

Abel Menkveld
Master Thesis

Supervised by Sjaak Brinkkemper and Fabiano Dalpiaz

Business Informatics, Faculty of Science

Department of Information and Computing Sciences

May 2019

UTRECHT UNIVERSITY

Applying the Requirements Engineering for

Software Architecture Model in Software

Products: a case study using crowdsourcing

 2

Preface

It is conventional wisdom that great innovations come from disruptive inventions

by entrepreneurs who are not following the market trends, but who create

something no-one has thought of before. After reading Steve Jobs’ biography for

example, I learnt that you can’t just ask customers what they want and give that to

them, because “by the time you get it built, they’ll want something new”. The

famous quote attributed to the great innovator Henry Ford illustrates it best: “If I

had asked people what they wanted; they would have said faster horses.”

Since I founded my own software start-up, I am wondering how to deal with

customer input. The process of answering emails, taking phone calls and meeting

clients to discuss their (feature) requests is time consuming and might stop the real

innovation. However, did customers actually tell Henry Ford that they want faster

horses, and was the posed question the right one?

While customers might be bad at telling you exactly what they want, you can still

extract their needs. Before Henry Ford introduced the affordable automobile that

made his fortune, people knew they needed a faster mode of transportation. They just

didn’t know the form factors. For software startups, this process of requirement

engineering is ongoing and is one of the drivers of innovation.

This idea of crowd-centric software development formed the basis for my thesis.

The connection with the technique has always been my topic of interest: how to

translate these requirements into a product or service that people love to use. The

RE4SA model - the main artefact for this study - combines business and IT and

allows the information scientist to serve as the bridge between them.

 3

Table of contents

1. Introduction .. 5

1.1. Problem Statement ... 6
1.2. Objective, Scope, and Structure .. 7

2. Research Approach ... 9

2.1. Research questions ... 9
2.2. Research design .. 11

2.2.1. Literature study ... 12
2.2.2. Case study .. 12

2.3. Relevance ... 13

3. Literature review ... 15

3.1. The RE4SA model ... 15
3.2. Requirements Engineering .. 18

3.2.1. Jobs .. 19
3.2.2. Epic Stories ... 25
3.2.3. User Stories .. 27
3.2.4. Crowdsourcing in Requirements Engineering 31

3.3. Software Architecture .. 37
3.3.1. Software applications ... 41
3.3.2. Modules .. 42
3.3.3. Features .. 44
3.3.4. Software architecture recovery ... 45

3.4. Summary .. 48

4. Case study ... 50

4.1. About Tournify ... 50
4.1.1. Applying the principles of Canonical Action Research 52

4.2. The case .. 56
4.3. Architecture recovery .. 59

4.3.1. Extract features from the graphical user interface (GUI) 59
4.3.2. Identify (sub)modules by abstracting .. 61
4.3.3. Present the model ... 62

 4

4.4. Crowdsourced requirements engineering platform 62
4.4.1. Elicitation ... 63
4.4.2. Prioritization .. 66
4.4.3. Negotiation .. 67

4.5. Evaluation protocol .. 67
4.5.1. Architecture recovery ... 68
4.5.2. Crowdsourced requirements engineering platform 68

5. Results & Analysis .. 72

5.1. Architecture recovery .. 72
5.1.1. System context ... 72
5.1.2. Functional Architecture ... 73
5.1.3. Quality of the reconstructed architecture 76
5.1.4. Perceived usefulness of the reconstructed architecture 78

5.2. Crowdsourced requirements engineering platform 80
5.2.1. Perceived usefulness of the crowdsourcing platform 82
5.2.2. Quality of the crowdsourced User Stories 83
5.2.3. Complexity of the crowdsourced User Stories 85

5.3. Summary of the main results .. 87

6. Discussion ... 88

6.1. Answering the sub research questions .. 89
6.1.1. Linking requirements engineering and software architecture 89
6.1.2. Software architecture ... 91
6.1.3. Requirements engineering .. 93

6.2. Answering the main research question ... 99
6.3. Conclusion ... 100
6.4. Validity threats .. 101
6.5. Future research ... 102

Bibliography ... 103

Appendices .. 109

Paper… ... 125

 5

1. Introduction

Already in 2001, Nuseibeh [1] highlighted the importance of the connection

between Requirements Engineering (RE) and Software Architecture (SA) in

software development. The popularization of agile development just started – it is

the same year in which the manifesto for agile software development was drawn

up – and shorter times-to-market are key. He speaks of incremental development

and speedy delivery, facilitated by a streamlined development process. This

development process is iterative and requirements and design specifications are

produced in more detail progressively [1].

Recent literature in RE [2] proposes to define this process as a refinement activity

that converts Jobs into high-level Epic Stories (also known as Epics in practice),

and then split these Epic Stories into detailed User Stories. All these artifacts are

natural-language statements. A Job (shorthand for Job-to-be-Done) captures a

customer need and begins with help me. An Epic Story, or Job Story [2], includes a

problematic situation, motivation and expected outcome. It describes a high-level

product feature or roadmap theme that can be used as an input for User Story

formulation. User Stories contain a role, goal and benefit and are used by over half

of the software practitioners to capture requirements [3]. Each well-written User

Story is atomic; it expresses a requirement for one feature.

The requirements engineer (or product manager) works closely together with the

software architect in the development process in which they exchange artifacts

(e.g. requirements or knowledge). The software architect creates an architecture in

which the product is represented by different modules with specific features. To

facilitate (automated) mapping from requirements to the architecture and vice

versa in software development it is vital to understand the relationship and

interplay between the artifacts of the requirements and architecture. Therefore, the

Requirements Engineering for Software Architecture model (RE4SA) has been

created by researchers from Utrecht University (Figure 1.1). To test the validity of

this model, its usefulness for software development should be subject of studies.

 6

Figure 1.1: The RE4SA model [4]

In an early validation, Blessinga [5] demonstrated how the principles of the RE4SA

model could be applied to specify a functional architecture for a new software

product based on a set of Epic Stories and User Stories. With our study, we focus

in particular on the applicability of the RE4SA model in existing software

products. Those products often lack the up to date artifacts the RE4SA model is

built upon but do have an existing implementation and user base that brings new

opportunities. The implementation can be used to extract features and reconstruct

a software architecture [6], while the user base offers possibilities for

crowdsourcing in RE [7].

1.1. Problem Statement

The RE4SA model is created by combining existing literature from two research

areas in computer science. It has recently been used for software traceability using

ontologies [8] and to develop an architecture based on the requirements. Although

the early results of these studies seem promising, the situation in practice is often

less structured, documented and streamlined as hoped for. For example, 56% of

the User Stories contain easily preventable syntactic defects [9], or User Stories are

not used at all. Collaborating with users during the innovation process also comes

with risks of losses of know-how, serving a niche market only or

 7

misunderstandings [10]. The validity of the RE4SA model when applied to existing

software has not been tested. In addition, the possibilities of adding

crowdsourcing to the model are unknown.

Wieringa [11] distinguishes between design problems and knowledge questions.

The goal of knowledge questions is to acquire theoretical knowledge. In this case

however, we also want to (re)design an artifact that actually helps product

managers and software architects. By doing so, this problem can be categorized as

a design problem. The following schema for expressing design problems is

therefore applicable [11]:

Improve a problem context

By (re)designing an artifact

That satisfies some requirements

In order to help stakeholders to achieve some goal

If we apply the template to this study, this translates to:

Improve the interplay between RE and SA in software development

By validating the RE4SA model for existing software products

That uses crowdsourcing

In order to allow product managers to gather, negotiate and prioritize high-

quality requirements that can be easily communicated to software architects

1.2. Objective, Scope, and Structure

This study aims to validate a new theoretical model, so it can be applied in real

business cases. The RE4SA should be applicable for software companies of any

size, from start-ups to multinationals, integrated into already used agile

development processes and techniques. The main objective is threefold: (1) report

on the RE and SA principles underlying the RE4SA model, (2) include

crowdsourcing in the RE4SA model, and (3) validate the model by applying it to

an existing software product.

 8

The scope of this research is limited to the artifacts mentioned in the model. This

means that in the RE process only Epic Stories [5] and User Stories [12] are covered.

We do cover Jobs [13], which serve as the basis for Epic Story generation, but other

techniques, like tools such as UML [14], are out of the scope of this research.

Regarding the SA, only the context viewpoint and functional viewpoint [15] will

be covered which includes the Context Diagram [16], Functional Architecture

Diagram [17] and Feature Diagram [18].

This thesis has the following structure: in chapter 2 the Research Approach will be

covered in which the research questions, research design and relevance are

covered. chapter 3 is an extensive literature review focusing on RE and SA in agile

software development, and the connection between them. chapter 4 covers the

Case Study at a software development start-up. The results of this Case Study will

be listed in chapter 5 and discussed in chapter 6. In this chapter we answer both

the sub research questions and main research question, draw the main conclusions

and provide directions for future research.

 9

2. Research Approach

2.1. Research questions

In this Master Thesis, we investigate the applicability of the RE4SA model for

existing software products and the possibilities of adding crowdsourcing to the

model. The research question is defined as follows:

RQ HOW CAN THE REQUIREMENTS ENGINEERING FOR SOFTWARE ARCHITECTURE MODEL

(RE4SA) BE APPLIED IN EXISTING SOFTWARE PRODUCTS, WHILE MAKING USE OF

CROWDSOURCING IN REQUIREMENTS ENGINEERING?

In order to give an answer to the research question, seven sub research questions

are drawn up. At first, a proper understanding of the RE4SA model and its

underlying theory is needed. Answering this question requires a combination of

RE and SA literature and provides valuable information about the origin and

foundation of the model, which serves as the main artifact in this research.

SRQ1 HOW ARE REQUIREMENTS ENGINEERING AND SOFTWARE ARCHITECTURE RELATED

AND HOW IS THIS REFLECTED IN THE RE4SA MODEL?

Next, the principles in both RE and SA that are part of the model will be covered

in detail. Sub question two and three relate to this and define the scope of the

research. The second sub research question also covers the principles regarding

crowdsourcing in RE.

SRQ2 WHAT ARE THE PRINCIPLES IN REQUIREMENTS ENGINEERING THEORY REGARDING

JOBS, EPIC STORIES, USER STORIES AND CROWDSOURCING?

SRQ3 WHAT ARE THE PRINCIPLES IN SOFTWARE ARCHITECTURE THEORY REGARDING

CONTEXT DIAGRAMS, FUNCTIONAL ARCHITECTURE DIAGRAMS AND FEATURE

DIAGRAMS?

 10

The second part of this research consists of a business case: a software product for

which the RE4SA model is integrated in the development process. This is in

contrast to the general approach in software development, where one starts with

RE and creates a SA based on the requirements. Since the software product is

already coded and released, the fourth research question relates to the extraction

of features and the reconstruction of the architecture. In the fifth research question,

the extension of the RE4SA model with the use of crowdsourcing is designed.

SRQ4 HOW CAN FEATURE EXTRACTION SUPPORT THE RECONSTRUCTION OF THE SOFTWARE

ARCHITECTURE OF AN EXISTING SOFTWARE PRODUCT?

SRQ5 HOW CAN A CROWDSOURCED REQUIREMENT ENGINEERING PLATFORM BE DESIGNED

TO SUPPORT THE ELICITATION, NEGOTIATION, AND PRIORITIZATION OF USER STORIES

FOR AN EXISTING SOFTWARE PRODUCT?

The last two sub research questions will validate the treatment designs of the

previous two questions in a business case. We will first evaluate the quality

(understandability of the model and similarity to other development artifacts) and

usefulness (applicability in daily work) of the reconstructed software architecture

qualitatively. Then, the effect of using crowdsourcing will be assessed.

SRQ6 WHAT IS THE PERCEIVED QUALITY AND USEFULNESS OF THE RECONSTRUCTED

SOFTWARE ARCHITECTURE, WHEN CREATED BASED ON FEATURE EXTRACTION FROM

AN EXISTING SOFTWARE PRODUCT?

SRQ7 WHAT IS THE EFFECT OF USING A CROWDSOURCED REQUIREMENTS ENGINEERING

PLATFORM TO SUPPORT THE ELICITATION, NEGOTIATION, AND PRIORITIZATION OF

USER STORIES FOR AN EXISTING SOFTWARE PRODUCT?

The effect is measured by for variables: the engagement of users, the perceived

usefulness of the platform by its users and the quality & complexity of the

crowdsourced User Stories. The procedure to measure these variables will be

described in the evaluation protocol of this thesis (section 4.5).

 11

By combining the results of the sub research questions, we hope to find an answer

to the main research question, which will be covered in the discussion of this

thesis.

2.2. Research design

This study is a solution-oriented technical research: an artifact is validated by

simulation. The research design comes from the book Design science methodology for

information systems and software engineering by Wieringa [11], whose prominent

work is frequently used as teaching material for students in this field of study. In

section 1.1 of this thesis, the introduced problem is categorized as a design

problem. Design problems are solved following the design cycle, consisting of

three iterative phases: problem investigation, treatment design and treatment

validation. These three phases are reflected in the sub research questions of this

thesis: SRQ 1, 2, and 3 are part of the problem investigation, we design the

treatment by covering SRQ 4 and 5 and validate this treatment by answering SRQ

6 and 7. The research design is summarized in Figure 2.1.

Figure 2.1: The research design of this thesis

 12

2.2.1. Literature study

The first three sub research questions introduced in section 2.1 form the basis for

the literature study. The principles in RE and SA and the connection between them

will be covered. Although this thesis is obviously no review article, the guidelines

of Webster and Watson [19] provide a proven technique for the identification of

the relevant literature for this study. They recommend starting with major

contributions from leading journals and work both backwards by reviewing the

citations for the major contributions and forwards by identifying articles that cite

those key articles. This technique is also called (reverse) snowballing. The works that

will be used as a starting point for the literature study are two RE literature reviews

[11, 12], the article from Nuseibeh [1], and the SA book from Rozanski & Woods

[15]. Next to this, scientific search engines will be queried so a comprehensive view

of all the relevant literature is formed. The search strings that will be used contain

requirements engineering, software architecture, crowdsourcing, User Stories or

Jobs To Be Done.

2.2.2. Case study

The case study is a big part of this research and entails the validation of the solution

in a business context. It will be done to test the properties of the artifact under real-

world conditions [11]. The single-case study is a Technical Action Research (TAR),

which is important (and usually on of the last stages) in scaling up the solution

from idealized conditions in a laboratory to conditions of practice in an

organization. The TAR is different from observational case studies and single- case

mechanism experiments, the other two types of case studies noticed by Wieringa

[11]. This is because in this study we will interfere in the case to see the effects of

the artifact in context, but also use the artifact to help a client. In a TAR one does

not transfer the technology to the stakeholders: it is not adopted without

involvement of the researcher because the artifact is still under development. It is

also different from other forms of action research, since TAR is solution-oriented

(artifact driven) instead of problem-oriented (solving a clients’ problem without

testing a particular artifact) [11]. However, the five principles and most of the

associated criteria of Canonical Action Research (CAR) [22], which actually

 13

assumes a problem-driven approach, also apply to our research [23]. Those

principles and criteria are developed by Davison, Martinsons & Kock in 2004, to

allow for a study in which organization problems are addressed while at the same

time contributing to scholarly knowledge [22]. We will cover the principles and

how we address them in this study in section 4.1.1, after we have introduced the

case.

2.3. Relevance

The RE4SA model aims to support both scientists and practitioners in information

sciences, which can still be seen as immature. If we look at the traditional

architecture and construction disciplines for example, we can easily say that the

processes and routines are much better documented than in software architecture.

The documentation should be the main instrument in the communication and the

design choices the product managers and software architects make must be

recorded or documented accordingly. With studies like this one, we try to point

the RE and SA discipline towards that level of maturity.

Figure 2.2: The use of crowdsourcing and architecture recovery in this study

in relation to the RE4SA model

This thesis is interdisciplinary. It covers both requirement engineering and

software architecture and links the artifacts that are used in agile software

development to concepts like crowdsourcing and Jobs to be Done theory. This

approach can stimulate innovation because it helps in developing products that

customers will buy. How the involvement of the crowd via an online cloud

 14

platform could support the elicitation, negotiation, and prioritization of

requirements and how architecture recovery could support the creation of an

architecture based on a products’ code base or user interface, is displayed in Figure

2.2. This figure is an extension of the RE4SA model and shows the research design

of this study.

 15

3. Literature review

In this literature review, the RE4SA model will be explained in further detail. We

cover its origin and highlight the RE and SA elements it is built upon. Then we aim

to give an overview of the RE domain and dive deeper into the challenges that

agile RE poses. We cover Jobs, Epic Stories and User Stories as practices to

document requirements and discuss crowdsourcing as a method to enhance

customer engagement. Lastly, we present the principles in software architecture

theory and discuss software architecture modelling.

3.1. The RE4SA model

Where software development in the seventies mainly followed the waterfall model

with sequential design steps, Swartout and Balzer [24] contradicted their earlier

work and that of many others in the beginning of the eighties when they called for

the intertwining of specification and implementation. The researchers argue that

intertwining the two will result in a “more coherent and realistic structure for

making modifications” [24, p. 440]. Earlier, it was claimed that specification should

be completed before implementation begins. Nuseibeh [1] described this

concurrent crafting of a system’s requirements and its architecture as the

cornerstone of the spiral life cycle model. This model “acknowledges the need to

develop software architectures that are stable, yet adaptable, in the presence of

changing requirements” [1, p. 115]. In 2001, he created an adaption to the spiral

life cycle model, based on his and his collogues’ experiences in the software

industry, called Twin Peaks. In the Twin Peaks model, problem structure and

specification are still separated from solution structure and specifications. More

detailed specifications are produced progressively and dependency on the

implementation increases in the mapping from requirements to architectural

design.

 16

Figure 3.1: The Reciprocal Twin Peaks model of product requirements and architecture [25]

That the requirement specification and architectural design are intertwined is still

the commonly accepted perception [26] but Twin Peaks itself provides no

approach or guideline for requirements engineers and software architects to

cooperate [27]. Therefore, it is necessary to examine the artifacts that are used by

practitioners in the specification refinement process. Lucassen et al. [25] tried to

‘bridge’ the Twin Peaks for software products by introducing the Reciprocal Twin

Peaks model (Figure 3.1). Software product managers and software architects

contribute reciprocally to achieve their goals and exchange artifacts in the process

[28]. The conceptual framework “defines how product managers and software

architects can effectively collaborate in product software development through the

exchange of concrete information artifacts” [25, p. 24]. In order to facilitate this

communication, the RE4SA model helps to set conventions for the structuring of

these artifacts.

The most general representation of requirements are Jobs, positioned on top of the

requirements peak in the Twin Peaks model. This ‘Job To Be Done’ captures what

the customer hopes to accomplish [13]. Christensen et al. [13, p. 56] state that when

we buy a product (or service) we essentially “hire it to help us do a job”. In a lower

representation level, this framework has been used to capture every design

problem in a Job Story [29]. We renamed this into Epic Stories due to the existing

 17

notion of epics in Scrum development. An Epic Story focuses on a triggering event

or situation, a motivation and goal, and the intended outcome. It is different from

User Stories, the most detailed representations of requirements. A User Story

contains a persona (role), action and benefit. Although it is suggested that Epic

Stories can serve as an alternative to User Stories [29], we make a distinction in the

granularity of the two concepts. User Stories should have the finest granularity

possible and multiple User Stories cover one Epic Story. Multiple Epic Stories

relate to one Job.

In order to discuss the architecture peak of the Twin Peaks model, it is necessary

to discuss view and viewpoints. An architectural view is a description of one

aspect of a system’s architecture and makes it possible to understand, define, and

communicate a complex architecture [15]. Each view is governed by a viewpoint.

We only create and discuss the context viewpoint and functional viewpoint, as

reflected in the research questions and scope of this thesis. The context view is

about the relationships, dependencies, and interactions between the system and

its environment and is easy to be read by different stakeholders. The functional

view is also easy to understand and the cornerstone of most architectural

descriptions, since it defines the elements that deliver the system’s functionality

and it forms the basis for creation of other views afterwards [15]. Salfischberger,

Van de Weerd and Brinkkemper [30] presented the Functional Architecture

Framework (FAF) in 2011 to support requirements management for product

software businesses. In this model, the product context is the highest level in the

functional architecture model. This level defines the product scope and situates

the Applications as intended to be used by the customers. Zooming in on the

system brings up the Modules, described as the building blocks of the functional

architecture. On the lowest level, which describes the relationships between the

functional and technical architecture, each module is supported by Features [30].

The four medium to low-level artifacts mentioned in the previous two paragraphs

are combined into one model: The Requirements Engineering for Software

Architecture model (RE4SA) [4]. In his thesis, Remmelt Blessinga [5] proposed to

add an extra abstraction level on top of the RE4SA model containing the Job

 18

(requirements engineering) and Application (software architecture) we also use in

this study (Figure 3.2).

Figure 3.2: The extra abstraction level on top of the
RE4SA Model [5], shown by the dotted elements

3.2. Requirements Engineering

The process of extracting informal stakeholders’ needs and translating them into

formal specifications is the core principle of RE. These requirements are used as an

input for software development. More specifically: they serve as the basis for

project planning, risk management, trade off, acceptance testing and change

control [31]. Clear statements of requirements are one of the project’s success

factors, but at the same time incomplete requirements are the number one reason

why projects are impaired [31].

There are two types of requirements: functional requirements and non-functional

requirements. The latter are also called quality requirements and are considered

to be the most expensive and complex ones to deal with [27]. They are often

neglected in agile RE [21] and tend to “interfere, conflict, or contradict with each

other” [27, p. 20]. Performance and security requirements are often two conflicting

non-functional requirements [27]. Functional requirements can conflict as well

because the needs of the stakeholders vary [31].

 19

Together with the shift from traditional (waterfall) development to agile software

development, the RE processes changed accordingly. This was necessary because

traditional requirement activities – elicitation, analysis and negotiation,

documentation, validation, and management – do not take the iterative processes

of agile software development into account. However, agile RE does not

only alleviate challenges of traditional RE, but also poses new ones. Minimal

documentation, customer inability, customer agreement and inappropriate

architecture are reported as some of the challenges of agile RE [21]. A proper use

of artifacts can overcome the documentation problems and organizations apply

different techniques to do so. We will discuss Jobs, Epic Stories and User stories in

this chapter, the concepts reflected in the RE4SA model. We also present

crowdsourcing as a solution to customer inability and customer agreement. In

section 3.3 we write about code refactoring, which may serve as a solution for the

inappropriate architecture.

3.2.1. Jobs

The Jobs To Be Done theory (JTBD) originates in the mid-eighties when Rick Pedi

and his colleagues turned the marketing research technique Voice of the Customer

(VOC) into a theory [29]. Around the same time, Antony Ulwick describes, the IBM

PCjr – where he had worked on for 18 months – flopped because the team never

identified the metrics customers use to judge the value of products. This inspired

Ulwick to create and patent a process called Outcome-Driven Innovation (ODI) in

1999 [32]. The idea of ODI is that companies should “stop focusing on the product

and customer and instead aim to understand the underlying process the customer

is trying to execute when they are using a product or service” [32]. Ulwick

discusses his ideas with Harvard Business School professor Clayton Christensen,

who is well-known for his theory of disruptive innovation. Since 2003, when

Christensen first mentioned JBTD and states that customers hire products to do

specific jobs, the theory got popular [33]. Ten years later, researcher Alan Klement

started writing about JTBD and recently published a book on Customer Jobs [29].

 20

Although the work of Ulwick, Christensen and Klement can all be seen as JTBD

research, their interpretations of the theory differ considerably. Discussing the

theory won’t make sense without providing a clear distinction between those

interpretations. In his thesis and paper on JTBD, Utrecht University alumni Maxim

van de Keuken differentiates between a qualitative approach (the

Christensen/Klement camp) and quantitative approach (the Ulwick camp) [2].

Klement in his turn calls the two models Jobs-As-Progress (Christensen/Klement)

and Jobs-As-Activities (Ulwick) [29], but Ulwick posed questions by this

dichotomy. Christensen and Ulwick share a lot of the core tenets of JTBD theory

and it is unclear to what extend Christensen agrees with Klement. Meanwhile, the

researchers are involved in an online mudslinging campaign that does not benefit

the theory and its understandability. On Twitter, Klement tries to paint Ulwick as

a fraud, and called Christensen an “intellectual yet idiot (IYI) who doesn’t

understand his own theory”. In his turn, Ulwick, claims that “Klement has been

the source of drama in the JTBD community. He conflates terms and creates

fallacies to confuse readers” [34]. For this reason, we refrain from splitting the

interpretation of the JBTD theory in two camps, but we will cover the

interpretation of each of the three authors separately.

Antony Ulwick

The first book Ulwick wrote was Business Strategy Formulation in 1999, with the

goal to bring on an ‘Intellectual Revolution’ caused by the evolvement of strategy

formulation from an art to a science [35]. He introduced the Customer-Driven

Mission Achievement Process (CD-MAP), a sixteen-step quantitative strategy

formulation process that can be implemented in three to six months [35]. It is based

upon his Universal Strategy Formulation Model (USFM) that illustrates how “the

optimal solution is the one (…) that will best satisfy the largest number of

important desired outcomes given the constraints imposed on the solution and the

competitive position that is desired” [35, p. 40]. This so-called Outcome-Based

Logic, focusing on outcomes rather than solutions, is also the basis for the JBTD

theory.

 21

Ulwick is the founder and CEO of Strategyn, a California based consultancy that

uses the mentioned theory and processes to serve large organizations. In 2005, his

next book What Customers Want: Using Outcome-Driven Innovation to Create

Breakthrough Products and Services is published in which he repackages and

expands upon previous ideas into the Outcome-Driven Innovation process [36]. A

quote from his frequently cited article in Harvard Business Review explains his

theory best:

“What usually happens is this: Companies ask their customers what they

want. Customers offer solutions in the form of products or services.

Companies then deliver these tangibles, and customers just don't buy. The

reason is simple - customers should not be trusted to come up with

solutions; they aren’t expert or informed enough. That's what your R&D

team is for. Rather, customers should be asked only for outcomes--what

they want a new product or service to do for them. What form the solutions

take should be up to you, and you alone” [37, p. 2].

Ulwick’s latest book Jobs To Be Done: Theory To Practice [32] is particularly

interesting to compare his theory and JBTD framework with the other researchers

and practitioners. He states that a core functional job should be defined first. A

proper job is stable (doesn’t change over time), has no geographical boundaries

and is solution agnostic. It consists of a verb, object of the verb (noun) and

contextual clarifier, like in the example:

“Listen to music while on the go”

Then, the metrics the customer uses to measure success are uncovered: the desired

outcomes. ‘Minimize the likelihood that the music sounds distorted when played

at high volume’, is an example of good measurable and controllable desired

outcome. Then, you need to know what the related functional jobs are and define

emotional (how customers want to feel or avoid feeling) and social jobs (how the

customer wants to be perceived by others). It is common to list 50-150 desired

outcomes, 5-20 related jobs and 5-25 emotional and social jobs for any given core

 22

functional job. The last kind of jobs are consumption chain jobs, covering the

product lifecycle: from the purchase itself, to learning, upgrading and disposing

the product. Each consumption chain job has its own desired outcomes. Lastly,

buyers decide whether or not to buy the product based on their financial desired

outcomes.

