
1 | P a g e

Virtualization
Technologies for
Enterprise Agility
	

	

	

	

MSc Thesis v1.0

2019

Tom Osinga
t.h.m.osinga@students.uu.nl
tom.osinga@pwc.com
5975336

Supervisor of PwC:
Kees-Jan Kraaier
kees.kraaier@pwc.com

PRICEWATERHOUSECOOPERS | Thomas R. Malthusstraat 5, 1066 JR, Amsterdam

Utrecht University
Graduate School of Natural Sciences
Department of Information and
Computing Sciences
Master Business Informatics

Supervisor of UU:
Luz Marcela Ruiz Carmona
m.ruiz@uu.nl

2 | P a g e

This page is intentionally left blanc

3 | P a g e

Executive	summary	
Organizations	are	nowadays	working	on	agile	transformations	in	order	to	anticipate	on	all	emerging	trends	in	
their	environment.	Technology	 is	 involved	with	almost	any	change	 in	an	organization.	Especially	 in	business	
transformation	and	-digitalization,	new	technologies	are	introduced.	Kaddoumi	and	Watfa	(2016)	argue	that	
businesses	facing	changing	environments	require	their	business	and	IT	executives	to	act	fast	and	quick	towards	
uncertainty	and	unpredictability,	in	order	to	be	able	to	accept	and	adapt	to	such	changes.	

We	 conducted	 research	 on	 enterprise	 agility	 and	 its	 relation	 to	 technology.	 We	 found	 characteristics	 of	
enterprise	agility	and	discovered	these	are	applicable	to	enterprise	components	of	Organization,	People,	and	
Technology	 (OPT).	Further	 research	on	these	components	show	dedicated	research	 lines	and	specific	agility	
sub-types	for	O	and	P.	However,	none	of	that	was	found	regarding	the	enterprise	component	of	Technology.	
We	soley	discovered	several	authors	that	denoted	the	importance	of	technology	and	its	usage.	This	identified	
a	gap	of	knowledge	regarding	the	literature	of	enterprise	agility	and	technology.	

The	domain	of	virtualization	 is	widely-known	as	 it	enabled	organizations	to	handle	their	 infrastructure	 in	an	
agile	manner.	Containerization	is	a	new	emerging	virtualization	technology	that	has	the	potential	to	support	
organizations	in	becoming	more	agile	in	respect	to	business	and	IT.	However,	containers	are	not	indicated	as	
being	 able	 to	 support	 an	 organization	 in	 becoming	 agile,	 nor	 the	 literature	 consists	 of	 a	 source	 that	 links	
containers	 with	 enterprise	 agility.	 This	 denoted	 the	 same	 gap	 of	 knowledge,	 whereas	 containers	 form	 the	
technology.	

To	investigate	these	knowledge	gaps,	we	used	the	Design	Science	research	method	of	Wieringa	(2014).	Starting	
with	the	Problem	Investigation	phase,	we	further	explored	the	literature	to	highlight	the	gap	of	knowledge,	and	
subsequently	rationalize	the	need	for	conducting	research	in	this	domain.	By	the	means	of	a	literature	review,	
we	concluded	that	we	found	no	sources	that	explicitly	link	(enterprise)	agility	towards	technology.	To	emphasize	
this	conclusion,	we	additionally	performed	expert	interviews	to	state	the	opinion	of	the	field	of	practice	and	
gather	further	knowledge	on	the	concepts.	

As	 a	 result,	 the	 experts	 recognized	 our	 discovered	 gap,	 and	 argued	 that	 organizations	 have	 a	 need	 for	
knowledge	regarding	the	utilization	of	containers.	Hence,	we	strengthened	the	gap	of	knowledge	and	identified	
the	call	from	industry.	The	experts	additionally	denoted	that	most	traditional	organization	(i.e.	not	technology-
driven)	are	currently	not	aware	of	 the	benefits	of	containers	 for	their	operations,	or	 lack	the	knowledge	on	
either	 how	 to	 start	 with	 containers,	 or	 how	 to	 improve	 their	 current	 container	 utilization.	 Therefore,	
organizations	are	 in	need	 for	 tangible	knowledge	on	utilizing	containers	with	varying	 levels	of	 competence.
Moreover,	the	experts	emphasized	that	especially	the	SDLC	process	of	organizations	can	be	improved	by	such	
tangible	 knowledge.	 Referring	 back	 to	 the	 literature	 findings,	 we	 also	 found	 that	 SDLC	 belongs	 to	 most	
important	use	cases	for	containers.	

Other	 challenges	we	 found	around	 containers	 are	 the	 security	 aspect,	 and	 finding	 the	optimal	 architecture	
configuration	 to	 improve	 containerized	 architecture	 performance.	However,	we	 believed	 that	 developing	 a	
solution	 for	 providing	 knowledge	 around	 container	 utilization	 would	 be	 the	 most	 valuable.	 By	 providing	
differentiating	levels	of	skill	regarding	container	utilization,	we	contribute	to	the	field	of	practice	by	satisfying	
its	 need.	 In	 addition,	 we	 contribute	 to	 the	 scientific	 domain	 by	 stating	 an	 explicit	 relationship	 between	
enterprise	agility	and	technology.	Therefore,	we	decided	to	design	a	Container	Maturity	Model	(CMM)	with	the	
focus	on	the	SDLC	process.	Ultimately,	to	enhance	enterprise	agility	from	a	technology	perspective.	

4 | P a g e

	

The	research	project	continued	with	the	second	phase	of	Design	Science:	Treatment	Design.	We	defined	a	null	
(H0)	and	alternate	(H1)	hypothesis	that	describe	the	effect	of	containers	in	the	SDLC	process	on	enterprise	agility	
regarding	business	and	IT.	To	test	these	hypotheses,	we	executed	different	types	of	expert	interviews	through	
four	iterations.	We	chose	the	form	of	multiple	iterations	for	designing	the	CMM,	in	order	to	collect	different	
types	 of	 information.	 Each	 iteration	 had	 a	 different	 setting	 and	 goal.	 In	 the	 first	 iteration,	 we	 performed	
brainstorm	sessions	and	used	the	main	results	of	the	prior	PI	phase	to	define	a	first	concept	of	the	CMM.	The	
remaining	 iterations	consisted	of	 semi-structured	expert	 interviews	with	 internal	PwC	experts,	and	external	
experts	 from	a	 large	 international	 bank.	 This	 collection	of	 varying	 information	acted	as	our	main	 source	 to	
design	the	CMM	from.	Hence,	all	iterations	combined	depict	a	design	process	of	incremental	nature.	

We	intertwined	the	design	process	with	validation	sessions,	in	order	to	gather	additional	knowledge	on	SDLC	
and	perceive	feedback	of	the	experts	regarding	our	CMM	we	presented.	Hence,	each	iteration	used	a	different	
CMM	concept	version	to	present	the	experts,	which	resulted	in	a	further	developed	CMM	version.	
The	expert	interviews	of	iteration	2	and	3	are	recorded.	We	analyzed	these	interview	recordings	by	using	NVivo	
12.	First,	we	defined	a	taxonomy	with	a	classification	of	topics	and	detailed	aspects,	which	we	focus	on	during	
the	analysis	of	the	interviews.	Our	focus	was	to	analyze	the	feedback	where	we	could	distil	improvements	from.	
We	used	the	taxonomy	to	‘tag’	periods	of	time	in	the	audio	files.	

The	result	of	the	iterations	is	the	designed	CMM	with	the	focus	on	SDLC.	Here,	we	mainly	focus	on	the	software	
development	aspect,	and	partially	incorporated	the	software	delivery	aspect	(pipeline)	into	the	model.	As	the	
CMM	consists	of	differentiating	levels	of	skill	regarding	the	utilization	of	containers,	organizations	can	either	
derive	knowledge	on	how	to	start	utilizing	containers,	or	use	the	model	to	indicate	their	current	performance	
and	state	their	maturity	level,	in	order	to	use	the	metric	specifications	to	determine	how	to	further	improve	
their	SDLC	configuration.	The	corresponding	PDD	provides	an	overview	of	the	model’s	sequence,	and	supports	
future	research	by	clarifying	what	deliverables	are	realized	by	which	phase	and	activity.	

Finally,	through	the	PI	phase,	we	found	that	before	containers	can	be	used	to	their	full	potential,	they	require	
certain	characteristics	in	the	organization’s	architecture,	applications,	and	provisioning	technique.	Hence,	we	
conducted	research	on	finding	such	a	manner	of	integration.	We	concluded	that	the	microservices	architecture	
pattern	meets	the	use-case	specific	container	requisites,	as	this	pattern	decouples	applications	and	systems	
into	 small,	 independent	 services.	 This	 makes	 the	 applications	 and	 services	 short-lived,	 stateless,	 and	
lightweight,	 leading	to	the	enablement	of	container	advantages	 in	the	enterprise	architecture.	Besides	that,	
applying	the	microservices	pattern	 in	enterprise	architecture	additionally	realizes	the	 Infrastructure-as-Code	
principle,	which	makes	infrastructure	programmatically.	This	enables	even	faster	infrastructure	deployments.	

Therefore,	adopting	the	microservices	architecture	pattern	in	an	organization’s	enterprise	architecture,	enables	
the	organization	 to	exploit	 container	advantages,	use	 the	principle	of	 Infrastructure-as-code,	which	support	
enterprise	agility	improvement	regarding	business	and	IT.	Moreover,	combining	these	architectural	principles	
with	our	designed	CMM,	an	organization	can	 improve	 its	container	utilization	regarding	their	SDLC	process,	
which	applies	throughout	the	whole	organization.	Hence,	contributing	to	the	overall	enterprise	agility	regarding	
business	and	IT.	

5 | P a g e

Abbreviation	list	
This	section	describes	all	textual	abbreviations	used	in	this	document.	Green	rows	denotes	the	most	important	
abbreviations.	

Concept	 Meaning	

AM	 Agile	Manufacturing	

API	 Application	Programming	Interface	

CET	 Cloud	Enabling	Technologies	

CICD	 Continuous	Integration	&	Continuous	Delivery	

CMM	 Container	Maturity	Model	

CRZ	 Containerization	

EA	 Enterprise	Architecture	

EAG	 Enterprise	Agility	

IaaS/PaaS/SaaS	

“	‘aaS	”	is	used	in	text	when	referred	to	all	concepts	together.	

Infrastructure-as-a-Service	
Platform-as-a-Service	
Software-as-a-Service		

IaC	 Infrastructure-as-Code	

IT(x).	This	can	be	either	IT1,	IT2,	IT3,	or	IT4.	 Iteration	(x).	

LoS	 Line	of	Service	

MSA	 Microservices	architecture	

OPT	 The	combination	of	Organization,	People,	and	Technology	

OS	 Operating	System	

PI	 Problem	Investigation	(phase	according	to	Design	Science).	

RQ	 Research	question	

SD	 Software	development	

SDLC	 Software	development	Lifecycle	

TA	 Technology	Agility	

TD	 Treatment	Design	(phase	according	to	Design	Science).	

VLAN	 Virtual	Local	Area	Network	

VLZ	 Virtualization	

VM	 Virtual	Machine	

VPN	 Virtual	Private	Network	

WoW	 Way	of	Working	

	

 	

6 | P a g e

Table	of	contents	

	

Executive	summary	 3

Abbreviation	list	 5

Table	of	contents	 6

1. Introduction	 11

1.1. Problem	statement	 11
1.1.1. Agile	and	enterprises	 11
1.1.2. Virtualization	technologies	 12
1.1.3. Young	virtualization	concept:	Containerization	 13
1.1.4. Main	conclusion	 14
1.1.5. Follow-up	sub-sections	 15

1.2. Research	method	 16
1.2.1. Research	goal	 16
1.2.2. Research	questions	 16
1.2.3. Design	science	 17

1.3. Environment	of	research	 22
1.3.1. Positioning	through	Information	System	Research	Framework	 22

1.4. Research	context	 23
1.4.1. PricewaterhouseCoopers	 23
1.4.2. Position	of	student	in	PwC	NL	 23
1.4.3. Challenges	and	opportunities	 23

2. Introduction	of	Problem	Investigation	 25

2.1. Problem	Investigation	research	process	 25
2.1.1. Literature	review	 25
2.1.2. Expert	interviews	 26
2.1.3. Proposal	phase	 26
2.1.4. Transition	to	Treatment	Design	phase	 26

3. Literature	review	 27

3.1. Literature	review	protocol	 27
3.1.1. Literature	review	structure	 29

3.2. Preface	of	literature	review	 30
3.3. Agility:	the	precursor	 31

3.3.1. Agility	according	to	the	first	decade	 32

7 | P a g e

3.3.2. Agility	according	to	the	second	decade	 35
3.3.3. The	overall	view	–	Growth	of	definitions	 35
3.3.4. The	overall	view	–	Differences	and	similarities	 36
3.3.5. Preliminary	conclusion	of	agility	compared	to	enterprise	agility	 37

3.4. Enterprise	agility:	the	successor	 38
3.4.1. Organizational	agility	(Organization)	 38
3.4.2. Workforce	agility	(People)	 39
3.4.3. Inappropriate	term	usage	 39
3.4.4. Enterprise	agility	according	to	academic	and	business	literature	 40
3.4.5. Transition	to	Enterprise	Agility	 41

3.5. Technology	agility	 44
3.5.1. Literature	review	findings	 44
3.5.2. Technology	towards	agility	 44

3.6. Virtualization	 46
3.6.1. History	of	virtualization	 46
3.6.2. Virtualization:	State	of	the	Art	 46
3.6.3. Virtualization	and	Cloud	computing	 49
3.6.4. Virtualization	advancement	 50

3.7. Containerization	 52
3.7.1. History	of	containers	 52
3.7.2. Containerization:	state	of	the	art	 52
3.7.3. Containers	and	stateless	and	stateful	applications	 55
3.7.4. Container	orchestration	 55

3.8. Differences	between	VMs	and	containers	 58
3.8.1. High-level	differences	 58
3.8.2. Container	advantages	 58
3.8.3. Container	disadvantages	 59
3.8.4. Differences	and	similarities	rationalized	 59

3.9. Software	Development	Life	Cycle	 61
3.9.1. The	SDLC	phases	 61
3.9.2. SDLC	and	virtualization	technologies	 61
3.9.3. Tooling	and	applications	 62

3.10. Maturity	(assessment)	models	 63
3.10.1. CMM(I)	 63
3.10.2. OPM3	 64
3.10.3. Dreyfus	Model	 65
3.10.4. Software	process	maturity	 65

3.11. Microservices	architecture	 67

8 | P a g e

3.11.1. Microservices	architecture	vs	Monolith	architecture	 67
3.11.2. Decoupled	service	execution	 68
3.11.3. The	synergy	of	MSA,	containers,	and	Infrastructure-as-code	 68

3.12. Enterprise	architecture	and	Microservices	architecture	 70

4. Expert	interviews	 71

4.1. Expert	interview	protocol	 71
4.1.1. General	interview	protocol	 71
4.1.2. Expert	profiles	 71

4.2. Expert	interview	results	 72

5. Conclusion	of	Problem	Investigation	 73

5.1. Findings	literature	review	 73
5.1.1. Main	concepts	 73
5.1.2. Additional	concepts	 74
5.1.3. Requirements	maturity	model	 75

5.2. Findings	expert	interviews	 76
5.3. Proposal	in	a	nutshell	 77

6. Introduction	of	Treatment	Design	 80

7. Design	plan	 81

7.1. Method	 81
7.1.1. Iteration	1:	CMM	based	on	Problem	Investigation	knowledge	 81
7.1.2. Iteration	2:	CMM	according	to	internal	PwC	experts	 82
7.1.3. Iteration	3:	CMM	according	to	external	expert	 82
7.1.4. Iteration	4:	Additional	designing	and	validating	 82

7.2. Interview	analysis	 84
7.2.1. Analysis	tool:	NVivo	12	 84
7.2.2. Protocol:	Taxonomy	structure	 85
7.2.3. Protocol:	Taxonomy	description	 86

8. Data	analysis	 87

8.1. Design	iterations	 87
8.1.1. Iteration	1:	CMM	based	on	Problem	Investigation	knowledge	 87
8.1.2. Iteration	2:	CMM	according	to	internal	PwC	experts	 88
8.1.3. Iteration	3:	CMM	according	to	external	expert	 89
8.1.4. Iteration	4:	Additional	designing	and	validating	 89

9. Results:	Container	Maturity	Model	 91

9 | P a g e

9.1. CMM	main	structure	 91
9.2. Pre-assessment	 93

9.2.1. General	Area	 93
9.2.2. Software	Development	Area	 93
9.2.3. Application	&	Infrastructure	Area	 93

9.3. Maturity	assessment	 94
9.3.1. Business	(output)	area	 95
9.3.2. Development	area	 95
9.3.3. Operations	area	 96
9.3.4. Application	and	infrastructure	area	 97

9.4. Results	matrix	 98
9.5. Container	Maturity	Model	–	Disclaimers	 98

10. Results:	Process	Deliverable	Diagram	of	CMM	 99

10.1. PDD	Phases	 100
10.1.1. Phase	1:	Execute	Pre	assessment	 100
10.1.2. Phase	2:	Execute	Maturity	assessment	 100
10.1.3. Phase	3:	Evaluate	Result	matrix	 100

10.2. PDD	contribution	 100

11. Results:	The	CMM	linked	to	EAG	 101

12. Validation	of	the	CMM	 103

12.1. Reporting	on	validation	 103

13. Reflection	on	Research	Process	 104

13.1. General	reflection	on	process	and	results	 104
13.1.1. The	beginning	 104
13.1.2. Our	challenge	around	containerization	 104
13.1.3. The	design	phase	 104

13.2. Research	quality	 106
13.2.1. Threats	to	validity	 106

14. Conclusion	 107
14.1.1. The	all-encompassing	domain	of	enterprise	agility	 107
14.1.2. The	extension	of	literature	reviewing	 107
14.1.3. Containerization	in	enterprise	architecture	 107
14.1.4. Designing	an	artefact	for	the	problem	context	 108
14.1.5. The	designed	artefact	and	main	RQ	 108
14.1.6. Validation	of	the	CMM	 109

10 | P a g e

14.1.7. Our	contribution	to	the	scientific	domain	and	field	of	practice	 109

15. Discussion	and	future	work	 110

15.1. Virtualization	technologies	and	related	technologies	 110
15.1.1. Security	of	containers	through	architecture	 110
15.1.2. Dynamic	OS	images	 110
15.1.3. Hybrid	solutions	 111

15.2. Next	developments	on	CMM	 111
15.2.1. Cross-links	of	implemented	CICD	metrics	 111
15.2.2. CMM	–	Business	area:	output	 112
15.2.3. CMM	–	Roadmap	 112
15.2.4. Validation	 112

References	 113

Appendix	I	–	Agility:	definitions	 119

Appendix	II	–	Retrospective	view	on	Enterprise	Agility	 120

Appendix	III	–	Virtualization	types	 121

Appendix	IV	–	Containerization	vendors	 122

Appendix	V	–	PI:	Interview	protocol	 123

Appendix	VI	–	PI:	Expert	interview	results	 125

Appendix	VII –	PI:	Expert	interview	results	container	areas	 126

Appendix	VIII	–	Virtualization	technologies	linked	to	EAG	 127

Appendix	IX	–	Pre	assessment	rationale	elaboration	 129

Appendix	X	–	CMM	PDD	tables	 130

Appendix	XI	–	CMM	linked	to	EAG	 131

Appendix	XII	–	TD:	Expert	interview	results	of	Iteration	2	 133

Appendix	XIII	–	TD:	Expert	interview	results	of	Iteration	3	 137

Appendix	XIV	–	TD:	Expert	interview	results	of	Iteration	4	 139

Appendix	XV –	TD:	Interview	protocol	IT2	 142

Appendix	XVI –	TD:	Interview	protocol	IT3	&	IT4	 144

Appendix	XVII –	Container	Maturity	Model	 146

Appendix	XVIII –	TD:	Sources	and	traceability	of	metrics	 146

Appendix	XIX –	Concept	version	of	scientific	report	 147

 	

11 | P a g e

1. Introduction	
This	section	elaborates	on	the	research	of	this	MSc	thesis	project.	First,	a	context	of	the	perceived	issues	is	given	
in	the	problem	statement.	Subsequently,	a	research	method	is	selected	and	rationalized,	including	a	research	
goal,	research	question	and	corresponding	sub-questions.	Then,	the	overall	research	context	is	given,	including	
positioning	of	research	and	practical	project	matters.	Finally,	the	section	is	closed	by	descriptions	of	protocols	
for	the	literature	review	and	expert	interviews.	

1.1. Problem	statement	
The	problem	statement	describes	the	current	trends	and	phenomena	that	are	experienced	in	the	practitioners’	
domain.	 This	 section	 aims	 to	 provide	 an	 understanding	 explanation	 to	 answer	what	 the	 current	 perceived	
problem	is,	and	why	this	situation	contains	potential	for	research.	The	three	main	subjects	of	this	project	are	
shown	in	Figure	1.	This	figure	depicts	an	overview	of	the	relationships	between	these	subjects.	Throughout	this	
MSc	 thesis,	 these	subjects	are	described	and	 linked	 to	each	other.	Next	 sub-sections	describe	 the	potential	
synergy	between	all	three	concepts.	

	
Figure 1: Relationship between three main concepts

1.1.1. Agile	and	enterprises	
Organizations	nowadays	have	to	become	increasingly	more	agile	to	anticipate	on	all	emerging	trends	in	their	
environment.	Change	 is	motivated	 from	different	needs	 that	are	difficult	 to	predict.	 Factors	 such	as	hyper-
competition,	increasing	demands	from	customers,	regulatory	changes,	and	technological	advancements	make	
it	an	important	determinant	of	firm	success	(Overby,	Bharadwaj	&	Sambamurthy,	2006).	Kaddoumi	and	Watfa	
(2016)	argue	that	businesses	facing	changing	environments	require	their	business	and	IT	executives	to	act	fast	
and	quick	towards	uncertainty	and	unpredictability,	in	order	to	be	able	to	accept	and	adapt	to	such	changes.	
To	 successfully	 deal	 with	 unpredictable,	 dynamic,	 and	 constantly	 changing	 environments,	 many	 different	
solutions	have	been	proposed,	such	as	networking,	reengineering,	modular	organizations,	virtual	corporations,	
flexible	manufacturing,	etc.	(Sherehiy,	Karwowski	&	Layer,	2007).	

However,	agility	concepts	are	not	yet	explicitly	defined	and	conceptualized,	and	there	is	no	commonly	accepted	
definition	of	enterprise	agility	in	the	scientific	domain	(Sherehiy	et	al.,	2007).	Nonetheless,	core	agility	attributes	
have	been	identified,	which	are	flexibility,	responsiveness,	speed,	culture	of	change,	and	integration	and	low	
complexity.	 These	 core	 attributes	 can	 be	 translated	 into	 specific	 indices	 for	 each	 of	 the	 main	 enterprise	
components	(Sherehiy	et	al.,	2007).	The	same	authors	state	that	in	reference	to	agility,	these	main	enterprise	
components	are	Organization,	People,	and	Technology	(OPT).	

Research	towards	agility	for	different	domains	exists	and	is	applied	in	practice	(section	3.3	and	3.4).	Examples	
of	such	domains	are	manufacturing	and	software	development.	However,	specific	research	on	agility	regarding	
technology	 is	 not	 found	 during	 the	 literature	 review.	 Although,	 what	 is	 found	 are	 studies	 that	 define	 the	
importance	of	technology	for	enterprise	agility.	According	to	Yusuf,	Sarhadi,	and	Gunasekaran	(1999),	related	
attributes	 and	 practices	 of	 an	 agile	 organization	 concerning	 the	 domain	 of	 technology	 are	 1)	 technology	
awareness,	2)	leadership	in	use	of	current	technology,	and	3)	skill	and	knowledge	enhancing	technologies.	In	
addition,	Tseng	and	Lin	(2011)	have	developed	a	conceptual	model	of	enterprise	agility	that	encompasses	of	
agility	 drivers,	 capabilities,	 and	 providers.	 When	 referring	 to	 technology,	 they	 state	 that	 Technological	
innovations	is	one	of	the	main	agility	drivers,	and	information	integration	(infrastructure)	is	one	of	the	important	
agility	providers.	Regarding	infrastructure,	Pal	and	Pantaleo	(2005)	state	that	organizations	should	configure	
adaptive	 infrastructures.	 Concluding,	 these	 sources	 describe	 the	 importance	 of	 being	 aware	 of	 new	

12 | P a g e

technological	trends	and	being	able	to	skillfully	exploit	these	new	trends	by	having	an	adaptive	infrastructure.	
Considering	the	rapidness	of	current	developments	in	technology,	the	role	of	technology	in	enterprise	agility	is	
bound	to	increase.	Based	on	these	findings,	it	is	therefore	implied	that	for	organizations,	it	is	key	to	discover	
new	possibilities	of	this	increasing	role	of	technology,	becoming	an	expert,	and	apply	it	in	practice.	

Referring	 back	 to	 agility	 and	 its	 most	 important	 enterprise	 components.	 Examples	 for	 agility	 regarding	
Organization	and	People	are	 known.	Respectively,	 agile	enhancements	 in	organizational	processes,	 and	 the	
project	technique	SCRUM	to	handle	workforce.	From	an	enterprise	architecture	(EA)	perspective,	the	layers	of	
business	and	application	are	provided	with	agile	enabling	means.	The	remaining	layer	–	technology	–	consists	
of	 infrastructure.	 Different	 examples	 exist	 that	 implicitly	 result	 in	 agile	 benefits	 for	 this	 layer.	 However,	 a	
technology	that	explicitly	enabled	agility	 in	 infrastructure	 is	virtualization.	Virtualization	made	it	possible	for	
organizations	 to	 virtually	 partition	 their	 infrastructure,	 enabling	 them	 to	 use	 the	 same	 infrastructure	
components	for	multiple	goals	instead	of	a	single	goal.	By	doing	this,	multiple	soft-	and	hardware	instances	can	
be	launched	on	a	single	 infrastructure	component,	 in	order	to	provision	an	organization’s	operations,	which	
require	computing	resources	or	services.	One	sees	virtualization	as	an	agile	enabling	technology	for	technology.	

1.1.2. Virtualization	technologies	
Currently,	 virtualization	 technologies	 are	 becoming	more	widely	 used.	Whereas	 in	 the	 late	 1960s	 different	
technology	organizations	were	experimenting	with	sharing	computer	resources	among	large	groups	of	users.	
Nowadays,	 large	 data	 centers	 exist	 where	 multiple	 virtualization	 technologies	 are	 making	 abstractions	 of	
physical	 hardware,	 and	 create	aggregated	pools	of	 logical	 resources	 consisting	of	CPUs,	memory,	disks,	 file	
storage,	applications	and	networking.	Subsequently,	those	resources	are	offered	to	users	or	customers	in	the	
form	 of	 agile,	 scalable,	 consolidated	 Virtual	 Machines	 (VMs)	 (Oracle,	 2012).	 Hence,	 virtualization	 enabled	
organizations	 to	 manage	 their	 infrastructure	 in	 an	 agile	 manner.	 Around	 2008,	 virtualization	 technologies	
already	realized	a	shift	in	the	IT	market.	Moreover,	virtualization	was	predicted	to	change	the	use	of	IT,	pricing	
and	licensing	of	software,	realize	new	forms	of	applications,	change	the	domain	of	operating	systems	(OS),	and	
create	a	competition	between	vendors	that	did	not	exist	before	(Dawson	&	Bittman,	2008).		

An	example	of	such	new	vendor	is	Docker.	This	organization	anticipated	on	the	possibilities	of	virtualization	by	
further	 developing	 an	 advanced	 virtualization	 technology,	 realizing	 a	 new	 concept	 of	 containers.	 This	
popularized	another	domain:	containerization.	In	short,	Docker	containers	consist	of	an	executable	package	for	
pieces	of	software,	which	means	that	all	required	files	and	components	are	available	in	the	container	to	be	able	
to	run	on	the	users’	(Host)	OS	(Linux	and	Windows	based),	and	easily	create	a	virtual	environment.	Compared	
to	 conventional	 virtualization	 solutions	 –	 meaning	 VMs	 –	 containers	 are	 launched	 faster	 and	 cost	 fewer	
resources,	which	increases	scalability	potential.	An	interesting	fact	is	that	these	container	characteristics	align	
even	 more	 with	 the	 aforementioned	 agility	 attributes	 than	 conventional	 virtualization	 solutions.	 Figure	 2	
visualizes	this	statement	about	containers	and	their	potential	to	support	agility.	

The	 field	 of	 practitioners	 noticed	 this	
alignment,	which	can	be	seen	in	the	growth	of	
popularity	 of	 containers	 in	 the	 technology	
domain.	 Since	 Docker’s	 launch	 in	 2013,	 the	
organization	 has	 grown	 tremendously	 and	
became	 a	 market	 standard	 for	 containers.	
Currently,	 Docker	 is	 spreading	 its	 technology	
across	 the	 IT	 sector.	 This	 made	 other	 IT	
organizations	 join	 the	 exploration	 of	
containerization,	 and	 resulted	 in	 the	
development	 of	 different	 container	 solutions.	
Despite	the	increased	popularity	of	containers,	
no	 scientific	 sources	 were	 found	 during	 the	
literature	 review	 that	 state	 an	 explicit	 link	
between	containers	and	agility.	 Figure 2: Containers and VMs towards agility	

13 | P a g e

1.1.3. Young	virtualization	concept:	Containerization	
Due	to	the	success	of	the	application	of	different	containerization	solutions,	the	interest	of	containerization	in	
the	Cloud-Enabling	Technologies	(CET)	market	is	increasing.	Evidence	to	support	this	statement	originates	from	
different	sources.	According	 to	 the	2017	Annual	Container	Adoption	Survey	of	Portworx,	container	usage	 in	
organizations	 spending	 $500,000	or	more	 a	 year	 on	 license	 and	usage	 fees	 for	 container	 technologies,	 has	
increased	to	32%	up	from	a	reported	five	percent	in	2016	(Portworx,	2017).	Moreover,	organizations	who	are	
spending	more	than	one	million	dollars	on	license	and	usage	fees	on	container	solutions,	have	been	increased	
to	ten	percent,	up	from	four	percent	(Portworx,	2017).	The	characteristics	of	organizations	who	participated	in	
this	 survey	vary	across	different	 industries,	organization	size,	and	the	number	of	vendors	used	 for	different	
container	solutions.	Of	these	solutions,	Docker	is	the	most	frequently	used	container	solution.	However,	the	
same	 survey	 also	 showed	 that	 organizations	 are	 using	 more	 than	 one	 container	 solution	 in	 their	 daily	
operations.	Another	vendor,	Google’s	Kubernetes,	dominates	the	container	orchestration	(i.e.	management	of	
containers)	market.	 Although,	more	 vendors	 are	 still	 emerging,	 all	 with	 their	 own	 solution	 (technique)	 for	
containers	or	container	orchestration.	The	reason	for	the	usage	of	multiple	solutions	is	because	containerization	
is	still	relatively	infancy.	The	technology	is	continuously	under	development	as	each	vendor	develops	different	
types	of	functionality	in	their	container	solution,	resulting	in	new	functionalities.	

Another	study	goes	beyond	percentages.	451	Research1	conducted	research	on	the	application	of	container	in	
the	 CET	market.	 The	 study	 provides	 actual	 numbers	 of	 current	 revenue	 of	 all	 container	 technologies,	 and	
additionally	 predicts	 containers’	 revenue	 for	 each	 year	 until	 2020.	 The	 research	 company	 states	 that	 the	
containers	revenue	was	$495	million	in	2015,	and	already	increased	with	123,64%	to	$1,107	million	in	2017.	
Moreover,	 451	 Research	 predicts	 that	 in	 2020,	 containers	 revenue	 will	 approximately	 be	 $2,2688	 million	
(Buckley,	2017).	Figure	3	depicts	the	graph	containing	the	numbers	per	year.	

	
Figure 3: Containers revenue – Buckley, 451 Research (2017) (recreated)

The	numbers	of	Figure	3	denote	the	popularity	of	containers	throughout	the	practitioners’	domains.	Due	to	the	
continuous	research	and	development	onto	containers,	the	technology	will	extend	its	functionality.	This	means	
that	containers	can	 increase	their	scope	of	application.	Based	on	the	results	of	 the	Portworx	survey	 (2017),	
containers	are	most	of	the	times	used	in	agile	software	development	environments.	When	applied	throughout	
the	whole	software	development	pipeline,	containers	can	support	disciplines	as	Continuous	 Integration	and	
Delivery.	

1	451	Research	is	a	research	center	that	analyzes	new	technologies,	services,	and	companies	that	disrupt	and	evolve	IT.	The	center	has	more	than	100	
analysts	that	conduct	research	to	13	different	IT	domains	(e.g.	Cloud,	security,	and	infrastructure).	

$495

$762

$1.107

$1.531

$2.052

$2.688

$0

$500

$1.000

$1.500

$2.000

$2.500

$3.000

2015 2016 2017 2018 2019 2020

Containers revenue 2015-2020 ($m)

14 | P a g e

1.1.4. Main	conclusion	
The	role	of	IT	is	increased	to	a	primary	function,	instead	of	being	a	secondary	supporting	function.	Moreover,	
IT	 is	 integrated	 in	other	 functions	of	organizations,	 implying	 the	 importance	of	efficient	management	of	 IT.	
Enterprise	architecture	(EA)	provides	insights	about	an	organization’s	overall	cohesion	and	dependencies	of	all	
(architectural)	elements,	including	managing	organizational	aspects,	application	landscape,	and	infrastructure.	
This	architectural	information	supports	organizations	to	(re)position	and	efficiently	manage	IT	elements,	aiming	
for	an	architecture	that	facilitates	agility.	

As	aforementioned,	virtualization	technologies	enabled	organizations	to	increase	the	utilization	of	their	data	
centers.	Compared	to	VMs,	containers	bring	equivalent	advantages,	although	faster,	require	fewer	resources,	
and	through	different	functionality.	Hence,	the	benefits	of	containers	have	a	stronger	alignment	with	the	core	
agility	 attributes2	of	 Sherehiy	et	 al.	 (2007).	 This	 alignment	 is	 shown	 in	 the	next	 Table	1,	whereas	 container	
benefits	are	 linked	to	the	 impacted	characteristics	of	enterprise	agility	 in	perspective	of	an	organization’s	 IT	
landscape.	We	excluded	 ‘Culture	of	 change’	 (see	Appendix	XI).	Red	colored	virtualization	 functionalities	are	
variants	of	these	characteristics	that	we	perceive	as	agile.	Appendix	XI	provides	explanations	about	the	made	
connections	between	the	EAG	core	attributes	and	virtualization	technologies	(VMs	and	containers).	

Table	1:	Core	and	global	EAG	attributes	aligned	with	virtualization	functionalities	
EAG	core	
attributes	

(Sherehiy	et	al.,	2007)	

Virtualization	functionalities	
(Firesmith,	2017,	Flow.ci,	2016;	Showell,	2015;	Amaral	et	al.,	2015;	Pahl,	
2015;	Kaur,	2018;	Lewis	&	Fowler,	2014;	IT2Int#4;	IT3bInt#6)	

Virtual	
Machines	

Containers	

Flexibility	
	
	
	
	
	
	

1.1:	Launch	of	virtual	environment	

1.2:	Rapid,	infra-agnostic	launch	of	virtual	environment	
√	
.	

√	
√	

3.1:	Full	application	scalability	support	(monolithic)	

3.2:	Service-independent	scalability	support	(microservices)	

√	
.	

√	
√	

4.1:	Full	OS	image	usage	(resource	heavy)	

4.2:	Lightweight	OS	images	usage	(resource	efficient)	
√	
.	

.	
√	

6:	Purposeful	stateless	application	support	 .	 √	
7:	Customized	application	runtime	environment	packages	 .	 √	

Speed	 1.1:	Launch	of	virtual	environment	

1.2:	Rapid,	infra-agnostic	launch	of	virtual	environment	
√	
.	

√	
√	

2.1:	Automated	virtualized	hardware	deployment	

2.2:	Rationalized	automated	hardware	deployment	
√	
.	

.	
√	

4.1:	Full	OS	images	(resource	heavy)	
4.2:	Lightweight	OS	images	(resource	efficient)	

√	
.	

.	
√	

5.1:	Multiple,	complex	infrastructure	files	and	scripts		

5.2:	Easy	to	configure	scripts	
√	
.	

.	
√	

Responsiveness	 3.1:	Full	application	scalability	support	(monolithic)	

3.2:	Service-independent	scalability	support	(microservices)	
√	
.	

√	
√	

2.1:	Automated	virtualized	hardware	deployment	

2.2:	Rationalized	automated	hardware	deployment	
√	
.	

√	
√	

Integration	and	
Low	complexity	

5.1:	Multiple,	complex	infrastructure	files	and	scripts		

5.2:	Easy	to	configure	scripts	
√	
.	

.	

√	
6:	Purposeful	stateless	application	support	 .	 √	

7:	Independent	execution,	communication	and	maintenance	
of	(parts	of)	applications	(microservices	architecture	enabled)	

.	 √	

2	It	should	denoted	that	in	the	article	of	Sherehiy	et	al.	(2007),	the	authors	made	a	distinction	between	main	agility	attributes	(7),	and	core	agility	attributes	
(5).	The	five	agility	attributes	are	denoted	as	‘core’	as	they	are	applicable	to	all	aspects	of	the	enterprise	(including	OPT	components).	

15 | P a g e

There	is,	however,	no	explicit	link	established	between	these	container	benefits	or	characteristics	and	agility.	IT	
experts	 from	 the	 practitioner’s	 domain	 are	 aware	 of	 container’s	 benefits,	 but	 no	 sources	 are	 found	 that	
scientifically	define	containerization	as	a	technology	that	can	be	used	to	pursue	enterprise	agility.	

When	such	a	link	is	established	between	agility	and	containers,	organizations	that	aim	to	become	enterprise	
agile	 can	use	 this	 link	 to	discover	 to	what	extent	 containers	are	applicable	 for	 their	 goal.	 Subsequently,	 EA	
should	be	applied	to	state	the	overall	cohesion	and	dependencies	of	the	organization.	After	that,	the	containers	
can	 be	 correctly	 positioned	 in	 the	 organization,	 providing	 the	 agile	 enabling	 characteristics	 of	 containers.	
However,	organizations	without	sufficient	 in-house	knowledge	about	containers	are	still	questioning	how	to	
optimally	use	containers	in	order	to	become	more	agile.	

Reconsidering	the	discussion	about	enterprise	agility,	virtualization,	containerization	and	its	characteristics,	EA,	
and	their	interrelationship,	the	following	problem	statement	is	defined:	

Organizations	nowadays	have	to	be	more	agile	to	anticipate	on	emerging	trends	in	their	environment,	in	order	to	
create	a	proper	response	in	time.	When	increasing	their	enterprise	agility,	a	newly	designed	strategy	can	be	executed	
more	quickly	by	the	whole	organization	as	the	desired	response.	Virtualization	was	one	of	the	first	technologies	that	
enabled	organizations	to	manage	their	infrastructure	in	an	agile	manner.	Containerization	is	a	young	IT	concept	that	
possesses	characteristics	that	align	with	core	agility	attributes.	When	compared	to	virtualization,	containers	have	

increased	benefits	in	managing	infrastructure	and	applications	in	an	agile	way.	Currently,	this	concept	is	primarily	used	
by	advanced	technology-driven	organizations	to	improve	agility	of	software	development	and	testing.	However,	it	is	

unknown	how	containerization	can	support	the	whole	organization	for	improving	its	enterprise	agility,	how	
containerization	can	be	integrated	into	EA),	and	how	traditional	organizations	can	benefit	from	using	containers.	

Citation/definition	1:	Problem	statement	conclusion	

1.1.5. Follow-up	sub-sections	
The	following	sub-sections	of	section	1	describe	how	this	research	project	is	executed,	in	which	environment,	
and	the	corresponding	conditions.	

- Section	1.2	Research	method	 describes	 the	 research	method	we	applied	 to	 further	 investigate	 the	
problem	context	and	realize	a	solution.	

- Section	 1.3	 Environment	 of	 research	 further	 elaborates	 on	 how	 the	 research	 is	 positioned	 in	 its	
environment.	We	 focus	 on	 denoting	 how	 this	 research	 interoperates	with	 its	 environment,	 i.e.	 our	
interaction	with	the	scientific	domain	and	field	of	practice.	

- Section	 1.4	 Research	 context	 describes	 the	 context	 of	 this	 research.	 This	 means	 we	 provide	 a	
description	of	the	organization,	and	our	position	in	this	organization.	

	 	

16 | P a g e

1.2. Research	method	
1.2.1. Research	goal	
For	this	research,	we	chose	to	further	explore	virtualization	technologies	and	its	subtype	containerization	for	
the	primary	concept	enterprise	agility.	The	aim	is	to	discover	the	opportunities	of	combining	agile	concepts	with	
virtualization,	by	stating	a	relationship	between	both	subjects.	Subsequently,	to	use	EA	to	position	containers	
in	an	organization,	to	ultimately	support	enterprise	agility	from	a	technology	perspective.	Therefore,	the	main	
goal	of	this	research	is:	

Support	enterprise	agility	by	exploring	the	integration	of	virtualization	technologies	in	organizations.	

Citation/definition	2:	Research	goal	

We	envision	that	organizations	can	anticipate	on	rapidly	emerging	trends	and	changes	in	their	environment	by	
communicating	 and	 executing	 their	 new	 strategy	 throughout	 the	 organization.	 Subsequently,	 to	 link	 this	
strategy	 to	 organizational	 execution	 to	 maintain	 their	 organizational	 success.	 Considering	 the	 fact	 that	
containers	further	enable	agility	than	conventional	virtualization	technologies,	we	hypothesize	that	containers	
can	further	support	organizations	to	enhance	enterprise	agility.	To	achieve	this	goal,	we	stated	the	following	
key	milestones:	

- Build	supportive	knowledge	to	ensure	knowledge	sharing	of	virtualization	technologies	with	EA;	
- Investigate	virtualization	technologies	and	their	integration	into	EAs;	
- Evolve	current	domains	of	EA	in	terms	of	EA	alignment	and	agility.	

1.2.2. Research	questions	
Considering	the	given	context	and	studied	problem	statement,	in	order	to	facilitate	an	answer	for	the	perceived	
phenomena,	we	define	the	following	main	research	question:	

How can organizations support their enterprise agility regarding business and
IT by integrating virtualization technologies?

The	Design	Science	research	method	of	dr.	R.	Wieringa	(2014)	is	selected	as	main	research	method.	We	chose	
this	method	as	 it	combines	descriptive	research	with	exploratory	research,	 in	order	to	design	an	artefact	to	
improve	 the	problem	context.	As	we	aim	 in	 this	 research	at	 combining	enterprise	agility	with	 virtualization	
technologies,	this	research	is	of	investigative	nature.		Section	1.2.3	further	elaborates	on	the	characteristics	and	
rationale	of	this	method.	
To	develop	a	suitable	answer	for	this	research,	we	distilled	the	different	concepts	of	the	research	question	and	
processed	these	concepts	into	smaller	sub-questions	(RQs).	These	RQs	are	grouped	in	several	main	tasks,	using	
the	structure	of	the	Design	Science	methodology.	Subsequently,	we	further	investigate	and	explore	each	RQ.	
This	results	in	several	research	questions	per	phase	of	the	chosen	research	method.	

RQ1	Problem	Investigation	
RQ1.1:	What	is	the	state	of	the	art	on	enterprise	agility,	virtualization,	and	containerization	from	a	literature	
perspective?	
This	RQ	elaborates	on	the	knowledge	domain	of	enterprise	agility,	virtualization,	and	containerization.	For	each	
concept,	we	searched	definitions,	possible	standards	and	best-practices,	descriptions	of	cases-studies,	current	
developments,	 and	 the	 history	 of	 it.	 We	 complemented	 both	 virtualization	 and	 containerization	 with	
descriptions	about	how	the	technology	works.	In	addition,	we	explained	the	difference	between	containers	and	
conventional	virtual	machines.	Our	goal	is	to	state	a	theoretical	foundation	from	where	of	information	can	be	
used	to	build	new	knowledge.	

RQ1.2:	What	is	the	current	state	of	enterprise	agility	and	containerization	according	to	experts	from	the	
field	of	practice?	
RQ1.2	elaborates	on	the	perspective	of	experts	regarding	the	topics	of	RQ1.1.	With	this	RQ,	we	attempt	to	test	
the	 results	 of	 RQ1.1	 against	 the	 practitioners’	 perspective.	 In	 addition,	 we	 discuss	 container	 benefits	 and	

17 | P a g e

current	challenges,	as	well	as	the	role	of	containers	in	organizations	and	their	potential	to	improve	enterprise	
agility	regarding	business	and	IT.	Finally,	we	ask	the	experts	about	their	opinion	concerning	an	artefact	that	uses	
containers	to	improve	enterprise	agility.	

RQ1.3:	How	are	enterprise	agility	and	virtualization	technologies	linked	to	each	other?	
After	gathering	and	formalizing	knowledge	of	RQ1.1	and	1.2,	the	knowledge	is	used	to	link	both	main	concepts	
to	each	other.	As	there	is	no	direct	link	known,	we	expect	that	a	deep-dive	into	both	concepts	will	be	made	to	
discover	and	establish	a	link	in	the	detailed	aspects	between	both	concepts.	

RQ2	Treatment	Design	
RQ2.1:	What	are	existing	solutions	for	the	topic	of	SDLC	and	maturity	models?	
For	this	RQ,	we	conduct	research	on	existing	methods,	solutions	and	other	related	studies	regarding	SDLC	and	
maturity	models.	 Additionally,	we	 propose	 to	 study	 related	 topics	 and	 to	 explore	 how	we	 can	 process	 our	
enterprise	agility	and	virtualization	literature	results	towards	potential	maturity	levels.	We	will	use	the	collected	
information	to	start	designing	concept	versions	of	the	proposed	maturity	model	(section	5.3).	

RQ2.2:	How	can	containerization	be	integrated	into	enterprise	architecture	to	support	enterprise	agility?	
We	use	RQ2.2	to	further	analyze	the	application	of	containers	in	practice.	This	includes	studying	literature	and	
performing	 desk	 research.	We	 proposed	 to	 use	 SDLC	 as	 our	 use	 case	 to	 focus	 on	 for	 applying	 containers.	
However,	 to	 integrate	 SDLC	 and	 its	 architectural	 elements	 into	 enterprise	 architecture,	 the	 supporting	
application	and	infrastructure	components	have	to	be	studied	as	well.	Therefore,	we	decided	to	study	a	modern	
architectural	pattern	that	aligns	with	containerization:	microservices	architecture.	
By	doing	this,	we	will	gather	knowledge	to	ultimately	define	how	we	can	implement	containers	with	respect	to	
enterprise	architecture.	In	addition,	resulting	knowledge	can	be	used	to	support	the	application	of	the	proposed	
container	maturity	model.	

RQ2.3:	How	can	we	construct	a	maturity	model	regarding	the	implementation	of	containers	in	the	software	
development	lifecycle?	
We	will	use	the	gathered	information	of	all	prior	research	questions	to	start	creating	concept	versions	of	the	
proposed	 container	maturity	model.	We	 consider	 corresponding	 architectural	 changes	 that	 are	 required	 in	
order	to	fully	utilize	containers.	During	the	development	of	these	concept	versions,	we	will	perform	additional	
interviews	with	external	experts	from	the	field	of	practice	to	gather	extra	knowledge.	Their	responses	support	
the	process,	as	we	can	modify	and	refine	the	container	maturity	model	according	to	their	feedback.	As	a	result,	
we	aim	to	deliver	a	concept	design	that	is	testable	in	a	validation	session.	

RQ3	Treatment	Validation	
RQ3.1:	How	do	experts	from	the	field	of	practice	perceive	the	designed	artefact?	
We	will	 interview	multiple	experts	 from	the	field	of	practice	by	combining	expert	 interviews	with	validation	
interviews	 to	 test	 the	 concept	 version	 of	 our	 maturity	 model.	 During	 these	 sessions,	 we	 observe	 the	
interviewees’	behavior	during	their	usage	of	the	CMM.	Expert’s	feedback	will	be	used	to	modify	and	further	
refine	current	concept	versions	of	the	model,	realizing	an	improved	concept	version.	

1.2.3. Design	science	
Design	science	is	the	design	and	investigation	of	artefacts	in	context	(Wieringa,	2014).	The	philosophy	is	that	
artefacts	that	are	studied	are	designed	to	interact	with	a	problem	context,	in	order	to	improve	something	in	
that	context.	Hence,	design	science	problems	are	improvement	problems	(Wieringa,	2014).	This	means	that	an	
artefact	is	interacting	with,	and	hence	influencing	a	context.	Wieringa	(2014)	states	that	it	is	the	interaction	that	
determines	the	effect	of	an	artefact	in	context.	An	example	of	such	interaction	is	given	in	Figure	4.	

18 | P a g e

	
Figure 4: Design science: artefact interacting with a context - Wieringa (2014) (recreated)

In	order	to	create	a	proper	problem	improvement	artefact,	the	context	has	to	be	understood.	To	be	able	to	
understand	an	artefact	and	its	context,	design	problems	have	to	be	investigated	so	that	new	designs	can	be	
researched	on.	Besides	 that,	knowledge	questions	have	 to	be	answered	as	well.	Answering	 these	questions	
creates	a	theoretical	foundation	of	new	knowledge	that	is	used	to	develop	new	designs.	This	synergy	between	
investigating	design	problems	and	answering	knowledge	questions	is	seen	as	an	iteration.	Figure	5	depicts	this	
iteration	between	the	problem-solving	activities.	

	
Figure 5: Design science iteration - Wieringa (2014) (modified)

Furthermore,	this	research	method	distinguishes	two	main	research	problems:	Design	problems	and	Knowledge	
questions.	“Design	problems	call	for	a	change	in	the	real	world	and	require	an	analysis	of	actual	or	hypothetical	
stakeholder	goals”	 (Wieringa,	2014).	 For	 instance,	 a	 solution	 is	 a	design.	There	 can	be	many	differentiating	
solutions,	which	are	evaluated	by	their	utility	with	respect	to	the	stakeholder	goals.	An	example	is	of	a	design	
problem	is:	Design	a	validation	method	for	assessing	the	integration	of	virtualization	technologies.	

Knowledge	questions	“do	not	call	 for	a	change	 in	the	world	but	ask	 for	knowledge	about	the	world	as	 it	 is”	
(Wieringa,	 2014).	 In	 contrast	 to	 design	 problems,	 it	 is	 assumed	 that	 there	 is	 solely	 one	 valid	 answer	 to	
knowledge	questions.	They	are	evaluated	by	facts	and	realized	by	empiral	research.	An	example	of	a	knowledge	
question,	in	reference	to	previous	example,	is:	Is	the	assessment	of	the	validation	method	explicit	enough?	

1.2.3.1. Design	science	framework	
The	iteration	of	design	science	is	the	main	part	of	this	research	method.	However,	the	cycle	is	accompanied	by	
two	interactive	contexts:	Social	context,	and	Knowledge	context.	The	cycle	and	contexts	combined	forms	the	
design	science	framework.	Figure	6	depicts	the	framework	including	all	relationships.	

19 | P a g e

	
Figure 6: Design science framework - Wieringa (2014) (modified)

Social	context	consists	of	any	type	of	stakeholder	who	may	affect	the	project	or	may	be	affected	by	results	of	
the	project.	The	knowledge	context	contains	all	the	existing	knowledge	(theories,	literature,	domain	knowledge	
etc.)	of	all	fields	of	science.	

1.2.3.2. Design	Cycle	
Knowledge	questions	are	answered	by	empirical	research,	meaning	that	data	is	collected	and	analyzed.	In	order	
to	extract	correct	data	from	sources,	this	research	project	applies	two	types	of	research	questions:	

- Descriptive	questions:	solely	asks	for	what	happened	(facts),	without	asking	for	explanations.	
- Explanatory	questions:	ask	why	something	has	happened.	Can	be	1)	causal,	2)	result	of	production,	and	

3)	rationalization	of	reasoning.	
- Exploratory	 questions:	 to	 discover	 what	 will	 happen	 when	 combining	 artefacts,	 concepts	 with	

influencing	aspects.	

Design	science	facilitates	a	phased	method	named	the	Design	cycle.	This	cycle	consists	of	several	so-called	tasks.	
The	activities	of	investigating	and	designing	are	performed	in	these	tasks.	In	total,	there	are	three	main	tasks:	

1. Problem	 Investigation:	 during	 this	 task,	 the	 perceived	 problem	 is	 investigated.	 This	 includes	
identification	of	stakeholders	and	goals,	denoting	and	studying	main	and	additional	concepts	to	develop	
a	theoretical	foundation,	and	validating	findings	with	experts	from	the	field	of	practitioners.	

2. Treatment	Design:	after	studying	the	perceived	problem(s)	and	corresponding	concepts,	developing	a	
theoretical	foundation,	and	processing	the	perspective	of	experts,	we	defined	the	problem	context	and	
proposed	a	solution	(artefact).	Subsequently,	we	started	to	design	this	artefact	to	improve	the	problem	
context.	 Activities	 include	 specifying	 and	 testing	 requirements,	 study	 existing	 treatments	 (designs),	
conducting	 expert	 interviews,	 and	 using	 all	 gathered	 information	 to	 design	 and	 validate	 new	
treatments.	

3. Treatment	validation:	in	the	final	phase,	the	new	design	is	validated	by	its	ability	to	impact	the	problem	
context.	 Measurements	 are	 used	 to	 validate	 the	 effects	 of	 the	 artefact	 on	 stated	 requirements.	
Additionally,	interactions	with	other	artefacts	and	contexts	can	be	evaluated	as	well.	

20 | P a g e

These	tasks	are	ordered	using	the	stages	of	the	Design	Science	methodology	of	prof.	dr.	Wieringa	(Wieringa,	
2014).	The	following	sub-sections	contain	descriptions	of	above	tasks	applied	in	the	context	of	this	research.	
The	sub-sections	are	followed	by	a	visual	representation	of	the	applied	Design	cycle	including	all	tasks.	

