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Abstract 

Geothermal energy in the Netherlands has been receiving increased attention recently since it may be a 

promising contributor to the energy transition. Public well data that has been acquired for hydrocarbon 

exploration can now be used to assess the potential of geothermal plays. Similarly to hydrocarbon reservoirs, 

the reservoir quality of a geothermal play is largely controlled by three factors: facies, maximum burial depth 

and diagenesis. The direct onset for this project has been the release of the regional property maps by TNO, 

2017. The aim of this study was to improve the methodology for property maps of the Triassic formations from 

the Roer Valley Graben in Noord-Brabant, SE Netherlands. The approach has been twofold by (1) a detailed 

analysis of the current mapping methodologies and their limitations, followed by (2) a lithology prediction 

analysis as an addition to the existing workflow. In previous studies, regional porosity maps have been made for 

the West Netherlands Basin (Vis et al., 2010) and for the entire Netherlands (including offshore) in 2017. Both 

mapping projects were based on porosity data from wells, although different driving maps have been used; 

respectively facies and maximum burial depth.  

Given the strong relation between maximum burial depth and provenance, the maximum-burial driven maps 

provide a good indication for regional property trends. However, this relation is not valid for individual wells, 

hence neither in local geothermal enterprises. Given the heterogeneous nature of e.g. a braided channel 

complex, a local geological lithofacies interpretation is required. The facies-driven property maps as constructed 

for the West Netherlands Basin use lateral extrapolation of facies modelling and assign porosity values to each 

facies. Due to the sparse amount of data available and related loss of detail and oversimplification this method 

is not preferred for the Roer Valley Graben.  

To improve the current mapping methodology, our knowledge of the wells should be enhanced first. Therefore 

lithology characterization and prediction have been explored. The workflow starts with the use of cluster analysis 

of interpreted facies intervals. Cluster analysis has been performed by Wkmeans on intervals of three wells within 

the area: KDK-01, WWK-01 and WWS-01-S1. Since lithology prediction is not possible with this tool, this method 

requires further development. Lithology prediction has been performed in Petrel on intervals of three wells 

within the area: BRAK-01, KDK-01 and WWN-01-S2. The input consisted of lithofacies interpretations, followed 

by either of the two classification techniques: a Bayes classifier and a neural network. The classification based on 

Bayes algorithm generally yielded poor, discontinuous lithofacies logs. The poor results were mostly due to 

insufficient input data, e.g. only 1 interval with a distinct lithofacies. Lithology predictions with a neural net 

created good lithofacies logs. Cross-checks within the wells validated the fairly good results. Wireline logs (e.g. 

GR, RHOB, RT) resulted in continuous lithofacies logs, whereas core plug logs (porosity, horizontal permeability, 

grain density) resulted in discontinuous lithofacies logs. Furthermore sufficiently long intervals with separate 

facies intervals drastically improve the lithology prediction.  

The neural net classifier has proven to be a promising technique to validate and predict lithofacies within a well. 

The lateral extension to other wells should be approached with caution, at least for this particular dataset. Since 

a large number of logs and interpretations will yield the best predictions, the need for extensive, full-range data 

acquisition is emphasized. Finally, this study also stresses that the intended users of regional property maps 

should become well-informed on the uncertainties related to the making of these maps.  
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 Introduction 

 

Due to the induced seismicity in the Groningen gas field, the need for speeding up the energy transition in the 

Netherlands becomes clear. Geothermal energy production from the Dutch subsurface is one of the options to 

contribute to this transition.  

Onset of this thesis is the property maps project performed by TNO in 2017, which resulted in porosity and 

permeability (i.e. properties) maps of 19 horizons of the Dutch subsurface. Porosity and permeability 

measurements were either measured directly or calculated via other measurements. Statistical methods allowed 

the properties determined from the well, as points on the map, to be interpolated and extrapolated laterally to 

create a surface. However, careful investigation of the initial data showed a number of discrepancies with the 

presented property values. In several wells, there is a misfit between the core plugs and log data, and often only 

the upper part of the interval is sampled for plugs. It often appears this upper part is not entirely representative 

for the complete interval, which may result in overly optimistic or pessimistic predictions of reservoir quality. 

These observations and implications demonstrate the need for a thorough re-examination of the basic 

assumptions and methodology of the property maps.  

The study area is located in Noord-Brabant or the Roer Valley Graben and the focus lies on the Triassic 

formations. Aquifer temperatures in large parts of the area are the highest of all Triassic formations in the 

Netherlands (Bonté et al., 2012) and geothermal doublets have been estimated to produce sufficient power 

potential (Kramers et al., 2012). Combined with the large heat demand from the local industry, East Brabant is a 

major geothermal target for the Netherlands. 

Therefore the main controls on reservoir quality will be explored. The facies, diagenesis and maximum burial are 

all known to influence the porosity and permeability of a reservoir. 

Previous work by TNO has resulted in porosity maps based on maximum burial depth. Moreover the classical 

facies-upscaling approach has been applied for several areas, e.g. the West Netherlands basin (Vis et al., 2010). 

In order to present a more reasonable regional impression of the properties of the Triassic Brabant, both the 

regional and local geology of Brabant has to be taken into account, rather than a mere statistical approach. A 

combination of geostatistics within a well and geological lateral extrapolation based on lithofacies is explored 

here.  

The project objective of this thesis is to improve the methodology behind the property maps of the Triassic 

formations of East Brabant. It must be noted that this project is not meant as a mapping exercise but rather 

provides a detailed analysis of the current methodologies behind the creation of these maps, as well as a means 

of introducing an additional geostatistical analysis into the workflow.  

The research questions are formulated as follows: What are the current limitations of the property map 

methodology? How could the property maps be improved?  
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 Geological setting 

 

Here a concise geological history on the Dutch subsurface is presented, with particular focus on the development 

of the Permian and Triassic basins which would evolve to become important reservoirs, one of which is the Roer 

Valley Graben in Brabant. Numerous studies have been carried out over the past decades to determine the 

hydrocarbon storage potential of these reservoirs, but the same understanding can now be used to explore the 

possibilities of geothermal exploitation. The tectonics that shaped the basement, the sediment type and derived 

depositional environment and the tectonics post-deposition will be discussed. 

 

2.1 Geological evolution 

2.1.1 Paleozoic  

The paleoposition of the Netherlands during the Late Ordovician (458 Ma) was on the continent Avalonia at 60 

degrees latitude on the southern hemisphere. Collision of the northward drifting Avalonia with the larger 

Laurentia and Baltica during the Silurian (433 Ma) caused the Caledonian orogeny. This new assembled continent 

was known as Laurussia, which in turn collided with Gondwana during the Early Carboniferous (342 Ma), at which 

time the Netherlands was located at the equator. The collision of Laurussia and Gondwana resulted in the birth 

of supercontinent Pangea, an event that was accompanied by another phase of large-scale mountain building 

(Variscan or Hercynian orogeny) and subsequent magmatic events (de Jager, 2007). By the Late Carboniferous 

(300 Ma), the Netherlands was located in the central part of Pangea and north of the E-W striking Variscan 

mountains (Geluk, 2005). When the thermal anomaly associated with this Variscan orogeny started to decay (i.e. 

the lithosphere cooled down), regional thermal subsidence occurred starting from the Permian (De Jager, 2007). 

The Netherlands area was characterized by a typical dry climate from the Permian until the Late Triassic, which 

was due to its geographical position in the arid climate zone as well as being on the leeward side of the Variscan 

mountain range (Geluk, 2005).  

 

2.1.2 Permian 

This was the onset of the Southern Permian Basin which started to fill up with the Rotliegend sediments from 

the surrounding mountain ranges: in the south the basin was bordered by the Rhenish Massif and London-

Brabant Massif, to the north by the Mid North Sea High and Ringköbing-Fyn High (Geluk, 2000). The geographical 

location of this basin was in the arid climate zone at approximately 10 to 20 degrees North, comparable to the 

latitude of the modern-day Sahara desert. Moreover, the Variscan mountains in the south shielded the basin 

from humid trade winds from the Tethys Ocean, which also contributed to the dry environment (Glennie, 1998). 

The extension associated with lithospheric cooling provided the accommodation space and the Variscan 

mountains provided large amounts of sediment input which allowed the basin to remain a large depocenter. 

From south to north, the stratigraphic sequence of the Rotliegend comprises conglomerates, aeolian sandstones, 

fluviatile sandstones, lacustrine silts, claystones and in the upper north intercalations of evaporites. Given that 

Noord-Brabant is located just north of the London Brabant Massif, the main depositional environments were the 

alluvial fans from the Variscan Mountains and large aeolian sand dunes. This extremely arid climate was 

maintained as the basin continued to deepen, which caused saltwater influx from the nearby sea to 

catastrophically flood the basin and deposit evaporites. By the late Permian, a salt package of locally more than 

1500 m in the axial zone of the Southern Permian Basin had formed. This formation topped the underlying 

Rotliegend clastics and is known as the Zechstein salt (De Jager, 2007).  

 

2.1.3 Triassic 

The Triassic basin development occurred during ongoing thermal subsidence as a result of the continental break-

up of supercontinent Pangea. It wasn’t until the Early Cretaceous that the rifting had mostly ceased in the 

Netherlands area, which had drifted northwards and was at that time located in the sub-tropical climate zone 
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(fig. 1). The Lower Triassic Lower Buntsandstein consists of fine-grained clastics (i.e. mudstones) which were 

deposited in brackish to saline lacustrine environments also known as playa lakes (Winstanley, 1993). Here a 

playa lake is referred to as a flooded salt flat in an intracontinental basin (Briere, 2000).  

The overlying Main Buntsandstein contains a cyclic sequence of coarser fluviatile and aeolian clastics and consists 

of three main formations: Volpriehausen, Detfurth and Hardegsen (De Jager, 2007). The Roer Valley Graben was 

the sediment sink for the alluvial fan systems originating from both the London Brabant Massif and the Rhenish 

Massif. Base level changes and phases of fault reactivations were the cause for four episodes with large alluvial 

fan deposits: Volpriehausen, Detfurth, Hardegsen and Röt (Winstanley, 1993). The deposition of evaporites, with 

their characteristic high sedimentation rate and relative high mass, increased the differential loading of the basin 

and deepened the grabens even further (Geluk, 2005). 