According to Ulwick’s JTBD theory, a product or service wins the marketplace if

it helps customers get a job done better and/or cheaper [32].

Clayton Christensen

As a Harvard Business School Professor of Business Administration, Clayton

Christensen is the foremost authority on disruptive innovation. According to

Christensen, leading companies stay close to their customers and pursue

sustaining innovations: they give customers something more or better in the

attributes they already value. By doing so, they unintentionally open the door to

disruptive innovations at the bottom of the market. These disrupters start by

appealing to low-end or unserved consumers and then migrate to the mainstream

market: they introduce a very different package of attributes [38].

The idea is further developed in Christensen's 1997 best-selling book The

Innovator's Dilemma [39] and linked to JTBD in his later work [33]. He states that

while the theory of disruption doesn’t tell how a company should innovate to

consistently grow, the theory of JTBD provides clear guidelines [30]. Christensen’s

milk shake dilemma can be read in most of his introductions to JBTD: A fast-food

chain failed to sell more milk shakes, even after thorough marketing research and

customer feedback. Only after observing the conduct of people buying a milk

shake and asking them where exactly they were hiring the milk shake for, they

discovered a lot of them shared one common job:

“Help me keep my morning commute to work interesting and keep me

from being hungry by the time I get to work”

 23

It turned out that the milk shake was competing with doughnuts, bagels and

bananas, but did the job best because it isn’t crumbling, you need only one hand

and it takes some time to consume. One product can be hired for completely

different jobs: in the afternoon the same milk shake can compete with a visit to the

toy store or game of soccer, when the job is to “help me be a good dad and placate

my children” [40]. Despite the popularity of the milk shake dilemma, critics point

out that this marketing method can only be leveraged to sell more of a given

product, instead of supporting innovation.

Christensen believes JTBD theory can help understanding the causal mechanism

of customer behavior. It is about the progress a customer is trying to make. He

emphasizes that apart from the functional dimensions of a job, also emotional and

social dimensions that define the desired progress are critical. In his view, one job

has multiple dimensions and a ‘job spec’ can be used to capture all relevant details.

Apart from the three dimensions, the job spec can contain the tradeoffs the

customer is willing to make, the competing solutions and the obstacles that must

be overcome. After all, customers need to fire another product in order to hire your

solution. The job spec becomes the actionable guide for innovation.

Alan Klement

Former software engineer Alan Klement is the author of the in 2016 published

JTBD book When Coffee and Kale Compete. Besides writing books and blogs, he is a

business owner/coach and investor. He defines a JTBD as “the process a consumer

goes through whenever she aims to transform her existing life-situation into a

preferred one, but cannot because there are constraints that stop her” [29, p. 32].

Captured in this definition is the high-level goal the customer has, referred to as

‘be-goals’. This is opposed to ‘do-goals’, which are the activities you choose in

order to fulfill this high-level goal. Klement argues that there are already a lot of

design methods to design those activities or tasks and that they deal with a

problem in root cause analysis. For example, if you state a customer wants to get

a hole in the wall, the solution might be to buy a drill. But the need can also be to

install bookshelves, and a method that doesn’t require holes can serve as the

 24

solution. But again, if you think one step further e-books might be the solution to

the real need: storing books [41].

According to Klement, there are no different types of jobs. It is also not a job when

you can visualize the customer acting it out, it describes something the customer

doesn’t like or it doesn’t describe a better version of the customer [29]. A good

JTBD can be used throughout the organization, gives room for interpretation but

also offers boundaries, like [19]:

“Free me from the stress I deal with when figuring out what products

won’t harm my children, so I can have more time to enjoy being a parent”

The struggle for progress is why Jobs often begin with expressions like: give me,

help me, free me, equip me, make the or take away. Klement’s new insights into

the theory faced heavy criticism of Ulwick, but the earlier mentioned Rick Pedi -

one of the initiators of JBTD - supports his interpretations. He describes Klement’s

thinking as ‘a breath of fresh air’, in the foreword of Klement’s book [29].

Conclusion

By analyzing the three different views on JTBD theory, we point out the

dimensions and definition (do-goals vs be-goals) of Jobs as the two main

disagreements between the authors (Table 1).

 Ulwick Christensen Klement

Definition Do-goals: activities

and tasks.

Do- and be-goals: progress,

activities and tasks.

Be-goals:

progress.

Dimension(s) Functional. But

emotional and social

jobs are defined

relative to the core job.

Multidimensional:

functional, emotional and

social.

Each Job is

unique, and

the type of Job

is irrelevant.

Table 1: Comparing JTBD theories

 25

After an analysis of 19 Jobs (8 from Ulwick, 6 from Christensen, 5 from Klement)

that the authors gave in books or articles, we can find a common linguistic model

of Jobs (Figure 3.3). Although little examples of Jobs exist in literature or in practice

and a proper validation is necessary, we can argue that each Job consists of a

struggle, goal and (optionally) contextual clarifier. A Job starts with an action verb

and optionally an indirect verb. The examples include struggles containing

phrases like help me, free me, prevent, find or listen. Then, the direct object is

mostly a phrase or noun and is the object of the verb. Lastly, it is possible to bring

context to the statement by providing a contextual clarifier. The contextual clarifier

often starts with while, when, or so (that) but has a free form.

Figure 3.3: Linguistic Model of Jobs

3.2.2. Epic Stories

While a high-level Job shines a new light on a business, its customers and

competition, it does not provide a tool for a design or product team to work with

during software development. That is why in late 2013 the concept op Epic Stories

was introduced by Klement, based on the approach of the product design team at

Intercom [29]. Intercom develops a customer messaging platform. On their blog,

Paul Adams (VP of product) describes how they use Clayton Christensen’s Jobs

framework in their daily work: “We frame every design problem in an Job,

focusing on (1) the triggering event or situation, (2) the motivation and goal, and

(3) the intended outcome” [42]. An example of a good Epic Story adhering to this

template is the following [43]:

 26

“When I’m presenting my visual design and I’m worried that people will

reject its merits, I want to back it up with something objective, so that

people will see and discuss the design with less subjective bias.”

Klement originally named it a ‘Job Story’, but the term Epic Story is used in favor

of Job Story in the RE4SA model and in this thesis. That is because an Epic is

already known in agile development to describe a large User Story. User Stories

are the smaller and implementable breakdowns of an Epic [44], but we will discuss

the interplay between Epic Stories and User Stories in more detail at the end of this

section.

Lucassen et al. [2] created a linguistic model of Epic Stories (Figure 3.4) based on

an analysis of 131 Epic Stories. Both the problematic situation and expected

outcome describe a situation. In this situation the problem lies or in the action an

actor is executing, or the attributes of an actor or an object are in a problematic

state, or the problematic situation is experienced because of an external event [2].

In the given example of an Epic Story, the problematic situation is a state and the

expected outcome is an action. The majority of motivations comprise a subject,

action verb and direct object. Most of them start with ‘I want’, like in our example,

but motivations are free form text.

Figure 3.4: Linguistic Model of Epic Stories [2]

 27

In a blog post, Klement covers five tips for writing Epic Stories [43]. He argues that

(1) adding rich contextual information helps designing better solutions and (2)

Epic Stories can only come from real customer interviews and not from personas.

Furthermore, (3) you should not mix up Epic Stories with solutions. A situation

can have multiple solutions, but you need to find one that fits with the other Jobs

the product is solving. Therefore, Jobs should only cover situations, so they can be

seen separately from solutions. It can be useful to (4) include forces in the

motivation of the Epic Story and (5) you don’t have to write Epic Stories from a

specific point of view [43].

We have seen that Epic Stories focus on the why, instead of the who and how.

According to the creators, this should stimulate creativity while designing the

implementation. It also brings up an interesting discussion on how these Epic

Stories relate to User Stories. Initially, Epic Stories are introduced as a replacement

to User Stories. According to Klement, the persona in User Stories is irrelevant and

there are too many assumptions about the desired solution in a User Story [45].

Klement suggests to use three ‘layers’ in JBTD: A higher level Job, smaller Jobs

(which help resolve the higher level job) and Epic Stories [46]. In this thesis, we

choose to adhere to the template of the RE4SA model. This means that a Job is

always the highest level and we do not distinguish primary Jobs and secondary

Jobs. A Job is broken down into Epic Stories. However, the most detailed

specification of a requirement in the RE4SA model is a User Story. Thus, an Epic

Story spans multiple User Stories.

3.2.3. User Stories

While the earlier discussed Jobs and Epic Stories are problem-oriented, User

Stories are solution-oriented. Because of this difference in focus, it is suggested that

there could be synergistic relationship between JTBD and other techniques like

User Stories [2].

A User Story is “a description of a feature written from the perspective of the

person who needs this. It consists of a written text, conversation about it and

 28

acceptance criteria” [20, p. 87]. The written text is a semi-structured natural

language statement. The most widespread format of a User Story is: “As a <role>,

I want <goal>, so that <benefit>”, as used in the following example [3, 8]:

“As an administrator, I want to receive an email when a contact form is

submitted, so that I can respond to it.”

The linguistic model of a User Story is displayed in Figure 3.5. A User Story

adheres to a template, like the one we just described, and consists of three other

parts: one role, one means, and zero or more ends [9].

Figure 3.5: Linguistic model of User Stories [9]

The role defines what stakeholder or persona expresses the need. Means are free

form text, but have in common that they have a subject, action verb and direct

object (sometimes an adjective and indirect object). Although “I want’ is mostly

used as subject, other phrases like ‘I am able to’ are also possible. The end part

explains why the means are requested. They can either clarify the means, reference

to a functionality which is required for the means to be realized or communicate

the intended qualitative effect of the means [9].

Despite its popularity and fixed form, more than half of the User Stories contain

easily preventable syntactic defects when it was tested against the Quality User

 29

Story framework [9]. This framework defines 13 criteria for User Story quality

based on its syntactic, semantic, and pragmatic correctness. For example, each

User Story should be well-formed (has at least a role and a means) and atomic

(expresses a requirement for just one feature). It is also required to be minimal

(contains nothing more than role, means, and ends), uniform (employs the same

template as the others) and unique (has no duplicates) [9]. Although the intrinsic

User Story quality can be improved using automated natural language processing

tools, as one study showed, practitioners do not perceive such a change [3]. Next

to these newer quantitative quality measurements of User Stories, the INVEST

framework of Bill Wake provides a widely accepted guideline to ensure the quality

of User Stories in a more qualitative manner [47]. According to these criteria, a

User Story should by independent, negotiable, valuable, estimable, small, and

testable.

User Stories, or agile RE practices in general, often do not provide enough

documentation for development teams alone. This happens when User Stories and

backlogs are the only documents, causing traceability issues [21]. In order to

transfer User Stories into architecture design and working code, this process can

be supported by ‘Delivery Stories’ in large-scale projects [48]. A Delivery Story is

an extension to a User Story and contains a functional specification, high level

design and test scenarios. Multiple roles are involved in the translation process

from a User Story to a Delivery Story (Figure 3.6).

Although the use of Delivery Stories was initiated by a project team with nearly

300 team members working for a single external client, also in smaller projects User

Stories often come with a description that helps to give context to the story. In all

cases, the goal is still to discourage long and complex specification documents [21].

 30

Figure 3.6: The translation from User Story to Delivery Story [48]

The RE4SA model contains an important assumption about User Stories, as

indicated by the double headed arrow between User Story and feature in the

model: User Stories map one-to-one on features. In terms of scope granularity, how

much of the system’s functionality is implied in the User Story, it is recommended

to split User Stories that take one week or more to implement [49]. This process of

planning releases and iterations is covered in the well-known book by Mike Cohn

[12]. A release plan consists of multiple iterations, and in each iteration a set of

User Stories is delivered. Of course, next to discussing the desirability of the

feature and cohesiveness to other stories, the stories cannot be prioritized without

considering their costs. Developers give this estimate of the costs by assigning

story points to each User Story based on its size and complexity relative to other

stories, for example in a game of planning poker. User Stories are fully delivered

within a single iteration, in terms of functionality and quality [12].

Next to the usefulness of User Stories in planning, it is also easy to deduct backlog

items from a User Story so different team members, like a front-end UI designer

and back-end developer can work on the same User Story in a sprint. Because User

Stories are comprehensible, not only members of the organization can understand

them, but also customers. In agile software development, User Stories are the most

frequently used artifact [20] and they have proven to be of great value for both

start-ups [50] and large organizations [48].

 31

3.2.4. Crowdsourcing in Requirements Engineering

Although the principles of crowdsourcing can be traced back to the 18th century,

it was first widely accepted in 2006. The definition then introduced by Jeff Howe

has been adjusted by Mao et al. [51] to define Crowdsourced Software Engineering

as follows:

“Crowdsourced Software Engineering is the act of undertaking any

external software engineering tasks by an undefined, potentially large

group of online workers in an open call format” [51, p. 61].

Three types of actors are generally involved in Crowdsourced Software

Engineering: requesters, platforms, and workers (Figure 3.7).

Requesters offer software development work and post these tasks on a platform.

It is a two-sided market: workers pull the tasks from this platform and provide

solutions, like software code. An example of such a platform is Topcoder - an

online marketplace using crowdsourcing for software development with a

community of over one million software engineers [51].

Figure 3.7: Actors in Crowdsourced Software Engineering [51]

The example of Topcoder demonstrates the broad usefulness of Crowdsourced

Software Engineering: the tasks can cover anything from all phases of the software

development life cycle, from planning to analysis, design, implementation, and

maintenance. However, in this thesis we only discuss the opportunities for

crowdsourcing in the RE (planning and analysis) phase. Crowdsourced RE has

been investigated by a series of studies [51]. For example, Hosseini et al. [52] state

that we need to rethink requirements elicitation to “accommodate the complexity

 32

and the scale of the crowd and ensure that we get their requirements efficiently

and precisely” [53, p. 2]. User involvement in RE can improve system acceptance,

diminish project failure, deliver greater system understanding by the user, and

improve customer loyalty and broaden the market [54].

In Crowdsourced RE, the requesters are the engineers, designers or software teams

and the workers can be all stakeholders. In a case study of Snijders et al. [55], the

workers were product managers, developers, experts, clients, end-users, and

prospective clients. The platforms provide online (market)places for requesters

and workers to meet. The most basic platform that provides this service is e-mail,

but there are also several bespoke tools we will discuss in more detail.

Adepetu et al. [56] studied a conceptualized crowdsourcing platform, which they

named CrowdREquire. In their paper, they provided a basic system, business

model and market strategy for the platform. The main idea of CrowdREquire is to

develop requirements for projects submitted by individuals or corporations. It

uses a contest model: the final solution to a task is selected based on a competition

among workers. The concept can be used as a reference for other platforms, the

authors argue, but to the best of our knowledge no article about the actual

implementation or validation of the CrowdREquire platform was published in the

five years following the publication of the initial paper.

Soo Ling Lim, who received her doctoral degree for her dissertation on the use of

social networks in large-scale requirements elicitation [57], published four well-

cited articles about Crowdsourced RE [49 – 52]. She states that large-scale

requirements elicitation (dozens of stakeholder groups and tens of thousands of

users) deals with three problems: information overload, inadequate stakeholder

input, and biased prioritization of requirements. The Stakeholder- and Recommender-

assisted method for requirements elicitation, StakeRare, can address these problems

by using social networks and collaborative filtering for requirements elicitation

[58]. It is a four-step method in which the stakeholders are identified and

prioritized first. The requirement engineer provides the initial set of stakeholders,

but then these stakeholders can recommend others and give them a weight, based

 33

on the level of influence this stakeholder has on the project. By doing so, a social

network is built with stakeholders as nodes and their recommendations as links

[59]. Second, the requirement engineer presents some initial requirements for the

stakeholders to rate and asks them to provide additional requirements. The

responses are used to create a unique profile of each stakeholder. In step three, a

recommendation system is used to present the stakeholder relevant new

requirements to rate. In the final step, the requirements are prioritized into a

ranked list [58]. Lim et al. also developed a web-based tool that automates initially

the first step [60] but now the entire process [61]. StakeRare has been validated in

a case study at a software project in University College London, which provided

“clear evidence that StakeRare effectively supports requirements elicitation” [58,

p. 26]. It took less time to come up with an accurate list of stakeholder needs and

the prioritized list of requirements was completer and more accurate compared to

the existing method used in the project.

Different from commercial feature request solutions like Feature Upvote [62], Get

Satisfaction [63], UserVoice [64], Cadet [65], Receptive [66], and Instabug [67] -

Requirements Bazaar [68] is a free and open source web-based platform initiated

by a research group from RWTH Aachen University. It has four pillars. First, a

requirement page contains all information about a requirement. Not only basic

metadata, but optionally also artifacts like User Stories and social interactions like

comments, votes and commitments to help. Second, there is a co-creation

workflow: from the idea generation and selection to the realization and release.

During the process users can refine, negotiate, provide, test and acknowledge

requirements and solutions. Third, a web plug-in allows the integration of the

Requirements Bazaar into end-user and developer workspaces, like Jira. And

fourth, the requirement prioritization is personalized. Just like the StakeRare

method, a ranking score of a requirement is based upon different factors like the

rating, importance and behavior of the stakeholders who voted for it [68].

By combining social media technologies with software engineering concepts,

Greenwood et al. [69] presented the UDesignIt platform in order to empower

communities to discuss and extract high-level design features. The researchers

 34

explain how UDesignIt “combines Natural Language Processing with feature

modelling to: identify key themes being discussed; group these themes according

to their similarity to form a feature model-like structure; and automatically name

the themes to ease the process of identifying the concepts being discussed” [69, p.

1321]. When they published the paper in 2012, the system was in early stages of

deployment in community settings. However, no follow-up paper has been

published to validate its practice, although the authors claim that the interaction

with stakeholders, particularly non-technical stakeholders, could be enhanced by

the platform.

Snijders et al. [7] advocate Crowd-Centric Requirements Engineering, by

combining crowdsourcing and gamification to involve users in the elicitation,

negotiation and prioritization of requirements. According to the researchers, this

helps fostering user involvement, is valuable not only in early stages of RE and

gives equal priority to both customers and end users when they are not the same.

The Crowd-Centric Requirements Engineering method consists of six phases: (1)

feasibility analysis, (2) context analysis, (3) crowdsourcing preparation, (4) crowd

involvement, (5) requirements identification, and (6) focus group execution. The

next phase is a development sprint, which is not part of the CCRE method itself

[54]. The embodiment of their vision is REfine, a gamified platform for eliciting

and refining requirements. Dalpiaz et al. [54] showed in a case study how the users

perceived this crowdsourcing platform as more useful and more engaging

compared with previous feedback experiences. There were also some challenges.

For example, the experiment showed difficulties in engaging a lot of clients and

end-users of the software product. They were also worried that the quality of

requirements would not be significantly better than the quality of the experts’

methods, and the requirements may not be detailed enough for a focus group or

product backlog. The authors think that simple formalisms such as User Stories

will improve the quality of the requirements and thereby can mitigate this risk.

Näkki, Koskela and Pikkarainen [57] used such a concept of needs-based User

Stories. They collected users’ everyday needs and challenges regarding a specific

domain. Users were involved during requirements elaboration, by commenting

and rating features in order to allow the prioritization of features. It turned out

 35

that facilitators were still needed to translate the semi-formal user data into

software requirements.

The quality of crowdsourced requirements is an interesting topic that is frequently

mentioned in the literature. One of the main incentives to involve the crowd in

software development in general [70] and RE in specific [51] is to achieve higher

quality, but it can be a challenge or limitation at the same time [45, 49, 55, 56]. Next

to the proposed idea of formalizing the structure of the crowdsourced

requirements, Sherief et al. [72] developed an architecture for structured feedback

modelling that uses a controlled natural language engine, feedback ontology

reasoner and knowledge base in order to improve the quality of users’ feedback.

They argue that feedback acquisition should be designed with the goal to

maximize the expressiveness of users’ feedback and still be able to efficiently

analyze it. From online feedback forums, the researchers derived eight types of

feedback: confirmation or negation, investigation, elaboration, justification,

verification, problem feedback, mitigation and correction. They also noted that

there are different detail types of feedback (concise, explanation, exemplification,

trials, scenario, feature definition, and question) and users use four different

methods to provide feedback (text, code snippets, snapshots, and links).

Based on focus groups with 14 users and developers and an online survey with 34

RE experts, Hosseini et al. [52] listed ten challenges and issues related to

crowdsourcing for requirement elicitation. In Table 2, we cover the challenges by

briefly highlighting the main positive and negative attributes of the

crowdsourcing features.

Feature Positive and negative attributes

Largeness + Maximize accuracy, relevance and saturation
 + Minimize problem of missing requirements
 – Coordination
 – Strictness of platforms should not harm voluntary nature of

participation

Diversity + More relevant and creative requirements
 – Difficult to reach agreement, especially with geographical

diversity

 36

Anonymity + Enhances honesty of users, improves quality and quantity of

comments
 + Assuring participants’ privacy and security
 – Allows malicious participants to join in
 – Discourages participants who care more about social recognition

Competence + High competence in the crowd
 + Micro tasks can easily be amenable to novice crowd workers
 – Recruiting competent crowd brings additional financial costs

Collaboration + Realize rationale for requirements and having holistic solutions
 – Clustering and dominance of certain opinions, trends, and groups

Intrinsic
motivations

+ Participants give better quality information because they
are genuinely interested in the software

 – Motivation may lead to bias and strong views on what
requirements the system should fulfil

Volunteering + Core element of crowdsourcing, no work for pay
 – Participants getting demotivated over time

Extrinsic
incentives

+ Participants take responsibility for non-intrinsically interesting
tasks

– Not necessarily more reliable requirements, but higher costs and
more effort

 – Extrinsic incentives can harm intrinsic motivations

Opt-out
opportunity

+ Loose contractual model based on voluntary participation
– Inadequate incentives or higher complexity of tasks may lead

participants to opt-out

Feedback + Giving feedback can improve the performance of participants and

motivate them to persevere and accept more tasks
 – Unclear how to decide what feedback to give and when
 – Can lead to elimination of diversity of opinions

Table 2: Challenges of crowdsourcing for requirements elicitation [52]

Next to the bespoke Crowdsourced RE tools we discussed, Maalej et al. [73]

envision a paradigm shift towards data-driven RE. Since users can easily submit

feedback in app stores, social media, or user groups and software suppliers collect

analytical usage data, this information can be used for the elicitation and

prioritization of requirements [73]. Researches have focused on automatically

classifying user feedback, classifying stakeholders and summarizing reviews. By

 37

doing so, feedback does no only lead to a change in the visibility and sales numbers

of applications in the app stores, but also in better products.

3.3. Software Architecture

There is certainly no lack of SA definitions, with over 150 definitions collected from

literature and practitioners [74]. The Software Engineering Institute at the

Carnegie Mellon University published an article with the most used definitions,

split into three categories: modern, classic and bibliographic [75]. Two of the

researchers who worked at this institute are Len Bass and Paul Clements, who can

be seen as authorities on the domain of SA. In 2003, they co-authored the book

Software Architecture in Practice in which they defined SA as follows:

“The software architecture of a program or computing system is the

structure or structures of the system, which comprise software elements,

the externally visible properties of those elements, and the relationships

among them” [76, p. 3].

There are five conditions captured in this definition: (1) architecture defines

elements, (2) systems can comprise more than one structure, (3) every software

system has an architecture, (4) the behavior of each element is part of the

architecture and (5) the definition is indifferent as to whether the architecture for

a system is a good one or a bad one [76].

A second modern definition comes from the ISO/IEC/IEEE 42010:2011

International Standard: Systems and software engineering — Architecture description.

The IEEE Standard 1471:2000 from a decade earlier is also frequently cited, but

now superseded by the revised one, which includes the following definition:

“The software architecture contains the fundamental concepts or

properties of a system in its environment embodied in its elements,

relationships, and in the principles of its design and evolution” [77, p. 2].

 38

The key ideas in this definition are that (1) an architecture names that which is

fundamental or unifying about a system as a whole, (2) it is a conception of a

system, and (3) it is understood in context [77]. This definition uses ‘elements’

instead of the word ‘components’, that was used in earlier definitions, because the

latter was frequently misunderstood as referring to software components.

SA plays a pivotal role in supporting organizations to meet their business goals.

From a technical perspective, it is extremely valuable as well. SA facilitates the

communication among stakeholders, supports early design decisions and

provides a transferable abstraction of a system [76]. To allow an architecture to be

portable and usable by many different stakeholders, Philippe Kruchten [78]

introduced what would become the widely accepted notion of views. A view is “a

representation of one or more structural aspects of an architecture that illustrates

how the architecture addresses one or more concerns held by one or more of its

stakeholders” [15, p. 34]. Kruchten’s “4+1” View Model from 1995 (Figure 3.8)

breaks the architecture down in five views [78].

Figure 3.8: The “4 + 1” View Model of Software Architecture [78]

The logical view shows the components of the system and their interaction or

relation. It considers the functional requirements: the services the system provides

to its end users. The process view is about the non-functional requirements like

performance and availability and shows the processes of the system and the

communication between those processes. In the development view the

 39

organization of the software modules is shown: the building blocks of the system

from a programmer's perspective. The physical view shows the system execution

environment and is also known as the deployment view. The architect uses the last

view, the ‘+1’, to illustrate and validate the other views by making use of scenarios.

These scenarios are instances of use cases and describe sequences of interactions

between objects and processes [78].

Each view is governed by a ‘viewpoint’: a concept proposed by the IEEE Standard.

It is “a collection of patterns, templates and conventions for one type of view” [15,

p. 36]. Rozanksi & Woods [15] present seven core viewpoints for information

systems architecture: context, functional, information, concurrency, development,

deployment, and operational. These viewpoints help to decide what views to

produce and the level of detail that goes into these views. Using different views to

represent an architecture is the best way to address different stakeholder concerns,

without making a model to complex.

When modeling a software architecture in a formal way, it is also valuable to

adhere to a modeling language. There are roughly two choices. The first option is

to use the Unified Modeling Language (UML) and adapt it to suit your needs.

UML is a general-purpose semiformal modeling language, and the most used

modeling language in the industry [79]. However, it does not support architectural

concepts (like layers) and can be a source of ambiguity and inconsistency [27]. The

alternative is to use a special-purpose notation: an architecture description

language (ADL), although some people consider UML as an ADL as well [79]. An

ADL is a formal graphical language for representing a software architecture [74].

Research groups around the world proposed their own ADLs, like the Carnegie-

Mellon University [15]. Based on the techniques used and taught at Utrecht

University, two fellow students of the Master Business Informatics proposed the

uADL [80]. The modeling techniques used in this thesis are all part of this new

uADL.