1.2.3.3. Task	1:	Problem	Investigation	
The	 first	 task	 of	 this	 research	 is	 focused	 on	 exploring	 the	 state	 of	 the	 art	 and	 the	 current	 phenomena	 in	
enterprise	 agility,	 virtualization	 technologies,	 and	 containerization.	 We	 aimed	 to	 develop	 a	 theoretical	
foundation	 where	 enterprise	 agility	 is	 described	 and	 explained,	 by	 conducting	 a	 literature	 review.	 A	
corresponding	literature	review	protocol	is	provided	within	the	literature	review	section	in	section	3.1.	In	the	
same	 framework,	 we	 described	 virtualization	 technologies	 and	 containerization,	 and	 explained	 how	 these	
technologies	 work.	 The	 combination	 of	 these	 concepts	 is	 used	 to	 attempt	 to	 confirm	 a	 gap	 of	 knowledge	
regarding	 the	 concepts.	 The	hypothesized	 gap	of	 knowledge	 is	 the	 lack	 of	 an	 explicit	 relationship	 between	
enterprise	 agility	 and	 technology.	More	 specifically,	 the	potential	 benefits	 of	 virtualization	 technologies	 for	
enterprise	agility.	 In	 this	attempt,	we	studied	both	 the	scientific	and	practitioner	perspective	 to	denote	 the	
need	for	a	solution	to	improve	the	problem	context	as	described	in	section	1.1.	

In	the	literature	review,	the	main	concepts	are	followed	by	additional	concepts.	These	additional	concepts	were	
required	to	investigate,	as	a	consequence	of	the	initial	literature	review	and	expert	interviews	findings.	Section	
2	Introduction	of	Problem	Investigation	further	elaborates	on	this.	

For	each	of	the	studied	concepts,	we	studied	definitions,	explained	milestones	in	corresponding	research	lines,	
denoted	possible	standards	and	best-practices,	analyzed	possible	cases-studies	and	trends,	and	provided	a	brief	
history	of	each	concept	to	show	its	growth	over	time.	In	addition,	we	performed	expert	interviews	to	test	the	
results	of	the	literature,	as	well	as	to	perceive	the	need	of	the	practitioners’	domain.	A	corresponding	expert	
interview	protocol	is	given	at	the	beginning	of	section	4.	Ultimately,	the	goal	is	to	state	a	theoretical	foundation	
from	where	of	information	can	used	to	build	new	knowledge.	

The	 deliverable	 of	 Problem	 Investigation	 is	 the	 Long	 Proposal.	 This	 document	 includes	 a	 literature	 review,	
results	of	expert	interviews,	a	PI	conclusion	and	a	subsequent	proposal	for	designing	an	artefact	to	improve	a	
problem	context.	

1.2.3.4. Task	2:	Treatment	Design	
The	second	task	is	aimed	at	designing	an	artefact	to	improve	the	given	problem	context.	During	this	phase,	we	
plan	to	conduct	research	on	the	following	concepts:	

- Existing	solutions	around	the	topic	of	SDLC	and	maturity	models;	
- Integration	of	containerization	into	enterprise	architecture;	
- How	to	design	a	maturity	model	for	containers	and	SDLC.	

These	concepts	are	studied	in	order	to	gather	information	for	the	development	of	an	artefact.	Information	that	
is	aimed	for	comprises	existing	methods	and	solutions	about	each	concept,	and	other	related	literature.	The	
gathered	 information	 is	 used	 in	 order	 to	 define	 what	 a	 successful	 integration	 of	 enterprise	 agility	 and	
virtualization	is,	with	respect	to	organizations’	enterprise	architecture.	In	addition,	practitioners’	expertise	is	
collected	by	performing	expert	interviews	and	verification	interviews.	

As	a	result,	the	deliverable	of	this	task	is	a	draft	version	of	the	Master	thesis.	The	thesis	document	includes	
draft	versions	of	the	artefact,	final	presentation,	and	scientific	report.	All	products	combined	contribute	to	the	
scientific	body	of	knowledge	and	practitioner	domain.	

1.2.3.5. Task	3:	Treatment	Validation	
During	the	third	task,	we	validate	the	artefact	by	conducting	interviews	where	we	ask	the	experts	about	their	
opinion	 on	 the	 presented	 artefact.	 The	 results	 of	 these	 interviews	 lead	 to	 an	 indication	 of	 possible	
improvements	that	can	be	processed	into	the	artefact.		

Resulting	in	the	final	version	of	Master	thesis,	and	all	formerly	included	products.	

21 | P a g e

	
Figure 7: Design cycle - based on Wieringa (2014) (modified)

	 	

22 | P a g e

1.3. Environment	of	research	
Section	 1.3	 describes	 the	 positioning	 of	 this	 research	 project	 in	 terms	 of	 the	 Information	 System	Research	
Framework	(ISRF)	of	Hevner,	March,	and	Park	(2004).	This	technique	is	selected	to	incorporate,	since	it	enables	
the	researchers	to	denote	the	overview	of	resource	consumption	and	contribution	of	this	research.	

1.3.1. Positioning	through	Information	System	Research	Framework	
Design	science	method	is	aimed	at	developing	an	artefact	in	context	to	provide	a	solution	for	the	given	problem	
context.	The	design	science	cycle	depicts	the	planning	of	the	whole	research	project,	including	different	phases	
and	subjects	of	interest.	The	ISRF	model	is	recreated	and	complemented	with	the	defined	RQs	of	this	research	
project	to	show	the	RQs’	consumption	and	contribution.	Figure	8	gives	this	specific	overview	of	the	model.	

	
Figure 8: ISRF complemented - based on Hevner et al. (2004) (recreated)

As	mentioned	before	in	Section	1.2.2,	the	RQs	have	different	goals	and	(re)source	usage.	RQ1.1	and	RQ1.3	are	
answered	by	conducting	a	literature	review	and	desk	research.	Most	sources	are	scientific	papers	and	originate	
from	 the	 Knowledge	 Base.	 In	 addition,	 business-oriented	 articles	 are	 used	 secondary	 to	 complement	 the	
theoretical	foundation.	RQ1.2	is	answered	by	performing	semi-structured	interviews	with	experts	from	the	field	
of	practice.	These	expert	interviews	also	supported	the	answering	of	RQ1.3.	Therefore,	both	RQ1.1	and	RQ1.3	
are	positioned	in	both	Environment	and	Knowledge	Base,	and	RQ1.2	in	Environment.	

To	answer	RQ2.1	and	RQ2.2,	additional	knowledge	is	required.	This	is	extracted	by	studying	both	literature	and	
business-oriented	articles.	The	remaining	RQ	of	the	TD	phase	are	design	tasks.	Hence,	RQ2.3	is	positioned	in	
the	IS	research	facet.	Subsequently,	when	the	theoretical	foundation	is	built,	experts	from	the	field	of	practice	
(Environment)	are	approached	to	gather	extra	knowledge.	This	field	is	also	approached	during	the	validation	
phase	of	this	research,	in	order	to	investigate	the	expert	opinion	about	the	designed	artefact.	By	answering	the	
final	sub-research	question,	the	artefact	is	developed,	and	problem	context	is	resolved.	

Conducting	research	to	the	aforementioned	subjects	and	concepts	leads	to	a	knowledge	base	that	is	used	to	
build	an	artefact.	This	artefact	is	the	answer	to	both	the	perceived	gap	of	knowledge	regarding	enterprise	agility	
and	technology,	and	the	need	for	knowledge	on	applying	containers.	 	

23 | P a g e

1.4. Research	context	
The	final	section	of	the	introduction	describes	the	context	this	master	thesis	project	is	executed	in.	At	first,	the	
organization	 where	 the	 project	 is	 performed	 is	 described.	 Secondly,	 the	 position	 of	 the	 student	 in	 the	
organization	is	explained.	Finally,	the	relevance	of	this	research	for	all	parties	is	described.		

1.4.1. PricewaterhouseCoopers	
PricewaterhouseCoopers	(PwC)	is	an	international	network	of	multiple	accounting	firms	that	 is	active	in	158	
countries.	 Originally,	 the	 network	 was	 started	 by	 Samuel	 Lowell	 Price	 as	 an	 accountancy	 firm	 in	 1849.	
Throughout	 the	 following	 centuries,	 several	mergers	 have	 been	 performed	 that	 led	 to	 an	 extension	 of	 the	
overall	 network	 and	 created	 different	 brand	 names.	 In	 1998,	 Price	 Waterhouse	 merged	 with	 Coopers	 &	
Lybrand,	 resulting	 in	 PricewaterhouseCoopers.	 Finally,	 PricewaterhouseCoopers	 formally	 shortens	 its	 brand	
name	to	PwC,	as	it	is	currently	known	(PwC,	n.d.).	
PwC’s	total	number	of	employees	is	above	the	236,000,	who	all	work	on	one	of	the	three	main	lines	of	services:	

- Assurance:	performs	audits	on	financial	statements	and	focusses	on	checking	of	data	and	processes.	
- Tax	&	HRS:	supports	organizations	with	their	tax	strategies,	-planning,	and	-compliance.	
- Advisory:	 provides	 advice	 on	 different	 facets	 of	 organizations.	 This	 includes	 strategical	 innovation,	

improvement	of	processes	and	systems,	advice	on	deals,	mergers	and	acquisitions,	and	support	during	
crises	as	a	consequence	of	breaches	in	cybersecurity	(PwC	NL,	n.d.).	

The	 lines	of	 services	 are	offered	 at	many	 industries.	 Examples	 are	Retail	 and	Consumer,	 Financial	 Services,	
Technology,	Media	&	Telecom,	and	the	Public	Sector	(governmental	organizations).	In	all	of	the	projects,	PwC	
aims	to	create	value	for	their	customers,	PwC’s	employees,	and	for	society.	The	purpose	of	PwC	comprises	the	
following:	 to	 contribute	 to	 the	 trust	 of	 society	 and	 to	 solve	 important	 problems.	 PwC	 envisions	 that	 close	
collaboration	between	all	the	international	firms	can	achieve	their	purpose.	This	means	that	it	is	aimed	for	that	
all	 teams	 have	 multi-disciplinary	 competences,	 different	 expertise,	 employees	 with	 diverse	 (national)	
backgrounds,	and	that	each	individual	can	be	himself	or	herself.	

1.4.2. Position	of	student	in	PwC	NL	
The	student	is	active	in	the	Advisory	Line	of	Service	(LoS)	of	PwC	NL.	This	LoS	is	active	in	different	industries	and	
contains	multiple	amounts	of	teams.	The	student	performs	his	activities	in	the	Financial	Services	(FS)	industry,	
and	is	placed	in	the	Technology	team	(FS	TC).	

The	 student	 takes	 of	 role	 as	 specialist	 (intern).	 In	 the	 specific	 context	 of	 PwC,	 the	 student	 is	 named	 as	 a	
specialist.	In	formal,	this	position	is	not	seen	as	a	full	employee.	However,	informally	the	student	is	part	of	the	
team.	During	the	daily	operations,	the	student	can	join	in	projects	to	learn	about	the	field	of	practice.	Although,	
primary	focus	is	on	conducting	research	and	write	the	required	master	thesis	documents.	

1.4.3. Challenges	and	opportunities	
Returning	 to	 the	 main	 subjects	 and	 their	 interrelationships	 in	 this	 research	 project.	 Considering	 the	 fact	
containerization	 is	 a	 relatively	 immature	 domain,	more	 (sub)types	 of	 the	 virtualization	 technology	 or	 new	
functionalities/innovations	 are	 likely	 to	 emerge.	 PwC	 is	 interested	 into	 exploring	 the	 different	 types	 of	
virtualization	 technologies,	 and	 to	 discover	 to	 what	 extend	 these	 technologies	 can	 be	 used	 to	 improve	
enterprise	agility.	Especially	due	to	the	increasing	dynamic	environment	and	rapid	changes	organizations	need	
to	confirm	to,	improving	enterprise	agility	regarding	an	organizations’	infrastructure	and	IT	provisioning,	while	
integrating	virtualization	technologies,	is	nowadays	strategy	to	improving	enterprise	agility.	

Therefore,	this	research	project	is	of	interest	to	both	PwC	and	the	university.	PwC	will	increase	its	knowledge	
regarding	the	potential	of	containers	in	reference	to	supporting	enterprise	agility.	Subsequently,	the	results	of	
the	research	can	be	used	to	further	conduct	research	on,	or	to	apply	in	practice.	The	university	also	embraces	
the	body	of	knowledge	resulting	from	this	study.	The	results	contribute	to	scientific	domain	in	stating	a	 link	
between	virtualization	technologies	and	enterprise	agility.	

24 | P a g e

	

	

	

	

	

	

	

Problem
Investigation

 	

25 | P a g e

2. Introduction	of	Problem	Investigation	
The	Problem	 investigation	of	Design	 science	 (Wieringa,	2008),	 is	 the	 first	phase	of	 this	 research	project.	As	
shown	in	the	section	1.1	Problem	statement,	we	briefly	pre-investigated	the	described	knowledge	domains	to	
find	the	relevance	of	this	project.	Based	on	the	results	of	this	pre-investigation,	we	determined	the	structure	
and	objectives	of	this	phase.	The	following	research	techniques	are	selected	to	use	in	the	problem	investigation:	

- Literature	review	on	the	selected	concepts;	
- Expert	interviews	focused	on	those	concepts.	

At	the	start	of	the	project,	we	had	a	global	idea	on	what	all	the	main	concepts	comprised	of.	However,	initially	
we	did	not	possess	a	significant	amount	of	experience	nor	affinity	with	the	concepts.	Especially	the	details	of	
the	later	introduced	SDLC	concept	was	considered	as	a	new	domain	for	us.	Therefore,	we	chose	to	conduct	a	
literature	review	on	all	concepts,	in	order	to	deep-dive	into	each	concept	and	explore	the	current	challenges,	
solutions,	and	existing	knowledge	to	discover	the	scientific	perspective	on	these	concepts,	and	to	enrich	our	
understanding	 on	 these	 concepts.	 As	 our	 expertise	 is	 related	 to	 the	 chosen	 concepts,	 we	 considered	 the	
literature	review	as	sufficient	to	comprehend	the	concepts.	Regarding	SDLC,	besides	literature	reviewing	the	
concept,	we	held	off	the	record	meetings	with	PwC	experts	to	further	understand	the	concept3.	

The	results	of	the	literature	review	would	provide	us	with	an	understanding	of	the	concepts,	the	state	of	the	
art,	and	related	challenges.	Subsequently,	we	wanted	to	approach	the	experts	and	use	our	collected	knowledge	
to	ask	about	their	opinion	regarding	the	concepts	and	corresponding	scientific	perspective.	We	aimed	to	use	
the	combined	results	of	the	literature	review	and	expert	interviews	to	define	a	proposal	which	includes	a	to	be	
designed	artefact	that	would	anticipate	on	the	studied	concepts.	

Next	 sub-sections	 describe	 for	 each	 problem	 investigation	 sub-phase	what	 our	 intention,	 objective(s),	 and	
aimed	conclusions	were,	and	into	what	this	eventually	resulted	in.	We	described	an	overview	of	the	structure	
of	all	concepts	that	are	included	in	the	literature	review	in	section	3.1.1.	

2.1. Problem	Investigation	research	process	
2.1.1. Literature	review	
As	aforementioned,	we	chose	to	conduct	a	literature	review	to	all	relevant	concepts	to	increase	our	knowledge	
about	them.	More	precisely,	the	goal	of	the	literature	review	is	to	define	the	state	of	the	art	of	the	three	main	
concepts,	 and	 find	 information	 that	 indicates	 a	 gap	 of	 knowledge	 regarding	 enterprise	 agility	 and	 the	
application	 of	 virtualization	 technologies.	 Furthermore,	 enterprise	 agility	 (section	 3.3	 &	 3.4)	 is	 studied	 to	
understand	 the	 overall	 concept	 and	 to	 denote	 in	 which	 aspects	 research	 is	 conducted	 and	 still	 lacking.	
Subsequently,	virtualization	technologies	(section	3.6)	and	containerization	(3.7)	are	studied	to	find	out	how	
these	subjects	can	be	linked	to	enterprise	agility.	By	conducting	research	on	the	details	of	both	virtualization	
subjects,	it	is	envisioned	that	tangible	results	can	be	found	that	have	potential	to	link	the	subjects	to	enterprise	
agility.	 However,	 first	 the	 gap	 of	 knowledge	must	 be	 indicated.	 Then,	 this	 gap	 can	 be	 used	 to	 denote	 the	
scientific	and	practitioner’s	need	of	linking	virtualization	technologies	to	enterprise	agility	and	its	application.		

By	defining	the	state	of	the	art	of	enterprise	agility,	virtualization,	and	containerization,	we	intend	to	answer	
RQ1.1.	Besides	that,	using	both	the	knowledge	of	the	literature	review	and	expert	interviews,	we	aim	to	state	
an	answer	for	RQ1.3	–	how	enterprise	agility	and	virtualization	
technologies	can	be	linked	to	each	other.	

As	 a	 result,	we	 found	 the	 relationships	between	 the	 concepts	
and	were	able	to	indicate	the	scientific	gap	of	knowledge.	The	
corresponding	 conclusion	 is	 explained	 in	 section	 5.1.	 Besides	
that,	 by	 studying	 all	 these	 concepts,	 we	 built	 a	 theoretical	
foundation	that	is	used	to	support	the	answering	of	the	main	RQ	

3	In	the	Treatment	Design	phase,	we	performed	expert	interviews	whereas	one	of	the	aspects	also	was	to	further	discuss	the	concept	of	SDLC	and	its	
relationship	with	containers.	Section	6,	7,	and	12	further	elaborate	on	this.	

Figure 9: Literature review objective	

26 | P a g e

and	achieving	the	corresponding	main	research	goal.	Moreover,	as	an	addition	to	the	theoretical	foundation,	
we	 further	 investigated	other	 related	 concepts	 (see	 section	2.4).	 This	 theoretical	 contributes	 to	 solving	 the	
indicated	knowledge	‘gap’	and	‘need’	that	is	experienced	respectively	by	the	scientific	domain	and	practitioners.	

2.1.2. Expert	interviews	
With	the	expert	interviews,	our	objective	was	to	discover	the	perspective	of	the	field	of	practice	on	enterprise	
agility	and	containerization,	and	to	validate	the	found	gap	of	knowledge	from	the	literature	review.	By	doing	
this,	we	would	establish	the	answer	to	RQ1.2.	In	addition,	we	provide	ourselves	with	evidence	that	the	field	of	
practice	recognizes	the	gap	of	knowledge.	Moreover,	this	would	strengthen	our	found	gap	of	knowledge	and	
further	increase	the	relevance	of	this	research	project.	Additionally,	we	aimed	for	discovering	the	experts’	ideas	
on	how	they	would	fulfill	the	gap	of	knowledge	with	a	relevant	product	or	artefact.	Subsequently,	combining	
their	suggestions	with	our	literature	findings,	we	intended	to	form	the	proposal	to	continue	our	research	with.	

Eventually,	 the	 experts	 gave	
their	 opinion	 about	 the	 found	
gap	of	knowledge	and	provided	
us	with	suggestions	on	how	to	fill	
this	 gap.	 One	 of	 the	 main	
findings	 is	 the	use	case	of	SDLC	
as	 relevant	 use	 case	 to	 apply	
containers	 in	 order	 to	 support	
enterprise	 agility.	 Section	 4	
elaborates	on	the	results	of	the	
expert	 interviews.	 Finally,	
section	 5.2	 describes	 the	
conclusion	of	the	expert	interviews.	

2.1.3. Proposal	phase	
The	results	of	both	the	literature	review	and	expert	interviews	are	combined	in	the	proposal.	Due	to	combining	
the	results	to	each	other,	we	aimed	to	establish	a	valid	relationship	that	would	scientifically	justify	the	chosen	
artefact	to	design.	

The	chosen	artefact	of	the	Long	Proposal	required	us	
to	 conduct	 additional	 research	 on	 the	 concepts	 of	
SDLC,	maturity	models,	 and	CICD.	 Besides	 that,	we	
also	 had	 to	 explore	 the	 possibilities	 on	 how	 to	
integrate	 container-related	 solutions	 into	 the	EA	of	
an	organization.	 Therefore,	we	proposed	 to	extend	
the	literature	review	with	these	additional	concepts,	
in	 order	 to	 complement	 the	 theoretical	 foundation	
and	to	ultimately	answer	the	main	RQ.	We	also	found	
that	we	had	to	strengthen	the	scientific	relationship	
between	 virtualization	 technologies	 and	 enterprise	
agility.	

2.1.4. Transition	to	Treatment	Design	phase	
After	finishing	the	additional	research,	we	finalized	the	theoretical	foundation	to	start	designing	the	proposed	
artefact.	 Subsequently,	based	on	all	PI	phase	 findings,	we	created	a	 table	 consisting	of	 the	most	 important	
characteristics	of	all	related	concepts	that	we	intend	to	include	in	the	proposed	artefact.	With	this	table,	we	
continued	the	research	process	by	transferring	to	the	next	phase	of	the	research	project,	Treatment	Design.	
This	phase	is	positioned	from	section	6	and	starts	on	page	79.	 	

Figure 10: Expert interviews objective	

Figure 11: Result of combining literature review and expert
interviews results	

27 | P a g e

3. Literature	review	
This	chapter	describes	the	results	of	the	literature	review	towards	the	following	concepts:	Agility,	Enterprise	
agility,	 Technology	 agility,	 Virtualization,	 and	 Containerization.	 Section	 3.1	 describes	 the	 literature	 review	
protocol.	Section	3.2	provides	a	preface	of	the	literature	review,	including	a	brief	explanation	about	its	structure	
and	 the	 remaining	 sections.	Both	of	 these	 sections	 solely	describe	 and	explain	 review	aspects	of	 the	 initial	
concepts.	This	means	the	additional	concepts	are	excluded	from	the	literature	review	protocol	and	–preface	
descriptions,	as	we	had	a	more	accurate	idea	on	what	aspects	of	the	additional	concepts	we	wanted	to	review.	

3.1. Literature	review	protocol	
This	section	describes	the	protocol	that	is	applied	to	perform	the	literature	review.	In	this	study,	three	main	
concepts	are	studied	for	the	literature	review:	1)	Enterprise	Agility,	2)	Virtualization,	and	3)	Containerization.	
Table	2	shows	these	main	concepts	and	related	concepts.	The	concepts	additionally	define	the	scope	of	this	
research.	 All	 concepts	 are	 used	 for	 the	 vast	 majority	 in	 search	 engines,	 mostly	 Google	 Scholar,	 to	 gather	
different	types	of	scientific	sources.	As	these	concepts	are	also	widely	used	within	commercial	organizations,	
desk	research	consists	of	relevant	knowledge	as	well.	This	means	that	conventional	Google	is	additionally	used	
to	 collect	 sources	 about	 these	 concepts.	 As	 a	 result,	 a	 knowledge	 base	 with	 both	 scientific	 and	 practical	
(business)	perspectives	on	the	same	concepts	is	created.	These	sources	include:	

- Scientific	articles	and	journals;	
- White-	and	business	papers;	
- Reports	and	other	non-scientific	(web)	documentation	that	originates	from	the	field	of	practitioners.	

Table	 2	 shows	 the	main	 concepts	 of	 this	 research.	 Per	 concept,	 synonyms	 and	 related	 concepts,	 including	
linkages	to	other	concepts	are	defined	to	indicate	the	spectrum	of	relevant	concepts	and	their	positioning.		

Table	2:	main	concepts	and	their	details	
Concept	 Synonyms	or	related	concepts	 Linkage	to	other	concepts	

Enterprise	Agility	 Agility	 Enterprise	architecture	
Organizational	agility	 IT	alignment	
Agile	manufacturing	 Strategic	alignment	
Workforce	agility	 	

Virtualization	 Virtual	machines	 Virt.	vendors:	Xen,	Hyper-V,	KVM	
Time-sharing	 Multiple	OSs	
Virtual	runtime	environment	 SaaS,	PaaS,	IaaS	
Cloud	computing	 	

Containerization	 Container	orchestration/	management	 Microservices	(architecture)	
OS-level	virtualization	 Service	Oriented	Architecture	
Containerized	architecture	 IT	architecture	
LXC	containers/Docker	containers	 Continuous	Delivery/Integration	

The	first	round	of	papers	was	collected	by	using	concepts	of	Table	2.	The	papers	(n=69)	are	structured	in	an	
Excel	sheet	that	includes	a	column	per	article	that	indicates:	title,	author(s),	keywords,	year,	and	other	remarks.	
The	abstract	and	keywords	of	each	paper	are	used	to	determine	its	relevance,	and	are	graded	by	the	means	of	
a	Likert	scale	(1=highly	 irrelevant	–	5=highly	relevant).	Subsequently,	papers	ranked	five	(5)	were	studied	at	
first.	Information	found	was	used	to	write	sections	of	the	theoretical	framework.	We	also	included	references	
to	other	relevant	papers	we	found	during	this	analysis.	This	resulted	in	extra	sources	in	the	literature	review	we	
would	otherwise	have	missed,	and	thereby	complementing	the	overall	knowledge	on	the	concepts.	After	that,	
papers	ranked	four	(4)	were	studied	to	find	more	information	regarding	each	concept.	After	that,	we	decided	
per	section	whether	the	content	was	sufficient.	Papers	ranked	as	three	(3)	and	lower	were	read	if	a	section	was	
determined	as	insufficient.	Figure	12	provides	a	visualization	of	this	research	process.	Additionally,	the	figure	
depicts	how	it	connects	to	the	remaining	research	process	for	the	development	of	the	Long	Proposal.

28 | P a g e

	

	

	
Figure 12: Problem Investigation research process

29 | P a g e

3.1.1. Literature	review	structure	
As	aforementioned	in	the	introduction	of	Problem	Investigation	(section	2.1),	we	complemented	the	literature	
review	with	 investigations	to	additional	concepts.	To	provide	an	overview	of	 the	remaining	structure	of	 the	
literature	 review,	 we	 stated	 its	 structure	 below,	 depicting	 each	 sub-section	 accompanied	 with	 a	 brief	
description.	

- Section	3.2	Preface	of	literature	review	provides	the	reader	with	context	about	agility,	denoting	the	
starting	location	of	the	literature	review,	and	explains	how	the	literature	review	evolves	towards	the	
other	concepts.	This	section	has	sole	focus	on	the	concepts	of	section	3.3	till	3.7.	

- Section	3.3	Agility:	the	precursor	is	added	to	investigate	the	roots	of	enterprise	agility.	This	aids	us	in	
understanding	 how	 enterprise	 agility	 is	 emerged,	 and	 how	 it	 has	 developed	 overtime	 into	 a	 self-
containing	concept.		

- Section	3.4	Enterprise	agility:	the	successor	further	elaborates	on	the	aspects	of	enterprise	agility.	This	
section	describes	all	our	literature	findings,	and	explains	how	we	rationalize	these	findings.	The	gap	of	
knowledge	is	discovered	in	this	section,	and	further	elaborates	on	in	the	following	section.	

- Section	3.5	Technology	agility	zooms	in	on	the	technological	aspect	of	agility.	In	addition,	this	section	
enables	us	to	establish	a	link	between	enterprise	agility	and	virtualization	technologies.	

- Section	 3.6	 Virtualization	 technologies	 describes	 what	 this	 concept	 comprises	 of,	 and	 how	 it	 has	
evolved	overtime	into	differentiating,	modern	solutions.	As	containers	originate	from,	and	are	also	a	
form	 of	 virtualization	 technologies,	 we	 consider	 it	 interesting	 to	 know	 the	 details	 of	 virtualization.	
Moreover,	these	details	are	required	so	that	we	are	able	to	compare	performance	and	functionality	of	
containers	with	conventional	virtualization	technologies	(VMs).	

- Section	3.7	Containerization	focuses	on	the	domain	of	containerization.	This	section	incorporates	on	
the	 history	 of	 containers,	 its	 architecture,	 main	 advantages	 and	 disadvantages,	 and	 other	 related	
aspects.	The	elaboration	of	this	section	supports	us	in	understanding	the	concept	of	containers.	

- Section	3.8	Differences	between	VMs	and	containers	is	the	section	where	we	study	scientific	sources	
on	the	performance	and	functionality	differences	of	both	virtualization	technologies.	With	this	section,	
we	intend	to	denote	the	overall	improvements	containers	provide	more	than	VMs.	

- Section	3.9	Software	development	 lifecycle	 is	 the	first	additional	concept	elaboration.	As	we	chose	
SDLC	 as	 the	 use	 case	 for	 our	 artefact,	 we	 are	 required	 to	 understand	 this	 domain.	 Therefore,	 we	
included	this	concept	into	the	literature	review.	

- Section	3.10	Maturity	(assessment)	models	is	also	added	to	the	literature	review,	as	we	determined	
to	design	a	maturity	model	for	containers.	Therefore,	we	need	to	discover	characteristics	of	maturity	
models	and	best	practices.	

- Section	 3.11	 Microservices	 architecture	 is	 studied,	 since	 we	 found	 that	 this	 architectural	 pattern	
possesses	the	characteristics	that	containers	require	to	utilize	their	benefits.	Hence,	we	want	to	know	
what	 this	architectural	pattern	comprises	of,	 its	philosophy,	and	other	related	concepts	 that	can	be	
used	to	foster	container	usage	in	organizations.		

- Section	3.12	Enterprise	architecture	and	Microservices	architecture	answers	how	containers	can	be	
integrated	into	the	EA	of	an	organization.	

	

 	

30 | P a g e

3.2. Preface	of	literature	review		
“The	problem	of	how	organizations	can	successfully	deal	with	dynamic,	unpredictable	environments	has	been	a	
topic	of	 interest	 in	both	practice	and	academe	for	several	decades”	 (Roberts	and	Grover,	2012).	Enterprises	
weaponized	themselves	against	 this	kind	of	environments	by	becoming	agile.	Agile	enterprises	make	use	of	
what	has	been	defined	by	the	scientific	and	business	domains	as	Enterprise	Agility	(EAG).	EAG	is	a	relatively	new	
concept	 that	 is	 getting	more	 attention	 in	 different	 fields.	 This	 is	 due	 to	 the	 increasing	 pace	 of	 technology,	
whereby	markets	becoming	volatile,	and	customers	expecting	innovations	from	the	market.	Hence,	the	need	
for	more	agile	responses	has	grown	(Christopher	and	Towill,	2001).	In	2006,	EAG	was	defined	for	the	first	time	
in	an	article	concerning	EAG	and	the	enabling	role	of	IT	(Overby	et	al.,	2006).	After	that,	EAG	became	gradually	
a	self-contained	concept.	However,	EAG	has	its	origins	in	another	concept:	Agile	or	Agility.	This	stepwise	process	
of	growth	towards	EAG	is	described	in	both	section	3.3	and	3.4.	

Section	3.5	includes	an	explanation	about	the	link	between	EAG	and	technology	as	found	during	the	literature	
review.	This	link	is	further	specified	towards	describing	virtualization	technologies,	as	containers	arise	from	this	
technology.	 Therefore,	 section	 2.6	 describes	 the	 history	 and	 state	 of	 the	 art	 of	 virtualization	 technologies,	
followed	by	an	explanation	about	how	containers	emerged.	After	 that,	 the	concept	of	 containers	and	 their	
current	use	are	described	in	section	2.7.	

Figure	13	depicts	 the	 structure	of	 the	 concepts	 and	 corresponding	 sections.	Relations	between	each	 set	of	
concepts,	as	shown	in	this	structure,	is	explained	towards	the	end	of	each	section.	However,	each	section	can	
be	individually	read,	as	no	prior	knowledge	of	a	former	section	is	required	to	read	the	subsequent	section.	

	

Figure 13: Literature review roadmap

On	page	61,	the	second	phase	of	the	literature	review	starts.	This	is	additional	research	towards	the	topics	of	
SDLC,	maturity	models,	and	EA,	which	we	considered	necessary	in	order	to	answer	the	main	RQ.	

31 | P a g e

3.3. Agility:	the	precursor	
Agility	 is	 a	 concept	 that	was	 introduced	 by	 Iaccoca	 Institute	 of	 Lehigh	University	 in	 1991	 after	
several	 workshops	 led	 by	 Nagel	 and	 Dove.	 At	 the	 time,	 the	 manufacturing	 domain	 in	 the	 US	
experienced	heavy	competition	from	Western	Europa	and	Japan,	and	therefore	lost	their	leading	
position.	 In	 order	 for	 the	US	 to	 regain	 competitiveness	 and	 their	 leading	 position,	 the	 Iaccoca	
Institute	 conducted	 research	 in	 the	 field	 of	 manufacturing,	 and	 found	 that	 agility	 was	 key	 in	
achieving	US’	 ambition	 (Nagel	&	Dove,	1991).	 The	 corresponding	 report	 contained	descriptions	
about	 agile	manufacturing	 enterprise,	 components,	 infrastructure,	 and	 operating	mechanisms.	
Besides	that,	competitive	foundation,	characteristics,	elements,	and	enabling	subsystems	of	agility	
were	additionally	provided.	This	was	the	first	scientific	article	where	agility	was	mentioned	and	the	
beginning	of	a	new	research	line/topic,	besides	the	already	existing	LEAN	manufacturing	research	
line.	Iaccoca’s	(Nagel	&	Dove,	1991)	definition	is	provided	in	next	box	to	give	an	understanding	of	
the	foundations	of	agility.	

A	system	that	shifts	quickly	among	product	models/lines,	ideally	in	real	time	in	order	to	respond	to	customer	needs.	

Citation/definition	3:	Agility	(Nagel	&	Dove,	1991)	

Subsequently,	 more	 studies	 followed	 that	 explored	 agility.	 Most	 of	 them	 focus(ed)	 on	 the	 manufacturing	
domain,	resulting	in	the	Agile	Manufacturing	(AM)	discipline.	This	discipline	has	been	defined	with	respect	to	
the	 agile	 enterprise,	 products,	 workforce,	 capabilities	 and	 the	 environment	 that	 gives	 impetus	 to	 the	
development	of	agile	paradigm.	Moreover,	as	a	mark	of	the	newness	of	the	concept,	every	publication	in	this	
decade	attempted	to	define	and	explain	agility	(Yusuf	et	al.,	1999),	resulting	in	a	collection	of	definitions.	These	
definitions	share	resemblance	with	one	another,	however,	also	differentiate	when	compared	on	certain	levels.		

Since	all	those	definitions	share	similarities	with	(the	development	of)	current	characteristics	of	agility	and	EAG,	
some	general	findings	from	various	authors	are	given	(summarized	by	Yusuf	et	al.	(1999)):	

- High	quality	and	highly	customized	products	(Goldman	&	Nagel,	1993;	Kidd,	1994;	Booth,	1995;	Hilton,	
Gill,	Little,	1994);	

- Products	 and	 services	 with	 high	 information	 and	 value-adding	 content	 (Goldman	 &	 Nagel,	 1993;	
Goldman,	Nagel,	Preiss,	1995);	

- Mobilization	of	core	competencies	(Goldman	&	Nagel,	1993;	Kidd,	1994);	
- Responsiveness	to	social	and	environmental	issues	(Goldman	&	Nagel,	1993;	Goldman	et	al.,	1995;	Kidd,	

1994);	
- Synthesis	of	diverse	technologies	(Burgess,	1994;	Kidd,	1994);	
- Response	to	change	and	uncertainty	(Goldman	&	Nagel,	1993;	Goldman	et	al.,	1995);	
- Intra-enterprise	and	inter-enterprise	integration	(Vastag,	Kasarda,	Boone,	1994;	Kidd,	1994;	Youssef,	

1992;	Yusuf,	1996).	

Considering	these	findings,	main	distinguished	characteristics	are:		

1)	High-end	products	and	services;	
2)	Responsiveness	to	dynamic	environment;	

3)	Optimal	utilization	of	enterprise’s	assets,	especially	technology.	

In	addition,	Ganguly,	Nilchiani,	and	Farr	(2009)	created	a	table	including	eleven	agility	definitions	along	with	the	
so-called	essential	characteristics	embedded	within	those	definitions.	These	characteristics	are	1)	Speed/time,	
2)	Cost,	3)	Responsiveness,	4)	Flexibility,	5)	Quality,	and	6)	Customer	needs,	and	are	based	on	all	findings	of	
former	studies	concerning	the	attempts	to	define	agility	and	its	characteristics.	When	looking	at	the	score,	the	
definition	of	Yusuf	et	al.	(1999)	and	Dove	(1999,	2001)	–	7	&	9	in	Appendix	I–	have	a	positive	score	on	all	of	the	
characteristics,	resulting	in	the	most	complemented	definitions.	Therefore,	the	definition	of	Yusuf	et	al.	(1999)	
is	selected	to	further	elaborate	on.	Besides	that,	in	contrast	with	the	first	definition	on	agility	by	Nagel	and	Dove	

32 | P a g e

(1991),	the	definition	of	Mathiyakalan	et	al.	(2005)	is	also	selected	to	elaborate	on,	since	it	is	one	of	the	newer	
definitions	and	additionally	contains	differences	when	compared.	The	literature	review	denotes	a	distinction	
between	two	decades:	the	first	decade	(1991-1999),	and	the	second	decade	(2001-now).	This	distinction	is	used	
throughout	the	literature	review.	

3.3.1. Agility	according	to	the	first	decade	
Besides	studying	agility	definitions,	Yusuf	et	al.	(1999)	also	embraced	the	denoted	trend	of	attempting	to	define	
agility,	which	resulted	in	the	following	definition:	

Agility	is	the	successful	exploration	of	competitive	bases	(speed,	flexibility,	innovation	proactivity,	quality,	and	
profitability)	through	the	integration	of	reconfigurable	resources	and	best	practices	in	a	knowledge-rich	environment	

to	provide	customer-driven	products	and	services	in	a	fast	changing	market	environment.	

Citation/definition	4:	Agility	(Yusuf	et	al.,	1999)	

This	definition	denotes	competitive	bases,	which	have	been	identified	in	former	studies,	several	characteristics	
that	an	agile	organization	should	possess	in	order	to	realize	outcomes	on	a	certain	quality	standard,	and	the	
environment	the	organization	is	operating	in.	When	compared	to	the	definition	of	Nagel	and	Dove	(1991),	the	
following	similarities	and	differences	are	found.	

Table	3:	Comparison	of	agility	definitions	of	Nagel	and	Dove	(1991)	and	Yusuf	et	al.	(1999)	

Similarities	 Differences	

An	entity	that	acts	with	speed	
regarding	their	products.	

Speed	is	solely	focused	on	product	lines/models,	and	not	specified	for	the	different	aspects	
that	are	related	to	AM,	as	Yusuf	et	al.	(1999)	argues.	Also,	services	are	not	mentioned.	

Implying	the	importance	of	
customer	needs.	

Iaccoca	mentions	that	organizations	should	respond	to	customer	needs.	Yusuf	elaborates	on	
this	by	further	specifying	products	into	‘customer-driven’	products.	

	 Yusuf	mentions	the	competitive	bases,	based	on	former	studies.	

	 The	definition	of	Yusuf	further	denotes	characteristics	of	an	agile	manufacturing	enterprise,	
which	are:	integration	of	reconfigurable	resources	and	best	practices,	enabling	a	knowledge-
rich	environment.	

One	of	the	differences	 is	 the	 level	of	detail	of	all	mentioned	aspects	 in	regards	to	agility.	 Iacocca	states	the	
primal	aspects	of	agility,	whereas	Yusuf	provides	a	more	detailed	description	of	these	aspects.	This	fact	shows	
the	gap	of	knowledge	regarding	agility	around	1991,	and	denotes	the	contribution	of	all	studies	that	have	been	
conducted	in	the	following	eight	years.	

Yusuf	 et	 al.	 (1999)	 uses	 this	 scientific	 knowledge	 contribution	 of	 eight	 years	 in	 their	 paper.	When	 further	
investigated,	this	definition	shows	several	aspects	(Yusuf	et	al.,	1999):	

1. It	describes	agility	as	a	system	(input,	operationalization,	and	output),	enabling	a	systematic	approach	
for	 practitioners.	Whereas	 organizations	 that	 apply	 agility	 have	 the	 possibility	 of	 using	 any	 existing	
methods	and	technologies	for	flexible	manufacturing	(Goldman	et	al.,	1993).	Besides	that,	Goldman	et	
al.	 (1995)	defined	several	outcomes	 for	agility,	examples	are	dynamic,	 context	 specific,	aggressively	
change	embracing	and	growth	oriented,	and	winning	market	share	and	customers.	Gehani	(1995)	and	
Kidd	(1996)	strengthen	the	outcomes,	as	they	argue	that	agility	is	the	ability	to	grow	in	a	competitive	
market	of	continuous	change,	to	respond	quickly	to	rapidly	changing	markets	driven	by	customer-based	
valuing	of	products	and	services.	

2. Specification,	exploration	and	subsequently	usage	of	competitive	bases.	Ren,	Yusuf,	and	Burns	(2000)	
explored	 how	 agility	 attributes	 influence	 competitive	 bases	 of	 the	 enterprise.	 The	 authors	 defined	
these	competitive	bases	as	dimensions	that	a	firm’s	production	system	must	possess	in	order	to	meet	
demands	of	the	target	market.	In	this	MSc	thesis,	these	are	defined	as	Agility	Characteristics	(AC).	

33 | P a g e

3. The	definition	implies	three	levels	of	agility,	which	are	agility	for	the	individual,	enterprise	(Goldman	et	
al.,	 1995),	 and	 inter-enterprise	 (Figure	 11).	 Respectively,	 this	 means	 Elemental,	 Micro-agility,	 and	
Macro-agility	 (see	 Figure	 3).	 According	 to	 Yusuf	 et	 al.	 (1999),	 the	 figure	 suggest	 that	 a	 truly	 agile	
organization	focuses	on	individual	resources	(people,	machinery,	and	management),	and	the	functions	
that	 make	 up	 the	 enterprise	 to	 achieve	 the	 best	 possible	 output.	 It	 is	 also	 stated	 that	 it	 is	 the	
harmonization	of	these	aspects	of	the	organization	that	leads	to	agility	(depicted	by	the	orange	arrow),	
rather	than	the	individual	optimization.	

4. Finally,	 the	 definition	 denotes	 the	 four	main	 concepts	 of	 agility,	 since	 these	 are	 increasingly	 being	
recognized	as	four	key	concepts	for	agile	competition.	These	concepts	include	competition	based	on	1)	
Core	 competence	management,	 2)	 Virtual	 enterprise	 formation	 (‘Inter-enterprise’	 in	 Figure	 14),	 3)	
Capability	for	reconfiguration,	and	4)	Knowledge-driven	enterprise.	

	

Figure 14: Hierarchy of agility of Yusuf et al. (1999) (edited)

In	 short,	 1)	 Core	 competence	management	 consists	 of	 two	 levels,	 individual	 and	 firm.	 On	 individual	 level,	
peoples’	skill,	knowledge,	attitude,	and	expertise	are	included	(Kidd,	1994).	Regarding	the	level	of	the	firm,	core	
competences	should	bring	strategic	advantages	and	long-term	benefits	(Prahalad	&	Hamel,	1999).	

2)	 A	 virtual	 enterprise	 has	 collaboration	 between	
different	 organizations	 on	 both	 management	 and	
operational	 level.	 This	 means	 that	 agile	 teams	 are	
working	together	with	teams	of	external	organizations,	
which	 realizes	 a	 “supply	 chain”	 of	 multiple	 core	
competences	 that	 are	 used	 to	 create	 products	 or	
services.	

Thirdly,	 agile	 enterprises	 should	 possess	 3)	 the	
Capability	to	reconfigure	themselves	properly	in	a	timely	
manner,	by	developing	a	strategic	architecture	 featuring	a	corporate-wide	map	of	skills	 (Prahalad	&	Hamel,	
1999).	

Finally,	an	enterprise	should	be	4)	Knowledge-driven.	Organizations	that	intend	to	become	agile	should	include	
the	development	of	a	well-trained	and	motivated	workforce,	which	possess	the	right	set	of	skills,	expertise	and	
knowledge,	as	an	essential	element	of	their	strategies.		

Most	 literature	 regarding	 the	 beginning	 of	 agility	 has	 been	 conducted	 during	 the	 90s.	 Yusuf	 et	 al.	 (1999)	
summarized	 all	 that	 literature	 at	 the	 end	 of	 this	 decade,	 which	 gave	 the	 authors	 an	 extensive	 amount	 of	
available	information	to	process.	This	resulted	in	an	overview	that	consists	of	ten	decision	domains	of	an	agile	
manufacturing	enterprise,	and	32	related	agility	attributes.	Table	4	denotes	these	attributes.	In	section	2.3.2,	
this	table	is	used	to	link	the	definition	of	EAG.	

Figure 15: Virtual enterprises partnership development model of
Yusuf et al., (1999) (edited)	

34 | P a g e

												Table	4:	Decision	domains	and	related	agility	attributes	

Decision	domain	 Related	agility	attributes	

Integration	 Concurrent	execution	of	activities;	Enterprise	integration;	Information	
accessible	to	employees.	

Competence	 Multi-venturing	capabilities;	Developed	business	practice	difficult	to	copy.	

Team	building	 Empowered	individuals	working	in	teams;	Cross-functional	teams,	Team	
across	company	borders;	Decentralized	decision	making.	

Technology	 Technology	awareness;	Leadership	in	the	use	of	current	technology;	Skill	
and	knowledge	enhancing	technologies.	

Quality	 Quality	over	product	life;	Products	with	substantial	value	addition;	First	
time	right	design;	Short	development	cycle	time.	

Change	 Continuous	improvement;	Culture	of	change.	

Partnership	 Strategic	relationship	with	customers;	Close	relationship	with	suppliers.	

Market	 New	product	introduction;	Customer	driven	innovations;	Customer	
satisfaction;	Response	to	market	changes.	

Education	 Learning	organization;	Multi-skilled	and	flexible	people;	Workforce	skill	
upgrade;	Continuous	training	and	development.	

Welfare	 Employee	satisfaction.	

The	study	of	Yusuf	et	al.	(1999)	is	selected	as	one	of	the	main	sources	for	agility	of	the	first	decade	to	use	in	this	
document,	as	it	investigates	multiple	sources	of	agility’s	first	decade	(1991-1999)	to	support	their	own	findings	
and	increase	the	validity	of	their	results.	These	used	sources	have	been	studied	for	the	Long	Proposal	to	validate	
their	correctness	and	to	be	able	to	link	the	sources	to	the	statements.	

However,	 in	 the	 same	 year,	 Sharifi	 and	 Zhang	 (1999)	 conducted	 a	 study	 on	 agility	 as	well.	 This	 is	 study	 is	
important	due	to	several	reasons.	First,	these	authors	defined	agility	drivers,	providers,	and	capabilities,	based	
on	prior	literature.	The	agility	capabilities	are	(Sharifi	&	Zhang,	1999):	

1) Responsiveness:	the	ability	to	identify	changes	and	respond	fast	to	them,	reactively	and	proactively,	
and	recover	from	them;	

2) Competency:	 the	extensive	set	of	abilities	 that	provide	productivity,	efficiency,	and	effectiveness	of	
activities	towards	the	aims	and	goals	of	the	organization;	

3) Flexibility:	ability	to	process	different	products	and	achieve	different	objectives	with	the	same	facilities;	
4) Speed:	the	ability	to	carry	out	tasks	and	operations	in	the	shortest	possible	time.	

These	capabilities	form	a	foundation	that	was	generally	accepted	as	the	main	characteristics	of	agility,	and	are	
consequently	used	throughout	all	succeeding	studies.	

Secondly,	Sharifi	and	Zhang	(1999)	were	the	first	to	mutate	the	demeanor	of	agility	in	their	definition.	Therefore,	
being	 the	 first	 scientists	 that	 argued	 that	 organization’s	 that	 apply	 agility	 should	 be	 proactive	 in	 detecting	
changes,	instead	of	reactively	responding	quickly	to	changes	when	they	already	occur.	This	is	noticeable	in	the	
description	of	the	capability	‘responsiveness’,	and	also	in	the	author’s	provided	definition:	

Agility	is	the	ability	to	detect	the	changes	in	the	business	environment,	and	respond	to	them	by	providing	the	
appropriate	capabilities.	

Citation/definition	5:	Agility	(Sharifi	and	Zhang,	1999)	

Furthermore,	 1999	was	 an	 important	 year	 for	 the	 field	 of	 agility,	 as	Dove	 also	 complemented	 the	 body	 of	
knowledge	regarding	agility	and	its	demeanor.	Dove	(1999)	too	denoted	the	difference	between	reactive	and	
proactive	modes	of	organizations,	and	subsequently	recognized	change	proficiency	in	both.	The	author	defined	

35 | P a g e

reactive	as	an	opportunistic	change,	and	responds	to	a	situation	that	 threatens	viability.	Whereas	proactive	
mode	is	defined	as	an	innovative	change,	and	responds	to	a	possibility	of	leadership	(Dove,	1999).	Next	sub-
section	further	elaborates	on	this	topic.	

3.3.2. Agility	according	to	the	second	decade	
At	the	beginning	of	the	new	decade,	Dove	(2001)	wrote	a	book	about	
Response	 Ability.	 Here,	 the	 author	 focused	 on	 describing	 how	 the	
culture,	structure,	and	language	of	the	agile	enterprise	works.	 In	this	
book,	 Dove	 continued	 to	 explain	 the	 idea	 behind	 the	 proactive	
demeanor.	 Figure	 16	 briefly	 depicts	 the	 differences	 in	 change	
proficiency.	

However,	 the	 book	 did	 not	 provide	 an	 explicit	meaning	 on	 how	 the	
proactive	demeanor	should	be	conceptualized	and	applied.	

Another	 definition	 is	 provided	 to	 strengthen	 the	 current	 description	
about	agility.	This	definition	origins	from	2005,	the	second	decade,	and	
therefore	 complements	 the	 overall	 perspective	 on	 agility	 in	 this	
literature	review.	The	definition	is	created	by	Mathiylakan	et	al.	(2005)	
and	contains	several	similarities	in	comparison	with	definitions	of	the	
first	decade.	Although,	this	definition	anticipates	on	the	change	proficiency	differences	and	therefore	shows	an	
important	difference.	

Ability	of	an	organization	to	detect	changes	(which	can	be	opportunities	or	threats	or	a	combination	of	both)	in	its	
business	environment	and	hence	providing	focused	and	rapid	responses	to	its	customers	and	stakeholders	by	

reconfiguring	its	resources,	processes	and	strategies.	

Citation/definition	6:	Agility	(Mathiyakalan	et	al.,	2005)	

All	definitions	before	2005	(except	Sharifi	&	Zhang	(1999))	mentioned	that	one	of	the	main	aspects	of	agility	is	
an	organization	solely	responding	to	its	dynamic	environment.	In	Mathiyakalan	et	al.’s	(2005)	definition,	one	of	
the	first	notable	differences	is	that	the	authors	complemented	this	definition	with	‘the	ability	of	an	organization	
to	detect	 changes’	 in	 its	dynamic	environment.	This	addition	 changes	 the	demeanor	of	agility	 to	proactive,	
instead	of	the	former	reactive	demeanor.	In	the	same	year,	Gartner	Research	Group	(Ashrafi	et	al.,	2005)	also	
defined	agility.	Moreover,	these	researchers	also	complemented	agility	with	“An	organization’s	ability	to	sense	
environmental	changes…”.	Both	of	these	definitions	are	in	line	with	Dove’s	(2001)	earlier	definition	of	agility	
(see	Appendix	I),	where	the	author	prepares	the	demeanor	to	be	transformed,	by	defining	agility	as	the	ability	
of	organizations	to	respond	effectively	and	efficiently,	although	now	“to	both	proactive	and	reactive	needs	and	
opportunities	 on	 the	 face	of	 an	unpredictable	 and	uncertain	 environment”.	Hence,	 the	proactive	demeanor	
conceptualization	to	sensing	and	detecting	was	embraced	and	supported	by	a	broad	amount	of	scientists.	To	
support	the	importance	of	this	shift	of	demeanor,	Ren,	Yusuf,	and	Burns	(2003)	revealed	that	the	competitive	
bases	speed,	flexibility,	and	proactivity	had	the	largest	impact	on	the	overall	enterprise’s	competitiveness.	

3.3.3. The	overall	view	–	Growth	of	definitions	
The	aforementioned	table	of	Ganguly	et	al.	(2009),	containing	known	definitions	of	agility,	 is	complemented	
with	additional	definitions	found	during	the	literature	review,	and	is	provided	in	Appendix	I	–	Agility	definitions.	
Some	definitions	and	corresponding	authors	and	years	were	found	to	be	incorrect,	and	are	therefore	manually	
modified.	During	the	analysis	of	all	the	definitions,	several	notable	findings	have	occurred.	

The	table	contains	16	agility	definitions,	ranging	from	1991	to	2005.	In	1991,	agility	was	defined	for	the	first	
time.	It	was	argued	that	a	system	should	be	able	to	shift	quickly	between	product	lines,	and	to	subsequently	
respond	to	customer	needs,	stating	the	importance	of	the	customer’s	role.	After	that,	Kidd	(1994)	continued	
with	 the	 characteristic	 of	 speed	 by	 mentioning	 a	 “rapid	 and	 proactive	 adaption	 of	 enterprise	 elements	 to	
unexpected	and	unpredicted	changes”,	embracing	the	prior	definition	and	complementing	it	with	the	impacting	

Figure 16: Change proficiency - Dove (2001)
(modified)	

36 | P a g e

role	 of	 an	 organization’s	 environment.	 One	 year	 in	 advance,	 the	 characteristic	 competitiveness	 made	 its	
entrance	into	agility,	combined	with	the	recognition	of	the	continuously	changing	customer	habits	(Goldman	et	
al.,	1995).	The	definitions	that	followed	after	1995	further	specified	the	(more)	abstract	characteristics	of	the	
prior	definitions,	resulting	in	more	comprehensive	definitions.	During	1991-1995,	the	average	word	count	per	
definition	was	15,	whereas	 the	average	word	count	between	1996-1999	 increased	to	29.	The	 increasement	
contained	further	specifications	about	the	competitive	environment,	trend	of	changing	markets,	and	the	more	
influencing	role	of	customers.	Moreover,	Fliedner	and	Vokurka	(1997)	defined	agility	as	the	ability	to	market	
products	successfully,	but	accompanied	with	the	characteristics	of	low-cost,	high	quality,	short	lead	times,	and	
varying	 in	 volumes	 that	 realize	 enhanced	 value	 to	 customers	 through	 customization.	 Meaning	 that	
organizations	should	focus	on	becoming	(more)	customer-driven	in	order	to	increase	value	to	its	customers.	
Eventually,	 Yusuf	 et	 al.	 (1999)	used	 the	 competitive	bases	 in	 their	definition	 (section	2.2.1),	 acknowledging	
these	bases	as	definitive	characteristics	of	agility.	In	the	same	year,	Sharifi	and	Zhang	(1999)	defined	the	first	
agility	attributes,	and	were	the	first	to	suggest	changing	agility’s	demeanor	in	their	definition.	