The Middle Triassic was marked by an increased marine influence due to a first connection with the Tethys Sea, 

which is reflected stratigraphically by a sequence of claystones and carbonates. Furthermore, discontinuous 

connections with the sea led to the deposition of evaporites in marginal sabkha environments (Geluk et al., 2005, 

Winstanley, 1993). Important formations of the Middle Triassic are the Solling, Röt (mainly lagoon deposits) and 

Muschelkalk (carbonates and dolomites), as well as Lower and Middle Keuper (De Jager, 2007). 

The Late Triassic was marked by slow but continuous regional subsidence. Due to the paleographic position at 

40 degrees N and the erosion of the Variscan mountain range, the climate became more humid (McKie, 2017). 

By the Early Jurassic, the formation of a wide epicontinental sea allowed for the deposition of up to 1800 m fine-

grained clastic sediments of the Altena Group (De Jager, 2007). 

 

2.2 Tectonic evolution 

Even though both the Permian and Triassic basins were common sediment sinks, the tectonic mechanism behind 

their formation is rather opposing. The Permian basin formed during the late stage of Pangea’s assembly in a 

compressional regime , by the process of late orogenic extension (Van Wees et al., 2000). The phenomenon of 

extensional basin formation with ongoing mountain building has been linked to lithospheric root removal or slab 

detachment (Vissers, 2012). The consecutive breakup of Pangea was accompanied by large-scale rifting and 

resulted in the formation of the Triassic basin, which thus originated from an extensional regime. At that time 

the thin-skinned and thick-skinned tectonics displayed the same extensional features in the Southern Permian 

Basin, although apparently without igneous activity (De Jager, 2007).  

The Carboniferous tectonic setting largely dictated the development of the basement and continued to influence 

the overlying formations throughout their evolution. The sediments that would evolve into the main 

hydrocarbon reservoirs were deposited during the Middle to Upper Permian (Rotliegend) and Triassic (Main 

Buntsandstein) in their typical dry climate. It was not until the Late Triassic that the Netherlands experienced 

Figure 1: (A) Global Late Triassic climate zones across supercontinent Pangea. 

Red square denotes the location of the Southern Permian Basin. (B) Close up 
of Northwest European depositional environments. Blue line corresponds to 
the approximate boundary of regular yet seasonal precipitation, the arrows 
indicate the possible migration ranges of this precipitation. After McKie, 2017. 
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more periodically humid environments, which can be contributed to the higher latitude and erosion of the 

Variscan mountains, which could no longer shield the basin from humid air masses flowing northwards (Geluk, 

2005). 

 

2.3 Structural elements & stratigraphy 

Fluctuations in the lithospheric stress regime have controlled the passive rifting of the Roer Valley Graben. Even 

at present day, intraplate stress with NW-SE orientations still contribute to seismic activity such as the 

earthquake in Roermond (M=5,4) in 1992 (Geluk et al., 1994). The passive rifting of the Roer Valley Graben is 

accompanied by the rise of the Moho discontinuity by 2-3 km, whereby this boundary currently lies at 28 km 

depth below the graben axis (Zijerveld et al., 1992). As a consequence, the pre-existing structural framework 

inherited from the Permo-Carboniferous influenced the development of the graben. The Roer Valley Graben has 

been a major depocenter for the surrounding mountain ranges. The London Brabant Massif in the southwest and 

the Rhenish Massif in the east would fill up the subsiding basin with up to 2000 m of Cenozoic sediments (Geluk 

et al., 1994) 

The RVG is surrounded by structural highs or platforms, except for the West Netherlands Basin in the northwest 

(fig. 2). The boundary between the RVG and the WNB is defined as the pinch-out of Upper Cretaceous sediments, 

where the Chalk Group has been eroded as a result of strong inversion in the WNB (Kombrink et al., 2012). For 

the West Netherlands Basin, paleo-environments have been linked to present-day porosities (Ursem, 2018). 

Figure 2 shows the occurrence of all Triassic intervals in all wells in the southern Netherlands. The low density of 

Triassic intervals within wells in the Roer Valley Graben is obvious.  

 

The Triassic stratigraphic interval in the Netherlands is sandwiched between the Permian Zechstein and the 

Jurassic Altena Formation (fig. 3). The Triassic is composed of the Lower Germanic Trias Group (RB) and the Upper 

Germanic Trias Group (RN). The Lower Germanic Trias Group contains the members: Lower Buntsandstein, 

Volpriehausen, Detfurth and Hardegsen. The Upper Germanic Trias Group contains the members: Solling, Röt, 

Muschelkalk and Keuper (Geluk, 2007).  
  

Figure 2: Structural elements overlying topography. Pink dots denote all the well locations that contain 

Triassic intervals.  
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 Petrophysical background 

Generally, a volume of reservoir rock is composed of a matrix with a certain amount of porosity φ, which may be 

filled with water, oil or gas. These phases all show a distinct fluid density. The matrix (or the grains) also has its 

own density, i.e. the matrix density or grain density. The weighted average of the fluid density and the grain 

density yields the bulk density. The bulk density can be measured via the wireline and is known as RHOB. For 

grain density measurements core plugs must be taken. Porosity is given as a volume fraction or percentage (fig. 

4) and gives a first rough impression of hydrocarbon or geothermal storage potential. However, for actual 

production of the reservoir, the ability for flow through the pores 

is important. 

The effective permeability k consists of the intrinsic permeability 

and the relative permeability. The intrinsic or absolute 

permeability depends on the pore diameter and pore 

connectivity, which together describe the pore structure. This is a 

measure of the compaction and therefore dependent on the 

porosity. Relative permeability comes into play in multi-phase 

Darcy flow, e.g. in a mixture of oil and water. The effective 

permeability is the intrinsic permeability times the relative 

permeability (Hantschel & Kauerauf, 2009). The transmissivity of 

a layer is the product of the arithmetically averaged horizontal 

permeability (mD) and the layer thickness (m), hence has the unit 

Darcy meter (Buik et al, 2016).  

The reservoir quality largely depends on three major consecutive components: facies, maximum burial and 

diagenesis. The first and foremost control is facies, when sediments are deposited with their specific grain size, 

shape and sorting, therefore immediately affecting porosity. When the sediments are buried deeper, mechanical 

compaction decreases the porosity from the original facies. Upon more burial, higher temperatures allow the 

Figure 3: Lithostratigraphic subdivision of the Triassic in the Netherlands. 
After Geluk, 2007. 

Figure 4: Visualization of a porous medium 
and related porosity calculation. 
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chemical processes of diagenesis, which may result in both pore enhancement and reduction. Therefore the 

present-day porosity may be the sum of all three processes. A brief overview of these three reservoir quality 

controls will be given here.  

 

3.1 Facies 

Typically, an increasing porosity goes hand in hand with an increasing permeability. This poro-perm relation is 

due to the sorting and size of the grains (Sneider, 1987). Since the sorting and grainsize are in the first place 

determined by the depositional setting and hence facies, poro-perm plots can provide a better distinction of the 

facies (Slatt, 2013). When discussing facies and classification the terminology can be slightly confusing, so the 

definitions from figure 5 are used. 

 

Facies   A body of sedimentary rock with specific color, bedding, composition, texture, fossils and 

sedimentary structures. 

Lithofacies  The set of compositional and textural characteristics that permits the sediment to be 

distinguished from others.  

Electrofacies  The set of log responses that characterizes a sediment and permits the sediment to be 

distinguished from others.  

Figure 5: Definitions after Geel & Lutgert, 1990. 

A classification has been made based on depositional environment, rather than the typical lithofacies 

classification with facies codes (Miall, 1985), as there are a number of lithofacies groups with some overlap. The 

main facies that are recognized in the current wells are stacked sheetfloods or floodplains with minor channeling, 

(ephemeral) floodplain ponds or lakes, fluvial channels, braided channel complexes and overbanks. Floodplains 

are characterized by a relatively low-energy depositional environment (Ursem, 2018). Facies interpretations for 

alluvial fans and fan deltas are not incorporated in the studied wells, since they are not described in the lithology 

logs. The use of facies classification allows for the creation of poroperm trends per lithology, as shown in figure 

6. 

 

Figure 6: Poroperm trends per lithology. Sneider, 1987. 
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3.2 Burial 

Athy’s Law (Athy, 1930) describes the exponential decrease of porosity with depth: it states that rock becomes 

more compacted the deeper it is buried. The maximum burial (MB) is the largest depth at which the rock has 

been buried, and following Athy’s Law, MB is therefore a measure of the expected porosity. Hiatuses in the 

overlying sedimentary record interpreted as eroded strata and inversion structures may indicate that the 

maximum burial depth differs from the present-day depth. The burial anomaly (BA) describes the difference 

between the current depth and the maximum burial depth. The maximum burial temperature can be determined 

from a geothermometer such as vitrinite reflectance (VR). Since vitrinite forms diagenetically from plant material 

(e.g. cellulose), the highest reflectance may be found in terrigenous shales and marls, and the least in clean sands, 

carbonates and evaporites (Barker et al., 1986).  

 

3.3 Diagenesis 

Diagenesis is a process that can both decrease and increase the reservoir properties. The two most important 

chemical mineral reactions that decrease the porosity during burial are quartz cementation and shale diagenesis. 

The poro-perm relation seemingly does not hold above approximately 120 °C as the permeability decreases 

exponentially. Below 3000 m depth, illite minerals start to form from smectite clay. The effect of illite formation 

is minor with respect to the porosity , but it has a large impact on the permeability. Illite precipitates as micro-

pores, which requires a small amount of diagenetic clay to create a very large permeability reduction (Bjørkum 

& Nadeau, 1998; Pallatt, Wilson & McHardy, 1984). 