Interestingly, with the rise of agile software development, some developers

ignored or despised SA. Kruchten touched upon these perceived tensions between

 40

SA and agile software development in his workshop Software Architecture and Agile

Software Development—A Clash of Two Cultures? [81]. He argues that although SA is

sometimes pictured as a typical non-agile process, projects that lack architectural

focus will fall behind. Organizations should balance between adaption (agility)

and anticipation (architecture) in which it is important to understand the context

to define how much architecture is needed for a given project [81]. Based on a

survey of software developers, Falessi et al. [82, p. 25] concluded that “agile

developers perceived software architectures as important and supportive to agile

values”. The complexity of the project – mostly based upon the lines of codes,

number of requirements, number of stakeholders, or geographic distribution – was

perceived as an important decision criterion for when to focus agile development

on software architecture [82]. A frequently proposed solution to avoid having an

inappropriate architecture in agile software development, is code refactoring.

Refactoring is an ongoing activity among agile teams [21] and used by Extreme

Programming (XP) to replace upfront design [12]. Refactoring entails the action of

restructuring or rewriting code so the code gets improved without changing its

observable behavior [12]. It relies heavily on self-checking tests to avoid bugs. You

need to refactor first before adding a feature, if the program’s code is not

structured in a convenient way to easily add the feature [83].

In this chapter we first discuss the applications, modules and features that are the

core elements of each software architecture. These elements can be diagrammed

using respectively a Context Diagram, a Functional Architecture Diagram and a

Feature Diagram. The Context Diagram gives a representation of the system and

the corresponding external roles, from a context viewpoint. The Functional

Architecture Diagram highlights the primary functionality of the software

product, consisting of its main functions and supportive operations, from a

functional viewpoint. From this same viewpoint, the lower-level Feature Diagram

shows which features are present within the different modules. Lastly, we discuss

software architecture recovery, a technique to extract architectural information

from the source code or graphical user interface of a software system.

 41

3.3.1. Software applications

In the second edition of the book Software systems architecture: working with

stakeholders using viewpoints and perspectives, Rozanski & Woods [15] introduced a

new viewpoint: the context viewpoint. It can be seen as the ‘overarching’

viewpoint that sets the scope for the other viewpoints. The context viewpoint

describes “the relationships, dependencies, and interactions between the system

and its environment (the people, systems, and external entities with which it

interacts)” [15, p. 41]. It is important since few systems exist in isolation.

Furthermore, many stakeholders can benefit from the context viewpoint, as it

helps them to understand their responsibilities in relation to the system and their

organization.

An uADL technique to create a view from a context viewpoint is a Context

Diagram, or System Context Diagram. This view pictures the software system in

the center, with associations to external entities that interact with it, either directly

or indirectly. These entities (or actors) can include systems, roles, databases or

other services. They are sources for input into the system and destinations for

outputs from the system. The elements that are transferred in these associations

can be categorized into four forms: data, signals, materials, and energy. The

associations, that are modelled using arrows, can also show activities [16].

Figure 3.9: Generic Context Diagram

Since this is a high-level view, no details of the interior structure of the system are

pictured. Therefore, it is known as a ‘black box diagram’. If the external entities

 42

include other software systems as well, then they should also be pictured as a black

box. This is the case when you want to model multiple applications in a software

product line, for example. Kossiakoff et al. [16, p. 266] explain how a System

Context Diagram can serve as “a useful starting point for describing and defining

the system’s mission and operational environment, showing the interaction of a

system with all external entities that may be relevant to its operation”. Figure 3.9

shows a generic context diagram containing the software system, external entities

and the associations between them. Based on the example of [17], a Context

Diagram for a collaborative authoring tool is shown in Figure 3.10.

Figure 3.10: Context Diagram for a collaborative authoring tool

3.3.2. Modules

‘Zooming in’ on the software system (the ‘black box’) from the Context Diagram,

will show the functional architecture. We get to a point were all architecturally

significant modules are shown: it does demonstrate the functionality of the system

but does not show all specific features that are part of the modules. Defining and

refining a functional view takes most time, but then drives the definition of the

other views. The functional view “documents the system’s functional structure –

including the key functional elements, their responsibilities, the interfaces they

expose, and the interactions between them” [15, p. 41]. It addresses mainly

concerns of stakeholders with no technical expertise, by reflecting the software

product's architecture from a usage perspective [17].

 43

A Functional Architecture Diagram (FAD) contains modules that show the

functions of a software product. Since functions are implemented by modules, this

diagram indicates which modules need to be developed for each functionality. The

goal is to create modules that can be developed independently of other modules.

Next to this concept of modularity, each system should run in different operations

systems, platforms, and customer organizations (variability) and a product

can interoperate with external factors by the use of an interface (interoperability)

[17].

Although a FAD can be designed for different levels, we take the product scope

level. The breakdown of modules into features is done in the Feature Diagram,

which we discuss in the next section. A FAD consists of modules, information

flows and a product scope. These are modelled by respectively boxes, arrows and

a rectangle, as shown in the generic FAD in Figure 3.11.

Figure 3.11: Generic Functional Architecture Diagram

It is possible to incorporate scenarios with the FAD in order to “visualize the flow

between the product’s modules and third party applications for

the implementation of the system's functionalities” [17, p. 212]. We discussed these

scenarios earlier when we covered Kruchten’s 4+1 View Model. They are an

abstraction of the most important requirements [78] and represent behavior

coming from the output of User Stories [80]. These customer journeys validate and

illustrates if the architectural design meets the requirements. The German

professor Martin Glinz presented a clear definition of a scenario in his discourse

for the use of scenarios to improve the quality of requirements:

 44

“A scenario is an ordered set of interactions between partners, usually

between a system and a set of actors external to the system. It may comprise

a concrete sequence of interaction steps (instance scenario) or a set of

possible interaction steps (type scenario)” [84, p. 56].

In a FAD, a scenario is an overlay to the diagram. It contains arrows and sequence

numbers to indicate a customer journey. It includes a written description as well.

According to Glinz [84], scenarios are easy to understand, give the users a feel for

what they get, provide a decomposition of a system into functions, allow short

feedback cycles, and allow test cases to be directly derived from them. An example

of a FAD with a scenario overlay is shown in Figure 3.12.

Figure 3.12: Functional Architecture Diagram for a
collaborative authoring tool, with a scenario overlay

3.3.3. Features

From the same functional viewpoint, but on a lower-level, a Feature Diagram

shows which features are present in the modules of the FAD. Although the term

Feature Diagram is also used to represent different products in a software product

line, the definition of the uADL limits the scope of a Feature Diagram to one

specific module of one software product. Optionally, one can prioritize the

features in a Feature Diagram. A Feature Diagram has a tree data structure, which

is shown in the generic diagram in Figure 3.13.

 45

Figure 3.13: Generic Feature Diagram

While many definitions of a feature exist, the definition from the Feature-Oriented

Domain Analysis [85] is frequently cited. They adapted the general definition of a

feature from the American Heritage Dictionary to make it applicable for software

systems:

“A feature is a prominent or distinctive user-visible aspect, quality or

characteristic of a software system or systems” [85, p. 3].

It is also possible to show optional or alternative features in a Feature Diagram [18]

as shown in the example in Figure 3.14.

Figure 3.14: A Feature Diagram for the Templates Management module

of a collaborative authoring tool

3.3.4. Software architecture recovery

Since a software product is constantly evolving, a small project with no

documented software architecture can grow into a complex and big system. Or

 46

systems are developed over a period of decades by a lot of developers. Practice

and theory showed that in these cases “maintaining good quality software

architectures is non-trivial” [86, p. 1458]. For web applications the problem may be

even worse: a proper documentation is rare, well-known software-engineering

practices are not well adopted by web developers and there is a high employee

turnover rate [87]. To improve the understanding of these applications or systems,

reverse engineering and system visualization techniques have been proposed [87].

Reverse engineering has its origin in the analysis of hardware, where it is common

to extract the design from a finished product to improve a company’s product or

analyze a competitor’s product [88]. Chikofsky & Cross [88] define reverse

engineering as follows:

“Reverse engineering is the process of analyzing a subject system to

identify the system’s components and their interrelationships and create

representations of the system in another form or at a higher level of

abstraction” [88, p. 15].

Obviously, it is the opposite of forward engineering which entails the traditional

process of moving from high-level designs to physical implementation. All terms,

the relationship between them and transformation processes between or within

abstraction levels, are shown in Figure 3.15.

Figure 3.15: SA terms and their relationships [88]

 47

The objectives of reverse engineering include: cope with complexity, generate

alternate views, recover lost information, detect side effects, synthesize higher

abstractions and facilitate reuse. But the primary purpose is to “increase the overall

comprehensibility of the system for both maintenance and new development” [88,

p. 16]. In contrast to the restructuring and reengineering processes, reverse

engineering does not involve changing the system. Three activities are mostly part

of the reverse engineering process. First, extracting information from system

artefacts (e.g. source code, design documentation), system experts and system

history. Next, abstracting the information to a higher (design) level. And finally,

presenting the information to stakeholders in a friendly way [89]. We apply

reverse engineering in this thesis only to recover an architecture (a design) from

its implementation. This process is also called reverse architecting and helps to

incrementally improve an existing system, instead of rebuilding the entire system

from scratch with a new design. In his PhD thesis, former Philips software

engineer, software architect and project manager, Rene Krikhaar [89] sees reverse

architecting as one of the three typical activities in architecture improvement. The

architecture models that are retrieved by reverse architecting can be balanced with

the ideal architecture retrieved from forwarding architecting to create an

improved architecture during the re-architecting activity (Figure 3.16).

Figure 3.16: Architecture Improvement Process [89]

 48

Automated architecture recovery techniques include the use of dependencies

between code files [90], dedicated extractors for web applications [87], specialized

tools that can analyze the source code [6] or graphical user interface testing tools

[91].

3.4. Summary

In this literature review we covered both forward engineering and reverse

engineering as techniques to support the maintenance and development of

existing software products.

In section 3.2 we discussed RE as a forward engineering process in which

requirements serve as a valuable input for project planning, risk management,

trade off, acceptance testing and change control. Requirements are a critical

success factor for projects, but JTBD theory shows that asking customers what

features a product should contain is bad practice. Customers should not be trusted

to come up with these solutions. Instead, a company should discover why a

customer hires its product: what job the customer is trying to get done. In the

process of capturing the JTBD, customer interaction and user involvement are

vital. A crowdsourcing platform facilitates this cooperation and can reveal what

customers want a product or service to do for them.

In section 3.3 we discussed how reverse engineering can help to recover a SA from

an existing project based on its lower level abstractions like the user interface or

code base. A SA facilitates the communication among stakeholders and plays a

pivotal role in organizations to meet their business goals. In order to capture a

complex system in a model and to allow the system’s architecture to be portable

and usable by many different stakeholders, we use different views from a context,

functional, information, concurrency, development, deployment, or operational

viewpoint. Although UML is frequently used as a modeling language, it is a source

of ambiguity and inconsistency. Therefore, the diagrams in this thesis originate

from the formal uADL.

Earlier, in section 3.1 we have shown how RE and SA are linked based on the

 49

RE4SA model. The product can be improved using re-architecting by balancing

the outputs of the forward engineering and reverse engineering processes. The

low-level requirements in the form of User Stories can be mapped to Features,

captured in a recovered Feature Diagram. In a higher level of abstraction, features

are grouped into Modules in a recovered Functional Architecture Diagram – in

the same way in which User Stories are grouped into big Epic Stories. If we take

the context of the Application into account as well, a Context Diagram shows all

associations to external entities that interact with the software system. This

application satisfies a high-level process the customer is trying to execute: A Job.

 50

4. Case study

We discussed the use of crowdsourcing and architecture recovery

in relation to the RE4SA model in the previous chapters. The single-case study we

will cover in this chapter entails the design and validation of our treatment using

a Technical Action Research. We start by introducing the company where we

perform the case study: Tournify. This Dutch startup provides an online

tournament manager for sports organizers, delivered as a service. Then, we cover

the case by discussing how we recover the technical architecture and develop the

requirements crowdsourcing platform. Lastly, we present the evaluation protocol

which will serve as the basis for the validation.

4.1. About Tournify

Tournify is a small software development company based in Amsterdam, The

Netherlands. Their services, which are provided online, are targeted at sports and

e-sports tournament and competition organizers. There main product is the

Tournify tournament manager. This web application allows tournament

organizers to manage the participants, create a match schedule based on a chosen

tournament format and process the results as the tournament processes. The

organizer can also use the tournament manager to create a tournament website,

which is used to present the event to the audience. The athletes and supporters are

able to view the schedule, results and standings by visiting this tournament

website on their mobile phone, as new information comes in real-time (Figure 4.1).

The tournament website can also be displayed as a slideshow, when a big screen

or beamer is available at the tournament venue.

We consider the tournament website as a separate application and will not include

this application in our study. We will simply use ‘Tournify’ to refer to the Tournify

tournament manager in the following of this thesis.

 51

Tournify is written in Javascript. It uses React, an open-source JavaScript library

developed by Facebook, for creating the interactive user interfaces. For the

dynamic content Firebase is used: a mobile and web development platform

maintained by Google that allows for storing and syncing data across multiple

clients. The total lines of code (LOC) is near 25.000 and around 110 components

are used.

Figure 4.1: The Tournify web app consists of a tournament manager for the organizers (left) and a

tournament website for the athletes and supporters (right)

The company is founded by two Information Science students, who started

developing the service mid 2015 for a client in the e-sports branch. Since late 2017,

the service is publicly available online and the focus of the founders pivoted

towards regular sports tournament and competitions. They currently report over

10.000 registered users (tournament organizers) from The Netherlands and

Belgium. Customers include professional football clubs like Ajax Amsterdam and

AZ Alkmaar and many amateur sports clubs. Next to (indoor) football

tournaments, Tournify has been used for different sports - including (indoor)

hockey, (beach) volleyball, (table) tennis, basketball, rugby, darts, korfball, water

polo, pétanque, curling, and bowling. Tournify uses a freemium business model,

as well as a subscription business model. Users can decide to upgrade from the

free version to one of the premium packages, if the number of participating teams

in that tournament exceeds the limit of eight teams. The subscription models are

targeted at organizations that host eight or more tournaments each year.

 52

The company is not backed by any external funding and is still run by its two

founders: one software developer and one product manager / sales representative.

The English version of Tournify can be found at www.tournifyapp.com and you

can get in touch by sending an email to info@tournifyapp.com. For the Dutch site,

please visit www.tournify.nl.

4.1.1. Applying the principles of Canonical Action Research

It is important to mention that the researcher of this thesis is no independent

researcher, as he works for and investigates on the case study concurrently. This

personal involvement allows for an unbounded access to the development

artifacts and stakeholders, and a comprehensive knowledge of the organization

and business processes. At the same time, it raises relevant questions about

possible biases and prejudices. Action Research in general has also been criticized

for its “lack of methodological rigor, its lack of distinction from consulting and its

tendency to produce either research with little action or action with little research”

[22, p. 65]. To ensure the rigor and relevance of this study, we make sure the five

principles of Canonical Action Research (CAR) are being taken into account

seriously. This set of principles and associated criteria are developed by Davison,

Martinsons & Kock in 2004, to allow for a study in which organization problems

are addressed while at the same time contributing to scholarly knowledge [22]. We

cover each principle in detail and explain how we (plan to) meet the associated

criteria or try to present justified reasons for not doing so. The full table with all

criteria can be found in Appendix 1.

1. The Principle of the Researcher–Client Agreement (RCA)

This agreement is described as being the guiding foundation for a project. The first

four criteria of this agreement were met before the project was formally initiated.

There are four main roles and responsibilities specified (criterion 1d), as described

in the table in Appendix 1.

 53

Since the product manager of the client company is also the lead researcher of this

study, the wish to perform Action Research was expressed during the first meeting

with the supervisor. Before the project formally started, there was already an

agreement that CAR was the appropriate approach for the organizational situation

according to both client employees and the supervisors (criterion 1a). They also

committed themselves explicitly to the project, by the means of a thesis application

form that is approved by the Board of Examiners of Utrecht University (criterion

1c). This application form also included the scope (section 1.2), research focus

(section 2) and adheres to the deadlines set by the University (criterion 1b). The

total duration of the project is eight months: three months for the literature study

and five months for the case study.

The final two criteria for the RCA include the explicit specification of project

objectives and evaluation measures (criterion 1e) and data collection and analysis

methods (criterion 1f) which will be covered in the Evaluation protocol (section

4.5).

2. The Principle of the Cyclical Process Model (CPM)

The activities we undertake during this project, follow the CAR process model

(criterion 2a) as shown in Figure 4.2. We expect to complete the project

satisfactorily in a single cycle, but additional cycling though the stages may be

possible.

Figure 4.2: The CAR Process Model

 54

In section 4.2, we will introduce the case and conduct a diagnosis of the

organizational situation (criterion 2b). Although the case will be introduced in this

part of the thesis, the researchers were all aware of this case when the project

started. While CAR is problem-oriented, the TAR we perform in this study is

solution-oriented. This means that although the diagnosis of the organizational

situation can be considered as the entrance for this study, it is only used to discover

how the RE4SA model can be best applied in the organization. The diagnosis is

also not independent, since this would require a lead researcher from outside of

the client organization. Because of this studies solution-oriented approach, we do

not expect that this deviation of criterion 2b will harm the validity of this study.

The goal of the diagnosis is to uncover development processes in which the RE4SA

model may be utilized to improve the current situation.

The action that follows is twofold: the architecture will be recovered and a

requirement crowdsourcing platform will be designed and implemented (criterion

2c and criterion 2d). An evaluation on the outcomes follows in the Results section

of this thesis on which we will reflect in the Discussion of this thesis (criterion 2e).

In this section, we will also decide if an additional process cycle is needed (criterion

2f), if the project objectives are met or that there is any other justified reason to

conclude the project (criterion 2g).

3. The Principle of Theory

The principle activities in this thesis are guided by RE and SA theories (criterion

3a). In section 2.3, the relevance of this study for both scientists and practitioners

in information sciences is highlighted (criterion 3b). We investigate commonly

used artifacts in this domain and try to find how these artifacts are linked using

the RE4SA model (criterion 3c). We apply existing techniques like (requirement)

crowdsourcing and architecture recovery to the specific case study and thereby

build upon the RE4SA model (criterion 3d). This guiding theory is also used to

evaluate the outcome of the intervention (criterion 3e).

 55

4. The Principle of Change through Action

In their article, Davison et al. [22, p. 75] emphasize that “taking actions in order to

change the current situation and its unsatisfactory conditions” is the essence of

CAR. Both client and researcher need to be motivated in order to improve the

situation (criterion 4a) and any planned actions must be approved by the client

(criterion 4d). Since the lead researcher of this study is also involved in the client

organization, this commitment is a known fact. The other co-founder of the client

organization is also committed to the project and sees the benefit of the planned

actions from both a business and a scientific perspective. The timing and nature of

these actions is taken clearly and will be documented in the following sections

(criterion 4f). We do obviously assess the organizational situation both before and

after the intervention (criterion 4e).

As mentioned earlier, the case will be introduced in section 4.2. We will specify the

problem and hypothesized cause(s) based on the diagnosis of the organizational

situation (criterion 4b). However, we then try to investigate how the use of the

RE4SA model and its related artifacts, as well as the use of architecture recovery

and crowdsourcing, can address the hypothesized cause(s) (criterion 4c).

Although other solutions may exist to address the same situation, that may even

produce better results, the goal of this research is to validate a model in an

organizational context (solution-oriented) as opposed to solving the client’s

problem in the best manner, as is usually the case in problem-oriented CAR.

5. The Principle of Learning through Reflection

The action researcher has a responsibility to the client and to the research

community. The lead researcher needs to provide progress reports to the client

members (criterion 5a) and other researchers. Throughout this research, this is

done during bi-weekly meetings with the research group and weekly phone calls

with the other client co-founder. Most of the learning through reflection happens

in the final stage of the cyclical process model and can be found in chapter 5 and

chapter 6 of this thesis. In these chapters, we report clearly and completely on the

outcomes and keep a clear distinction between facts and judgements (criterion 5a).

The researcher and client also reflect on the outcomes of the project (criterion 5b)

 56

and the results are considered in terms of implications for further action in this

situation (criterion 5c), for action to be taken in related research domains (criterion

5d), and for the research community (criterion 5e). We will also comment on the

benefits and limitations of the TAR methodology with the CAR principles for this

project (criterion 5g).

4.2. The case

Based on the internal observations of the two founders, two main challenges are

identified regarding the software development at Tournify.

The first challenge concerns the missing of development artifacts. There is little

code documentation and the software architecture has never been modelled. There

is a minimal use of comment lines in the code. As the code base is growing, it

becomes more difficult to keep an overview and to assess the impact a new feature

has on the existing components.

A support section on the website serves as the user manual. This section contains

a written description (1500 words) on the use of the application, a section with 30

frequently asked questions and related answers (1700 words) and there are five

explanatory videos with a total length of 10 minutes. The support information is

incomplete and a challenge to keep up to date, since new features are deployed

quickly.

An online Kanban board is used to communicate requirements between the

product manager and developer, but no format on the written descriptions of

requirements is used. There are over 250 cards on the board which are completed

or archived and approximately 100 cards still open.

The second challenge concerns the handling of customers’ feature requests. In five-

months’ time 44 unique customers requested 77 new features (Appendix 2). Most

of them are requested via email or via the support chat. The requests that came in

by phone are not properly registered and therefore not included in this overview.

 57

In the end of February 2019, a total of 12 requests has been implemented in

following releases. The majority of the requests has been added to the backlog in

the online Kanban board. More than half of the users who requested features are

paying customers. In only 11% of the cases, we can certainly state that the

requesters stopped using the application because the service was unusable for

them without meeting their request(s). The requesters organize tournaments in 16

different sports and 2 different e-sports (Table 3). The requests are written in Dutch

and contain 192 characters on average.

Source # Status #

E-mail 44 Implemented 12

Support chat 29 Pending 65

Other 4

Total 77 Total 77

Requesters # Tournament types #

Free users 17 Unique sports 16

Paid users 27 Unique e-sports 2

Total 44 Total 18

Table 3: Feature requests proposed by the Tournify end users between September and January 2019

Further analysis of the requests and conversion of the text to User Stories caused

no difficulties in 71% of the cases: the role was clear, a goal was expressed, and the

potential benefit was highlighted. Consider the following (translation of a) request

that came in:

We organize tournaments in different venues. Some have excellent WIFI,

others work badly or there simply is none. So, is it possible to create a

tournament online, but then continue offline to enter the match results?

We can convert this request into the following User Story:

 58

As an organizer, I want to enter the match results in an offline mode so

that the application can be used in venues with bad or no WIFI network.

With 29% of the requests, the benefit was not explicitly mentioned. Although this

benefit is optional in a User Story, it may provide valuable information, especially

when a request comes in without any context via email or chat. Consider the

following request that came in:

Why is the number of teams I can add to a group limited? I want to place

46 teams into one group.

The corresponding User Story would be:

As an organizer, I want to place 46 teams into one group.

This is a valid User Story but raises questions since it is unknown why one wants

to place this many teams into one group: even the biggest leagues in the world

have place for a maximum of 20 teams. Only after further communication between

the product manager and requester, it becomes clear why this user wants this

feature: “We work with different minigames. I’ve added the minigames to a group

and want to add all teams to this group as well, so they play ‘against’ each

minigame and I can include these matches in the match schedule.” Although the

solution is creative, it clearly is a workaround. The user doesn’t want to place 46

teams into one group, he wants to host a tournament with different games

(currently Tournify is built to host tournaments for a single sport). Rather than

focusing on making the workaround possible, this user (and most likely, many

others) will benefit a lot more if a dedicated feature is developed to host multi-

sports tournaments.

This missing of information is one of the reasons that makes the current workflow

time-consuming for the product manager. Responding to the feature requests,

even if they are clearly stated, also takes time. We roughly estimate the time it takes

to process a feature request at ten minutes. This includes responding to the

 59

requester and adding the request to the backlog if not listed already. As the

business grows, more requests will come in. Another downside of the current

workflow is that it does not allow for proper requirements prioritization and does

only involve a small subset of the users.

4.3. Architecture recovery

As we learned from the literature review, reverse engineering consists of (1)

extracting information from system artefacts, (2) abstracting the information to a

higher (design) level, and (3) presenting the information to stakeholders in a

friendly way [89]. The goal is to create a Feature Diagram, Functional Architecture

Diagram and Context Diagram for Tournify. We will explain our approach in

further detail in this section.

4.3.1. Extract features from the graphical user interface (GUI)

We used the open source workspace of Eclipse1 for drawing the Feature Diagram,

using the FeatureIDE2 framework. Eclipse is mostly known for its Java integrated

development environment and FeatureIDE has extensive possibilities for feature-

oriented development. In our case, we only used the Feature Modeling composer

which allows us to draw a hierarchical Feature Diagram in a tree-structure.

FeatureIDE also has options to mark features as optional or mandatory, next to the

possible ‘alternative’ and ‘or’ relationships between features and its sub features.

Or: one or more of the subfeatures must be selected

Alternative: exactly one of the subfeatures must be selected

Features can be collapsed or expanded by clicking on them so you can easily

change the level of detail and view the features in a in a simple visual manner.

Cross-tree constraints are also allowed. These constraints are placed underneath

1 www.eclipse.org

2 https://featureide.github.io

 60

the diagram. The most common constraint is ‘implies’, indicating that ‘feature A

implies the selection of feature B’, for example.

There are multiple ways to extract features from the system artifacts. We used the

GUI as the artifact and extracted the features manually, after we concluded that

automatic GUI testing tools would take more time to set up and yield less reliable

results, especially when working with a web app like Tournify. We opened every

page on the application and clicked on every button, link or entry field. The site

page hierarchy was used to group features, in the same way you construct a

sitemap. An example of this process for a site section is shown in Figure 4.3.

On this participants page, the three tabs on top (teams, referees, administrators)

provide the main navigation. They become the first compound features we model

in the Feature Diagram. Compound features represent a group of composed

features which become available for the user when the feature is selected.

Figure 4.3: An example of mapping UI elements from the software to features in a Feature Diagram

The naming of a feature is based on the label of the UI element, if available. We

rephrased some of the feature names to make them start with a verb, as is

customary in a Feature Diagram (e.g. Manage_teams instead of Teams). We used an

upper-case letter for starting the feature name, and an underscore to separate

words, but other variants like spaces (e.g. Manage teams) or medial capitals (e.g.

ManageTeams) are also acceptable. It can happen that the same feature can be

 61

accessed from different pages in the UI. Since a merge of different branches is not

possible in this type of Feature Diagram and each feature name should be unique,

we added a number to a feature in the case of a consecutive occurrence of the same

feature (Set_bracket_size2).

In the example of Figure 4.3, we continue by focusing on the teams page. The ‘rows

per page’ functionality shows a dropdown with three different options. These are

modelled with an alternative relationship: either one of the child features must be

selected. In this case, the different options are atomic features: they do not have any

child elements.