	
Figure 17: Agility timeline: abstract representation

During	 the	 transfer	 of	 the	millennium,	Dove	 (1999,	 2001)	 published	 two	 scientific	 contributions	where	 the	
author	argued	that	organizations	should	respond	efficiently	and	effectively	to	both	reactive	and	proactive	needs	
and	opportunities	of	the	unpredictable	environment.	This	was	the	embracement	of	the	proactive	demeanor	of	
agility,	and	the	second	step	of	transforming	agility	from	solely	reactive	responses,	to	proactively	anticipating	on	
upcoming	 changes	 (grey	 area	 in	 Figure	 17).	 After	 that,	 Sambamurthy,	 Bharadwaj,	 and	 Grover	 (2003)	
denominated	 the	 market	 environment	 as	 highly	 dynamic,	 besides	 being	 unpredictable.	 Implying	 that	 the	
market	and	customer	needs	are	getting	more	dynamic	than	before.	Subsequently,	the	Gartner	Research	Group	
(McCoy	&	Plummer,	2006)	and	Mathiyakalan	et	al.	(2005)	conceptualized	the	embraced	proactive	demeanor	of	
Dove	 into	 the	organizational	 ability	 of	 ‘sensing’	 and	 ‘detecting’	 upcoming	 environmental	 changes	 as	 a	 new	
characteristic	of	agility,	continuing	with	the	idea	of	Sharifi	and	Zhang	(1999).	

3.3.4. The	overall	view	–	Differences	and	similarities	
Sub	section	2.2.3	provides	an	explanation	of	the	known	agility	definitions.	The	definitions	show	an	incremental	
growth	of	the	concept	of	agility.	When	studied,	a	pattern	is	revealed	where	agility	characteristics	are	at	first	
defined	in	an	abstract	manner	(e.g.	‘changes’	and	‘proactive’)	and	several	years	later	conceptualized	to	tangible	
concepts	(e.g.	respectively	‘unpredictable	environment’	and	‘sensing	environmental	changes’).		

Apart	 from	 this	 incremental	process,	 the	definitions	do	contain	 some	differences	when	compared.	As	most	
definitions	define	agility	as	an	‘ability’	(9),	some	definitions	define	agility	as	a	‘capacity’	(1),	as	a	‘capability’	(2),	
or	use	a	more	abstract	concept	(an	adaption,	the	exploration	of,	and	a	system).	Deep	analysis	of	these	concepts	
is	out	of	scope.	However,	brief	analysis	of	capacity’s	and	capability’s	definitions	show	a	matching	description	of	
the	concept	as	“the	ability	or	power	to	do	something”.	Therefore,	defining	ability	as	the	parent/higher	concept	
of	them.	

As	aforementioned,	all	definitions	differentiate	from	each	other	on	a	higher	detail	level.	However,	despite	the	
differences,	all	definitions	of	‘agility’	emphasize	the	speed	and	flexibility	as	the	primary	attributes	of	an	agile	
organization	(Gunasekaran,	1999;	Sharifi	&	Zhang,	1999;	Yusuf	et	al.,	1999).	An	equally	important	attribute	of	
agility	is	the	effective	response	to	change	and	uncertainty	(Goldman	et	al.,	1995;	Kidd,	1994;	Sharifi	&	Zhang,	
2001).	Sharifi	and	Zhang	(1999)	emphasize	this,	as	they	state	that	responding	to	change	in	proper	ways,	and	
exploiting	and	taking	advantages	of	changes	are	the	main	factors	of	agility.	Additionally,	Sherehiy	et	al.	(2007)	
states	 that	 the	 next	 common	 component	 of	 published	 definitions	 of	 agility	 is	 a	 high	 quality	 and	 highly	
customized	products	(Gunasekaran,	1999;	Kidd,	1994;	Mccarty,	1993;	Tsourveloudis	&	Valavanis,	2002).	Figure	
18	denotes	the	selected	agility	characteristics	according	to	this	project’s	conducted	study.	

37 | P a g e

	

Figure 18: Agility characteristics - Based on Sharifi and Zhang (1999) (complemented)

3.3.5. Preliminary	conclusion	of	agility	compared	to	enterprise	agility	
Whereas	 agility	 has	 its	 focus	 on	 responding	 properly	 to	 change,	 EAG4	 incorporates	 the	 sensing	 of	 possible	
upcoming	changes	and	then	developing	a	proper	response,	as	 is	argued	by	McCoy	and	Plummer	(2006)	and	
Mathiyakalan	et	al.	(2005).	Moreover,	as	mentioned	before,	11	out	of	16	definitions	think	of	agility	as	an	ability	
of	an	organization.	However,	EAG	 is	seen	as	a	way	of	working	 (WoW)	that	 is	applied	throughout	the	whole	
enterprise,	instead	of	being	applied	in	certain	parts	of	the	organization.	

Moreover,	 the	main	 difference	 between	 both	 concepts	 is	 that	most	 studies	 on	 agility	 are	 focused	 on,	 and	
therefore	specialized	for,	the	field	of	manufacturing.	EAG	goes	further	and	expands	the	agile	WoW	throughout	
the	whole	enterprise,	instead	of	‘detaining’	it	to	one	function	or	specific	industry.	This	is,	however,	performed	
by	making	use	of	the	aspects	that	are	formerly	found	by	and	applied	at	all	prior	manufacturing-oriented	studies.	
These	studies	defined	agile	attributes	and	aspects,	and	showed	a	relationship	between	development	to	the	
current	state	of	EAG.	Section	3.4	elaborates	on	the	development	of	EAG	and	depicts	both	the	similarities	and	
additions	of	agility	in	regards	to	EAG.	

The	above-explained	concepts	about	agility	are	described	in	the	Long	Proposal,	since	these	specific	components	
share	resemblances	with	characteristics	of	enterprise	agility.	Agility	is	the	precursor	of	EAG,	which	means	that	
the	development	process	of	agility	 is	essential	 to	know,	 in	order	 to	understand	 the	specific	growth	of	EAG.	
Concluding,	 it	 is	stated	that	agility	goes	beyond	solely	speed	(Youssef,	1994),	 response,	and	flexibility	 (Kidd,	
1994),	and	is	the	full	use	of	the	developed	and	well-known	technologies,	combined	with	all	the	lessons	learned	
from	existing	lean	methods	and	production	management	philosophies	(Goldman	&	Nagel,	1993;	Yusuf	et	al.,	
1999).	

	

	

	

	

 	

4	As	aforementioned	in	section	3.1,	EAG	is	the	abbreviation	of	‘Enterprise	Agility’.	

38 | P a g e

3.4. Enterprise	agility:	the	successor	
During	the	second	decade,	studies	on	agility	that	focused	on	AM,	were	increasingly	extending	their	
scope	regarding	the	enterprise-wide	application	of	agility.	This	resulted	in	different	sub-types	of	
agility.	Moreover,	this	is	seen	as	the	further	developed	form	of	agility,	what	eventually	led	to	the	
all-encompassing	 concept	 of	 EAG.	 Most	 significant	 sub-types	 are	 Organizational	 agility	 and	
Workforce	agility.	Other	less	widely	used	sub-types	are	business	agility	(Mathiyalakan	et	al.	(2005),	
customer	agility,	partnering	agility,	and	operational	agility	(Sambamurthy	et	al.,	2003).	

Sherehiy	et	al.	(2007)	conducted	a	review	on	enterprise	agility	and	its	origins.	Based	on	all	studied	
literature,	the	authors	state	that	in	reference	to	agility,	the	most	important	enterprise	components	
are	 Organization,	 People,	 and	 Technology5.	 Each	 of	 these	 elements	 is	 multidimensional	 and	
complex	 itself	 (Sherehiy	 et	 al.,	 2007).	 This	 means	 that	 EAG	 should	 incorporate	 these	 three	
enterprise	components	in	its	application	throughout	the	organization.	Therefore,	in	order	to	state	
a	definition	for	EAG	in	this	MSc	thesis,	specific	agility	descriptions	aimed	at	OPT	are	used.	

Returning	to	the	emerged	sub-types	of	agility.	O	and	P	have	linked	sub-types	of	agility,	as	can	be	seen	in	Table	
5.	 Sub-types	denoted	 as	 significant	 (bold)	 represent	 the	 enterprise	 component	 as	 stated	by	 Sherehiy	 et	 al.	
(2007),	which	have	dedicated	 research	 to	 that	 agility	 sub-type.	However,	when	aligned	after	 each	other,	 it	
shows	a	gap	of	knowledge	regarding	the	lack	of	conducted	studies	on	the	technological	aspect	of	agility	(italic	
and	underlined).	

																Table	5:	Enterprise	Agility	academic	(red)	and	business	(orange)	definitions	

Agility	sub-type	 Description	 Enterp.	comp.	(OPT)	 Examples	of	sources	

Organizational	agility	 Agility	aimed	at	the	Organization	 Fulfills	O	 Reed	and	Blunsdon	(1998).	

Workforce	agility	 Agility	aimed	at	the	People	 Fulfills	P	 Forsythe	(1997);	

Plonka	(1997).	

Agility	for	technology	 Agility	aimed	at	Technology	 …	 …	

Findings	 of	 the	 literature	 review	 showed	 that	 there	 is	 no	 explicit	 link	
between	agility	and	technology.	Moreover,	no	research	lines	are	dedicated	
to	 agile	 technologies,	 as	 is	 done	with	Organization	 and	 People.	 Figure	 19	
visualizes	 this	 finding.	 This	missing	 link	may	 indicate	 a	 gap	 of	 knowledge	
regarding	 agility	 and	 technology.	 Section	 3.1.3	 further	 elaborates	 on	 this	
finding.	Next	sub-sections	describe	O	and	P	of	the	agility	sub-types.	

3.4.1. Organizational	agility	(Organization)	
Organizational	agility	is	described	as	an	organization’s	capacity	to	adjust	its	
internal	structures	and	processes	in	response	to	changes	in	the	environment	
(Reed	&	Blunsdon,	1998).	Additionally,	Nejatian	and	Zarei	 (2013)	describe	
that	organizational	agility	is	closely	related	to	the	concepts	adaptability	and	
flexibility,	and	all	 three	concepts	are	 interchangeably	used	 to	 indicate	 the	
endeavors	 made	 by	 an	 organization	 for	 handling	 dynamic	 markets	 and	 unpredictable	 changes.	 Moreover,	
internal	adaptability	and	flexibility	are	two	main	characteristics,	what	are	vital	for	the	evolution	of	organizations	
towards	achieving	organizational	agility	(Nejatian	&	Zarei,	2013).	Sherehiy	et	al.	(2007)	argues	in	their	review	
that	 the	 highest	 level	 of	 development	 is	 reflected	 in	 form	 of	 organizational	 agility,	 which	 comprises	 both	
concepts	of	adaptability	and	flexibility.	IT	also	contributes	in	organizational	agility,	as	it	increased	organization’s	
capacity	 to	 manage	 change,	 and	 led	 to	 greater	 investments	 in	 assets	 supporting	 the	 efficiency	 of	 specific	
organizational	 structures	 (Boer	&	Van	Engers,	2013).	 Finally,	 the	ultimate	goal	of	organizational	 agility	 is	 to	

5	From	this	point,	the	combination	of	Organization,	People,	and	Technology	will	be	referred	to	as	“OPT”.	

Figure 19: visualization of missing link
to Technology in EAG	

39 | P a g e

achieve	a	higher	market	share	in	a	competitive	environment	by	modifying	internal	structures	to	anticipate	on	
environmental	changes.	

3.4.2. Workforce	agility	(People)	
Workforce	agility	is	focused	on	the	employee	workforce	of	an	organization.	The	main	outline	of	agile	workforces	
is	aimed	at	possessing	and	leveraging	highly	trained	and	skilled	employees	(Youndt,	Snell,	&	Dean,	1996),	what	
leads	to	the	benefits	of	quality	improvement,	better	customer	service,	learning	curve	acceleration,	economy	of	
scope	and	depth	(Herzenberg,	Alic	&	Wial,	2000;	Hopp	&	Van	Oyen,	2004).	Gunasekaran	(1999)	proposed	the	
following	requirements	 to	 improve	organization’s	workforce:	1)	closer	 interdependence	among	activities,	2)	
different	skill	requirements,	3)	more	immediate	and	costly	consequences	of	any	malfunction,	4)	output	more	
sensitive	to	variations	in	human	skill,	knowledge	and	attitudes,	and	to	mental	effort	rather	than	physical	effort,	
5)	 continual	 change	 and	development,	 6)	 higher	 capital	 investment	 per	 employee,	 and	 7)	 favor	 employees	
responsible	for	a	particular	product,	part,	or	process	(Pinochet,	Matsubara	&	Nagamachi,	1996).	In	addition,	
the	 agile	workforce	 is	 expected	 to	 provide	 fast	 response	 to	 unexpected	 events	 (Plonka,	 1997),	 and	 also	 to	
effectively	 take	 part	 in	 any	 collaborative	 environment	 (Forsythe,	 1997).	 This	 workforce	 can	 be	 located	
throughout	cross-functional	project	team,	collaborative	ventures	with	external	parties,	or	a	virtual	organization	
(enterprise)	(Van	Oye,	Gel	&	Hopp,	2001).		

Several	authors	also	define	specific	workforce	agility	attributes,	which	share	similarities	with	agility	attributes.	
Breu,	 Hemingway,	 and	 Strathern	 (2002)	 used	 two	 agility	 dimensions,	 speed	 and	 flexibility,	 to	 assess	 these	
attributes.	The	study	showed	that	most	important	attributes	for	workforce	agility	are	1)	speed	of	developing	
new	skills,	2)	responsiveness	to	changes	in	customer	need	and	market	environment,	and	3)	speed	of	acquiring	
the	skills	needed	for	business	process	change.	Eventually,	the	attributes	were	categorized	into	five	higher	levels	
(after	Breu	et	al.	2002).	In	short:	

- Responsiveness:	in	regards	to	changing	customer	needs	and	market	conditions;	
- Competencies:	speed	of	acquiring,	developing,	and	innovating	several	kinds	of	new	skills;	
- Collaboration:	effectiveness	of	cooperating	across	functional	boundaries	and	ease	of	moving	between	

projects;	
- Culture:	employee	empowerment	for	independent	decision	making;	
- Information	Systems	(IS):	support	of	IT	infrastructure	for	the	rapid	introduction	of	new	IS.	

Demeanor	is	also	essential	in	Workforce	agility.	The	aforementioned	studies	already	implied	proactive	behavior	
applied	by	employees,	and	 in	2003,	Dyer	and	Shafer	 (2003)	embraced	 this	behavior	by	specifying	proactive	
behavior	of	employees	as	workforce	agility	attributes.	

These	categories	of	agility	workforce	attributes	are	perceived	in	this	MSc	thesis	as	a	specific	part	of	EAG,	as	it	
describes	the	people	aspect	of	EAG,	based	on	OPT.	

3.4.3. Inappropriate	term	usage	
The	appearance	of	these	new	agility	fields	also	resulted	in	inconsistent	use	of	the	definition	of	agility.	It	occurs	
that	‘enterprise	agility’	is	mentioned	where	agility	is	meant,	or	the	other	way	around.	The	same	applies	for	the	
other	sub-types	of	agility.	One	of	the	reasons	is	that	most	sub-types	do	not	have	widely	accepted	definitions,	
as	agility	does.	Hence,	resulting	in	authors	that	refer	to	agility	sub-type	X,	but	use	the	conventional	definition	
of	agility	throughout	the	study,	or	the	other	way	around.	Especially	in	the	beginning	of	the	second	decade,	there	
was	 no	 clear	 distinction	 between	 agility	 and	 EAG.	 Moreover,	 despite	 the	 fact	 that	 EAG	 discussions	 and	
definitions	were	first	seen	in	the	second	decade,	EAG	was	already	mentioned	during	the	first	decade.	Although	
the	meaning	was	rather	different.	Appendix	II	–	Retrospective	view	on	Enterprise	Agility	explains	the	EAG	term	
usage	in	the	first	decade.	One	more	recent	example	is	given	in	this	section,	since	it	also	shows	relevance	with	
current	EAG.	After	that,	the	conclusion	of	this	analysis	is	given.	

Tsourveloudis	 and	Valavanis	 (2002)	 developed	 a	measurement	 of	 agility.	 The	 authors	 combined	 four	 areas	
(Production,	Market,	People,	and	 Information),	what	are	named	as	 infrastructures,	as	 the	assessment	of	an	
organization’s	agility.	However,	Tsourverloudis	and	Valavanis	(2002)	specified	the	combination	of	these	four	

40 | P a g e

areas	as	enterprise	agility,	but	whereas	the	assessment	is	measuring	‘agility’.	This	is	one	of	the	situation	where	
both	concepts	are	used	inconsistently.	
Although,	the	authors	state	that	the	assessment	evaluates	the	overall	agility	of	the	enterprise,	implying	a	vision	
on	the	extension	of	agility	throughout	the	whole	organization,	instead	of	agility	detained	to	specific	enterprise	
components.	Nevertheless,	when	considering	the	four	areas,	the	areas	contain	similarities	with	Sherehiy	et	al.	
(2007)	 statement	 about	 essential	 enterprise	 components	 (OPT).	Market	 is	 added,	which	 likely	 denotes	 the	
sensing	of	upcoming	changes	in	the	dynamic	market.	This	is	the	first	time	that	researchers	stated	‘enterprise	
agility’	as	an	outcome	in	research	towards	agility.	

The	results	of	 this	brief	analysis	on	EAG	term	usage	(Appendix	 II)	show	the	first	use	of	 the	term	‘enterprise	
agility’	 in	 literature.	Most	 of	 the	 times,	 agility	 of	 an	 enterprise	 is	meant	 accompanied	 with	 corresponding	
reactive	 demeanor,	 agility	 applied	 in	 a	 specific	 enterprise	 function,	 and	 main	 focus	 on	 the	 field	 of	
manufacturing.	 ‘Enterprise	 agility’	 in	 terms	 of	 EAG,	 accompanied	 with	 corresponding	 proactive	 demeanor,	
agility	applied	enterprise-wide,	and	the	ability	of	sensing,	 is	not	meant.	However,	Dove	(2001)	does	refer	to	
EAG	in	its	description	of	the	agile	enterprise.	Although	this	is	not	explicit,	it	does	correspond	with	found	EAG	
components.	

3.4.4. Enterprise	agility	according	to	academic	and	business	literature	
Frequently,	the	concepts	agility,	EAG,	and	agility	sub-types	are	used	incorrectly	when	referred	to.	This	is	due	to	
lack	of	widely	accepted	definitions	in	the	scientific	domain.	Therefore,	solely	the	definitions	that	refer	explicitly	
to	“enterprise	agility”	are	incorporated	into	the	definition	table	of	EAG.	Definitions	that	refer	to	“agility”	are	
excluded	from	the	table.	As	only	two	definitions	are	found	in	the	scientific	field,	the	table	is	complemented	with	
definitions	from	the	business	literature.	This	field	clearly	distinguishes	enterprise	agility	from	agility,	and	shows	
an	expertise	with	the	field	due	to	the	current	popularity.	The	following	table	provides	the	found	EAG	definitions.	

Table	6:	Enterprise	Agility	academic	(red)	and	business	(orange)	definitions	

#	 Author(s)	and	year	 Definition	

1	 Overby	et	al.	(2006)	 The	ability	of	firms	to	sense	environmental	change	and	respond	readily.	

2	 Gartner	Research	Group	
(McCoy	and	Plummer,	
2006)	

The	 ability	 of	 an	 organization	 to	 sense	 environmental	 change	 and	 respond	 efficiently	 and	
effectively	to	that	change.	

3	 Sogeti	(Van	Herpen,	2014)	
Paraphrased	

Combined	application	of	strategy	alignment,	organizational	and	culture	fit,	collaboration	through	
the	 lifecycle	 of	 products	 and	 services,	 and	 integration	 with	 external	 parties,	 so	 that	 agility	 is	
present	throughout	the	entire	value	stream.	

4	 PwC	US	
(PricewaterhouseCoopers,	
2015)	paraphrased	

The	 successful	 combination	 of	 the	 operating	 environment	 (maintaining	 of	 USP	while	 critically	
scanning	 for	 risks	 and	 opportunities),	 strategic	 responsiveness	 (to	 develop	 an	 appropriate	
response	 quickly),	 and	 organization	 flexibility	 (internal	 alignment	 of	 the	 new	 strategy	 for	
execution),	in	order	to	sense	change	and	respond	rapidly.	

5	 Korn	Ferry	(2014)	 Enterprise	agility	is	a	company’s	ability	to	outperform	the	competition	and	drive	growth	in	new,	
ambiguous	situations	by	learning	and	adapting	when	confronted	with	foreseen	and	unforeseen	
circumstances,	dilemmas,	crises,	and	complex	problems.	

6	 Deloitte	(Oliver	and	Muir,	
2017)	

An	organization’s	 ability	 to	 respond	 to,	 adapt	 to,	 and	even	 lead	 the	market	when	 it	 comes	 to	
customer	centricity,	employee	experience,	external	market	and	competitor	movements,	industry	
or	regulatory	changes,	internal	changes,	and	technology	innovation	and	advancement.	

7	 Modern	Analyst	(Alami,	
2017)	

The	ability	to	adapt	easily	to	change.	It	is	the	ability	and	capability	of	a	system	to	respond	rapidly	
to	a	certain	modification	by	adapting	its	inceptive	and	stable	configuration.	

8	 (McKinsey&Company,	
n.d.)	Paraphrased	

A	combination	of	stability,	which	provides	direction	and	an	efficient	and	scalable	backbone,	and	
dynamism,	what	comprises	a	network	of	dynamic	teams	that	radically	increase	speed,	flexibility,	
and	ownership.	

41 | P a g e

A	difference	between	business	and	academic	definitions	is	the	classification	of	enterprise	agility.	Similar	to	all	
agility	definitions,	academic	EAG	definitions	 state	 that	EAG	 is	an	ability	of	an	organization.	Three	out	of	 six	
business	 definitions,	 however,	 do	 not	 mention	 any	 classification.	 This	 indicates	 that	 there	 is	 currently	 no	
commonly	accepted	classification	of	EAG.	
Besides	 that,	 business	 definitions	 show	 the	 same	 elements	 as	 the	 younger	 academic	 agility	 definitions	 in	
Appendix	I.	This	strengthens	the	prior	statement	about	the	non-existence	of	a	clear	transition	between	agility	
and	EAG,	and	subsequently	indicates	the	conclusion	of	an	incremental	process.	

Boer	and	Van	Engers	(2013)	provided	another	definition	of	agility,	which	is	interesting	in	regards	to	EAG.	

Agility	is	not	an	infrastructural	concept.	It	is	a	matter	of	awareness	of	the	organizational	environment	and	the	ability	
to	foresee	problems	and	react	appropriately	swiftly.	

Citation/definition	7:	Agility	(Boer	&	Van	Engers,	2013)	

This	definition	is	intentionally	described	in	current	subsection	about	EAG	definitions,	since	it	mentions	a	specific	
characteristic	that	other	authors	did	not	provide:	“…matter	of	awareness	of	the	organizational	environment…”.	
The	 authors	 build	 forth	 on	 the	 demeanor	 of	 proactive	 and	 reactive,	 stating	 that	 organizations	 should	
additionally	be	aware	of	their	environment.	

3.4.5. Transition	to	Enterprise	Agility	
Despite	all	the	written	academic	and	business	literature	on	agility	related	topics,	Sherehiy	et	al.	(2007)	states	
that	there	is	no	commonly	accepted	definition	of	EAG,	and	that	there	are	a	large	number	of	opinions	concerning	
the	meaning	of	this	term.	

However,	according	to	Overby	et	al.	(2006),	EAG	can	be	broken	into	two	(enabling)	components:	sensing	and	
responding.	This	is	in	line	with	the	description	of	agility	in	section	3.3.1.	It	also	implies	the	incremental	difference	
between	agility	and	EAG	that	has	been	developing	since	 the	addition	of	detecting	upcoming	environmental	
changes.	

Besides	 that,	 Sherehiy	 et	 al.	 (2007)	 defined	main	 agility	 attributes	 (besides	 the	 core	 agility	 attributes	 as	 in	
section	1.1.4),	which	are:	Flexibility,	Responsiveness,	Speed,	Culture	of	change,	Integration	and	Low	complexity,	
High	quality	and	customized	products,	and	Mobilization	of	core	competencies.	These	seven	attributes	share	
some	resemblances	with	the	stated	agility	attributes	in	Figure	18	(p37).	Although,	a	noticeable	difference	is	the	
addition	 of	 culture	 of	 change,	 which	 implies	 the	 relationship	 with	 workforce	 agility	 (People).	 The	 authors	
additionally	mentioned	that	the	main	attributes	can	be	applied	enterprise-wide,	referring	to	the	application	of	
agility	throughout	OPT.	

As	overall	analysis	and	the	table	of	both	agility	and	EAG	definitions	show,	there	 is	no	moment	of	change	or	
transition	 from	 agility	 to	 EAG.	 Therefore,	 the	 switch	 from	 agility	 to	 EAG	 is	 an	 incremental	 process	 that	 is	
executed	 throughout	 several	 years6.	 Based	on	 studied	 academic	 and	business	 literature,	 and	 in	 contrast	 to	
agility,	EAG	differentiates	itself	from	agility	through	the	following	components:	

- The	ability	of	sensing	upcoming	environmental	changes	(Proactive	demeanor);	

- Agile	 WoW	 on	 an	 enterprise-wide	 scale,	 meaning	 agility	 attributes	 applied	 into	 all	 enterprise	
components,	resulting	in	all	departments	(e.g.	Sales,	HR,	Finance)	applying	the	agile	WoW;	

- Agility	applied	in	the	multidimensional	levels	of	OPT.	

The	underlying	Figure	20	visualizes	the	difference	between	agility	and	EAG.	

6	The	process	of	Agility	to	EAG	is	incremental.	However,	this	explanation	does	not	aim	to	describe	that	agility	is	going	to	be	completely	replaced	with	
EAG.	The	self-contained	concept	of	agility	stands	on	itself.	

42 | P a g e

	

Figure 20: Visualization of Agility vs EAG

Therefore,	considering	Overby	et	al.	 (2006)	split	 into	two	enabling	components,	Sherehiy	et	al.	 (2007)	main	
agility	attributes,	and	these	differentiators,	the	following	stipulative	definition	of	EAG	is	created,	in	combination	
with	all	aforementioned	academic	and	business	literature.	

The	collection	of	principles	that	enable	an	enterprise	to	sense	environmental	changes	in	a	fast,	unpredictable,	dynamic	
business	environment	and	to	provide	rapid	and	accurate	responses	effectively	and	efficiently,	using	all	competences	of	
the	enterprise	to	internally	align,	organize	and	realize	this	change,	while	aiming	to	continuously	improve	its	workforce,	

and	focusing	on	optimal	utilization	and	exploration	of	technology.	

Citation/definition	8:	EAG	(primarily	based	on	Dove,	2001;	Mathiyakalan	et	al.,	2005;	McCoy	&	Plummer,	2006;	Sherehiy	et	al.,	2007)	

To	clarify	the	structure	of	the	definition,	specific	parts	are	abstracted	to	its	type.	Italic	means	that	the	concerning	
elements	are	in	general	represented	throughout	the	definition.	This	resulted	in	the	following:	

[Classification	 of	 EAG]	 –	 [Demeanor:	 Proactive]	 –	 [Demeanor:	 Reactive]	 –		
[Agility	characteristics	application:	Enterprise-wide]	~	[Interwoven	OPT	dimensions].	

Above	definition	is	used	for	the	remaining	of	this	master	thesis	project.	The	overall	timeline	of	Agility	and	EAG	
can	be	seen	at	page	43.

43 | P a g e

Figure 21: Agility timeline

44 | P a g e

3.5. Technology	agility	
This	section	elaborates	on	literature	around	technology	and	agility.	In	addition,	the	section	focuses	
on	explaining	the	literature	review	results	of	agility	and	EAG,	and	linking	these	to	technology.	Based	
on	this	explanation,	the	bridge	between	agility	and	technology	is	made.	

3.5.1. Literature	review	findings	
Based	on	the	results	of	the	literature	review,	no	explicit	link	is	found	between	EAG	and	technology.	
There	are,	however,	associations	noticed	between	agility	and	technology.	During	the	execution	of	
the	literature	review,	it	was	found	that	most	studies	still	use	IT	as	a	supportive	element	to	all	agility	
types	 in	 enterprises.	Despite	 the	wide	 recognition	of	 the	 crucial	 role	of	 IT	 nowadays,	 no	 study	
created	a	self-contained	sub-type	of	agility	with	focus	on	IT	or	technology.		

However,	technology	is	several	times	associated	with	agility.	For	example,	the	IT	landscape	should	
be	 adaptive	 according	 to	 multiple	 authors	 (Pal	 &	 Pantaleo,	 2005;	 Kaddoumi	 &	 Watfa,	 2016).	
Besides	that,	Tseng	and	Lin	(2011)	have	developed	a	conceptual	model	of	enterprise	agility	that	encompasses	
of	agility	drivers,	capabilities,	and	providers.	These	authors	argued	that	Technological	innovations	is	one	of	the	
main	agility	drivers,	and	 information	 integration	(infrastructure)	 is	an	 important	agility	provider.	 In	addition,	
Yusuf	et	al.	(1999)	states	that	in	reference	to	agility,	an	organization	should	be	aware	of	arising	technologies,	
pursue	leadership	in	technology	use,	and	obtain	skill	and	knowledge	regarding	technology.	

The	technology	domain	also	noticed	an	increasing	demand	of	agile	software	solutions.	These	solutions	were	
required	to	support	an	adaptable	 IT	 landscape	and	facilitate	an	agile	WoW.	Moreover,	the	 literature	review	
additionally	showed	that	several	authors	argued	that	the	following	characteristics	should	be	considered	for	the	
configuration	of	agile	IT:	

- Technical	integration	(Sharp,	Irani,	and	Desai,	1999;	Lee,	Siau	and	Hong,	2003;	Pal	&	Pantaleo,	2005;	
Holbeche,	2015;	Rigby,	Sutherland,	and	Takeuchi,	2016).	

- Standardization	(Lee	et	al.,	2003;	Pal	&	Pantaleo,	2005;	Sherehiy	et	al.,	2007).	

- Reusability	(Dove,	1999;	Yusuf	et	al.,	1999;	Sherehiy	et	al.,	2007).	

- Scalability	(Dove,	1999;	Yusuf	et	al.,	1999;	Sherehiy	et	al.,	2007).	

Software	product	organizations	noticed	this	increasing	demand,	which	resulted	in	rapid	improvements	in	the	
field	 of	 technology	 that	 enabled	 organizations	 to	 improve	 their	 agility.	 Nevertheless,	 none	 of	 the	 scientific	
sources	made	an	explicit	 link	between	existing	 technologies	 and	agility.	 This	denotes	 that	 there	 is	 a	 gap	of	
knowledge	regarding	an	explicit	link	between	EAG	and	technology.	

3.5.2. Technology	towards	agility	
As	aforementioned	in	Section	3.4,	agility	research	lines	dedicated	to	the	O	&	P	enterprise	components	exist.	
Another	well-known	area	where	agility	has	shown	its	effectiveness	is	software	development.	However,	when	
observing	the	domain	of	technology,	again	no	examples	are	found	in	the	literature	where	agility	 is	explicitly	
applied	in	or	linked	to	technology.	

Although,	when	 looking	 to	 the	 infrastructure	domain,	 several	 technological	 innovations	have	occurred	 that	
made	the	infrastructure	more	agile.	Best-known	example	is	the	introduction	of	virtualization.	This	technology	
enabled	organizations	to	divide	the	computing	resources	of	a	single	server,	realizing	a	higher	server	utilization.	
Basically,	virtualization	made	organizations	use	their	infrastructure	in	an	agile	way.	
Another	 innovation	 was	 the	 introduction	 of	 the	 cloud.	 This	 provided	 organizations	 identical	 computing	
resources	through	the	internet,	removing	the	need	for	organizations	of	having	and	maintaining	their	own	server	
park.	Different	types	of	virtualization	technologies	enable	the	cloud	concept,	and	the	amount	of	organizations	
using	a	cloud	solution	have	significantly	increased	since	the	cloud’s	introduction.	The	results	of	the	utilization	
of	virtualization	show	that	this	concept	is	the	enabler	of	an	agile	infrastructure	and	technologies.	

45 | P a g e

In	2013,	another	technological	innovation	has	been	introduced,	which	is	containerization.	Briefly	stated,	this	
technology	provides	the	same	services	as	virtualization.	However,	it	is	facilitated	faster	and	at	the	costs	of	fewer	
resources	 through	 different	 functionality.	 Moreover,	 the	 characteristics	 of	 containerization	 align	 with	 the	
attributes	of	agility,	even	more	than	the	characteristics	of	virtualization	(as	shown	in	section	1.1.4).	Besides	all	
stated	 technologies	 perceived	 as	 agile,	 containers	 further	 improve	 functionality	 of	 virtual	machines.	 This	 is	
interesting	to	apply	in	organizations	to	advance	enterprise	agility.	

Currently,	 literature	 around	 containerization	 and	 its	 role	 is	 found.	 However,	 there	 is	 no	 link	made	 explicit	
between	 containers	 and	 EAG	 (Figure	 22).	 Therefore,	 next	 section	 elaborates	 on	 virtualization	 technologies,	
explaining	how	it	emerged,	its	role,	to	eventually	move	on	to	containerization.	With	describing	containerization,	
the	hypothesis	about	the	missing	link	between	containerization	and	EAG	is	tried	to	prove.	

	
Figure 22: Visualization of missing link between EAG and containers

46 | P a g e

3.6. Virtualization	
Virtualization	is	a	technology	that	has	become	more	widely	used	since	its	introduction.	It	is	also	
the	precursor	of	containerization,	despite	it	being	a	different	approach	to	software.	This	section	
describes	the	following	aspects	of	virtualization	and	containerization:	

- History	of	virtualization;	
- State	of	the	Art	of	virtualization;	
- Virtualization	and	cloud	computing;	
- Virtualization	advancement.	

3.6.1. History	of	virtualization	
Virtualization	has	its	origins	in	the	1960s.	Different	technology	organizations	(e.g.	General	Electric	
(GE),	Bell	Labs,	and	IBM)	were	experimenting	with	sharing	computer	resources	among	large	groups	
of	 users.	 In	 1963,	Massachusetts	 Institute	of	 Technology	 (MIT)	 announced	project	MAC,	which	
stood	for	Multiple	Access	Computer.	In	short,	to	be	able	to	execute	this	project,	MIT	needed	new	computer	
hardware	 that	 was	 capable	 of	 supporting	multiple	 users	 simultaneously,	 instead	 of	 the	 former	 single	 user	
support	per	 computer	 (Conroy,	2018).	 Subsequently,	MIT	 sent	Requests	 for	Proposals	 (RfP)	 throughout	 the	
technology	domain.	GE	was	willing	to	make	a	commitment	to	time-sharing	computing	(Conroy,	2018).	

IBM	 noticed	 the	 increasing	 demand	 for	 such	 systems,	 and	 started	 its	 own	 projects	 regarding	 time-sharing	
computing	 development.	 Time-sharing	 computing	 means	 that	 multiple	 users	 are	 making	 use	 of	 the	 same	
computer	by	means	of	multiprogramming,	realizing	an	efficient	use	of	the	computing	power	and	resources.	

The	next	years,	all	developments	resulted	in	computers	that	enabled	organizations	to	let	multiple	users	work	
on	a	single	computer.	More	specifically,	IBM	designed	the	first	commercial	mainframe	(CP-67)	that	supported	
virtualization	(Conroy,	2018).	Virtualization	was	a	more	advanced	type	of	software	concept	when	compared	to	
the	 former	 time-sharing	 concept.	 The	 idea	 was	 that	 specific	 software	 (Control	 Program	 (CP))	 ran	 on	 the	
mainframe	and	created	virtual	machines	(VM),	which	is	the	isolated	environment	where	users	would	interact	
with	as	their	personal	computer.	One	of	the	biggest	advantages	was	that	virtualization	enabled	organizations	
to	configure	multiple	OSs	on	single	servers	(Carroll,	Kotzé	&	Van	der	Merwe,	2011).	Other	main	advantages	that	
virtualization	provides	in	comparison	to	time-sharing	computing	are:	

																		Table	7:	Advantages	of	virtualization	compared	to	time-sharing	

Description	

More	efficient	system	usage.	VMs	share	the	overall	resources	of	the	mainframe,	 instead	of	
equally	divide	resources	between	all	users.	

Improved	security,	as	each	user	works	in	a	complete	isolated	operating	system	(OS)	

Improved	reliability,	as	no	user	could	crash	the	entire	system,	only	their	personal	OS.	

Next	sub-section	2.2.2	elaborates	on	the	state	of	the	art	of	virtualization.	This	includes	a	selected	definition	that	
is	further	used	throughout	this	research	project.	

3.6.2. Virtualization:	State	of	the	Art	
After	 the	 introduction	 of	 CP-67,	 the	 technology	 has	 improved	 significantly	 and	 led	 to	 wider	 usage	 by	
organizations.	More	software	emerged	that	provided	support	for	multi-OSs,	including	the	current	widely	used	
UNIX	OS,	and	different	types	of	virtualization	were	introduced.	Around	2004,	server	virtualization	was	becoming	
mainstream	and	became	increasingly	more	often	implemented	into	organizations	(Connor,	2004).	Additionally,	
the	author	also	stated	that	virtualization	in	general	is	becoming	mainstream,	especially	since	Microsoft	entered	
the	market,	 and	 because	 of	 the	 virtualization	 providers’	 race	 to	 develop	 solutions	 that	 effectively	 use	 the	
continuously	 increasing	 CPU	 power	 to	 a	 full	 extend	 (Connor,	 2004).	 After	 that,	 Spiegel	 (2006)	 argued	 that	
businesses	could	benefit	 from	application	and	server	virtualization.	The	benefit	 is	that	applications	could	be	
installed	on	servers	 instead	of	being	 installed	on	 local	desktops,	 realizing	secure	and	remote	access.	Due	to	

47 | P a g e

these	concepts,	organizations	became	aware	of	the	potential	savings	on	hardware	purchase	and	maintenance	
costs.	This	eventually	led	to	the	transition	to	the	cloud,	which	is	further	described	in	sub-section	2.6.3.	

When	referring	to	existing	literature,	there	are	large	differences	about	the	definition	of	virtualization	(Luo,	Yang	
&	Ma,	2011).	This	is	because	most	definitions	are	focused	on	specific	virtualization	types,	instead	of	the	general	
concept	 of	 virtualization.	 Luo	 et	 al.	 (2011)	 state	 that	 in	 the	 virtualization’s	 development	 stage,	 no	 strict	
standards	 and	 definitions	 were	 created.	 Nonetheless,	 based	 on	 all	 business	 definitions	 and	 literature,	 the	
following	stipulative	definition	has	been	composed	as	an	attempt	to	provide	a	general	definition.	

Virtualization	refers	to	technologies	designed	to	provide	a	layer	of	abstraction	between	computer	hardware	systems	
and	the	software	running	on	them,	where	system	resources	are	logically	divided	in	order	to	create	a	virtual	resource.	

Citation/definition	9:	Virtualization	(based	on	Clark,	1965;	Waters,	2007;	Techopedia,	n.d.)	

“Virtualization	as	an	abstraction	of	hardware	has	become	a	popular	solution	to	resource	isolation	and	server	
consolidation”	(Li	&	Kanso,	2015).	Due	to	this,	many	virtualization	types	and	different	virtualization	providers7	
exist.	 Virtualization	 type	 examples	 are	 full	 virtualization,	 paravirtualization,	 and	 server	 virtualization.	 A	
comprehensive	overview	is	included	in	Appendix	III	–	Virtualization	types.	

Virtualization	consists	of	three	main	characteristics:	1)	Partitioning,	2)	Isolation	(Tamane,	2015),	and	3)	Server	
efficiency.	

- Partitioning:	one	physical	system	can	support	multiple	applications	and	OSs	by	partitioning	available	
resources.	

- Isolation:	each	created	VM	operates	without	affecting	its	host	OS	and	other	parallel	VMs,	as	VM-specific	
data	is	not	shared	between	one	another.	This	additionally	improves	security.	

- Server	efficiency:	virtualization	creates	virtual	partitions	of	servers,	realizing	efficient	use	of	servers.		

3.6.2.1. Virtual	machine	architecture	
The	 construction	 of	 a	 VM	 is	 showed	 in	 the	 right	 Figure	 23.	 The	 basic	
construction	 of	 a	 VM	 environment	 is	 depicted	 to	 visualize	 the	
construction.	 In	 the	 next	 paragraph,	 the	 figure	 is	 explained	 per	 layer	
(bottom-up).	

The	 lowest	 layer	 (dark	 red)	 consists	 of	 physical	 hardware.	 Onto	 this	
hardware	is	the	host	OS	(blue),	which	is	the	main	system	software	of	that	
particular	set	of	hardware.	This	OS	manages	all	the	tasks	and	activities	that	
are	 requested	 from	 the	 hardware.	 The	 third	 layer	 is	 the	 hypervisor	
(orange).	 This	 is	 a	 software	 component	 that	 emulates	 the	 existing	
hardware	of	that	environment	as	individual	hardware	components	for	the	
VMs.	Due	to	this,	a	VM	thinks	that	it	 is	using	its	personal	CPU,	memory,	
storage	etc.,	whereas	it	is	actually	using	a	part	of	an	extensive	hardware	
component	or	a	large	set	of	hardware.	This	enables	given	configuration	of	
different	VMs	with	the	same	(set	of)	hardware.	Inside	a	VM,	an	OS	(Guest	
OS)	 is	 executed,	 which	 results	 in	 the	 new	 environment	where	 the	 desired	 application	 or	 service	 is	 ran	 in.	
Abstractly	formulated,	basic	virtualization	realizes	a	computer	(Guest	OS)	inside	another	computer	(Host	OS)	
while	sharing	the	same	hardware.	

3.6.2.2. Virtualization	advantages	
Virtualization	provides	several	advantages	when	compared	to	physical	set-ups	of	hardware	(infrastructure)	and	
software	 (applications).	Carroll,	Kotzé,	and	Van	der	Merwe	(2010)	conducted	a	qualitative	study	on	sources	
regarding	the	benefits	of	virtualization.	As	a	result,	primary	virtualization	benefits	mentioned	by	most	authors	

7VMware,	Microsoft	Virtual	PC,	Microsoft	Hyper-V,	Xen,	Qemu,	KVM,	VirtualBox,	Parallels,	and	Bochs.	

Figure 23: VM architecture	

48 | P a g e

are	a	reduction	in	costs,	server	consolidation,	and	server	utilization	(Carroll	et	al.,	2010).	Besides	that,	some	of	
the	 stated	 ‘major’	 benefits	 are	 disaster	 recovery	 and	 service	 continuity	 (availability),	 easier	 or	 quick	
deployment,	 seamless	portability	and	migration,	 increased	 flexibility	and	service	agility,	 reduced	downtime,	
easier	and	quicker	developments	and	testing,	ease	of	management	and	administration,	isolation,	and	improved	
security	and	control	(Carroll	et	al.,	2010).	

When	 looking	at	 the	practitioner’s	domain,	 the	 same	kind	of	 advantages	are	 found.	This	domain	 is	directly	
aimed	at	businesses,	and	therefore	focusses	on	briefly	stating	the	advantages	organizations	can	obtain.	Next	
Table	8	denotes	these	advantages,	accompanied	with	a	brief	description	and	corresponding	source(s).	

Table	8:	Virtualization	advantages	
Concepts	 Description	 Source(s)	

Higher	server	
utilization	

By	using	virtualization,	one	physical	server	can	now	hold	multiple	virtual	machines.	
Moreover,	 servers	 are	 no	 longer	 required	 to	 be	 dedicated	 to	 one	 specific	
application	or	service.	Virtualization	enables	servers	to	divide	themselves	in	order	
to	support	different	applications.	This	realizes	a	higher	server	utilization	than	during	
conventional	server	use.	

NH	Learning	Solutions,	2017;	
Carroll	et	al.,	2010.	

Reduced	
hardware	
costs	

As	a	consequence	of	the	higher	server	utilization,	organizations	are	not	obliged	to	
purchase	new	servers	for	each	new	application.	Therefore,	reducing	the	costs	for	
purchasing	hardware.	The	same	applies	to	the	maintenance	of	the	servers,	since	
there	are	less	servers	that	are	in	need	of	maintenance.		

NH	Learning	Solutions,	2017;	
Carroll	et	al.,	2010.	

Faster	
hardware	
deployment/	
Disaster	
recovery	

Virtualization	uses	images	of	software	clients.	Images	are	back-up	files	that	contain	
meta-data	about	a	VM	or	specific	software.	At	the	moment	a	physical	server	fails,	
the	VM(s)	can	be	transferred	to	another	server,	by	the	means	of	loading	a	saved	
image	of	that	particular	VM(s)	onto	another	server.	This	realizes	the	exact	same	VM	
before	the	server	fail	(obviously,	it	depends	on	the	moment	the	image	is	saved).	

NH	Learning	Solutions,	2017;	
Thrive	Operations,	2018;	
Scroggins,	2013;	
Carroll	et	al.,	2010.	

Energy	costs	
savings	

By	 achieving	 a	 higher	 server	 utilization,	 less	 physical	 servers	 are	 required	 to	
possess.	This	additionally	means	that	less	energy	is	consumed	by	the	organization	
to	run	and	cool	the	servers.	

NH	Learning	Solutions,	2017;	
Thrive	Operations,	2018;	
Tamane,	2015.	

Increased	
staff	
productivity	

Due	to	the	higher	server	utilization,	maintenance	staff	have	more	time	to	focus	on	
other	tasks,	as	the	amount	of	servers	is	less	than	during	conventional	scenarios.	

NH	Learning	Solutions,	2017.	

Improved	
system	
reliability	
(incl.	
redundancy)	

VMs	are	executed	in	their	own	isolated	environment	on	servers.	The	VM	is	created	
on	the	server	and	operates	alone,	with	no	connection	to	other	VMs	on	the	same	
server.	The	only	 connection	a	VM	has	 is	 the	connection	with	 the	hardware	 (the	
server),	which	looks	like	a	computer	because	of	the	virtualization	layer.	Hence,	if	an	
error	occurs	within	a	VM,	the	remaining	VMs	cannot	be	impacted	by	this	error.	

Tamane,	2015;	
Scroggins,	2013;	
Carroll	et	al.,	2010.	

Increased	
scalability	

Although	 not	 all	 authors	 mention	 scalability	 within	 the	 list	 of	 advantages,	
virtualization	 does	 increase	 the	 ability	 to	 scale	 IT	 in	 organizations.	 Because	 of	
virtualization,	 organizations	 can	 change	 the	 amount	 of	 available	 applications	 to	
different	 loads,	 while	 maintaining	 the	 same	 amount	 of	 physical	 servers.	 For	
instance,	organizations	can	temporarily	decrease	the	amount	of	Service	A	in	order	
to	increase	the	amount	of	Services	of	B,	and	vice	versa.	

Thrive	Operations,	2018;	
Carroll	et	al.,	2010.	

	

	 	

49 | P a g e

3.6.2.3. Virtualization	disadvantages	
Despite	all	the	advantages	virtualization	brings,	the	technology	also	may	bring	several	disadvantages	and	risks	
that	may	affect	the	overall	performance.	According	to	Carroll	et	al.	(2010),	most	common	perceived	risks	in	the	
virtual	 environments	 are	 regarding	 security.	 When	 looking	 at	 the	 practitioner’s	 domain,	 security	 as	 a	
disadvantage	 is	 not	 mentioned	 as	 it	 is	 in	 the	 literature.	 However,	 several	 practical	 issues	 are	 denoted	 as	
disadvantages.	Table	9	briefly	elaborates	on	these	risks	of	both	domains.	

Table	9:	Virtualization	disadvantages	
Concepts	 Description	 Source(s)	

Security	 Security	 regarding	 the	 virtualization	 environment	 is	 influenced	 by	 the	 following	
factors:	 fluctuating	 workloads,	 dynamic	 migration	 and	 changes,	 workforce	
capability	 and	 knowledge,	 access	 controls,	 hostile	 guests,	 proliferation	 of	 VMs,	
configuration	settings,	hypervisor	and	VM	monitor	layer	vulnerabilities,	VM	server	
sprawl	(complexity).	

Carrol	et	al.,	2010.	

Complexity	of	
virtual	
environment	

As	more	applications	and	services	are	being	executed	onto	one	physical	server,	the	
complexity	of	such	an	environment	is	increased.	This	may	lead	to	a	more	difficult	
process	of	finding	an	error	in	the	virtual	environment	(e.g.	root-cause	analysis).	

Pietroforte,	n.d.;	
Sysprobs,	n.d.	

High	risk	in	
physical	fault	

Due	to	the	server	consolidation,	a	lot	more	of	(sets	of)	applications	and	services	are	
being	executed	on	physical	servers.	A	corresponding	risk	is	the	consequence	of	a	
possible	 error	 of	 such	 physical	 servers.	 When	 that	 happens,	 an	 amount	 of	
applications	and	 services	has	 to	be	 restored	onto	another	 server,	 at	 the	 cost	of	
downtime.	

Pietroforte,	n.d.;	
Sysprobs,	n.d.	
	

Hardware	
consumption	

Each	VM	gets	an	amount	of	hardware	resources	assigned	for	its	use.	In	particular,	
memory	 (RAM)	 and	 disk	 space	 is	 consumed	 by	 VMs	 because	 of	 all	 required	
resources	to	run	OSs	and	corresponding	applications.	

Ganore,	2014;	

Performance	
decreasement	

Virtualization	does	bring	an	additional	layer	in	the	overall	architecture	to	realize	a	
service	 or	 application.	 During	 operations	 where	 speed	 and	 a	 low	 latency	 is	
required,	 the	 additional	 layer	 may	 result	 in	 a	 portion	 of	 delay.	 Moreover,	
virtualization	will	never	be	equal	to	the	performance	with	physical	servers	in	the	
conventional	 way.	 This	 is,	 however,	 not	 a	 major	 issue,	 as	 servers	 without	
virtualization	did	not	fully	utilize	their	capabilities.	

Tamane,	2015;	
Ganore,	2014;	
Pietroforte,	n.d.;	
Sysprobs,	n.d.	

3.6.3. Virtualization	and	Cloud	computing	
The	cloud	domain	is	enabled	by	virtualization	concepts.	Virtualization	allows	users	to	access	power	beyond	their	
own	physical	IT	environment	(Harauz,	Kaufman	&	Potter,	2009),	meaning	infrastructure,	and	applications	and	
services.	Virtualization	 is	 therefore	 regarded	as	a	core	component	 in	cloud	computing	 (Carroll	et	al.,	2011).	
Cloud	is	defined	as	“a	large	pool	of	easily	usable	and	accessible	virtualized	resources	(hardware,	development	
platforms	and/or	services),	which	can	be	dynamically	reconfigured	to	adjust	to	a	variable	load	(scaling),	allowing	
for	an	optimum	resource	utilization”	(Vaquero,	Rodero-Merino	&	Caceres,	2009).	

Cloud	realized	the	wide	introduction	of	the	concepts	Software-as-a-Service	(SaaS),	Platform-as-a-Service	(PaaS),	
and	Infrastructure-as-a-Service	(IaaS),	as	large	amounts	of	computing	resources	became	easily	available.	Only	
a	sufficient	internet	connection	was	required.	Conventionally,	organizations	maintained	their	own	hard-	and	
software	in-house,	what	resulted	in	a	considerable	amount	of	costs.	However,	because	of	cloud	technologies,	
organizations	could	now	decide	to	use	one	or	more	 ‘aaS(s)8	 for	 their	 IT	environment,	and	hence,	outsource	
most	of	the	maintenance	and	configuring,	and	save	on	purchases.	The	different	types	of	virtualization	–	e.g.	
storage-,	application-,	and	server	virtualization	–	enabled	all	different	cloud	solutions.	Figure	24	denotes	the	
enabling	role	of	different	virtualization	types	towards	cloud	technologies.	

8	‘’aaS’	is	used	to	denote	the	collection	of	PaaS,	IaaS	and	SaaS.	I.e.	a	reference	where	all	three	concepts	are	meant.	

50 | P a g e

	
Figure 24: Cloud and enabling virtualization technologies	

The	 increased	 use	 of	 ‘aaS	 realized	 new	 business	 models.	 This	 also	 made	 a	 shift	 recognizable	 that	 more	
organizations	chose	for	 this	kind	of	configurations	 for	 their	 IT	environment(s).	 In	2016,	7,3%	of	all	 surveyed	
organizations9	were	using	cloud	computing,	whereas	in	2010	only	0,3%	of	these	organizations	were	using	cloud.	
This	is	an	annualized	growth	rate	of	almost	50%	(Bloom	&	Pierri,	2018).	Moreover,	this	shows	an	increase	in	the	
use	of	‘aaS	solutions	and,	more	importantly,	it	also	implies	the	future	role	of	virtualization	technologies.	

3.6.4. Virtualization	advancement	
As	a	result	of	the	increasing	popularity	of	‘aaS	solutions,	large	data	centers	exist	where	multiple	virtualization	
technologies	are	applied	to	virtualize	physical	hardware,	and	create	aggregated	pools	of	computing	resources.	
Organizations	can	subscribe	to	these	public	and	private	cloud	vendors	to	make	use	of	the	offered	computing	
resources	in	the	form	of	an	‘aaS	solution.	Since	there	are	many	vendors	with	data	centers	that	facilitate	different	
computing	resources	to	organizations	through	cloud,	the	next	advancement	would	be	to	increase	efficiency	and	
speed	of	the	virtualization	aspects.	

As	aforementioned,	virtualization	technologies	realized	a	change	in	the	IT	market	around	2008.	Dawson	and	
Bittman	(2008)	predicted	that	virtualization	would	change	the	usage	of	IT,	including	pricing,	application	types,	
and	OS	usage.	Moreover,	the	authors	also	stated	that	there	would	emerge	a	competition	between	vendors	that	
did	 not	 exist	 yet.	 The	 SaaS,	 PaaS,	 and	 IaaS	 concepts	 of	 sub-section	 2.5.3	 are	 already	 known	 results	 of	 the	

9	The	research	of	Harvard	Business	Review	is	based	on	the	dataset	of	Aberdeen	Information’s	call	center.	This	data	set	contains	more	than	150.000	firms	
that	participated	in	the	survey	regarding	cloud	usage.	

51 | P a g e

utilization	of	virtualization	 technologies.	Figure	25	depicts	 in	a	 timeline	 the	change	around	 IT	 infrastructure	
inside	organizations,	and	shows	the	shift	that	has	occurred	during	the	last	50	years.	The	figure	also	implies	the	
introduction	of	a	new	technology	that	would	further	innovate	the	infrastructure	and	application	domain.	

	
Figure 25: Infrastructure evolution

However,	besides	the	‘aaSs,	different	vendors	attempted	to	advance	the	concept	of	virtualization.	An	example	
of	such	a	new	vendor	is	Docker.	This	organization	anticipated	on	the	possibilities	of	virtualization	by	developing	
a	concept	of	containers,	popularizing	containerization.	