Illite, kaolinite and grain leaching are related by the process of fibrous illite nucleation in sandstones. The reaction 

occurs above 150 °C and is: Kaolinite + K-feldspar -> Illite. Kaolinite is a primary reactant and potassium is derived 

from in-situ K-feldspar grain dissolution or imported into the model reference frame. This leads to the formation 

of fibrous illite and secondary porosity in sandstones (Lander & Bonnell, 2010).  
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 Methods 

 

The general hypothesis for the Roer Valley Graben is that there is a strong link between facies, or provenance, 

and maximum burial depth. The idea behind this concept is that the flanks of the structural highs surrounding 

the RVG are more proximal with coarser sediment, whereas the deepest center has been the depocenter for the 

distal, fine-grained sediment. A similar trend has been identified in the Middle to Upper Jurassic of the 

northeastern North Sea (Ramm, 2000). This relationship is not as clearly present in the adjacent West 

Netherlands basin (Vis et al., 2010), whereas the Roer Valley Graben appears to be a much more ‘intact’ basin 

with less tectonic reactivation affecting the burial depth of the reservoir. Due to this strong relation between 

facies and maximum burial, the electrofacies approach might prove a useful method. Electrofacies modelling is 

explored in this study by means of cluster analysis and finally lithology prediction.  

 

4.1 Data handling / selection 

First an overview of the available data must be made. Data from the following studies/datasets has been 

included: NLOG, NuTech, Clyde, BP and NAM. The Nederlands Olie- en Gasportaal (NLOG) is the public database 

of Dutch subsurface data. Log interpretation has been done with the help of Petrel. The results of property tests 

on core plugs have been analyzed with Spotfire. The locations of the wells that have been used for electrofacies 

modelling are shown in figure 7.  

 

 

4.2 Log interpretation 

The distinct log responses from different facies are covered by the term electrofacies (Serra, 1983). Some of the 

most common logging techniques that are used for down-hole measurements are briefly discussed below. These 

in situ techniques provide information on the lithology, porosity, water saturation and occurrence of 

hydrocarbons. However, down-hole permeability can only be determined indirectly from measurements on core 

plugs in the laboratory. The porosities derived from these in permeabilities are then matched to the logged (i.e. 

down-hole) porosities to estimate permeabilities along the entire drilled section.  

 

BRAK-01 

WWK-01 WWN-01-S2 

WWS-01-S1 

KDK-01 

Figure 7: Location of wells. Geographical distribution of the wells and the main structural elements. Blue = deep 
basin; red = main structural high; lighter red = minor high; green = platform. 
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Table 1: Wireline logs and their respective properties. 

Log Log type Unit Measures Use Pitfall 

GR Gamma ray API Natural gamma radiation 

from decaying U, Th and 

K 

Sand/shale 

differentiation 

Mica-effect in sands 

resembles shale 

response 

RHOB Bulk density g/cm3 Electron density Cementation 

trends 

Porosity and 

cementation affect 

bulk density 

NPHI Neutron 

porosity 

% Returned neutron count 

from H and Cl interaction 

Porosity Clay resembles fluid 

response 

DT Sonic / 

Acoustic 

us/ft Travel time through 

formation / slowness / 

inverse of velocity 

Tight/porous 

differentiation 

Fractures disturb 

sonic response 

RT Resistivity Ohm*m Resistive properties of 

fluid/gas 

Water/gas 

differentiation 

Oil-based or water-

based mud required 

CALI Caliper inch Borehole diameter Changes in size and 

shape of borehole 

Less useful for 

geological 

interpretation 

 

A well template for proper evaluation and comparison has been designed. The well template comprises both raw 

data and derived values. The included wireline logs are the gamma ray, sonic, caliper, bulk density (RHOB), 

neutron porosity (NPHI), water saturation and resistivity log. The core plug measurements include the porosity, 

horizontal permeability, vertical permeability, grain density. Note that the measurements of the wireline logs are 

determined in situ, whereas the core plug measurements are determined at surface. Derived values include the 

porosity from the bulk density (PHI-RHOB), porosity from the neutron porosity (PHI-NPHI) and the average 

calculated porosity (PHI-RMS). The latter is the average of the neutron porosity and the bulk density porosity by 

means of the root mean square to correct for any present gas. The presence of gas would cause the bulk density 

porosity to appear higher and the neutron porosity to appear lower (Benedictus et al., 2007).  

 

4.3 Electrofacies modelling  

For the following part of this study, it is important to repeat the definition of electrofacies: an interval in a 

borehole with a distinct log response. These log responses may then be recognized in other intervals in the same 

well or in other wells and linked to facies. The input for lithology predictions is thus the relation between the 

established lithofacies from a small number of intervals and the corresponding log responses. There are 

numerous techniques available, of which two are tested here. Ultimately, these techniques aim to unravel and 

to bring structure to the data.  

When a cloud of data points requires structure, it can be divided into groups. Clustering means the division of 

objects into groups (clusters). When assigning particular labels to these groups, it is called classification. For 

classification, the labels that are given to data groups must be discrete values. There are also prediction models 

with continuous attributes, which is regression. The classification model can then be used both as a descriptive 

or a predictive tool. With a predictive model, the aim is to predict the classification label of an unknown data 

point (Kumar et al., 2005). For this study, that would be to predict the lithofacies of a data point in the space of 

e.g. the gamma ray, RHOB and resistivity logs.  

To get acquainted with the concepts of clustering and electrofacies, the first electrofacies analysis was performed 

with a program that uses K-means clustering: Wkmeans. Although Wkmeans is able to make classifications, it is 

not able to use the lithofacies from core analyses as input. Since this discrete lithofacies classification is required 

to check the validity of the prediction, a different method has been searched for and found in Petrel. The 

workflow for both programs is given below. 
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4.3.1 Cluster analysis in Wkmeans 

Cluster analysis is used to show the probability that a log interval belongs to a certain facies group. This helps in 

assigning potential facies to the intervals. 

In short, cluster analysis can be defined as the division of data into meaningful or useful groups (Kumar et al., 

2005). The grouping is based entirely on information found within the data. The aim is to create groups with 

small differences between the objects within the groups, and large differences with other groups. 

There are numerous specific clustering techniques available, e.g. agglomerative hierarchical clustering, DBSCAN 

and K-means, with the latter being one of the most commonly used clustering techniques (Kumar et al., 2005). 

Given the know-how and availability of the software that uses K-means clustering, this clustering technique has 

been explored with Wkmeans.  

 

 
 

K-means clustering attempts to find a fixed number of clusters (k) from the data points. The clusters are defined 

by their centroid, usually the mean of the points. These centroids or cluster centers are calculated as follows. 

First, it is assumed that all data points belong to the same group (fig. 8). Next, the group is divided through the 

middle of the variable with the largest variance, creating two groups. The data points are then assigned to the 

group with the nearest centroid, causing this group center to slightly shift again. The re-assignment of the points 

stops when the cluster centers have become stationary. Finally, there will be two new clusters with centroids 

and new distances to the individual data points (Kumar et al., 2005). Hence, k = 2 in this case. These clusters can 

be split into more clusters and the re-assignment process will be repeated. For facies intervals, a maximum of 10 

groups is usually sufficient.  

The program Wkmeans uses the k-means clustering algorithm as it was developed by Hartigan, 1975, which uses 

the mean of a set of data points from logs to assign them into clusters. Since logging tools are calibrated 

differently, normalized log responses must be taken for proper comparison. The cluster analysis has been 

performed on intervals of three wells within the area: KDK-01, WWK-01 and WWS-01-S1. For each interval, an 

extensive geological report is available in the literature with core descriptions, plug data, lithofacies descriptions 

and interpretations of the depositional environment. 

Besides displaying the colored clusters in 2D and 3D space, Wkmeans shows the intervals in the well that 

correspond to each cluster. Moreover, a graph with the PFS is visualized. The PFS or Pseudo-F statistic is the 

statistical optimum with the best fit or the ideal number of clusters (Vogel & Wong, 1979). The PFS is also referred 

to as the ‘goodness’ of the clustering (Kumar et al., 2005). This means that the data points in a multi-dimensional 

cloud can be clustered with the least scattering, i.e. the division into different groups or clusters is the most ideal 

and the interstitial differences within the clusters are the smallest. Often a cluster tool will provide an optimum 

at only 2 clusters, generally related to an obvious sand/shale lithofacies distinction. It is up to the geologist to 

select a more meaningful number of clusters based on log and core responses.  

 

4.3.2 Lithology prediction in Petrel 

It is possible to extend this workflow by using a neural net: each time the algorithm assigns a facies, the output 

can be corrected with the given input facies. The neural net then learns what the preferred output must be, and 

will hopefully give an enhanced result. This will be explained below in more detail. 

With the Quantitative Analysis tool in the Advanced Geophysics perspective in Petrel, it is possible to assign a 

particular lithofacies to a distinct interval of log responses. This advanced tool uses probabilistic prediction and 

artificial intelligence through a neural net. Core descriptions and facies interpretations from literature have been 

x 

B A 

Figure 8: Schematic overview of k-means 
clustering. Division of a cluster yields two new 
centroids (A and B) and re-assignment of data 
point x.  
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used as input for the modelling, whereby the facies have been manually added to the intervals in the well 

sections.  

We have seen that Wkmeans only allows an 

unsupervised classification whereby the input data is 

subdivided into classes. In order to make predictions 

that may be verified by our own input, a supervised 

classification is required. Supervised classification is 

possible in Petrel via the ‘Quantitative Interpretation’ 

tab in the Advanced Geophysics perspective. The 

schematic workflow for the litho-classification and 

prediction tools is shown in figure 9.  

The lithology prediction has been performed on 

intervals of three wells within the area: BRAK-01, KDK-

01 and WWN-01-S2. Note that again no seismics is used 

in this analysis.  

Prior to lithology prediction, QC of the logs may show 

the need for a core shift to fit the plug measurements 

with the wireline data.  

The first step of lithology prediction is defining the 

input. We manually mark the discrete log with the facies 

interpretation from the lithological logs (Appendix II). 