In some cases, it may be useful to deviate from the page hierarchy and group

features according to their function instead of their presence on specific pages. For

example, we modelled a subfeature Choose_language as a child of Manage_account

because the user language is linked to an account, although choosing a language

is done on the tournament overview page instead of on the account page.

4.3.2. Identify (sub)modules by abstracting

A Feature Diagram can easily consist of hundreds of features, making

interpretation of the diagram a difficult task. Therefore, we need to abstract the

information to a higher level. We do that by identifying (sub)modules in the

Feature Diagram, which “correspond to the software product parts that implement

the respective functions” [17, p. 204]. We take the advice from Brinkkemper &

Pachidi [17], who suggest that a functional architecture is usually modelled in two

or three layers. The features are supportive to the sub modules on the lowest level.

The highest level is constructed first, and consists of the decomposition of all

features into components, in such a way that each module embodies a manageable

and well-defined functionality which can be developed relatively independent of

other modules [92]. Although there are no strict rules for this mapping process, it

is our guidance to use a module-size that is convenient in development and for

visualization purposes (Figure 4.4), while taking into account the interaction with

other (sub)modules. Arrows in a FAM are used to model this interaction in the

 62

form of information flows. Substantivized nouns are used for the naming of the

modules (e.g. Presenting instead of Present) and the scope is described in the

lower-right corner of the rectangle, being either the application name (first layer)

or (sub)module name (consecutive layers) that is shown.

Figure 4.4: An example of mapping feature groups from the Feature Diagram

to modules in the Functional Architecture Diagram

4.3.3. Present the model

The FAM provides a proven way to communicate the architecture in a developer-

friendly way. Any diagramming tool can be used to draw the diagrams. Popular

examples are Microsoft Visio or the online tool Draw.io. We decided to use

Microsoft PowerPoint to create the FAM in an interactive presentation where one

can navigate between the application overview, modules and submodules.

4.4. Crowdsourced requirements engineering

platform

Based on our literature review and the case we presented at Tournify, we

developed an online platform that allows users of a software application to create

new requirements for it, comment on, and vote on requirements from others. For

this platform, we created a set of 13 User Stories and prioritized them using the

MoSCoW method (See Appendix 3). The design based upon the requirements can

 63

be found in this thesis’ public data set3 and the final implementation is live at

www.tournify.nl/manage/features (Tournify account required). In this section

we cover how the platform allows for the elicitation, negotiation and prioritization

of requirements by crowd workers.

4.4.1. Elicitation

The literature review demonstrated the broad adoption of User Stories in agile

software development. However, User Stories only served as an optional

development artifact that could be added to a free form textual description of a

requirement, when considered in Crowdsourced RE. It was never used as the basis

for feature description, although these informal natural language descriptions are

easy to read an adhere to a simple format. As a result, it may yield more useful,

higher-quality, and more detailed requirements.

To test this hypothesis, the crowdsourced requirements engineering platform we

designed needs to enable users of a software application to submit feature requests

in the strict format of User Stories - containing a role, goal and benefit. In order to

help users to formulate these stories, even if they have never seen or heard of a

User Story before, we used a form with the following four simple self-explanatory

and small steps:

1. Role selection

2. Goal expression

3. Potential benefit expression

4. Verification and categorization

We will look at each step in more detail by means of an example.

3 http://dx.doi.org/10.17632/7r9j67wxzb.1

 64

Step 1: Role

Figure 4.5: Formulating a requirement as a User Story: step 1

The first step is to find out in which role the requester uses the application. The

user can select one of the roles from the predefined options using radio buttons. In

the case of Tournify we defined three roles: organizer, participant and supporter.

Step 2: Goal

Figure 4.6: Formulating a requirement as a User Story: step 2

In the second step we ask the user what he or she wants to do with Tournify: a

feature that is missing. The textbox contains static text before the user input,

containing the phrase “I want to”. We wrote “export the match schedule to PDF”

in our example.

 65

Step 3: Benefit

Figure 4.7: Formulating a requirement as a User Story: step 3

The users’ text entry recurs in the formulation of the question in the third step. We

ask explicitly why the user wants to have the requested feature, to know what the

user sees as the potential benefit when the feature would be implemented in the

software application. The answer always contains the predefined “So that” at the

start.

Step 4: Verification and category selection

Figure 4.8: Formulating a requirement as a User Story: step 4

Before submitting the idea, the user is able to verify the User Story that has been

formulated based on the answers he or she provided in the first three steps. We

also ask the user to select one of the predefined categories. These categories are

part of the main menu of the application, so the users are already familiar with the

terms. Labeling the requests with the corresponding category allows for easy

categorization later on.

 66

4.4.2. Prioritization

Figure 4.9: Feature request detail with the option to vote

All requests are published on a feature request overview page in the Tournify web

app, which can be accessed via the support menu. This is no static page, as

requirements elicitation is not the only goal of the platform. The second goal is to

prioritize requirements utilizing the crowd, by means of voting (Figure 4.9).

For requirements prioritization, several techniques exist. We follow the general

advice of Maiden & Ncube [93], also advocated by Berander & Andrews [94], to

use the simplest appropriate prioritization technique. This is especially true in

crowd-centric requirement engineering [54], since end-user crowd workers are

likely to be less experienced with requirement prioritization than product

managers. The prioritization technique should also allow for easy reprioritization,

as requirements will be added, changed or deleted continuously.

Numerical Assignment is the most common (and a very easy) prioritization

technique, which is based on grouping requirements into different priority groups.

Each group represents something that the stakeholders can relate to (e.g. critical,

standard, optional) [94]. A downside of this is that stakeholders tend to “think that

everything is critical and they will most likely consider 85 percent of the

requirements as such” [94, p. 77]. Another simple feedback type is Confirmation

or Negation, in which users agree or disagree on problems or opinions of other

users [72]. This feedback type is used in the Requirements Bazaar [68] and REfine

[55] platforms. After discussing these two feedback types in our research group,

 67

we decided to implement the Confirmation or Negation method by allowing users

to upvote or downvote requests (I want this, I don’t need this).

4.4.3. Negotiation

Figure 4.10: Feature request detail with the option to comment

The last goal is to facilitate negotiation of requirements. A commenting section

(Figure 4.10) enables users or product managers to respond or add suggestions to

the requests in order to come to a mutually satisfactory requirement.

4.5. Evaluation protocol

The quality and usefulness of the reconstructed architecture and the effect of using

the crowdsourced requirements engineering platform will be evaluated. The

results of this evaluation will be presented in the next chapter. In this section, we

explain how we got to these results.

We used a mixed methods design, combining quantitative and qualitative research

methods. The advantages of this research design are highlighted in the paper of

Kaplan & Duchon [95, p. 582], Combining Qualitative and Quantitative Methods in

Information Systems Research: A Case Study, who state that “mixing methods can

lead to new insights and modes of analysis that are unlikely to occur if one method

is used alone” in information systems research. This is in line with findings in other

disciplines: “Using multiple methods increases the robustness of results because

 68

findings can be strengthened through triangulation - the cross-validation achieved

when different kinds and sources of data converge and are found congruent” [95,

p. 575].

4.5.1. Architecture recovery

The recovered architecture will be made available in the online public data set of

this thesis4. In this thesis we will present the context diagram and top-layer

Functional Architecture Model, alongside some examples of feature diagrams for

(sub)modules. We will report on:

§ The number of modules and submodules

§ The number of features

§ The depth of the feature diagrams

§ The feature degree of modules

In order to assess the quality of the recovered architecture, we will present the

architecture to the developer of Tournify and interview him afterwards. In a semi-

structured interview, we cover the developers’ previous experiences with

functional architectures and opinion on the quality and usefulness of the recovered

architecture for his daily work. The interview protocol can be found in Appendix

4.

4.5.2. Crowdsourced requirements engineering platform

The crowdsourcing platform has been deployed and announced on February 25th,

2019. The announcement was published via an email to a selected group of 337

users (63% opened). These users had either requested a feature in the past,

subscribed to the newsletter, or made a purchase recently. A reminder was sent

one month later (55% opened). The total data collection period was five weeks, so

all requests submitted after March 31st, 2019 were not included in this research.

Among all requesters, voters and commenters, one free tournament upgrade has

4 http://dx.doi.org/10.17632/7r9j67wxzb.1

 69

been raffled. Users were also informed of the feature request platform via a snack

bar message which was shown when opening the Tournify tournament planner.

The researcher initiated the first request and commented on some of the requests

during the study. He was also able to label features as in development or done. This

first request by the researcher will be included in the report on the number of

requests, because users were able to comment and vote on this request. However,

it is not further evaluated regarding the quality and complexity criteria we discuss

below. Comments from the researcher will be excluded from the results.

Engagement

We will report on the engagement of users on the platform by providing the

following results:

§ the number of initiated feature requests and unique requesters

§ the number of votes and comments

§ the number of visitors on the feature request page

§ the use of the different roles in the User Stories

§ the categorization of User Stories

Perceived usefulness

After the data collection process, the users who submitted an idea received an

extra email with a link to a short questionnaire. This questionnaire tests the

perceived usefulness of the platform from an end user perspective (Appendix 5).

It contains four questions with a five-point Likert scale, asking the users to

evaluate the usefulness of different aspects of the platform. One closed question is

included to verify if the requester had experience with formulating User Stories

before, and one open text field can be used to comment on the experience with the

platform.

Quality

In section 3.2.3, we discussed the Quality User Story framework [9]. This

framework will be used to assess the User Stories individually based on their

 70

syntactic, semantic and pragmatic quality. The eight criteria and their descriptions

are shown in Table 4.

Table 4: The eight criteria to be used to assess User Stories individually

according to the Quality User Story framework [9]

Each User Story will be evaluated on its quality manually by three experts

individually. The experts use the description of the criteria as shown in Table 4, as

well as the additional information from the accompanying article, to analyze the

User Stories. The lead researcher will analyze all User Stories. The User Stories will

also be distributed among six members of the Requirements Engineering Lab at

Utrecht University. They will analyze one third of the User Stories each. If there is

no consensus in the judgement of the experts, majority voting is leading.

Complexity

We will make an estimation of the amount of work it would take to implement

each User Story individually, based on the assessment of the lead developer of

Tournify. For the scaling the Fibonacci sequence (1, 2, 3, 5, 8, 13, 21) will be used.

We assign a value of ‘0’ when it concerns a feature that has already been

implemented but overlooked by the requester. The other numbers represent

development hours. Since it is difficult to estimate large work items with a high

degree of confidence, the upper limit for our estimation is 21 hours. In practice,

User Stories who take more than 21 hours to implement can be broken down into

more granular pieces. Since there is only one developer involved in the assessment

of the complexity, we have decided to do the estimation in development hours

instead of in Story Points. The developer is used to make these hour estimations,

 71

as this is common practice in the organization while making price quotations for

organizations requesting customization. Story Points are better suited for planning

poker with multiple developers but are a lot more abstract than the concrete man

hours.

We also give each User Story a complexity score based on the impact it has on the

architecture. In a Feature Diagram, the leaves represent atomic features and

intermediate nodes represent compound features [96]. If a new feature would be

added as a leave, we rate its architectural impact as ‘1’. If it would be added as an

intermediate node (additional sub-features have to be developed to deploy the

feature), we rate it as ‘2’. If the User Story requires a new submodule or has an

impact on multiple modules, we rate the architectural impact as ‘3’. Value ‘4’ will

be assigned when it concerns an entire new module.

 72

5. Results & Analysis

The recovered architecture and quality evaluation will be presented in this

chapter. We also present the results of the feature request platform we integrated

in the software application and analyze the crowdsourced User Stories in terms of

quality and complexity.

5.1. Architecture recovery

In this section, we give a high-level overview of the system context and Functional

Architecture Model which we have reconstructed for Tournify. We also present an

example of a Feature Diagram of a particular submodule and present statistics

regarding the number of modules, submodules, and features. The entire

reconstructed architecture in an interactive Powerpoint presentation can be found

in this thesis’ public data set5. In the second part of this section we present the

evaluation results, covering the quality and perceived usefulness of the model

based on an interview with the developer.

The interviewed developer is Jesse, responsible for all functionality of the Tournify

application. He has five years of experience in programming, starting as a Python

developer for Mobile Professionals – an Amsterdam-based media agency.

Currently, most of his work is done in JavaScript and he has experience with the

ReactJS and NodeJS libraries. He completed the Information Science bachelor at

the University of Amsterdam in 2015, with a minor in programming.

5.1.1. System context

Three external entities interact with the Tournify application, as shown in the

Context Diagram (Figure 5.1). The Mollie Payment Service Provider handles the

online payments of upgrades via an API. The Jortt Bookeeping API is used to send

5 http://dx.doi.org/10.17632/7r9j67wxzb.1

 73

an invoice to the customer. The Tournify Live website is the third external entity

the Tournify application interacts with. This is a separate repository that does

share the database with the tournament planner but is out of scope of the

application we study in this research.

Figure 5.1: Context Diagram of Tournify

5.1.2. Functional Architecture

For the tournament planner, eight modules are identified based on the GUI. These

modules and the information that flows between them, is shown in the FAD of

Figure 5.2.

Figure 5.2: Functional Architecture Diagram of Tournify, application level

 74

For six out of the eight modules, the module is supported by submodules, like in

the example of the Tournament Participants Management module (Figure 5.3). In

total, 21 submodules are used.

Figure 5.3: Functional Architecture Diagram of the

Tournament Participants Management module

On the lowest level, each (sub)module is supported by features. Those features are

represented in a Feature Diagram, like the one in Figure 5.4 of the Administrators

Management subfeature. Some interesting implementation rules can be extracted

from this diagram, like:

- In order to add an administrator, you have to enter an email address and

assign at least one right.

- In order to delete an administrator, you first have to select one.

- You have to choose between showing either 20, 50 or 100 administrators on

one page.

Figure 5.4: Feature Diagram of the Administrators Management submodule

 75

In total, 198 atomic features are captured in the recovered functional architecture.

That means that each module contains 25 features on average. A complete list of

all modules, submodules and the number of supporting features is shown in Table

5. The table also includes the degree and depth of each (sub)module. The degree

is the number of features that is present on the first layer of the Feature Diagram.

For example, in the Feature Diagram of Figure 5.4, there are initially five features

to choose from: Add_administrator, Select_administrators, Edit_rights,

Set_rows_to_display_on_administration_page, and Switch_administration_page. The

depth is the maximum number of layers in the diagram. In the given example, the

feature Give_right_to_manage_process sets the depth of this diagram at four. On

average, the Feature Diagrams have a degree of 4.2 and a depth of 2.2.

Modules Submodules Features Degree Depth

Account Management Language Selecting 2 2 1

Support Requesting 8 8 1

Account Creating 3 3 1

Tournament Creating 4 4 1

Tournament License
Upgrading

- 11 3 2

Tournament General
Management

- 17 7 3

Tournament Participants
Management

Teams Management 16 8 3

Referees Management 8 5 2

Administrators Management 13 5 4

Tournament Formatting Phases Management 3 3 1

Divisioning 1 1 1

Automatic Formatting 16 3 3

Groups Management 8 3 3

 76

Brackets Management 10 3 3

Single Matches Management 5 3 3

Tournament Match
Scheduling

Planning 7 5 2

Playing Field Management 6 4 2

Breaks Management 6 3 2

Matches Management 5 2 2

Viewing 2 2 1

Tournament Presenting Public Website Management 14 6 3

Slideshow Management 12 4 4

Presentation Design 7 7 1

Tournament Results
Processing

- 14 7 4

Table 5: Statistics of the Tournify Functional Architecture

5.1.3. Quality of the reconstructed architecture

Jesse, the main developer of Tournify, did not receive education in software

architecture during his study. Also, in his working experience, formalized

functional architectures never came across: “When we started with Tournify we

thought about how the application should look like and what the arrangement of

the pages should be, but we did not call it an architecture or used any formalized

style or technique.” He explains how the Tournify application has a sidebar that is

used for the navigation. The pages on the sidebar are also the main components in

the code base. Other components mainly belong to one of those pages. According

to the React website6, this is a common approach to structure React projects. In this

approach, the file structure is based on the grouping of features. When showed the

reconstructed architecture, this might be one of the reasons he commented: “The

architecture and modeling style are very clear. The architecture matches the code

base very closely. In my feeling, it works well with React, because the application

6 https://reactjs.org/docs/faq-structure.html

 77

is divided into components, in a similar way the architecture consists of different

modules.”

Jesse explains where there are differences between the reconstructed architecture

and code base: “The naming that has been given to the features and modules in

the model is different than the names I used in the code.” When asked if he

recognizes the features and (sub)modules in the model, it is clear that the names

that are used are comprehensible and the developer knows which features and

components are meant. He suggests working together with the product owner to

improve both the architecture model and code base at the same time: “We can

improve the code by means of this model and we can improve the model on the

basis of the code. The first approach may even work best. The more the two

correspond, the better.”

Not only in the naming of the features and (sub)modules, there are slight

differences between the code and the functional architecture. Sometimes a

component is reused on another page to avoid duplicate code, Jesse explains. This

is true for the Tournament Participants Management module we have shown in

Figure 5.3. Currently, the features on the teams, referees and administrators tab

overlap, making Jesse decide to fit them into one component. This is definitely not

the case for all submodules we included in the functional architecture. The

Tournament Presenting module also contains three sub-modules, but since every

tab in the UI shows very different functionality, there is a component for every

submodule in the code base. Jesse argues that it may be beneficial to use those

small-sized components also for the Tournament Participants Management

module: “It is good to model it the way you did. At this time, the pages have very

similar functionality. However, we already know that in the feature the referees

page will have many different features that will not be available on the teams page.

The administrators page already has different functionality, like assigning rights

to administrators, so I would suggest keeping the distinction between the different

submodules in the software architecture. The more the better, especially for

visualization purposes.”

 78

We also discussed the Feature Diagrams in more detail. Jesse finds the distinction

between mandatory and optional features clear and convenient. The same applies

to the use of ALTERNATIVE and OR relationships between subfeatures and

compound features, when we explained them to him. Regarding the depth and

degree, Jesse prefers an interface with a higher depth and lower degree: “In my

opinion: the more layers, the simpler the interface is to use. Let’s take the export

feature as an example. Currently, the user clicks ‘Export’ on the results page, then

selects what information to export (match schedule or scoring sheets), the size, and

sorting. If you use the right naming, users will know where to click on when they

want to perform a certain action. If we show all those export features in the first

step, the user gets confused.”

5.1.4. Perceived usefulness of the reconstructed architecture

Jesse’s familiarity with the code base is helpful when developing new features: “I

instantly get an idea about how new features should be built, and which

components are affected or should be created.” Depending on what features needs

to be developed, he would create additional modules, submodules or features in

the architecture, deciding where it would fit taking the depth and degree into

account. “I think this a very handy way to develop features. For both the developer

and the product manager. The model will also help the product manager to

understand the code.” The architecture may help to show what needs to be

developed for a new feature, Jesse explains. If a new requirement comes in, it is

instantly clear what needs to be developed. The clearer this is, the better he can

make an estimation of the workload of a new requirement. “Visualization the

components that are affected is clearer to work with than a list of bullet points in

Trello” he says, referring to the visual collaboration platform that is currently used

internally at Tournify to manage requirements. “While building a feature,

questions always come up I want to discuss with the product owner. If we would

discuss a feature beforehand and note it in the architecture model, I think it will

help to give me a better understanding of what we want to implement.” To

illustrate this, consider the following User Story:

 79

As an organizer, I want to limit the availability of referees to specific

divisions, match days or time slots so that I can satisfy the referees’

wishes.

The addition is shown in Figure 5.5, in which the features with a light blue color

are added to meet the User Story we just presented. As shown, the original

“Edit_name_of_referee” feature will become part of the compound feature

“Edit_referee”.

Figure 5.5: Adding new functionality to the Referees Management sub-module

The size of a Feature Diagram may be a hint regarding the workload of a feature.

Jesse thinks that bigger feature diagrams usually concern more work. But he is

hesitant in setting generic rules on deciding the workload based on the architecture

alone: “A feature that touches upon multiple (sub)modules can be as easy or

difficult to develop as an addition to one specific (sub)module. If the adjustments

to the different modules are small, it can still be an easy feature to implement.”

During the interview, Jesse also mentions the potential usefulness of having this

architecture for new developers who join the company: “The architecture is clear

and very nice for people who are not familiar with the code base. The visualization

helps to understand and learn the code easier. Although experience with React is

also very beneficial in that sense.”

 80

5.2. Crowdsourced requirements engineering

platform

During the five weeks period, we had 157 unique visitors on the feature request

platform. From those visitors, 39 users interacted with the platform by submitting

an idea (23), voting on an idea (28), and/or commenting on an idea (9). Together,

they submitted 57 ideas, voted 89 times and commented 14 times (Table 6). The

users that interacted with the platform organize tournaments in 14 different sports

and 1 e-sports. The functionality to downvote an idea (‘I don’t need this’) was not

used and in five times a requestor voted on its own idea, which was not prevented

by the platform. The complete list of crowdsourced User Stories can be found in

Appendix 6.

Value # Value #

Page views 247 Unique page views 157

Interactions 160 Unique interactors 39

Requests 57 Unique requesters 23

Votes 89 Unique voters 28

Comments 14 Unique commenters 9

Table 6: Use of the crowdsourced requirements engineering platform

More than half of the requesters (15, 65%) submitted only one idea, two users

submitted respectively two and three ideas and four users submitted five or more

ideas (respectively 5, 6, 7, and 14 ideas). All requesters indicated they used

Tournify as an tournament organizer; the other predefined roles (participator,

supporter) are not selected.

All ideas are written in Dutch and constructed based on the template of a User

Story. A screenshot of part of the Feature Requests overview page is shown in

Figure 5.6. Next to the feature description, each element also contains the

submission date and selected category. If applicable, the element also contains the

number of votes, number of comments, and development status.

 81

Figure 5.6: Screenshot of the feature request overview page

Two feature requests got nine upvotes, which is the most times a feature has been

upvoted. Translated to English, these ideas are:

US1 “As an organizer I want to have the possibility to add logos of the

participating teams. Like the flags in front of the participants name but

instead with their own logo, so the logos could be displayed nicely in the

match schedules and standings.”

US2 “As an organizer I want to set the match duration per division instead of

per day, so you can make the match duration longer for divisions with

fewer teams, then the divisions with many teams.”

The categorization of User Stories turned out to be a difficult task for the crowd

workers, judging by the numbers. In more than half of the cases (52 percent), the

category selection of the requester does not match the category assignment done

by the main researcher of this study. For example, US1 was categorized as

Presentation. Although this categorization makes sense, adding logos would be

implemented on the Participants page. Many User Stories were falsely classified

as General by the requesters. This category was not intended to be an umbrella

term for general User Stories (the category Other was meant for that purpose) but

 82

was referring to the General Settings page in the application. US2 was correctly

assigned to the Schema category: the page that requires the most attention,

together with the Presentation page, if we listen to the users (Figure 5.7).

Figure 5.7: Categorization of the crowdsourced User Stories

based on the evaluation of the main researcher

5.2.1. Perceived usefulness of the crowdsourcing platform

After the study period, thirteen user who interacted with the crowdsourcing

platform responded to the questionnaire that was sent to them via email. Most of

them (10) requested a feature themselves, the other three respondents only voted

for a feature. They perceived the platform as very useful, regarding all four

possible interactions when rated on a five-point Likert scale: requesting (M = 4.9;

SD = 0.28), viewing (M = 4.8; SD = 0.38), voting (M = 4.5; SD = 0.88), and

commenting (M = 4.5; SD = 0.66). All results are shown in Figure 5.8.

One user who requested a feature, voted for and commented on an idea and had

previous experience in writing User Stories commented:

“You implemented the agile methodology in a very fun way! In such a

manner the users get better involved and at least have the feeling their

opinion matters”

2
7

3

1616

5

7
General

Participants

Format

Schema

Presentation

Results

Other

 83

Others found it “a fantastic way to improve the application”, “very useful to allow

users to submit ideas” and see it as a way to “improve the software for your own

tournament”. Another user noted how “every user gets new ideas while using

Tournify on their tournament” and how this is “the best feedback to improve the

application”.

Figure 5.8: Perceived usefulness of the requirements engineering crowdsourcing platform

Out of the people who requested a feature, 70 percent has never written a User

Story before. When asked if they find it helpful to formulate the ideas as User

Stories, compared to free texts, the average score was 3.5 (SD = 0.85). There is

hardly any preference to write the feature requests in free text (M = 3.2; SD = 1.14).

5.2.2. Quality of the crowdsourced User Stories

Each User Story (n = 56) has been tested against eight criteria from the Quality

User Story framework [9] by three different experts independently (1344 decisions

in total), as described in the evaluation protocol (section 4.5.2). Tests for inter-rater

reliability show that the average pairwise percent agreement between the three

judgements varies from 65.5% to 91.7% for each criterion. The results of the

analysis are shown in Table 7. The entire evaluation can be found at this thesis

public data set7.

7 http://dx.doi.org/10.17632/7r9j67wxzb.1

 84

Criterion
Number of User
Stories with defect

Percentage of User
Stories with defect

Average pairwise
percent agreement

Well-formed 3 5.4 90.5

Atomic 5 8.9 84.5

Minimal 24 42.9 79.8

Conceptual 5 8.9 79.8

Problem-oriented 8 14.3 73.8

Unambiguous 9 16.0 65.5

Full sentence 19 33.9 81.0

Estimatable 3 5.4 91.7

Table 7: Quality of the crowdsourced User Stories

In total, 52 percent of the User Stories meet all requirements, meaning that 48

percent of the User Stories contains one or more easily preventable error(s) (Figure

5.9).

Figure 5.9: Number of defects per User Story

There is a strong association between the minimal and full sentence criteria, which

is statistically significant (Χ2 = 31.6, p = < .001). Since both variables are measured

at a nominal level and consist of two categorical independent groups, we

performed a Pearson Chi-Square test to determine whether this association exists.

The finding might provide an explanation for the higher number of User Stories

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

N
um

be
r o

f U
se

r S
to

rie
s

Number of defects

 85

with two defects, compared to those with only one defect. Table 8 shows a sample

of crowdsourced User Stories that violate one or more of the criteria.

ID User Story Violated criteria

US3 As an organizer I want to have the
insurance that an email address that comes
with a registration is valid, so the
confirmation is delivered at all times. You
could use a third-party check, like
mailgun.com/email-verification-service, so
we have more insurance about email.
Viewing whether a mail has been opened is
also nice. You probably use an email
distribution API and you can show these
metrics (sent/opened) in the GUI to the
user.

Atomic address check and
opening rate

Minimal additional information

Conceptual means expresses
rationale, not a feature

Problem-oriented hints at the
solution

Full sentence multiple sentences

US4 As an organizer I want to Since recently
you are able to register via the website!
Very good improvement! I would also like
to have the possibility to show pictures of
the last tournaments’ edition, for example,
when people enter the website! It currently
is so blank, so that more beautiful
presentation!

Well-formed templated is
disregarded

Minimal additional information

Full sentence multiple sentences

Estimatable to vague

US5 As an organizer I want to change the order
of slides with a drag and drop functionality
or changeable ranks, so you don’t have to
recreate the presentation when an extra
slide comes between.