Moreover,	containers	are	the	next	innovation	in	the	infrastructure	evolution	timeline	of	Figure	26,	as	containers	
have	particular	characteristics.	In	short,	containers	provide	the	same	kind	of	isolated	virtual	environments	as	
VMs,	to	enable	the	execution	of	applications	and	services.	However,	containers	are	lightweight	versions	of	VMs,	
meaning	that	this	concept	requires	less	hardware	resources.	Additionally,	containers	are	launched	in	a	fraction	
of	the	time	required	by	VMs.	Therefore,	containers	can	be	seen	as	an	advanced,	increased	agile	enabling	version	
of	current	virtualization	technologies.	Due	to	this,	next	section	2.7	elaborates	on	the	container	characteristics	
by	providing	more	in-depth	details	and	differences	about	containerization.	

	
Figure 26: Virtualization technologies linked to Containerization

52 | P a g e

3.7. Containerization	
Containerization	is	a	software	concept	that	has	gained	popularity	since	2013.	As	mentioned	before	
in	section	1.1,	more	organizations	are	(planning	to)	apply(ing)	containers	in	their	daily	operations.	
This	 section	describes	how	containers	 emerged,	what	 the	 current	 state	of	 the	art	 is,	 compares	
containers	with	 VMs,	 and	 explains	 how	 containers	 are	 linked	 to	 EAG.	 Throughout	 this	 section,	
containerization	and	containers	are	used	interchangeably.	

3.7.1. History	of	containers	
The	origin	of	containers	can	be	derived	from	two	different	needs:	1)	the	need	for	isolation	(location	
of	 files),	 and	 2)	 the	 need	 for	 a	 software	 concept	 that	 is	 independent	 of	 the	 underlying	
infrastructure.	

One	 of	 the	 first	 solutions	 that	 introduced	 isolation	 was	 Unix	 V7	 system	 in	 1979.	 This	 system	
changed	the	root	directory	of	a	process	and	its	children	to	a	new	location	in	the	filesystem	(Osnat,	
2018),	 resulting	 in	 some	sort	of	 isolation	between	parts	of	 the	system.	Around	 the	2000s,	different	hosting	
providers	elaborated	on	the	isolation	aspect.	Making	the	smaller	systems	independently	assignable.	The	first	
mentioning	of	‘containers’	was	in	Solaris	containers	(2004).	After	that,	Google	introduced	Process	containers	in	
2006,	which	were	designed	for	limiting,	accounting,	and	isolating	resource	usage	of	a	collection	of	processes	
(Osnat,	2018).	Subsequently,	Docker	launched	its	containers	and	container	management	ecosystem.	Docker	is	
used	in	next	sub-sections	to	explain	containers.	

The	second	need	was	around	the	independence	of	a	software	platform	regarding	the	underlying	infrastructure.	
Java	once	started	as	a	programming	language	from	the	need	to	have	a	language	that	is	platform	independent.	
Meaning,	the	language	can	be	used	on	different	platforms,	where	it	does	not	matter	if	it	is	windows,	Unix,	or	
another	OS.	Containers	pursue	this	generic	concept	in	their	functionality.	Containers	provide	functionality	that	
is	independent	of	the	underlying	infrastructure,	meaning	the	physically	enabling	and	supporting	of	containers.		

3.7.2. Containerization:	state	of	the	art	
Container-based	 virtualization	 and	 application	 containerization	 is	 an	 OS-
level	 virtualization	 method	 for	 deploying	 and	 running	 distributed	
applications	without	launching	an	entire	VM	for	each	application.	Instead,	
multiple	 isolated	systems	(the	containers)	are	running	on	a	single	control	
host	 (Container	Engine	 in	Figure	27)	and	access	a	single	kernel	 (Host	OS)	
(Kaur,	2018).	Moreover,	as	opposed	to	hypervisor-based	virtualization	(the	
VMs),	 container-based	 virtualization	 (i.e.	 OS-level	 virtualization)	 is	 not	
aimed	at	emulating	an	entire	hardware	environment.	It	is	rather	enabling	
the	modern	 Linux	 kernel	 to	manage	 isolation	between	applications	 (Li	&	
Kanso,	 2015).	 This	 means	 that	 multiple	 isolated	 systems	 (Jenkins	 or	
Salesforce	etc.)	can	run	on	one	control	host,	sharing	a	single	kernel	instance,	
which	is	noticeable	in	Figure	24.	Each	container	having	its	own	process	and	
network	 space	 realizes	 this	 multiple,	 isolated	 concept	 (section	 2.7.2.1	
elaborates	on	this).	In	essence,	a	container	is	a	set	of	processes	(usually	with	
storage	associated)	completely	isolated	from	other	containers	(Li	&	Kanso,	
2015).	

However,	other	differentiating	descriptions	about	containers	exist.	According	to	Firesmith	(2017),	a	container	is	
a	 virtual	 runtime	environment	 that	 runs	on	 top	of	 a	 single	OS	 kernel	 and	emulates	 an	OS,	 rather	 than	 the	
underlying	hardware.	Another	example	is	Pahl’s	(2015)	description	of	containers:	“a	container	holds	packaged,	
self-contained,	 ready-to-deploy	 parts	 of	 applications	 and,	 if	 necessary,	 middleware	 and	 business	 logic	 (in	
binaries	 and	 libraries)	 to	 run	 applications”.	 Besides	 that,	 most	 authors	 also	 mention	 that	 containers,	 in	
comparison	to	VMs,	are	lightweight	and	therefore	realize	a	lower	overhead,	provide	fast	start-up	times,	and	
bring	the	capability	to	interconnect	containers	and	rapidly	scale	large	amounts	(Amaral	et	al.,	2015;	Pahl,	2015).	

Figure 27: Container architecture high
level	

53 | P a g e

The	 container	 domain	 consists	 of	 two	 types	 of	 technologies:	 1)	 container	 solutions	 and	 2)	 container	
orchestrators	(see	subsection	2.6.4).	Container	solutions	provide	the	same	type	of	container	services	(deploy,	
manage,	 and	 scale	 applications),	 but	differentiate	 from	each	other	when	going	 into	details.	 In	 reality,	 each	
solution	can	be	used	to	solve	different	things	and	are	rooted	in	varying	contexts	(Abdelrazik,	2017).	This	is	due	
to	their	individual	specializations,	applied	techniques,	and	their	own	goals.	An	overview	of	most	used	vendors	
and	their	specializations	is	provided	in	Appendix	IV	–	Containerization	vendors.	

Figure	28	depicts	the	characteristics	of	containers	that	are	the	most	found	during	the	literature	review.	

	
Figure 28: Container characteristics (based on all sources used in section 2.3.2)

3.7.2.1. Container	architecture	
The	 container	 architecture	 comprises	 of	multiple	 layers.	 These	
layers	 facilitate	 the	 transition	 between	 the	 host	 OS	 and	 the	
container	engines,	and	different	types	of	desired	software.	Figure	
29	depicts	the	container	architecture,	and	has	the	same	structure	
as	Figure	27.	The	architecture	of	a	Linux	container	 is	 chosen	 to	
depict,	since	most	containers	applied	in	practice	are	Linux-based.	

The	general	architecture	consists	of	three	main	layers:	
- Writeable	container;	
- Images	(of	OS	and	other	software	types);	
- Rootfs	(file	system	of	the	root).	

Layer	1:	rootfs	
10Rootfs	 is	 connected	 to	 the	 physical	 host	 hardware,	 and	
comprises	of	the	host	OS’	kernel	(Windows	or	Linux).	The	kernel	
mounts	 the	 filesystem	 of	 the	 host	 OS	 (read-only),	 and	
subsequently	adds	another	filesystem	on	top	of	it	(writeable).	

Above	the	kernel,	three	concepts	are	displayed	that	provide	different	functionality.	Layer	FS	is	a	filesystem	layer	
where	the	above	components	(images	and	writeable	containers)	can	derive	data.	For	each	new	image	in	layer	
2,	an	individual	FS	layer	is	launched.	
Besides	that,	different	OS	distributions	(e.g.	Linux)	provide	kernel	mechanisms	such	as	namespaces	and	cgroups	
to	isolate	processes	on	a	shared	OS	(Pahl,	2015).		
Namespaces	isolate	the	set	of	filesystem	mount	points	seen	by	the	group	of	processes	(Amaral	et	al.,	2015).	In	
other	words,	this	concept	prevents	groups	of	processes	from	resources	in	other	groups.	Container	technologies	
use	different	namespaces	for	all	kinds	of	goals,	such	as	process	isolation,	network	interfaces,	access	to	inter-
process	communication,	and	for	isolating	kernel	and	version	identifiers	(Pahl,	2015).		
Cgroups	(control	groups)	organize	the	processes	in	a	hierarchy	tree.	Additionally,	cgroups	manage,	limit,	and	
account	the	resource	access	of	containers/process	groups	by	setting	up	resources	limits	and	constraints,	and	
by	allowing	containers	to	share	hardware	resources	(Amaral	et	al.,	2015;	Pahl,	2015).	

Layer	2:	Images	
The	second	layer	comprises	of	two	types	of	images.	An	image	is	a	serialized	copy	of	a	software	type	(system,	
process,	database	etc.)	stored	in	one	file.	The	Base	image	is	a	copy	of	an	OS	that	is	going	to	be	used	for	the	

10	Description	of	the	container	architecture	is	bottom-up.	

Figure 29: Linux container architecture – Pahl
(2015) (modified)	

54 | P a g e

container.	The	other	images	are	additional	services	that	can	be	executed	in	the	container.	For	example,	besides	
Linux	OS,	Apache	service	is	also	launched	in	order	to	run	an	application	that	requires	local	Apache	support.	

Layer	3:	Writeable	container	
The	top	layer	is	the	container	itself,	which	is	the	only	layer	that	is	writeable.	This	means	that	the	container	can	
have	a	state	and	is	executable.	The	container	can	be	seen	as	a	directory	that	contains	everything	needed	for	
execution	(Pahl,	2015).	Besides	that,	containers	can	be	processed	into	stateless	images	(see	next	paragraph)	
and	reused	in	more	complex	builds	(i.e.	clustering	groups	of	containers).	Section	2.7.4	Container	orchestration	
elaborates	on	this	complexity.	

3.7.2.2. Container	advantages	
Containers	have	multiple	pros	 in	 comparison	 to	 conventional	VMs.	Table	10	provides	an	overview	of	 these	
advantages.	 However,	 the	 main	 advantages	 of	 containers	 are	 lightweight,	 enabling	 flexibility,	 and	 being	
launched	faster	than	conventional	VMs	and	at	the	cost	of	fewer	resources.	

Table	10:	Container	advantages	
Concepts	 Description	 Source(s)	

Hardware	
costs/	server	
utilization	

Container-based	virtualization	further	enables	allocation	of	multiple	applications	to	
the	 same	 hardware,	 improving	 hardware	 utilization	 and	 resulting	 in	 decreases	
hardware	costs.	

Firesmith,	2017;	
Flow.ci,	2016;	
Showell,	2015.	

Scalability	 A	single	container	engine	and	host	OS	can	manage	 large	numbers	of	containers,	
and	rapidly	scale	both	up	and	down	when	required.	

Firesmith,	2017.	

Spatial	
isolation	

Containers	support	 lightweight	spatial	 isolation	by	providing	each	container	with	
its	own	computing	resources	and	container-specific	namespaces.	

Firesmith,	2017.	

Storage	 Containers	are	lightweight	in	their	storage	size	when	compared	to	VMs.	One	of	the	
reasons	 is	 the	 unrequired	Guest	OS.	 Additionally,	 applications	within	 containers	
share	the	same	binaries	and	libraries.	

Firesmith,	2017;	
Flow.ci,	2016;	
Showell,	2015.	

Performance	
and	speed	

In	 comparison	 to	 VMs,	 containers	 increase	 performance	 (also	 denoted	 as	
throughput)	 since	 containers	 do	 not	 emulate	 the	 underlying	 hardware	 by	 using	
hypervisors,	but	operate	directly	on	the	hardware	through	the	container	engine.	
Due	to	this,	containers	have	a	greater	contribute	to	enabling	real-time	applications.	

Firesmith,	2017;	
Flow.ci,	2016;	
Showell	(2015).	

Continuous	
integration	

Containers	support	agile	and	continuous	development	processes	by	enabling	the	
integration	of	 increments	of	container-hosted	 functionality.	The	aforementioned	
main	advantages	also	enable	this.	

Firesmith,	2017;	
Flow.ci,	2016;	
Showell,	2015.	

Portability	 Portability	 from	 development	 to	 production	 environments	 are	 supported	 by	
containers.	Especially	cloud-based	applications	have	benefits	by	using	containers.	

Firesmith,	2017.	

Security	and	
new	versions	

Modular	 architecture	 provided	 by	 containers	 increases	 the	 complexity	 and	
difficulty	 of	 attacks.	 When	 one	 container	 is	 infected,	 attacked,	 or	 hacked,	 the	
impact	is	mostly	limited	to	the	impacted	container	due	to	isolation.	That	container	
can	be	destroyed	and	replaced	with	a	new	container,	which	is	 loaded	on	a	clean	
and	known	image.	This	enables	rapid	system	restore	or	software	reload	following	a	
cybersecurity	compromise.	In	addition,	security	software	and	rules	implemented	at	
the	container	engine	can	apply	to	all	of	its	containers.	

Firesmith,	2017.	

3.7.2.3. Container	disadvantages	
However,	containers	also	consist	of	several	disadvantages	when	compared	to	conventional	VMs.	The	following	
Table	11	denotes	the	disadvantages	as	perceived	by	the	field	of	practitioners.	It	must	be	denoted	that	according	
to	the	expert	 interviews,	the	biggest	disadvantages	of	containers	 is	for	organizations	the	 lack	of	knowledge.	
Besides	that,	concepts	of	table	11	are	perceived	as	disadvantages,	but	do	not	have	major	impact	when	applied	
in	practice.	

	

55 | P a g e

Table	11:	Container	disadvantages	
Concepts	 Description	 Source(s)	

Shared	
resources/	
reduced	
isolation	

Applications	within	containers	share	many	resources,	including	container-specific	
resources	(container	engine,	host	OS,	kernel,	binaries	and	libraries,	networks	and	
host	hardware).	This	sharing	of	resources	can	result	in	a	single	point	of	failure,	and	
software	running	in	container	A	can	impact	software	running	on	container	B.	

Bigelow	(n.d.);	
Firesmith,	2017.	

Interference	
analysis	/	
networking	

Shared	resources	imply	interference.	Due	to	multiple	containers	and	applications,	
the	difficulty	of	interference	analysis	is	increased	and	more	complex.	Interference	
paths	are	getting	more	complex,	as	many	components	are	a	shared	resource.	

Firesmith,	2017.	

Security	 Containers	are	not	immediately	secure.	In	order	to	make	them	secure,	it	must	be	
ensured	that:	1)	zero	data	is	stored	inside	containers,	2)	container	processes	are	
forced	 to	 write	 to	 container-specific	 file	 systems	 (designated	 storage),	 3)	
container’s	network	(namespace)	is	connected	to	a	specific,	private	intranet,	and	
4)	the	privileges	of	container	services	are	minimized	(e.g.	non-root	access).	

Firesmith,	2017;	
Flow.ci	(medium.com);	
Showell,	2015.	

Container	
sprawl	

Excessive	containerization	is	relatively	common	and	increases	the	amount	of	time	
and	effort	spent	on,	and	knowledge	and	skill	required	for	container	management.	

Bigelow	(n.d.);	
Firesmith,	2017;	
Showell,	2015.	

Less	OS	
flexibility	

Since	 containers	 share	 the	 same	OS	 as	 the	 host	OS,	 starting-up	 a	 new	 server	 is	
required	if	one	wants	to	use	another	OS	in	a	container.	Although	this	is	not	an	issue	
for	large	hosting	parties.	

Firesmith,	2017;	
Flow.ci	(medium.com);	
Showell,	2015.	

3.7.3. Containers	and	stateless	and	stateful	applications	
The	 concepts	 of	 stateful	 and	 stateless	 applications	 and	 servers	 have	 a	 roll	 in	 the	 execution	 of	 containers.	
According	 to	 Comer	 and	 Stevens	 (1993),	 a	 server	 that	maintains	 information	 (state	 information)	 about	 the	
status	 of	 ongoing	 interactions	 with	 clients	 is	 a	 stateful	 server.	 In	 contrast,	 servers	 that	 do	 not	 keep	 state	
information	are	stateless	servers.	Briefly	explaining,	a	stateless	server	always	accepts	the	same	set	of	requests	
from	clients	and	reacts	only	dependently	on	the	commands	given	(Perrochon,	1994).	A	stateful	server,	however,	
has	different	states.	This	means	that	this	server	can	accepts/denies	information,	based	on	its	state.	In	other	
words,	with	stateful	servers,	the	generated	output	is	dependent	of	the	input	and	the	current	state	of	the	server,	
whereas	in	stateless	servers,	the	output	is	solely	dependable	of	the	input.	

Containers	also	have	a	certain	 state,	as	 there	can	be	multiple	 instances	of	a	container	 (v1.0-v1.1-v1.2	etc.).	
Nonetheless,	most	of	the	times	containers	are	used	as	stateless	environments	where	applications	and	services	
are	 running.	 This	 means	 that	 there	 is	 no	 data	 stored	 in	 a	
container	across	the	service’s	operations.	Once	a	container	is	
destroyed,	 the	 data	 is	 vanished.	 Being	 stateless	 enables	
services	 and	 applications	 to	 retrieve	 an	 application’s	 state	
from	another	storage,	and	exploit	it	to	execute	according	to	a	
certain	 state	 behavior	 (as	 depicted	 in	 Figure	 30).	 This	
contributes	to	realizing	the	flexibility	and	scalability	benefits	
of	 containers.	 However,	 currently	 practitioners	 are	
experimenting	 with	 stateful	 containers,	 meaning	 that	 the	
data	 is	 persistent	 instead	 of	 vanishing.	 Examples	 are	
containerized	databases	and	servers	with	mailing	data	or	transactional	data.	

3.7.4. Container	orchestration	
Container	orchestration	is	the	deployment	and	management	of	multiple	(clusters	of)	containers.	According	to	
Pahl,	Brogi,	and	Soldani	(2017)	orchestration	is	defined	as	“constructing	and	continuously	managing	possibly	
distributed	 clusters	 of	 container-based	 software	 applications”.	 It	 allows	 users	 to	 define	 how	 to	 coordinate	
containers	 in	 the	 cloud	when	deploying	a	multi-container	application,	 and	 to	manage	multi-containers	as	a	
single	entity.	

Figure 30: Stateless containers deriving states	

56 | P a g e

Container	 orchestrators	 have	 been	 developed	 as	 these	 engines	 have	 functionality	 to	 manage	 issues	 that	
conventional	container	technologies	were	not	able	to	manage:		

1. Built-in	mechanism	to	restart	any	failed	containers;	
2. Tied	to	multiple	hosts,	which	is	easily	distributable	and	scalable	to	multiple	instances;	
3. Simple	and	summarized	information	of	the	script,	instead	of	extensive	lines	of	code	(Hohn,	2017).	

Additionally,	containers	can	have	multiple	instances	that	emerge	and	disappear.	Hence,	orchestrators	must	be	
able	 to	 handle	 this	 by	 automatically	 giving	 a	 unique	 name	 to	 each	 container	 instance.	 Besides	 that,	
orchestration	 tools	 need	 to	 interact	 with	 stacks	 of	 an	 IT	 infrastructure	 from	 cloud	 services	 to	 data	 center	
resources.	Therefore,	orchestrators	need	scalable	infrastructures	that	allow	dynamic	allocation	of	resources	to	
enable	deployment	of	applications	(Tosatto,	Ruiu	&	Attanasio,	2015).	

3.7.4.1. Container	orchestration	architecture	
Containers	 are	 grouped	 into	 host	 nodes.	 Such	 host	 nodes	 are	 virtual	 servers	 on	 hypervisors	 or	 bare-metal	
servers.	Each	host	holds	several	containers	with	applications	and	services	(Pahl	&	Lee,	2015).	From	a	higher	
level,	a	container-based	architecture	consist	of	multiple	hosts,	which	are	grouped	into	clusters.	The	containers	
in	a	cluster	hold	different	services	or	applications,	which	can	be	interrelated	to	each	other,	or	individual.	Next	
Figure	31	depicts	an	example	of	a	container-based	cluster	architecture.	Kubernetes	is	also	added	to	this	model,	
as	 it	 is	 the	 most	 used	 orchestration	 tool	 in	 the	 field	 of	 practice.	 In	 addition,	 the	 external	 operational	
environment	is	also	given	to	complement	the	interaction	of	the	overall	architecture.	

	
Figure 31: Container-based cluster architecture - based on Pahl and Lee (2015) (extended)

In	the	container-based	cluster	architecture	of	Figure	31,	different	lines	of	connectivity	(blue)	are	shown.	The	
first	(1)	denotes	the	connectivity	between	two	or	more	containers.	This	means	that	these	containers	share	the	
same	kernel	or	have	the	same	image.	Next	line	(2)	depicts	the	connectivity	between	different	host	nodes.	For	
instance,	services	originating	from	Host	A	are	used	in	Host	B.	The	third	line	(3),	shows	the	connectivity	between	
a	host	node	and	its	containers	to	a	database.	This	database	consists	of	stateful	data,	which	is	derived	and	used	
in	 the	 containers’	 services.	 The	 connectivity	 between	 the	 cluster	 and	node	 (4)	 shows	 the	 required	 relation	
between	 clusters	 that	 enable	 scalability.	 Finally,	 the	 fifth	 line	 (5)	 denotes	 the	 connectivity	 between	 an	

57 | P a g e

organization’s	infrastructure	and	external	entities	(third	party	infrastructure,	e.g.	cloud	vendors	and	clients).	In	
addition,	an	example	of	containers	that	enable	a	specific	application	is	depicted	in	purple.	The	dark	grey	areas	
depict	namespaces,	which	are	networks	of	virtual	group(s)	of	containers,	or	nodes/pods.	Finally,	Kubernetes	
handles	an	additional	upper	layer	called	Cluster	(light-orange),	which	groups	multiple	nodes.	This	is	because	of	
the	detailed	architecture	of	Kubernetes.	Further	elaboration	on	this	detailed	architecture	is	not	provided,	as	it	
is	not	in	scope	of	this	project.		

This	architectural	scenario	is	an	abstraction	layer	for	cluster-based	service	management	(Pahl	&	Lee,	2015),	and	
is	 hence	 generally	 used	 as	 architecture	 within	 orchestration	 of	 containers.	 Such	 cluster	 management	
architecture	 enables	 the	 deployment	 of	 distributed	 applications	 through	 containers.	 Orchestration	 tools	
manage	these	kinds	of	architecture,	and	use	their	specific	jargon.	

								Table	12:	Cluster	management	architecture	components	(Pahl,	2017)	(modified)	
Concepts	 Description	

Service	node	(cluster)	 Realizes	the	services	and	applications	of	containers.	Contains	of	high	internal	complexity,	
but	low	external	complexity,	meaning	that	these	clusters	are	easily	to	manage	by	tools.	

API	 Allows	operating	clusters	from	the	creation	of	services	and	containers	sets	to	other	 life-
cycle	functions.	

Platform	service	manager	 Handles	the	software	packaging	and	management.	
Lifecycle	management	agent	 Manages	container	lifecycles	at	each	host.	
Cluster	head	node	service	 The	master	that	receives	commands	from	the	outside	and	relays	them	to	container	hosts.	

These	 components	 enable	 the	 aforementioned	 benefits	 of	 container-based	 architectures.	 Especially	 cloud	
technologies	 benefit	 of	 these	 scaling,	 availability	 and	 networking	 resources	 managing.	 Moreover,	 next	 to	
virtualization	being	the	core	component	of	cloud	computing,	Bernstein	(2014)	adds	containers	as	the	other	core	
element	of	cloud	computing	nowadays.	In	2014,	several	public	cloud	platforms	were	already	using	containers	
instead	of	VMs.	Examples	are	Google,	IBM/Softlayer,	and	Joyent	(Bernstein,	2014).	 	

58 | P a g e

3.8. Differences	between	VMs	and	containers	
As	we	described	VMs	and	containers	in	the	prior	sections,	this	section	elaborates	on	the	differences	between	
both	concepts.	First	sub-section	provides	an	explanation	about	the	high-level	differences	between	VMs	and	
containers.	 The	 follow-up	 sub-sections	 focus	 on	more	 detailed	 container	 advantages	 and	 disadvantages	 in	
comparison	to	VMs.	With	these	sub-sections,	we	aim	to	prove	based	on	scientific	sources	that	containers	are	
the	preferred	virtualization	technology	to	apply	in	the	application	and	infrastructure	landscapes	of	nowadays.	

3.8.1. High-level	differences	
“Although	VMs	and	containers	are	both	virtualization	techniques,	they	solve	different	problems”	(Pahl,	2015).	
Containers	share	the	same	OS	kernel	as	their	host,	which	realizes	an	increase	in	the	efficiency	when	compared	
to	VMs.	This	is	because	VMs	require	for	each	VM	a	full,	individual	OS	(the	Guest	OS)	and	additional	binaries	and	
libraries	to	be	able	to	launch	an	application.	These	full	OS	packages	create	a	space	concern	regarding	computing	
power	resources	and	disk	storage,	and	may	lead	to	several	minutes	of	starting-up	a	VM	(Pahl,	2015).	This	is	the	
reason	that	containers	are	perceived	as	lightweight,	enable	rapid	scalability,	and	reduce	overhead	costs.	Figure	
32	depicts	the	difference	between	both	virtualization	concepts	through	a	high-level	architectural	view.	

	
Figure 32: VMs vs Containers

The	figure	shows	the	aforementioned	characteristics	of	both	virtualization	technologies.	The	main	difference	is	
that	a	VM	emulates	hardware,	while	a	container	emulates	an	OS	(Firesmith,	2017).	Moreover,	containers	use	a	
small	part	of	the	Host	OS	to	provide	its	applications	and	services.	Besides	that,	containers	already	contain	the	
components	 required	 to	 run	 the	 desired	 software,	 such	 as	 files,	 environment	 variables,	 dependencies,	 and	
libraries	(Kaur,	2018).		

Regarding	infrastructure,	when	a	VM	is	launched,	the	assigned	hardware	is	emulated	to	the	machine.	In	this	
way,	 the	 VM	 is	 restricted	 to	 solely	 use	 the	 available	 computing	 resources.	 Containers,	 however,	 follow	 a	
different	method	to	divide	infrastructure	among	them.	This	management	of	a	container	is	performed	by	the	
Host	OS	(section	3.7.2).	Finally,	containers	have	increased	performance	in	comparison	to	VMs,	since	containers	
reach	near	native	speed	in	processing,	memory,	and	network	throughput	while	using	its	computing	resources	
(Higgins,	Holmes	&	Venters,	2015).	

3.8.2. Container	advantages	
Both	scientist	and	practitioners	know	the	advantages	of	containers	 in	comparison	 to	VMs.	Due	 to	 the	wide	
usage	of	virtualization	by	organizations,	 (IT)	 scientists	started	 to	compare	performance	of	virtualization	and	
containerization	 (i.e.	 VMs	 versus	 containers).	 For	 instance,	 Dua,	 Raja,	 and	 Kakadia	 (2014)	 measured	 the	

59 | P a g e

performance	 of	 VMs	 and	 containers	 for	 the	 support	 of	 PaaS.	 The	 authors	 stated	 that	 containers	 have	 an	
“inherent	advantage”	over	VMs	due	to	increased	performance	and	reduced	startup	time.	Besides	that,	the	same	
is	concluded	in	a	study	by	Seo,	Hwang,	and	Moon	et	al.	(2014),	whom	tested	performance	of	both	containers	
and	 VMs	 in	 building	 cloud	 environments.	 Moreover,	 Sampathkumar	 (2013)	 argued	 that	 “Linux	 Containers	
provide	 a	 significant	 advantage	 by	 performing	 the	 common	 tasks	 of	 provisioning,	 booting,	 and	 rebooting	 a	
virtual	machine	several	times	faster	than”	VM-based	solutions,	emphasizing	the	same	statement.	Additionally,	
a	 study	executed	by	 IBM	tested	performance	of	 containers	 in	 the	context	of	 cloud	computing.	The	authors	
stated	that	containers	result	in	equal	or	better	performance	than	VMs	in	most	of	the	cases	(Felter	et	al.,	2014).	
Joy	(2015)	also	found	that	containers	require	“very	much	less”	time	to	scale	and	process	the	requested	service	
than	VMs	require,	implying	higher	performance.	

Sampathkumar	 (2013)	 mentioned	 in	 the	 same	 article	 that	 Linux	 Containers	 exhibit	 the	 least	 overhead	 in	
virtualizing	 CPU	 and	 disk	 access,	 denoting	 the	 near	 bare-metal	 performance	 advantage.	 The	 argument	
concerning	overhead	is	also	emphasized	by	Scheepers	(2014),	Joy	(2015),	Seo	et	al.	(2014),	Xavier	et	al.	(2012),	
and	Felter,	Ferreira,	Rajamony	et	al.	(2014).	

3.8.3. Container	disadvantages	
On	 the	 other	 hand,	 most	 studies	 also	 discussed	 several	 negative	 aspects	 of	 containers.	 Scheepers	 (2014)	
compared	containers	with	VMs	on	application	infrastructure.	This	author	denoted	that	realizing	the	advantages	
of	 containers	 is	 context-specific.	 The	 advantage	 of	 fewer	 overhead	 and	 near	 bare-metal	 performance	 of	
containers	come	at	the	cost	of	poor	isolation	of	computing	resources	in	comparison	to	VM	solutions	(Scheepers,	
2014).	The	aforementioned	publication	of	Dua	et	al.	(2014)	additionally	mentions	that	containers	have	a	“bright	
future”	when	there	is	more	standardization	and	abstraction	at	the	kernel	and	Host	OS.	With	this,	the	authors	
imply	the	same	statement	about	the	current	state	of	isolation	as	Scheepers	(2014).	Moreover,	Sampathkumar	
(2013)	also	embraces	this	statement	as	well	as	Xavier	et	al.	(2012)	and	Joy	(2015).	

Primarily,	we	hypothesize	that	this	is	due	to	the	fact	that	VMs	have	more	mature	characteristics	–	i.e.	further	
developed	features	that	improve	quality	of	functionality	–	than	containers	do.	Li	and	Kanso	(2015)	make	the	
same	kind	of	 statement.	 In	 their	paper,	 the	authors	argued	 that	 container-based	environments	are	missing	
mature	 features	 that	 conventional	 VMs	 do	 possess.	 Moreover,	 Xavier	 et	 al.	 (2012)	 also	 concluded	 that	
container-based	systems	are	not	mature	yet,	based	on	the	examination	of	isolation	results.	In	addition,	Felter	
et	 al.	 (2014)	 argues	 as	 well	 that	 containers	 are	 only	 recently	 adopted	 and	 standardized	 for	 the	 use	 of	
mainstream	OSs,	resulting	in	a	“renaissance”	in	the	use	of	containers.	In	other	words,	containerization	is	still	an	
immature	concept.	

3.8.4. Differences	and	similarities	rationalized	
However,	 most	 of	 those	 publications	 originate	 from	 the	 first	 half	 of	 current	 decade	 (2010-2015).	 As	
aforementioned	 in	 section	 1.1	 Problem	 statement,	 in	 2013	 Docker	 was	 launched	 what	 popularized	
containerization.	As	global	usage	of	containers	increased	during	those	years,	it	is	evident	that	containers	were	
in	development	by	both	vendors	as	(software)	researchers.	This	resulted	in	containers	becoming	(more)	mature,	
while	gaining	mature	features	over	the	years.	Examples	of	such	developments	are	the	introduction	of	easy	to	
configure	 container	 management	 tools	 (e.g.	 Kubernetes),	 Ceph	 and	 REX-Ray	 focusing	 on	 container-based	
storage,	and	tools	like	Jenkins	to	foster	SDLC	(container-based	application	development)	(Osnat,	2018).	

More	recently,	Tesfatsion,	Klein,	and	Tordsson	(2018)	published	an	article	where	they	compared	performance	
of	multiple	virtualization	technologies	(hypervisor-based	and	container-based)	in	clouds.	The	authors	concluded	
that	containers	have	a	higher	advantage	in	scenarios	where	multiple	instances	of	applications	or	services	are	to	
be	executed	without	strict	performance	requirements	(e.g.	cloud	providers).		

Based	on	all	of	the	aforementioned	sources	of	sub-section	in	section	3.8,	we	conclude	that	containers	prevail	
above	 VMs	 in	 terms	 of	 performance,	 resources	 usage,	 efficiency,	 and	 portability.	 Although,	 despite	 the	
development	of	containers	throughout	the	years,	containers	still	experience	disadvantages	when	compared	to	
VMs.	Main	example	is	reduced	isolation	capabilities	due	to	the	shared	kernel	concept.	

60 | P a g e

Several	authors	argue	that	security	of	containers	can	be	improved.	For	instance,	Tesfatsion	et	al.	(2018)	stated	
that	 it	 is	possible	 to	decrease	 the	 security	 (i.e.	 isolation)	 issues	of	 containers	by	extending	existing	 security	
policies.	The	authors	additionally	mention	unikernels,	which	should	offer	better	security	and	efficiency	than	
traditional	 OSs.	Moreover,	 Arnautov,	 Trach,	 and	 Gregor	 et	 al.	 (2016)	 claimed	 to	 have	 improved	 container	
security	 by	 using	 Intel	 Security	 SGX	 (Software	 Guard	 Extensions).	 Besides	 that,	 Bui	 (2014)	 concluded	 that	
security	 levels	of	containers	could	be	increased	by	applying	several	actions	or	additional	extensions.	Further	
elaboration	onto	this	topic	 is	out	of	scope	for	this	project,	as	security	 is	currently	not	a	crucial	topic	for	the	
development	of	the	CMM.	However,	as	containers	are	in	development	regarding	their	security,	we	think	it	is	
important	to	consider	these	developments	in	a	later	stage.	Hence,	we	mention	this	topic	in	Future	work.	

Concluding,	we	rationalize	that	receiving	benefits	of	containers	depends	on	the	use	case.	For	instance,	the	use	
case	of	rapid	deployment	(Sharma,	Chaufournier,	and	Shenoy	et	al.,	2016)	is	in	our	opinion	container-fit.	This	
means	that	containers	are	also	relevant	for	the	SDLC	process,	as	this	process	is	benefitted	by	rapid	deployments	
and	high	portability.	Moreover,	this	argument	is	emphasized	by	Sharma	et	al.	(2016),	as	the	authors	state	that	
containers	enable	improvements	in	SDLC.	
From	 a	 global	 perspective,	 containers	 beat	 VMs	 in	 overall	 performance.	 The	 important	 distinction	 of	 both	
virtualization	 technologies	 is	 the	 in-depth	architecture	and	the	resulting	difference	of	 functionality.	When	a	
virtual	 environment	 is	 handling	 sensitive	 information	 or	 should	 be	 able	 to	 hold	 data	 for	 a	 period	 of	 time	
(stateful),	a	VM	should	be	selected	due	to	its	isolation	benefits	and	persistence.	Lastly,	both	Tesfatsion	et	al.	
(2018)	and	Sharma	et	al.	 (2016)	mention	 the	potential	of	hybrid	 solutions.	 This	means	 combining	VMs	and	
containers	with	each	other	to	enable	the	architectural	advantages	of	both.	

Finally,	 in	 this	 section,	 we	 provided	 a	 theoretical	 explanation	 about	 containerization	 and	 virtualization.	
However,	we	wanted	to	denote	the	difference	between	both	concepts	with	functional	examples	from	practice.	
Therefore,	we	created	a	table	where	we	stated	main	EAG	attributes	of	Sherehiy	et	al.	(2007)	and	incorporated	
both	the	container	technology	and	VM	benefits.Through	this	table,	we	intended	to	denote	the	differences	in	
support	of	the	core	agility	attributes.	This	table	(table	2)	is	positioned	in	section	1.1.4	on	page	14.)	

	 	

61 | P a g e

3.9. Software	Development	Life	Cycle	
Software	Development	Lifecycle	 (SDLC)	 is	 the	complete	 lifecycle	of	a	 (piece	of)	software.	Software	can	be	a	
single	 service,	 an	 application,	 a	 complete	 system	 etc.	 A	 lifecycle	 covers	 all	 the	 stages	 of	 software	 from	 its	
inception	with	requirements	definition	through	to	the	release	and	maintenance	(Ruperalia,	2010).	According	to	
Ruperalia,	 SDLC	 is	 a	 conceptual	 framework	 or	 a	 (set	 of)	 process(es)	 that	 considers	 the	 structure	 of	 stages	
involved	in	the	development	of	an	application	from	its	initial	feasibility	study	through	to	its	deployment	in	the	
field	and	maintenance.	Different	SDLC	models	exist	where	two	main	groups	can	be	identified.	The	first	one	is	
Traditional	software	development	methods	(e.g.	Waterfall,	V-model),	and	Agile	software	development	methods	
(e.g.	Rapid	Application	Development	(RAD),	Extreme	Programming	(XP),	Scrum).	Inside	the	two	groups,	three	
types	of	models	 can	be	distinguished:	1)	 Traditional	 is	primarily	 characterized	as	 linear,	whereas	2)	Agile	 is	
characterized	 as	 iterative.	 The	 third	 type	 is	 a	 combination	 between	 both	 (Leau,	 Loo,	 Tham	 et	 al.,	 2012;	
Ruperalia,	2010).	

3.9.1. The	SDLC	phases	
In	general,	all	SDLC	models	follow	the	same	kind	of	process	steps.	This	includes	the	phases	as	shown	in	table	
13.	

Table	13:	SDLC	phases	and	descriptions	
#	 SDLC	phase	 Description	 Involved	components	

1	 Code	 All	tasks	involved	that	developers	perform	for	producing	lines	of	code.	 • Source	 code	 management	
system	(i.e.	Code	repository);	

• Base	images.	
2	 Build	 Build	is	the	phase	that	all	written	(parts	of)	code	are	formed	together	and	

are	being	built	into	an	executable	version.	Different	kind	of	pre-building	
checks	are	performed	to	determine	if	the	build	is	going	to	be	successful.	
Builds	can	be	in	different	granularity	levels:	code-level	and	functionality-
level	(set(s)	of	code).	

• Artefact	repository;	
• Build	servers;	
• Build	controls.	

3	 Deploy	 This	 phase	 deploys	 the	 build	 of	 a	 (piece	 of)	 software	 to	 a	 desired	
configuration-specific	(virtual)	environment.	In	such	an	environment,	the	
build	 (code)	will	 be	 tested.	 This	 phase	 is	 iterative	 nature	with	 the	 test	
phase.	

• Containers;	
• VMs;	
• Deploy	states	

4	 Test	 Different	types	of	tests	are	testing	all	deployed	builds.	If	a	test	fails,	the	
code	 has	 to	 be	 improved,	 rebuild,	 and	 redeployed	 in	 order	 to	 restart	
testing.	 These	 tests	 differ	 from	 basic,	 rather	 simple	 compile	 and	 unit	
testing,	to	more	complex	exploratory	and	performance	testing.	

• Containers;	
• VMs;	
• Test/acceptance	environment.	

5	 Release	 When	 all	 tests	 are	 successfully	 completed,	 the	 (new	 version	 of)	
application	is	released	into	production.	This	means	that	the	application	is	
running	and	end-users	are	using	it.	

• Containers;	
• VMs;	
• Release	controls.	

3.9.2. SDLC	and	virtualization	technologies	
VMs	 and	 containers	 can	 both	 be	 applied	 for	 equivalent	 tasks	 and	 goals	 in	 the	 SDLC	 process.	 Overall,	
virtualization	technologies	are	applicable	to	SDLC	in	two	different	levels:	

- Process	level:	throughout	the	phases	of	the	SDLC	process	during	its	execution;	
- App	&	Infra	level:	as	a	support	from	the	application	landscape	and	infrastructure	for	enabling	the	SDLC	

process	by	provisioning	the	required	applications,	services,	and	hardware	instances.		

Referring	to	the	SDLC	process	level,	virtualization’s	main	application	is	in	the	Deploy	and	Test	phase	(orange	
stars	in	Figure	33).	In	here,	virtualization	launches	virtual	environments	where	software	is	tested	in.	Regarding	
the	 support	 level,	 virtualization	 is	 used	 in	 both	 the	 application	 landscape	 and	 infrastructure	 domain.	 A	
visualization	about	both	levels	is	provided	in	the	figure	below.	

62 | P a g e

	
Figure 33: Container usage on process and architectural level

As	the	figure	depicts,	each	phase	uses	a	service	to	support	the	execution	of	the	process.	Figure	33	shows	a	
simplified	situation	(each	phase	uses	one	service),	but	in	practice	a	larger	amount	of	services	is	used	by	each	
phase	(see	section	3.8.2).	This	means	that	the	SDLC	process	–	interchangeably	denoted	as	‘software	delivery	
lifecycle’,	‘software	delivery	pipeline’	and	‘software	development	pipeline’	–	can	be	seen	as	a	cycle	that	uses	
and	delivers	software.	Based	on	our	research,	we	came	to	the	following	distinction	for	our	understanding:	

• Software	development	pipeline	refers	to	the	process	of	actual	development	of	(new	versions	of)	software.	

• Software	delivery	pipeline	refers	to	the	launching	of	new	instances	of	existing	software,	in	order	to	support	
or	provision	SDLC	in	both	contexts	(and	other	processes	in	an	organization).	

3.9.3. Tooling	and	applications	
As	aforementioned,	different	tools	and	applications	are	used	throughout	the	SDLC	process.	Tools	are	designed	
that	focus	on	one	or	more	SDLC	phases.	For	instance,	tools	exist	that	are	designed	specifically	to	enable	and	
support	CICD.	On	the	other	hand,	there	are	specialized	tools	that	focus	on	one	of	the	SDLC	phases	through	code	
reviewing,	 testing	 (e.g.	 unit-	 or	 API-testing),	 deploying	 containers	 and	 monitoring.	 Moreover,	 large	 IT	
organizations	such	as	Google	or	Amazon	offer	tools	that	contain	complete	delivery	pipelines.	

As	shown	in	Figure	33,	containers	are	applicable	at	different	locations	in	an	organization.	The	SDLC	pipeline	uses	
multiple	services	with	varying	demands	in	capacity.	Currently,	VMs	are	still	leading	in	usage,	whereas	containers	
are	 better	 suited	 for	 these	 kind	 of	 (non-persistence)	 tasks.	 This	means	 that	 on	 all	 locations	 VMs	 are	 used,	
containers	are	also	applicable.	 	

63 | P a g e

3.10. Maturity	(assessment)	models	
In	the	final	decades	of	last	century,	the	software	industry	had	a	need	for	solutions	regarding	software	quality	
issues.	One	of	the	answers	were	maturity	assessment	models.	The	concept	of	maturity	was	popularized	through	
the	 introduction	 of	 the	 Capability	 Maturity	 Model	 for	 software	 (CMM-SW),	 which	 was	 developed	 by	 the	
Software	 Engineering	 Institute	 (SEI)	 between	 1986	 and	 1993	 (Schlichter,	McEver	 &	 Hayes,	 2010).	Maturity	
models	were	developed	from	the	organizational	need	of	software	improvements,	which	led	to	the	domain	of	
Software	Process	Improvement	(SPI).	Results	are	subsequently	used	to	denote	areas	of	improvement.	Existing	
maturity	models	are	ISO	SPICE,	PRISMS,	OPM3,	N2C2M2,	P3M3,	and	the	more	recently	variant	of	CMM:	CMMI.	

Multiple	software	development	processes	exist	 in	organizations,	and	there	are	different	sequences	of	tasks,	
tools,	and	techniques	available	to	plan	and	implement	improvement	activities.	Due	to	this	wide	selection	of	
process	 improvement	 scenarios,	 Paulk	 et	 al.	 (1993)	 found	 that	 it	 is	 difficult	 to	 achieve	 consensus	 between	
management	and	the	professional	staff	on	what	improvements	activities	to	undertake	first.	The	authors	argue	
that	 organizations	 should	 follow	 a	 structured,	 evolutionary	 path	 that	 increases	 an	 organization’s	 software	
process	maturity	in	multiple	stages.	These	stages	are	the	so-called	maturity	levels.	

3.10.1. CMM(I)	
According	 to	Paulk	et	al.	 (1993),	a	maturity	 level	 is	 “a	well-defined	evolutionary	plateau	toward	achieving	a	
mature	software	process”.	Each	maturity	model	consists	of	multiple	maturity	 levels,	and	each	 level	denotes	
different	process	improvement	topics	for	that	specific	plateau.	Due	to	the	aforementioned	popularity	of	CMM,	
the	general	structure	of	CMM(I)11	is	also	widely	adopted	by	other	maturity	models.	Hence,	we	use	this	specific	
structure	to	further	elaborate	on	maturity	models.	Figure	34	depicts	the	structure	of	all	elements	of	CMMI.	

	
Figure 34: CMMI model structure

11	CMMI	is	the	successor	of	CMM.	The	major	difference	is	the	addition	of	‘Integration’,	meaning	that	the	software	process	is	further	integrated	throughout	
the	whole	organization.	This	can	also	be	noticed	in	the	process	areas.	Whereas	the	key	process	areas	of	CMM	are	primarily	focused	on	software,	the	
equivalent	process	areas	of	CMMI	have	a	more	organizational	focus.	This	enterprise-widening	focus	of	the	model	aligns	with	EAG.	

64 | P a g e

In	the	CMMI	model,	each	maturity	level	consists	of	a	set	of	process	goals	that	stabilize	an	important	component	
of	the	software	process.	Achieving	each	level	of	the	maturity	framework	establishes	a	different	component	in	
the	software	process,	resulting	in	an	increase	in	the	process	capability	of	the	organization	(Paulk	et	al.,	1993).	
The	CMMI	structure	exists	of	the	following	levels:	

1. Initial:	Software	process	is	characterized	as	ad	hoc,	and	sometimes	acts	as	a	black	box.	Few	processes	
are	defined,	and	success	depends	on	individual	effort.	

2. Managed:	 Basis	 project	 management	 processes	 are	 established	 to	 track	 cost,	 schedule,	 and	
functionality.	Projects	ensure	that	requirements	are	managed,	and	processes	are	planned,	performed,	
measured,	and	controlled.	

3. Defined:	Software	processes	for	both	management	and	engineering	activities	are	formally	documented	
and	understood,	and	described	in	standards,	procedures,	tools,	and	methods	for	the	organization.	

4. Quantitatively	Managed:	quantitative	objectives	for	quality	and	process	performance	are	established	
and	used	as	criteria	in	managing	processes.	These	objectives	are	based	on	needs	of	customer,	end	users,	
organization,	and	process	implementers.	

5. Optimizing:	 focused	 on	 continually	 improving	 process	 performance	 through	 both	 incremental	 and	
innovative	technological	improvements.	

The	levels	show	a	growth	process,	starting	with	a	set	of	black	box	software	development	processes	(level	1),	to	
structured	and	formally	documented	software	development	processes	while	continuously	improving	(level	5).	

3.10.2. OPM3	
Besides	CMMI,	another	maturity	model	named	OPM3	(Organization	Project	Management),	handles	a	different	
hierarchy	of	applying	maturity	in	organizations.	At	first,	a	set	of	processes	have	to	be	improved	for	Projects.	
Subsequently,	these	process	improvements	should	be	applied	to	Programs,	followed	by	Portfolios.	This	shows	
that	an	organization	can	also	mature	by	incrementally	improving	from	the	lower	domains	to	higher	domains	
(hierarchy	levels).	This	scenario	is	depicted	in	Figure	35.	

	
Figure 35: maturity applied at different project management domains

However,	these	hierarchy	levels	are	goals	to	increase	maturity	according	to	OPM3.	The	cycle	of	how	maturity	
is	gained	 is	divided	 in	four	 levels,	which	are	1)	Standardize,	2)	Measure,	3)	Control,	and	4)	 Improve	(Project	
Management	 Institute,	2008).	From	an	abstract	perspective,	 the	 same	growth	structure	as	 in	CMMI	can	be	
perceived.	At	first,	basic	management	processes	are	documented,	what	enables	standardization.	Subsequently,	
more	detailed	aspects	are	identified,	which	results	in	measurable	indicators.	After	that,	process	performance	
and	 product	 quality	 is	 monitored	 using	 these	 indicators.	 Finally,	 all	 collected	 information	 is	 used	 to	
(continuously)	improve	the	software	process.	

65 | P a g e

When	comparing	other	maturity	models,	we	notice	the	same	structure	as	defined	in	CMMI.	This	shows	that	a	
recurring	pattern	can	be	distinguished	from	all	these	models.	This	pattern	will	be	used	during	the	design	of	the	
proposed	container	maturity	assessment.	

3.10.3. Dreyfus	Model	
The	five-stage	model	of	adult	skill	acquisition	of	Dreyfus	and	Dreyfus	(1980)	(A.K.A.	Dreyfus	model),	and	is	a	
model	that	describes	the	learning	process	of	an	individual	that	wants	to	learn	a	new	skill.	Different	versions	of	
the	model	exist,	which	use	different	names	for	denoting	maturity	 levels.	We	use	the	version	of	2004,	as	we	
think	these	names	correspond	more	with	our	definition	of	the	maturity	levels.	Four	mental	functions	are	used	
in	 the	model:	 Recollection,	 Recognition,	 Decision,	 and	 Awareness.	 Each	 function	 is	 defined	 according	 to	 a	
certain	behavior	at	each	maturity	level.	The	maturity	levels	are	the	following	(derived	from	revision	of	Dreyfus,	
2004):	

- Novice:	 context-free	 features	 that	 beginners	 may	 recognize	 without	 possessing	 the	 desired	 skill.	
Beginners	are	provided	with	basic	rules	about	the	skill.	

- Advanced	 Beginner:	 novice	 begins	 to	 start	 understanding	 the	 skill	 of	 relevant	 context,	 as	 novice	
experienced	 real	 situations.	 Additionally,	 more	 advanced	 rules	 and	 aspects	 of	 skill	 are	 becoming	
recognized.	

- Competence:	the	learner	is	recognizing	more	procedures,	relevant	elements,	and	rules.	Performance	is	
starting	to	decrease,	as	the	all	 information	can	be	overwhelming	what	makes	 it	difficult	to	correctly	
prioritize.	

- Proficiency:	at	this	stage,	the	learner’s	“theory	of	the	skill,	as	represented	by	rules	and	principles,	will	
gradually	be	replaced	by	situational	discriminations”	(Dreyfus,	2004).	Goals	and	important	aspects	are	
recognized,	however	required	actions	to	achieve	these	are	not	due	to	a	lack	of	experience.	

- Expertise:	the	performer	sees	the	goals	and	now	additionally	knows	how	to	achieve	these	goals.	Also,	
the	ability	to	make	subtler	and	refined	distinctions	between	goals	and	tasks.	

Equivalent	to	CMMI,	the	Dreyfus	model	shows	a	path	of	growth	in	its	maturity	model.	However,	there	is	an	
important	difference	between	the	models	that	implies	a	certain	expectation,	which	may	lead	to	confusion.		

Dreyfus	denotes	names	for	the	human	learners	of	a	skill	and	describes	expected,	general	behavior	per	maturity	
level	 as	 levels	 of	 skill.	 Rather	 than	 the	 CMMI	model,	 where	 the	maturity	 level	 names	 lean	more	 towards	
functional	requisites.	For	example,	Level	2	Managed	implies	that	a	process	is	managed	to	a	certain	extent,	and	
level	4	Quantitatively	Managed	even	 involves	quantification	of	the	process	to	be	able	to	start	measuring	 its	
performance.	This	corresponds	with	 the	highest	maturity	 level	–	Optimized	–	 that	 focusses	on	continuously	
optimizing.	
This	implied	functionality	with	the	focused	on	processes,	restricts	adopters	of	this	model	structure	to	a	direction	
of	maturity,	instead	of	describing	behavior	without	limiting	model	adopters.	

3.10.4. Software	process	maturity	
As	we	focus	on	maturity	of	the	SDLC	process	of	organizations,	software	process	maturity	is	briefly	investigated.	
According	to	Paulk,	Weber,	Garcia	et	al.	(1993),	a	software	process	is	defined	as	a	set	of	activities,	methods,	
practices,	 and	 transformations	 that	people	use	 to	develop	and	maintain	 software	and	associated	products.	
Examples	of	such	products	are	project	plans,	design	documents,	and	code.	The	same	authors	define	Software	
process	maturity	as	the	following:	

Software	process	maturity	is	the	extent	to	which	a	specific	process	is	explicitly	defined,	managed,	measured,	
controlled,	and	effective.	

Citation/definition	10:	Software	process	maturity	(Paulk	et	al.,	1993)	

66 | P a g e

One	can	distillate	from	this	definition	that	 increased	maturity	equals	higher	formality	 in	documentation	and	
operations.	 Therefore,	 maturity	 denotes	 the	 current	 growth	 in	 organizational	 capability	 and	 indicates	 the	
richness	of	an	organization’s	software	process,	and	the	consistency	with	which	the	process	is	applied	in	projects	
(Paulk	et	al.,	1993).	

In	addition	 to	 the	CMMI	characteristics,	an	 immature	software	organization	 is	 characterized	as	 reactionary,	
managers	 focusing	 on	 solving	 immediate	 crises,	 schedules	 and	 budgets	 not	 being	 accomplished,	 and	
compromised	 product	 functionality	 and	 quality	 in	 order	 to	meet	 deadlines.	 In	 contrast,	 a	mature	 software	
organization	 possesses	 an	 organization-wide	 ability	 for	 managing	 software	 development	 and	maintenance	
processes	 (Paulk	et	 al.,	 1993).	 Such	organization	 can	be	distinguished	by	accurate	 communication	between	
management	and	employees,	planned	and	structured	processes	where	all	employees	know	their	role,	budgets	
and	 deadlines	 being	 met,	 calculated	 risk	 analysis,	 managers	 monitoring	 product	 quality	 and	 customer	
satisfaction,	and	decreased	variability	in	predicted	results.	Based	on	this	description,	we	notice	that	people	are	
an	 important	 aspect	 to	 realize	 high	 software	 process	 maturity.	 However,	 unsuitable	 technology	 will	 only	
decrease	the	performance	of	those	high	performing	teams.	The	organization’s	technology	should	rather	be	able	
to	 support	 these	 teams	 in	 their	 operations.	 Therefore,	 technology	must	 be	 considered	 as	well,	 in	 order	 to	
achieve	software	process	maturity	as	an	organization.	

As	 an	 organization	 gains	 in	 software	 process	maturity,	 it	 institutionalizes	 its	 software	 process	 via	 policies,	
standards,	 and	organizational	 structures	 (the	 increasing	of	 formality).	 Institutionalization	entails	building	an	
infrastructure	and	a	corporate	culture	that	supports	the	methods,	practices,	and	procedures	of	the	business,	
so	that	they	endure	after	those	who	originally	defined	them	have	gone	(Paulk	et	al.,	1993).	