Here a number of different Litho classes (i.e. facies) 

must be defined and given a distinct color. This facies 

log represents the training set and is then used as one 

of the input parameters in the litho analysis, together 

with the global well logs, the wells and top and base 

markers. A prior probability can be set for the different 

Litho classes. Furthermore, it is possible to assign the 

number of bins, the upscaling factor and the inversion 

error factor to the selected global well logs. QC of the 

defined input will show the PDF confusion matrix and 

potential errors and warning messages. The result of 

the Litho analysis is the Probability Density Functions 

curve, which can be visualized in 2D and 3D, and which 

represents the variability in formation properties given 

by the wells. The PDFs are part of the model that makes the predictions. 

Next is the lithology prediction, which has been performed by two different learning algorithms. The standard 

learning algorithm in Petrel is the Bayes classifier. Bayesian statistics use empirical observations to recalculate 

the probabilities of an event, in this case of a certain facies belonging to a certain log response. In practice, the 

Bayesian approach means that uncertainties of the logs can be incorporated (Hantschel & Kauerauf, 2009). Here 

the input is given by the previously defined Litho Analysis, the input type (here: well logs), the wells, the attributes 

(here: global well logs) and the zone of interest with the top and base markers. The output can be visualized as 

a discrete log in the well section. Note that this lithology prediction is based on the probability density functions, 

i.e. on the probabilities of occurring as a particular facies.  

Besides the standard lithology prediction workflow with PDFs, there is another classification technique available. 

The neural network distinguishes itself from other classifiers by a few aspects. First of all, the modelled output is 

compared to the target (i.e. equal to the input) data to determine an error. The errors are then back-propagated 

through the network and the different weights of the data are adjusted, creating a smaller error. Moreover, this 

workflow is iterated until it has reached the best possible fit.  

1 

2 

3 

4 

5 

Figure 9: Workflow as performed in Petrel. 
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The neural network in Petrel allows for both supervised and unsupervised learning. The supervised learning 

compares the outcome of the calculations with the correct results that were given by us, which is how it can 

learn (Hantschel & Kauerauf, 2009). Therefore the input for the neural net prediction are the wells and the global 

well logs, and the neural net is supervised by the manual litho classification. Since the neural net requires training, 

the following settings have to be selected: the maximum number of iterations, the error limit (%), the cross 

validation (%) and the probability threshold. Additionally the facies classification of the input log must be selected 

as the supervising Neural net class, i.e. the predictions will use the supervised classes that we manually assigned 

to the logs. The output can again be visualized as a discrete log in the well section.  

 

Table 2 shows the available cored intervals that have been used as input for the classification. As it becomes 

clear that only a handful of the Triassic intervals has been available for core studies, the need for more facies 

interpretation is emphasized.  

 
Table 2: Wells and related members that have been used as input for the classification. 

Well code BRAK-01 WWK-01 WWN-01-S2 WWS-01-S1 KDK-01 

Well name Brakel Waalwijk Waalwijk Noord Waalwijk Zuid Keldonk 

Upper core 

members 

RNROF RNROF, RNROY - RNROY RNROF, RNROY 

Lower core 

members 

RBMDC -  RBMVL, 

RBMVU, 

RBMVA, 

RBMDU,  

RBMH 

- RBMVL 

QC Good Low resolution 

of input litholog 

Good Interval of only 

6,5 m 

Good 
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 Results 

First the influence of the three main controls on reservoir quality is briefly discussed, as well as the problems 

that occur with the current methods. Next the results of the electrofacies modelling are shown, both for the 

unsupervised and supervised facies classification.  

 

5.1 Controls on Reservoir Quality 

The quality of a hydrocarbon or hydrothermal reservoir is controlled by three main consecutive factors: facies, 

mechanical compaction and diagenesis. A concise overview of the influence of these controls on the Roer Valley 

Graben is given below. 

 

5.1.1 Facies 

Often the porosity ranges within an interval are due to the ranges that exist within a facies. A channel sequence 

shows a fining upwards sequence and thus a larger range of grain size and porosity (Serra, 1983). This trend is 

reflected by the wide range in porosity measurements on porosity-depth plots.  

A depositional model for East Brabant during the Triassic based on previous models from Leeder & Gawthorpe, 

1987 and Ursem, 2018 is shown in figure 10. It shows the location of the Roer Valley Graben between the 

mountain ranges of the London Brabant Massif and the Rhenish Massif. The insets show a close-up of the local 

depositional environments.  

 
Figure 10: Depositional model for the Roer Valley Graben during the Triassic. RM: Rhenish Massif, LBM: London Brabant 
Massif, RVG: Roer Valley Graben, WNB: West Netherlands Basin. Facies types: (1) alluvial fan, (2) fan delta, (3) braided river 
channel, (4) abandoned channel, (5) mudflow, (6) (ephemeral) pond/lake, (7) floodplain with minor channeling. After Leeder 
& Gawthorpe, 1987 and Ursem, 2018. 
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5.1.2 Burial 

Burial history plots of several wells within the Roer Valley Graben showed that the maximum burial depth often 

corresponds with the current depth of the formations in Brabant. A minor burial anomaly in the southwest of 

the graben can be ascribed to the late-stage tectonic 

reactivation starting from the Pliocene (4 Ma), which 

led to an uplift of locally 150 m (i.e. NDW-01). Based 

on basin modelling studies (Nelskamp & Verweij, 

2012), it is assumed that a burial anomaly of less than 

300 m has no significant effect on the physical 

properties of the rocks. Major fluctuations within the 

porosity range are therefore not expected from burial 

anomalies, but from other elements constraining the 

reservoir quality such as facies and diagenetic 

processes. From these observations it can be 

concluded that the present day burial depth is equal 

or close to the maximum burial depth and hence, no 

additional corrections are required.  

 

5.1.3 Diagenesis 

To determine the influence of diagenesis on porosity, 

the following analysis has been performed. The depth-

porosity plots in figure 11 have been constructed for 

the well with the largest number of plug 

measurements, WWN-01-S2. The data points have 

been grouped in discrete bins, applying the same 

method as Van Kempen et al., 2018. The depth-

porosity plot of core plugs from well WWN-01-S2 

shows a wide range of grain densities, without the 

typical depth-trend. This most likely indicates that 

diagenesis has affected the porosity locally. With 

depth, porosity decreased due to mechanical 

compaction, whereas the matrix density (i.e. grain 

density) does not change merely due to mechanical 

compaction. This means that the grain density must 

have been affected by diagenetic processes. 

Dolomitization has been found in cores and is visible 

on core photos (NLOG).  

A discrepancy in measurements and trends from this 

interval indicates that it probably is not possible to 

compare this trend to plug data from other wells, 

members and intervals. In other words, these trends 

cannot be used for the larger scale. The wells from the RVG that are used in this plot are: AST-01, BKZ-01, DON-

01, HSW-01, HSW-01-S1, KDK-01, LOZ-01, OIW-01, SPC-01, SPG-01-S2, VEH-01, WAP-01, WWK-01, WWN-01-S2, 

WWS-01-S1.  

The distinction of grain densities within a porosity-depth plot has been successfully applied for the RBMVL (Van 

Kempen et al., 2018). Even when using different stratigraphic intervals (i.e. all available Triassic intervals), a 

similar trend appears to emerge from our much smaller dataset. 

At a local scale, the combination of facies, depth and diagenesis makes the comparison of intervals rather 

complicated. Therefore a lithology prediction based on log responses is explored.  

 

 

A 

B 

Figure 11: Porosity-depth plots. 
Trendlines through corresponding 
grain density groups. A: Core plug 
measurements of the Triassic from 
WWN-01-S2. B: More wells included. 
Colors correspond to grain density 
groups (g/cm3). 
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5.2 Cluster analysis in Wkmeans 

The results of the k-means clustering are discussed per well interval. Intervals of good and poor correlation will 

be shown.  

Cluster analysis has been performed on the cored intervals of wells BRAK-01, KDK-01, WWK-01 and WWS-01-S1. 

For well WWN-01-S2, the interval comprises the member sequence of RBMVL, RBMVU, RBMVA, RBMDU and 

RBMH. However, the input consists of only two wireline logs, i.e. the gamma ray and sonic log. Furthermore 

there is no suitable data table available to load in Wkmeans, so for this well no cluster analysis has been done.  

 

5.2.1 BRAK-01 

Two intervals with available lithologs have been analyzed. The upper interval lies within the RNROF, the Röt 

Fringe Sandstone Member, the lower interval lies within the RBMDC, the Detfurth Claystone Member.  

 

Upper interval (fig. 12) 

The upper interval of 20 m is measured from 2349 – 2369,10 mBRT. The main depositional settings were (1) 

fluvial channel, (2) floodplain pond/lake, (3) floodplain pond/lake with influence of sheetfloods, (4) sheetfloods 

with minor channeling/scouring and (5) sheetflood.  

Input logs for the cluster analysis are gamma ray (GRC), bulk density (RHOBEDIT) and resistivity (RT). A core shift 

of 1,5 meter upwards yields a better match with permeability measurements from plugs. This shift is also used 

to change the input interval of the cluster analysis. When compared to the interpreted depositional 

environments, there appears to be a better match between changes in log responses and facies boundaries.  

The statistical best fit is taken at 5 clusters. Here the floodplain pond/lake and floodplain pond/lake with 

influence of sheetfloods are well distinguished from the clustering. As a lithofacies that is influenced by different 

environments with a wide range of log responses, the sheetfloods with channeling are not recognized as one 

cluster. The channel cluster can be recognized in the ‘mixed’ lithofacies of sheetfloods with minor channeling. 

 

Lower interval (fig. 13) 

The lower interval of BRAK-01 is measured from 2452 to 2478,65 mBRT. A total number of 12 individual 

environments are interpreted from the sedimentary analysis, which have been grouped here into 3 main 

depositional settings: (1) floodplain pond/lake, (2) sheetfloods and (3) braided channels. Many of the interpreted 

environments have mixed deposits in a transitional zone.  

Input logs are the gamma ray (GRC), bulk density (RHOBEDIT) and resistivity (RT). A core shift of approximately 2 

m upwards gives a better match with permeability measurements and facies interpretations. The core shift has 

been adopted in the cluster analysis to compare the same intervals. 

