentation types. The main advantage of
this new system is the ease of use: the segmentation system is now tightly inte-
grated into the e-learning environment and the algorithm runs with a single but-
ton, without any tweaking of parameters. Currently, all segmentations are fully
hand-drawn by radiology experts at the UMC, mainly because of the absence of
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an easy-to-use auto-complete feature that doesn’t require any knowledge about
parameters and other settings. With the new system, using auto-complete has
become very easy. The developed software and the new method will, in their
current form, not be used or further developed by the UMC, but ideas from the
research and the software pilot done in January will be adopted by the VQuest
development team at the UMC (they are creating a new software package for
medical e-learning). The typical way in which the developed system can be used
is the following:

• The viewer programmed for this research is used to scroll through the 3D
scan, localizing the target anatomical structure.

• A preferred perspective is chosen, in which a number of slices on which
the structure is visible is segmented.

• The ’generate’ button is clicked, so that the system generates all the miss-
ing slices inbetween provided ones

• The user notices that the segmentation is not ideal, and provides some
additional corrections to slices that are incorrect

• The edited slices get labeled as user-provided, after which the user clicks
the button again and the system generated the missing slices in the same
manner

• The user continues this correcting process until satisfied.

The involved radiologists recognized the potential of the system, and speci-
fied a number of use cases in which the method already provides a benefit over
their current situation, but emphasized that additional improvements and addi-
tions are necessary to truly provide a convenient experience that substantially
improves upon drawing segmentations by hand or using available software like
MITK. The precision with which they like to segment demands accurate re-
sults: they usually are perfectionists and like very accurate segmentations, even
for e-learning purposes. The accuracy of the system as it is, often is too low:
around 80 percent on substantially large segmentations, with every 5th slice
user-provided. To improve the usability, this value needs to go up. A possible
way to achieve this, is by creating a model-driven automatic parameter tuning
system. But overall, the research has been a success: the UMC will continue to
develop the e-learning software created for it, mainly the 3D viewer that allows
for the viewing of 3D scans and creation of segmentations in-browser. The seg-
mentation method will be subject to continued development within this context.

The segmentation method developed during this research can also be used as
a base to expand upon. There are a few areas where improvements are possible.
The first is the use of fixed parameters in the Active Contours model. This
greatly improves the ease of use and speed of the method, and allows for the
’one-button design philosophy’ established earlier, but compromises somewhat
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on the accuracy of the resulting segmentations. By using a neural net or some
other model that, given a specific image dataset and the input user segmenta-
tion slices, outputs the desired parameters that are as optimal as possible for
the specific case. Another weak point of the algorithm is the speed of the Gra-
dient Vector Field sub-algorithm: the reading from memory and performing the
multigrid solving method make up a substantial part of the total running time
of the method. This can be optimized by creating a memory caching system,
or improving upon the speed of the multigrid method.
Another way of improving the experience for users is to incorporate segmenta-
tion data from multiple perspectives into the generation process. This increases
the flexibility and the 3D accuracy of the segmentations: because the current
implementation only uses 2.5D (depth) data, reconstructions to other perspec-
tives can introduce inaccuracies and staircasing (sudden jumps in the contours)
artifacts. This can be done by incorporating a ’perspective force’ into the ac-
tive contours model, that is generated from contour points specified in other
perspectives that are transformed into forces.
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