Higher	software	process	maturity	is	achieved	by	following	the	defined	paths	of	maturity	models.	Depending	on	
the	context	and	goal	of	an	organization,	different	maturity	models	are	relevant	to	apply.	As	organizations	have	
the	need	for	tangible	knowledge	on	applying	containers	in	their	software	delivery	processes,	the	concept	of	an	
evolutionary	path	with	different	plateaus	can	be	used.	Such	a	concept	results	in	a	maturity	model	for	software	
development	processes,	with	 the	 focus	on	gaining	maturity	by	applying	containers.	 In	 the	prior	 section,	we	
described	SDLC.	The	results	of	that	section	are	used	to	state	maturity	levels	by	the	means	of	the	CMMI	structure.	
Additionally,	we	will	determine	on	what	position	and	to	what	extent	containers	should	be	used	to	gain	maturity.	
Section	7	Design	plan	elaborates	on	how	we	are	planning	to	realize	such	a	maturity	model.	

 	

67 | P a g e

3.11. Microservices	architecture	
Microservices	architectural	pattern	is	an	approach	for	developing	and	managing	a	single	application	as	a	suite	
of	 small	 services,	 each	 running	 its	 own	 process	 and	 communicating	with	 lightweight	mechanisms	 (Lewis	&	
Fowler,	2014).	 In	practice,	these	 lightweight	mechanisms	are	APIs.	The	authors	explain	that	the	services	are	
built	 around	 an	 organization’s	 business	 capabilities,	 and	 are	 independently	 deployable	 by	 automated	
infrastructure.	The	microservices	architecture	(MSA)	emerged	from	the	need	to	update	and	run	applications	
faster	and	more	frequently	than	originally	possible	in	conventional	(application)	architectures	–	in	other	words	
‘monoliths’.		

3.11.1. Microservices	architecture	vs	Monolith	architecture	
Applications	in	conventional,	monolith	architectures	consisted	of	services	that	behave	like	libraries.	This	means	
that	services	are	 linked	together	 into	a	program	(process)	and	are	called	using	 in-memory	calls	 (i.e.	a	single	
process	application).	Therefore,	different	services	in	monolith	applications	are	all	continuously	linked	to	each	
other.	As	a	result,	when	an	organization	updates	one	of	the	services’	code,	the	complete	application	has	to	be	
rebuilt	and	deployed	again.	The	same	applies	for	scaling	of	monolith	applications	in	the	application	landscape.	
For	example,	Application	A	(App1)	exists	of	Service	1	(S1),	2	(S2)	and	3	(S3).	Because	of	a	public	event,	user	
demands	of	S2	majorly	increase.	In	the	monolith	way	of	working,	the	whole	application	needs	to	be	replicated	
multiple	times	to	meet	required	capacity.	Despite	the	fact	that	solely	S2	is	requested	a	lot,	whether	S1	and	S3	
are	not.	

In	a	MSA,	services	behave	like	components.	This	means	that	services	are	decoupled	from	each	other,	and	are	
therefore	independently	deployable	and	scalable.	Hence,	the	above	scenario	of	App1	is	handled	differently.	As	
the	services	of	App1	are	decoupled	from	each	other,	their	synergy	of	independent	services	form	together	the	
application.	 In	 that	 case,	 updating	 S1	 only	 requires	 to	 rebuilt	 and	 deploy	 that	 specific	 service,	 rather	 than	
rebuilding	and	deploying	the	whole	application	again.	 In	regards	to	scalability,	only	the	highly	demanded	S2	
gets	more	instances	launched	to	increase	its	capacity.	This	is	performed	by	the	means	of	deploying	S2	instances	
in	clusters	of	containers	onto	one	or	more	servers.	Behavior	of	both	architectural	patterns	in	this	scenario	is	
visualized	in	Figure	36.	Characteristics	are	described	in	the	upper	part,	whereas	in	the	lower	part	an	example	is	
given	per	characteristic.	

	

	
Figure 36: Monolith architecture vs MSA

Due	to	the	decoupling	of	services,	MSA	brings	different	advantages.	Cohesion	means	that	a	service’s	elements	
belong	together.	In	other	words,	a	service	with	higher	cohesion	is	specialized	to	execute	one	or	several	tasks.	

68 | P a g e

Low	cohesion	means	that	a	single	service	contains	too	much	different	operations	to	execute,	making	the	service	
slower	and	more	prone	to	cause	failures.	

3.11.2. Decoupled	service	execution	
As	 aforementioned,	 services	 in	MSAs	 should	 behave	 as	 components.	 A	 component	 is	 defined	 as	 “a	unit	 of	
software	that	is	independently	replaceable	and	upgradeable”	(Lewis	&	Fowler,	2014).	Subsequently,	the	same	
authors	define	 services	as	 “out-of-process	 components	who	communicate	with	a	mechanism	such	as	a	web	
service	request,	or	remote	procedure	call	define	services”.	With	‘out-of-process’,	the	authors	mean	that	service	
dissociates	itself	from	the	monolithic	single	process	architecture	of	a	complete	application.	Subsequently,	with	
the	communication	‘with	a	mechanism’,	the	authors	refer	to	the	aforementioned	remote	APIs.	These	APIs	exist	
in	two	types:	1)	coarse-grained	and	2)	fine-grained,	both	having	individual	benefits	and	drawbacks	(as	denoted	
in	Figure	37).	

	
Figure 37: Coarse- & Fine-grained interfaces for service visualized

Figure	37	depicts	 the	extent	 a	 service	 can	be	 ‘micro’.	 Services	differ	 from	handling	 files	 containing	 rows	of	
values,	to	handling	single	values.	The	execution	of	a	service	is	visualized	in	Figure	38.	This	figure	shows	that	a	
service	Receives	 input,	modifies	the	 input	by	Executing	business	 logic	(providing	the	service),	and	Sends	the	
output	to	the	designated	receiver	(RES).	

	
Figure 38: Service execution - RES

Such	services	require	an	environment	to	be	released	in	to	run	in	production.	Moreover,	such	services	should	be	
stateless	(see	section	2.7.3)	in	order	to	provide	clean	performance	without	the	interference	of	other	software,	
and	to	be	able	to	scale-up/-down	based	to	meet	capacity	demands.	Besides	that,	the	services	in	a	MSA	should	
be	 able	 to	 be	 independently	 rebuild,	 deployed,	 tested,	 and	 released	 into	 production	 again.	 All	 these	
requirements	combined	show	that	containers	are	the	best	concept	to	apply	in	the	application	landscape	and	
infrastructure	that	enables	a	MSA	to	ultimately	provide	business	value	and	increasing	overall	time-to-market.	

3.11.3. The	synergy	of	MSA,	containers,	and	Infrastructure-as-code	
As	 systems	 are	 decoupled	 from	 physical	 hardware	 due	 to	 the	 introduction	 of	 cloud,	 nowadays,	 routine	
provisioning	 and	maintenance	 of	 infrastructure	 can	 be	 delegated	 to	 software	 systems	 (Morris,	 2016).	 The	
arising	developments	from	the	cloud	introduction	enabled	organizations	to	configure	infrastructure	more	easily	
by	using	code.	According	 to	Morries	 (2016),	 this	means	 that	modern	 tooling	can	 treat	 infrastructure	as	 it	 is	

69 | P a g e

software	and	data,	 instead	of	physical	hardware.	 In	other	words,	 the	 introduction	of	 Infrastructure-as-Code	
principle	 (IaC).	 Meandering	 with	 this	 principle	 is	 the	 concept	 of	 containers,	 as	 containers	 are	 configured,	
managed,	 launched	 and	 destroyed	 by	 code.	 Instead	 of	 configuring	 conventional	 infrastructure	 (e.g.	 VMs)	
through	 executing	 predefined	 tasks	 –	 both	 software-	 and	 hardware-based	 –,	 nowadays,	 simpler	 coding	 in	
infrastructure	scripts	and	configuration	files	is	becoming	the	standard.	

Due	 to	 IaC,	 infrastructure	 management	 is	 now	 programmatically.	 The	 combination	 of	 programmable	
infrastructure	and	programmable	virtual	environments	(containers),	whereas	the	latter	is	launched	in	seconds	
without	having	many	restrictions	in	systems,	platforms,	and	programming	languages,	fully	utilizes	the	benefits	
of	MSAs.	 Subsequently,	 such	 fully	 utilized	MSAs	enhances	 the	 continuous	 SDLC	process	of	 an	organization,	
parallel	 to	 additionally	 exploiting	 software	 development	 tools	 for	 deploying	 and	 managing	 infrastructure.	
Therefore,	 MSA	 and	 containers	 change	 the	 way	 of	 managing	 both	 an	 organization’s	 SDLC	 process,	 as	 its	
underlying	application	landscape	and	infrastructure.	

 	

70 | P a g e

3.12. Enterprise	architecture	and	Microservices	architecture	
Currently,	 enterprise	 architecture	 (EA)	 mainly	 focuses	 on	 conventional	 architecture	 styles	 regarding	
infrastructure	and	application	 landscape.	Respectively,	the	Application	and	Technology	 layer.	An	example	of	
such	an	older	architectural	style	is	the	Service	Oriented	Architecture	(SOA).	However,	the	EA	domain	is	not	fully	
focusing	on	the	newer	architectural	styles.	Slowly,	researcher	start	to	explore	the	IaC	and	MSA	principle	for	EA.	
As	infrastructure	(T)	is	now	programmable,	the	Technology	layer	is	now	manageable	through	software	tools.	
This	is	enabled	by	new	school	architecture	styles.	Especially	with	the	combination	of	the	cloud.	The	EA	domain	
should	incorporate	these	new	styles,	as	the	usage	of	the	infra-as-code	concept	is	ever	increasing.		

MSA	 is	 such	 a	 new	 school	 architectural	 style.	 Although,	 MSA	 originates	 as	 a	 software	 architecture	 style.	
Obviously,	on	the	first	 impression,	this	 is	not	the	same	as	EA.	However,	when	the	MSA	concept	is	scaled-up	
inside	 an	 organization’s	 EA,	 the	 MSA	 concept	 is	 also	 applicable	 to	 both	 the	 deployment	 and	 (routine)	
maintenance	of	infrastructure	and	applications.	Because	of	this	capability	to	treat	infrastructure	as	software,	
this	architectural	style	(pattern)	should	be	processed	into	the	EA	of	an	organization,	in	order	for	EA	to	advance	
as	discipline.	Especially	through	the	combination	of	MSA,	cloud,	containers,	and	Infra-as-code.	We	believe	this	
structure	will	be	adopted	by	most	(larger)	organizations	in	the	world,	as	cloud	has	become	a	standard	to	replace	
infrastructure,	 more	 applications	 are	 becoming	 cloud-based,	 and	 applications	 and	 services	 are	 getting	
decoupled	as	it	 increases	agility	of	an	organization.	Examples	of	organizations	exploiting	this	combination	of	
concepts	in	their	offered	services	are	Amazon	(AWS),	Google	(Kubernetes),	Microsoft	(Azure).	

	
Figure 39: Synergy between EA, MSA, Containers and Infra-as-Code

Hence,	as	the	managing	of	T	of	BAT	changes,	the	discipline	of	EA	is	changing.	Equivalent	developments	apply	to	
the	application	landscape	(A),	intensifying	the	change	to	the	EA	discipline.	Therefore,	we	state	that	applying	
microservices	into	an	organization	also	changes	the	way	an	organization’s	EA	is	managed	and	executed.	This	
should	be	considered	by	organizations	at	moment	applying	containerization	is	discussed.	

71 | P a g e

4. Expert	interviews	
Section	4	contains	two	sub-sections.	First,	a	brief	version	of	the	PI	expert	interview	protocol	is	given	in	section	
4.1.	Secondly,	results	of	the	expert	interviews	are	provided	in	section	4.2.		

4.1. Expert	interview	protocol	
The	form	of	the	used	interview	protocol	 is	a	semi-structured	interview	protocol.	For	this	section,	the	expert	
interview	protocol	 is	 abstracted	 into	 a	 high-over	protocol	 showing	 the	main	 topics	 that	 are	discussed.	 This	
protocol	is	given	in	sub-section	4.1.1,	where	the	main	topics	are	accompanied	with	brief	descriptions.	We	chose	
this	structure	to	maintain	clarity	in	the	main	document.	The	full	protocol	can	be	found	in	Appendix	V.		

4.1.1. General	interview	protocol	
Introduction	
Explaining	about	the	master	thesis	project,	and	the	goal	and	structure	of	this	interview.	

General	
Consists	 of	 questions	 regarding	 the	 profile	 of	 the	 interviewee.	 In	 addition,	 his	 perspective	 on	 the	 role	 of	
enterprise	agility	is	questioned,	as	to	answer	what	agile	aspects	are.	

Enterprise	agility	
Main	findings	of	literature	review	are	explained	in	this	part.	Interviewee	is	asked	if	he	recognizes	the	statement	
about	the	lack	of	an	explicit	link	between	EAG	and	technology	in	his	daily	operations.	If	interviewee	recognizes	
the	statement,	it	is	asked	what	his	solution	would	be	to	define	such	link.	If	interviewee	does	not	recognize	the	
statement,	it	is	asked	what	examples	are	of	link	between	EAG	and	technology	(e.g.	agile	technology	examples).	

Containerization	
Characteristics	and	challenges	of	containers	are	discussed,	and	why	this	technology	is	currently	popular.	It	is	
also	discussed	how	containers	can	support	EAG	in	their	opinion,	and	what	would	be	an	example	of	a	relationship	
between	containers	and	EAG.	Subsequently,	interviewee’s	answer	is	linked	to	question	about	his	perspective	
of	an	artefact	regarding	containers	supporting	organizations	in	order	to	enhance	enterprise	agility.	

Finalizing	
Finalizing	questions	are	discussed,	and	follow-up	actions	are	discussed.	

4.1.2. Expert	profiles	
Four	interviews	have	been	conducted	with	experts	from	the	field	of	practice.	Three	out	of	four	interviewees	are	
Senior	Managers	in	the	field	of	technology	(ten	plus	years	of	experience	in	technology).	The	other	interviewee	
is	active	in	the	same	field	and	has	the	level	of	Manager	(seven	plus	years	of	experience).	Based	on	their	level	of	
expertise,	the	interviewees’	opinion	are	perceived	as	valid	for	this	research.	 	

72 | P a g e

4.2. Expert	interview	results	
Figure	40	depicts	an	overview	of	the	summarized	results	of	all	four	interviews.	Results	for	each	interview	are	
denoted	per	row	regarding	the	main	discussed	topics.	Additionally,	containers	benefits	according	to	the	experts	
are	given.	The	numbers	in	each	benefit	show	which	interviewee	mentioned	what	benefit.	The	most	important	
findings	are	the	 fact	 that	all	 interviewees	mentioned	that	 the	 field	of	practice	 is	 in	need	of	an	artefact	 that	
provides	support	for	implementing	containers	in	the	software	delivery	process.	Reason	for	this	need	is	the	fact	
that	most	organizations	are	currently	experimenting	with	applying	containers	in	their	operations.	

The	expert	interview	results	are	presented	in	a	model.	Most	important	topics	are	denoted	in	this	model.	Full	
elaborations	of	all	interviews	can	be	found	in	Appendix	VI.	Additionally,	the	interviewees	were	asked	to	denote	
the	SDLC	phases	where	containers	could	be	applied.	These	results	are	drawn	on	a	paper	and	shown	in	Appendix	
VII.	

	
Figure 40: Overview of interview results

73 | P a g e

5. Conclusion	of	Problem	Investigation	
5.1. Findings	literature	review	
5.1.1. Main	concepts	
The	domain	of	agility	is	still	subject	to	change.	There	are,	however,	main	agility	attributes	and	most	important	
enterprise	components	defined	with	respect	to	EAG.	These	components	are	the	aforementioned	OPT	concepts.	
As	research	regarding	agility	is	dedicated	to	both	O	and	P,	we	found	no	research	dedicated	to	link	technology	
(T)	regarding	agility.	Only	the	importance	of	technology	is	indicated	by	several	researchers.	

Yusuf	et	al.	(1999)	states	that	in	reference	to	agility,	an	organization	should	be	aware	of	arising	technologies,	
pursue	leadership	in	technology	use,	and	obtain	skill	and	knowledge	regarding	technology.	Besides	that,	Tseng	
and	 Lin	 (2011)	 created	 a	 conceptual	 model	 around	 agility	 components.	 Here,	 the	 authors	 stated	 that	
technological	innovations	and	information	integration	are	main	agility	components.	Finally,	Pal	and	Pantaleo	
(2005)	 argue	 that	 infrastructure	must	 be	 adaptive.	 This	 shows	 that	 only	 the	 importance	 of	 being	 aware	 of	
upcoming	technologies	and	being	able	to	apply	these	are	described,	accompanied	with	one	characteristics	for	
infrastructure:	adaptivity.	We	did	not	 find	 further	explanations	around	which	 technologies	enable	agility	or	
contain	agile	aspects.	

Nowadays,	different	technologies	exist	that	contain	agile	aspects	or	that	can	support	the	agile	WoW	through	
their	 functionality.	Examples	are	Application	Programming	 Interfaces	 (APIs)	and	containers.	 In	 short,	an	API	
provides	 a	 set	 of	 code	 (protocols,	 tools)	 that	 enable	 simple	 interaction	 mechanisms	 between	 different	
applications.	Hence,	instead	of	developers	building	their	own	code	to	let	applications	communicate	with	each	
other,	developers	are	provided	with	an	API	where	they	can	conform	their	code	to.	This	enables	development	
to	deliver	software	faster.	Besides	that,	containers	also	enable	organizations	to	become	(more)	enterprise	agile.	
As	aforementioned,	containers	are	lightweight,	launched	in	seconds	instead	of	minutes	as	VMs	require,	use	less	
hardware	 resources,	 share	 architectural	 components	 while	maintaining	 spatial	 isolation,	 and	 support	 agile	
development	processes.	In	other	words,	containers	are	realizing	an	agile	virtual	runtime	environment.	

However,	we	found	that	APIs	and	containers	are	not	explicitly	linked	to	a	concept	around	‘technology	agility’	or	
‘agile	technology’	in	the	scientific	field.	Technology	keeps	being	a	(secondary)	mean	for	other	studies	to	improve	
the	topic	of	interest.	Studies	only	mention	the	importance	of	technology	for	organizations.	This	denotes	the	
current	 gap	 of	 knowledge	 regarding	 an	 explicit	 link	 between	 agility	 and	 concrete	 examples	 of	 technology.	
Therefore,	we	hypothesize	that	establishing	a	link	between	containers	and	technology	agility	would	add	the	‘T’	
of	OPT	which	completes	the	scientific	spectrum	of	agility.	This	scenario	 is	depicted	 in	Figure	41.	Section	5.3	
Proposal	in	a	nutshell	elaborates	on	such	link	in	through	the	proposed	artefact.	

	
Figure 41: OPT components complete

Moreover,	 new	 knowledge	 for	 Technology	 can	 subsequently	 be	 applied	 for	 the	 field	 of	 EAG.	 The	 current	
scientific	gap	around	technology	regarding	both	agility	and	EAG	is	in	that	case	partly	solved.	Considering	the	
situation	where	EAG	and	technology	 is	solved,	solely	then	an	organization	can	become	fully	enterprise	agile	
from	the	scientific	perspective.	

74 | P a g e

5.1.2. Additional	concepts	
SDLC	 comprises	 the	 complete	 lifecycle	 of	 a	 piece	 of	 software.	 During	 its	 development,	 virtualization	
technologies	can	be	applied	onto	two	levels:	1)	Process	level:	in	the	SDLC	process,	and	2)	App	&	Infra	level:	to	
provision	the	SDLC	process.	Besides	that,	we	found	two	types	of	activities	that	are	included	in	the	SDLC	phases,	
which	are	Development	and	Operation	activities.	Development	activities	consist	of	all	tasks	and	activities	that	
are	executed	during	the	development	of	software.	Operation	activities	comprise	all	tasks	that	are	related	to	the	
management	and	monitoring	of	running	applications	in	the	production	environment.	

We	examined	multiple	existing	maturity	models.	Most	characteristics	of	the	models	were	similar	to	each	other.	
Although,	 we	 also	 found	 several	 differences	 between	 the	 models.	 All	 models	 consisted	 of	 a	 structured,	
evolutionary	 path	 of	 growth	 that	 improves	maturity	 of	 a	 process	 on	 incremental	 base.	 Each	maturity	 level	
contained	a	set	of	process	goals,	or	synonyms	that	indicated	specific	objectives	per	maturity	level.	Achieving	a	
maturity	 level	results	 in	establishing	new	components	which	adds	process	capabilities,	or	 improving	process	
capabilities.	

The	overall	path	of	growth,	or	evolutionary	path	share	the	same	kind	of	start-	and	end	positions.	In	general,	
first	maturity	levels	indicate	basic	processes	or	functionalities,	and	no	specific-	or	low	component	performance.	
In	contrast,	higher	maturity	levels	indicate	structured	and	formalized	processes	or	operations,	that	additionally	
focus	on	continuously	improving.	Throughout	the	maturing	process,	all	examined	maturity	models	also	share	
an	equivalent	structure	when	abstracted.	Improvement	from	the	low	level	basic	configuration	aim	to	enable	
standardization.	Next	 steps	are	adding	more	details	 (improving	capability),	 to	create	measurable	 indicators,	
which	is	followed	by	monitoring	and	further	improving	the	process	or	operations	performance	and	quality.	

This	shows	that	most	of	the	maturity	models’	structure	share	high	resemblance,	whereas	the	largest	differences	
are	perceived	as	the	variables	put	into	the	structure.	We	also	found	that	most	maturity	models	indicate	higher	
formality	in	documentations	and	operations	in	high	maturity	levels.	In	addition,	we	conclude	that	achieving	a	
maturity	level	results	in	either	one	of	the	following	outcomes:	

- Functional	addition:	complete	new	component	is	added;	
- Quality	improvement:	existing	component	performance	is	improved.	

Therefore,	higher	maturity	denotes	the	richness	of	an	organization’s	process	or	operation.		

The	microservices	architectural	pattern	enables	to	manage	the	services	of	applications	as	individual	pieces	of	
software	 that	 can	 independently	 be	 deployed	 and	 scaled,	 as	 services	 behave	 like	 components	 and	 the	
communication	is	API-based.	This	aforementioned	API	technology	facilitates	communication	between	a	service	
and	the	other	elements	of	the	architecture.		

Based	on	the	literature	findings	regarding	functionality	and	characteristics	of	both	containers	and	MSA,	we	state	
that	containers	are	the	preferred	option	to	use	in	the	MSA	pattern.	This	increases	an	organization’s	speed	and	
agility	regarding	its	technology	landscape.	Besides	that,	another	concept	that	further	enables	this	speed	and	
agility	 increase,	 is	 the	 IaC	 principle.	 By	 this	 principle,	 infrastructure	 configuring	 is	 now	 programmatically,	
equivalent	to	the	configuring	of	containers.	Combining	this	principle	and	technology,	fully	utilizes	the	benefits	
of	MSAs.	Subsequently,	a	MSA	improves	an	organization’s	SDLC	on	both	Process	level	and	App	&	Infra	level.	

To	 implement	the	MSA	pattern,	organizations	have	to	consider	 their	EA.	However,	 the	EA	domain	does	not	
heavily	focus	on	the	technology	layer.	Moreover,	due	to	the	increasing	usage	of	different	cloud	solutions,	the	
way	of	handling	infrastructure	to	provision	an	organization	is	getting	more	fit	for	improvements.	Especially	with	
the	IaC	principle.		

Examining	these	development,	we	believe	that	considering	EA	is	crucial	to	start	with	making	an	organization	
container-ready.	The	next	step	is	to	focus	on	the	MSA	pattern,	while	incorporating	the	IaC	principle	to	both	suit	
the	integration	of	containers,	as	enable	an	architecture	that	fully	utilizes	the	advantages	of	containerization.	
Therefore,	traditional	organizations	who	want	to	(start)	apply(ing)	containers	should	investigate	the	latter	in	
their	own	operations	environment.	

75 | P a g e

5.1.3. Requirements	maturity	model	
Based	on	the	results	of	the	PI	phase	(including	the	expert	interview	results	in	next	sub-section),	we	created	a	
table	 with	 the	 most	 important	 characteristics	 of	 1)	 Maturity	 models,	 2)	 SDLC,	 and	 3)	 EAG.	We	 use	 these	
characteristics	as	a	start	for	the	design	iterations	in	the	TD	phase.	During	the	selection	of	the	characteristics	per	
concept,	we	considered	how	these	concepts	and	their	characteristics	relate	to	containerization.	
We	believe	that	 institutionalization	 is	an	 important	characteristic	for	maturity	models.	However,	we	did	not	
incorporate	this	characteristic	in	our	list	of	requirements	for	the	proposed	CMM.	Containers	are	infra-agnostic,	
and	 the	proposed	CMM	does	not	 consider	 corporate	 culture	or	 specific	 software	an	organization	uses.	The	
proposed	metrics	solely	concern	container-related	tasks	and	functionalities	in	the	SDLC	process.		
Table	14:	List	of	main	characteristics	for	proposed	CMM	

Concept	 Characteristic	 Description	and	rationale	

Maturity	
models	

Structured	
evolutionary	path	

A	growth	process	

We	adopt	the	structure	of	a	structured	evolutionary	growth	path.	Logically,	 this	corresponds	
with	a	maturity	model.	Secondly,	we	intend	to	provide	a	structured	way	in	improving	container	
usage	for	organizations.	
In	 such	 a	 path,	 we	 want	 to	 follow	 the	 growth	 path	 of	 a	 black	 box	 functionality	 or	 basic	
functionality	and	low	performance	configuration	at	lower	levels,	towards	more	structured	and	
formalized	configurations	that	describe	container-based	configurations	or	landscapes.	

	Differentiating	
components	

Establishing	
components	

The	 evolutionary	 path	 brings	 new	 components	 that	 add	 new	 functionality	 to	 the	 container	
configuration,	 or	 related	 SDLC	 configuration.	 This	 denotes	 both	 the	 found	 process	
improvements	 on	 incremental	 base,	 and	 the	 different	 capability	 or	 maturity	 plateaus.	 In	
addition,	this	shows	the	functional	addition	of	a	component.	

Maturity	levels	

Process	capability	

Shows	 the	 different	 level	 of	 maturity	 and	 improvements.	 This	 includes	 components	
(functionality),	capabilities,	objectives,	and	the	characteristics	of	components.	The	latter	shows	
the	quality	improvement	of	an	already	enabled	component	in	a	landscape.	Besides	that,	higher	
maturity	equals	higher	formality	in	documentation	and	operations.	

Maturity	gaining	

Incremental	
improvements	and	
increase	in	formality	

Incorporates	 the	 evolutionary	 path	 of	 growth	 with	 differentiating	 components,	 capabilities,	
objectives	 etc.	 Achieving	 maturity	 levels	 gains	 incremental	 improvements	 that	 can	 be	 new	
functional	or	quality	improvements.	
We	 believe	 higher	 maturity	 levels	 should	 consist	 of	 descriptions	 about	 aspects	 of	 the	
configuration.	This	increases	the	formality	of	a	process	or	operation.	

Hierarchy	CMMI	
model	elements	

The	CMMI	provides	a	hierarchy	of	its	structure	of	elements,	showing	how	maturity	levels	are	
spread	 throughout	 multiple	 parts	 of	 a	 maturity	 model.	 We	 intend	 to	 (partially)	 adopt	 this	
structure,	as	we	think	this	structure	show	a	balanced	‘waterfall	of	granularity’,	and	has	proven	
itself	over	time.	

SDLC	 SDLC	process	level	 The	 use	 case	 we	 focus	 on	 during	 the	 design	 of	 the	 CMM.	Main	 container	 applications	 are	
activities	around	deploying	and	testing.		

Development	
phases	

The	main	phases	of	 the	SDLC	process	 (Code,	Build,	 Test,	Deploy,	 and	Release).	 This	 includes	
activities	around	development	or	maintenance	of	applications.	

Monitoring	or	
operations	phases	

Activities	 around	 managing	 and	 monitoring	 of	 running	 applications	 in	 the	 production	
environment.	

SDLC	application	&	
infrastructure	level	

All	activities	around	the	provisioning	of	the	SDLC	process.	Other	processes	in	an	organization	are	
also	provisioned	through	this	level,	although	to	keep	it	simple,	we	maintain	the	name	for	SDLC	
provision	to	avoid	possible	complexity.	

EAG	

(Sherehiy	
et	al.,	
2007)	

Flexibility	 The	 ability	 to	 pursue	 different	 business	 strategies	 and	 tactics,	 to	 quickly	 change	 from	 one	
strategy,	task,	or	job	to	another.	

Speed	 The	ability	to	complete	requirements	of	all	other	agile	characteristics	in	shortest	possible	time.	
The	ability	to	learn,	carry	out	tasks	and	operations	and	make	changes	in	shortest	possible	time.	

Responsiveness	 The	ability	to	identify	changes	and	opportunities	and	respond	reactively	or	proactively	to	them.	

Integration	and	Low	
Complexity	

Close	and	simple	relations	between	the	individual	system	components,	easy	and	effortless	flow	
of	 the	 materials,	 information	 and	 communication	 between	 the	 system	 components,	
organizational	structures,	people,	and	technology.	

Containers	 Rationalized	
hardware	
deployment	

Infra-agnostic	
application	runtime	
environment	

Configure	
through	code	

Stateless	use	
case	support	

Lightweight	
OS	emulation	

Customizable	
images	(libs,	bins,	
runtime	packages)	

76 | P a g e

5.2. Findings	expert	interviews	
The	experts	from	the	field	denoted	that	currently,	organizations	are	in	need	of	tangible	knowledge	regarding	
the	 application	 of	 containers.	 Organizations	 are	 in	 different	 stages	 in	 the	 use	 of	 IT.	 In	 other	words,	 the	 IT	
maturity	 level	 of	 organizations	 differentiate.	 Based	 on	 this	 maturity	 level,	 organizations	 need	 specific	
knowledge	in	order	to	successfully	apply	containers	in	their	software	delivery	process.	Therefore,	we	asked	the	
experts	 about	 a	 maturity	 assessment	 regarding	 the	 implementation	 of	 containers	 to	 ultimately	 improve	
enterprise	agility.	All	experts	indicated	that	such	maturity	assessment	would	be	beneficial	for	organizations	in	
the	field	of	practice.	

However,	all	experts	indicated	that	such	maturity	assessment	should	be	combined	with	improving	continuous	
delivery	and	integration	of	the	software	delivery	process.	The	experts	stated	that	the	software	delivery	process	
is	the	abstract	process,	containing	different	phases.	These	phases	are	code,	build,	deploy,	test,	and	release.	In	
these	 phases,	 multiple	 processes	 exist	 that	 have	 to	 be	 finished	 to	 complete	 a	 phase.	 Based	 on	 the	
aforementioned	characteristics	of	containers	in	section	1.1	&	2.7,	we	hypothesize	that	containers	can	be	applied	
in	 different	 manners	 in	 these	 software	 delivery	 processes	 to	 achieve	 (more)	 enterprise	 agility	 regarding	
technology.	An	elaboration	of	this	hypothesis	is	visualized	in	section	5.3.	

	

 	

77 | P a g e

5.3. Proposal	in	a	nutshell	
Containers	 are	 a	 promising	 technology	 for	 organizations.	 However,	 besides	 the	 high-end	 IT	 leading	
organizations	(e.g.	Google,	Spotify,	Amazon),	the	experts	mentioned	that	most	traditional	organizations	do	not	
have	in-house	knowledge	about	the	latest	technologies.	This	means	that,	as	containers	are	a	relative	young	IT	
concept,	organizations	do	not	know	how	to	start	with	containers.	Based	on	organizations’	current	use	of	VMs,	
and	arrangement	of	 their	 SDLC	process,	 the	 configuration	 to	 start	 applying	 containers	 is	 different.	 In	other	
words,	dependable	on	the	IT	maturity	of	an	organization,	organizations	should	apply	containers	differently.	

According	 to	 the	results	of	 the	problem	 investigation,	 the	 field	of	practice	 is	 in	need	of	 tangible	knowledge	
regarding	 the	 implementation	 of	 containers.	 Besides	 that,	 the	 scientific	 domain	 requires	 an	 explicit	 link	
between	 EAG	 and	 technology.	 We	 can	 combine	 these	 needs	 into	 a	 maturity	 model	 regarding	 the	
implementation	 of	 containers	 in	 SDLC.	 Such	 a	 container	maturity	model	 enables	 organizations	 to	 integrate	
containers	into	their	infrastructure,	and	to	subsequently	support	their	EAG.	Figure	42	visualizes	this	concept.	

Figure 42: Initial design of proposed artefact: container implementation maturity model

We	propose	to	further	conduct	research	on	SDLC,	continuous	delivery	and	integration,	maturity	models,	and	
other	related	concepts.	Subsequently,	we	can	use	the	 information	resulting	from	this	additional	research	to	
design	a	Container	Maturity	model	 (CMM)	 focused	on	 the	SDLC	process,	 to	ultimately	enhance	enterprise	
agility	from	a	technology	perspective.	Next	paragraphs	briefly	describe	the	proposal.	

SDLC	exist	of	processes	from	writing	code,	to	release	a	product	to	end-users.	In	these	processes,	different	stages	
exist	where	software	needs	to	be	built,	tested,	integrated	etc.	All	these	steps	and	stages	are	executed	through	
different	means,	 depending	of	 the	organization.	Most	 organizations	 still	 use	VMs	 to	 support	 the	 steps	 and	
stages.	 However,	 they	 can	 also	 apply	 containers	 in	 these	 steps.	 Moreover,	 this	 can	 range	 from	 basic	
configurations	using	some	container-functionalities,	to	automated	and	integrated	containerized	(development)	
environments.	

Using	 containers	 in	 an	environment	 that	 suffice	 to	 container-specific	 requirements,	 results	 in	organizations	
taking	 advantage	 of	 the	 containers’	 agile	 enabling	 benefits.	 By	 assessing	 the	 organizations’	 software	
development	 configuration	 and	 stating	 their	 maturity	 level,	 and	 subsequently	 providing	 the	 organizations	

78 | P a g e

knowledge	on	how	 to	 start	using	 containers	based	on	 their	maturity	 level,	 organizations	 can	 increase	 their	
enterprise	agility	regarding	technology.	Hence,	the	proposed	maturity	model	exists	of	three	main	components:	

1) Pre	assessment:	determines	the	applicability	of	containers	for	an	organization	based	on	organizational	
characteristics	(e.g.	operating	market,	products,	and	the	amount	of	usage	of	IT).	

2) Maturity	assessment:	assessing	the	as-is	configuration	of	an	organization’s	SDLC	and	stating	maturity	
levels	for	different	areas	of	the	SDLC.	

3) Container	implementation	guidelines:	recommending	an	improved,	to-be	SDLC	configuration	where	
containers	are	applied,	based	on	the	‘Results’	(blue	in	Figure	43)	of	the	maturity	assessment.	

	
Figure 43: Components of the proposed maturity model

The	overall	SDLC	consists	of	several	development	practices.	Most	known	practices	are	Continuous	Integration	
(CI)	and	Continuous	Development	(CD),	which	organizations	are	increasingly	using	as	they	embrace	the	agile	
WoW.	Briefly,	CI	comprises	developers	integrating	their	work	on	daily	base	into	a	shared	repository,	and	CD	
ensures	that	software	is	always	production	ready	throughout	its	complete	lifecycle.	Considering	the	continuous	
‘stream’	of	(small)	tasks	that	have	to	be	performed	to	realize	these	practices,	containers	in	particular	provide	
improved	support	for	these	kinds	of	tasks,	rather	than	virtual	machines	provide.	

The	proposed	maturity	model	will	complement	the	field	of	practice	with	an	applicable	product,	and	hence	fulfil	
the	found	need	of	knowledge	regarding	the	application	of	containers.	In	addition,	continuing	this	research	leads	
to	a	 contribution	 to	 the	 scientific	domain,	as	 this	maturity	model	 realizes	an	explicit	 link	between	EAG	and	
containers	 (technology)	 from	 a	 scientific	 perspective.	 This	 ultimately	 fulfills	 the	 found	 gap	 of	 knowledge	
regarding	 EAG	 and	 technology	 (T	 of	 the	 aforementioned	 OPT	 of	 section	 3.4).	 Therefore,	 this	 means	 that	
organizations	can	become	fully	enterprise	agile	from	the	perspective	of	the	scientific	domain.	Figure	44	depicts	
this	situation	through	an	abstract	manner.	

Figure 44: OPT fulfilled

 	

79 | P a g e

Treatment Design	

80 | P a g e

6. Introduction	of	Treatment	Design	
The	second	phase	of	Design	science	is	the	Treatment	Design	phase.	As	the	author	of	Design	Science	describes,	
TD	 is	 the	phase	 to	design	one	or	more	artefacts	 that	 could	be	used	 to	 ‘treat’	 the	defined	problem	context	
(Wieringa,	2014).	Consequently,	the	corresponding	goal	is	to	improve	the	situation	of	a	group	of	stakeholders,	
which	 are	 in	 our	 research	 project	 the	 (traditional)	 organizations	 who	 want	 to	 apply	 or	 start	 applying	
containerization.	

In	 this	 section,	we	briefly	elaborate	on	how	we	executed	 the	TD	phase,	 the	structure	of	 the	TD	phase,	and	
shortly	highlight	the	contributions	we	realized	by	this	research	project.	These	contributions	are:	

1) Research	around	involving	virtualization	technologies	in	SDLC	and	an	organization’s	EA;	

2) Container	Maturity	Model	(CMM),	including	the	concepts	of	EAG,	SDLC,	and	containers;	
3) Process	Deliverable	Diagram	of	the	CMM;	

4) Validation	of	the	CMM	by	experts	with	different	specializations.	

Contribution	1)	 is	described	 in	the	 literature	review	through	the	sections	about	the	additional	concepts	and	
corresponding	conclusion.	The	remaining	contributions	2),	3)	are	described	in	this	section.	The	final	contribution	
4)	is	described	in	section	12.	

We	 combined	 TD	with	 Treatment	 Validation	 into	 one	 single	 phase,	 as	 we	 executed	 expert	 interviews	 and	
validation	interviews	simultaneously.	We	further	elaborate	on	the	rationale	for	this	decision	in	Section	7	Design	
plan	 and	 section	 12	 Validation	 of	 the	 CMM.	 To	 maintain	 clarity	 in	 the	 structure	 of	 the	 research	 and	 this	
document,	 we	 decided	 to	 split	 the	 TD	 and	 Treatment	 validation	 parts	 from	 each	 other	 in	 the	 document.	
However,	we	included	the	TV	introduction	into	this	introduction	for	the	same	reasons.	

The	structure	of	the	TD	phase	(page	79-101)	is	as	follows:	

- Section	7	Design	plan	describes	the	design	plan	we	created	to	design	the	artefact.	At	first,	the	method	
is	defined,	which	includes	descriptions	about	the	hypotheses	we	want	to	test,	and	descriptions	around	
the	different	design	cycles	(iterations)	we	stated.	Secondly,	the	section	continues	with	how	we	aim	to	
analyze	the	gathered	data.	A	taxonomy	is	presented	and	explained	for	analyzing	the	interviews.	

- Section	8	Data	analysis	elaborates	on	the	results	we	found	during	the	iterations.	For	each	iteration,	we	
described	the	main	results	and	provided	visual	representations	about	the	state	of	the	CMM	during	its	
design	process.	We	facilitated	more	detailed	elaborations	of	each	interview	in	Appendix	XII,	XIII,	XIV.	

- Section	9	Results:	Container	Maturity	Model	is	dedicated	on	describing	the	CMM.	We	included	high-
level	descriptions	about	the	CMM’s	overall	structure	and	complete	list	of	concepts,	as	well	as	detailed	
descriptions	about	the	two	assessments,	different	areas,	and	the	defined	metrics.	In	Appendix	X	and	X,	
we	described	additional	details	about	each	metric	and	corresponding	maturity	levels.		

- Section	10	Results:	 Process	Deliverable	Diagram	of	 CMM	 is	 an	 additional	 contribution	we	 realized	
besides	the	CMM.	This	section	described	how	the	CMM	sequence	works,	what	deliverables	are	realized	
in	each	phase	and	how	these	deliverables	relate	to	each	other.	We	believe	that	such	a	diagram	provides	
useful	indication	for	CMM	users,	and	that	it	supports	future	developments	of	the	CMM.	

- Section	11	Results:	The	CMM	linked	to	Enterprise	Agility	is	the	final	section	of	TD.	In	order	to	link	our	
final	CMM	v1.0	version	to	EAG,	we	intended	to	link	all	metrics	of	the	CMM	–	which	we	grouped	in	topics	
(see	section	11)	–	with	the	found	EAG	attributes	of	Sherehiy	et	al.	(2007).	

- Section	12	Validation	of	the	CMM	further	elaborates	on	the	process	of	validating	our	designed	CMM.	
As	mentioned	before,	we	also	explain	our	decision	to	combine	TD	and	TV	in	the	expert	interviews.	

- Section	 13	 Reflection	 on	 the	 Research	 process	 facilitates	 our	 reflection	 on	 the	 executed	 research	
process	of	all	design	science	phases.	We	focused	on	the	research	process	itself,	as	its	research	validity.	 	

81 | P a g e

7. Design	plan	
7.1. Method		
We	defined	the	following	hypotheses:		

H0:	Integrating	containers	in	the	SDLC	process	does	not	increase	support12	for	organizations’	enterprise	
agility	regarding	business	and	IT.	

H1:	Integrating	containers	in	the	SDLC	process	does	increase	support	for	organizations’	enterprise	agility	
regarding	business	and	IT.	

To	 test	 these	hypotheses,	we	executed	different	 types	of	expert	 interviews	through	multiple	 iterations.	We	
intertwined	the	design	process	with	validation	sessions,	as	we	found	that	we	required	additional	knowledge	on	
SDLC	since	the	literature	review	alone	was	insufficient.	Therefore,	during	the	interviews	we	asked	the	experts	
about	their	knowledge	on	the	concepts,	and	about	their	opinion	on	the	presented	CMM	concept	versions.	Each	
iteration	used	a	CMM	version	to	present	the	experts,	and	resulted	in	a	further	developed	CMM	version.	

	
Figure 45: Iteration structure

Subsequently,	 we	 analyzed	 the	 interviews	 using	 NVivo	 12	 (see	 section	 7.2	 Interview	 analysis).	 During	 the	
iterations,	 we	 designed	 and	 evaluated	 the	 CMM,	 which	 was	 a	 process	 of	 incremental	 nature.	 After	 each	
iteration,	 a	 new,	 further	 refined	 version	 of	 the	 CMM	 resulted.	We	 defined	 the	 following	 iterations	 for	 the	
Treatment	Design	phase:	

- Iteration	1:	Designing	the	CMM	based	on	all	research	conducted	during	Problem	Investigation	phase.	
- Iteration	2:	Designing	and	validating	the	CMM	based	on	feedback	from	internal	PwC	experts.	
- Iteration	3:	Designing,	validating,	and	testing	the	CMM	based	on	feedback	from	external	experts.	
- Iteration	4:	Additional	designing	and	validating	the	CMM	based	on	feedback	from	both	internal	and	

external	experts.	

Figure	46	on	page	83	visualizes	the	structure	of	all	iterations,	including	their	interdependencies	to	resulting	in-	
and	output.	

7.1.1. Iteration	1:	CMM	based	on	Problem	Investigation	knowledge	
The	first	version	of	the	CMM	is	based	on	all	knowledge	(both	literature	and	desk	research)	around	containers	
and	SDLC	that	we	gathered	in	the	PI	phase	(this	includes	the	list	of	main	characteristics).	In	addition,	we	held	
two	unstructured	brainstorm	sessions	with	two	internal	PwC	experts	who	vary	in	expertise.	Results	of	these	
sessions	we	also	processed	into	the	first	version	of	the	CMM.	We	used	the	resulting	version	of	the	CMM	(v0.01)	
as	a	base	for	the	next	iteration	to	ask	interviewees	about	their	opinion	regarding	the	model.	

12	‘Support’	means	supporting	an	environment	that	fosters	enterprise	agility,	as	containers	enable	a	faster	and	more	flexible	SD	environment.	

82 | P a g e

7.1.2. Iteration	2:	CMM	according	to	internal	PwC	experts	
As	 aforementioned,	 this	 iteration	 focuses	 on	 the	 perspective	 of	 internal	 PwC	 experts	 with	 different	
specializations.	We	used	a	semi-structured	interview	protocol	–	Protocol	IT2,	which	can	be	found	in	Appendix	
XV	–	to	discuss	the	CMM	and	find	out	what	experts	from	the	field	think	of	the	model.	Subsequently,	we	used	
the	experts’	feedback	to	further	modify	and	refine	the	model,	in	order	to	increase	the	model’s	validity.	Hence,	
the	CMM	version	resulting	from	this	iteration	–	CMM	v0.02	–	is	a	further	developed	model.	We	used	this	new	
version	to	start	with	the	third	iteration.	

7.1.3. Iteration	3:	CMM	according	to	external	expert	
Iteration	3	 further	elaborates	on	 the	opinion	of	experts	 from	the	 field	of	practice.	During	 this	 iteration,	we	
performed	 an	 extended	 semi-structured	 interview	of	 a	 duration	of	 two	hours	with	 an	 expert	 from	a	 large,	
international	bank	 (Protocol	 IT3	can	be	 found	 in	Appendix	XVI).	The	expert	specializes	 in	 the	 infrastructure,	
application,	and	development	domain.	During	this	interview,	we	discussed	each	component	and	metric	of	the	
complete	model.	We	questioned	the	expert’s	opinion	and	perspective	regarding	each	part	of	the	model.	We	
use	the	expert’s	feedback	to	test	our	elaboration	of	the	CMM,	and	to	further	refine	the	model	according	to	the	
given	feedback.	Finally,	the	processed	information	resulted	in	CMM	v0.03.	

7.1.4. Iteration	4:	Additional	designing	and	validating	
At	 first,	 we	 aimed	 to	 validate	 the	 model	 through	 validation	 sessions	 with	 experts	 in	 the	 fourth	 iteration.	
However,	as	 further	explained	 in	 section	12	and	13,	we	decided	 to	perform	additional	expert	 interviews	 to	
extent	the	discussion	about	the	model’s	content,	and	consequently	gather	more	knowledge	to	further	design	
the	CMM.	The	outcome	of	this	iteration	results	in	CMM	v1.0,	which	can	be	found	in	Appendix	IX.

83 | P a g e

	
Figure 46: Treatment Design: Iterations and CMM deliverables

84 | P a g e

7.2. Interview	analysis	
All	interviews	of	IT2	and	IT3	are	recorded13.	We	used	NVivo	12	to	analyze	these	recordings	by	tagging	relevant	
and	important	parts	of	the	interviews.	A	taxonomy	of	topics	is	created	to	implement	in	NVivo	12	to	execute	the	
analysis	(section	7.2.2	&	7.2.3).	We	provided	a	brief	explanation	of	NVivo	12	and	its	usage	in	section	7.2.1.	

7.2.1. Analysis	tool:	NVivo	12	
NVivo	 12	 is	 a	 tool	 that	 enables	 users	 to	 analyze	 transcriptions	 and	 audio	 files	 of	 performed	 interviews.	 A	
taxonomy	can	be	created	that	is	used	to	‘tag’	sentences	in	transcriptions,	or	tag	periods	of	time	in	audio	files	
about	statements	of	interviewees.	The	tags	can	be	compared	with	other	transcriptions	and	enables	users	to	
perform	both	qualitative	and,	in	limited	form,	quantitative	analysis	of	data.	

The	taxonomy	that	is	used	for	the	audio	files	of	our	interviews	in	Treatment	Design	is	provided	in	section	7.2.2.	
Topics	 denote	 the	 context	 of	 discussion	 that	we	 aimed	 for	 to	 focus	 on.	Our	 focus	 is	 positive	 and	 negative	
comments	 of	 experts,	 next	 to	 their	 suggested	 changes.	 These	 are	 called	 as	Aspects.	 These	 kind	 of	 aspects	
support	the	verification	by	experts	of	the	CMM.	Aspects	are	detailed	metrics	that	are	used	for	tagging	periods	
of	 time	 in	 the	audio	 files	 (see	section	7.2.2	&	7.2.3).	To	 increase	clarity	on	what	 to	expect,	we	provided	an	
example	of	such	a	tag	and	resulting	audio	file	diagram	in	Figure	47.	

- In	interview	IT2Int#7,	between	00:22:35	–	00:25:03,	the	interviewee	suggests	that	Component	X	should	

be	added	(yellow)	to	Development	Area	[DEV],	as	it	does	contribute	to	the	model.	

- In	 interview	 IT2Int#7,	 between	 00:51:47	 –	 00:54:56,	 the	 interviewee	 commented	 positively	 (red)	 on	

metric	Automated	rollback	in	Operations	Area	[OPS].	

	

	
Figure 47: Example of visualization of tagged audio file

As	depicted	in	Figure	47,	the	sound	bars	of	all	interviews	including	tags	are	given	in	Appendix	XII,	XII,	and	XIV.	
By	doing	this,	we	created	visuals	of	each	performed	interview	whereas	one	can	easily	distinguish	what	aspects	
are	discussed	during	the	interviews.	Additionally,	 important	statements	of	experts	are	quoted	to	strengthen	
results.	

 	

13	During	Iteration	2,	IT2Int#3	got	lost	(100%)	and	IT2Int#4	got	partial	lost	(~50%)	due	to	technical	issues.	Hence,	we	switched	from	voice	recorder	solution	
for	the	remaining	interviews.	

85 | P a g e

7.2.2. Protocol:	Taxonomy	structure	
The	 taxonomy	 is	 created	 using	 different	 perspectives.	We	 defined	 two	main	 topics	 of	 interest:	 CMM	Area	
specific	statements,	and	container	trends	statements.	This	is	shown	as	the	following:	

v =			Topic	 • =			Sub-topic	 - =			Area	 o =			Aspect	
	

v Container	trend	statements	

• Role	of	containers	in	organizations;	
• Specific	Q&A;	
• Containers	in	SDLC	context.	

	

	

v CMM	area	statements	

• Pre	assessment	
- General	Area	

o Positive	comments;	
o Suggested	additions;	
o Negative	comments;	
o Suggested	removes;	
o Emerged	questions;	
o Suggested	changes;	
o Specific	Q&A;	
o Provided	tips	and	remarks.	

- Software	Development	Area	
o Positive	comments;	
o Suggested	additions;	
o Negative	comments;	
o Suggested	removes;	
o Emerged	questions;	
o Suggested	changes;	
o Specific	Q&A;	
o Provided	tips	and	remarks.	

- Application	&	Infrastructure	Area	
o Positive	comments;	
o Suggested	additions;	
o Negative	comments;	
o Suggested	removes;	
o Emerged	questions;	
o Suggested	changes;	
o Specific	Q&A;	
o Provided	tips	and	remarks.	

• xzx	
• Maturity	assessment	

- Development	Area	
o Positive	comments;	
o Suggested	additions;	
o Negative	comments;	
o Suggested	removes;	
o Emerged	questions;	
o Suggested	changes;	
o Specific	Q&A;	
o Provided	tips	and	remarks.	

- Operations	Area	
o Positive	comments;	
o Suggested	additions;	
o Negative	comments;	
o Suggested	removes;	
o Emerged	questions;	
o Suggested	changes;	
o Specific	Q&A;	
o Provided	tips	and	remarks.	

- Output	(BC)	Area	
o Positive	comments;	
o Suggested	additions;	
o Negative	comments;	
o Suggested	removes;	
o Emerged	questions;	
o Suggested	changes;	
o Specific	Q&A;	
o Provided	tips	and	remarks.	

86 | P a g e

7.2.3. Protocol:	Taxonomy	description	
7.2.3.1. Taxonomy	topic:	Container	trends	statements	
The	first	topic	briefly	elaborates	on	the	role	of	containers	in	organizations	and	in	the	SDLC	context.	We	also	
asked	the	experts	about	their	opinion	regarding	the	benefits	of	containers	 in	specific	use	cases.	All	experts’	
answers	 combined	 contribute	 to	 the	 overall	 perspective	 we	 are	 creating	 regarding	 the	 increasing	 role	 of	
containers	in	software	development	and	infrastructure.	Table	15	briefly	describes	each	aspect	we	focus	on.	

								Table	15:	Container	trend	statements	taxonomy	description	
Aspect	 Description	

Role	of	containers	in	
organizations	

Moments	where	the	expert	denotes	the	role	of	containers	in	organizations.	

Specific	Q&A	 Moments	where	 the	student	asks	an	additional	question,	 inspired	by	 (new)	 information	
given	by	the	expert	about	a	specific	metric	or	aspect	of	the	CMM,	or	related	topic.	

Containers	in	SDLC	context	 Moments	where	experts	state	a	suggestion	to	change	a	specific	metric	or	aspect	of	a	CMM	
area.	

7.2.3.2. Taxonomy	topic:	CMM	area	statements	
This	topic	also	exists	of	two	sub-topics,	both	having	their	own	detailed	components.	The	1)	Pre	assessment	
topic	focuses	on	the	questionnaire	that	rapidly	indicates	the	profile	of	an	organization,	divided	in	three	areas.	
This	 assessment	 should	 be	 able	 to	 be	 finished	 within	 five	 minutes	 by	 one	 senior	 employee	 or	 software	
development	 expert	 of	 an	 organization.	 The	 Pre	 assessment’s	 and	 Maturity	 assessment’s	 taxonomies	 are	
identical,	as	we	were	aiming	for	the	same	kind	of	feedback	for	both.	

We	discuss	2)	Maturity	assessment	for	a	longer	amount	of	time	during	the	interviews,	as	this	part	of	CMM	is	
more	extensive.	Equivalent	to	the	Pre	assessment,	this	assessment	also	exists	of	 three	areas,	and	share	the	
same	 taxonomy	 aspects.	 The	 goal	 of	 the	Maturity	 assessment	 is	 to	 indicate	 how	 an	 organization	 is	 using	
containers	in	their	SDLC	process,	both	production	as	non-production	environments.	

								Table	16:	CMM	area	statements	taxonomy	description	
Aspect	 Description	

Positive	comments	 Moments	where	experts	state	a	positive	comment	about	a	specific	metric	or	aspect	of	a	
CMM	area.	

Suggested	additions	 Moments	where	experts	state	a	suggestion	to	add	a	specific	metric	or	aspect	of	a	CMM	
area.	

Negative	comments	 Moments	where	experts	state	a	negative	comment	about	a	specific	metric	or	aspect	of	a	
CMM	area.	

Suggested	removes	 Moments	where	experts	state	a	suggestion	to	remove	a	specific	metric	or	aspect	of	a	CMM	
area.	