Problem-oriented hints at the
solution

US6 As an organizer I want bigger scoring
sheets in such a way they are properly
distributed among the paper, so it looks
better (regarding the size) and have the
same dimensions after cutting

Minimal information between
brackets

Unambiguous contains abstract
terms: bigger, better

Table 8: Sample of crowdsourced User Stories that violate
the criteria from the Quality User Story framework

5.2.3. Complexity of the crowdsourced User Stories

The crowdsourced User Stories are evaluated based on their complexity by the

developer of Tournify. Most of the crowdsourced User Stories can be developed

within one workday, according to his estimation. One User Story could not be

 86

estimated, because it was formulated to vaguely. Seven User Stories were already

implemented but overlooked by the user. They are therefore not included in the

estimation shown in Figure 5.10, which includes 48 User Stories.

Figure 5.10: Complexity of the crowdsourced User Stories

The hour estimation has been mapped against the estimation we did based on the

impact a feature would have on the functional architecture. We were able to do

this for 43 User Stories. Five User Stories concerned features regarding the

Tournify Live page, which is out of scope of the recovered architecture. User

Stories with an architectural impact of 1 (would be added as an atomic feature)

and 2 (would be added as a compound feature) show a similar level of workload.

However, User Stories with an impact score of 3 (which require a new submodule

to be added in the architecture diagram, or have an impact on multiple modules),

are generally considered to be more complex to develop. A Spearman’s rank order

correlation was run to determine the relationship between the two ordinal

variables. There is a moderate positive correlation between architectural impact

and developers’ hour estimation, which is statistically significant (rs = 0.56, p = <

.001).

7
6

13

8
9

1 2 2

1 2 3 5 8 13 21 > 21

N
um

be
r o

f U
se

r S
to

rie
s

Estimated workload in hours

 87

5.3. Summary of the main results

- Recovery: the functional architecture of Tournify has been recovered based on

the GUI. It contains 8 modules, 21 submodules and 198 atomic features. Each

module contains 25 features on average which are shown in Feature Diagrams

with an average degree of 4.2 and a depth of 2.2.

- Documentation clarity: the functional architecture model is clear to the

developer of Tournify. The architecture matches the code base very closely,

although the naming of features and modules does vary. In the process of

refactoring, the code can be improved by means of the created model and the

model can be improved on the basis of the code.

- Learnability: the visualization helps to understand and learn the code easier

for people unfamiliar with the code base. The model is also helpful in the

development of new features for both the developer and product manager.

- User Story formulation: a feature request platform has been integrated to

involve users in requirements engineering. The platform allows users to

submit ideas in the form of User Stories using a four-step data collection form.

- Engagement: the 39 users that interacted with the platform during a five-

weeks period submitted 57 ideas, voted 89 times and commented 14 times.

- Perceived usefulness: users interacting with the platform perceived it as very

useful, regarding all four interaction possibilities: requesting features, viewing

ideas from other users, voting on ideas, and commenting on them.

Interestingly, 70 percent of the requesters has never written a User Story

before. There is hardly any preference to write the feature requests in free text.

- Quality: when tested on quality based on the Quality User Story framework,

48% of the crowdsourced User Stories contains one or more easily preventable

error(s). Most frequent occurring defects are User Stories violating the minimal

criterion (42.9%) or not being written as one full sentence (33.9%).

- Complexity: most of the crowdsourced User Stories can be developed within

one workday. There is a moderate positive correlation (rs = 0.56, p = < .001).

between this estimated complexity as done by the Tournify developer, and the

assessment from the researcher based on the impact a feature has on the

reconstructed functional architecture diagram.

 88

6. Discussion

The importance of connecting Requirements Engineering and Software

Architecture in software development is long known. The rise of agile

development drove the wide adoption of User Stories by requirements engineers

and the introduction of microservice architecture created independently

deployable modules running in different processes. While User Stories are small,

implementable units of work or simply descriptions of features, the higher-level

Epic Stories describe roadmap themes that can be used as an input for User Story

formulation, focusing explicitly on the motivation and expected outcome of such

a group of User Stories. The Requirements Engineering for Software Architecture

(RE4SA) model has been proposed as a guidance to improve communication

between requirements engineers and software architects, grounded in the idea that

they contribute reciprocally to achieve their goals and exchange artifacts in the

process [25].

In this thesis, we aimed to find out how the RE4SA model could be applied in an

existing software product, using architecture recovery to reconstruct a functional

architecture and crowdsourcing to gather, negotiate and prioritize new

requirements. A set of sub questions, introduced in section 2.1, has been drawn

up to cover the different aspects of this interdisciplinary study. We combined an

extensive literature review with a case study at Tournify. This Amsterdam-based

software development company provides an online tournament manager, used by

sports and e-sports tournament and competition organizers. The web application

provides functionality to manage participants, create match schedules based on

any tournament format and process results as the tournament processes.

The results from the literature study as well as the case study are used to formulate

an answer to the sub research questions, which we will discuss in the subsequent

section of this chapter. Then, we will answer the main research question and draw

the main conclusions from this study. In the last sections, we cover both internal

and external validity threats and provide directions for further research.

 89

6.1. Answering the sub research questions

The seven sub research questions formulated for this thesis will be covered in three

different subsections. We start by providing a theoretical foundation for the link

between requirements engineering and software architecture. We do not cover the

sub research question in numerical order but focus on each side of the RE4SA

model separately. We first discuss the principles in software architecture, show

how we extracted features and modules from the graphical user interface and

analyze the quality and usefulness of the recovered architecture. Lastly, we discuss

the principles in requirements engineering theory, cover how we designed a

crowdsourcing platform and evaluate its effect.

6.1.1. Linking requirements engineering and software

architecture

The core principle of requirements engineering (RE) is to extract informal

stakeholders’ needs and translating them into formal specifications, ready to be

used as an input for development of a software system [31]. A software

architecture (SA) of such a software system contains “its fundamental concepts or

properties in its environment, embodied in its elements, relationships and the

principles of its design and evolution” [77, p. 2]. SA facilitates the communication

among stakeholders, supports early design decisions and provides a transferable

abstraction of a system [76]. A SA needs to be “stable, yet adaptable, in the

presence of changing requirements” [1, p. 115]. In other terms: intertwining

specification and implementation is required [24].

The first sub question concerns this relationship between RE and SA and can be

answered based on the literature review. The Twin Peaks Model [1] demonstrates

how more detailed specifications are produced progressively and dependency on

the implementation increases in the mapping from requirements to architectural

design. Lucassen et al. [25] showed how software product managers and software

architects contribute reciprocally to achieve their goals and exchange artifacts (like

“product requirements” and “architectural design decisions”) in the process.

 90

SRQ1 HOW ARE REQUIREMENTS ENGINEERING AND SOFTWARE ARCHITECTURE RELATED

AND HOW IS THIS REFLECTED IN THE RE4SA MODEL?

The RE4SA model (Figure 6.1), developed at Utrecht University, aims to provide

approaches or guidelines for requirements engineers and software architects to

cooperate. The relationship between RE and SA is reflected in the RE4SA model

by four artifacts they exchange. Artifacts the requirements engineers and software

architects may be already familiar with, because they are frequently used in Agile

development.

Figure 6.1: The RE4SA model [4]

User Stories are the most detailed representation of requirements and contain a

persona (role), action and benefit, formulated in one full sentence. The

requirements engineers communicate these User Stories to the software architects,

who use them to position Features in a Feature Diagram. A group of features is

called a Module and a Functional Architecture Diagram is used to visualize the

modules of an application and the information that flows between them. Modules

are on the same representation level as Epic Stories, which are used by the

requirements engineers to group User Stories and frame every design problem,

focusing on (1) the triggering event or situation, (2) the motivation and goal, and

(3) the intended outcome.

 91

6.1.2. Software architecture

Although SA is sometimes pictured as a typical non-agile process, projects that

lack architectural focus will fall behind. Organizations should balance between

adaption (agility) and anticipation (architecture) in which it is important to

understand the context to define how much architecture is needed for a given

project [81].

In order to answer SRQ3, we cover each type of architectural diagram mentioned

in the question in more detail based on the literature review.

SRQ3 WHAT ARE THE PRINCIPLES IN SOFTWARE ARCHITECTURE THEORY REGARDING

CONTEXT DIAGRAMS, FUNCTIONAL ARCHITECTURE DIAGRAMS AND FEATURE

DIAGRAMS?

We start from a context viewpoint, which is used to describe the relationships,

dependencies, and interactions between the system and its environment [15]. A

technique to create a view from a context viewpoint is a Context Diagram. This

diagram can serve as “a useful starting point for describing and defining the

system’s mission and operational environment, showing the interaction of a

system with all external entities that may be relevant to its operation” [16, p. 266].

The context viewpoint sets the scope for the functional viewpoint. A functional

view “documents the system’s functional structure – including the key functional

elements, their responsibilities, the interfaces they expose, and the interactions

between them” [15, p. 41]. A Functional Architecture Diagram (FAD) is a view

from this viewpoint, representing the primary functionality of a software product

[17]. The functional architecture can be modeled in multiple layers, usually in two

or three layers. On the lowest layer, each (sub)module is supported by features.

These features, “prominent or distinctive user-visible aspects, qualities or

characteristics” [85, p. 3], are represented in a Feature Diagram. In the three-

structure of such a diagram we can mark features as optional or mandatory and

define relationships between groups of features.

 92

Creating a Feature Diagram was the first step in reconstructing the software

architecture of an existing application (SRQ4). We used the graphical user interface

(GUI) to extract features manually. We opened every page on the application and

clicked on every button, link or entry field. The site page hierarchy was used to

group features and the naming of a feature is based on the label of the UI element,

if available.

SRQ4 HOW CAN FEATURE EXTRACTION SUPPORT THE RECONSTRUCTION OF THE SOFTWARE

ARCHITECTURE OF AN EXISTING SOFTWARE PRODUCT?

Since the reconstructed Feature Diagram consisted of nearly 200 features, we

needed to abstract the information to a higher level in order to facilitate

interpretation. We did that by identifying (sub)modules in the Feature Diagram,

which correspond to the software product parts that implement the respective

functions. We then created an interactive presentation where one can navigate

between the application overview, modules and submodules.

The recovered architecture contains eight modules. For six out of the eight

modules, the module is supported by 3.5 submodules on average. In total, 21

submodules are used, and 198 atomic features are captured in the recovered

functional architecture. That means that each module contains 25 features on

average. The Feature Diagrams have an average degree of 4,2 and average depth

of 2,2, indicating the number of features that is present on the first layer of the

Feature Diagram and maximum number of layers in the diagram respectively.

SRQ6 WHAT IS THE PERCEIVED QUALITY AND USEFULNESS OF THE RECONSTRUCTED

SOFTWARE ARCHITECTURE, WHEN CREATED BASED ON FEATURE EXTRACTION FROM

AN EXISTING SOFTWARE PRODUCT?

The reconstructed architecture has been evaluated based on quality and usefulness

in an interview with the lead developer of the reconstructed application (SRQ6).

He states that the architecture and modeling style are very clear: “The architecture

matches the code base very closely. In my feeling, it works well with React, because

the application is divided into components, in a similar way the architecture

 93

consists of different modules.” React is an open-source JavaScript library used for

the creation of the interactive user interfaces of the application. Mainly the naming

of features and (sub)modules varies between the model and code base. He

suggests working together with the product owner to improve both the

architecture model and code base at the same time: “We can improve the code by

means of this model and we can improve the model on the basis of the code. The

first approach may even work best. The more the two correspond, the better.”

A feature diagram with a high depth indicates that multiple clicks needs to be

performed in order to perform an action by the user. Although this may seem to

complexify the application, the developer argues that grouping features and

giving them the right naming actually may simplify the user interface.

The reconstructed architecture is perceived as useful in three aspects: it will (1)

improve communication between the product owner and software architect, may

help to (2) make an estimation of the workload of new developing additional

features, and to (3) prepare new developers unfamiliar with the code base –

compared to the previous situation in which no documentation existed.

6.1.3. Requirements engineering

Traditional requirement activities – elicitation, analysis and negotiation,

documentation, validation, and management – do not take the iterative processes

of agile software development into account and changed accordingly over the

years. However, agile RE does not only alleviate challenges of traditional RE, but

also poses new ones. Minimal documentation, customer inability, customer

agreement and inappropriate architecture are reported as some of the challenges

of agile RE [21]. A proper use of artifacts can overcome the documentation

problems and organizations apply different techniques to do so.

In order to answer SRQ2, we cover each artifact mentioned in the question in more

detail based on the literature review.

 94

SRQ2 WHAT ARE THE PRINCIPLES IN REQUIREMENTS ENGINEERING THEORY REGARDING

JOBS, EPIC STORIES, USER STORIES AND CROWDSOURCING?

The notion that customers hire products to do specific jobs for them is the basic

principle of the theory of Jobs To Be Done (JBTD). Customers should not be asked

what they want, but what they want as an outcome instead. We’ve analyzed the

three different views on the theory by the authorities on this domain: Antony

Ulwick, Clayton Christensen and Alan Klement. Their main disagreements

concern the definition of JTBD, in which we distinguish between do-goals

(activities and tasks) and be-goals (progress), and the dimensions of JTBD. We can

still argue that each Job, written in natural language, consists of a struggle, goal

and (optionally) contextual clarifier. While a high-level Job shines a new light on a

business, its customers and competition, it does not provide a tool for a design or

product team to work with during software development. Therefore, each design

problem can be framed as an Epic Story, focusing on the triggering event or

situation, the motivation and goal, and the intended outcome. To stimulate

creativity while designing the implementation, an Epic Story covers the why

instead of the who and how. A User Story does include a persona and can be

defined as a description of a feature written from the perspective of the person

who needs this. A User Story contains a role, goal and benefit.

There is a tight coupling of User Stories with Agile methods, as shown by Lucassen

et al. [97] based on a large survey among practitioners in the software industry.

Despite the rise of crowdsourcing in RE, those User Stories are still mostly written

by professionals from inside the organization. However, Crowd-Centric

Requirements Engineering has been a proven way to help fostering user

involvement and has been perceived by users as more useful and more engaging

compared with previous feedback experiences [7], [54]. Therefore, we designed a

crowdsourced requirements engineering platform to allow end-users to gather,

negotiate and prioritize requirements in the form of User Stories (SRQ5).

 95

SRQ5 HOW CAN A CROWDSOURCED REQUIREMENT ENGINEERING PLATFORM BE DESIGNED

TO SUPPORT THE ELICITATION, NEGOTIATION, AND PRIORITIZATION OF USER STORIES

FOR AN EXISTING SOFTWARE PRODUCT?

The crowdsourced requirements engineering platform needs to enable users of a

software application to submit feature requests in the strict format of User Stories

- containing a role, goal and benefit. In order to help users to formulate these

stories, even if they have never seen or heard of a User Story before, we used a

form with four simple self-explanatory and small steps. In the first step, the user

needs to select one of the roles from the predefined options using radio buttons, to

find out in which role the requester uses the application. In the second step, we

ask the user to type in what he or she wants to do with the application and provide

an input field starting with the static text “I want to”. In step 3, we ask explicitly

why the user wants to have the requested feature, to know what the user sees as

the potential benefit when the feature would be implemented in the software

application. The answer always contains the predefined “So that” at the start. In

the last step, the user is able to verify the User Story that has been formulated based

on the answers he or she provided in the first three steps. We also ask the user to

select one of the predefined categories, so we can group the feature requests.

All requests are published on a feature request overview page in the application,

which also allows other users to view ideas, comment on ideas and vote on ideas

using the confirmation or negation technique.

SRQ7 WHAT IS THE EFFECT OF USING A CROWDSOURCED REQUIREMENTS ENGINEERING

PLATFORM TO SUPPORT THE ELICITATION, NEGOTIATION, AND PRIORITIZATION OF

USER STORIES FOR AN EXISTING SOFTWARE PRODUCT?

In order to answer SRQ7, the feature request platform has been deployed and we

measured the results for a period of five week. In those weeks, had 157 unique

visitors on the feature request platform. From those visitors, 39 users interacted

with the platform by submitting an idea (23), voting on an idea (28), and/or

commenting on an idea (9). Together, they submitted 57 ideas, voted 89 times and

commented 14 times. More than half of the requesters (15, 65%) submitted only

 96

one idea, two users submitted respectively two and three ideas and four users

submitted five or more ideas (respectively 5, 6, 7, and 14 ideas).

We evaluated the perceived usefulness of the platform based on a questionnaire

(13 respondents) among the users who interacted with the platform. They

perceived the platform as very useful, regarding all four possible interactions

when rated on a five-point Likert scale: requesting (M = 4.9; SD = 0.28), viewing

(M = 4.8; SD = 0.38), voting (M = 4.5; SD = 0.88), and commenting (M = 4.5; SD =

0.66). These findings are in line with the work of Snijders et al. [55] who

demonstrated how voting and commenting on a gamified crowdsourcing

platform was perceived as very useful. The users also felt more engaged compared

to previous feedback experiences, whereas we did not explicitly compare our

platform to other feedback forms or alternative notations to express requirements.

Almost 77% of the respondents has never written a User Story before. When asked

if they find it helpful to formulate the ideas as User Stories, compared to free texts,

the average score was 3.6 (SD = 0.87). There is hardly any preference to write the

feature requests in free text (M = 3.2; SD = 0.99).

Each User Story has been tested against eight criteria from the Quality User Story

framework. Most frequent occurring defects are User Stories violating the minimal

criterion (42.9%) or not being written as one full sentence (33.9%). Lucassen et al.

[9] tested 1000+ User Stories written by professionals from different companies

and found that the minimal criterion is violated in 13.3% of the cases. Based on this

observation we can conclude that crowdsourced User Stories are currently over

three times more likely to contain comments, descriptions of the expected

behavior, or testing hints, when compared to those written by professionals. This

additional information should be left to the comment section of the platform The

violation of the minimal criterion is also reflected in the length of the

crowdsourced User Stories. The goal is expressed in 108 characters on average and

crowd workers needed 97 characters on average to formulate the potential benefit.

When compared to 551 real-world English User Stories from eight different

projects, retrieved from a publicly available data set [98], we found the means plus

end of the Dutch crowdsourced User Stories (204 characters) to be over two times

 97

longer than the User Stories written by professionals (97 characters), which had an

average goal description of 51 characters and benefit expression in 55 characters,

if present. The length of the crowdsourced User Stories is similar to the length of

the feature requests that were sent in by email or the support chat (192 characters)

prior to the deployment of the platform. Note that we did not count the terms from

the User Story format (‘I want to’ and ‘so that’) and did not control for the

information density of the different languages the User Stories are written in.

Moreover, 17% of the real-world User Stories lack a description of its benefit. There

is also a major difference in the use of roles. We defined three roles for the Tournify

application (organizer, participant, supporter). All requesters indicated they are

organizers, whereas professionals use 12 roles on average in their User Story set.

The crowdsourced User Stories and User Stories written by professionals show a

similar number of defects regarding the well-formed criterion (5.4% crowd, 4.5

professionals) and atomic criterion (8.9% crowd, 10.3% professionals). In total, 52%

of the crowdsourced User Stories meet all requirements, meaning that 48% of the

User Stories contains one or more easily preventable error(s). Lucassen et al. [9]

conclude that 56% of User Stories written by professionals have at least one defect

as detected by their automatic testing tool. However, these results are difficult to

compare as Lucassen et al. [9] tested against less, but different, criteria from the

framework than we did.

Based on our results, we see opportunities for improving the crowdsourced

requirements engineering platform to enhance the quality of the User Stories.

Defects on the minimal and full sentence criteria can be prevented with simple

means like a spelling checker and warnings when there is additional text after a

dot, hyphen, semicolon, or other separating punctuation marks. Text between

brackets should also trigger a warning message on the screen.

Lastly, the crowdsourced User Stories have been evaluated based on their

complexity by the developer of Tournify. Most of the crowdsourced User Stories

(90 percent) can be developed within one workday. The hour estimation has been

mapped against the estimation of the complexity we made based on the impact a

 98

feature would have on the functional architecture, showing a moderate positive

correlation (rs = 0.56, p = < .001). This result shows that end-users mainly require

small additions or changes to the software application and also sets the way for

further analysis on (automatically) linking new requirements to existing functional

architecture modules for the purpose of workload estimation.

Since we also have information on the requirements management practices of

Tournify prior to the deployment of the platform, it is valuable to dive deeper into

the impact the platform had on the organization. One of the aspects it may

influence is the workload of the requirements engineer, who spends an average of

ten minutes to process each request that comes in by phone or chat. During the

testing period, 17 features were requested through one of those media, bypassing

the feature request platform (Table 9). In most cases, those users were unaware the

platform existed. When corrected for the duration of the measurement, the number

of ideas that were sent in every day remained unchanged. However, since the

number of organizers using the service increased with over 175%, this saves the

requirements engineer an estimated two hours of work per month. Although this

time saving seems currently insignificant, it will have an impact when the business

grows. Still it is fair to say that the main benefit of having a crowdsourced

requirements platform is to engage users and gather, prioritize and negotiate high-

quality requirements, rather than replacing the work of the requirements engineer.

 Pre-introduction Post-introduction

Unique page views 5678 2363

Duration of measurement (days) 153 36

Unique page views per day (average) 37 66

Requested ideas via email or chat 77 17

Ideas per 1000 unique page views 13,6 7,2

Ideas per day 0.50 0.47

Table 9: Feature requests via email or chat pre- and post-introduction
of the crowdsourced requirements engineering platform

 99

6.2. Answering the main research question

In this study we aimed to find an answer to the following main research question:

RQ HOW CAN THE REQUIREMENTS ENGINEERING FOR SOFTWARE ARCHITECTURE MODEL

(RE4SA) BE APPLIED IN EXISTING SOFTWARE PRODUCTS, WHILE MAKING USE OF

CROWDSOURCING IN REQUIREMENTS ENGINEERING?

The RE4SA model intends to improve communication between requirements

engineers and software architects through “simple communication means, clear

structural guidelines, and consistent domain terminology” [4]. This is done by

linking existing artifacts that are already used by practitioners in the software

industry. In the RE4SA model, a relationship is established between Epic Stories,

User Stories, Modules, and Features. By applying the principles of the RE4SA

model to the case of an existing software application, we aimed to find out how

organizations can benefit from it, even if artifacts are missing. We combined the

RE4SA model with crowdsourcing in requirements engineering. The answer to the

research question is twofold:

1. For reconstructing a functional architecture based on the principles of the

RE4SA model, the graphical user interface (GUI) of an application is a

valuable asset. This process consists of (1) feature extraction to create a

Feature Diagram, (2) abstracting the information to identify (sub)modules

for a Functional Architecture Diagram and (3) presenting the information

in a friendly way so both requirements engineers and software architects

can understand each functionality of a software product. The reconstructed

architecture is useful for code refactoring, improves internal

communication and serves as a resource in continuous development.

2. A newly developed crowdsourced requirements engineering platform

allows users of an application to express feature requests in the form of

User Stories. This platform uses a form with four small and interconnected

steps. Not only requesting features, but also viewing features from other

users, rating features, and commenting on features are perceived as very

 100

useful by the crowd workers. Although enhancements to the platform may

be necessary to produce User Stories with less violations of the minimal

and full sentence quality criteria, more than half of the User Stories are

written flawlessly by people mostly unfamiliar with the concept.

Establishing links between the crowdsourced User Stories and the

functional architecture based on the RE4SA model gives an indication of

the development workload and solution design.

6.3. Conclusion

Since we answered all sub research questions and formulated an answer to the

main research question of this study, we can now draw the main conclusions from

this research project. We combined a literature review with a single-case Technical

Action Research to assess the effects of the RE4SA principles in a business context,

while helping a client at the same time.

During the research, we recovered the functional architecture of Tournify, a web

application used by sports associations to organize tournaments. The RE4SA

model and its related artifacts (features and modules) and modeling techniques

(Feature Diagrams and Functional Architecture Diagrams) have been used in the

architecture recovery, leading to an architecture that is useful for code refactoring,

improves internal communication and serves as a resource in continuous

development.

At the same time, an addition to the application has been made. A new feature

request platform allows end users to submit feature requests in the form of User

Stories. The platform was not only perceived as very useful by the customers who

interacted with it, but also delivered requirements that did not inferior to those

written by professionals, when tested on quality. However, minimality (a User

Story contains more information than necessary) was significantly worse than

User Stories written by professionals. Newer versions of the feature request

platform will focus on improving the quality of requirements by providing real

time feedback to requesters, who mostly have never written User Stories before.

 101

Finally, we have performed a first attempt to establish links between the

crowdsourced User Stories and the functional architecture based on the RE4SA

model. Our findings show how the recovered architecture can be used as an

indication of the development workload of new User Stories, written by crowd

workers.

6.4. Validity threats

Reflecting on the validity of this study, we cover both external and internal validity

threats. Regarding the generalizability of this study, the main concern is that we

performed a single-case study. The nature of this study is explorative, and this is

one of the first attempts to bring the RE4SA principles from the literature study to

conditions of practice in an organization. To mitigate this risk, multiple students

from the Requirement Engineering lab at Utrecht University are working on other

cases at different organizations. The results of this thesis have to be considered in

this broader perspective. In our study, for example, there was only one developer

we could interview regarding the software architecture. Not only the (size and

type of the) organization can have an impact on the results but also the size and

programming language of the application, and presence of development artifacts

need to be taken into account. Furthermore, we focused solely on the applicability

of the artifacts from the RE4SA model in our case study, and therefore refrained

from comparing our techniques to alternative formalisms or notations to express

requirements and architectures.

Most of the work in this thesis has been done manually by only one researcher,

like the theory construction, extraction of features and identification of modules.

Although we did our best to describe the taken procedures carefully and made all

materials available in the appendices or online, this causes validity threats

regarding the reproducibility of this study. The personal involvement of the main

researcher at Tournify, and how we dealt with this concern, has been extensively

covered in section 4.1.1. Even despite we followed the steps of Canonical Action

Research carefully to ensure the rigor and relevance of this study, it is still possible

 102

that the results are influenced because respondents modified their responses

because they knew they were part of a study (known as the Hawthorne effect).

The biggest limitation regarding the crowdsourced requirements engineering

platform is the small sample size. Over half of the crowdsourced User Stories is

written by four users. This means that their expertise highly influenced the overall

results regarding the quality evaluation.

6.5. Future research

There have been several studies focusing on User Stories in recent years. Also

crowdsourced requirements engineering gained attention. However, this is the

first study to combine the two interest fields, by focusing explicitly on User Story

writing by crowd workers. We can continue this work by implementing direct

feedback techniques during the User Story formulation to improve the syntactic

quality. Further research can also focus on the usefulness of having a role in User

Stories written by crowd workers, can focus on the interplay between Epic Stories

and User Stories, and possibility to combine crowdsourcing with crowdfunding in

the development of new features. The expertise of crowd workers, in relation to

their involvement with the software product is also worth investigating in further

research.