The PFS plot shows that the best fit is found for 3 clusters. The best match between lithofacies and clusters is 

from the floodplain ponds, with all 6 interpreted pond intervals represented by the clustering. The sheetfloods 

and braided channels are more difficult to distinguish from the cluster analysis. The lowest stacked sheetfloods 

interval stands out from the others according to the cluster analysis, and this is supported by high permeability 

measurements.  

 
  



21  

BRAK-01, upper interval: 2349 – 2369,10 mBRT 

 
 

 

Figure 12: Results of Wkmeans modelling for the upper interval of BRAK-01. (A) and (B): wireline data with their 
corresponding cluster. The number of clusters (i.e. 5) corresponds to the optimum derived from the PFS plot. (C): Distribution 
of clusters along the borehole interval. Each column represents the number of clusters, starting from 2. (D): PFS plot with the 
optimum number of clusters. 
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BRAK-01, lower interval: 2452 – 2478,65 mBRT 

 

 

 

Figure 13: Results of Wkmeans modelling for the lower interval of BRAK-01. (A) and (B): Wireline data with their 
corresponding cluster. The number of clusters (i.e. 3) corresponds to the optimum derived from the PFS plot. (C): Distribution 
of clusters along the borehole interval. Each column represents the number of clusters, starting from 2. (D): PFS plot with the 
optimum number of clusters. 
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5.2.2 KDK-01 

For this well, two intervals have been used for electrofacies analysis. The lower interval lies within the RBMVL 

(Lower Volpriehausen Sandstone Member). The upper interval lies within the RNROF (Röt Fringe Sandstone 

Member) and the RNROY (Upper Röt Fringe Claystone Member).  

 

Lower interval (fig. 14) 

The deepest interval runs from 2258 to 2275,10 mBRT. The interpreted lithofacies from GAPS, 1992 are (1) 

floodplain with minor fluvial channels and (2) braided channel complex.  

The input for the electrofacies analysis are the gamma ray log (GRCGAPI), resistivity log (RTOHMM) and the 

porosity (PHIDEDITDEC). The best fit is found at 2 clusters. The electrofacies matches well with the interpreted 

lithofacies.  

 

Upper interval (fig. 15) 

The upper interval of KDK-01 runs between 1944 and 1981 mBRT. The interpreted lithofacies are (1) sheetfloods 

/ distal alluvial fan, (2) floodplain, (3) braided channel complex, (4) abandoned channel / overbank, (5) floodplain 

with ponds/lakes and minor channels and minor soils, (6) floodplain pond/lake.  

As input for the clustering, the following logs are used: gamma ray (GRCGAPI), resistivity (RTOHMM), porosity 

(PHIDEDITDEC). The statistical best fit for the clustering yields 2 to 4 clusters. Some of the facies interpretations 

match very well with the electrofacies results, for example the braided channel complex and abandoned 

channel/overbank. The braided channel complex shows high porosity and permeability values and low resistivity 

measurements, as well as a low gamma ray response.  
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KDK-01, lower interval: 2258 – 2275,10 mBRT 

 
 

 
Figure 14: Results of Wkmeans modelling for the lower interval of KDK-01. (A) and (B): Wireline and core plug data with their 
corresponding cluster. The number of clusters (i.e. 2) corresponds to the optimum derived from the PFS plot. (C): Distribution 
of clusters along the borehole interval. Each column represents the number of clusters, starting from 2. (D): PFS plot with the 
optimum number of clusters. 
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KDK-01, upper interval: 1944 – 1981 mBRT 

  

 
Figure 15: Results of Wkmeans modelling for the upper interval of KDK-01. (A) and (B): Wireline and core plug data with 
their corresponding cluster. The number of clusters (i.e. 4) corresponds to the optimum derived from the PFS plot. (C): 
Distribution of clusters along the borehole interval. Each column represents the number of clusters, starting from 2. (D): PFS 
plot with the optimum number of clusters. 
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5.2.3 WWK-01 (fig. 19) 

The interval lies within the RNROF (Röt Fringe Sandstone Member) and the RNROY (Upper Röt Fringe Claystone 

Member). The interval between 3470 and 3518 mBRT has been analyzed. The sedimentology report by BP 

distinguishes 2 main lithofacies, a sandy and a shaly one. The sand lithofacies is composed of 5 minor sub-facies: 

(1) mica-rich sandstone, (2) scour surface on mudstone, (3) cryptic scour surface, (4) sandstone with mud clasts, 

(5) sandstone. The mudstone lithofacies contains two sub-facies: (6) silty mudstone and (7) mudstone. Three 

stacked sequences of facies 1 to 7 have been distinguished from the core analysis.  

The input for the clustering comprises the gamma ray (GR), effective porosity (PHIE) and the bulk density (RHOB). 

A core shift of approximately 2 to 3 m provides a better fit with measured permeability values. The three stacked 

lithofacies associations are clearly separated by shaly intervals at the top of the sequence. This is reflected by 

the GR, porosity, permeability and bulk density. The electrofacies clustering results reflect this shaling-up trend 

rather well. The PFS plot shows that the best fit is found at 3 clusters. For this interval the clusters are likely 

matched to a lithofacies of sand, shale and a combined sand-shale facies.  
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WWK-01: 3470 – 3518 mBRT 

 
 

 

Figure 16: Results of Wkmeans modelling for the lower interval of WWK-01. (A) and (B): Wireline data with their 
corresponding cluster. The number of clusters (i.e. 3) corresponds to the optimum derived from the PFS plot. (C): Distribution 
of clusters along the borehole interval. Each column represents the number of clusters, starting from 2. (D): PFS plot with the 
optimum number of clusters. 
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5.2.4 WWS-01-S1 (fig. 17) 

The interval lies within the RNROY (Upper Röt Fringe Claystone Member). Here a 6,5 m interval between 3109 

and 3115,50 mBRT has been analyzed. The three interpreted depositional environments are (1) fluvial channel, 

(2) desert lake with occasional inland sabkha conditions and (3) distal sheetfloods in desert lake. 

 The input for the k-means clustering contains the gamma ray log (GRC), the bulk density log (RHOBEDIT) and the 

resistivity (RT). The PFS (Pseudo F-statistic) indicates a best fit at 7 to 19 clusters. However, this is not reflected 

by the facies, of which there are only 3 interpretations. The large number of clusters may be the result of an 

insufficiently large data set over the 6,5 m interval. The facies are the best distinguished by the resistivity log and 

porosity measurements from core plugs, where the fluvial channel shows an increased porosity up to 7% and 

increased resistivity. The desert lake with sabkha conditions is characterized by anhydrite, which is indicated by 

the presence of the high density (2.95 g/cm3) grains and it is mentioned in the sedimentary log. 
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WWS-01-S1: 3109 – 3115,50 mBRT 

 

 

 

Figure 17: Results of Wkmeans modelling for the interval of WWS-01-S1. (A) and (B): Wireline data with their corresponding 
cluster. (C): Distribution of clusters along the borehole interval. Each column represents the number of clusters, starting from 
2. (D): PFS plot with the optimum number of clusters.  
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5.3 Lithology prediction in Petrel 

The results of the lithofacies modelling in 

Petrel will be shown here. The lithology 

predictions in the wells are shown in this 

section. The probability density functions 

(PDFs) have been added as appendices. 

Lithology prediction has been performed 

on the wells BRAK-01, KDK-01, WWN-01-

S2. Wells WWK-01 and WWS-01-S1 have 

been excluded from the modelling. The 

available lithofacies description for well 

WWK-01 is from a much lower level of 

detail compared to the other wells. 

Because of the uncertainties related with 

the input facies, further modelling would 

not produce reliable estimates. The 

interpreted facies interval for WWS-01-S1 

is too short (i.e. 6,5 m) to produce 

meaningful lithology predictions.  

 

5.3.1 BRAK-01 (fig. 18) 

All available wireline logs have been used 

as input, i.e. GR, NPHI, RHOB and DT. The 

upper interval of 20 m runs from 2349 – 

2369,10 mBRT. The lower interval of BRAK-

01 is located at 2452 to 2478,65 mBRT. 

After careful analysis of the wireline and 

core response, a core shift of 2 MD 

downwards has been applied. This means 

that the logs of the horizontal permeability, 

porosity and grain density are shifted 

downwards relative to the wireline logs.  

The panels show the final result of the 

modelling. The first panel shows the 

interpreted facies intervals from the 

lithological log which serves as the input for 

both the probabilistic and neural 

Figure 18: Results of the lithofacies modelling of 
well BRAK-01. Panel 1: input. 2: output 
probabilities. 3: Output neural net. 4: decreased 
input. 5: new output neural net. 6 & 7 are also 
new input and output. 
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prediction. The second panel shows the result of the 

lithofacies prediction from probabilities. The third 

panel shows the result of the lithofacies prediction 

from the neural net. When a shorter interval is used 

as input (panel 4), the neural prediction (panel 5) 

differs largely from the previous prediction (i.e. panel 

3). This method has been applied another time.  

When the uninterpreted intervals in the input pane 

are marked as ‘UNDEFINED’, the neural net is able to 

predict these intervals too. 

The probability density functions (PDFs) can only be 

produced for lithofacies which input contains at least 

2 separate intervals. Here PDFs are available for (1) 

Sheetfloods, (2) Fluvial channel and (3) Floodplain 

pond. PDFs are shown per attribute, i.e. GR, NPHI, 

RHOB and DT.  

Plotting a poroperm from the available core plugs 

with their interpreted lithofacies does not yield a 

better facies distinction. The porosity-depth plot is 

does not show a clear facies distinction either. 

 

5.3.2 KDK-01 (fig. 19) 

The wells used for litho-analysis are GR, RHOB and 

RESD. The deepest interval runs from 2258 to 2275,10 

mBRT and the upper interval between 1944 and 1981 

mBRT. The input panel shows the intervals with (1) 

Sheetfloods, (2) braided channel complex, (3) 

floodplain with minor fluvial channels, (4) abandoned 

channel/overbank and (5) floodplain pond. The lower 

interval only contains the braided channel complex 

and the floodplain with minor fluvial channels. 