Emerged	questions	 Moments	where	experts	ask	a	new	question	about	a	specific	metric	or	aspect	of	a	CMM	
area	or	related	topic.	Asking	for	(further)	clarity	about	a	topic	is	not	meant	with	this	aspect.	

Suggested	changes	 Moments	where	experts	state	a	suggestion	to	modify	a	specific,	existing	metric	or	-aspect	
of	a	CMM	area.		

Specific	Q&A	 Moments	where	 the	student	asks	an	additional	question,	 inspired	by	 (new)	 information	
given	by	the	expert	about	a	specific	metric	or	aspect	of	the	CMM,	or	related	topic.	

Provided	tips	and	remarks	 Moments	where	experts	start	to	further	elaborate	about	a	topic,	in	order	to	emphasize	or	
explain	his	answer,	but	also	to	elaborate	on	other	related	topics	what	results	in	additional	
useful	information	or	improved	understanding	of	the	student	towards	a	topic.	

The	Maturity	assessment	taxonomy	aims	for	several	goals:	1)	the	assessment	questions	about	container	usage	
in	SDLC	phases	 (Development	Area),	2)	 it	 indicates	the	EAG	regarding	business	and	 IT	of	an	organization	by	
focusing	 on	 CI	 and	 CD	 aspects	 (Operations	 Area),	 and	 finally	 3)	 a	 business	 case	 with	 potential	 savings	 is	
presented	(Output	Area),	based	on	the	assessment’s	result.	

 	

87 | P a g e

8. Data	analysis	
8.1. Design	iterations	
In	this	section,	we	describe	our	findings	of	regarding	all	iterations.	The	fourth	iteration	is	additionally	described	
in	section	12,	as	this	 iteration	 is	 focused	on	the	Treatment	Validation	phase.	Each	sub-section	comprises	an	
introduction	 of	 the	 iteration,	 and	 a	 summary	 of	 main	 findings.	 In	 Appendix	 XII,	 XII,	 and	 XIV,	 we	 provided	
elaborations	of	each	specific	expert	interview.	These	elaborations	consist	of	summarized	findings	and	outcomes	
of	all	tagged	soundbars	from	the	NVivo	analysis.	

8.1.1. Iteration	1:	CMM	based	on	Problem	Investigation	knowledge	
The	 first	 iteration	 (IT1)	was	used	 to	gather	knowledge	 from	personal	executed	research	 (literature	 findings,	
papers,	performed	semi-structured	interviews,	web	sources),	and	PwC	internal	sources.	Using	this	information,	
we	designed	the	first	version	of	the	CMM	(v0.1).	We	used	this	version	as	the	base	model	to	check	with	internal	
PwC	experts	regarding	virtualization	in	iteration	2.	

8.1.1.1. Processed	results	of	IT1	
We	performed	two	additional	brainstorm	sessions	with	PwC	experts.	Through	these	sessions,	we	came	to	the	
first	structure	of	the	model.	This	structure	comprises	of	different	 ‘areas’	 in	the	Maturity	assessment	and	30	
questions	 in	 the	 Pre	 assessment.	 Subsequently,	 we	 complemented	 the	 areas	 in	 detail	 using	 all	 prior	 and	
additional	research	of	the	Long	Proposal.	This	resulted	in	CMM	v0.1	of	the	first	iteration.	

	
Figure 48: abstract visualization of results CMM design IT1

Table	17:	Results	
#	 Summarized	description	of	main	findings	 Rationale	

1	 We	 defined	 the	 structure	 of	 the	 CMM’s	 first	 concept	 version	
during	the	brainstorm	sessions	internal	PwC	experts.		

For	the	MA,	we	defined	three	areas	(DEV,	OPS,	and	OUT)	that	
contained	 multiple	 metrics.	 The	 metrics	 are	 described	
throughout	five	maturity	levels	in	metric	specifications.	

2	 Another	result	of	the	brainstorm	session	was	the	addition	of	the	
Pre	 assessment	 to	 determine	 the	 container-readiness	 of	 an	
organization.	

We	added	the	PA	as	the	first	part	of	the	CMM	to	serve	as	a	
quick	 pre-scan	 of	 an	 organization	 to	 decide	 whether	 that	
organization	 is	 benefited	 by	 continuing	 the	 CMM.	 We	
created	PA	questions	based	on	our	prior	PI	research.	

3	 We	stated	the	content	of	the	DEV	and	OPS	area	with	information	
from	the	brainstorm	sessions	and	prior	PI	phase	research.	Output	
was	defined	based	on	the	brainstorm	sessions.	

In	 DEV,	 we	 aimed	 to	 focus	 on	 general	 container	 usage	
throughout	the	SDLC	phases	 (the	what	of	containers).	This	
included	metrics	 around	processes	 and	orchestrators.	OPS	
would	 be	 focused	 on	 CICD	 components	 (the	 how	 of	
container	usage).	

During	this	 iteration,	we	wanted	to	wait	for	the	expert	feedback	of	 IT2,	before	deciding	what	maturity	 level	
structure	to	implement	through	the	model.	

88 | P a g e

8.1.2. Iteration	2:	CMM	according	to	internal	PwC	experts	
The	second	iteration	(IT2)	is	used	to	test	the	CMM	with	internal	experts	from	PwC.	Through	a	(semi-)structured	
protocol,	we	discussed	all	the	facets	of	the	CMM,	where	the	experts	gave	their	perspective	and	feedback.	We	
aimed	for	new	knowledge	and	insights,	and	verification	on	all	details	of	the	maturity	model.	With	this	iteration,	
we	realized	v0.02	of	the	CMM.	

We	 used	 the	 taxonomy	 in	 section	 7.2	 as	 a	 support	 for	 executing	 the	 interviews.	 During	 the	 first	 interview	
(IT2Int#1),	we	received	a	large	amount	of	relevant	and	informative	explanations	around	containers	and	SDLC.	
We	were	able	to	use	this	information	to	increase	our	understanding	of	containers,	SDLC,	and	the	combination	
of	both	in	such	maturity	model.	Therefore,	we	decided	to	extend	the	taxonomy	for	the	remaining	interviews	of	
IT2	with	 several	 aspects	 to	 increase	 the	 possibilities	 of	 our	 analysis.	 The	 following	 two	 aspects	we	 applied	
immediately	to	the	taxonomy	during	the	analysis	of	the	first	interview:	

o ‘Specific	Q&A’:	as	multiple	questions	which	were	asked	by	the	interviewer	emerged;	

o ‘Provided	tips	and	remarks’:	when	asked	about	a	component	of	the	CMM,	the	interviewee	started	
to	explain	that	 topic	 to	emphasize	or	explain	his	answer,	but	also	to	elaborate	on	other	related	
topics	which	resulted	in	additional	useful	information.	

After	the	analysis	of	the	first	interview,	we	found	that	‘Suggested	additions’	and	‘Suggested	removes’	were	not	
sufficient	in	certain	situations	or	for	specific	statements.	For	instance,	when	the	interviewee	suggested	changing	
a	 component	 to	 another	 form,	we	 perceived	 this	 as	 a	 new	 addition	 to,	 nor	 a	 removal	 of	 that	 component	
regarding	the	CMM.	Hence,	we	determined	to	add	○	‘Suggested	changes’	to	the	taxonomy.	

8.1.2.1. Processed	results	of	IT2	

	
Figure 49: Abstract visualization of results CMM design IT2

Table	18:	Results	
#	 Summarized	description	of	main	findings	 Rationale	

1	 All	 experts	 argued	 that	 the	 PA	 should	 be	 shorter.	 A	 couple	
experts	 emphasized	 that	 crucial	 questions	 only	 should	 be	
presented.	

We	grouped	the	PA	questions	into	three	areas:	1)	General	–	
information	 about	 the	 organization	 and	 its	 sector,	 2)	
Software	 development,	 and	 3)	 Infrastructure	 and	
applications.	

2	 Several	experts	denoted	that	monitoring	should	be	 included	to	
the	CMM.	More	specifically,	as	final	phase	in	the	DEV	area.	

We	added	monitoring	to	DEV	and	hence	provided	this	phase	
with	same	metrics	as	the	other	SDLC	phases.	

3	 In	 the	 interviews,	 we	 found	 multiple	 times	 that	 (automated)	
testing	should	be	split	and	further	specified	in	the	MA.	

We	split	the	testing	metric	into	Application-dependent	tests	
and	Application-independent	tests.	

4	 Based	 on	 the	 interviews,	 we	 were	 able	 to	 remove	 irrelevant	
metrics	and	complement	the	model	with	relevant	metrics.	

We	 removed	 several	metrics	 from	 both	 the	 DEV	 and	 OPS	
areas.	In	addition,	we	further	refined	the	maturity	levels	of	
seven	OPS	metrics.	

89 | P a g e

5	 We	determined	the	maturity	level	structure	for	the	MA.	 The	maturity	model	structure	of	Dreyfus	(Dreyfus	&	Dreyfus,	
1980),	which	 include:	 1)	Novice,	 2)	 Advanced	 beginner,	 3)	
Competent,	4)	Proficient,	and	5)	Expert.	

8.1.3. Iteration	3:	CMM	according	to	external	expert	
During	 the	 third	 iteration	 (IT3),	 we	 discussed	 V0.02	 with	 external	 experts.	 During	 the	 interviews,	 we	
immediately	 modified	 the	 model	 based	 on	 the	 feedback	 if	 possible.	 We	 had	 one	 interview	 of	 two	 hours	
scheduled	at	ING	with	an	expert	on	the	domains	of	application	and	infrastructure.	

8.1.3.1. Processed	results	of	IT3	
During	the	design	 in	the	first	two	iterations,	the	Pre	assessment	contained	three	main	areas	 including	more	
than	30	questions.	Based	on	the	feedback	from	IT2	and	IT3,	we	decided	to	reduce	the	amount	of	questions	to	
the	minimal	 required	 amount.	 This	 led	 to	 11	 questions	 in	 the	 Pre	 assessment.	 The	 three	 areas	 have	 been	
contained	to	denote	of	topic	per	question,	instead	of	fulfilling	a	leading	role.	

	
Figure 50: Abstract visualization of results CMM design IT3

Table	19:	Results	
#	 Summarized	description	of	main	findings	 Rationale	

1	 The	 expert	 denoted	 that	 we	 have	 to	 process	 the	 CICD	
components	from	the	OPS	phase	towards	the	DEV	phase.	We	
also	found	more	details	on	these	metrics,	which	enabled	us	to	
further	refine	and	remove	currently	included	metrics.	

We	 processed	 the	 CICD	 components	 in	 the	 DEV	 phase.	 The	
concerning	 components	 are	 now	placed	 in	 the	 relevant	 SDLC	
phase,	whereas	functional	behavior	and	system	characteristics	
per	components	is	described	in	the	maturity	levels.	

2	 OPS	should	 include	metrics	 regarding	the	 live	or	production	
environment	 of	 applications	 that	 run	 on	 containers.	 These	
kind	 of	 metrics	 are	 around	 the	 concept	 of	 monitoring	 and	
lifecycle	management.	

We	analyzed	the	recording	of	the	interview	and	additional	desk	
research	 and	 complemented	 the	 OPS	 area	 with	 new	metrics	
regarding	operations	of	running	applications.	

3	 We	discussed	automation	levels	and	stated	a	level	structure.	 We	included	this	level	structure	in	the	MA,	and	modified	each	
level	structure	to	the	concerning	SDLC	phase.	

8.1.4. Iteration	4:	Additional	designing	and	validating	
The	additional	expert	interviews	of	this	iteration	were	not	recorder	as	in	the	previous	iterations.	We	made	this	
decision,	since	analyzing	the	recordings	through	NVivo	12	required	an	amount	of	time	per	interview	we	did	not	
possess	during	this	last	iteration.	Therefore,	we	made	notes	during	the	interview	and	processed	most	of	the	
feedback	immediately	into	the	model.	In	order	to	track	our	gathered	knowledge,	we	created	for	each	additional	
interview	an	individual	Excel	version	of	the	CMM	and	denoted	all	modifications	with	the	color	red.	By	doing	
this,	we	were	able	to	track	all	the	suggested	changes	to	the	model.	Due	to	the	restricted	amount	of	time,	we	
were	forced	to	keep	the	report	on	the	results	brief	for	each	interview.	

	

90 | P a g e

8.1.4.1. Processed	results	of	IT4	
We	visualized	the	main	findings	of	the	additional	interviews	(IT4)	in	an	abstracted	representation.		

	
Figure 51: Abstract visualization of results CMM design IT4

Table	20:	Results	
#	 Summarized	description	of	main	findings	 Rationale	

1	 We	received	more	feedback	to	further	refine	the	PA.	 We	 refined	 PA	 questions	 around	 virtualization,	 stateless	
applications,	and	hypervisor	usage.	

2	 Several	 experts	 denoted	 that	 they	missed	 software	 delivery	 in	
the	 CMM.	 The	 presented	 CMM	 did	 not	 correspond	 with	 the	
application	of	containers	in	the	business	domain.	

Therefore,	we	added	another	area	to	the	MA:	Application	&	
infrastructure	(AppInfr).	This	area	consists	of	metrics	that	are	
related	to	deployment	management	of	applications,	and	the	
management	of	infrastructure	elements.	

3	 Regarding	 the	MA,	more	 feedback	was	 received	 regarding	 the	
DEV	area	metrics.	With	 this	 feedback	we	 further	 improved	the	
metric	specifications.	

Especially	level	5	metric	specifications	have	been	improved.	
In	 combination	 with	 the	 connection	 the	 AppInfr	 area,	 we	
further	complemented	remaining	metrics.	

4	 The	 OPS	 area	 also	 received	 further	 attention,	 especially	 the	
higher	maturity	levels.	

Equivalent	 to	 row	 3,	 we	 further	 improved	 metric	
specifications	of	OPS.		

	 	

91 | P a g e

9. Results:	Container	Maturity	Model	
Section	9.1	 elaborates	on	 the	designed	CMM.	We	provided	 an	overall	 description,	 descriptions	 about	both	
assessments	including	all	the	different	Areas	and	their	interdependencies,	and	we	provided	several	disclaimers	
that	are	important	to	understand	while	applying	the	model	in	practice.	

9.1. CMM	main	structure	
Figure	52	depicts	an	abstract	visualization	of	the	main	structure	and	sequence	of	the	CMM.	As	shown	in	Figure	
52,	the	CMM	consists	of	the	following	three	parts:	

- Pre	assessment	(PA)	–	determines	whether	an	organization	is	container-fit;	
- Maturity	assessment	(MA)	–	the	maturity	assessment	that	assess	an	organization’s	SDLC	

configuration	while	being	focused	on	containers;	
- Results	matrix14	–	depicts	the	results	of	the	MA,	including	the	maturity	levels	and	business	

output.	

	
Figure 52: CMM complete: abstract visualization

Throughout	the	CMM,	different	concepts	are	used	to	denote	content	of	the	CMM.	Table	21	on	the	next	page	
contains	all	concepts	that	are	used	throughout	the	CMM.	After	that	on	the	same	page,	in	order	to	give	a	better	
understanding	of	the	context	of	CMM	and	SDLC,	we	provided	a	conceptual	model	(Figure	53)	that	shows	how	
these	concepts	are	linked	to	each	other.		

	

	

	

	

	

14	We	envision	to	provide	organizations	applying	the	CMM,	with	a	customized	roadmap	based	on	the	PA’s	and	MA’s	results,	that	indicates	an	optimal	
order	of	improving	their	SDLC	configuration.	To	create	such	a	roadmap	with	valid	results,	we	were	required	to	conduct	additional	research,	which	was	
not	possible	to	fit	in	the	remaining	available	time.	Therefore,	this	aspect	is	denoted	in	section	15	Discussion	and	future	work.	

92 | P a g e

								Table	21:	Concepts	used	in	CMM	
Concept	 Description	

Pre	assessment		 A	short	assessment	(approx.	5	min)	that	determines	whether	an	organization	is	‘container-
ready’.	 Container-readiness	 means	 the	 extent	 an	 organization	 is	 able	 to	 benefit	 from	
container	technology.	

Maturity	assessment	 The	 main	 assessment	 that	 focuses	 on	 indicating	 the	 maturity	 of	 the	 SDLC	 pipeline,	 and	
operations	 that	 are	 performed	 while	 applications	 are	 running.	 This	 is	 measured	 through	
assessing	CICD	components	in	both	SDLC	and	operations.	Results	are	shown	in	the	Results	
matrix.	

Results	matrix	 A	matrix	 that	 shows	 the	 achieved	maturity	 levels	 for	 each	Metric	 of	 an	 organization.	 By	
visualizing	the	results,		

Maturity	level(s)	 The	levels	of	maturity	that	can	be	achieved	by	an	organization.	A	five-stage	model,	based	on	
Dreyfus	and	Dreyfus	(1980).	

[name]	+	Area	 A	section	 in	 the	CMM	that	 focuses	on	a	 specific	 subject	 to	capture	or	 realize	 information	
about	the	assessed	organization.	

Topic	 A	group	of	metrics	that	together	can	be	formed	to	a	group.	

Metric	 An	entity	that	is	measurable	to	a	certain	extent	and	spreadable	across	five	maturity	levels.	
The	metric	supports	the	maturity	indication	SDLC	or	operations	of	running	applications	of	an	
organization.	

Component	 The	type	of	a	concept	that	we	processed	into	a	metric.	For	instance,	‘Artefact	repository’	is	a	
metric	in	our	CMM.	However,	when	we	refer	to	such	concept	without	meaning	the	metric	
context,	we	use	artefact	repository	as	a	‘component’.	

SDLC	phase	 The	incorporated	phases	of	SDLC	(Code,	Build,	Deploy,	Test,	and	Release).	

Business	case	 The	 business	 case	 that	 is	 generated	 by	 the	 results	 of	 Output	 Area.	 The	 main	 focus	 is	
comparing	VM	costs	versus	container	costs,	in	order	to	estimate	potential	savings.		

	

	
Figure 53: Conceptual model of CMM and SDLC

93 | P a g e

9.2. Pre-assessment	
The	 Pre	 assessment	 exists	 of	 11	 questions	 that	 test	 an	 organization’s	 container-readiness.	 Three	 areas	 are	
shown	to	denote	the	topic	per	question.	We	stated	the	questions	in	the	following	Table	22.	

Table	22:	Pre	assessment	Areas	and	questions	
Pre.	Area	 #	 Question	 Answer	

General	 1	 Is	your	organization	developing	or	maintaining	software?	 y/n	
2	 Does	your	organization	also	outsource	parts	of	software	development?	 y/n	

3	 How	many	employees	are	working	in	your	organization?	 no.	
Software	
development	

4	 How	many	developers	are	working	in	your	organization	(excluding	outsourcing)?	 no.	
5	 Does	your	organization	make	use	of	standardized	deployment	pipeline	for	more	than	50%	of	their	

SD	processes?	
y/n	

6	 How	many	times	does	your	organization	deploy	each	week?	 no.	
Application	&	
Infrastructure	

7	 What	type	of	cloud	is	your	organization	using?	(Public,	private,	hybrid,	on	premise)	 type	
8	 What	is	the	percentage	of	applications	that	are	running	stateless?	 %	

9	 Do	 you	 have	 the	 ambition	 to	 (partially)	 migrate	 to	 a	 microservices	 architecture	 style	 in	 the	
upcoming	three	years?	

y/n	

10	 What	is	the	percentage	of	your	applications'	Functional	Application	Architecture	that	are	container	
ready?	

%	

11	 What	is	the	percentage	of	your	applications	that	run	by	the	means	of	virtualization?	 %	

9.2.1. General	Area	
The	 General	 Area	 [GE]	 is	 aimed	 at	 gathering	 information	 around	 the	 organization’s	 employees	 and	 any	
outsourcing	activities.	The	first	question	is	the	most	important	one,	as	when	an	organization	does	not	develop	
software	

9.2.2. Software	Development	Area	
Questions	 of	 the	 Software	 Development	 [SD]	 Area	 indicate	 the	 importance	 and	 intensity	 of	 SD	 in	 an	
organization.	Using	this	information,	we	can	discover	to	what	extent	an	organization	can	benefit	from	container	
technology	in	their	SDLC	process.	

9.2.3. Application	&	Infrastructure	Area	
The	 final	 area	 [AppInf]	 of	 the	 Pre	 assessment	 comprises	 of	 questions	 regarding	 (running)	 applications	 and	
infrastructure	 of	 an	 organization.	 Through	 this,	 we	 can	 explore	 the	 current	 state	 of	 advancements	 of	 an	
organization	 towards	 container-ready	 environments.	 Especially,	 the	 balance	 of	 stateless	 and	 stateful	
applications	and	their	corresponding	architecture	majorly	support	the	indication	of	container-fitness.	

 	

94 | P a g e

9.3. Maturity	assessment	
The	Maturity	 assessment	 exists	 of	 four	 areas,	 each	 having	 its	 own	 focus.	 Provided	 below	 are	 these	 areas,	
accompanied	with	an	explanation:	

1) Business	(Output)	[OUT]:	results	and	potential	savings	by	switching	to	containers	(i.e.	business	case).	

2) Development	[DEV]:	contains	main	phases	of	SDLC,	including	phase	specific	CICD	components.	

3) Operations	[OPS]:	exists	of	all	tasks	that	are	performed	when	containers	are	released	in	production.	

4) Application	landscape	&	infrastructure	[AppInfr]:	the	hard-	and	software	components	that	facilitate	
support	for	the	SDLC	process.	

We	 denote	 with	 ‘pipeline’	 the	 process	 of	 SDLC,	 whereas	 either	 software	 is	 developed	 or	 delivered	 to	 the	
requester.	

	
Figure 54: CMM MA area cohesion visualization

We	chose	to	use	the	maturity	level	names	of	Dreyfus	(1980),	as	we	think	these	names	are	better	suited	to	use	
in	our	CMM.	Dreyfus	denotes	names	for	the	learners	(organizations	in	our	CMMs	case)	of	a	skill	and	describes	
behavior	per	maturity	level.	Rather	than	the	CMMI	model,	where	the	maturity	level	names	lean	more	towards	
functional	requisites	–	in	that	way	restricting	adopters	of	the	model	structure	to	a	direction	maturity	–	than	
describing	behavior	without	limiting	model	adopters.	

95 | P a g e

Whereas	we	describe	in	our	CMM	the	functionality	of	containers	with	the	focus	on	the	SDLC	process.	We	do	
not	describe	a	process	itself.	Those	level	names	can	be	used	for	process	characteristics,	and	less	for	container	
functionality	characteristics.	Besides,	the	CMM	does	not	focus	on	quantifying	objectives.	

However,	as	Figure	55	shows,	we	partially	adopted	the	CMMI	structure	as	the	structure	of	our	MA.	

	
Figure 55: CMM adoption of CMMI structure

9.3.1. Business	(output)	area	
The	output	of	the	model	is	intended	to	be	generated	automatically.	It	shows	the	potential	savings	that	can	be	
made	by	an	organization	if	it	changes	from	using	VMs	towards	containers.	The	largest	save	would	be	to	decrease	
the	amount	of	VMs	that	are	used	to	launch	testing	environments,	and	fastening	the	configure	time	of	virtual	
environments.	We	found	that	savings	can	be	made	on	several	types	of	values	(data,	storage,	IT	budgets,	build	
servers).		

However,	current	calculations	are	too	limited.	The	values	are	based	on	numbers	we	were	able	to	derive	from	
large	cloud	and	infrastructure	vendors.	We	understand	that	organizations	can	receive	(a	substantial	amount	of)	
discount	 when	 purchasing	 cloud	 or	 infrastructure	 resources	 (B2B).	 Therefore,	 we	 decided	 to	 exclude	 the	
content	of	this	area.	We	did	not	want	to	include	information	of	other	quality	than	the	remaining	areas	of	the	
CMM.	We	propose	 that	 future	 research	 focuses	on	 this	aspect	 so	 that	 future	developments	can	 realize	 the	
business	area.	

9.3.2. Development	area	
Development	(DEV)	is	the	area	that	comprises	of	main	SDLC	phases,	which	are	Code,	Build,	Deploy,	Test,	and	
Release.	Throughout	these	phases,	we	arranged	specific	CICD	components	that	deliver	functionality.	The	type	
of	functionality	that	such	CICD	components	delivers	defines	maturity.	For	instance,	a	basic	functionality	is	linked	
to	a	 lower	maturity	 level,	 and	a	more	advanced	 functionality	 towards	higher	maturity	 levels.	By	doing	 this,	
organizations	who	have	an	advanced	SDLC	configuration	achieve	a	higher	maturity	level	than	organizations	who	
have	a	less	advanced	configuration.	

	 	

96 | P a g e

Table	24:	Pre	assessment	Areas	and	questions	
SDLC	 Metric	 Description	

Code	

Code	task	automation	

The	extent	of	Code	related	tasks	that	are	automated	and	integrated	into	a	standardized	
pipeline.	Common	tasks	are:	
	

Source	code	management	
system	(code	repository)	–	
System	specifications	

Source	code	management	system	is	a	system	that	contains	pieces	of	(source)	code	of	an	
application	or	service.	During	the	code	phase,	this	system	is	used	to	transfer	code	to	and	
derive	 code	 from.	 With	 ‘System	 specifications’	 we	 mean	 the	 functional	 behavior	 or	
characteristics	of	this	component	inside	the	SDLC	process.	

Source	code	management	
system	(code	repository)	–	
Usage	specifications	

With	‘Usage	specifications’	we	mean	how	the	component		is	used	inside	the	pipeline.	

Base	image	standardization	

A	base	image	is	a	predefined	piece	of	software	containing	executable	code,	network/API	
connection…	We	 added	 this	metric	 as	 containers	 are	 launched	using	 base	 images.	 In	
more	 mature	 (formal)	 organizations,	 it	 is	 a	 best	 practice	 to	 use	 standardized,	
organization-wide	obligated	base	images	for	different	types	of	software.	

Build	

Build	task	automation	

The	extent	of	Build	related	tasks	that	are	automated	and	integrated	into	a	standardized	
pipeline.	Common	tasks	are:	
	

Control	

The	metric	that	consists	of	controls	that	are	performed	before	builds	are	executed.	For	
instance,	 code-level	 integration	 controls	 or	 controls	 on	 all	 external	 dependencies	 of	
builds.	

Build	server	

A	server	that	facilitates	support	to	run	builds	that	are	being	put	together	into	a	unit.	The	
maturity	levels	include	the	way	how	builds	are	scripted,	whereas	scripts	are	the	files	that	
contain	information	to	configure	a	build	server.	

Artefact	repository	–	System	
specifications	

Artefact	 repository	 is	a	 storage	 that	 contains	artefacts.	Artefacts	are	builds	 that	have	
been	put	 together	 from	 the	Code	phase.	 System	 specifications	denote	 the	 functional	
behavior	or	characteristics	of	the	component.	

Artefact	repository	–	Usage	
specifications	

How	the	Artefact	repository	is	used	within	the	pipeline.	

Deploy	
Deploy	task	automation	

The	extent	of	Deploy	related	tasks	that	are	automated	and	integrated	into	a	standardized	
pipeline.	Common	tasks	are:	

Deploy	container	release	
The	manner	how	containers	are	released	(i.e.	launched)	in	the	Deploy	phase.	This	metric	
focuses	on	functional	aspects,	not	on	how	container	releases	are	automated.	

Deploy	to	state	 A	metric	that	denotes	the	different	states	an	application	can	be	deployed	to.		
Test	 Test	task	automation	

(automated	testing)	
The	extent	of	automation	and	integration	into	a	standardized	pipeline	of	different	types	
of	tests.	

Test	environment	managing	

This	metric	is	focused	on	how	test	environments	are	managed.	This	can	be	VM-based	or	
container-based,	 and	 includes	 corresponding	 aspects	 like	 automation	 and	
decommissioning.	

Acceptation	environment	
managing	

This	metric	is	focused	on	how	acceptation	environments	are	managed.	This	can	be	VM-
based	 or	 container-based,	 and	 includes	 corresponding	 aspects	 like	 automation	 and	
decommissioning.	

Release	

Release	task	automation	

The	 extent	 of	 Release	 related	 tasks	 that	 are	 automated	 and	 integrated	 into	 a	
standardized	pipeline.	Common	tasks	are:	
	

Release	container	release	
The	manner	how	containers	are	released	(i.e.	launched)	in	the	Release	phase.	This	metric	
focuses	on	functional	aspects,	not	on	how	container	releases	are	automated.	

Extent	of	controls	
The	extent	of	 controls	 that	are	 configured	 in	 in	 the	SDLC	process.	 These	 controls	 are	
performed	before	an	application	is	released	and	brought	live	in	production.	

9.3.3. Operations	area	
The	third	area,	Operations	(OPS),	contains	all	tasks	that	organizations	perform	after	releasing	their	applications	
to	production	by	using	containers.	These	 tasks	are	Monitoring,	Version	control,	 Lifecycle	management,	and	
Decommissioning.	The	manner	of	how	these	tasks	are	performed	by	an	organization,	 indicates	the	maturity	
throughout	 this	 area.	 The	main	 distinction	 between	 DEV	 and	 OPS	 is	 the	 fact	 that	 DEV	 refers	 to	 the	 non-

97 | P a g e

production	environment	where	an	application	is	in	development	(using	containers),	whereas	OPS	refers	to	the	
production	environment	where	applications	run	(in	containers).	

Table	25:	Pre	assessment	Areas	and	questions	
Metric	 Description	

Automated	rollback	
Automated	rollback	is	the	functional	ability	in	the	operations	process,	that	enables	an	organization	
to	return	to	an	older	version	of	running	applications.	

Patching	
This	metric	consists	of	the	specifications	on	how	patching	of	new	software	versions	is	configured	
in	the	operations	process.	

Application	decommissioning	

Denotes	how	live	applications	that	are	running	in	containers	are	taken	down	when	not	required	by	
its	users	anymore.	Maturity	levels	include	the	ability	to	(automatically)	‘destroy’	containers,	and	
how	information	and	resources	are	logged	and	transferred.	

Version	control	managing	
Comprises	of	functionalities	that	handle	the	management	and	maintenance	of	different	versions	
of	images	and	base	images,	and	how	they	are	connected	to	the	SDLC	process.	

Monitoring	
The	level	of	detail	of	monitoring	of	applications.	Monitoring	can	be	focused	on	different	levels,	and	
exists	in	multiple	states,	which	are	processed	into	the	maturity	levels.	

Logging	
The	Logging	metric	is	focused	on	the	extent	of	activities	that	are	logged	throughout	both	the	SDLC	
and	operations	process.	

9.3.4. Application	and	infrastructure	area	
The	application	landscape	and	infrastructure	provision	an	organization’s	business	operations,	hence	the	SDLC	
and	operations	process.	The	hierarchy	of	the	CMM	we	structured	is	comparable	with	widely-known	layers	of	
the	EA	discipline:	(bottom-up)	infrastructure	(Infr),	application	(App),	and	business	(DEV	and	OPS).	

Table	26:	Pre	assessment	Areas	and	questions	
Metric	 Description	

Business	logic	container	usage	
This	metric	is	a	higher-level	metric	than	other	metrics.	It	describes	how	business	logic	is	positioned	
in	the	SDLC	and	operations	process.	This	includes	aspects	around	MSA.	

Load	balancing	
Load	 balancing	 denotes	 how	 demanded	 applications	 and	 services	 are	 balanced	 between	
application	landscape	elements	and	infrastructure	elements.	

Scaling	of	applications	&	
infrastructure	

Contains	 maturity	 levels	 that	 show	 different	 ways	 of	 scaling	 applications	 and	 services	 by	 the	
support	 of	 infrastructure.	 It	 describes	 the	 relationship	 between	 the	 application	 landscape	 and	
infrastructure,	and	the	extent	of	automation	with	management	tools.	

Resilience	testing	

Different	 types	 of	 tests	 around	 the	 resilience	 of	 the	 application	 landscape	 and	 infrastructure.	
Through	the	maturity	levels,	we	described	what	kind	of	monitoring	is	performed,	and	subsequently	
what	activities	with	different	level	of	complexity	are	executed	to	make	the	landscapes	resilient.	

Container	failure	handling	
Focuses	 specifically	on	 the	containers	 in	 the	 infrastructure.	The	metric	 indicates	how	container	
failures	are	managed	and	to	what	extent	recovery	of	containers	is	automated.	

Connection	to	persistent	
storage	

As	 the	 main	 application	 of	 containers	 are	 providing	 environments	 suitable	 for	 stateless	
applications,	 there	 is	 on	 persistency.	 Therefore,	 rapid	 established	 connections	 to	 persistent	
storages	 are	 important	 for	 container	 utilization.	 This	 metric	 incorporates	 the	 varying	 levels	 of	
multiple	ways	to	connect	to	persistent	storage.	

Service	orchestration	

Requested	services	have	to	be	launched	in	containers.	However,	before	such	a	service	is	assigned	
to	 one	 or	more	 containers	 (infrastructure	 elements)	 in	 order	 to	 run	 on	 it,	 orchestration	 tools	
determine	the	configuration.	

SDLC	pipeline	container	usage	

Another	 higher-level	 metric	 that	 is	 focused	 on	 overall	 container	 usage	 throughout	 the	 SDLC	
pipeline.	It	is	possible	that	organizations	want	to	migrate	to	containers	in	small	steps,	instead	of	a	
big	bang	migration.	Therefore,	we	 included	 this	metric	 to	show	organization	what	SDLC	phases	
should	be	containerized	first.	

	
 	

98 | P a g e

9.4. Results	matrix	
The	result	matrix	shows	the	results	of	the	maturity	of	an	organization.	Per	area,	topic,	and	aspect,	the	maturity	
score	is	given	from	which	one	can	derive	and	select	its	topic(s)	of	excellence	and	topic(s)	of	improvement.	With	
this	information,	organizations	can	orientate	themselves	on	improving	their	overall	SDLC	maturity	in	regards	to	
containers.	Moreover,	based	on	the	Results	matrix,	a	customized	advice	can	be	provided	in	order	to	start	with	
containers,	or	to	further	utilize	containers	in	the	SDLC	process.	

The	CMM	assesses	an	organization’s	container-readiness,	and	the	maturity	of	their	SDLC	process,	whereas	the	
latter	also	focuses	on	the	application	landscape	and	infrastructure,	and	corresponding	business	value.	Different	
areas	consist	in	the	CMM,	whereas	each	area	includes	several	metrics.	These	metrics	are	components	that	are	
used	 in	 the	 SDLC	 process,	 and	 are	 defined	 throughout	 five	 different	 levels	 of	 maturity.	 Indicating	 an	
organization’s	maturity	for	each	metric	provides	the	organization	with	an	overview	on	their	SDLC	configuration	
performance.	 With	 this	 knowledge,	 an	 organization	 notices	 how	 it	 currently	 performs,	 and	 can	 set	 goals	
towards	higher	maturity	 levels.	 These	higher	maturity	 levels	 are	defined	 into	metric	 specifications,	 and	are	
noticeable	by	the	CMM.	Therefore,	with	the	current	1.0	version	of	the	CMM,	an	organization	can	inform	itself	
by	looking	into	the	model	and	decide	what	its	new	aimed	for	maturity	levels	are.	

9.5. Container	Maturity	Model	–	Disclaimers	
Throughout	the	CMM,	we	apply	the	statement	that	containers	are	the	preferred	choice	besides	VMs.	We	based	
this	statement	on	our	research	throughout	the	document,	where	we	proved	that	SDLC	is	a	use	case	that	benefits	
from	using	containers.		

This	model	is	also	applicable	to	the	execution	of	VMs,	besides	the	focus	on	containers.	It	states	the	same	kind	
of	usage	requirements,	agile	operations	handling,	and	output	format.	The	only	difference	is	the	used	technology	
and	its	corresponding	behavior,	which	to	different	performance	and	other	way	of	operating	the	environment.	

When	an	organization	is	already	advanced	with	the	use	of	VMs,	it	is	likely	that	the	transition	to	containers	is	
rather	simple	and	results	in	immediate	high	maturity	level	results.	As	aforementioned,	it	is	only	the	technology	
that	is	different,	whereas	the	configuration	of	operations	can	be	identical.	In	theory,	the	transition	does	not	
have	to	be	that	large.	

	
 	

99 | P a g e

10. Results:	Process	Deliverable	Diagram	of	CMM		
The	CMM	contains	multiple	phases	where	different	parts	are	in	performed.	These	parts	are	dependent	on	each	
other’s	input,	in	order	to	initially	start	the	follow-up	phase.	Hence,	the	phases	must	be	executed	in	a	specific	
order	 and	 it	 should	 be	 guaranteed	 that	 the	 required	 deliverables	 are	 realized.	 At	 first,	 the	 PA	 should	 be	
executed,	 followed	by	 the	MA,	 and	 finally	 evaluating	 the	Results	matrix.	 The	 complete	 sequence	 results	 in	
different	sub-products	that	form	the	main	business	case	together.	

The	Process	Deliverable	Diagram	(PDD)	meta-modeling	technique	of	Van	de	Weerd	and	Brinkkemper	(2009)	is	
used	to	visualize	the	CMM’s	sequence	and	deliverables.	A	PDD	combines	two	UML	diagrams:	1)	UML	activity	
diagram	(left	side),	and	2)	UML	class	diagram	(right	side).	Both	sides	are	connected	to	each	other	by	denoting	
what	(set	of)	activity(s)	realizes	a	specific	deliverable.	The	PDD	elaboration	on	the	CMM	is	given	in	Figure	56.	

	
Figure 56: CMM processed into a PDD

By	following	the	PDD	guidelines	of	Van	de	Weerd	and	Brinkkemper	(2009),	we	created	two	tables	describing	
the	PDDs	activities	and	concepts.	These	tables	are	given	in	Appendix	X.	

100 | P a g e

10.1. PDD	Phases	
10.1.1. Phase	1:	Execute	Pre	assessment	
As	aforementioned,	the	PA	determines	whether	an	organization	is	container-fit,	thus	can	continue	executing	
the	 MA.	 Determining	 the	 container-readiness	 is	 done	 by	 assessing	 the	 organization	 with	 11	 questions.	
Subsequently,	the	results	of	the	questions	are	evaluated,	deciding	about	the	container-fitness.	The	outcome	of	
the	 11	questions,	 and	decision	on	 an	organization’s	 container-fitness	 form	 the	Pre	 assessment	 results.	 The	
concept	is	used	in	the	Business	case	to	facilitate	a	brief	overview	about	an	organization’s	overall	technology	
state.	This	state	considers	the	three	areas	of	the	PA,	which	are	General,	Software	development,	Applications	
and	infrastructure.	

10.1.2. Phase	2:	Execute	Maturity	assessment	
The	MA	is	takes	more	time	to	complete	than	the	PE.	Main	activities	are	completing	the	assessment	regarding	
the	 areas	 of	 Development,	 Operations,	 and	 Infrastructure.	 The	 Business	 area	 is	 generated	 afterwards.	 The	
output	of	all	areas	combined,	form	the	Maturity	assessment	results,	and	are	shown	in	the	Results	matrix.	

10.1.3. Phase	3:	Evaluate	Result	matrix	
The	 final	 phase	 comprises	 evaluation	 aspects.	 Here,	 the	 Results	 matrix	 is	 analysed,	 wherefrom	 topics	 of	
excellence	and	–improvements	are	distilled.	These	topics	together	 form	the	Maturity	score.	Based	on	these	
results,	 an	 organization	 can	 determine	 what	 topics	 or	 metrics	 it	 will	 focus	 to	 improve	 their	 SDLC	 process	
maturity	in	regards	to	containers.	

10.2. PDD	contribution	
Current	PDD	elaboration	regarding	the	CMM	is	a	first	concept	of	how	the	CMM	process	should	executed.	We	
provided	a	base	of	the	sequence	and	corresponding	deliverables	of	the	CMM.		

Further	on	in	this	document	(section	15	Discussion	and	future	work),	we	propose	several	improvements	for	all	
three	parts	of	the	CMM	that	should	be	further	investigated	as	future	research.	When	these	improvements	are	
implemented	into	the	CMM,	we	believe	that	these	improvements	bring	impactful	changes	to	the	CMM	process-	
and	concept	side.	For	instance,	if	the	proposed	interrelationships	between	metrics	are	found,	the	third	phase	
should	be	modified	in	order	to	incorporate	the	specifications	of	the	improvement.	

Besides	that,	we	also	believe	that	other	improvement	will	emerge	when	more	research	is	conducted	towards	
the	CMM.	It	is	possible	that	these	contributions	will	lead	to	modifications	in	the	MA,	PE,	or	Results	matrix,	and	
implement	new	additions	to	metrics	and	topics.	Moreover,	this	can	additionally	influence	the	overall	structure	
or	sequence.	Either	way,	activities	and	concepts	are	likely	to	be	changed	over	time,	or	further	developed	into	
(more)	mature	variants.		

Considering	these	possibilities	and	the	likelihood	of	all	changes	and	additions,	we	believe	that	providing	a	PDD	
of	the	base	process	of	the	designed	CMM	realizes	two	aspects.	First,	the	PDD	supports	users	in	using	the	CMM	
in	practice,	as	it	clarifies	the	CMM’s	sequence.	Secondly,	future	CMM	developments	can	be	processed	faster	
into	the	sequence,	as	the	PDD	provides	an	overview	of	the	structural	phases,	activities	and	deliverables.	

	

	 	

101 | P a g e

11. Results:	The	CMM	linked	to	EAG	
As	aforementioned	 in	 section	1.1	 Introduction	and	3.4	Enterprise	agility,	 the	core	agility	attributes	 that	are	
applicable	 to	OPT	are	1)	 Flexibility,	2)	 Speed,	3)	Responsiveness,	4)	 Low	complexity	and	 Integration,	and	5)	
Culture	of	change	according	to	Sherehiy	et	al.	(2007).	We	linked	VMs	and	containers	to	these	core	attributes	
(culture	of	change	excluded)	to	denote	what	attributes	are	in	our	opinion	enhanced	by	functionality	provided	
by	VM	technology	and	container	technology.	By	doing	this,	we	linked	containers	to	EAG	on	conceptual	level,	
therefore	showing	that	containers	are	an	agile	enabling	technology.	

In	order	to	show	how	our	designed	CMM	is	related	to	EAG,	we	linked	the	CMM	content	towards	the	same	core	
agility	 attributes.	 By	 grouping	 the	metrics	 into	 several	 topics,	 we	 linked	 these	 topics	 with	 the	 core	 agility	
attributes	 in	 order	 to	 show	how	each	 topic	 fosters	 EAG	on	 detailed	 level.	 Table	 27,	 28	 and	 29	 denote	 the	
established	links	between	topics	of	the	CMM	with	agility	attributes.	Furthermore,	we	provided	in	Appendix	XII	
additional	explanations	on	how	we	consider	the	CMM	is	connected	to	the	attributes	of	EAG.	

Table	27:	Development	topics	
Topic	 Metric	 EAG	attributes	

Task	automation	 Code	task	automation	 Speed	
Responsiveness	Build	task	automation	

Deploy	task	automation	
Test	task	automation	(automated	testing)	
Release	task	automation	

Component	maturity	 	 	
										-	Functional	 Source	code	management	system	–	System	specifications	 Flexibility	

Base	image	standardization	
Control	
Build	server	
Artefact	repository	–	System	specifications	

										-	Quality	 Source	code	management	system	–	Usage	specifications	 Speed	
Artefact	repository	–	Usage	specifications	
Deploy	container	release	
Deploy	to	state	
Test	environment	managing	
Acceptance	environment	managing	
Release	container	release	
Extent	of	controls	

Table	28:	Operations	topics	
Topic	 Metric	 EAG	attributes	

Lifecycle	management	 Automated	rollback	 Speed	
Patching	
Application	decommissioning	
Version	control	managing	
Monitoring	

Administrative	tasks	 Logging	 Integration	and	
low	complexity	

Table	29:	Application	landscape	&	Infrastructure	topics	
Topic	 Metric	 EAG	attributes	

Landscape	resilience	 Resilience	testing	 Flexibility	
Container	failure	handling	

Service	management	 Load	balancing	 Integration	and	
low	complexity	Service	orchestration	

Network	maturity	 Connection	to	persistent	storage	 Responsiveness	
Scaling	potential	 Scaling	of	applications	&	infrastructure	 Responsiveness	

102 | P a g e

	

Treatment
Validation

 	

103 | P a g e

12. Validation	of	the	CMM	
In	order	to	 increase	the	validity	of	the	designed	artefact,	we	validated	the	CMM’s	content.	We	realized	this	
through	 the	expert	 interviews	 from	 IT2,	 IT3,	 and	 IT4.	 This	means	 that	we	combined	 the	TD	phase	with	 the	
Treatment	Validation	(TV)	phase.	Next	sub-section	explains	why	we	made	this	decision.	

12.1. Reporting	on	validation	
In	 the	design	plan,	we	defined	four	different	 iterations	to	execute.	Each	 iteration	was	 focused	on	gathering	
knowledge	 from	a	different	 type	of	 source	 (literature	or	 experts),	 to	 subsequently	 process	 the	 rationalized	
findings	into	the	CMM.	

Since	the	domain	of	SDLC	was	relatively	a	new	topic	for	us,	we	created	a	design	plan	where	we	collaborate	with	
experts	to	design	the	model.	In	IT1,	we	aimed	to	design	the	first	concept	version	of	the	CMM.	Whereas	in	the	
following	iterations,	we	discussed	the	content	of	the	CMM	with	experts	(validation)	and	analyze	their	feedback	
and	perspective.	Subsequently,	we	rationalized	the	feedback	and	processed	it	into	the	CMM	(designing).	Due	
to	this	collaboration,	the	experts	had	an	important	role	in	our	design	plan.	Consequently,	we	considered	the	
opinion	of	experts	as	a	high	value	for	the	model.	Therefore,	the	interviews	had	two	main	objectives:	1)	gathering	
knowledge	to	further	design	the	CMM,	and	2)	finding	out	the	expert’s	opinion	on	the	presented	content	of	the	
CMM,	in	order	to	validate	the	concerning	concept	version.	

Finally,	to	measure	the	effect	of	the	CMM	in	the	problem	context,	we	would	use	the	resulting	CMM	concept	
version	of	IT3,	in	the	fourth	iteration	to	conduct	case	studies	at	external	organizations.	However,	we	noticed	
that	the	CMM’s	current	state	was	not	fully	sufficient	to	use	in	case	studies.	This	had	the	following	reasons:	

• The	 CMM	 was	 continuously	 under	 change	 (i.e.	 still	 in	 development),	 based	 on	 the	 differentiating	
feedback	of	all	expert	interviews;	

• Several	 experts	 required	additional	 explanations	 around	metrics,	 before	 they	understood	what	was	
meant.	These	request	varied,	which	was	depending	on	the	specialization	of	the	experts.	

Considering	the	observations	of	the	CMM’s	continuous	change	and	the	requests	for	metric	explanations,	we	
concluded	that	the	CMM	was	not	ready	to	use	in	case	studies.	Consequently,	and	based	on	these	observations,	
we	determined	that	we	needed	further	designing	and	validating	the	CMM,	in	order	to	improve	the	content	and	
increase	its	validity.	

Therefore,	we	changed	IT4	by	conducting	additional	expert	interviews	to	design	and	validate,	instead	of	case	
studies.	We	maintained	the	same	scheduled	interviews,	managed	to	schedule	extra	expert	interviews,	while	
using	the	interview	protocol	of	IT3	with	slight	adjustments.	Figure	57	depicts	the	changed	situation.	

	
Figure 57: Treatment validation iteration change visualized

Hence,	by	evaluating	the	situation	and	changing	the	iterations,	we	provided	a	base	version	of	the	CMM	that	
can	be	used	 in	case	studies	as	 future	research.	However,	we	were	not	able	to	perform	a	case	study	for	the	
model	ourselves,	as	we	had	a	limited	period	of	time	available	and	all	the	continuous	changes	required	this	time	
to	process.	We	believe	that	this	step	increased	the	CMM’s	overall	validity	in	reference	towards	the	real	world.	 	

104 | P a g e

13. Reflection	on	Research	Process	
This	section	provides	a	reflection	on	the	research	process.	We	focus	on	the	challenges	we	experienced	during	
the	research	process,	and	on	quality	of	research.	

13.1. General	reflection	on	process	and	results	
13.1.1. The	beginning	
At	the	moment	the	short	proposal	was	delivered,	we	were	not	an	expert	on	any	of	the	involved	concepts.	In	
addition,	none	of	the	involved	parties	had	an	idea	what	form	the	resulting	artefact	would	be.	We	used	the	first	
months	of	the	PI	phase	to	study	and	understand	the	main	concepts.	We	believed	that,	besides	defining	the	
theoretical	foundation,	this	also	supported	the	process	of	discovering	what	kind	of	artefact	we	could	design	to	
interact	with	a	problem	in	this	context.	

13.1.2. Our	challenge	around	containerization	
During	these	first	months,	as	we	did	not	find	any	literature	that	linked	EAG	to	containers,	we	also	were	not	able	
to	discover	any	challenge	regarding	the	usage	of	containers.	The	only	denoted	issues	we	found	in	the	literature	
and	 by	 desk	 research,	 were	 the	 weaknesses	 of	 containers	 regarding	 their	 security.	 However,	 designing	 a	
solution	for	this	problem	was	not	feasible	for	us.	This	security	 issue	 is	 located	 in	the	kernel	of	an	OS	where	
containers	are	connected	to,	which	requires	us	to	explore	containers	on	code	level	and	write	software.	That	
goal	did	not	align	with	our	background	and	possessed	skills,	and	was	therefore	out	of	scope	for	this	project.	

Another	 option	 was	 to	 conduct	 research	 on	 the	 traceability	 between	 the	 transition	 from	 VMs	 towards	
containers.	 We	 hypothesized	 that	 VMs	 possess	 (functional)	 characteristics	 that	 have	 to	 be	 taken	 over	 by	
equivalent	container	(functional)	characteristics.	In	this	way,	we	could	explore	how	both	VMs	and	containers	
differ	from,	and	share	resemblance	with	each	other	on	functional	base.	We	investigated	the	literature	and	did	
not	find	existence	of	such	knowledge	about	the	relation	between	both	concepts,	meaning	that	this	option	had	
relevance	to	further	investigate.	However,	when	we	proposed	this	to	experts	from	the	field	of	practice,	they	
argued	that	other	aspects	and	cases	would	be	more	relevant	to	develop.	

We	 found	 through	 expert	 interviews	 that	 organizations	 have	 a	 need	 for	 knowledge	on	 1)	 starting	 to	 apply	
containers	or	2)	further	improving	the	usage.	Some	organizations	may	know	the	advantages	of	containers,	but	
do	not	have	in-house	knowledge	on	containerization	to	utilize	it,	or	do	not	know	how	to	improve	or	mature	its	
utilization.	This	was	the	first	indication	of	a	suitable	challenge	around	containerization.	
In	addition,	the	experts	stated	that	for	organizations,	SDLC	is	one	of	the	most	important	use	cases	for	applying	
containers.	 Furthermore,	 they	argued	 that	organizations	would	benefit	 if	 they	had	access	 to	 knowledge	on	
applying	containers	with	different	levels	of	skill.	

We	concluded	that	this	challenge	was	more	of	conceptual	nature,	rather	than	the	isolation	issue.	This	challenge	
could	be	treated	by	designing	a	maturity	model	that	provides	knowledge	on	such	differentiating	levels	of	skill	
in	respect	to	containers.	Moreover,	these	levels	provide	knowledge	to	both	calls	from	industry,	as	mentioned	
by	 the	 experts.	 By	 combining	 the	 denoted	 call	 from	 industry	 for	 differentiating	 knowledge	 on	 container	
utilization,	and	the	important	use	case	of	SDLC,	we	distinguished	a	relevant	and	suitable	challenge	to	explore	
and	conduct	research	on.	Therefore,	we	decided	to	design	the	CMM	with	the	focus	on	SDLC.	

13.1.3. The	design	phase	
We	had	to	extend	our	literature	review	by	investigating	SDLC.	Conducting	additional	research	required	extra	
time	as	SDLC	relates	to	other	new	topics,	which	we	included	in	the	literature	review.	Conducting	research	on	
SDLC	 resulted	 in	many	articles	 about	 SD	and	SD-methods.	 This	 applied	 for	both	 literature	 as	desk	 research	
sources.	Therefore,	we	followed	the	literature	and	kept	focusing	on	the	development	process	of	SDLC.	We	also	
had	to	consider	that	the	addition	of	SDLC	might	lead	to	the	research	becoming	more	of	a	technical	essence.	
However,	 we	 evaluated	 this	 risk	 with	 all	 involved	 parties,	 and	 considered	 conceptual	 knowledge	 on	 the	
concepts	as	sufficient	to	design	the	CMM.	

105 | P a g e

We	wanted	to	collaborate	closely	with	experts	to	design	the	CMM,	as	we	needed	more	knowledge	on	SDLC.	
Once	we	started	the	expert	interviews	in	the	TD	phase,	we	expected	a	large	amount	of	feedback	with	a	high	
information	 density,	 coming	 from	 different	 perspectives	 that	 together	 ultimately	 enhanced	 the	 validity.	
Especially	since	the	experts’	specializations	varied	from	developers,	architects,	and	implementers	with	seven	
years	of	experience	in	IT	on	average.	However,	the	provided	feedback	did	not	contain	large	comments	or	major	
suggested	changes.	We	did	receive	many	suggested	additions	to	the	model	on	metric	specific	level,	but	we	had	
to	ask	specifically	to	each	metric.	
Moreover,	we	thought	that	interviewing	experts	with	varying	specializations	would	contribute	to	the	knowledge	
intensity	we	gathered.	However,	we	found	that	this	variation	realized	in	the	CMM	being	constantly	subject	to	
change.	

We	considered	both	as	a	threat	to	validity,	since	 it	was	unlikely	that	our	designed	model	would	be	close	to	
reality	 through	 the	 first	 iteration.	 Next	 sub-section	 elaborates	 on	 this	 threat.	 Nevertheless,	 from	 out	 this	
observation	we	concluded	that	the	CMM	was	in	need	for	more	development,	which	could	lead	to	shortage	of	
time	or	a	not	(fully)	tested	model.	 	

106 | P a g e

13.2. Research	quality	
13.2.1. Threats	to	validity	
During	the	expert	interviews	of	the	TD	phase,	most	experts	were	initially	not	as	critical	as	we	expected.	When	
we	continued	to	ask	specifically	for	their	opinion	regarding	each	metric,	we	received	more	feedback	around	the	
topics.	We	believe	that	this	is	because	of	the	short	time	experts	were	available.	Considering	this	time	challenge,	
and	to	increase	the	chances	of	being	able	to	interview	them,	we	restricted	the	interviews	to	one	hour	(except	
for	IT3Int#5).		