Regarding the functional architecture (recovery) more research is needed on

(automated) architecture recovery techniques and how to keep an architecture up

to date. Dedicated (web-based) modelling tools based on the RE4SA model can be

developed and tested to support traceability between requirements and

architecture. Also interesting is the use of Natural Language Processing (NLP) to

support traceability and estimate the workload of new requirements by linking

text in the User Stories to names of features and (sub)modules in the architecture.

Lastly, we are interested in the relation between the depth and degree of a Feature

Diagram and the perceived complexity of a user interface.

 103

Bibliography

[1] B. Nuseibeh, “Weaving together requirements and architectures,” Computer (Long.
Beach. Calif)., vol. 34, no. 3, pp. 115–119, 2001.

[2] G. Lucassen, M. van de Keuken, F. Dalpiaz, S. Brinkkemper, G. W. Sloof, and J.
Schlingmann, “Jobs-to-be-Done Oriented Requirements Engineering: A Method for
Defining Job Stories,” in International Working Conference on Requirements
Engineering: Foundation for Software Quality, 2018, pp. 227–243.

[3] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper, “Improving
user story practice with the grimm method: A multiple case study in the software
industry,” in International Working Conference on Requirements Engineering:
Foundation for Software Quality, 2017, pp. 235–252.

[4] S. Brinkkemper, “The Requirements Engineering for Software Architecture
Model,” unpublished.

[5] R. Blessinga, “Designing for the Automated Greenhouse - Matching Requirements
and Architecture for Startup Product Specification Using Epic Stories,” Utrecht
University, 2018.

[6] G. Rasool and N. Asif, “Software architecture recovery,” Int. J. Comput. Information,
Syst. Sci. Eng., vol. 1, no. 3, 2007.

[7] R. Snijders, F. Dalpiaz, M. Hosseini, A. Shahri, and R. Ali, “Crowd-centric
requirements engineering,” in Proceedings - 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, UCC 2014, 2014.

[8] S. Martens, S. Brinkkemper, and F. Dalpiaz, “Ontological Traceability for Software:
A new avenue for software traceability,” 2018.

[9] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper, “Improving
agile requirements: the Quality User Story framework and tool,” Requir. Eng., no.
21(3), pp. 383–403, 2016.

[10] E. Enkel, C. Kausch, and O. Gassmann, “Managing the risk of customer
integration,” Eur. Manag. J., 2005.

[11] R. Wieringa, Design Science Methodology for Information Systems and Software
Engineering. 2014.

[12] M. Cohn, User stories applied: For agile software development. Addison-Wesley
Professional, 2004.

[13] C. M. Christensen, T. Hall, K. Dillon, and D. S. Duncan, “Know Your Customers’
‘Jobs to Be Done,’” Harv. Bus. Rev., 2016.

[14] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins, “Modeling
software architectures in the Unified Modeling Language,” ACM Trans. Softw. Eng.
Methodol., vol. 11, no. 1, pp. 2–57, 2002.

[15] N. Rozanski and E. Woods, Software systems architecture: working with stakeholders
using viewpoints and perspectives. 2005.

[16] A. Kossiakoff, W. N. Sweet, S. J. Seymour, and S. M. Biemer, Systems engineering
principles and practice, vol. 83. John Wiley & Sons, 2011.

 104

[17] S. Brinkkemper and S. Pachidi, “Functional architecture modeling for the software
product industry,” in European Conference on Software Architecture, 2010, pp. 198–
213.

[18] M. Riebisch, “Towards a more precise definition of feature models,” Model. Var.
Object-Oriented Prod. Lines, pp. 64–76, 2003.

[19] J. Webster and R. T. Watson, “Analyzing the Past to Prepare for the Future: Writing
a Literature Review.,” MIS Q., 2002.

[20] E.-M. Schön, J. Thomaschewski, and M. J. Escalona, “Agile Requirements
Engineering: A systematic literature review,” Comput. Stand. Interfaces, 2017.

[21] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A systematic
literature review on agile requirements engineering practices and challenges,”
Computers in Human Behavior. 2015.

[22] R. Davison, M. G. Martinsons, and N. Kock, “Principles of canonical action
research,” Inf. Syst. J., vol. 14, no. 1, pp. 65–86, 2004.

[23] R. Wieringa and A. Moralı, “Technical action research as a validation method in
information systems design science,” in International Conference on Design Science
Research in Information Systems, 2012, pp. 220–238.

[24] W. Swartout and R. Balzer, “On the inevitable intertwining of specification and
implementation,” Commun. ACM, 1982.

[25] G. Lucassen, F. Dalpiaz, J. M. Van Der Werf, and S. Brinkkemper, “Bridging the
twin peaks: the case of the software industry,” in Proceedings of the Fifth International
Workshop on Twin Peaks of Requirements and Architecture, 2015, pp. 24–28.

[26] E. Stachtiari, A. Mavridou, P. Katsaros, S. Bliudze, and J. Sifakis, “Early validation
of system requirements and design through correctness-by-construction,” J. Syst.
Softw., vol. 145, pp. 52–78, 2018.

[27] A. Alebrahim and M. Heisel, Bridging the Gap Between Requirements Engineering and
Software Architecture. Springer, 2017.

[28] G. Lucassen, J. M. E. M. van der Werf, and S. Brinkkemper, “Alignment of software
product management and software architecture with discussion models,” in
Software Product Management (IWSPM), 2014 IEEE IWSPM 8th International Workshop
on Software Product Management (IWSPM), 2014, pp. 21–30.

[29] A. Klement, When coffee and kale compete: Become great at making products people will
buy. CreateSpace Independent Publishing Platform, 2018.

[30] T. Salfischberger, I. van de Weerd, and S. Brinkkemper, “The Functional
Architecture Framework for organizing high volume requirements management,”
in Software Product Management (IWSPM), 2011 Fifth International Workshop on, 2011.

[31] J. Dick, E. Hull, and K. Jackson, Requirements engineering. Springer, 2017.

[32] A. W. Ulwick, Jobs to be done: theory to practice. Idea Bite Press, 2016.

[33] C. M. Christensen and M. E. Raynor, The Innovator’s Solution: Creating and Sustaining
Successful Growth. 2003.

[34] A. W. Ulwick, “Alan Klement’s War On Jobs-To-Be-Done,” 2016. [Online].
Available: https://jobs-to-be-done.com/alan-klements-war-on-jobs-to-be-done-
dad8eaed567c. [Accessed: 18-Oct-2018].

 105

[35] A. W. Ulwick, Business strategy formulation: theory, process, and the intellectual
revolution. Quorum Books Westport, 1999.

[36] A. W. Ulwick, What customers want: Using Outcome-Driven Innovation to Create
Breakthrough Products and Services. McGraw-Hill Professional Publishing, 2005.

[37] A. W. Ulwick, “Turn customer input into innovation.,” Harv. Bus. Rev., vol. 80, no.
1, pp. 91–97, 2002.

[38] J. L. Bower and C. M. Christensen, “Disruptive technologyies: catching the wave,”
Harv. Bus. Rev., 1995.

[39] C. M. Christensen, The Innovator’s Dilemma: When New Technologies Cause Great
Firms to Fail. Boston, MA: Harvard Business School Press, 1997.

[40] C. M. Christensen, T. Hall, K. Dillon, and D. S. Duncan, Competing Against Luck: The
Story of Innovation and Customer Choice. New York: HarperBusiness, 2016.

[41] D. Norman, The design of everyday things: Revised and expanded edition. Constellation,
2013.

[42] P. Adams, “The dribbblisation of design,” Inside Intercom, 2013. [Online]. Available:
https://intercom.com/blog/the-dribbblisation-of-design/. [Accessed: 16-Oct-
2018].

[43] A. Klement, “5 Tips For Writing A Job Story,” JTBD, 2013. [Online]. Available:
https://jtbd.info/5-tips-for-writing-a-job-story-7c9092911fc9. [Accessed: 16-Oct-
2018].

[44] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper, “Forging
high-quality user stories: towards a discipline for agile requirements,” in
Requirements Engineering Conference (RE), 2015 IEEE 23rd International, 2015, pp.
126–135.

[45] A. Klement, “Replacing The User Story With The Job Story,” JBTD, 2013. [Online].
Available: https://jtbd.info/replacing-the-user-story-with-the-job-story-
af7cdee10c27. [Accessed: 16-Oct-2018].

[46] A. Klement, “Designing Features Using Job Stories,” JTBD, 2013. [Online].
Available: https://jtbd.info/designing-features-using-job-stories-41d20fc7ade6.
[Accessed: 16-Oct-2018].

[47] B. Wake, “INVEST in Good Stories, and SMART Tasks,” 2003. [Online]. Available:
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/. [Accessed:
18-Oct-2018].

[48] M. Daneva et al., “Agile requirements prioritization in large-scale outsourced
system projects: An empirical study,” J. Syst. Softw., vol. 86, no. 5, pp. 1333–1353,
2013.

[49] O. Liskin, K. Schneider, F. Fagerholm, and J. Münch, “Understanding the role of
requirements artifacts in kanban,” in Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software Engineering - CHASE 2014, 2014, pp. 56–
63.

[50] N. Tripathi et al., “An anatomy of requirements engineering in software startups
using multi-vocal literature and case survey,” J. Syst. Softw., vol. 146, pp. 130–151,
2018.

[51] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of crowdsourcing in
software engineering,” J. Syst. Softw., vol. 126, pp. 57–84, 2017.

 106

[52] M. Hosseini, A. Shahri, K. T. Phalp, J. Taylor, R. Ali, and F. Dalpiaz, “Configuring
crowdsourcing for requirements elicitation,” in The IEEE Ninth International
Conference on Research Challenges in Information Science (RCIS’15), 13--15 May 2015,
Athens, Greece, 2015.

[53] M. Hosseini, K. Phalp, J. Taylor, and R. Ali, “Towards crowdsourcing for
requirements engineering,” in CEUR Workshop Proceedings, 2014.

[54] F. Dalpiaz, R. Snijders, S. Brinkkemper, M. Hosseini, A. Shahri, and R. Ali,
“Engaging the crowd of stakeholders in requirements engineering via
gamification,” in Gamification, S. Stieglitz, C. Lattemann, S. Robra-Bissantz, R.
Zarnekow, and T. Brockmann, Eds. Springer, 2017, pp. 123–135.

[55] R. Snijders, F. Dalpiaz, S. Brinkkemper, M. Hosseini, R. Ali, and A. Özüm, “REfine:
A gamified platform for participatory requirements engineering,” in 1st
International Workshop on Crowd-Based Requirements Engineering (CrowdRE’15), Co-
Located with RE’15, 24 August 2015, Ottawa, Canada., 2015.

[56] A. Adepetu, K. A. Ahmed, Y. Al Abd, A. Al Zaabi, and D. Svetinovic,
“CrowdREquire: A Requirements Engineering Crowdsourcing Platform.,” in AAAI
Spring Symposium: Wisdom of the Crowd, 2012, pp. 2–7.

[57] S. L. Lim, “Social networks and collaborative filtering for large-scale requirements
elicitation,” University of New South Wales, 2011.

[58] S. L. Lim and A. Finkelstein, “StakeRare: using social networks and collaborative
filtering for large-scale requirements elicitation,” IEEE Trans. Softw. Eng., vol. 38,
no. 3, pp. 707–735, 2012.

[59] S. L. Lim, D. Quercia, and A. Finkelstein, “StakeNet: using social networks to
analyse the stakeholders of large-scale software projects,” in Proceedings of the 32nd
International Conference on Software Engineering, 2010, pp. 295–304.

[60] S. L. Lim, D. Quercia, and A. Finkelstein, “StakeSource: harnessing the power of
crowdsourcing and social networks in stakeholder analysis,” in Proceedings of the
32nd International Conference on Software Engineering, 2010, vol. 2, pp. 239–242.

[61] S. L. Lim, D. Damian, and A. Finkelstein, “StakeSource2. 0: using social networks
of stakeholders to identify and prioritise requirements,” in Proceedings of the 33rd
International Conference on Software Engineering, 2011, pp. 1022–1024.

[62] Barbary Software SL, “Feature Upvote,” 2019. [Online]. Available:
www.featureupvote.com.

[63] Sprinklr, “Get Satisfaction,” 2019. [Online]. Available: www.getsatisfaction.com.

[64] UserVoice Inc, “UserVoice,” 2019. [Online]. Available: www.uservoice.com.

[65] Pranav Singh, “Cadet,” 2019. [Online]. Available: www.getcadet.com.

[66] Pendo, “Receptive,” 2019. [Online]. Available: www.receptive.io.

[67] Instabug Inc, “Instabug,” 2019. [Online]. Available: www.instabug.com.

[68] D. Renzel, M. Behrendt, R. Klamma, and M. Jarke, “Requirements bazaar: Social
requirements engineering for community-driven innovation,” in 21st IEEE
International Requirements Engineering Conference (RE), 2013, pp. 326–327.

[69] P. Greenwood, A. Rashid, and J. Walkerdine, “UDesignIt: Towards social media for
community-driven design,” in The 34th International Conference on Software
Engineering (ICSE), 2012, pp. 1321–1324.

 107

[70] K.-J. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: a case study of
crowdsourcing software development,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 187–198.

[71] T. D. LaToza and A. van der Hoek, “Crowdsourcing in software engineering:
Models, motivations, and challenges,” IEEE Softw., vol. 33, no. 1, pp. 74–80, 2016.

[72] N. Sherief, W. Abdelmoez, K. Phalp, and R. Ali, “Modelling users feedback in
crowd-based requirements engineering: An empirical study,” in IFIP Working
Conference on The Practice of Enterprise Modeling, 2015, pp. 174–190.

[73] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe, “Toward data-driven requirements
engineering,” IEEE Softw., vol. 33, no. 1, pp. 48–54, 2016.

[74] P. Clements et al., Documenting software architectures: views and beyond. Pearson
Education, 2002.

[75] “What is your definition of software architecture?,” Software Engineering Institute,
2010. [Online]. Available: https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=513807. [Accessed: 01-Nov-2018].

[76] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Addison-
Wesley Professional, 2003.

[77] ISO, “Systems and software engineering–architecture description,” ISO/IEC/IEEE
42010, 2011.

[78] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE Softw., vol. 12, no. 6,
pp. 42–50, 1995.

[79] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What industry needs
from architectural languages: A survey,” IEEE Trans. Softw. Eng., vol. 39, no. 6, pp.
869–891, 2013.

[80] N. Jansen and J. van Rhijn, “Utrecht Architecture Description Language,” 2018.

[81] P. Kruchten, “Software architecture and agile software development: a clash of two
cultures?,” in Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2, 2010, pp. 497–498.

[82] D. Falessi, G. Cantone, S. A. Sarcia, G. Calavaro, P. Subiaco, and C. D’Amore,
“Peaceful coexistence: Agile developer perspectives on software architecture,”
IEEE Softw., vol. 27, no. 2, 2010.

[83] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: improving the
design of existing code. Addison-Wesley Professional, 1999.

[84] M. Glinz, “Improving the quality of requirements with scenarios,” in Proceedings of
the second world congress on software quality, 2000, vol. 9, pp. 55–60.

[85] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Carnegie-Mellon Univ
Pittsburgh Pa Software Engineering Inst, 1990.

[86] D. A. Tamburri and R. Kazman, “General methods for software architecture
recovery: a potential approach and its evaluation,” Empir. Softw. Eng., vol. 23, no. 3,
pp. 1457–1489, 2018.

[87] A. E. Hassan and R. C. Holt, “Architecture recovery of web applications,” in
Proceedings of the 24th International Conference on Software Engineering, 2002, pp. 349–
359.

 108

[88] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design recovery: A
taxonomy,” IEEE Softw., vol. 7, no. 1, pp. 13–17, 1990.

[89] R. L. Krikhaar, Software architecture reconstruction. Philips Electronics, 1999.

[90] T. Lutellier et al., “Measuring the impact of code dependencies on software
architecture recovery techniques,” IEEE Trans. Softw. Eng., vol. 44, no. 2, pp. 159–
181, 2018.

[91] T. E. J. Vos, P. M. Kruse, N. Condori-Fernández, S. Bauersfeld, and J. Wegener,
“Testar: Tool support for test automation at the user interface level,” Int. J. Inf. Syst.
Model. Des., vol. 6, no. 3, pp. 46–83, 2015.

[92] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”
Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[93] N. A. Maiden and C. Ncube, “Acquiring COTS software selection requirements,”
IEEE Softw., vol. 15, no. 2, pp. 46–56, 1998.

[94] P. Berander and A. Andrews, “Requirements prioritization,” in Engineering and
managing software requirements, Springer, 2005, pp. 69–94.

[95] B. Kaplan and D. Duchon, “Combining qualitative and quantitative methods in
information systems research: a case study,” MIS Q., pp. 571–586, 1988.

[96] P. Paskevicius, R. Damasevicius, and V. Štuikys, “Quality-Oriented Product Line
Modeling Using Feature Diagrams and Preference Logic,” in International
Conference on Information and Software Technologies, 2012, pp. 241–254.

[97] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper, “The use
and effectiveness of user stories in practice,” in International Working Conference on
Requirements Engineering: Foundation for Software Quality, 2016, pp. 205–222.

[98] F. Dalpiaz, “Requirements data sets (user stories),” 2018. [Online]. Available:
http://dx.doi.org/10.17632/7zbk8zsd8y.1.

 109

Appendices

1. Criteria to ensure and to assess the rigor and

relevance of Canonical Action Research [22] and the

roles and responsibilities defined for this project

 110

Abel Menkveld Sjaak Brinkkemper Fabiano Dalpiaz Jesse

Lead researcher
(Utrecht University)

Product manager
(Tournify)

First supervisor
(Utrecht University)

Second
Supervisor
(Utrecht
University)

Software
developer
(Tournify)

Graduate Student
Business Informatics
(Utrecht University)

Co-founder (Tournify)

Professor (Utrecht
University)

Assistant
Professor (Utrecht
University)

Co-founder
(Tournify)

Responsible for the
thesis including the
literature review,
treatment design and
validation, and
conclusions.

Responsible for
providing feedback
during bi-weekly
group meetings and
individual meetings.
Also responsible for
the review of the
thesis.

Responsible for
the review of the
project proposal
and final
deliverable.

Responsible for
the implementa-
tion of the
crowdsourcing
platform and will
be interviewed in
the validation of
the recovered
architecture.

 111

2. Feature requests proposed by email or chat

Date Medium Feature Request (Dutch)

01-09-18 E-mail Er kwamen veel vragen binnen omtrent spelregels. Ik dacht: is het geen idee
om een extra optionele kopje te plaatsen met daarin de spelregels? Dat
scheelt een hoop uitleg en gedoe.

05-09-18 E-mail We organiseren een dart toernooi tussen 7 of 8 cafés. Nou zouden we graag
een schema willen genereren waarbij elk café 2 teams heeft, waarbij elk team
tegen alle andere teams gooit. Voorwaarde is dat er altijd één team thuis
gooit. We spelen 3 wedstrijden op een avond. Zie je kans om hiervoor een
schema te maken met Tournify?

06-09-18 Tijdschr. De tussenstand wil ik ook kunnen bekijken in het invoerscherm.
06-09-18 Tijdschr. Er mist uitleg bij opstellen van een toernooischema.
06-09-18 Tijdschr. Het zou handig zijn om he beheer van een toernooi te kunnen delen, zonder

het hele Tournify-account te delen.
06-09-18 Tijdschr. Beschikbaarheid van scheidsrechters beperken tot een deel van het toernooi.
07-09-18 Chat Ik zou graag een upgrade willen naar de 40 euro versie van Tournify. Alleen

ons bedrijf werkt alleen met factuurbetalingen. Is het mogelijk per factuur te
betalen?

09-09-18 E-mail Ik wil ervoor zorgen dat teams niet meer dan 2 wedstrijden achter elkaar
spelen. Ik zou dat in Tournify willen kunnen instellen, of oplossen door
wedstrijden op een tijd te plannen. Zo kan ik bijvoorbeeld een poule een
wedstrijdronde laten overslaan.

11-09-18 E-mail Je kunt geen extra sets (2e en eventuele 3e) invullen, wat noodzakelijk is
voor ons jaarlijkse recreatieve volleybaltoernooi.

11-09-18 E-mail Aansluitend op bovenstaand punt: weergave wedstrijdpunten per wedstrijd
nodig (set gewonnen 2 punten, gelijkgespeeld 1 punt, verloren 0 punten en
dan van alle 2 of 3 de sets bij elkaar opgeteld).

11-09-18 E-mail Per wedstrijd moeten dus de scores van alle sets + wedstrijdpunten van de
gehele wedstrijd getoond worden (set gewonnen 2 punten, gelijkgespeeld 1
punt, verloren 0 punten en dan van alle 2 of 3 de sets bij elkaar opgeteld).

11-09-18 E-mail Mogelijkheid tot instellen puntenopbouw van wedstrijdpunten (bij ons per
set 0 voor verlies, 2 bij winst en 1 bij gelijkspel).

11-09-18 E-mail Geen berekening van quotiënt aanwezig (saldo voor gedeeld door saldo
tegen). Aantal decimalen zouden dan instelbaar moeten zijn of voldoende
ruim. Wij hebben momenteel 3 decimalen.

11-09-18 E-mail Missende overzicht beste nummers 1, 2, 3, 4, etc. Gegevens in deze weergave
zouden moeten zijn: Saldo voor, saldo tegen, saldo totaal (saldo voor minus
saldo tegen) en quotiënt. Het komt in ons toernooi regelmatig voor dat het
aantal teams voor niet helemaal mooie verdelingen over de poules zorgt.
Het is dan belangrijk om beslissingen te kunnen maken op basis van
overzichten die de verschillen tussen bijvoorbeeld alle nummers 1 van elke
poule kunnen laten zien.

11-09-18 E-mail Optionele countdown op dia's zou fijn zijn zodat men kan zien hoe snel ze
moeten lezen.

11-09-18 E-mail Printweergave van alle wedstrijden zodat je een uitdraai voor in een
programmaboekje kunt maken (of wij moet in ons papieren
programmaboekje dat elk team vooraf ontvangt al naar onze website
verwijzen).

 112

11-09-18 E-mail Mogelijkheid tot opmerking toevoegen bij een wedstrijd met een belangrijke
mededeling. Bijvoorbeeld dat een wedstrijd van een andere poule is. Het
komt bij ons nog wel eens voor dat er 1 of meerdere poules zijn met meer
teams dan de andere poules en we laten dan altijd meerdere wedstrijden
tegelijk spelen uit die poule verspreid over de velden van andere poules die
dan niet spelen. De opmerking moet dan ook opvallend op het scorebord te
zien.

11-09-18 E-mail Ook zou het fijn als ik linkjes aan teams kan toevoegen naar onze eigen
website zodat als je erop klikt je meer info over het team kan zien met een
eventuele teamfoto.

11-09-18 E-mail Een API om gegevens uit te lezen en plaatsen op Tournify zou ook fijn. Zo
kunnen inschrijvingen op onze eigen website dan automatisch ook
doorgevoerd worden op Tournify. Dat scheelt wat handmatig werk.

11-09-18 E-mail Het zou fijn als er een app is die automatisch pushberichten stuurt met
updates van scores, poule-indelingen, etc.

12-09-18 Chat Ik wil graag een toernooi maken voor het tafelvoetballen op het werk. Het
probleem waar ik tegen aan loop is dat we 2 tegen 2 willen spelen in
roulerende teams. We zijn met 7 spelers en we willen graag een schema
maken waarin we in alle verschillende samenstellingen 1x tegen elkaar
spelen

12-09-18 Chat Hoe ga ik om met een schema van 32 waar ik 24 teams heb, waarvan een x
aantal dus een bye krijgen in de eerste ronde en ik die wedstrijden al kan
invullen met een bye en evt ook planning erop aanpassen?

12-09-18 E-mail Kunnen we ook een lunchschema toevoegen? Zodat het in schema is
opgenomen?

13-09-18 Chat Ik wil een toernooi organiseren (elke woensdagmiddag) met 10 kinderen.
Deze spelen op 2 veldjes 2 tegen 2, waardoor er dus steeds 2 aan de kant
staan en pauze hebben. Elk kind speelt steeds met een ander kind in het
team. Met 10 kinderen betekent dat ieder kind 9 wedstrijdjes speelt. Is het
mogelijk om een dergelijk toernooi opzet te genereren?

15-09-18 E-mail Ik zou liever de wedstrijdlengte / pauze tussen de wedstrijden ingeven in
cijfer en niet via een schuifbalk (het koste mij meerdere pogingen om 10
minuten te selecteren)

15-09-18 E-mail Ik zou graag een oplees functie hebben. Een kort een wat groter overzicht
van de volgende ronde, zodat je dat makkelijk kan oplezen

15-09-18 E-mail Ik zou graag een eenvoudige print functie hebben om de standen ook op
papier bij te houden. Als de internetverbinding wegvalt heb ik graag iets
achter de hand.

16-09-18 Chat Waarom zit er een maximum aan het aantal teams dat je kunt toevoegen aan
een poule? Het lijkt erop dat er maximaal 18 in kunnen en ik wil in 1 poule
46 teams plaatsen.

20-09-18 E-mail We hebben nu een competitie opgezet voor de JO11, JO13 en JO15. Nu
willen we van alle 3 de competities de dia's laten lopen, maar dat lukt denk
ik niet he? Zo ja, hoe kunnen we dat doen? Is het daarnaast handig om van
alle 3 de toernooien (3 verschillende linkjes), 1 toernooi en 1 link van te
maken? Kan dat? We moeten dan wel eigenlijk een startscherm hebben,
voorafgaand aan de competitie. 3 verschillende knoppen om zeg maar naar
de competitie te gaan.

20-09-18 Chat Zou het ooit mogelijk zijn om een oud toernooi tegen betaling te heropenen
voor hergebruik? Dit in plaats van het toernooi als nieuw te moeten
opbouwen?

24-09-18 Chat Ik ben volop Tournify aan het testen voor ons maandelijks dartstornooi.
Moeten in de poules de teams manueel worden toegewezen of kan Tournify

 113

dit zelf "loten"? Ons doel was om via software (zoals Tournify) handmatig
loten te vermijden zodat er geen discussies/fouten kunnen ontstaan.

30-09-18 E-mail Bij de FAQ’s zien we dat online inschrijven momenteel niet mogelijk is. Is
dat nog steeds zon en zo ja, wanneer wordt dat wel mogelijk? We hadden de
link naar de inschrijvingsmodule van Tournify namelijk graag opgenomen
in onze publieke communicatie die deze week de deur uitgaat.

02-10-18 Chat Hoe kunnen mensen zich opgeven voor het toernooi?
05-10-18 E-mail Bij de vlaggetjes werkt Tournify met Verenigd Koninkrijk, maar de landen

zijn gewend aan Engeland, Wales, Schotland en Ierland.
14-10-18 Chat Is het ook mogelijk om spelers aan clubs toe te voegen om op deze manier

topscoorders bij de te houden?
15-10-18 Chat Wij hebben poules van 5 teams en als ik het programma laat indelen door

jullie software moeten teams 2x achter elkaar spelen. Ik heb een schema
waarin dat niet hoeft. Nu kan ik ze natuurlijk handmatig verzetten, maar
door het programma dit te laten doen is natuurlijk veel makkelijker

15-10-18 Chat Een logo of wedstrijdshirt van de teams toevoegen zou dat ook in de
toekomst mogelijk zijn?