Therefore PDFs of only these two facies are created. 

As an example, the PDFs can be shown for 1, 2 or 

three attributes in comparable dimensions.  

The lithology prediction based on these PDFs is shown 

in panel 2. The neural net prediction is shown in panel 

3.  

The validity of the neural net prediction within the 

well is tested as follows. The upper interval as derived 

from core interpretation is used as input, as well as a 

small interval below. The neural net then predicts a 

sequence (panel 5) that is very similar to the first 

prediction. A close-up of the lower interval shows the 

predictions in more detail. The floodplain with minor 

channels facies is predicted very well and is a 

continuation of the assigned interval. The braided 

Figure 19: Results of the lithofacies modelling of well KDK-
01. Panel 1: input. 2: output probabilities. 3: Output neural 
net. 4: decreased input. 5: new output neural net. 
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channel complex is not recognized as such, but as a sheetflood sequence. Although it is a different lithofacies, 

there is some resemblance in the log responses from both.  

The output facies that has been linked to the data can be used for further analysis, such as the occurrence within 

the porosity-permeability space. The poroperm (Appendix III) shows a rather good distinction between the 

braided channel complex and the floodplain with minor fluvial channels. The other facies do not show a distinct 

trend, possibly due to the low number of data points.  

The porosity-depth plot (Appendix 

III) shows a large spread in the 

facies. The braided channel 

complex plots on the higher side of 

the porosity, whereas the 

floodplain with minor fluvial 

channels shows on the lower 

porosities. The floodplain pond has 

a low number of data points, but 

plots on the low side of porosity.  

The neural net prediction can also 

be visualized in for example a plot 

of gamma ray versus resistivity (fig. 

20). The results of the lithofacies 

modelling show an improved 

distinction into separate groups. 
  

Figure 20: Data cloud of gamma ray (CGR_NuTech) versus resistivity 
(RESD_NuTech) of well KDK-01. (A): Colored squares correspond to the input 
facies, grey squares correspond to undefined intervals. (B): Colored squares 
correspond to the output facies, grey squares correspond to undefined 
intervals. 
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5.3.3 WWN-01-S2 (fig. 21) 

The interval between 3305 and 3169 mBRT has been 

analyzed. The interval lies within the following 

members: RBMVL, RBMVU, RBMVA, RBMDU, RBMH. 

For this well, the total of wireline logs is limited to the 

gamma ray and the sonic log. Besides the wireline 

logs, abundant core plug data is available along the 

interpreted interval. Panel 1 in figure 21 represents 

the facies interpretation from the cores. Due to the 

limited number of wireline logs, a different approach 

has been used for this well. Here, the input is not the 

wireline logs but the plug data: porosity, horizontal 

permeability and grain density. The results of neural 

net prediction are shown in panel 2. Since the panel 

showed a large number of discontinuities, the input 

log had to be improved. Therefore the porosity, 

permeability and grain density logs were interpolated 

where possible. The interpolation was applied in a 

rather conservative way to prevent further 

uncertainties. The interpolated logs were input for the 

neural prediction, with the results visible in panel. 

Although a clear improvement, a large number of 

undefined intervals remained.  

Therefore the input logs were changed to the wireline 

logs, i.e. gamma ray and sonic. Panel 4 shows the 

resulting facies prediction from the probabilities of 

the wireline. The associated PDFs have received more 

than two intervals per lithofacies, which means that 

there is sufficient input for both the PDF calculation as 

well as the lithology prediction. However, the 

resulting panel varies significantly from the input 

facies.  

Panel 5 shows the lithology prediction of the neural 

net, and this shows a better match between the input 

and modelled facies.  

The poroperm plot does not show a better distinction 

of lithofacies.  

The porosity-depth plot shows good clustering for the 

floodplain pond facies, and slightly for the braided 

channel complex. The sheetfloods and floodplains 

with minor fluvial channels show no clustering.  
 
  

 

Figure 21: Results of the lithofacies modelling of well 
WWN-01-S2. Panel 1: Input. 2: Output from core plugs with 
neural net. 3: Output from interpolated core plugs with 
neural net. 4: Output from wireline data with Bayes 
method. 5: Output from wireline data with neural net. 
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6. Discussion 

First the individual results of the cluster analysis and Petrel predictions will be discussed. Furthermore the 

methods themselves will be discussed. A reflection on the research question will be provided, while previous 

studies are discussed as well.  

The contribution of this project to theory and practice is discussed here too. The limitations of the study are 

considered as well. 

 

6.1 Cluster analysis in Wkmeans 

Here the results of the k-means clustering are discussed with respect to the applicability to facies determination. 

Possible explanations for good and poor correlations will be discussed.  

 

6.1.1 BRAK-01 

In the upper interval from 2349 – 2369,10 mBRT, the best match between the clustered electrofacies and the 

depositional environment is from floodplain ponds/lakes, which show a distinct increased gamma ray and bulk 

density and lower resistivity. These observations are in line with the typical behavior of clays, with tightly packed 

conductive minerals. 

The lower interval from 2452 – 2478,65 mBRT shows a very good correlation of the sheetflood ponds/lakes, 

which can be linked straight from the clusters to the facies interpretations for all 6 pond intervals. However, 

when considering 3 facies, a mismatch arises in the sheetfloods facies and the channel facies. The cluster of the 

lowest interval of stacked sheetfloods reappears in thin bands within the cluster of sheetfloods with minor 

channeling. This reappearance occurs within three different sheetflood interval, except for the homogeneous 

sheetflood interval. Furthermore the lower stacked sheetfloods show a distinct increased permeability. Given 

these arguments, the clustering indicates a revision of the interpreted facies for the lower stacked sheetfloods, 

pointing towards a channel environment. A revision of the log description is needed to consider the possibility 

of a braided channel complex, rather than stacked sheetfloods. Core photos and the log description show minor 

cross bedding in the braided channel complex, whereas the bedding appears more planar parallel in the stacked 

sheetfloods interval. Therefore the lithofacies interpretation is not changed after cluster analysis.  

 

6.1.2 KDK-01 

For the upper interval (1944 – 1981 mBRT), the clear match between the electrofacies and interpreted 

depositional environment can be contributed to all logs recording the change in lithology. Therefore this is a 

good example for the use of electrofacies modelling. 

The lower interval from 2258 to 2275,10 mBRT contains a much more complex sequence, although the major 

trends are properly recognized by the cluster analysis. The braided channel complex stands out the most from 

the other facies.  

 

6.1.3 WWK-01 

For the interval between 3470 and 3518 mBRT, there appears to be a good match between logs, cores and 

electrofacies interpretation. The triple stacked lithofacies association of a shaling up sand sequence from the 

interpretation is reflected in detail by numerous logs, creating strong relations and distinct clusters. The 

particular stacking or repetition of the sequences makes this interval particularly useful for comparison.  

 

6.1.4 WWS-01-S1 

The poor fit of the gamma ray log with the depositional environments could be due to a core shift. As this interval 

is only 6,5 m (between 3109 and 3115,50 mBRT), a core shift might disturb the image and yield no relevant 

insights. 
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However, the resistivity log and plug porosities do indicate the facies accordingly, so a core-log mismatch is not 

expected. Here, the mere gamma ray log may be a poor indicator for facies, as mentioned by (Rider, 1990). When 

GR is omitted from the clustering, it still does not lead to a better fit with the facies interpretations. Perhaps 

more data in this interval or a longer interval is required to create geologically better clustering. 

 

6.2 Lithology prediction in Petrel 

Here the results of the lithology prediction in Petrel will be discussed and interpreted. Furthermore limitations 

and prerequisites of the technique are discussed.  

 

6.2.1 BRAK-01 

The lithology prediction from probabilities has yielded a very incomplete facies sequence with many undefined 

intervals. Even the two interpreted intervals are poorly reproduced by the probability technique. The wide range 

in the Probability Density Functions causes the poor correlation. Moreover the braided channel complex is lost 

entirely from the prediction, due to its single occurrence in the input facies panel.  

The prediction from the neural net (panel 3) shows a good match with the predefined interval. The predicted 

lithofacies between the lower and upper interval appear to match the log response seen in the interpreted 

intervals.  

For neural net prediction, at least one interval per lithofacies is required. Because the upper and lower interval 

each contain a unique facies, a check between intervals is not possible. Shorter input intervals give varying 

results. Generally, the shaly intervals are best recognized as floodplain ponds/lakes. Extrapolation of the neural 

net to the base of the Triassic (RBSH) indicates the presence of braided channel complexes in the RBMVU. This 

interval is characterized by a low serrated gamma ray signal, associated with a sequence of channels and barrier 

bars (Rider, 1990; Serra, 1983). Correspondingly, the core interpretation of the RBMVU in well WWN-01-S2 

indicates a braided river complex. Furthermore the neural net indicates a braided channel complex in KDK-01. 

Therefore this prediction appears to be valid, which makes this interval interesting for further investigation.  

The poor facies clustering from the poroperm and porosity-depth plot does not allow for a better facies 

distinction in this well, so more data might be beneficial.  

In this case, the best results are obtained from the neural net with wireline logs. The core data shows poor 

clustering, making it difficult to make any predictions.  

 

6.2.2 KDK-01 

Due to the presence of two interpreted facies intervals, this well is suited for a proper quality control of the 

lithology prediction. The prediction from the PDFs, the probabilities, is clearly insufficient; the panel contains a 

large amount of discontinuities within the predicted interval and outside. The lithofacies prediction of the neural 

net has a good match with the interpreted facies intervals. Given that a smaller input yields a similar result, the 

neural net is considered very successful in this particular well interval.  

The poroperm shows a rather good facies distinction between at least two different facies, with the braided 

channel complex being the most distinguished in the upper right corner of the poroperm trend.  

The porosity-depth plot does not show a good facies clustering, so more data is required.  

 

6.2.3 WWN-01-S2 

Predictions from core plugs have proven to be problematic, since a large amount of interpolation is required. 