Besides	that,	we	experienced	that	one	hour	was	insufficient	to	discuss	the	complete	model	with	experts.	Hence,	
we	were	forced	to	take	action	by	interrupting	experts’	explanations	about	topics,	or	skip	parts	of	the	model.	
We	made	sure	that	we	would	discuss	skipped	parts	into	subsequent	interviews.	This	was,	however,	not	an	ideal	
situation.	During	the	later	interviews	(IT4),	we	separated	them	into	multiple	sessions	to	counter	this	situation.		

Another	related	challenge	was	the	continuously	changing	CMM.	This	challenge,	however,	was	both	negative	as	
positive.	On	the	negative	side,	we	were	not	able	to	start	with	the	case	studies	of	the	model	within	the	time	of	
our	project.	However,	at	 the	other	hand,	due	to	all	 the	changes	 from	the	varying	 feedback	on	both	CMM’s	
content	and	structure,	we	believe	the	model	has	become	more	valid	towards	the	real-world	context.	Therefore,	
improving	the	results	of	this	research.	

We	planned	to	test	our	CMM	through	case	studies	at	two	large	organizations.	Since	we	noticed	that	the	CMM	
was	not	ready	for	validation,	we	decided	to	change	the	activities	of	IT4.	We	believe	that	because	of	this	decision,	
current	version	of	 the	CMM	is	more	complete	than	 it	would	be	by	keeping	the	original	plan.	Therefore,	we	
believe	that	current	CMM	version	can	be	used	in	case	studies	as	future	work.	 	

107 | P a g e

14. Conclusion	
In	this	section,	we	conclude	our	research	in	this	master	thesis	project,	where	we	aim	to	link	and	explain	our	
answers	to	the	defined	RQs	of	section	1.2.2.	After	each	summarized	explanation	about	a	topic,	we	denote	which	
RQ	we	answered.	

14.1.1. The	all-encompassing	domain	of	enterprise	agility	
Nowadays,	 technology	 is	 involved	 with	 almost	 any	 change	 in	 an	 organization.	 Especially	 in	 business	
transformation	 and	 -digitalization,	 new	 technologies	 are	 introduced.	 These	 new	 technologies	 should	 be	
compatible	with	all	current	systems	and	applications	of	an	organization	to	be	able	to	implement	successfully.	
Depending	on	its	magnitude,	the	new	technology	affects	both	business,	application	and	infrastructure	domains.	
This	means	that	such	changes	start	with	investigating	the	enterprise	and	IT	architecture(s)	of	an	organization.	

We	aimed	to	use	containers	–	a	specific	technology	inside	the	virtualization	technologies	domain	–	to	improve	
an	 organization’s	 EAG.	 Containers	 provide	 organizations	 with	 the	 ability	 to	 change	 their	 current	 way	 of	
supporting,	 deploying,	 and	 maintaining	 both	 hardware	 and	 software.	 Besides	 that,	 containers	 have	
characteristics	that	align	with	the	characteristics	of	EAG,	baptizing	containers	as	an	‘agile-enabling	technology’	
in	our	research.	In	most	cases,	an	organization	can	apply	containers	on	positions	where	VMs	are	currently	used.	
However,	VMs	align	less	with	EAG	in	equivalent	contexts.	To	depict	this	difference	in	regards	to	EAG,	we	linked	
containers	and	VMs	to	EAG	in	the	introduction	of	this	thesis.	

Subsequently,	the	research	continued	in	discovering	what	the	literature	and	experts	from	the	field	of	practice	
write,	think,	and	experience	in	reference	to	agility,	EAG,	and	their	link	to	(agile	enabling)	technologies,	including	
the	virtualization	technologies.	From	the	literature,	we	found	that	multiple	agility	types	exist,	which	all	focus	
on	either	Organization	or	People	of	OPT.	However,	we	found	none	that	referred	specifically	towards	Technology	
(section	3.4).	Consequently,	from	the	literature	we	were	not	able	to	find	a	specific	link	between	both	EAG	and	
technology,	nor	EAG	and	containers.	Secondly,	all	experts	we	interviewed	during	the	PI	phase	agreed	that	a	
container	is	an	agile	enabling	technology,	acknowledging	its	potential	to	improve	EAG	regarding	technology.	
Furthermore,	these	experts	denoted	that	the	biggest	challenge	around	containers	for	organizations	is	the	lack	
of	 knowledge	on	 how	 to	 start	 applying	 containers	 or	 further	 utilize	 them.	 Subsequently,	we	discussed	 and	
concluded	that	the	field	of	practice	would	benefit	with	a	model	that	provides	organization	specific	‘hands-on’	
knowledge	to	start	applying	containers	 in	their	SDLC	process.	Hence,	based	on	the	found	gap	of	knowledge	
from	 the	 literature	 and	 need	 for	 knowledge	 originating	 from	 the	 field	 of	 practice,	 we	 decided	 to	 design	 a	
container	maturity	model	that	would	provide	an	organization	with	insights	on	utilizing	containers.	Ultimately,	
in	order	to	support	their	enterprise	agility	from	a	technology	perspective.	

As	we	 reported	 about	 the	 SOTA	 of	 agility,	 EAG,	 virtualization	 and	 containerization,	 included	 the	 opinion	 of	

experts	from	the	field	of	practice,	and	linked	both	VMs	and	containers	to	EAG,	we	answered	RQ1.1,	1.2,	and	1.3.	

14.1.2. The	extension	of	literature	reviewing	
We	 determined	 that	 additional	 literature	 reviewing	 to	 SDLC	 and	 maturity	 models	 was	 required,	 after	 the	
decision	to	design	a	container	maturity	model.	In	addition,	we	also	had	to	find	and	define	how	containers	can	
be	 integrated	 into	 an	 organization’s	 EA.	 As	 a	 result,	 we	 studied	 different	 maturity	 models	 and	 selected	 a	
structure	and	specific	content	to	adopt	in	our	CMM.	Furthermore,	we	investigated	the	SDLC	domain	to	find	out	
what	it	comprises.	With	this	additional	reviewing,	we	aimed	to	become	known	with	the	new	topics	and	extend	
our	theoretical	foundation.	Consequently,	we	were	able	to	design	the	first	concept	version	of	the	CMM	(v0.1),	
which	we	used	to	assess	through	expert	interviews	of	IT2.	

As	we	further	investigated	SDLC	and	maturity	models,	and	subsequently	stated	our	results,	we	answered	RQ2.1.	

14.1.3. Containerization	in	enterprise	architecture	
Exploiting	 the	 advantages	 of	 containers	 is	 use	 case	 specific.	 Especially	 short-lived,	 stateless	 instances	 of	
applications	or	services	benefit	from	containers.	MSA	is	a	pattern	that	decouples	applications	into	decoupled	
services	 (i.e.	 migrate	 from	 monolith	 towards	 independent	 services),	 realizing	 services	 to	 be	 individually	

108 | P a g e

modified,	executed,	and	maintained.	An	organization	that	uses	the	MSA	pattern	in	their	EA	has	the	architectural	
requirements	to	benefit	from	using	containers.	Moreover,	the	IaC	principle	is	also	enabled	by	this	pattern,	as	
containers	are	infra-agnostic,	and	can	be	easily	configured	by	using	configuration	scripts	and	infrastructure	files.	
The	combination	of	these	four	concepts	together	enable	an	organization	to	become	more	agile	throughout	the	
whole	enterprise,	specifically	by	the	means	of	technology.	

Hence,	we	found	the	following	synergy	between	conceps	and	technologies:	the	MSA	pattern	realizes	the	use	
case-specific	demands	that	containers	require	to	exploit	their	benefits	(portability,	stateless,	resource	efficient)	
in	an	EA.	Therefore,	 integrating	containers	in	an	organization’s	EA	while	applying	the	MSA	pattern	increases	
EAG	in	regards	to	technology,	and	enables	IaC,	which	further	enhances	EAG.	

We	 studied	 the	 functionality	 of	 containers,	 and	 subsequently	 used	 the	 results	 to	 find	 a	 suitable	manner	 to	

implement	containers	in	an	EA.	By	the	combination	of	the	four	technologies	(MSA,	IaC,	EA,	and	containers),	the	

benefits	of	containers	are	enabled	in	an	organization’s	EA.	Hence,	we	answered	RQ2.2.	

14.1.4. Designing	an	artefact	for	the	problem	context	
We	chose	to	use	multiple	iterations	to	design	the	proposed	CMM.	Each	iteration	had	a	different	setting	and	
goal,	where	we	aimed	to	collect	varying	types	of	information.	IT1	activities	consisted	of	brainstorm	sessions	and	
prior	PI	literature	results,	whereas	the	remaining	iterations	were	focused	on	semi-structured	expert	interviews	
which	also	included	validation.	This	collection	of	varying	information	acted	as	our	main	source	to	design	the	
CMM	from.	Hence,	all	iterations	combined	depict	a	design	process	of	incremental	nature.	We	believe	that	the	
different	information	perspectives	(as	described	in	our	Design	plan	in	section	7)	of	this	design	process,	enabled	
us	to	deliver	a	sufficient	first	version	of	the	CMM	that	can	be	used	to	encounter	the	problem	context.	Moreover,	
this	CMM	version	 is	 ready	 to	be	 further	 investigated	 through	 future	 research	 to	 strengthen	 its	 validity	 and	
effectivity.	

Our	 constructed	 design	 plan	 shows	 an	 incremental	 design	 process	 which	 incorporates	 varying	 types	 of	

information	originating	from	multiple	perspectives.	Hence,	we	partially	answered	RQ2.3.	This	RQ	is	completely	

answered	with	the	final	result	of	the	CMM,	as	described	in	the	next	sub-section.	

14.1.5. The	designed	artefact	and	main	RQ	
The	CMM	assesses	an	organization’s	container-readiness,	and	the	maturity	of	their	SDLC	process,	whereas	the	
latter	also	focuses	on	the	application	landscape	and	infrastructure.	Different	areas	consist	in	the	CMM,	whereas	
each	 area	 includes	 several	metrics.	 These	metrics	 are	 components	 that	 are	 used	 in	 the	 SDLC	 process	with	
respect	to	containers,	and	are	defined	throughout	five	different	levels	of	maturity.	Indicating	an	organization’s	
maturity	 for	 each	 metric	 provides	 the	 organization	 with	 an	 overview	 on	 their	 SDLC	 configuration	 and	
performance.	With	this	knowledge,	an	organization	has	an	indication	how	it	currently	performs,	and	can	set	
goals	towards	higher	maturity	levels	related	to	containers.	Therefore,	an	organization	can	inform	itself	by	using	
the	model	to	determine	what	its	improvement	strategy	for	achieving	higher	maturity	is	going	to	be	by	following	
our	metric	specifications	of	each	metric.	Returning	to	our	main	research	question:	

How can organizations support their enterprise agility regarding business and
IT by integrating virtualization technologies?

We	answered	the	main	research	question,	as	organizations	can	use	the	CMM	to	derive	the	current	state	of	their	
SDLC	maturity	regarding	containers,	and	can	set	a	strategy	for	new	targets	based	on	our	defined	maturity	levels.	
Besides	that,	the	container	technology	is	the	mean	in	this	case.	However,	before	we	can	apply	this	mean	into	
an	 organization,	 its	 architecture	 and	 corresponding	 applications	 have	 to	 be	 compatible.	 Without	 that,	
containers	will	not	bring	the	promised	agility,	despite	their	characteristics.	A	MSA	pattern	helps	in	such	case,	as	
this	 decouples	 applications	 and	 system	 into	 small,	 independent	 services	 or	 individual	 pieces	 of	 software.	
Moreover,	MSA	also	enables	the	IaC	principle,	further	enhancing	enterprise	agility	in	an	organization.	Hence,	
the	combination	of	the	mean	of	containers,	the	fundament	of	the	MSA	style	adopted	in	an	EA,	enables	IaC	and	
lets	 the	 organization	 use	 the	 CMM	 to	 further	 increase	 the	maturity	 of	 their	 SDLC	 process.	 The	 higher	 the	
maturity,	the	easier	it	gets	to	advance	in	enterprise	agility.	

109 | P a g e

14.1.6. Validation	of	the	CMM	
We	decided	to	change	the	case	studies	of	IT4	to	extra	expert	interviews	in	order	to	gather	additional	knowledge	
for	designing	the	CMM	and	to	validate	the	presented	version.	Based	on	the	response	of	the	different	experts	
from	the	field	of	practice,	gathered	in	IT2,	IT3,	we	concluded	that	the	CMM	was	still	subject	to	change	during	
the	 final	 iteration.	 Therefore,	 we	 did	 not	 start	 using	 the	 CMM	 in	 case	 studies,	 but	 gathered	 additional	
knowledge	instead	to	further	design,	improve,	and	validate	the	CMM.	

Despite	we	changed	the	activities	of	IT4,	we	were	able	to	provide	an	answer	to	RQ3.1.	RQ3.1	is	focused	on	how	
experts	from	the	field	of	practice	perceive	the	CMM	in	its	assessed	state.	

14.1.7. Our	contribution	to	the	scientific	domain	and	field	of	practice	
As	 aforementioned	 in	 section	 3.5,	 we	 were	 not	 able	 to	 find	 explicit	 links	 between	 EAG	 and	 a	 functional	
technology.	Nevertheless,	the	four	characteristics	of	agile	IT	we	did	find	are	relatable	to	our	answer	on	the	main	
research	 question.	 By	 using	 MSA	 with	 containers,	 we	 realize	 1)	 Technical	 integration	 of	 the	 container	
technology	within	 an	 organization’s	 EA.	 Subsequently,	 by	 increasing	 the	maturity	 of	 the	 SDLC	 process,	 i.e.	
increasing	the	formalism	of	the	process	(as	found	in	section	3.10.4),	we	reach	a	higher	2)	Standardization,	as	
more	components	are	standardized	and	defined.	High	standardization	leads	to	increased	chances	of	3)	Reusable	
components	of	any	other	aspect	from	the	SDLC	process	or	delivery.	As	the	final	one,	by	using	containers	and	
independent,	decoupled	services,	a	high	4)	Scalability	potential	is	enabled	in	the	infrastructure	and	application	
landscape	of	an	organization.	

Furthermore,	we	believe	that	most	organizations	that	develop	software	are	familiar	with	the	CMM	metrics	we	
have	defined.	The	metrics	originate	from	generally	accepted	CICD	sources,	SD	and	infrastructure	experts,	and	
SD	best	practices.	Due	to	organizations’	familiarity	with	CMM	content,	we	argue	that	users	are	able	to	align	the	
metrics	with	their	organization-specific	context,	and	therefore	(partially)	understand	what	the	next	maturity	
level	for	a	metric	comprises.	Besides	that,	most	of	the	larger	organizations	already	apply	virtualization	by	using	
VMs	and	hypervisors,	and	are	therefore	familiar	with	virtualization	technology	related	components.	

Achievements	towards	higher	maturity	levels	improve	small	parts	of	the	organization’s	SDLC	process.	For	each	
topic,	we	made	a	link	towards	the	EAG	characteristics	(as	we	also	did	for	virtualization	technologies	in	section	
1.1),	as	a	metric	or	metric	specifications	provides	either	new	functionality	or	quality	improvements.	This	means	
that	advancing	a	maturity	level	onto	one	or	more	metrics,	incrementally	contributes	to	an	organization’s	overall	
EAG	regarding	Business	and	IT	–	the	T	(technology)	of	OPT.	Consequently,	we	can	reject	the	null	hypothesis	(H0),	
and	partially	conclude	from	mainly	a	theoretical	perspective	that	the	alternative	hypothesis	(H1)	is	true.	

In	addition,	we	provided	a	PDD	of	the	CMM	to	facilitate	an	overview	of	the	CMM’s	sequence	and	corresponding	
deliverables.	With	the	PDD,	users	or	researchers	are	given	an	overview	of	the	CMM’s	structural	phases,	the	
sequence,	and	deliverables.	By	doing	so,	the	PDD	supports	usage	of	the	CMM,	and	also	future	developments	
by	making	it	easier	to	implement.	

Concluding,	organizations	using	the	CMM	v1.0	are	provided	with	insights	that	is	usable	for	the	improvement	
strategy	of	their	software	process	maturity.	This	supports	their	EAG	regarding	Business	and	IT	by	integrating	
virtualization	technologies	–	more	specifically:	containerization	or	containers.	

	 	

110 | P a g e

15. Discussion	and	future	work	
15.1. Virtualization	technologies	and	related	technologies	
15.1.1. Security	of	containers	through	architecture	
Strengths	and	weakness	of	containers	have	been	explained	in	this	MSc	thesis.	Containers’	major	weakness	is	
the	lack	of	isolation	–	due	to	the	shared	kernel	(as	visualized	by	black	arrows	in	Figure	58)	–	restricting	containers	
from	being	used	in	use	cases	where	security	is	essential.	To	fix	this	issue,	two	main	options	are	available:		

- Further	research	on	containers	to	improve	isolation;	
- Hybrid	architecture	solution	of	putting	one	or	more	containers	inside	a	VM.	

	
Figure 58: VM and container kernel isolation

Currently,	both	options	are	investigated	by	scientists	(Arnautov	et	al.,	2016;	Tesfatsion	et	al.,	2018;	Bui,	2014).	
As	our	research	shows,	VMs	have	increased	progression	in	development	and	can	additionally	be	complemented	
with	new	concepts	(examples	given	in	next	sub-section).	We	think	it	is	wise	to	include	VMs	in	further	research	
as	well,	as	the	architectural	combination	of	VMs	and	containers	is	currently	popular	in	the	business	domain.	
Moreover,	 it	 also	 shows	 further	 potential	 due	 to	 new	 concepts	 that	 can	 be	 added	 to	VMs	 and	 containers,	
creating	a	new	synergy	between	both	technologies	(last	two	architectures	in	Figure	62,	section	15.1.3).	

15.1.2. Dynamic	OS	images	
We	have	designed	a	maturity	model	specifically	for	containers.	However,	VMs	have	also	progressed	 in	their	
development.	New	OS	images	have	been	developed	to	improve	performance	of	VMs.	As	an	example,	there	is	
the	term	JeOS:	‘Just	enough	OS’.	This	resulted	in	the	concept	of	unikernels.	A	unikernel	can	be	seen	as	a	‘lean’	
OS	image	where	only	the	essential	parts	that	are	required	by	an	application	that	is	aimed	for	are	implemented.	
Another	 concept	 also	 emerged	 besides	 the	
unikernels,	 which	 is	 a	 concept	 of	 modular	 and	

stateless	OS	images	(example	of	provider	is	Clear	
Linux).	 Instead	 of	making	 an	OS	more	 lean,	 this	
concept	complements	OSs	with	functionalities	in	
order	 to	 prevent	 the	 need	 of	 having	 to	 launch	
another	VM.	 See	Figure	59	 for	 a	 visualization	of	
both	concepts.	

In	Figure	61,	a	use	case	from	practice	is	depicted.	
The	 unikernel’s	 architecture	 needs	 two	 VMs,	 Figure 59: Unikernel and Modular OS concepts visualized	

111 | P a g e

whereas	 the	modular	 image	 adds	 a	 functionality	 required	 by	 the	 second	 application	 to	 run.	 This	 addition	
removes	the	need	for	another	OS,	and	is	therefore	able	to	fork	both	containers	in	the	same	VM.	

Using	such	a	unikernel	or	modular	OS	 image	for	a	VM	instead	of	a	full	OS	 image	is	 likely	to	save	computing	
resources	and	increase	speed.	Combined	with	a	container,	these	new	architectural	concepts	can	make	use	of	
both	the	benefits	of	containers,	as	the	isolation	functionality	of	VMs,	but	now	at	a	‘fraction	of/reduced	amount	
of’	performance	penalty/overhead	that	accompany	VMs.	We	think	it	is	interesting	to	conduct	further	research	
on	how	the	popular	hybrid	solution	can	be	further	advanced	using	different	technologies.	

	
Figure 60: Image hierarchy (rough estimates of averages)

15.1.3. Hybrid	solutions	
As	 aforementioned,	 many	 organizations	 apply	 hybrid	 solutions	 (containers	 nested	 in	 VMs)	 in	 practice	
nowadays.	However,	when	the	hybrid	solution	is	complemented	with,	for	instance,	the	unikernel	concept,	the	
overall	 architecture	 becomes	 leaner	 than	 before.	 Theoretically,	 by	 doing	 this,	 it	 reduces	 the	 authentic	 VM	
performance	penalty,	maintains	VMs’	isolation	benefit,	and	exploits	the	functional	advantages	of	containers.	
We	believe	that	further	investigating	and	maturing	the	hybrid	concept,	combined	with	new	technologies	such	
as	unikernels,	will	 be	 the	 future	 for	 flexible	 and	 secure	 infrastructure.	 Consequently,	 it	 enhances	 container	
usage	in	new	use	cases,	besides	the	cases	containers	already	have	proven	their	advantages.	

	
Figure 61: Virtualization architectural differences

15.2. Next	developments	on	CMM	
15.2.1. Cross-links	of	implemented	CICD	metrics		
The	current	state	of	the	CMM	indicates	the	maturity	of	an	organization	regarding	their	SDLC	configuration	in	
relation	to	containers.	If	an	organization	has	the	need	to	switch	from	VMs	to	containers,	it	can	use	the	CMM	to	
test	whether	they	are	fit	for	containers,	and	to	find	out	on	what	topics	they	should	start	focusing.	Considering	
this	information,	the	CMM	fulfils	its	task	as	was	defined	by	the	need	of	organizations	found	during	the	Long	
Proposal.	 However,	 the	 CMM	 in	 its	 current	 state	 does	 contain	 untapped	 potential	 that	 requires	 additional	

112 | P a g e

research.	
CICD	components	of	each	SDLC	phase	have	different	 interrelationships	
with	each	other.	We	think	that	having	certain	CICD	components	enabled	
in	 a	 SDLC	 configuration,	 it	 is	 likely	 that	 this	 also	 enables	 other	
components	 to	 exist	 more	 easily	 or	 improve	 their	 functionality.	 For	
instance,	having	a	source	code	management	system	that	is	integrated	in	
the	journey	fosters	the	ability	to	have	automated	builds.	Hence,	realizing	
untapped	potential	(‘quick	wins’)	organizations	may	possess	(Figure	62).		

Above	example	of	such	cross-link	 implies	 there	are	more	cross-links	hidden	
between	multiple	CMM	metrics.	Knowing	those	underlying	cross-links	enables	researchers	to	further	develop	
the	CMM,	by	using	the	interrelations	to	provide	a	more	accurate	and	realistic	advice.	Ultimately,	this	would	
improve	the	third	part	of	the	CMM	by	complementing	Results	matrix	
with	 a	 valid	 ‘Roadmap’	 that	 contains	 organization-specific	
information	 to	 improve	 about	 that	 organization’s	 SDLC	
configuration.	 The	 information	 is	 shaped	 organization-specific,	 by	
using	 the	 results	 of	 the	 PA,	 MA	 and	 underlying	 cross-links	 and	
interrelationships.	Such	a	roadmap	includes	information	that	enables	
both	 indicating	 and	 achieving	 quick	 wins,	 as	 avoiding	 irrelevant	
(quick)	 wins,	 or	 ignoring	 slow	 incremental	 improvements,	 and	
unnecessary	wins	against	high	expenses	(as	shown	in	Figure	63).	

Therefore,	 we	 state	 that	 further	 research	 should	 be	 focused	 on	
finding	 the	 interrelationship	between	 the	CICD	 components	 inside	
the	SDLC	process	in	regards	to	containers,	which	are	processed	into	
the	CMM	as	metrics	and	as	specified	maturity	levels.	

15.2.2. CMM	–	Business	area:	output	
For	defining	the	numbers	of	all	values	used	in	the	Business	Area,	we	had	to	base	our	model	on	the	given	prices	
by	vendors	of	such	services.	However,	as	our	current	calculations	are	limited,	these	values	are	not	realistic	for	
businesses,	and	other	work	prevailed	before	this	area,	we	decided	to	exclude	the	content	of	the	Business	area.	
Moreover,	it	is	likely	that	organizations	(B2B)	can	receive	discount	or	other	payment	constructions	that	were	
not	visible	during	our	research	period.	We	propose	that	future	research	should	focus	on	deriving	more	realistic	
values	from	relevant	organizations,	in	order	to	improve	the	validity	of	the	Business	area	and	bring	the	results	
closer	to	the	real-world	context.	Rather	than	including	information	of	other	quality	than	the	overall	CMM.	

15.2.3. CMM	–	Roadmap	
In	 current	 CMM	 version,	 the	 third	 part	 consist	 of	 the	 results	matrix	 that	 depicts	 the	maturity	 score	 of	 an	
organization.	For	future	research,	in	collaboration	with	the	investigation	to	the	cross-links	of	CICD,	we	believe	
it	is	interesting	to	conduct	research	on	creating	a	Roadmap	related	to	the	Results	matrix.	Such	a	roadmap	shows	
the	optimal	for	an	organization	to	perform	a	specific	(chain	of)	metric	improvements	based	on	the	individual	
context	 of	 that	 organization.	 Therefore,	 the	 advice	 to	 improve	 is	 not	 distilled	 from	 the	 topics	 that	 can	 be	
improved	the	most,	but	rather	the	topics	where	that	specific	organization	benefits	the	most	from,	all	in	relation	
to	the	organization’s	current	SDLC	configuration.	

15.2.4. Validation	
As	aforementioned,	 the	original	 research	plan	was	 to	validate	 the	model	 in	 the	 final	 iteration	 (IT4).	Due	 to	
model’s	continuous	changes	based	on	expert	interviews,	we	did	not	perceive	the	model	as	sufficiently	advanced	
to	 start	 validation	 sessions	 (as	 explained	 in	 section	 12).	 By	 changing	 the	 validation	 sessions	 to	 additional	
knowledge	gathering	expert	interviews,	we	were	able	to	design	a	further	advanced	model.	We	believe	that	this	
model	 ready	 to	 start	 with	 validation	 sessions,	 as	 the	model	 would	 be	without	 changing	 the	 research	 plan	
schedule.	Therefore,	we	state	that	for	future	works,	the	model	should	be	validated	by	performing	case	studies	
at	different	organizations	that	pass	the	Pre	Assessment	of	the	CMM.	

Figure 62: Untapped potential	

Figure 63: scenario of realized improvements
for advancing maturity levels	

113 | P a g e

References	
Abdelrazik.	 (2017).	Docker	 vs.	 Kubernetes	 vs.	Apache	Mesos.	Retrieved	 from	https://mesosphere.com/blog/docker-vs-
kubernetes-vs-apache-mesos/.	

Alami,	 A.	 (2017).	 Defining	 Enterprise	 Agility.	 Retrieved	 from	
http://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3864/Defining-Enterprise-Agility.aspx.	

Amaral,	M.,	Polo,	J.,	Carrera,	D.,	Mohomed,	I.,	Unuvar,	M.,	&	Steinder,	M.	(2015,	September).	Performance	evaluation	of	
microservices	architectures	using	containers.	In	Network	Computing	and	Applications	(NCA),	2015	IEEE	14th	International	

Symposium	on	(pp.	27-34).	IEEE.	

Arnautov,	S.,	Trach,	B.,	Gregor,	F.,	Knauth,	T.,	Martin,	A.,	Priebe,	C.,	...	&	Goltzsche,	D.	(2016,	November).	SCONE:	Secure	
Linux	Containers	with	Intel	SGX.	In	OSDI	(Vol.	16,	pp.	689-703).	

Ashrafi,	N.,	Xu,	P.,	Sathasivam,	M.,	Kuilboer,	J.	P.,	Koelher,	W.,	Heimann,	D.,	&	Waage,	F.	(2005,	July).	A	framework	for	
implementing	business	agility	 through	knowledge	management	systems.	 In	E-Commerce	Technology	Workshops,	2005.	

Seventh	IEEE	International	Conference	on	(pp.	116-121).	IEEE.	

Banerjee,	 T.	 (2014,	 August	 19).	 Understanding	 the	 key	 differences	 between	 LXC	 and	 Docker.	 Retrieved	 from	
https://archives.flockport.com/lxc-vs-docker/.	

Bernstein,	D.	(2014).	Containers	and	cloud:	From	lxc	to	docker	to	kubernetes.	IEEE	Cloud	Computing,	(3),	81-84.	

Bessant,	 J.,	 Knowles,	 D.,	 Briffa,	 G.,	 &	 Francis,	 D.	 (2002).	 Developing	 the	 agile	 enterprise.	 International		
Journal	of	Technology	Management,	24(5-6),	484-497.	

Bigelow,	 S.	 (n.d.).	 5	 Cons	 of	 container	 technology.	 Retrieved	 from	
https://searchservervirtualization.techtarget.com/feature/Five-cons-of-container-technology.	

Bloom,	N.,	&	Pierri,	N.	(2018).	Research:	Cloud	Computing	Is	Helping	Smaller,	Newer	Firms	Compete.	Harvard	Business	
Review.	

Bloomberg,	 J.	 (n.d.)	 Think	 big	 with	 microservice:	 Lego-like	 software	 development	 takes	 shape.	 Retrieved	 from	
https://techbeacon.com/app-dev-testing/think-big-microservices-lego-software-development-takes-shape	

Boer,	A.,	&	Van	Engers,	T.	(2013).	Legal	knowledge	and	agility	in	public	administration.	Intelligent	Systems	in	Accounting,	

Finance	and	Management,	20(2),	67-88.	

Booth,	R.	(1995).	More	agile	than	lean.	In	Proceedings	of	the	British	Production	and	Inventory	Control	Society	Conference	
(pp.	191-207).	

Breu,	 K.,	 Hemingway,	 C.	 J.,	 Strathern,	M.,	&	 Bridger,	 D.	 (2002).	Workforce	 agility:	 the	 new	employee	 strategy	 for	 the	
knowledge	economy.	Journal	of	Information	Technology,	17(1),	21-31.	

Brown,	 S.,	 &	 Bessant,	 J.	 (2003).	 The	 manufacturing	 strategy-capabilities	 links	 in	 mass	 customisation	 and	 agile	
manufacturing–an	exploratory	study.	International	Journal	of	Operations	&	Production	Management,	23(7),	707-730.	

Buckley,	K.	 (2017,	 January	10).	Application	containers	will	be	a	$2.7bn	market	by	2020,	 representing	a	small	but	high-
growth	 segment	 of	 the	 Cloud-Enabling	 Technologies	 market.	 Retrieved	 from	 https://451research.com/blog/1351-
application-containers-will-be-a-$2-7bn-market-by-2020,-representing-a-small-but-high-growth-segment-of-the-cloud-
enabling-technologies-market.	

Bui,	T.	(2015).	Analysis	of	docker	security.	arXiv	preprint	arXiv:1501.02967.	

Burgess,	 T.	 F.	 (1994).	Making	 the	 leap	 to	 agility:	 defining	 and	achieving	 agile	manufacturing	 through	business	process	
redesign	and	business	network	redesign.	International	Journal	of	Operations	&	Production	Management,	14(11),	23-34.	

Carroll,	M.,	Kotzé,	P.,	&	Van	Der	Merwe,	A.	(2010).	Going	virtual:	popular	trend	or	real	prospect	for	enterprise	information	
systems.	

Carroll,	M.,	Kotzé,	P.,	&	Van	der	Merwe,	A.	(2011).	Secure	virtualization:	benefits,	risks	and	constraints.	

Cho,	 H.,	 Jung,	 M.,	 &	 Kim,	 M.	 (1996).	 Enabling	 technologies	 of	 agile	 manufacturing	 and	 its	 related	 activities	 in	
Korea.	Computers	&	Industrial	Engineering,	30(3),	323-334.	

114 | P a g e

Christopher,	M.,	&	Towill,	D.	(2001).	An	integrated	model	for	the	design	of	agile	supply	chains.	 International	Journal	of	
Physical	Distribution	&	Logistics	Management,	31(4),	235-246.	

Comer,	D.	E.,	&	Stevens,	D.	L.	(1993).	Internetworking	with	TCP/IP:	Client-Server	Programming	and	Applications,	volume	
III.	

Connor,	D.	(2004).	Server	virtualization	is	on	the	rise.	Network	World	Canada,	14(23),	18.	

Conroy,	S.	(2018,	January	25).	History	of	virtualization.	Retrieved	from	https://www.idkrtm.com/history-of-virtualization/.	

CoreOS.	(n.d.).	rkt.	Retrieved	from	https://coreos.com/rkt/.	

Dawson,	P.,	&	Bittman,	T.	J.	(2008).	Virtualization	changes	virtually	everything.	Gartner	Special	Report.	

Dove,	 R.	 (1994).	 Tools	 for	 analyzing	 and	 constructing	 agility.	 In	 Proceedings	 of	 the	 Third	 Annual	 Agility	 Forum	
Conference/Workshop,	Austin,	TX.	

Dove,	 R.	 (1999).	 Knowledge	 management,	 response	 ability,	 and	 the	 agile	 enterprise.	 Journal	 of	 knowledge	
management,	3(1),	18-35.	

Dove,	R.	(2001).	Response	ability.	The	Language,	Culture	and	Structure	of	the	Agile	Enterprise,	New	York.	

Dove,	R.	 (2005a,	March).	 Fundamental	principles	 for	 agile	 systems	engineering.	 In	Conference	on	Systems	Engineering	

Research	(CSER),	Stevens	Institute	of	Technology,	Hoboken,	NJ.	

Dove,	 R.	 (2005b,	 May).	 Agile	 enterprise	 cornerstones:	 knowledge,	 values,	 and	 response	 ability.	 In	 IFIP	 International	
Working	Conference	on	Business	Agility	and	Information	Technology	Diffusion	(pp.	313-330).	Springer,	Boston,	MA.	

Dreyfus,	S.	E.,	&	Dreyfus,	H.	L.	(1980).	A	five-stage	model	of	the	mental	activities	involved	in	directed	skill	acquisition	(No.	
ORC-80-2).	California	Univ	Berkeley	Operations	Research	Center.	

Dreyfus,	S.	E.	(2004).	The	five-stage	model	of	adult	skill	acquisition.	Bulletin	of	science,	technology	&	society,	24(3),	177-
181.	

Dua,	R.,	Raja,	A.	R.,	&	Kakadia,	D.	(2014,	March).	Virtualization	vs	containerization	to	support	paas.	In	Cloud	Engineering	
(IC2E),	2014	IEEE	International	Conference	on(pp.	610-614).	IEEE.	

Dyer,	 L.,	 &	 Shafer,	 R.	 A.	 (2003).	 Dynamic	 organizations:	 Achieving	 marketplace	 and	 organizational	 agility	 with	
people.	CAHRS	Working	Paper	Series,	27.	

Felter,	W.,	Ferreira,	A.,	Rajamony,	R.,	&	Rubio,	J.	(2015,	March).	An	updated	performance	comparison	of	virtual	machines	
and	linux	containers.	In	Performance	Analysis	of	Systems	and	Software	(ISPASS),	2015	IEEE	International	Symposium	On	
(pp.	171-172).	IEEE.	

Firesmith.	 (2017,	 September	 25).	 Virtualization	 via	 Containers.	 Retrieved	 from	
https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-containers.html.	

Fliedner,	G.,	&	Vokurka,	R.	 J.	 (1997).	Agility:	competitive	weapon	of	 the	1990s	and	beyond?.	Production	and	 Inventory	
Management	Journal,	38(3),	19.	

Flow.ci.	 (2016,	 September	 29).	 Introduction	 to	 Containers:	 Concept,	 Pros	 and	Cons,	Orchestration,	Docker,	 and	Other	
Alternatives.	 Retrieved	 from	 https://medium.com/flow-ci/introduction-to-containers-concept-pros-and-cons-
orchestration-docker-and-other-alternatives-9a2f1b61132c.	

Forsythe,	 C.	 (1997).	 Human	 factors	 in	 agile	 manufacturing:	 a	 brief	 overview	 with	 emphasis	 on	 communications	 and	
information	infrastructure.	Human	Factors	and	Ergonomics	in	Manufacturing	&	Service	Industries,	7(1),	3-10.	

Fowler,	 M.,	 &	 Foemmel,	 M.	 (2006).	 Continuous	 integration.	 (Thought-Works).	 Retrieved	 from	
https://www.martinfowler.com/articles/continuousIntegration.html.	

Ganguly,	A.,	Nilchiani,	R.,	&	Farr,	J.	V.	(2009).	Evaluating	agility	in	corporate	enterprises.	International	Journal	of	Production	
Economics,	118(2),	410-423.	

Ganore,	 P.	 (2014,	 December	 5).	 Advantages	 and	 Disadvantages	 of	 Virtual	 Server.	 Retrieved	 from	
https://www.esds.co.in/kb/advantages-and-disadvantages-of-virtual-server/.	

Gehani,	 R.	 R.	 (1995).	 Time-based	 management	 of	 technology:	 a	 taxonomic	 integration	 of	 tactical	 and	 strategic	
roles.	International	Journal	of	Operations	&	Production	Management,	15(2),	19-35.	

115 | P a g e

Goldman,	 S.	 L.,	 &	 Nagel,	 R.	 N.	 (1993).	 Management,	 technology	 and	 agility:	 the	 emergence	 of	 a	 new	 era	 in	
manufacturing.	International	Journal	of	Technology	Management,	8(1-2),	18-38.	

Goldman,	S.	L.,	Nagel,	R.	N.,	&	Preiss,	K.	(1995).	Agile	competitors	and	virtual	organizations:	strategies	for	enriching	the	

customer	(Vol.	8).	New	York:	Van	Nostrand	Reinhold.	

Gunasekaran,	 A.	 (1999).	 Agile	 manufacturing:	 a	 framework	 for	 research	 and	 development.	 International	 journal	 of	
production	economics,	62(1-2),	87-105.	

Harauz,	 J.,	 Kaufman,	 L.	M.,	&	Potter,	 B.	 (2009).	Data	 security	 in	 the	world	of	 cloud	 computing”	published	by	 the	 IEEE	
computer	and	reliability	societies	in	July.	

Herzenberg,	S.	A.,	Alic,	J.	A.,	&	Wial,	H.	(2000).	New	rules	for	a	new	economy:	Employment	and	opportunity	in	postindustrial	

America.	Cornell	University	Press.	

Hevner,	A.,	March,	S.,	Park,	J.,	&	Ram,	S.	(2004).	Design	Science	in	Information	Systems	Research,	1.

Higgins,	J.,	Holmes,	V.,	&	Venters,	C.	(2015,	July).	Orchestrating	docker	containers	in	the	HPC	environment.	In	International	
Conference	on	High	Performance	Computing	(pp.	506-513).	Springer,	Cham.	

Hilton,	 P.	 D.,	 Gill,	 G.	 K.,	 &	 Little,	 A.	 D.	 (1994).	 CASE	 STUDY:	 ACHIEVING	 AGILITY:	 LESSONS	 FROM	 THE	
LEADERS.	Manufacturing	Review,	7(2),	172-179.	

Hohn,	A.	(2017).	 Introduction	to	Highly	Available	Container	Applications.	DZone’s	Guide	to	Orchestrating	and	deploying	
Containers.	Retrieved	from	https://dzone.com/guides/orchestrating-and-deploying-containers.	

Holbeche,	L.	(2015).	The	Agile	Organization:	How	to	build	an	innovative,	sustainable	and	resilient	business.	Kogan	Page	
Publishers.	

Hopp,	W.	 J.,	 &	 OYEN,	M.	 P.	 (2004).	 Agile	 workforce	 evaluation:	 a	 framework	 for	 cross-training	 and	 coordination.	 Iie	
Transactions,	36(10),	919-940.	

Humble,	 J.,	 &	 Farley,	 D.	 (2011).	 Continuous	 delivery:	 reliable	 software	 releases	 through	 build,	 test,	 and	 deployment	
automation	(pp.	115-117).	Boston:	Addison-Wesley.	

Joy,	 A.	 M.	 (2015,	 March).	 Performance	 comparison	 between	 linux	 containers	 and	 virtual	 machines.	 In	 Computer	
Engineering	and	Applications	(ICACEA),	2015	International	Conference	on	Advances	in	(pp.	342-346).	IEEE.	

Kaddoumi,	T.,	&	Watfa,	M.	(2016,	August).	A	proposed	agile	enterprise	architecture	framework.	In	Innovative	Computing	

Technology	(INTECH),	2016	Sixth	International	Conference	on	(pp.	52-57).	IEEE.	

Kaur.	(2018).	What	is	Docker?.	Retrieved	from	https://dzone.com/articles/what-is-docker-1.	

Kidd,	P.	T.	(1994).	Agile	Manufacturing	Forging	New	Frontiers.	Addisson-Wesley.	Reading.	

Kidd,	P.	T.	(1996).	Agile	manufacturing:	a	strategy	for	the	21st	century.	

Korn	Ferry.	(2014,	April	16).	Retrieved	from	https://www.kornferry.com/enterprise-agility.	

Kumar,	 A.,	 &	 Motwani,	 J.	 (1995).	 A	 methodology	 for	 assessing	 time-based	 competitive	 advantage	 of	 manufacturing	
firms.	International	Journal	of	Operations	&	Production	Management,	15(2),	36-53.	

Lee,	J.,	Siau,	K.,	&	Hong,	S.	(2003).	Enterprise	Integration	with	ERP	and	EAI.	Communications	of	the	ACM,	46(2),	54-60.	

Lewis,	J.,	&	Fowler,	M.	(2014).	Microservices:	a	definition	of	this	new	architectural	term.	Mars.	

Li,	W.,	&	Kanso,	A.	(2015,	March).	Comparing	containers	versus	virtual	machines	for	achieving	high	availability.	In	Cloud	
Engineering	(IC2E),	2015	IEEE	International	Conference	on	(pp.	353-358).	IEEE.	

Ligus,	 R.	 G.	 (1993).	 Enterprise	 agility:	 Maneuverability	 and	 turbo	 power.	 INDUSTRIAL	MANAGEMENT-CHICAGO	 THEN	
ATLANTA-,	35,	27-27.	

Luo,	X.,	Yang,	L.,	Ma,	L.,	Chu,	S.,	&	Dai,	H.	(2011).	Virtualization	security	risks	and	solutions	of	Cloud	Computing	via	divide-
conquer	strategy.	In	Multimedia	Information	Networking	and	Security	(MINES),	2011	Third	International	Conference	on	(pp.	
637-641).	IEEE.	

Mathiyalakan,	 S.,	 Ashrafi,	 N.,	 Zhang,	 W.,	 Waage,	 F.,	 Kuilboer,	 J.P.,	 and	 Heimann,	 D.	 “Defining	 Business	 Agility:	 An	
Exploratory	 Study,”	 Forthcoming	 in	 the	 Proceedings	 of	 the	 16th	 Information	 Resource	 Management	 Association	
International	Conference,	San	Diego,	CA,	May	15-18,	2005.	

116 | P a g e

Mccarty,	F.H.,	1993.	Agility	in	Manufacturing.	Manufacturing	Engineering	111	(6),	8.	

McCoy,	D.	W.,	&	Plummer,	D.	C.	(2006).	Defining,	cultivating	and	measuring	enterprise	agility.	Gartner	research,	28.	

McKinsey&Company.	 (n.d.).	 Enterprise	 Agility.	 Retrieved	 from	 https://www.mckinsey.com/business-
functions/organization/how-we-help-clients/enterprise-agility.	

Menor,	 L.	 J.,	 Roth,	 A.	 V.,	 &	Mason,	 C.	 H.	 (2001).	 Agility	 in	 retail	 banking:	 a	 numerical	 taxonomy	 of	 strategic	 service	
groups.	Manufacturing	&	Service	Operations	Management,	3(4),	273-292.	

Morabito,	R.,	Kjällman,	J.,	&	Komu,	M.	(2015,	March).	Hypervisors	vs.	lightweight	virtualization:	a	performance	comparison.	
In	Cloud	Engineering	(IC2E),	2015	IEEE	International	Conference	on	(pp.	386-393).	IEEE.	

Morris,	K.	(2016).	Infrastructure	as	code:	managing	servers	in	the	cloud.	"	O'Reilly	Media,	Inc.".	

Nagel,	R.	N.,	&	Dove,	R.	(1991).	21st	century	manufacturing	enterprise	strategy:	An	industry-led	view.	Diane	Publishing.	

Nejatian,	M.,	&	Zarei,	M.	H.	(2013).	Moving	towards	organizational	agility:	Are	we	improving	in	the	right	direction?.	Global	
Journal	of	Flexible	Systems	Management,	14(4),	241-253.	

NH	Learning	Solutions.	 (2017,	 February	13).	 Top	5	Ways	Businesses	Benefit	 from	Server	Virtualization.	Retrieved	 from	
https://blog.nhlearningsolutions.com/blog/top-5-ways-businesses-benefit-from-server-virtualization.	

Oliver,	 T.,	 Muir,	 M.	 (2017,	 June	 22).	 Defining	 Enterprise	 Agility.	 Retrieved	 from	 http://blog.deloitte.com.au/defining-
enterprise-agility/.	

Oracle.	 (2012).	 Oracle®	 VM.	 1.1.1.	 Brief	 History	 of	 Virtualization.	 Retrieved	 from	
https://docs.oracle.com/cd/E26996_01/E18549/html/VMUSG1010.html	

Oracle.	 (2014,	 December).	 Zones	 Overview.	 Retrieved	 from	
https://docs.oracle.com/cd/E36784_01/html/E36848/zones.intro-2.html#scrolltoc.	

Osnat,	 R.	 (2018,	 March	 21).	 A	 Brief	 History	 of	 Containers:	 From	 the	 1970s	 to	 2017.	 Retrieved	 from:	
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016.	

Overby,	E.,	Bharadwaj,	A.	&	Sambamurthy,	V.	Eur	J	Inf	Syst	(2006)	Enterprise	Agility	and	the	enabling	role	of	information	

technology.	15:	120.	https://doi.org/10.1057/palgrave.ejis.3000600.	

Pahl,	C.	(2015).	Containerization	and	the	paas	cloud.	IEEE	Cloud	Computing,	2(3),	24-31.	

Pahl,	 C.,	 Brogi,	 A.,	 Soldani,	 J.,	 &	 Jamshidi,	 P.	 (2017).	 Cloud	 container	 technologies:	 a	 state-of-the-art	 review.	 IEEE	
Transactions	on	Cloud	Computing.	

Pahl,	C.,	&	Lee,	B.	(2015,	August).	Containers	and	clusters	for	edge	cloud	architectures--A	technology	review.	 In	Future	
Internet	of	Things	and	Cloud	(FiCloud),	2015	3rd	International	Conference	on	(pp.	379-386).	IEEE.	

Pal,	N.,	&	Pantaleo,	D.	 (Eds.).	 (2005).	The	agile	enterprise:	Reinventing	your	organization	 for	 success	 in	an	on-demand	
world.	Springer	Science	&	Business	Media.	

Paulk,	M.	 C.,	 Curtis,	 B.,	 Chrissis,	M.	 B.,	 &	Weber,	 C.	 V.	 (1993).	 The	 capability	maturity	model	 for	 software.	 Software	
engineering	project	management,	10,	1-26.	

Perrochon,	 L.	 (1994,	 November).	 Translation	 servers:	 Gateways	 between	 stateless	 and	 stateful	 information	 systems.	
In	Network	Services	Conference.	

Pietroforte,	 M.	 (2008,	 July	 3).	 Seven	 disadvantages	 of	 server	 virtualization.	 Retrieved	 from	
https://4sysops.com/archives/seven-disadvantages-of-server-virtualization/.	

Pinochet,	 A.,	 Matsubara,	 Y.,	 &	 Nagamachi,	M.	 (1996).	 Construction	 of	 a	 knowledge-based	 system	 for	 diagnosing	 the	
sociotechnical	 integration	 in	 advanced	 manufacturing	 technologies.	 International	 Journal	 of	 Human	 Factors	 in	

Manufacturing,	6(4),	323-348.	

Plonka,	Francis	E.	"Developing	a	lean	and	agile	work	force."	Human	Factors	and	Ergonomics	in	Manufacturing	&	Service	

Industries	7,	no.	1	(1997):	11-20.	

Porter,	A.	L.	(1993).	Virtual	companies	reconsidered:	Essay	review.	Technology	analysis	&	strategic	management,	5(4),	413-
420.	

117 | P a g e

Portworx.	(2017).	Portworx	Annual	Container	Adoption	Survey	2017.	

Prahalad,	C.	K.,	&	Hamel,	G.	(1999).	The	core	competence	of	the	corporation.	In	Knowledge	and	strategy	(pp.	41-59).	

PricewaterhouseCoopers	LLP.	(2015).	Building	Enterprise	Agility.	PwC	Technology	Institute.	

PricewaterhouseCoopers	 (n.d.).	 History	 and	 milestones.	 Retrieved	 from	 https://www.pwc.com/us/en/about-us/pwc-
corporate-history.html.	

PricewaterhouseCoopers	NL	 (n.d.).	 PwC	 in	Nederland.	Retrieved	 from	https://www.pwc.nl/nl/onze-organisatie/pwc-in-
nederland.html.	

Project	Management	Institute.	(2008).	Organizational	Project	Management	Maturity	Model	(OPM3®)	(2nd	ed.).	Newtown	
Square,	PA:	Project	Management	Institute.	

Raschke,	R.	L.,	&	David,	J.	S.	(2005).	Business	process	agility.	AMCIS	2005	Proceedings,	180.	

Reed,	 K.,	 &	 Blunsdon,	 B.	 (1998).	 Organizational	 flexibility	 in	 Australia.	 International	 Journal	 of	 Human	 Resource	

Management,	9(3),	457-477.	

Ren,	J.,	Yusuf,	Y.	Y.,	&	Burns,	N.	D.	(2000,	March).	A	prototype	of	measurement	system	for	agile	enterprise.	In	The	Third	
International	Conference	of	Quality	Reliability	Maintenance	(pp.	29-30).	

Ren,	 J.,	 Yusuf,	 Y.	 Y.,	 &	 Burns,	 N.	 D.	 (2003).	 The	 effects	 of	 agile	 attributes	 on	 competitive	 priorities:	 a	 neural	 network	
approach.	Integrated	Manufacturing	Systems,	14(6),	489-497.	

Rigby,	D.	K.,	Sutherland,	J.,	&	Takeuchi,	H.	(2016).	Embracing	agile.	Harvard	Business	Review,	94(5),	40-50.	

Roberts,	N.,	&	Grover,	V.	(2012).	Investigating	firm's	customer	agility	and	firm	performance:	The	importance	of	aligning	
sense	and	respond	capabilities.	Journal	of	Business	Research,	65(5),	579-585.	

Sambamurthy,	V.,	Bharadwaj,	A.,	&	Grover,	V.	(2003).	Shaping	agility	through	digital	options:	Reconceptualizing	the	role	of	
information	technology	in	contemporary	firms.	MIS	quarterly,	237-263.	

Sampathkumar,	A.	(2013).	Virtualizing	Intelligent	River®:	A	Comparative	Study	of	Alternative	Virtualization	Technologies.	

Scroggins,	R.	(2013).	Virtualization	technology	literature	review.	Global	Journal	of	Computer	Science	and	Technology.	

Scheepers,	M.	 J.	 (2014,	 June).	 Virtualization	 and	 containerization	 of	 application	 infrastructure:	 A	 comparison.	 In	 21st	
Twente	Student	Conference	on	IT	(Vol.	1,	No.	1,	pp.	1-7).	

Seo,	K.	T.,	Hwang,	H.	S.,	Moon,	I.	Y.,	Kwon,	O.	Y.,	&	Kim,	B.	J.	(2014).	Performance	comparison	analysis	of	linux	container	
and	virtual	machine	for	building	cloud.	Advanced	Science	and	Technology	Letters,	66(105-111),	2.	

Sharifi,	 H.,	 &	 Zhang,	 Z.	 (1999).	 A	 methodology	 for	 achieving	 agility	 in	 manufacturing	 organisations:	 An	 introduction.	
International	journal	of	production	economics,	62(1),	7-22.	

Sharma,	 P.,	 Chaufournier,	 L.,	 Shenoy,	 P.,	 &	 Tay,	 Y.	 C.	 (2016,	 November).	 Containers	 and	 virtual	machines	 at	 scale:	 A	
comparative	study.	In	Proceedings	of	the	17th	International	Middleware	Conference	(p.	1).	ACM.	

Sharp,	J.	M.,	Irani,	Z.,	&	Desai,	S.	(1999).	Working	towards	agile	manufacturing	in	the	UK	industry.	International	Journal	of	
production	economics,	62(1-2),	155-169.	

Sherehiy,	B.,	Karwowski,	W.,	&	Layer,	J.	K.	(2007).	A	review	of	enterprise	agility:	Concepts,	frameworks,	and	attributes.	
International	Journal	of	industrial	ergonomics,	37(5),	445-460.Dawson,	P.,	&	Bittman,	T.	J.	(2008).	Virtualization	changes	
virtually	everything.	Gartner	Special	Report.	

Showell,	 J.	 (2015,	 November	 23).	 8	 pros	 and	 cons	 of	 containers	 for	 app	 deployments.	 Retrieved	 from	
http://www.serverspace.co.uk/blog/8-pros-and-5-cons-of-containers-for-app-deployments.	

Spiegel,	 E.	 (2006).	 Real	 World	 Virtualization:	 Realizing	 the	 Business	 Benefits	 of	 Application	 and	 Server	
Virtualization.	Computer	Technology	Review,	26(2),	8-8.	

Sysprobs.	 (n.d.).	 Disadvantages	 virtualization,	 What’s	 your	 Opinion?.	 Retrieved	 from	
http://www.sysprobs.com/disadvantages-virtualization-opinion.	

Tamane,	S.	(2015).	A	review	on	virtualization:	A	cloud	technology.	International	Journal	on	Recent	and	Innovation	Trends	
in	Computing	and	Communication,	3(7),	4582-4585.	

118 | P a g e

Techopedia.	(n.d.).	Virtualization.	Retrieved	from	https://www.techopedia.com/definition/719/virtualization.	

Team,	 C.	 P.	 (2002).	 Capability	 maturity	 model®	 integration	 (CMMI	 SM),	 version	 1.1.	 CMMI	 for	 Systems	 Engineering,	
Software	Engineering,	Integrated	Product	and	Process	Development,	and	Supplier	Sourcing	(CMMI-SE/SW/IPPD/SS,	V1.	1).	

Tesfatsion,	S.	K.,	Klein,	C.,	&	Tordsson,	J.	(2018,	March).	Virtualization	Techniques	Compared:	Performance,	Resource,	and	
Power	 Usage	 Overheads	 in	 Clouds.	 In	 Proceedings	 of	 the	 2018	 ACM/SPEC	 International	 Conference	 on	 Performance	
Engineering	(pp.	145-156).	ACM.	

The	Kubernetes	Authors.	(n.d.).	Production-Grade	Container	Orchestration.	Retrieved	from	https://kubernetes.io/.	

The	Open	Group.	(2016).	Archimate®	3.0	specification.	Retrieved	from	https://publications.opengroup.org/c162.	