23-10-18 Chat Je moet een begin en einddatum invullen, zou er een optie kunnen komen
dat je dit weg kan laten?

24-10-18 Chat Ik wil Tournify gebruiken voor een biljart toernooi. Daar maakt niet
iedereen hetzelfde aantal caramboles. Bijvoorbeeld Speler A moet er 15,
maar Speler B moet er 10. ... Als de uitslag dan 14 - 10 is, heeft toch Speler B
gewonnen in dit voorbeeld. Zou je ook aan kunnen geven wie de winnaar is
(en waar dus de punten naar toe gaan) na het invullen van de uitslag

22-10-18 E-mail Kunnen we als een team gediskwalificeerd is, 1 punt in mindering geven?
22-11-18 E-mail Is er ook een iFrame voorzien voor bv het klassement?
05-12-18 E-mail Kunnen we de puntentabel handmatig aanpassen voor de punten van onze

andere activiteiten, deze zijn als volgt: BuurtBabbel, BuurtBijdrages,
BuurtBattle(Wedstrijden), Fairplay en totaal aantal punten die de
uiteindelijke klassering betalen.

06-12-18 E-mail Kan het schema vanuit 3 domeinen worden gekoppeld?
06-12-18 Chat Kunnen wij de achtergrond aanpassen van de buttons van de verschillende

divisies en fases? Het valt nu niet op voor de bezoekers dat je daarop kan
klikken.

10-12-18 Chat Is er ook een Tournify app in de Play Store?
14-12-18 Chat Kunnen we een print maken van het hele schema voor onszelf, zodat we

niet steeds op de pc hoeven te kijken?
15-12-18 E-mail Het viel me op dat in een schema voor 6 teams het eerste team 5x “thuis”

speelt en de rest allemaal 2x. Ik heb dit tijdens het toernooi aangepast maar
misschien is dit door jou ook aan te passen?

16-12-18 E-mail Bij het plannen van een toernooi heb je natuurlijk te maken met een
algoritme. Deze deed het in juli van dit jaar nog niet helemaal top waardoor
je als gebruiker zelf moet gaan schuiven met wedstrijden.

16-12-18 E-mail Het zou in mijn optiek prettig zijn als de ‘wedstrijdkaarten’ wat meer
‘vertellen’. Zo zou je bijvoorbeeld de divisies nog kunnen weergeven in het
kaartje (middels een box-shadow bijv. Zie bijlage)

16-12-18 E-mail Om te voorkomen dat teams te vaak achter elkaar spelen zou het fijn zijn om
dat snel inzichtelijk te hebben. Je zou bijvoorbeeld op het moment dat op
een teamnaam ‘hovert’ de andere wedstrijdkaarten waar dat team in
voorkomt ook kunnen oplichten.

 114

16-12-18 E-mail Een scheidsrechters/wedstrijdzaken (web)app zou heel erg handig zijn. Nu
komen de ‘wedstrijdpapiertjes’ van de scheidsrechters (zeker bij een groot
toernooi) pas na lange tijd binnen waardoor het speelschema in verdere
fasen pas erg laat bekend wordt. Uitbreiden zou richting de deelnemers
kunnen (‘abonneer op alle wedstrijden van team x, y en z) of richting de
scheidsrechter (toon al mijn wedstrijden + eenvoudig registreren van de
uitslag)

19-12-18 E-mail Hoewel het fantastisch is dat de tijden automatisch worden geüpdatet, is het
zo dat de app het speelschema ook update naar de ingestelde tijdzone van
de gebruiker. Zo hadden we een team uit Kaliningrad (+1 uur t.o.v.
Amsterdam) die daardoor dachten dat er om 11 uur gespeeld zou worden,
dit gaf de nodige rompslomp en organisatorische beslissingen. Ik snap dat
wanneer iemand de uitslagen op afstand wil volgen de juiste tijdzone
belangrijk is, maar aangezien de app voornamelijk gebruikt wordt door
teams die op dezelfde locatie zijn is dit een puntje om nogmaals naar te
kijken.

19-12-18 E-mail Is het ook mogelijk om aanmeldingen te beheren met Tournify? Voorgaande
jaren heb ik dit met de hand gemanaged: mensen vullen een formulier in op
onze website, en ik stuur een bevestiging, stuur de factuur, houdt bij of er
iets wijzigt en of iedereen op tijd betaalt, etc.. Dit bezorgt me ieder jaar heel
wat werk, en ik denk zo dat er bij deze klussen heel wat te automatiseren
valt. Is er dergelijke functionaliteit bij Tournify, of valt die toe te voegen?

27-12-18 Chat Hallo! Ik vroeg me af of ik ook een printje kan maken van de
wedstrijdschema`s. is er een printversie?

29-01-19 Chat De bestandsnaam van een afbeelding in een diavoorstelling tonen, zodat je
ziet welk plaatje op welke sheet staat.

02-01-19 Chat Kan je ook een toernooi kopiëren omdat ik op 1 avond 2 toernooien heb met
zelfde team namen?

03-01-19 Chat We werken met een 3e official bij de wedstrijden, die kunnen we niet kwijt.
Kunnen jullie deze in de komende versie opnemen?

03-01-19 Chat We hebben een wedstrijdduur per categorie/per dag. Dus de C speelt langer
dan de D. Is het mogelijk om dat variabel te maken?

03-01-19 Chat Wanneer er te veel wedstrijden in een poule zijn, dan getoond worden in de
diavoorstelling geeft hij aan "plus meer wedstrijden". Ik wil die echter ook
graag tonen.

03-01-19 Chat We hebben behoefte aan: 1) een overzicht van alle teams van een categorie
die meedoen die dag. 2) een overzicht van alle wedstrijden die op een veld
gespeeld worden.

03-01-19 Chat Hoe zou ik om kunnen gaan met gele/rode kaarten. We ontkomen er
eigenlijk niet aan om alle spelers te gaan melden bij het toernooi, of zie jij
een andere mogelijkheid?

03-01-19 Chat Tussen de teams die meedoen aan ons toernooi zit veel niveauverschil. Het
zal ideaal zijn als ik een team kan laten beginnen met 1, 2 of 3 of meer
punten.

07-01-19 E-mail De "beste nummer 3" moet komen uit een specifiek aantal poules, zodat een
team in de tweede fase nooit bij eenzelfde team in de poule terecht komt.

09-01-19 E-mail Vanuit het aanmelden is het een belangrijk verbeterpunt om meerdere teams
aan te kunnen melden.

09-01-19 E-mail Ik mis printfuncties (wedstrijdoverzicht voor omroeper, wedstrijdbriefjes op
A5 of 2 per A4).

09-01-19 E-mail Het vakje waarin je teams moet toevoegen om de planning te kunnen maken
is klein waardoor je steeds moet scrollen. Het zou handig zijn als dat groter
kan. Soms was je de cursor kwijt als hij op het tweede scherm was. Je moet

 115

dan onhandig het scherm draaien of uit de wagen lopen om hem weer te
vinden en terug te zetten.

09-01-19 E-mail Bij Plannen 2e ronde zou het handig zijn als bij het selecteren de 1e ronde
poules niet meer zichtbaar zijn.

09-01-19 E-mail Bij printen wedstrijdformulieren moet je in de 2e en finaleronde erop letten
dat je de bladen van de voorgaande ronde(s) niet print: als dit anders kan
worden ingericht

18-01-19 E-mail Is het mogelijk om op de dia's de volgende ronde te laten zien ipv de
verschillende poules?

18-01-19 E-mail Wij houden toernooien op verschillende locaties. De één heeft fantastische
WIFI, de ander slechte of zelfs geen. Is het mogelijk om het toernooi online
te maken en in te vullen als offlineversie?

18-01-19 E-mail Mocht het systeem onverhoopt haperen of offline gaan moeten wij verder op
papier. Om dat op te kunnen vangen zouden wij vooraf graag het gemaakte
schema uitprinten. We kunnen nu wel losse wedstrijden printen maar we
zouden graag het hele schema incl. volgende rondes achter de hand hebben.

18-01-19 E-mail Graag wilde ik voor tennis dubbel voor 8 spelers en 48 wedstrijden
organiseren. Opzet is dat je steeds een andere partner hebt en steeds andere
tegenstanders. Kan dit met Tournify?

23-01-19 E-mail Is de puntendeling (dus 3 - 1 - 0) punten aan te passen? Reden hiervoor is
dat de verschillende clubs strijden om een algehele prijs, maar elke club
heeft wel weer een verschillend aantal teams welke meedoen, de
puntendeling moet dan ook op een andere manier ingevuld worden om het
zo eerlijk mogelijk te laten zijn. Het betreft een toernooi voor 3 lokale clubs,
alleen Club A heeft meer teams dan Club B en Club C heeft weer meer
teams dan Club A en B. Aan het eind van het toernooi worden alle punten
bij elkaar opgeteld, de club met de meeste punten wint.

23-01-19 Chat Is het ook mogelijk om dezelfde poules ook in verschillende
diavoorstellingen te zetten?

27-01-19 Chat Als ik mijn toernooi op het beginscherm van mijn iPhone wil toevoegen,
bewaart hij de link naar de index.html i.p.v. mijn toernooi.

29-01-19 Chat Goedemorgen, is het ook een mogelijkheid om de uitslagen te integreren
binnen de eigen clubwebsite? Tournify lijkt ons een erg mooi systeem, maar
het zou natuurlijk ideaal zijn als het binnen de eigen website geïntegreerd
kan worden. Dan kunnen deelnemers en fans direct de uitslag via de eigen
clubsite bekijken. Ik hoor graag wat de mogelijkheden zijn!

29-01-19 Chat Is het mogelijk om een foto's te plaatsen bij de beschrijving die ik op de
publieke website wil tonen?

 116

3. User Stories for the Feature Request Tool

 117

4. Interview protocol: functional architecture

evaluation

Introduction

- Thank you for your willingness to cooperate on this interview

- This interview is being recorded

- We expect the interview to last 1 hour

- We want to cover three topics today: your previous experience with

functional architectures, opinion on the quality of the reconstructed

architecture and the usefulness of having an architecture in your daily

workflow.

Previous experience with functional architectures

- How long have you been coding?

o For which clients and as which roles?

o What type of projects and in which languages? Which platforms?

- Are you used to work with an architectural design up front?

- Did you have any education in software architecture?

- Did you ever create an architecture yourself?

- What do you consider as a good architecture, and a good GUI?

- How are your experiences in working with or without a software

architecture?

- How do you currently decide which feature belongs to which component

or when to create a new one?

o Do you consider this process easy or difficult? Why?

- Have you seen a Functional Architecture Model before? If not, explain.

- Have you seen a Feature Diagram before? If not, explain. (SPL.

Tournament License Upgrading as example)

Quality of the reconstructed architecture

- What are your thoughts on the quality of the reconstructed architecture?

- Is the modelling style comprehensible to you?

 118

- What do you think about the decision to split-up the application into the

layers: application, module, submodule, features?

o Are these layers detailed enough?

o Do you think the diagram would still be readable if we remove the

submodule layer?

- Can you instantly identify the features based on their name?

o What does the depth of the feature diagrams tell you? (Results

Processing)

o What does the degree of the feature diagrams tell you?

- To what extend do you see an overlap with the way your code base is

organized, or does it differ a lot?

- What is missing in this architecture / what can we do to improve it?

Usefulness of architecture

- How would you use this architecture in your daily work?

- Do you think it will benefit your work?

o What can be the advantages of using such an architecture?

o What would be the disadvantages of using an architecture?

- Do you think the quality of the code based would have been better if there

was an architecture upfront?

o Do you think having an architecture from now on will improve the

quality of the code base?

o Do you think having an architecture makes it easier to estimate the

workload of new requirements?

- What can be done to keep the architecture up to date?

o How can we make a link to the codebase?

- What do you think would be a good way to transfer your knowledge about

the code base to another developer? Will this architecture be beneficial in

transferring the knowledge?

Closing

- Do you have any remarks, comments or questions on the architecture or

the interview?

 119

5. Feature request platform evaluation questionnaire

Question Type

1 What is your opinion on the possibility to submit

feature requests via the Tournify Website?

5-point scale
not useful at all – very useful

2 What is your opinion on the possibility to view ideas
from other users?

5-point scale
not useful at all – very useful

3 What is your opinion on the possibility to vote on
ideas?

5-point scale
not useful at all – very useful

4 What is your opinion on the possibility to comment
on ideas?

5-point scale
not useful at all – very useful

5 Why do you find the platform useful or not? Open
text field

6 All ideas are constructed in the form of a User Story
with a clear structure (As a <role>, I want to <goal>,
so that <benefit>. Did you ever write a User Story
before?

Closed
yes/no

 120

6. Crowdsourced User Stories

Date Feature Request (Dutch) Votes Comments

25-02-19 Als organisator wil ik het wedstrijdschema kunnen exporteren
naar PDF, zodat ik het makkelijk kan printen 7 3

25-02-19 Als organisator wil ik niets. Maar wij organiseren nu een FIFA
2019 toernooi en denk dat dit heel veel gebeurt. Geen teams maar
individuele spelers, mogelijk met een teamnaam, veel spelers
meer dan in menig toernooi, kortere wedstrijden, geen velden
maar consoles. Ik kan me voorstellen dat je Tournify daarvoor
ook een template geeft of iets anders aanpast, zodat het makkelijk
wordt ook e-Sports toernooien te organiseren. Denk dat het
technisch nu al wel kan maar doe eens een check wat er beter
kan.

1

25-02-19 Als organisator wil ik teamfoto's toevoegen, zodat het
persoonlijker wordt. 1

25-02-19 Als organisator wil ik het account kunnen inperken om het te
delen, zodat ik met meerderen een toernooi kan organiseren
maar niet iedereen alle admin-rechten heeft.

25-02-19 Als organisator wil ik beschikbaarheid van scheidsrechters
beperken tot een deel van een dag of weekeinde, zodat ik
tegemoet kan komen aan wensen die men heeft voor de eigen
beschikbaarheid.

4

25-02-19 Als organisator wil ik ook voordat het toernooischema gemaakt
wordt, een inschrijvingssite voor een toernooi kunnen maken,
zodat ik ook het aanmelden door andere teams voor het toernooi
in dezelfde Tournify kan afhandelen.

25-02-19 Als organisator wil ik als toernooi organisator als er meerdere
leeftijds categorien op hetzelde moment spelen de scheidrechters
ook apart in kunnen plannen, dit kan nu niet alleen handmatig
en niet automatisch, zodat dit sneller gebeurt is

26-02-19 Als organisator wil ik de zekerheid dat een e-mailadres dat bij
inschrijving wordt doorgegeven ook echt valide is, zodat een
bevestiging ook zeker weten aankomt. Hiervoor zouden jullie
gebruik kunnen maken van een third party check , zoals
https://www.mailgun.com/email-verification-service, zodat we
meer zekerheid hebben over de mail. Kunnen zien dat een mail
geopend is, is ook wel fijn. Waarschijnlijk gebruiken jullie een
mail distributie API en kun je die metrics (verzonden/geopend)
gewoon in de GUI tonen aan de gebruiker.

26-02-19 Als organisator wil ik grotere lettertypes kunnen gebruiken bij de
schermen. Groter dan de huidige oplossing met H1 en H3, zodat
de tekst op de schermen duidelijker is.

26-02-19 Als organisator wil ik een betere oplossing van het hudige
uitvalscherm bij planning/schema zonder dat er dubbele
schuifbalken ontstaan, zodat het plannen overzichtelijker en
foutlozer gaat

26-02-19 Als organisator wil ik dat de (losse) wedstrijden op het scherm
getoond worden op tijd en niet op volgorde waarin de
wedstrijden zijn gemaakt, zodat er geen wedstrijden op
onlogische wijze getoond worden op de schermen zodra je
achteraf een wijziging gaat doorvoeren in het wedstrijd schema.

 121

26-02-19 Als organisator wil ik graag vaste tijdblokken met getoonde tijd
en omschrijving kunnen toevoegen, zodat je ook lunch of andere
activiteiten zichtbaar kunt maken voor de deelnemers in hun
app.

3

26-02-19 Als organisator wil ik de ranking kunnen tonen op de schermen,
zodat alle deelnemers eenvoudig kunnen zien welke plaats ze
uiteindelijk behaald hebben.

26-02-19 Als organisator wil ik graag meer statistieken meteen zichtbaar
hebben in de beheermodule in een hoofdscherm, zodat je niet
continue hoeft door te klikken om betaalde aantal te achterhalen
zoals aantal teams, aantal velden, aantal scheidsrechters, aantal
wedstrijden etc.

26-02-19 Als organisator wil ik graag de volgorde van de velden in het
beheerscherm kunnen wijzigen of door te slepen of door het
veldnummer te wijzigen waardoor de volgorde wijzigt, zodat
velden die alsnog worden toegevoegd op de juiste plaatst komen
te staan. Of om zo tijdelijk even velden naast elkaar te zetten voor
een beter overzicht.

2

26-02-19 Als organisator wil ik graag memovelden voor intern gebruik,
zodat je belangrijke info kunt opslaan of delen met anderen die
toegang hebben tot de beheermodule.

26-02-19 Als organisator wil ik graag het symbool voor verplaatsen van
deelnemers naar andere teams laten vervangen door de tekst:
verplaats ipv een pijltje die wijst naar de prullenbak, zodat
duidelijker is dat dit een functie is van verplaatsen van
deelnemers en het niet lijkt dat het is voor het verplaatsen naar
de prullenbak.

26-02-19 Als organisator wil ik graag de optie toevoegen om te kunnen
kiezen voor een achtergrondkleur ipv het toevoegen van een
achtergrondplaatje in die kleur, zodat op alle schermen en
devices de juiste achtergrondkleur getoond wordt en je niet kunt
scrollen voorbij een achtergrondafbeelding.

26-02-19 Als organisator wil ik dat fase 1 niet meer getoond wordt zodra
de volgende fase begint, zodat deelnemers niet gedwongen
worden om zelf te klikken op de volgende fase.

26-02-19 Als organisator wil ik dat bij de sheets voor de
schermpresentaties start en eindtijden worden toegevoegd, zodat
je kunt zorgen dat een sheet alleen op de gewenste tijdstippen
wordt getoond zoals bijvoorbeeld voor het toernooi de
welkomsboodschap of bijv tijdens lunchtijd.

3

26-02-19 Als organisator wil ik de dia's met een sleepfunctie of wijsbare
volgordenummering kunnen laten wijzigen van volgorde, zodat
je de presentatie niet volledig opnieuw hoeft te maken als er een
extra dia tussenkomt.

5

26-02-19 Als organisator wil ik graag de mogelijkheid om logo's toe te
voegen van de deelnemende ploegen. Dit zoals het vlaggetje voor
de deelnemersnaam maar dan hun eigen logo, zodat de logo's
ook mooi kunnen getoond worden in de wedstrijdschema's en
standen

9 2

26-02-19 Als organisator wil ik de mogelijkheid om de ploegen zelf als
scheidrechter te laten fungeren en dus mee te laten nemen in de
berekening van de schema’s, zodat er geen wedstrijden doorgaan
waarvan de ploegen op dezelfde moment moeten arbitreren

3 1

 122

26-02-19 Als organisator wil ik een opleesschema per ronde de
wedstrijden per veld, zodat de wedstrijdsecretaris het schema
alleen hoeft op te lezen zonder nadenken

3 1

27-02-19 Als organisator wil ik graag de wedstrijden in een poule van 4 en
5 anders ingepland hebben. Ivm uit en thuis wedstrijden poule
van 4 starten met 1-2 dan 3-4, 3-1, 4-2, 1-4, 2-3.In de poule van 5
starten met 2-1, 4-3, 5-1, 3-2, 4-5, 1-3, 5-2, 1-4, 3-5, 2-4, zodat teams
dan uit en thuis wedstrijden hebben. bv eerst genoemde heeft bal
uit of thuis team start aan altijd aan de rechterkant.

27-02-19 Als organisator wil ik dat je bij een tornooi de mogelijkheid hebt
dat bv. De beste 2es doorstoten automatisch, zonder dat je dit
manueel moet natellen en aanpassen. Dit is handig bij tornooien
met minder deelbare aantallen en zo kan je vlotter overschakelen
naar de volgende fase, zodat je vlotter kan overschakelen naar de
volgende fase

 2

28-02-19 Als organisator wil ik als een wedstrijd niet doorgaat zou ik die
zelf naar een andere datum willen schuiven, zodat dit proces
soepeler verloopt.

28-02-19 Als organisator wil ik graag kunnen werken met sets. Bij
volleybal is het gebruikelijk om twee sets te spelen. Nu is de
workaround dat we twee wedstrijden inplannen maar het zou
prettig zijn om 1 wedstrijd te voorzien van 2 sets, zodat
wedstrijden overzichtelijker in kaart gebracht kunnen worden en
de eindstanden realistischer worden. Ons volleybaltoernooi
werkt niet met doelsaldo maar met punten op basis van de set-
uitslagen.

1

03-03-19 Als organisator wil ik een import functie, zodat ik bepaalde
gegevens van het ene tornooi naar het volgende kan brengen.
Bijv. Terreinen, leeftijdscategorie, indelingen, etc...

04-03-19 Als organisator wil ik de wedstrijdduur aanpassen per divisie ipv
algemeen per dag, zodat je divisies met minder ploegen langere
wedstrijden kan laten spelen, dan de divisies met veel ploegen.

8

07-03-19 Als organisator wil ik Sinds kort kan je ook via de website
inschrijven! Uitstekende toevoeging! Graag zou ik dan zien de
mogelijkheid tot het tonen van bijvoorbeeld foto's van de vorige
editie als mensen op de site komen! Hij is nu zo kaal, zodat
Mooiere presentatie!

08-03-19 Als organisator wil ik kunnen zien hoeveel bezoekers mijn
publieke website heeft gehad, zodat ik kan zien of deze vorm
echt aanslaat en publiek ook de website gebruikt.

9

11-03-19 Als organisator wil ik graag een mogelijkheid zien dat een
deelnemer kan meedoen aan verschillende onderdelen.
Bijvoorbeeld Open en 40+ categorie. Nu moet ik de deelnemers
bij elke categorie toevoegen waardoor het eigenlijk andere
personen zijn. Er zou dan ook een check kunnen zijn of spelers
niet tegelijk moeten spelen in beide categorien, zodat ik blijer
wordt?

1

12-03-19 Als organisator wil ik een kleedkamer overzicht kunnen maken,
zodat men bij de ingang al weten welke kleedkamer ze hebben. 3

12-03-19 Als organisator wil ik de optie/vakje om een cijfer voor
sportiviteit op het geprinte wedstrijdkaartje in te vullen. Dit
gebruiken we bij een schoolvoetbaltoernooi, zodat de
scheidsrechters herinnerd worden dit in te vullen en we het niet
handmatig op de wedstrijdkaartjes hoeven te zetten. Daarnaast
lijkt het een kleine/makkelijke aanpassing ;-)

3

 123

14-03-19 Als organisator wil ik graag de mogelijkheid dat de poules
automatisch worden ingedeeld door een knop, zodat je meteen
kan starten met het tornooi

15-03-19 Als organisator wil ik graag de mogelijkheid om de spelers en
coach van ieder team te delen via Tournify, zodat alle deelnemers
en vrijwilligers de indeling van de teams online (ipv als bijlage of
op papier) kunnen zien

1 1

15-03-19 Als organisator wil ik graag de mogelijkheid om een overzicht
van de velden als visual toe te voegen (ipv bijlage), zodat teams
en coaches makkelijk 'hun' veld kunnen vinden

1

19-03-19 Als organisator wil ik graag een link kunnen geven aan een team,
zodat ze direct hun wedstrijdschema kunnen zien ipv via de
website meerdere keuzes maken (dus een link van een
zoekopdracht)

6 1

19-03-19 Als organisator wil ik graag grotere wedstrijdbriefjes en dan zo
dat deze goed verdeeld zijn over het papier, zodat dit er beter
uitziet (wat betreft formaat) en hetzelfde formaat heeft na het
snijden/knippen

1

19-03-19 Als organisator wil ik graag de mogelijkheid hebben om enkele
wedstrijden te laten vervallen als deze automatisch zijn
ingedeeld, zodat ik niet alle wedstrijden apart naar het veld moet
slepen

1

19-03-19 Als organisator wil ik graag de mogelijkheid om de teams nog
een keer in te zetten in een losse wedstrijd, zodat deze opnieuw
kunnen worden ingedeeld op bijvoorbeeld een spelelement die
buiten de competitie of toernooi poule valt

1 1

19-03-19 Als organisator wil ik graag makkelijker 2 poules over 3 velden
verdelen, zodat dat minder tijd kost. Als je nu de twee velden
automatisch vult met de wedstrijden, kun je niet een wedstrijd
naar het 3e veld slepen

2

19-03-19 Als organisator wil ik graag de mogelijkheid dat de deelnemende
teams ook automatisch scheidsrechter zijn, zodat dit niet dubbel
hoeft te worden ingevuld. Kanttekening: dan krijg je met een
zoekopdracht zowel de wedstrijden van het team als ook de te
fluiten wedstrijden te zien in een overzicht. Dit kan worden
voorkomen door bijvoorbeeld een teken voor de teamnaam te
plaatsen van de scheidsrechter. Bijvoorbeeld 'Voetbalclub A' en
'#Voetbalclub A'

3 1

19-03-19 Als organisator wil ik graag een aanpassing zien op de maten
van de kolommen op het speelschema op de publieke site en op
de diavoorstelling, zodat de namen van beide scheidsrechters
zichtbaar zijn

1

23-03-19 Als organisator wil ik dat het mogelijk is om een wedstrijd live te
streamen via twitch of youtube. Dat kan al via andere
programma's maar ik zou graag zo'n balkje linksboven in de
hoek hebben met de tijd erop en de punten, zodat ik
professioneel kan livestreamen.

25-03-19 Als organisator wil ik graag een knop zien waarbij je alle
wedstrijden naar niet gepland plaatst, zodat je vanuit daar een
bestaand schema kunt gaan vullen?

25-03-19 Als organisator wil ik graag een knop waarmee ik alle
ingeplande scheidsrechter verwijder, zodat ik met een schone lei
kan beginnen met indelen?

1

 124

25-03-19 Als organisator wil ik graag de mogelijkheid hebben om per dag
een aanvangstijd te definieren. Nu dus opgelost met toevoegen
van pauzes, zodat het intuitiever werkt.