The advantage of wireline logs over core logs is that they are continuous measurements, whereas the core logs 

are point measurements. This problem cannot be overcome completely, but an approximation of porosity is 

possible from calculating a porosity from the bulk density and the grain density, followed by taking the root mean 

square of this calculation and the neutron porosity. Unfortunately, the required RHOB and NPHI logs are absent 

in this well.  
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The other option is the use of the two wireline logs. The probability density functions show that the different 

facies appear very similar in their log responses, especially for the sonic. Consequently, the resulting lithology 

prediction shows a poor facies relation with the interpreted interval.  

The best match comes from the neural net prediction based on the wireline logs. However, in this prediction one 

facies has been omitted: the floodplain with minor fluvial channels is not recognized by the neural net.  

For this interval, the poroperm plot does not show an improved lithofacies distinction.  

Since the porosity-depth plot only shows good clustering for the floodplain pond facies, the results are not useful 

for predicting facies elsewhere.  

 

6.3 Property maps 

 

The cluster analysis and lithology prediction were means to improve the current mapping methodologies by using 

the electrofacies or log response per facies. Here the methodologies of the property maps will be discussed as 

well as the implications of the new electrofacies approach. Regional porosity maps exist for the West Netherlands 

Basin (Vis et al., 2010) and for the entire Netherlands (including offshore) in 2017. Both map projects were based 

on porosity data from wells, although different driving maps were used; respectively maximum burial depth and 

facies. The advantages and disadvantages of both approaches will be reviewed. Given that both studies delivered 

a porosity map for the West Netherlands Basin, comparison of the output maps would provide a good visual 

comparison of different methods. However, the 2010 study contains a map of all Triassic intervals stacked, 

whereas the 2017 study shows porosity maps per member, making this an invalid comparison. Therefore the 

results of the mapping projects will not be evaluated, but rather the methodology that underlies the property 

maps. Finally the methodology of the new electrofacies approach will be discussed.  

 

Other studies have not been able to combine facies with determining poro-perm relationships in the Roer Valley 

Graben. Appointing facies to poro-perm data did not result in a better separation of clusters, hence facies was 

not incorporated in the poro-perm relations (Maaijwee et al., 2012). A better clustering in poro-perm relations 

has been established based on grain densities rather than facies, at least for the Lower Volpriehausen Sandstone 

Member RBMVL (Van Kempen et al., 2018). 

 

6.3.1 Maximum Burial driven 

The TNO porosity maps from 2017 used core and log data and extrapolated the values based on the porosity-

depth relation. In other words, these property maps are conditioned on the maximum burial depth. When 

starting with the creation of a regional porosity map, the porosities measured in the wells are plotted against 

their depths. The trend arising from this plot is used with a maximum burial depth map, which assigns the 

expected porosity with the particular depth.  

An advantage of this method is that the maximum burial can be rather well determined. Since the Roer Valley 

Graben does not have a significant burial anomaly, the present day depth can be regarded as the maximum burial 

depth (Nelskamp & Verweij, 2012). Present day depths can be traced as horizons from seismic data, so even 

some distinction between major lithological markers can be established.  

A disadvantage is the generally poor relation between maximum burial and porosity due to initial facies variations 

and secondary diagenetic processes. In order to select only the good reservoir, intervals with a high clay content 

or with diagenetic influences must be excluded. When this is done consistently, a strong poro-depth relation 

emerges from the dataset (Van Kempen et al., 2018). However, this trend is only validated for measurements 

based on grain density, a property that can only be obtained from cores and not from wireline data. Wireline 

only measures bulk density (RHOB), which is a combination of matrix density, porosity and pore fluids. Regardless 

of this finding, it remains very difficult to derive local porosity estimates from a regional porosity-depth trend. 
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6.3.2 Facies driven 

For the West Netherlands Basin a property map has been constructed with a driving map based on facies (Vis et 

al., 2010). Here the porosity and permeability data from cores have been linked to facies. A classical facies 

modelling algorithm kept the facies fixed in the wells, while varying them outside of the wells. Repeated runs 

finally resulted in an statistically averaged 3D facies model.  

 

A disadvantage is the difference in information between wireline data (logs) and cores. Since only a few select 

intervals are sampled for cores and plugs, the rest of the well is evaluated only by wireline measurements. In 

general, wireline data is used to determine sand/shale cutoffs, followed by facies modelling in the reservoir 

sands. Especially when interpreting lithofacies without cores and plug data, the uncertainties increase.  

A second disadvantage is the loss of detail that occurs with upscaling. The facies modelling uses a ‘most of’ 

criterion, causing thin facies intervals to be occluded by the thicker intervals. However, the transmissivity of a 

potential reservoir is largely determined by the preferential flow of high perm intervals, which can be very thin 

(Pluymaekers et al., 2012). When these thin but high perm intervals are excluded from upscaling, the modelling 

will result in overly pessimistic outcomes. According to Walther’s Law, facies that are stacked conformably on 

top of each other, can also be found laterally to each other. Therefore it may be possible that the thin high perm 

intervals measured in the well are pinch outs of much thicker intervals further away from the well. 

An advantage of this method is that it agrees with the general finding that facies is the most important factor 

controlling reservoir quality (K18-Golf Unit, 2016). Hence, a solid facies model of the Triassic is essential in 

determining the reservoir potential of the Roer Valley Graben.  

 

Further analysis of the methodology by Vis et al., 2010 has shown the following. For wells and intervals with only 

wireline data, the sand-shale intervals were interpreted based on the gamma ray response. Facies modelling was 

then continued with only the sand intervals. Other logs than gamma ray such as sonic, neutron and density logs 

have been used in a cluster analysis to improve the sand-shale distinction. However, the other logs did not 

contribute to a better sand-shale separation, so the distinction between sand and shale in uncored intervals was 

based solely on gamma ray response. Only 5 out of the 77 wells in the West Netherlands Basin were used in the 

cluster analysis (Vis et al., 2010).  

Some comments must be made with regards to the disappointing results of cluster analysis of Triassic intervals 

in the West Netherlands Basin. Only 5 out of the total of 77 wells have been used for cluster analysis based on 

gamma ray logs. Additionally, the use of only a GR log when distinguishing facies comes with limitations (Rider, 

1990). That is, when solely relying on the GR log the mica-effect of sandstones might falsely indicate a shaly 

interval. Furthermore, the other logs also do not directly indicate sand and shale. Diagenesis and deeper burial 

both affect the porosity and mineralogy of the reservoir. Since the West Netherlands Basin has experienced more 

inversion and diagenetic processes than the RVG (Kombrink et al., 2012), it has a more affected porosity and 

permeability which in turn affect the NPHI and RHOB. This might explain the poor clustering results from these 

logs, as visualized by the extremely poor relation between permeability and burial depth (Vis et al., 2010). Cluster 

analysis may still prove useful for the RVG, especially considering the absence of a significant burial anomaly 

(Nelskamp & Verweij, 2012). 

 

6.3.3 Exploring electrofacies 

The porosity of a reservoir rock is controlled by three consecutive elements. The first and foremost control is 

facies. Next mechanical compaction and finally diagenesis affect the porosity. Therefore the present-day porosity 

may be the sum of all three processes. 

A facies-driven porosity map has not yet been constructed for the Roer Valley Graben, only burial-driven property 

maps based on Van Kempen et al., 2018. It may be expected that these maps appear more or less similar: the 

deepest burial depth might match with a more shaly lithofacies, linked to the distal position of the basin away 

from the London Brabant Massif. The flanks of the structural highs surrounding the RVG are considered more 

proximal with coarse sediments associated with alluvial fans. A similar facies-depth trend has been identified in 
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the Middle to Upper Jurassic stratigraphic intervals of the northeastern North Sea (Ramm, 2000). Adjacent to 

this study area, this relationship is not as clearly present in the West Netherlands basin (Vis et al., 2010), whereas 

the Roer Valley Graben appears to be a much more ‘intact’ basin with less tectonic reactivation affecting the 

maximum burial depth. The absence of a significant burial anomaly in a basin setting supports preservation of 

the facies-depth relation.  

 

Obviously, the main limitation on facies characterization in the Roer Valley Graven is the limited amount of data. 

There is a very limited number of wells with a wide geographical distribution and with only a few interpreted 

lithological intervals. This might explain why current schematic facies maps have such a high level of ‘geo-fantasy’ 

(Emery, 1987; Maaijwee et al., 2012; Winstanley, 1993). A combined approach is necessary to derive a more 

realistic facies distribution.  

 

The goal of the electrofacies approach is to find particular combinations of log responses that provide a unique 

‘fingerprint’ for a facies. Here the classification has been explored by either unsupervised and supervised 

classification, of which the latter is more preferable since it easier to verify the validity of the model. 

Cluster analysis as part of a statistical approach for lithology determination from well logs has been a widely used 

method (Geel & Lutgert, 1990). Previous studies have compared the predictions from standard statistics with the 

predictions from the neural net, with the latter giving the best fit (Rafik & Kamel, 2017; Wong, Jian, & Taggart, 

1995). Predicting lithology from a neural net is not a new technique; it has been applied for more than two 

decades (Rogers et al., 1992), although often with varying results. However, with the present-day computational 

power and more publicly available data (e.g. the source of this study: NLOG), this method must be reconsidered 

for renewed potential.  

Both the statistical approaches and the neural net workflow contribute to improving the existing property maps. 

In its current use, the neural net has proven especially meaningful. All of the existing facies maps have placed 

most of the studied wells from this study on the outer edge of an alluvial fan. However, interpretations of the 

lithofacies reports appear to indicate many floodplain ponds and sheetfloods. As this may hint at a more distal 

environment than previously suspected, further research would be beneficial. 