2

27-03-19 Als organisator wil ik dat ik bij het uitlopen van het tijdschema
een pauze voor alle velden kan toevoegen om de nieuwe
starttijden voor ronde 2 gelijk te trekken, zodat de tijden weer
corresponderen met de werkelijkheid

27-03-19 Als organisator wil ik hij het plannen van de 2e ronde optioneel
bij het selecteren de 1e ronde poules zichtbaar maken (standaard
niet tonen is praktischer), zodat plannen nog makkelijker wordt.

27-03-19 Als organisator wil ik graag het formaat wedstrijdbriefje 1 per A5
(liggend) kunnen instellen, zodat we naast 6 per A4 (staand) of 1
per A4 (staand) deze extra keuze hebben.

27-03-19 Als organisator wil ik graag teams plannen in een groter vakje.
Het vakje waarin je teams moet toevoegen om de planning te
kunnen maken is klein, zodat je niet steeds hoeft te scrollen
('frame in frame'). Het zou handig zijn als dat groter kan.

1

27-03-19 Als organisator wil ik graag extra product kunnen opvoeren om
te kiezen in het bestelproces, zodat bijv. consumptiebonnen /
aanmeldkosten / bbq / toernooi-shirt e.d. meteen bij de
inschrijving aangekocht en betaald kunnen worden

1

28-03-19 Als organisator wil ik graag de wedstrijdbriefjes per
scheidsrechter kunnen selecteren, zodat je per scheidsrechter een
overzicht van zijn wedstrijden hebt

28-03-19 Als organisator wil ik een 'herstel' functionaliteit, zodat ik bij
foutjes weer naar de vorige setting kan herstellen 1 1

30-03-19 Als organisator wil ik extra activiteiten/spellen kunnen
toevoegen aan het toernooi waarbij deelnemers punten kunnen
scoren, zodat je deze activiteiten en scores ook weer kunt zien in
de tournify app op je telefoon als deelnemer. Je ziet in je schema
hoe laat je een andere activiteit hebt en je kunt de resultaten van
iedereen zien in deze spellencompetitie.

 125

Paper

User Story Writing in Crowd Requirements
Engineering: the case of a web application for

sports tournament planning
Abel Menkveld, Sjaak Brinkkemper, and Fabiano Dalpiaz

Utrecht University, The Netherlands

Abstract—Although users feel more engaged when they are
involved in the elicitation, negotiation and prioritization of re-
quirements for a product or service they are using, the quality of
crowdsourced requirements remains an issue. Simple formalisms
like user stories have been highly adopted by practitioners in agile
development to capture requirements for a software product,
but utilization in crowdsourced requirements engineering seems
scarce. Through a case study of a web application for sports
tournament planning, we demonstrate how a dedicated platform
for user story writing in crowd requirements engineering is
valued by its users and delivers high-quality requirements that
are not inferior to those written by professionals.

I. INTRODUCTION

The process of extracting informal stakeholders’ needs and
translating them into formal specifications is the core principle
of Requirements Engineering (RE). These requirements are
used as an input for software development. More specifically:
they serve as the basis for project planning, risk management,
trade off, acceptance testing and change control [1]. Clear
statements of requirements are one of the project’s success
factors, but at the same time incomplete requirements are the
number one reason why projects are impaired [1].

Together with the shift from traditional (waterfall) devel-
opment to agile software development, the RE processes
changed accordingly. This was necessary because traditional
requirement activities – elicitation, analysis and negotiation,
documentation, validation, and management – do not take the
iterative processes of agile software development into account.
However, agile RE does not only alleviate challenges of tradi-
tional RE, but also poses new ones. Minimal documentation,
customer inability, and time estimation are reported as some
of the challenges of agile RE [2]. A proper use of artifacts
can overcome these.

In this study we focus on one of those type of RE artifacts:
user stories (USs). USs are applied by over half of the
practitioners in the software industry to capture requirements
and there is tight coupling of USs with agile methods [3]. A
US is “a description of a feature written from the perspective
of the person who needs this” [4]. The written text is a semi-
structured natural language statement. The most widespread
format of a US is: “As a <role>, I want <goal>, so that
<benefit>, as used in the following example [5]:

As an administrator, I want to receive an email when
a contact form is submitted, so that I can respond to
it.

Next to the use of simple formalisms like USs to capture
requirements, user involvement is vital in RE. Involving users
in RE can not only improve system acceptance, diminish
project failure, and deliver greater system understanding by the
user; it also helps to improve customer loyalty and broaden the
market [6]. Therefore, crowdsourced RE has been investigated
by a series of studies [7]. For example, a research group from
RWTH Aachen University developed Requirements Bazaar,
an open source web-based platform for crowd-based RE [8].
Snijders et al. [9] advocate Crowd-Centric RE, by combining
crowdsourcing and gamification to involve users in the elicita-
tion, negotiation and prioritization of requirements. According
to the researchers, this helps fostering user involvement, is
valuable in all stages of RE and gives equal priority to both
customers and end users when they are not the same. The
embodiment of their vision is REfine, a gamified platform for
eliciting and refining requirements. Dalpiaz et al. [6] showed in
a case study how users perceived this crowdsourcing platform
as more useful and more engaging compared to previous
feedback experiences. However, they were worried that the
quality of requirements would not match the quality resulting
from experts’ methods, and the requirements may not be
detailed enough for a focus group or product backlog. This
is an interesting observation, since one of the main incentives
to involve the crowd in software development in general [10]
and RE in specific [7] is to achieve higher quality. It can be a
challenge or limitation at the same time [11], [12], [13], [8].
It is argued that simple formalisms such as USs may improve
the quality of crowdsourced requirements and can therefore
mitigate this risk [6], but to the best of our knowledge no study
has yet been performed on US writing by crowd workers.

Therefore, in this paper we will demonstrate how a crowd-
sourced RE platform can be employed to enable crowd
workers to express requirements in the form of USs. We
implemented and validated the platform in the case of a web
application for sports tournament planning.

The paper is written in the following structure. Section
II describes the case study, covering both the company and
its existing practices regarding RE. In Section III, the crow-
sourced RE platform is presented and the evaluation protocol
is described. The results will be listed in Section IV and
discussed in Section V, in which we also present directions
for further research.

II. CASE

The single-case study we performed entails the design and
validation of a crowdsourced RE platform using a Technical
Action Research.

A. The company
Tournify is a software development company based in Am-

sterdam, The Netherlands. Their services, which are provided
through an online application, are targeted at sports and e-
sports tournament and competition organizers. The main prod-
uct is the Tournify tournament manager. This web application
allows tournament organizers to manage participants, create
a match schedule based on a chosen tournament format and
process the results as the tournament processes. The organizer
can also use the tournament manager to create a tournament
website to present the event to the audience. The athletes and
supporters are able to view the schedule, results and standings
by visiting this tournament website or by looking at a big
screen, as new information comes in real time.

Tournify is written in Javascript. It uses React, an open-
source JavaScript library developed by Facebook, for the
creation of the interactive user interfaces. For the dynamic
content Firebase is used: a mobile and web development
platform maintained by Google that allows storing and syncing
data across multiple clients. The total lines of code (LOC) is
near 25.000 and around 110 components are used. They serve
over 10.000 registered users (tournament organizers) and host
over 25.000 created tournaments since the website1 became
publicly available in late 2017.

B. The case
The company deals with the handling of customers’ feature

requests. In five-months’ time 44 unique customers requested
77 new features. Most of them are requested via email
(57%) or via the support chat (38%). The requesters organize
tournaments in sixteen different sports and two different e-
sports. Tournify can be used free of charge, which 39% of the
requesters did. The other 61% of the requesters upgraded at
least one tournament to one of the paid packages, a requisite
to host tournaments with more than eight participating teams.

Further analysis of the requests and conversion of the texts
to USs caused no difficulties in 71% of the cases: the role
was clear, a goal was expressed, and the potential benefit was
highlighted. In the other cases, the benefit was not explicitly
mentioned. Although this benefit is optional in a US, it
may provide valuable information, especially when a request
comes in without any context via email or chat. Consider the
following request that came in:

Why is the number of teams I can add to a group
limited? I want to place 46 teams into one group.

The corresponding US would be:

1www.tournifyapp.com

As an organizer, I want to place 46 teams into one
group.

This is a valid US but raises questions since it is unknown
why one wants to place this many teams into one group: even
the biggest leagues in the world have place for a maximum
of 20 teams. Only after further communication between the
product manager and requester, it becomes clear the user does
not want to place 46 teams into one group, he wants to host a
tournament with different games (currently Tournify is built to
host tournaments for a single sport). Rather than focusing on
making the workaround possible, this user (and most likely,
many others) will benefit a lot more if a dedicated feature is
developed to host multi-sports tournaments.

This lack of context information is one of the reasons that
makes the current workflow time-consuming for the product
owner. Responding to the feature requests, even if they are
clearly stated, also takes time. And as the business grows,
the number of requests will increase. Another downside of
the current workflow is that it does not allow for proper
requirements prioritization and does only involve a small
subset of the users.

III. CROWDSOURCED RE PLATFORM FOR US WRITING

We designed a crowdsourced RE platform, integrated into
Tournify, which enables users of the software application to
submit feature requests in the strict format of USs - containing
a role, goal and benefit. In order to help users formulate these
stories, even if they have never seen or heard of a US before,
we use a form with four simple self-explanatory and small
steps (Figure 1).

Fig. 1. The four steps to formulate a requirement as a US

Step 1: Role The first step is to find out in which role the
requester uses the application. The user can select one of the
roles from the predefined options using radio buttons. In the
case of Tournify, three roles are defined: organizer, participant
and supporter.

Step 2: Goal In the second step the user is asked what he or
she wants to do with Tournify: a feature that is missing. The

textbox contains static text before the user input, containing
the phrase ‘I want to’.

Step 3: Benefit The users’ text entry recurs in the formula-
tion of the question in the third step. It is explicitly asked why
the user wants to have the requested feature, to know what the
user sees as the potential benefit when the feature would be
implemented in the software application. The answer always
contains the predefined ‘so that’ at the start.

Step 4: Verification and category selection Before sub-
mitting the idea, the user is able to verify the US that has been
formulated based on the answers he or she provided in the first
three steps. The user also has to select one of the predefined
categories. These categories are part of the main menu of the
application, so the users are already familiar with the terms.
Labeling the requests with the corresponding category allows
for easy categorization later on.

All requests are published on a feature request overview
page in the Tournify web app, which can be accessed via
the support menu. This is no static page, as requirements
elicitation is not the only goal of the platform. The second goal
is to negotiate and prioritize requirements utilizing the crowd.
This is done by two simple means: voting and commenting.
For the requirements prioritization, several techniques exist.
We follow the general advice of Maiden & Ncube [14],
also advocated by Berander & Andrews [15], to use the
simplest appropriate prioritization technique. This is especially
true in crowd-centric requirement engineering [6], since end-
user crowd workers are likely to be less experienced with
requirement prioritization than product managers. The prioriti-
zation technique should also allow for easy reprioritization, as
requirements will be added, changed or deleted continuously.
We used the Confirmation or Negation feedback type, in which
users agree or disagree on problems or opinions of other users
[16]. This feedback type is also used in the Requirements
Bazaar [8] and REfine [12] platforms. Lastly, a commenting
section enables users and product managers to respond or add
suggestions to the requests.

The crowdsourcing platform was deployed and announced
on February 25th, 2019. The announcement was sent via an
email to a selected group of 337 users (63% opened). These
users had either requested a feature in the past, subscribed
to the newsletter, or made a purchase recently. A reminder
was sent one month later (55% opened). The total data col-
lection period was five weeks, so all requests submitted after
March 31st, 2019 are not included in this research. Among
all requesters, voters and commenters, one free tournament
upgrade has been raffled. Users were also informed of the
feature request platform via a snack bar message which was
shown when opening the Tournify tournament planner. The
researchers initiated the first request and commented on some
of the requests during the study. They were also able to label
features as in development or done. This first request by the
researchers will be included in the report on the number of
requests, because users were able to comment and vote on
this request. However, it is not further evaluated regarding the

TABLE I
THE EIGHT CRITERIA TO ASSESS USS INDIVIDUALLY FROM THE QUALITY

US FRAMEWORK [5].

Criteria Description

Syntactic
Well-formed A US includes at least a role and a means
Atomic A US expresses a requirement for exactly one

feature
Minimal A US contains nothing more than role, means, and

ends
Semantic
Conceptually sound The means expresses a feature and the ends ex-

presses a rationale
Problem-oriented A US only specifies the problem, not the solution

to it
Unambiguous A US avoids terms or abstractions that lead to

multiple interpretations
Pragmatic
Full sentence A US is a well-formed full sentence
Estimatable A story does not denote a coarse-grained require-

ment that is difficult to plan and prioritize

quality and complexity criteria we discuss below. Comments
from the researchers are excluded from the results.

Perceived Usefulness After the data collection process, the
users who submitted an idea received an extra email with a link
to a short questionnaire. This questionnaire tests the perceived
usefulness of the platform from an end user perspective. It
contains four questions with a five-point Likert scale, asking
the users to evaluate the usefulness of each functionality of
the platform: requesting, viewing, voting and commenting.
One closed question is included to verify if the requester
had experience with formulating USs before, and one open
text field can be used to comment on the experience with the
platform.

Quality The Quality US framework [5] was used to assess
the USs individually based on their syntactic, semantic and
pragmatic quality. The eight criteria and their descriptions
are shown in Table I. Each US was evaluated on its quality
manually by three experts individually. The experts used the
description of the criteria from Table I, as well as the additional
information from the accompanying article, to analyze the
USs. The USs were distributed among six members of the
RE Lab at Utrecht University. They analyzed one third of the
USs each and the lead researcher analyzed all USs. If there
was no consensus in the judgement of the experts, majority
voting is leading.

Complexity We made an estimation of the amount of work
it would take to implement each US individually, based on the
assessment of the lead developer of Tournify. For the scaling
the Fibonacci sequence (1, 2, 3, 5, 8, 13, 21) was used. We
assigned a value of ‘0’ when it concerned a feature that has
already been implemented but overlooked by the requester.
The other numbers represent development hours. Since it is
difficult to estimate large work items with a high degree of
confidence, the upper limit for our estimation was 21 hours.
In practice, USs who take more than 21 hours to implement
have to be broken down into more granular pieces.

TABLE II
USE OF THE CROWDSOURCED RE PLATFORM

Value Total Unique users

Page views 247 157
Interactions 160 39
Requests 57 23
Votes 89 28
Comments 14 9

IV. RESULTS

During the five-weeks period, we had 157 unique visitors
on the feature request platform. From those visitors, 39 users
interacted with the platform by submitting an idea (23), voting
on an idea (28), and/or commenting on an idea (9). Together,
they submitted 57 ideas, voted 89 times and commented 14
times (Table II). The functionality to downvote an idea (‘I
don’t need this’) was not used and in five times a requester
voted on its own idea, which was not prevented by the
platform.

More than half of the requesters (15, 65%) submitted only
one idea, two users submitted respectively two and three ideas
and four users submitted five or more ideas (respectively 5, 6,
7, and 14 ideas). All ideas are written in Dutch and constructed
based on the template of a US. A screenshot of part of the
Feature Requests overview page is shown in Figure 2.

Fig. 2. Screenshot of the feature request overview page

Next to the feature description, each element also contains
the submission date and selected category. If applicable, the
element also contains the number of votes, number of com-
ments, and development status. Two feature requests got nine
upvotes, which is the most times a feature has been upvoted.
The categorization of USs turned out to be a difficult task for
the crowd workers, judging by the numbers. In more than half
of the cases (52%), the category selection of the requester
does not match the category assignment done by the main
researcher of this study.

After the study period, thirteen users who interacted with
the crowdsourcing platform responded to the questionnaire that
was sent to them via email. Most of them (10) requested a

TABLE III
QUALITY OF THE CROWDSOURCED USS

criterion # USs with defect % USs with defect

Well-formed 3 5.4
Atomic 5 8.9
Minimal 24 42.9
Conceptual 5 8.9
Problem-oriented 8 14.3
Unambiguous 9 16.0
Full sentence 19 33.9
Estimatable 3 5.4

feature themselves, the other three respondents only voted for
a feature. They perceived the platform as very useful, regarding
all four possible interactions when rated on a five-point Likert
scale: requesting (M = 4.9; SD = 0.28), viewing (M = 4.8; SD
= 0.38), voting (M = 4.5; SD = 0.88), and commenting (M
= 4.5; SD = 0.66). One user who requested a feature, voted
for and commented on an idea and had previous experience
in writing USs commented:

“You implemented the agile methodology in a very
fun way. In such a manner the users get involved
better and at least have the feeling their opinion
matters”

Others found it “a fantastic way to improve the applica-
tion”, “very useful to allow users to submit ideas” and see it
as a way to “improve the software for your own tournament".
Another user noted how “every user gets new ideas while
using Tournify on their tournament” and how this is “the best
feedback to improve the application”.

Out of the people who requested a feature, 70% have never
written a US before. When asked if they find it helpful to
formulate the ideas as USs, compared to free texts, the average
score was 3.5 (SD = 0.85). There is hardly any preference to
write the feature requests in free text (M = 3.2; SD = 1.14).

The results of the quality analysis are shown in Table III. In
total, 52% of the USs meet all requirements, meaning that 48%
of the USs contains one or more easily preventable error(s).
A Pearson Chi-Square test showed that there is a strong
association between the minimal and full sentence criteria,
which is statistically significant (X2 = 31.6, p = < .001). This
might provide an explanation for the higher number of USs
with two defects (11%), compared to those with only one
defect (7%).

The crowdsourced USs are evaluated based on their com-
plexity by the developer of Tournify. Nine out of ten crowd-
sourced USs can be developed within one workday, according
to his estimation. One US could not be estimated, because it
was formulated to vaguely. Seven USs were already imple-
mented but overlooked by the user. They are not included in
the estimation shown in Figure 3, which includes 48 USs.

V. ANALYSIS & DISCUSSION

Our results show that the use of crowdsourcing in RE
is perceived as very useful by the end-users of a software
product, while at the same time empowering the product owner

Fig. 3. Complexity of the crowdsourced USs

with a better overview of feature requests. Commenting and
voting on ideas is not only valued by the crowd workers,
but also helps in the prioritization and negotiation process.
Interestingly, our four-step US formulation wizard was not
perceived as an extra difficulty by the users while expressing
feature requests: there is hardly any preference to submit
ideas in free text instead. This is promising, as research has
shown how “stakeholders enjoy working with USs, using a
common template benefits RE and the simple structure of USs
enables developing the right software" [3]. Furthermore, we
have shown how 95% of the crowdsourced USs are both easy
to estimate and easily implementable based on our quality
analysis and hour estimation as done by the main developer.
Almost 90% of the feature requests can even be implemented
within one workday.

In terms of US quality, the most frequent occurring defects
are USs violating the minimal criterion (42.9%) or not being
written as one full sentence (33.9%). Lucassen et al. [8] tested
1000+ USs written by professionals from different companies
and found that the minimal criterion is violated in 13.3% of
the cases. Based on this observation we can conclude that
crowdsourced USs are currently over three times more likely
to contain comments, descriptions of the expected behavior, or
testing hints, when compared to those written by professionals.
This additional information should be left to the comment
section of the platform. The violation of the minimal criterion
is also reflected in the length of the crowdsourced USs. The
goal is expressed in 108 characters on average and crowd
workers needed 97 characters on average to formulate the
potential benefit. When compared to 551 real-world English
USs from eight different projects, retrieved from a publicly
available data set [17], we found the means plus end of the
Dutch crowdsourced USs (204 characters) to be over two times
longer than the USs written by professionals (97 characters),
which had an average goal description of 51 characters and
benefit expression in 55 characters, if present. The length
of the crowdsourced User Stories is similar to the length
of the feature requests that were sent in by email or the
support chat (192 characters) prior to the deployment of the
platform. Note that we did not count the terms from the

US format (I want to and so that) and did not control for
the information density of the different languages the USs
are written in. Moreover, 17% of the real-world USs lack
a description of its benefit. There is also a major difference
in the use of roles. Three roles are defined for the Tournify
application (organizer, participant, supporter). All requesters
indicated they are organizers, whereas professionals use 12
roles on average in their US set.

The crowdsourced USs and USs written by professionals
show a similar number of defects regarding the well-formed
criterion (5.4% crowd, 4.5 professionals) and atomic criterion
(8.9% crowd, 10.3% professionals). In total, 52% of the
crowdsourced USs meet all requirements, meaning that 48%
of the USs contains one or more easily preventable error(s).
Lucassen et al. [8] conclude that 56% of USs written by
professionals have at least one defect as detected by their
automatic testing tool. However, these results are difficult to
compare as Lucassen et al. [8] tested against less, but different,
criteria from the framework than we did.

Based on our results, we see opportunities for improving the
crowdsourced RE platform to enhance the quality of the USs.
Defects on the minimal and full sentence criteria can be pre-
vented with simple means like a spelling checker and warnings
when there is additional text after a dot, hyphen, semicolon,
or other separating punctuation marks. Text between brackets
should also trigger a warning message on the screen. With this
case study, however, we already demonstrated how a dedicated
platform for US writing in crowd RE is valued by end-users
and delivers requirements that do not inferior to those written
by professionals.

During the five-weeks testing period, 17 features were
requested via email or the support chat, bypassing the feature
request platform. In most cases, those users were unaware
the platform existed. When compared to the engagement
prior to the deployment of the platform, while correcting for
the duration of the measurement, the number of ideas that
were sent in every day remained unchanged. However, since
the number of organizers using the service increased with
over 175%, this saves the requirements engineer currently an
estimated 2 hours of work per month. This estimation is based
on the 10 minutes it takes the requirements engineer to process
each request, and the decrease in the number of requests via
email or chat per 1000 unique page views from 13.6 to 7.2.
Although this time saving seems currently insignificant, it
will have an impact when the business grows. Nevertheless,
the main incentive to employ a crowdsourced requirements
platform should be to engage users and gather, prioritize and
negotiate high-quality requirements, rather than to replace the
work of the requirements engineer.

A. Validity threats

The main concern regarding the generalizability of this
study is that we focused on a single case. However, the nature
of this study is explorative and this is one of the first attempts
to let crowd workers write USs for a software product.

The personal involvement of the first author (who is one
of the co-founders of Tournify) allows for an unbounded
access to the development artifacts and stakeholders, and a
comprehensive knowledge of the organization and business
processes. At the same time, it raises relevant questions about
possible biases and prejudices. Action Research in general has
been criticized for its “lack of methodological rigor, its lack of
distinction from consulting and its tendency to produce either
research with little action or action with little research” [18].
To ensure the rigor and relevance of this study, we made sure
the five principles of Canonical Action Research (CAR) were
taken into account at all stages of the research. This set of
principles and associated criteria are developed by Davison,
Martinsons & Kock in 2004, to allow for a study in which
organization problems are addressed while at the same time
contributing to scholarly knowledge [18]. However, it is still
possible that the results are influenced because respondents
modified their responses because they knew they were part of
a study (known as the Hawthorne effect).

The biggest limitation is the small sample size. Over half of
the crowdsourced USs is written by four users. This means that
their expertise highly influenced the overall results regarding
the quality evaluation, even though we can argue that more
software products will have a group of highly engaged users
with presumably more technical expertise.

B. Future research
There have been several studies focusing on USs recently.

Also crowdsourcing in RE gained attention. However, to the
best of our knowledge this is the first study to combine the two
interest fields, by focusing explicitly on US writing by crowd
workers. We can continue this work by implementing direct
feedback techniques during the US formulation to improve
the syntactic quality. Further research can also focus on the
usefulness of having a role in USs written by crowd workers,
can focus on the interplay between Epic(s) (Stories) and USs,
and possibility to combine crowdsourcing with crowdfunding
in the development of new features. The expertise of crowd
workers, in relation to their involvement with the software
product is also worth investigating in further research.

REFERENCES

[1] J. Dick, E. Hull, and K. Jackson, Requirements engineering. Springer,
2017.

[2] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A
systematic literature review on agile requirements engineering practices
and challenges,” Computers in human behavior, vol. 51, pp. 915–929,
2015.

[3] G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper,
“The use and effectiveness of user stories in practice,” in International
Working Conference on Requirements Engineering: Foundation for
Software Quality. Springer, 2016, pp. 205–222.

[4] E.-M. Schön, J. Thomaschewski, and M. J. Escalona, “Agile require-
ments engineering: A systematic literature review,” Computer Standards
& Interfaces, vol. 49, pp. 79–91, 2017.

[5] G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper,
“Improving agile requirements: the quality user story framework and
tool,” Requirements Engineering, vol. 21, no. 3, pp. 383–403, 2016.

[6] F. Dalpiaz, R. Snijders, S. Brinkkemper, M. Hosseini, A. Shahri, and
R. Ali, “Engaging the crowd of stakeholders in requirements engineering
via gamification,” in Gamification. Springer, 2017, pp. 123–135.

[7] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use
of crowdsourcing in software engineering,” Journal of Systems and
Software, vol. 126, pp. 57–84, 2017.

[8] D. Renzel, M. Behrendt, R. Klamma, and M. Jarke, “Requirements
bazaar: Social requirements engineering for community-driven inno-
vation,” in 2013 21st IEEE International Requirements Engineering
Conference (RE). IEEE, 2013, pp. 326–327.

[9] R. Snijders, F. Dalpiaz, M. Hosseini, A. Shahri, and R. Ali, “Crowd-
centric requirements engineering,” in 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing. IEEE, 2014, pp. 614–615.

[10] K.-J. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: a case
study of crowdsourcing software development,” in Proceedings of the
36th International Conference on Software Engineering. ACM, 2014,
pp. 187–198.

[11] M. Cohn, User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

[12] R. Snijders, F. Dalpiaz, S. Brinkkemper, M. Hosseini, R. Ali, and
A. Ozum, “Refine: A gamified platform for participatory requirements
engineering,” in 2015 IEEE 1st International Workshop on Crowd-Based
Requirements Engineering (CrowdRE). IEEE, 2015, pp. 1–6.

[13] S. L. Lim, D. Damian, and A. Finkelstein, “Stakesource2. 0: using social
networks of stakeholders to identify and prioritise requirements,” in 2011
33rd International Conference on Software Engineering (ICSE). IEEE,
2011, pp. 1022–1024.

[14] N. A. Maiden and C. Ncube, “Acquiring cots software selection require-
ments,” IEEE software, vol. 15, no. 2, pp. 46–56, 1998.

[15] P. Berander and A. Andrews, “Requirements prioritization,” in Engineer-
ing and managing software requirements. Springer, 2005, pp. 69–94.

[16] N. Sherief, W. Abdelmoez, K. Phalp, and R. Ali, “Modelling users
feedback in crowd-based requirements engineering: An empirical study,”
in IFIP Working Conference on The Practice of Enterprise Modeling.
Springer, 2015, pp. 174–190.

[17] F. Dalpiaz, “Requirements data sets (user stories),” Mendeley Data, v1,
2018, http://dx.doi.org/10.17632/7zbk8zsd8y.1.

[18] R. Davison, M. G. Martinsons, and N. Kock, “Principles of canonical
action research,” Information systems journal, vol. 14, no. 1, pp. 65–86,
2004.