 

The proposed methodology is focused on siliciclastic reservoirs only. Neither of the TNO mapping projects 

focused on the applicability of carbonate plays, despite the large lateral heterogeneity related to the occurrence 

of carbonate platforms. Further research is required to validate its use for carbonate reservoirs. With the current 

interest in carbonates for geothermal applications, e.g. the Dinantian carbonates, this might prove particularly 

useful.  
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7. Conclusions 

The aim of this study was to improve the methodology for property maps of the Triassic formations of East 

Brabant. This has been done by (1) providing a detailed analysis of the current mapping methodologies and their 

limitations and (2) by introducing an additional lithology prediction analysis into the workflow. The following 

conclusions can be drawn:  

 

 The property maps are the sum of facies, mechanical compaction and diagenesis, of which facies exerts 

the main control on reservoir quality. The main assumption for the Roer Valley Graben is that the distal 

low-energy sediments correspond to the most deeply buried parts of the basin, whereas the proximal 

high-energy sediments are deposited on the flanks of the surrounding highs (i.e. London-Brabant Massif 

and Rhenish Massif). This implies a strong relation between facies and maximum burial depth. 

 

 Comparing the available core and log data it seems that diagenesis affects porosities very locally, making 

it very difficult to derive local porosity estimates from a regional porosity-depth trend. Moreover, local 

porosity variations are inherent to facies. The current Maximum Burial driven porosity maps are 

therefore not ideal.  

 

 A supervised facies classification (as used in Petrel) is preferred over an unsupervised classification 

(Wkmeans) since it is easier to verify the validity of the model. 

 

 With the current sparse data set, the best lithology predictions are made by the neural net rather than 

by the Bayes classifier.  

 

 Despite their lower resolution, wireline logs are more favorable for lithology predictions than core plug 

logs, since they are not only in situ, but also continuous in depth. 

 

 Neural net lithology predictions require sufficient input, i.e. enough interpreted facies intervals from 

cores. If this data can be acquired, an important enhancement in the accuracy of facies and related 

productivity predictions can be achieved.  

 

 For the RVG study area, neural net lithology predictions are mostly a good indication for lithofacies 

within the same well. Extrapolation to other wells can be done, although the geological controls should 

always be properly accounted for.  
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 Recommendations 

The nature of the current interpolated property maps allows the reader to select an area of interest and retrieve 

an average porosity and permeability. Despite this being a very inviting way of retrieving information, potential 

users should recognize that this is also a major pitfall. Both geological and statistical uncertainties are not yet 

represented by the current property maps, making it difficult to assess the associated uncertainties. When using 

the maps in their current form, this should be emphasized to potential users, i.e. by specifying the boundary 

conditions for their proper use in a disclaimer. An alternative presentation of the data could be a separate or 

combined map with statistical and geological uncertainties.  

 

To improve lithology predictions by neural nets in the future, sufficient amounts of input data are crucial. The 

combined suite of continuous wireline logs, tightly spaced core plug measurements and sufficient intervals with 

lithofacies interpretations from cores is necessary for improved machine learning. Although using all these 

techniques may not appear essential to a geothermal operator, this is the only way to improve our understanding 

of the geology in an area which is still sparse in recent wells. Moreover, with the current heated public debate 

on activities in the Dutch subsurface, every drilling opportunity should be used to its full extent as to collect as 

much data as possible.  

 

The applied method of lithology prediction may prove to be more applicable in a more tightly covered area with 

more available interpretations. In that way the method may result in more meaningful predictions of regional 

lithofacies. Finally this method stresses that despite the enhancements with respect to machine learning, the 

input still requires the eye of the trained geologist or sedimentologist for the lithofacies and depositional 

environment interpretations.  
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Appendix I: Glossary/Index 

Logs 

GR   Gamma ray log 

RHOB   Bulk density log 

NPHI  Neutron porosity log 

DT   Sonic log 

RESD   Resistivity log 

Sw  Water saturation log 

CALI  Caliper log 

 

Stratigraphy 

RN  Upper Germanic Trias Group 

RNROF   Röt Fringe Sandstone Member 

RNROY  Upper Röt Fringe Claystone Member 

RB   Lower Germanic Trias Group 

RBMVU  Upper Volpriehausen Sandstone Member 

RBMVL   Lower Volpriehausen Sandstone Member 

RBMDU  Upper Detfurth Sandstone Member 

RBMDL   Lower Detfurth Sandstone Member 

 

Structural elements 

RVG   Roer Valley Graben (Roerdalslenk)  

RM  Rhenish Massif 

LBM   London Brabant Massif 

WNB   West Netherlands Basin 

 

Wells 

KDK-01  Keldonk 

BRAK-01  Brakel 

WWK-01 Waalwijk 

WWS-01-S1 Waalwijk Zuid, sidetrack 1 

WWN-01-S2 Waalwijk Noord, sidetrack 2 

NDW-01  Nederweert 

 

Other 

MB  Maximum burial depth 

BA  Burial anomaly 

PDF  Probability Density Function 

PSF  Pseudo-F Statistic 

φ  Porosity 

PHI  Porosity 

PHIE  Effective porosity 

k  Permeability 

RMS  Root mean square 
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Appendix II: Depositional environments 

The following depositional settings were used as the input for facies classification. The lithological logs from the 

studies are all open for access via NLOG.nl. Depositional settings of a comparable nature have been merged. The 

facies sequences from the cores have been described downwards. 

 

 

BRAK-01 

Interpretation derived from lithological log by F. de Reuver, GAPS Nederland B.V., October 1992. 

 

BRAK-01: upper interval: 2349 – 2369,10 mBRT 

Depositional settings:  
1. Fluvial channel 
2. Sheetflood 
3. Fluvial channel 
4. Sheetfloods with minor channeling/scouring 
5. Floodplain pond/lake with influence of sheetfloods 

Floodplain pond/lake 

BRAK-01: lower interval: 2452 – 2478.65 mBRT 

Depositional settings: 
1. Floodplain pond/lake influenced by sheetfloods 
2. Sheetfloods with minor channeling 
3. Ephemeral floodplain pond / abandoned channel fill 
4. Braided channel complex 
5. Floodplain pond/lake 
6. Sheetfloods with minor channeling 
7. Ephemeral floodplain pond/lake 
8. Homogenized sheetfloods in floodplain pond/lake (?) 
9. Shallow ephemeral floodplain pond 
10. Stacked sheetfloods 
11. Floodplain pond 
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KDK-01 

Interpretation derived from lithological log by F. de Reuver, GAPS Nederland B.V., July 1992. 

 

KDK-01: upper interval: 1944 – 1981 mBRT 

Depositional settings:  
1. Floodplain pond/lake 
2. Sheetfloods 

Floodplain with ponds/lakes and minor channels and minor soils 
3. Abandoned channel? Overbank? 
4. Braided channel complex 
5. Floodplain 
6. Sheetfloods (distal alluvial fan?) 

KDK-01: lower interval: 2258 – 2275,10 mBRT 

Depositional settings: 
12. Braided channel complex  
13. Floodplain with minor fluvial channels 

 

 

WWN-01-S2 

Interpretation derived from lithological log by C.Cade, BP Exploration, July 1989.  

 

 WWN-01-S2: 3169 – 3305 mBRT 

C
o

re
 3

 

Depositional settings:  
1. Stacked streamflood 

Channel plug/mudflat 

Amalgamated streamflood sequence 

Floodplain with dolocrete 

Streamflood 

Sheetflood 

Channel + minor mudflat sequence 

Streamflood/sheetflood complex 

Stacked channel sequence 

Streamflood 

Stacked channel sequence 

Stacked streamflood complex 

Sheetflood 

Stacked streamflood sequence with local dolocretes 
2. Floodplain sequence 
3. Stacked streamflood complex 

C
o

re
 4

 

1. Stacked streamflood complex with localized dolocrete 

Amalgamated sheetflood complex 

Stacked streamflood complex 

Sheetflood 
2. Channel/streamflood complex 

Mudflat/channel plug 
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C
o

re
 5

 
1. Stacked channel complex 
2. Stacked streamflood complex local minor sheetfloods 
3. Stacked streamflood complex with minor channels 
4. Stacked channel sequence 

C
o

re
 6

 

1. Stacked sheetfloods 

Streamflood 
2. Channel/minor streamflood sequence with local mudflat development 

Stacked channel sequence 
3. Amalgamated streamfloods 

Streamfloods 

Stacked sheetflood complex 
4. Channel complex 

Streamflood/minor channel 

C
o

re
 7

 

1. Heterolithic floodplain sequence 
2. Streamflood 
3. Stacked channel complex 
4. Stacked sheetflood complex 
5. Channel comlex 
6. Stacked sheetflood and minor streamflood complex with local minor channels and 

rare mudflats 
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Appendix III: Results Lithoclassification Petrel 

 

Probability density functions (PDFs) 

 

BRAK-01 

 

Probability density functions for BRAK-01.  
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KDK-01 

 

 

  

   

  
Probability density functions for KDK-01.  

WWN-01-S2 

 

  

  
  

Probability density functions for WWN-01-S2. 
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Poroperms & porosity-depth plots 

 

BRAK-01 

 

 

 
  

Results from lithoclassification in Petrel based on a neural net. (A): Poroperm from BRAK-01. 
(B): Porosity-depth plot from BRAK-01. 
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KDK-01 

 
  

Results from lithoclassification in Petrel based on a neural net. (A): Poroperm from 
KDK-01. (B): Porosity-depth plot from KDK-01. 
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WWN-01-S2 

 
  

Results from lithoclassification in Petrel based on a neural net. (A): Poroperm from WWN-
01-S2. (B): Porosity-depth plot from WWN-01-S2. 
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Appendix IV: Well sections 

 

BRAK-01 

 

 
Well section of BRAK-01 from Petrel including the lithoclassification input and results.  
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Extended well section of BRAK-01 from Petrel including the lithoclassification input and results. The last panel shows the 
neural net prediction over a larger well interval. 
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KDK-01 

 

 
Well section of KDK-01 from Petrel including the lithoclassification input and results.  
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Close-up of the Petrel well section of BRAK-01 with the lithoclassification input and results. 
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WWK-01 

 

 
Well section of WWK-01 from Petrel.  
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WWN-01-S2 

 

 
Well section of WWN-01-S2 from Petrel including the lithoclassification input and results.  
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WWS-01-S1 

 

 
Well section of WWS-01-S1 from Petrel. 
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