Thrive	 Operations.	 (2018,	 January	 11).	 Benefits	 of	 Virtualization.	 Retrieved	 from	
https://www.thrivenetworks.com/blog/benefits-of-virtualization/.	

Tosatto,	A.,	Ruiu,	P.,	&	Attanasio,	A.	(2015,	July).	Container-based	orchestration	in	cloud:	state	of	the	art	and	challenges.	
In	Complex,	Intelligent,	and	Software	Intensive	Systems	(CISIS),	2015	Ninth	International	Conference	on	(pp.	70-75).	IEEE.	

Tsourveloudis,	N.	C.,	&	Valavanis,	K.	P.	(2002).	On	the	measurement	of	enterprise	agility.	Journal	of	Intelligent	and	Robotic	
Systems,	33(3),	329-342.	

Tseng,	 Y.-H.,	 &	 Lin,	 C.-T.	 (2011).	 Enhancing	 enterprise	 agility	 by	 deploying	 agile	 drivers,	 capabilities	 and	 providers.	
Information	Sciences,	181(17),	3693–3708.	http://doi.org/https://doi.org/10.1016/j.ins.2011.04.034	

Van	de	Weerd,	I.,	&	Brinkkemper,	S.	(2009).	Meta-modeling	for	situational	analysis	and	design	methods.	In	Handbook	of	
research	on	modern	systems	analysis	and	design	technologies	and	applications	(pp.	35-54).	IGI	Global.	

Van	 Herpen,	 D.	 (2014).	 Four	 pattern	 for	 enterprise	 agility.	 Retrieved	 from	 https://www.sogeti.nl/updates/blog/four-
patterns-enterprise-agility	

Van	Oyen,	M.	P.,	Gel,	 E.	G.,	&	Hopp,	W.	 J.	 (2001).	 Performance	opportunity	 for	workforce	 agility	 in	 collaborative	 and	
noncollaborative	work	systems.	Iie	Transactions,	33(9),	761-777.	

Vaquero,	L.	M.,	Rodero-Merino,	L.,	Caceres,	J.,	&	Lindner,	M.	(2008).	A	break	in	the	clouds:	towards	a	cloud	definition.	ACM	
SIGCOMM	Computer	Communication	Review,	39(1),	50-55.	

Vastag,	G.,	Kasarda,	J.	D.,	&	Boone,	T.	(1994).	Logistical	support	for	manufacturing	agility	in	global	markets.	International	
Journal	of	Operations	&	Production	Management,	14(11),	73-85.	

Waters,	 J.	 K.	 (2007,	 March	 15).	 Virtualization	 Definition	 and	 Solutions.	 Retrieved	 from	
https://www.cio.com/article/2439494/virtualization/virtualization-definition-and-solutions.html.	

Wieringa,	R.J.	(2014)	Design	Science	Methodology	for	Information	Systems	and	Software	Engineering.	Springer	Verlag	

Xavier,	M.	G.,	Neves,	M.	V.,	Rossi,	F.	D.,	Ferreto,	T.	C.,	Lange,	T.,	&	De	Rose,	C.	A.	(2013,	February).	Performance	evaluation	
of	 container-based	 virtualization	 for	high	performance	 computing	environments.	 In	Parallel,	Distributed	and	Network-
Based	Processing	(PDP),	2013	21st	Euromicro	International	Conference	on	(pp.	233-240).	IEEE.	

Yigang,	W.	H.	W.	C.	W.	(1999).	Evaluating	System	of	Enterprise	Agility	[J].	Systems	Engineering,	6,	006.	

Youndt,	M.	A.,	Snell,	S.	A.,	Dean	Jr,	J.	W.,	&	Lepak,	D.	P.	(1996).	Human	resource	management,	manufacturing	strategy,	and	
firm	performance.	Academy	of	management	Journal,	39(4),	836-866.	

Youssef,	 M.	 A.	 (1992).	 Agile	 manufacturing:	 a	 necessary	 condition	 for	 competing	 in	 global	 markets.	 INDUSTRIAL	
ENGINEERING-NEW	YORK	THEN	ATLANTA	NORCROSS-AMERICAN	INSTITUTE	OF	INDUSTRIAL	ENGINEERS	INCORPORATED-

,	24,	18-18.	

Youssef,	M.	 A.	 (1994).	 Design	 for	manufacturability	 and	 time-to-market,	 Part	 1:	 theoretical	 foundations.	 International	
Journal	of	Operations	&	Production	Management,	14(12),	6-21.	

Yusuf,	Y.	Y.	(1996).	The	extension	of	MRPII	in	support	of	Integrated	Manufacture.	Unpublished	Ph.	D.	Thesis,	University	of	
Liverpool.	

Yusuf,	 Y.,	 Sarhadi,	M.,	Gunasekaran,	A.,	 1999.	Agile	manufacturing:	 the	drivers,	 concepts	 and	 attributes.	 International	
Journal	of	Production	Economics	62	(1–2),	33–43	

	 	

119 | P a g e

Appendix	I	–	Agility:	definitions	
#	 Authors	and	year	 Definition	

1	 Nagel	and	Dove,	1991	 A	system	that	shifts	quickly	among	product	models/lines,	ideally	in	real	time	in	order	to	respond	to	
customer	needs.	

2	 Kidd,	1994	 A	rapid	and	proactive	adaption	of	enterprise	elements	to	unexpected	and	unpredicted	changes,	and	
represents	a	new	and	radically	different	manufacturing	business	model.	

3	 Goldman	et	al.,	1995	 Capability	 of	 an	 organization	 to	 operate	 profitably	 in	 a	 competitive	 environment	 comprised	 of	
continually	changing	customer	habits.	

4	 Kumar	and	Motwani,	
1995	

Ability	to	accelerate	the	activities	on	critical	path	and	time-based	competitiveness.	

5	 Cho,	Jung	and	Kim,	
1996	

Capability	 to	 survive	 and	 prosper	 in	 a	 competitive	 environment	 or	 continuous	 and	 unpredictable	
changes	 by	 reacting	 quickly	 and	 effectively	 to	 changing	markets,	 designed	 by	 customer	 designed	
products	and	services.	

6	 Fliedner	and	Vokurka,	
1997	

Ability	 to	market	successfully	 low-cost,	high-	quality	products	with	short	 lead	times	and	 in	varying	
volumes	that	provide	enhanced	value	to	customers	through	customization.	

7	 Yusuf	et	al.,	1999	 Agility	 is	 the	 successful	 exploration	of	 competitive	 bases	 (speed,	 flexibility,	 innovation	proactivity,	
quality,	and	profitability)	through	the	integration	of	reconfigurable	resources	and	best	practices	in	a	
knowledge-rich	 environment	 to	 provide	 customer-driven	 products	 and	 services	 in	 a	 fast	 changing	
market	environment.	

8	 Sharifi	and	Zhang,	
1999	

Agility	 is	 the	 ability	 to	 detect	 the	 changes	 in	 the	 business	 environment,	 and	 respond	 to	 them	 by	
providing	the	appropriate	capabilities.	

9	 Dove,	1999	2x	

Dove,	2001	1x	

	

Dove,	2005b	1x	

The	 ability	 of	 an	 organization	 to	 thrive	 in	 a	 continuously	 changing,	 unpredictable	 business	
environment.	&	
Agility	is	the	ability	to	manage	and	apply	knowledge	effectively.	

Ability	of	an	organization	to	respond	efficiently	and	effectively	to	both	proactive	and	reactive	needs	
and	opportunities	on	the	face	of	an	unpredictable	and	uncertain	environment	(2001)*.	

*This	definition	is	not	a	given	definition,	but	a	combination	of	characteristics	that	are	provided	in	the	
book	of	Dove	(2001),	and	processed	into	a	definition	by	Ganguly	et	al.	(2009).	Later	on,	Dove	(2005b)	
does	provide	a	definition	that	incorporates	these	characteristics:	“Agile	systems	–	for	both	reactive	

and	proactive	response	needs	and	opportunities	–	when	these	are	unpredictable,	uncertain,	and	likely	

to	change”.	This	definition	is	given	in	this	row	to	increase	clarity	of	the	topic	regarding	this	author.	

10	 Menor,	Roth,	and	
Mason,	2001	

The	ability	of	a	firm	to	excel	simultaneously	on	operations	capabilities	of	quality,	delivery,	flexibility	
and	cost	in	a	coordinated	fashion.	

11	 Bessant,	Knowles,	and	
Briffa,	2002	

The	organization’s	 capacity	 to	gain	competitive	advantage	by	 intelligently,	 rapidly,	and	proactively	
seizing	opportunities	and	reacting	to	threats.	

12	 Brown	and	Bessant	
(2003)	

The	ability	to	respond	quickly	and	effectively	to	current	market	demands,	as	well	as	being	proactive	
in	developing	future	market	opportunities.	

13	 Sambamurthy	et	al.	
(2003)	

Ability	 of	 a	 firm	 to	 redesign	 their	 existing	processes	 rapidly	 and	 create	 new	processes	 in	 a	 timely	
fashion	 in	order	 to	be	able	 to	 take	advantage	and	 thrive	of	 the	unpredictable	and	highly	dynamic	
market	conditions.	

14	 Ashrafi	et	al.	(2005)	 An	organization’s	ability	to	sense	environmental	changes	and	respond	effectively	and	efficiently	to	
that	change.	

15	 Raschke	and	David	
(2005)	

Ability	 of	 a	 firm	 to	 dynamically	 modify	 and/	 or	 reconfigure	 individual	 business	 processes	 to	
accommodate	required	and	potential	needs	of	the	firm’.	

16	 Mathiyakalan	et	al.	
(2005)	

Ability	of	an	organization	to	detect	changes	(which	can	be	opportunities	or	threats	or	a	combination	
of	both)	in	its	business	environment	and	hence	providing	focused	and	rapid	responses	to	its	customers	
and	stakeholders	by	reconfiguring	its	resources,	processes	and	strategies	

120 | P a g e

Appendix	II	–	Retrospective	view	on	Enterprise	Agility	
Analysis	 of	 scientific	 sources	 show	 that	 “enterprise	 agility”	was	 already	mentioned	 during	 the	 first	 decade	
(1991-1999).	For	the	analysis,	the	key	term	“enterprise	agility”	was	used	to	search	into	Google	Scholar	to	find	
the	study	that	mentions	EAG	for	the	first	time.	As	stated	before,	 it	occurs	that	enterprise	agility	is	meant	as	
agility	 for	 an	 enterprise,	with	 the	 exact	meaning	 of	 agility	 during	 the	 first	 decade	 (reactive	 and	 enterprise	
component-specific).	Therefore,	multiple	sources	are	given	 in	 this	brief	analysis	 to	depict	 the	difference.	To	
increase	the	semantical	distinction,	“enterprise	agility”	is	written	in	this	text	when	conventional	agility	is	meant.	
“EAG”	is	stated	when	the	specific,	self-contained	concept	of	EAG	(proactive	and	enterprise-wide)	is	meant.	

The	earliest	mention	of	EAG	was	in	1993	in	the	article	of	‘Virtual	Companies	Reconsidered’	by	Porter	(1993).	
Here,	 Porter	 (1993)	 criticized	 the	 concept	 of	 virtual	 companies	 regarding	 the	 required	 policies	 of	 each	
organization,	and	denoted	the	issue	of	how	to	accommodate	enterprise	agility	with	the	organization’s	security.	
In	this	paper,	enterprise	agility	is	meant	as	the	overall	agility	of	an	organization,	and	not	as	the	specific,	self-
contained	concept	EAG	as	in	the	second	decade.	
At	 the	 ending	 of	 the	 same	 year,	 Ligus	 (1993)	 wrote	 an	 introducing	 paper	 about	 agility:	 ‘Enterprise	 agility:	
Maneuverability	and	 turbo	power’.	The	author	argued	about	 the	advantages	of	an	organization	being	agile,	
translating	it	into	the	term	enterprise	agility.	However,	this	paper	aimed	at	the	overall	agility	of	the	organization,	
and	not	the	specific	concept	of	EAG.		

The	subsequent	year,	prominent	agility	researcher	Dove	(1994)	discussed	analytical	tools	for	constructing	and	
evaluating	agile	strategies.	‘Enterprise	agility’	is	mentioned	three	times	in	the	article.	The	first	time,	enterprise	
agility	is	meant	anew	as	agility	of	an	enterprise.	The	second	time	refers	to	the	object	of	interest	provided	in	this	
paper:	‘Structure	of	Enterprise	Agility’	(third	time).	This	structure	consists	of	agile	attributes,	change	domains,	
enterprise	elements	and	agile	dimensions,	and	forms	the	foundation	of	the	work	of	several	prominent	agility	
researchers	as	mentioned	before	in	Section	5.1.1.1	(Sharifi	&	Zhang,	1999;	Yusuf	et	al.,	1999;	Tseng	&	Lin,	2011).	
Interesting	 fact	 is	 that	 the	 structure	 depicts	 possible	 application	 of	 agile	 concepts	 in	 different	 enterprise	
elements,	which	corresponds	with	the	EAG’s	meaning	of	extending	agility	throughout	the	whole	organization.	
However,	ten	out	of	12	of	the	denoted	enterprise	elements	are	specifically	for	the	field	of	manufacturing,	and	
not	for	remaining	departments	of	organizations.	Therefore,	despite	its	relevance	for	the	development	of	agility,	
the	usage	of	enterprise	agility	in	this	article	is	not	in	line	with	EAG.	

Agility	for	manufacturing	was	‘invented’	because	the	USA	experienced	competitive	pressure	from	Europe	and	
Asia.	During	the	first	decade,	Asia	was	also	investigating	agility.	In	1999,	Yigang	(1999)	developed	an	evaluation	
system	to	evaluate	agility	of	enterprises,	based	on	the	work	of	Dove	(1994).	Similary	to	the	aforementioned	
article,	the	term	enterprise	agility	was	used	since	the	artefact	is	a	system	that	evaluates	an	enterprise’s	agility,	
what	was	mainly	aimed	at	AM	during	that	period,	and	is	therefore	not	lined	with	EAG.	

At	last,	in	the	book	of	Dove	(2001)	about	organizations’	response	ability	and	agile	enterprises,	enterprise	agility	
is	mentioned	two	times.	Despite	the	fact	that	enterprise	agility	 is	not	explicitly	defined,	and	is	again	used	to	
denote	the	agility	of	an	organization	(the	enterprise),	the	book	describes	more	than	solely	agility	techniques	for	
enterprise	manufacturing	 components.	 It	 provides	 descriptions	 about	 agility	 and	 its	 surroundings,	 change-
enabling	 structure	 and	 culture,	 adaptable	 structures,	 response-able	 systems	 and	 -enterprises,	 and	 change	
proficiency.	The	latter	is	the	aforementioned	required	distinction	between	reactive	and	proactive	demeanor.	
These	are	the	reasons	that	these	descriptions	are	in	line	with	the	concept	of	EAG,	as	they	are	focused	on	the	
whole	enterprise	becoming	agile.	 The	 second	 reason	 is	 the	explanation	of	 change	proficiency,	 realizing	 the	
introduction	of	the	proactive	demeanor,	what	eventually	evolves	into	the	sensing	ability.	

The	results	of	this	brief	analysis	show	the	first	use	of	the	term	‘enterprise	agility’	in	literature,	whereas	agility	
of	an	enterprise	is	meant	with	corresponding	reactive	demeanor,	partial	agility	and	main	focus	on	the	field	of	
manufacturing.	‘Enterprise	agility’	in	terms	of	EAG,	with	corresponding	proactive	demeanor,	agility	throughout	
the	whole	organization,	and	the	ability	of	sensing,	is	not	meant.	However,	Dove	(2001)	does	refer	to	EAG	in	its	
description	 of	 the	 agile	 enterprise.	 Although	 this	 is	 not	 explicitly,	 it	 does	 corresponds	 with	 found	 EAG	
components.	

121 | P a g e

Appendix	III	–	Virtualization	types	
Native	virtualization	
Software	is	launched	to	mimic	a	machine.	This	VM	uses	the	same	hardware	as	the	underlying	system.	Hence,	
an	 x86	 platform	 can	 only	 virtualize	 x86	 VMs,	 and	 is	 unable	 to	 virtualize	 x64	 platforms.	 Furthermore,	 the	
software	that	is	being	loaded	to	realize	the	VMs	(the	Host	OS)	divides	the	available	resources	among	its	virtual	
machines.	This	concept	realizes	a	better	utilization	of	resources	from	the	host	by	the	VMs	(guests	Oss).	Specific	
examples	are	VMware	Server,	-Workstation,	-Player,	Microsoft	virtual	PC/Server,	Vserver	and	Qemu.	

Full	virtualization	
Full	virtualization	enables	multiple	VMs	being	loaded	next	to	each	other	on	a	set	of	(physical)	hardware.	This	is	
realized	by	adding	a	software	layer	between	the	hardware	and	virtual	machines.	This	layer	manages	tasks	and	
requests	that	come	from	the	virtual	machines	towards	the	hardware.	This	can	be	seen	as	placing	a	virtual	host	
on	the	physical	hardware	to	translate	virtual	actions	as	performed	by	VMs.	An	example	of	such	virtualization	is	
VMware	ESX	server.	

Partial	virtualization	
Virtual	components	are	made	of	a	selection	of	hardware	components,	instead	of	virtualization	of	a	full	set	of	
hardware	components	that	mimic	a	computer.	These	components	or	instances	realize	that	it	is	possible	to	share	
devices.	 However,	 it	 is	 not	 possible	 to	 share	more	 than	 one	OS.	 Although	 this	 type	 of	 virtualization	 is	 not	
recognized	as	virtualization,	it	is	widely	used	in	OSs	as	Windows	and	Linux.	Partial	virtualization	is	also	applicable	
on	large	mainframe	systems.	

Paravirtualization	
Hardware	 is	offered	 to	a	virtual	machine	 through	specialized	APIs	 (Application	Programming	 Interface)	 that	
have	to	conform	to	the	Guest	OS.	By	using	this	technique,	virtual	machines	can	determine	what	hardware	is	
going	 to	be	 shared	with	other	virtual	machines,	and	which	hardware	 is	 specifically	designated	 for	a	 certain	
virtual	machine.	This	technique	is	applied	by	Xen,	Trango,	and	Sun	logical	domains.	

Application	virtualization	
In	 this	 type	of	virtualization,	an	application	 runs	while	using	 the	 local	 system	resources	 (desktop	or	 laptop)	
inside	a	modified	virtual	machine,	without	being	installed	on	that	particular	system.	Benefit	is	that	application	
updates	can	be	installed	without	being	dependent	on	the	local	system	the	application	runs	on.	A	benefit	is	that	
it	is	possible	to	execute	applications	with	conflicting	requirements	together	on	the	same	system.	Examples	are	
Thinstal,	Microsoft	Application	virtualization,	Altiris	SVS,	Sun	Java	VM,	and	Trigence.	

Server	virtualization	
Server	virtualization	is	the	masking	of	server	resources	from	server	users.	This	includes	the	number	and	identity	
of	 individual	 physical	 servers,	 CPUs	 and	 operation	 systems.	 The	 goal	 is	 to	 spare	 the	 user	 the	 complex	
configuration	of	server	resources,	while	increasing	resource	sharing	and	utilization.	Additionally,	the	capacity	is	
maintained	to	have	expanding	possibilities	when	needed.	

Resource	virtualization	
Most	used	is	the	virtualization	of	storage	and	networking	elements.	Storage	virtualization	enables	the	pooling	
of	physical	storage	from	multiple	network	devices.	By	doing	so,	it	appears	to	be	a	single	storage	device	that	is	
managed	 by	 a	 centralized	 console.	 Network	 virtualization	 combines	 available	 resources	 in	 a	 network	 by	
splitting	up	available	bandwidth	into	channels.	Examples	of	networking	elements	are	VLANs	and	VPNs.	Another	
type	is	the	virtualization	of	memory	(RAM).	Here,	aggregating	RAM	resources	from	networked	systems	into	a	
single	memory	pool.	

Data	virtualization	
The	presentation	of	data	as	 an	abstract	 layer,	 independent	of	underlying	database	 systems,	 structures	 and	
storage.	Possibly	combined	with	Database	virtualization,	what	is	the	decoupling	of	the	database	layer,	which	
lies	between	storage	and	application	layers	within	the	application	stack.	

122 | P a g e

Appendix	IV	–	Containerization	vendors	
Container	technologies	
The	 container	 domain	 consists	 of	 two	 types	 of	 technologies:	 1)	 container	 solutions	 and	 2)	 container	
orchestrators	 (see	subsection	2.3.3).	This	appendix	elaborates	on	the	different	 types	of	container	solutions.	
These	container	solutions	provide	the	same	type	of	container	services	(deploy,	manage,	and	scale	applications),	
but	differentiate	from	each	other	when	going	into	details.	In	reality,	each	solution	can	be	used	to	solve	different	
things	 and	 are	 rooted	 in	 varying	 contexts	 (Abdelrazik,	 2017).	 This	 is	 due	 to	 their	 individual	 specializations,	
applied	techniques,	and	their	own	goals.	

The	most	popular	container	solution	is	Docker.	According	to	aforementioned	survey	of	Portworx	(2017),	79%	
of	the	organizations	use	Docker	as	their	primary	container	technology.	Docker	provides	a	container	engine	on	
top	of	the	Host	OS,	which	manages	all	containers	on	that	collection	of	hardware.	It	does	that	by	combining	Linux	
containers	 with	 an	 overlay	 filesystem	 and	 by	 providing	 tools	 for	 building	 and	 packaging	 applications	 into	
portable	environments,	 i.e.,	container	 images	(Morabito,	Kjällman,	Komu,	2015).	Primarily,	 the	solution	was	
Linux-based	 –	 creating	 Linux	 containers	 –	 but	 nowadays	 Docker	 also	 provides	Windows-based	 containers.	
Docker	differentiates	itself	because	it	is	a	single	application	virtualization	engine	based	on	containers	(Banerjee,	
2014).	Meaning	 that	 each	 Docker	 container	 only	 facilitates	 one	 application.	 This	 results	 in	 loosely	 coupled	
‘frozen’	applications	as	services,	which	enables	users	to	convert	these	frozen	states	of	applications	to	other	
machines	and	OSs.	

- rkt:	 Linux-based	application	container	engine	 for	modern	production	cloud-native	environments.	 Its	
core	execution	unit	is	the	pod,	what	is	a	collection	of	one	or	more	applications	in	multiple	containers	
executing	in	a	shared	context	(similar	to	Docker)	(CoreOS,	n.d.).	

- FreeBSD	Jails:	works	with	Linux	userspace	isolation	as	additional	security.	This	means	that	process	only	
communicates	with	other	processes	in	the	same	container.		

- LXC:	a	container	technology	which	enables	lightweight	Linux	containers	by	providing	base	OS	container	
templates	and	a	comprehensive	set	of	tools	for	container	lifecycle	management.	Users	can	approach	
these	LXC	containers	as	an	OS	and	install	applications	and	services	on	it,	while	expecting	the	correct	
support	(Banerjee,	2014).	

- Solaris	Zones:	virtualizes	operating	system	services	and	provides	an	isolated	and	secure	environment	
for	executing	applications.	A	zone	is	a	virtualized	operating	system	environment	created	within	a	single	
instance	of	the	Oracle	Solaris	OS	(a	global	zone)	(Oracle,	2014).		

Container	orchestrators	
As	 shown	 by	 Portworx	 (2017),	 organizations	 use	multiple	 orchestration	 tools.	 This	 is	 because	 vendors	 are	
continuously	 in	 development	 and	 keep	 providing	 new	 functionalities.	 Another	 reason	 is	 the	 prevention	 of	
vendor	lock	in.	This	shows	that	currently	the	orchestration	tooling	market	is	dynamic.	

This	dynamic	market	consists	of	multiple	vendors	that	provide	container	orchestration	tooling	by	using	their	
specific	 techniques.	 Examples	 of	 popular	 vendors	 are:	 Docker	 Swarm,	 Kubernetes,	 Mesos,	 Cloud	 Foundry,	
Amazon	ECS,	and	Azure	Container	Service.	Kubernetes	is	the	most	used	orchestration	tool	in	organizations,	as	
43%	 of	 participating	 organizations	 indicate	 that	 Kubernetes	 is	 applied	 as	 container	 orchestrator	 (Portworx,	
2017).	Moreover,	32%	states	that	Kubernetes	is	their	primary	orchestration	tool.	Especially	larger	organizations	
(5000+	employees),	are	using	Kubernetes	(respectively	48%	and	33%).	

Kubernetes	is	an	open-source	system	for	automating	deployment,	scaling,	and	management	of	containerized	
applications	(The	Kubernetes	Authors,	n.d.).	Kubernetes	is	based	on	processes	that	run	on	Docker	hosts.	The	
orchestrator	binds	hosts	into	clusters,	and	manages	containers	by	grouping	them	into	logical	units	(Pahl,	2015b;	
The	Kubernetes	Authors,	n.d.).	It	schedules	computing	resources	to	containers	and	the	other	way	around,	which	
enables	rapid	scaling	(Tosatto	et	al.,	2015).		 	

123 | P a g e

Appendix	V	–	PI:	Interview	protocol	
Goal:	to	find	out	how	the	container	technology	can	support	organizations	in	their	enterprise	agility.	

Introduction	
- Introducing	myself;	
- Tell	about	the	master;	
- Explain	the	master	thesis	project,	including	structure,	deliverables,	expectations;	
- Explain	the	goal,	structure,	subjects,	and	timespan	of	this	interview,	and	why	this	person;	
- Ask	for	permission	to	record	this	interview.	The	record	will	only	be	used	to	make	a	transcription	and	

additional	notes,	in	order	to	improve	the	quality	of	the	research.	

Start	recording	with	phone	

General	
“I	would	like	to	start	with	some	general	information.”	

1. Ask	interviewee	to	tell	something	about	him-/herself,	position,	daily	tasks	etc.;	

2. What	do	you	think	about	the	role	of	enterprise	agility	(EAG)	in	organizations	nowadays?	
3. EAG	is	defined	as	the	following:	*Show	paper	with	definition*.	

To	what	extend	do	you	agree	with	this?	

4. What	is	agile	according	to	you?	And	what	would	be	an	agile	aspect	according	to	you?	

	
Enterprise	agility	
“Both	scientists	and	practitioners	extensively	study	this	concept.	During	the	literature	review,	I	found	that	
most	 important	enterprise	components	are	Organization,	People,	and	Technology	(OPT).	As	the	 literature	
review	 showed,	 research	 is	 conducted	 for	 O	 &	 P	 towards	 agility.	 This	 resulted	 in	 different	 agility	 types	
specifically	for	O	&	P	domains.	However,	no	research	(lines)	dedicated	to	Technology	exists	in	the	literature.	
The	only	made	scientific	statements	denote	the	importance	of	technology	for	organizations,	but	no	(tangible)	
recommendations	 to	 apply	 a	 certain	 technology	 to	 improve	 EAG.	 Hence,	 there	 is	 a	 lack	 of	 relationship	
between	EAG	and	the	potential	benefit	of	technology”.	

5. To	what	extent	do	you	think	this	statement	applies	in	your	field	or	work?	

6. Why	(not)?	Could	you	elaborate	on	this?	

7. IF	APPLIES:	How	do	you	think	this	gap	can	be	filled?	

8. IF	NOT	APPLIES:	What	would	be	a	current	explicit	link	between	technologies	and	EAG?	

a. Can	these	technologies	be	seen	as	agile	technologies,	or	become	a	part	of	“technology	
agility”?	

	

9. What	 are	 in	 your	 opinion	 agile	 technologies,	 or	 ‘technologies	 that	 contain	 agile	 aspects’,	 or	
‘technologies	that	enable	the	agile	Way	of	Working’	(WoW)?	

10. What	would	be	an	agile	(enabling)	technology	from	your	perspective?	

	
Containerization	

124 | P a g e

“Virtualization	enables	organizations	to	manage	their	hardware	more	efficiently,	and	increase	utilization.	Of	
course	cloud	is	enabled	by	the	technology.	However,	since	2013	containers	became	popular.”	

11. How	are	containers	currently	improving	organizations?	

12. What	are	in	your	opinion	the	benefits	of	containers?	What	popularized	them?	

13. Do	you	consider	containers	as	a	technology	that	facilitate	agile	aspects	or	an	agile	environment?	Or	
enables	these?	Why	(not)?	

	

“According	to	what	we	just	talked	about	concerning	EAG	and	technology:”	

14. How	can	containers	support	organizations	in	their	enterprise	agility	in	your	opinion?	

a. How	would	you	define	this?	Let’s	say	in	what	kind	of	entities	(e.g.	guidelines,	principles,	rules,	
characteristics,	process,	etc)?	

“During	the	meetings	with	my	supervisor	of	the	university,	we	discussed	about	a	potential	artefact	resulting	
from	this	project.	The	first	concept	of	this	artefact	is	an	integration	process	for	containers	to	deploy	them	in	
the	(enterprise)	architecture,	to	ultimately	increase	the	EAG	of	an	organization.”	

b. Do	you	think	it	is	possible	to	make	a	process-based	solution	for	implementing	containers	with	
respect	to	EAG?	

*Show	 the	 results	 of	 the	 discussion	 with	 the	 first	 interviewee	 -->	 containers	 applied	 in	 a	 part	 of	 software	
development	process,	including	capabilities*	

c. Do	you	think	the	field	of	practitioners	can	benefit	from	such	an	artefact?	

d. What	would	you	change	about	it?	

“Since	the	increasing	amount	of	containers	in	organizations,	and	the	importance	of	orchestrators,	the	role	of	
containers	is	growing.”		

15. How	do	you	 think	containers,	or	 large	amounts	of	 container	clusters,	 can	be	more	efficiently	used?	
Thus,	increasing	EAG?	

16. Therefore,	can	containers	be	a	technology	that	can	be	explicitly	linked	to	EAG	as	an	EAG	enabling	
technology?	

17. How	would	you	see	the	application	of	containerization	in	five	years?	

	

Finalizing	

18. Is	there	something	I	forgot	to	ask	about,	what	you	consider	as	important?	

19. Do	you	want	to	add	something	else?	

*End	of	interview	
-	Thank	interviewee	for	the	interview;	
-	Offer	to	send	the	results	when	project	is	finished;	
-	Ask	for	possibility	of	additional	questions	if	later	required;	
-	Ask	if	interviewee	wants	to	see	the	transcript	to	check	validity. 	

125 | P a g e

Appendix	VI	–	PI:	Expert	interview	results	
The	interviewees	(experts)	have	been	partly	anonymized	due	to	made	confidentiality	agreements.	Their	input	
and	quotes	are	removed	from	the	public	version	of	the	thesis.	

Results	interview	1	–	Expert	1	
Results	interview	2	–	Expert	2	
Results	interview	3	–	Expert	3	
Results	interview	4	–	Expert	4	
	

 	

126 | P a g e

Appendix	VII –	PI:	Expert	interview	results	container	areas
The	interviewees	(experts)	have	been	partly	anonymized	due	to	made	confidentiality	agreements.	Their	input	
and	quotes	are	removed	from	the	public	version	of	the	thesis.	

Results	interview	1	–	Expert	1	
Results	interview	2	–	Expert	2	
Results	interview	3	–	Expert	3	
Results	interview	4	–	Expert	4	

	 	

127 | P a g e

Appendix	VIII	–	Virtualization	technologies	linked	to	EAG	
This	 appendix	 elaborates	 on	 the	 core	 agility	 attributes	 that	 are	 perceived	 as	 EAG	 characteristics.	 Table	 30	
explains	the	attributes	by	using	the	quoted	descriptions	of	Sherehiy	et	al.	(2007).	We	additionally	provided	the	
corresponding	sub-concepts	 that	are	relevant	only	 to	 technology	 in	 the	table,	and	gave	an	example	 for	 this	
research’s	context.	Finally,	for	each	attribute,	we	rationalized	how	we	linked	them	to	virtualization	concepts.	

Table	30:	Core	agility	attributes	including	technology-related	sub-concepts	(Sherehiy	et	al.,	2007)	linked	to	VMs	and	containers	
Concept	 Description	

Flexibility	 “The	ability	to	pursue	different	business	strategies	and	tactics,	to	quickly	change	from	one	strategy/task/job	
to	another.”	

- Flexible	organizational	structures	and	practices	(i.e.	capacity	of	applications	and	infrastructure	can	
be	scaled	or	changed	in	balance	depending	on	demands);	

- Workplace	flexibility	(i.e.	all	kinds	of	applications	can	be	launched	through	virtual	environments,	
independently	of	the	location	and	infra	agnostic).	

Link	 to	VMs:	 VMs	 provide	 a	 virtual	 environment	where	 applications	 run	 into	 to	 execute	 their	 services.	
Because	of	the	VMs,	physical	hardware	can	be	virtually	divided	into	multiple	virtual	hardware	instances.	
This	enables	an	organization	to	run	more	different	OSs	and	applications	on	their	hardware,	and	the	ability	
to	scale	up	or	down	dependent	on	the	users’	demands.	

Link	to	containers:	containers	provide	equivalent	services	as	VMs,	however	faster	and	through	different	
functionality.	Containers	are	infra	agnostic,	which	means	that	they	can	independently	run	on	any	kind	of	
hardware,	making	organizations	more	agile	 in	providing	 infrastructure	for	virtual	environment	purposes.	
Besides	 that,	 containers	use	 lightweight	OS	 images	and	solely	 include	 the	 required	 runtime	packages	 to	
execute	the	desired	application.	This	makes	them	resource	efficient,	quickly	to	launch,	and	customized	for	
specific	applications.	Ultimately,	lending	themselves	for	microservices	architectures,	as	individual	services	
can	be	launched	in	containers,	based	on	and	easily	scaled	to	user	demands.	Moreover,	if	business	logic	is	
positioned	into	containers,	then	the	stateless	characteristic	of	containers	can	be	used.	When	launched,	the	
container	receives	input,	executes	business	logic,	and	provides	output	(input’).	After	the	output	delivery,	
the	container	is	immediately	destroyed	and	all	data	within	the	container	is	vanished.	This	stateless	aspect	
makes	containers	flexible	as	well,	since	data	does	not	have	to	be	stored,	computing	resources	do	not	have	
to	be	kept	 in	reservation,	and	containers	only	run	whenever	they	are	needed	to	facilitate	an	application	
instance.	

Speed	 “The	ability	to	complete	requirements	of	all	other	agile	characteristics	in	shortest	possible	time.	The	ability	

to	learn,	carry	out	tasks	and	operations	and	make	changes	in	shortest	possible	time.”	

- Performing	 tasks,	 operations,	 and	 making	 changes	 (i.e.	 fastness	 in	 launching	 instances	 of	
applications	 and	 infrastructure	 (application	 run	 time	 environments)	 to	 perform	 tasks	 and	
operations);	

- Time	of:	operations,	production/service	delivery	 (i.e.	 fastness	of	an	application	 is	able	 to	 start	
running	a	service).	

Link	to	VMs:	the	same	as	with	Flexibility,	VMs	provide	a	virtual	environment	for	OSs	and	applications.	As	a	
result,	 organizations	 were	 not	 required	 to	 launch	 additional	 physical	 servers	 whenever	 they	 needed	
different	 types	 of	 OSs	 anymore.	 This	 increased	 the	 process	 speed	 of	 launching	 another	 application,	 or	
another	OS	 and	 application	 together.	Moreover,	 process	 can	 also	be	 automated,	 further	 increasing	 the	
deployment	of	hardware.		

Link	 to	 containers:	 as	 aforementioned	 for	 Flexibility,	 containers	 provide	 equivalent	 services,	 although	
launched	and	decommissioned	faster	(lightweight	OS	and	rationalized	packages).	This	process	can	also	be	
automated,	further	enhancing	its	speed.	Moreover,	whereas	VMs	require	multiple	configuration	files	to	be	
launched	 onto	 the	 correct	 infrastructure	 and	 with	 the	 correct	 settings,	 containers	 are	 launched	 and	
configured	by	the	means	of	basic	code	commands	or	config-files.	

Responsiveness	 “The	ability	to	identify	changes	and	opportunities	and	respond	reactively	or	proactively	to	them.”	

- Responsiveness	to	change	in	customer	demands	(i.e.	scalability	for	application	capacity);	

128 | P a g e

- Responsiveness	to	market	and	business	environment	changes	and	trends	(i.e.	rapidly	integrating	
or	executing	new	applications	in	organization’s	application	and	infrastructure	landscape,	in	order	
to	respond	to	or	anticipate	on	market	needs).	

Link	to	VMs:	virtual	environments	of	VMs,	which	contain	application	instances,	can	be	duplicated	to	meet	
capacity	requirements	based	on	user	demands.	This	means	that	applications/services	capacity	are	increased	
so	 that	 increasing	 amounts	 of	 user	 can	 access	 their	 desired	 application/service.	 If	 organizations	 have	
automated	this	process,	capacity	is	scaled	automatically	based	on	the	received	demands,	further	improving	
the	responsiveness	of	organizations.	

Link	 to	 containers:	 containers	 can	 also	 be	 duplicated	 to	 increase	 capacity	 of	 an	 application/service.	
However,	containers	can	increase	the	capacity	more	accurately,	as	an	individual	service	can	be	put	into	a	
container	(synergy	with	MSA	pattern).	Whereas	in	VMs,	it	would	be	inefficient	to	take	the	effort	to	launch	
a	 VM	 with	 full	 OS	 image	 to	 increase	 the	 capacity	 of	 one	 service.	 Primarily,	 because	 of	 this	 extensive	
configuration	and	full	OS	image,	complete	application	duplicates	are	launched	within	VMs	(no	synergy	with	
MSA	pattern),	removing	the	fast	responsiveness	for	scalability	and	immediate	deployments.	

Integration	and	Low	
complexity	

“Close	 and	 simple	 relations	 between	 the	 individual	 system	 components,	 easy	 and	 effortless	 flow	 of	 the	

materials,	 information	 and	 communication	 between	 the	 system	 components,	 organizational	 structures,	

people,	and	technology.”	

- Integration	 of	 people,	 technology,	 and	 organization	 (i.e.	 integration	 of	 DevOps	 runtime	
environments	of	applications	by	the	means	of	containers,	while	using	the	IaC	principle);	

- Synthesis	 of	 diverse	 technologies,	 skills,	 and	 competencies	 (i.e.	 combination	 of	 microservices	
architecture	with	containers	and	IaC);	

- Low	 complexity	 of	 structure,	 relationships	 between	 structure	 elements	 (i.e.	 technical	
architecture,	 applications/services	 that	 are	 independently	managed	 with	 determined	 runtime	
environment);	

- Flow	of	material,	 communication	 and	 information	between	different	 organizational	 structures	
and	systems	components	(i.e.	networking	maturity,	process	maturity,	API	configuration);	

- Enhanced	interaction	between	processes.	

Link	to	VMs:	standardized	OS	and	application	images	can	be	used	for	VMs	to	launch	predefined	instances	
of	 environments	 and	 applications.	 The	 degree	 of	 standardized,	 organization-wide	 obligated	 images	 and	
predefined	connections	with	the	internal	network	reduces	complexity	of	the	application	and	infrastructure	
landscape.	

Link	to	containers:	the	rationale	about	images	also	applies	to	the	leaner	container	images.	In	addition,	the	
easily	configured	scripts	and	code	commands	for	launching	containers	also	reduce	complexity.	The	stateless	
aspect	supports	low	complexity	even	more.	If	a	service	in	a	container	already	withholds	business	logic,	the	
incoming	 information	 is	modified	 and	 directly	 returned	 back	 or	 forwarded	 to	 the	 next	 user	 or	 service.	
Preferably,	by	the	means	of	an	(standardized)	API.	This	means	that	the	container	is	simply	destroyed	when	
it	is	no	longer	required,	and	the	modified	data	does	not	have	to	be	maintained	in	the	container.	If	required,	
data	is	stored	at	a	component	that	is	specialized	for	this	task.	

Culture	of	change	 “A	description	of	environment	supportive	of	experimentation,	learning,	and	innovation	and	is	focused	on	the	

continuous	monitoring	environment	to	identify	changes.	Culture	of	change	is	an	environment	where	people	

on	all	organizational	levels	have	positive	and	fearless	attitude	to	changes,	different	opinions,	new	ideas,	and	

technology.”	

We	did	not	incorporate	this	core	attribute	into	the	relationship	to	both	containers	and	VMs,	as	the	CMM.	
The	reason	is	that	this	attribute	is	focused	on	people	(O	of	OPT),	and	is	therefore	according	to	us	not	directly	
related	to	our	aim	of	technology	(T	of	OPT).	

	
	 	

129 | P a g e

Appendix	IX	–	Pre	assessment	rationale	elaboration	
This	appendix	describes	the	rationale	for	each	question	of	the	Pre	assessment.	

Table	31:	Pre	assessment	rationale	per	question	
Pre.	Area	 #	 Rationale	per	question	

General	 1	 This	is	an	important	question	for	the	Maturity	assessment.	If	an	organization	does	do	anything	related	to	
software	developing,	the	CMM	is	not	completely	relevant	to	apply	for	that	organization.	

2	 The	outsourcing	aspect	provides	us	with	an	indication	whether	certain	(parts	of)	software	is	being	developed	
at	 another	 location.	 Implying	 a	 dependency	 on	 a	 proper	 network	 for	 real-time	 sharing	 and	monitoring	
software	or	running	applications.	

3	 Amount	of	employees	gives	us	insights	towards	the	scale	and	possible	amount	of	running	applications	inside	
an	organization.	

Software	
development	

4	 By	knowing	the	amount	of	developers	(and	the	relative	%	compared	with	total	amount	of	employees),	we	
can	derive	the	role	and	importance	a	SD	department	has	inside	an	organization.	

5	 This	denotes	whether	an	organization	runs	a	pipeline	on	premise	and	maintains	 it	by	themselves.	At	the	
other	hand,	if	an	organization	does	make	use	of	such	standardized	deployment	pipeline,	we	know	that	the	
Development	Area	is	less	important	to	them.	

6	 The	amount	of	deploying	provides	us	with	an	indication	how	many	times	code	is	committed	to	main-	and	
side	branches	and	builds	are	being	performed.	This	also	gives	an	indication	if	an	organization	is	applying	CI,	
which	is	a	suitable	use	case	for	applying	containers.	

Application	&	
Infrastructure	

7	 The	type	of	cloud	that	is	used	for	infrastructure,	application	landscape,	and	solutions.	Possibly	on	premise	if	
an	organization	handles	client-sensitive	data.	

8	 Stateless	applications	are	one	of	the	main	business	cases	for	containers.	If	an	organization	is	already	running	
stateless	application,	 it	 is	 likely	that	either	are	already	(partially)	used,	or	the	organization	 is	suitable	for	
applying	containers.	If	not,	based	on	the	rough	estimate,	it	should	be	found	out	what	(amount	of)	stateful	
applications	can	switch	to	run	stateless.	

9	 If	an	organization	is	currently	not	using	a	microservices	architecture	style,	the	organization	should	have	the	
ambition	to	migrate	to	such	architecture	style	defined	in	their	strategy	plan	for	at	least	at	the	maximum	of	
three	years.	Otherwise,	using	containers	will	not	have	a	beneficial	impact	on	business	value.	

10	 Applications	that	have	older	architectures	may	not	be	container	(cloud)	ready.	If	this	percentage	of	potential	
applications	is	high,	the	organization	should	first	rewrite	their	applications	before	making	the	switch	towards	
containers.	

11	 The	last	question	provides	us	with	an	indication	to	what	extent	the	organization	possesses	knowledge	on	
virtualization.	 Having	 such	 knowledge	 available	 in	 the	 organization	 helps	 understanding	 the	 CMM.	 In	
addition,	 that	knowledge	will	ultimately	be	of	support	when	migrating	to	containers,	as	containerization	
aspects	may	be	familiar.	

	

	 	

130 | P a g e

Appendix	X	–	CMM	PDD	tables	
This	 appendix	 includes	 the	 corresponding	 activity	 and	 concept	 tables	 of	 the	 CMM’s	 PDD	 (see	 section	 10)	
according	to	Van	de	Weerd	and	Brinkkemper	(2009).	

Table	32:	Activity	table	CMM	PDD		
Activity	 Sub	activity	 Description	

1.	Execute	Pre	
assessment	

1.1	Assess	the	11	questions	of	
container-readiness	

Perform	 the	 questionnaire	 of	 the	 Pre	 assessment.	 This	 includes	 the	 11	
questions	that	determine	if	an	organization	is	container-ready.	The	results	are	
used	in	PRE	ASSESSMENT	RESULTS.	

1.4	Evaluate	results	 Evaluate	the	results	of	the	Pre	assessment.	The	conclusion	resulting	from	this	
step	is	used	to	determine	whether	an	organization	is	container-ready,	and	is	
also	part	of	PRE	ASSESSMENT	RESULTS.		

2.	Execute	
Maturity	
assessment	

2.1	Assess	Development	Area	 Perform	 the	 questionnaire	 of	 the	 MA’s	 Development	 area.	 This	 includes	
questions	 that	 indicate	 the	 configuration	of	 an	 organization’s	 SDLC	process	
and	corresponding	CICD	functionalities.	

2.2	Assess	Operations	Area	 Perform	 the	 questionnaire	 of	 the	 MA’s	 Operations	 area.	 This	 includes	
questions	 that	 indicate	 the	 tasks	 an	 organization	 performs	 when	 their	
applications	are	released	into	production	while	running	on	containers.	

2.3	Assess	Application	&	
Infrastructure	area	

Perform	 the	questionnaire	of	 the	MA’s	Application	and	 Infrastructure	area.	
This	includes	questions	that	indicate	tasks	and	capabilities	of	an	organization’s	
application	 and	 infrastructure	 landscapes	 that	 provision	 the	 business	
operations.	

3.	Evaluate	
results	

3.1	Evaluate	assessment	results	 Evaluating	 all	 results	 of	 the	 Maturity	 assessment	 to	 discover	 how	 an	
organization	 is	 performing	 onto	 different	 areas	 inside	 their	 SDLC	 process,	
operations	process,	and	CICD	functionalities,	in	regards	to	containers.	

3.2	Determine	topics	of	
excellence	

Determine	 on	 what	 topic(s)	 an	 organization	 excels	 regarding	 their	 virtual	
environment	configuration	inside	the	SDLC	and	operations	process.	

3.3	Determine	topics	of	
improvement	

Determine	on	what	topic(s)	an	organization	can	improve	regarding	their	virtual	
environment	configuration	inside	the	SDLC	and	operations	process.	

3.4	Select	to-be	maturity	
level(s)	of	metric(s)	

Determine	the	next	steps	of	improvement	of	an	organization	to	reach	higher	
maturity	levels	on	the	specifically	determined	topics	or	areas.	

	

Table	33:	Concept	table	CMM	PDD		
Concept	 Description	

PRE	ASSESSMENT	RESULTS	 Results	 of	 the	 Pre	 assessment	 that	 indicate	 whether	 an	 organization	 is	
container-ready.	

DEVELOPMENT	AREA	RESULTS	 Sub-assessment	results	of	the	Development	area.	
OPERATIONS	AREA	RESULTS	 Sub-assessment	results	of	the	Operations	area.	
APP	&	INFRA	AREA	RESULTS	 Sub-assessment	results	of	the	Application	&	Infrastructure	area.	
MATURITY	SCORE	 Assessment	results	of	the	Maturity	assessment	that	includes	all	area	results.	
TOPIC	OF	EXCELLENCE	 A	topic	in	reference	to	SDLC	an	organization	excels	in.	Can	be	one	or	multiple.	
TOPIC	OF	IMPROVEMENT	 A	 topic	 in	 reference	 to	 SDLC	 an	 organization	 can	 improve.	 Can	 be	 one	 or	

multiple.	
RESULTS	MATRIX	 A	document	that	contains	the	scores	of	the	PA,	MA,	topics	of	improvements	

and	excellence,	and	the	desired	maturity	level	improvements.	The	information	
of	this	concept	is	used	in	the	BUSINESS	CASE.	

SELECTION	OF	DESIRED	MATURITY	LEVELS	 The	designed	plan	that	guides	an	organization	in	improving	their	SDLC	process	
and	 corresponding	 CICD	 configuration,	 ,	 to	 ultimately	 achieve	 a	 higher	
maturity	and	(further)	exploit	containers.	

BUSINESS	CASE	 The	 potential	 savings	 that	 can	 be	 realized	 if	 an	 organization	 switches	 from	
using	VMs	towards	containers.	The	data	is	generated	by	the	Business	area.	

	 	

131 | P a g e

Appendix	XI	–	CMM	linked	to	EAG	
The	topics	of	the	CMM	Maturity	assessment	are	linked	to	EAG.	In	underlying	table	X,	we	described	how	the	
CMM	content	 is	 linked	to	EAG.	Stating	such	 links	shows	how	the	artefact	 influences	EAG	from	a	technology	
perspective.	

Table	34:	Core	agility	attributes	including	technology-related	sub-concepts	(Sherehiy	et	al.,	2007)	linked	to	CMM	
EAG	attribute	 Description	

Flexibility	 “The	ability	to	pursue	different	business	strategies	and	tactics,	to	quickly	change	from	one	strategy/task/job	
to	another.”	

- Flexible	organizational	structures	and	practices	(i.e.	capacity	of	applications	and	infrastructure	can	
be	scaled	or	changed	in	balance	depending	on	demands);	

- Workplace	flexibility	(i.e.	all	kinds	of	applications	can	be	launched	through	virtual	environments,	
independently	of	the	location	and	infra	agnostic).	

DEV	
Component	maturity	–	Functional.	This	topic	consists	of	metrics	that	provide	specific	functionality	to	the	
SDLC	process	which	are	related	to	containers.	As	these	functionalities	enable	an	organization	to	execute	in	
other	way,	its	flexibility	in	regards	to	SDLC	is	increased.	

OPS	-	

AppInf	
Landscape	resilience.	Metrics	regarding	 landscape	resilience	focus	on	 immediate	responses	to	 landscape	
component	 failures	 and	 issues.	 Higher	maturity	 refers	 to	 faster	 automatic	 responses	which	 have	 larger	
impact	to	the	application	and	infrastructure	landscape.	

Speed	 “The	ability	to	complete	requirements	of	all	other	agile	characteristics	in	shortest	possible	time.	The	ability	

to	learn,	carry	out	tasks	and	operations	and	make	changes	in	shortest	possible	time.”	

- Performing	 tasks,	 operations,	 and	 making	 changes	 (i.e.	 fastness	 in	 launching	 instances	 of	
applications	 and	 infrastructure	 (application	 run	 time	 environments)	 to	 perform	 tasks	 and	
operations);	

- Time	of:	operations,	production/service	delivery	 (i.e.	 fastness	of	an	application	 is	able	 to	 start	
running	a	service).	

DEV	
Task	automation.	The	extent	how	SDLC	phase-specific	tasks	are	performed	automatically.	The	higher	the	
maturity	 level,	 the	more	 the	phase-specific	process	 is	automated,	and	 integrated	 into	 standard	delivery	
pipeline.	

Component	maturity	–	Non-functional.	 This	 topic	 refers	 to	 the	 components	 that	 are	 added	 to	 the	 SDLC	
process	(Functional)	that	mature	in	improvements	of	the	functionality	(i.e.	quality	improvements).	These	
maturity	improvements	are	focused	on	the	integration	and	containerization	of	the	components.	

OPS	
Lifecycle	management.	The	extent	how	the	containers	that	support	or	contain	applications	are	managed	
automatically	 increases	 speed	 of	 the	 SDLC	 process,	 as	 human	 interference	 is	 less	 required	with	 higher	
automation.	Higher	maturity	levels	of	this	topic	include	more	automated-related	metric	specifications	

AppInf	-	

Responsiveness	 “The	ability	to	identify	changes	and	opportunities	and	respond	reactively	or	proactively	to	them.”	

- Responsiveness	to	change	in	customer	demands	(i.e.	scalability	for	application	capacity);	

- Responsiveness	to	market	and	business	environment	changes	and	trends	(i.e.	rapidly	integrating	
or	executing	new	applications	in	organization’s	application	and	infrastructure	landscape,	in	order	
to	respond	to	or	anticipate	on	market	needs).	

DEV	
Task	automation.	When	an	organization	notices	a	development	or	trend	in	its	environment	that	requires	

132 | P a g e

rapid	anticipation,	a	(highly)	automated	SDLC	process	is	more	able	to	provide	such	anticipation	(e.g.	develop	
new	or	modify	current	application,	complement	application	with	a	new	service	etc.).	

OPS	-	

AppInf	
Scaling	 potential.	 Depending	 on	 customer	 or	 user	 demand,	 an	 organization	 can	 scale-up/-down	 their	
infrastructure	and	applications.	Higher	maturity	 leads	to	more	component	usage	that	are	enabling	rapid	
and	automatic	scaling	of	required	services	or	hardware	instances.	This	supports	improved	responsiveness.	

Network	maturity.	A	higher	maturity	 in	an	organization’s	network	of	 infrastructure,	 the	more	stable	the	
network	is	to	handle	and	manage	increases	in	performance,	scale	up	and	down,		

Integration	and	Low	
complexity	

“Close	 and	 simple	 relations	 between	 the	 individual	 system	 components,	 easy	 and	 effortless	 flow	 of	 the	

materials,	 information	 and	 communication	 between	 the	 system	 components,	 organizational	 structures,	

people,	and	technology.”	

- Integration	 of	 people,	 technology,	 and	 organization	 (i.e.	 integration	 of	 DevOps	 runtime	
environments	of	applications	by	the	means	of	containers,	while	using	the	IaC	principle);	

- Synthesis	 of	 diverse	 technologies,	 skills,	 and	 competencies	 (i.e.	 combination	 of	 microservices	
architecture	with	containers	and	IaC);	

- Low	 complexity	 of	 structure,	 relationships	 between	 structure	 elements	 (i.e.	 technical	
architecture,	 applications/services	 that	 are	 independently	managed	 with	 determined	 runtime	
environment);	

- Flow	of	material,	 communication	 and	 information	between	different	 organizational	 structures	
and	systems	components	(i.e.	networking	maturity,	process	maturity,	API	configuration);		

- Enhanced	interaction	between	processes.	

DEV	-	

OPS	
Adminstrative	tasks.	This	topic	consists	of	the	Logging	metric.	

AppInf	
Network	 maturity.	 Network	 techniques	 enhance	 fast	 and	 responsive	 internal	 networking	 and	
communication.	A	 lot	of	 solutions	exist	 that	provide	such	 techniques.	A	new	technology	 that	 foster	 low	
complexity	 in	 internal	 networking	 is	 the	API	 technology.	Hence,	we	 incorporated	 this	 technology	 in	 the	
maturity	levels,	and	linked	this	topic	to	this	EAG	attribute.	

Culture	of	change	 “A	description	of	environment	supportive	of	experimentation,	learning,	and	innovation	and	is	focused	on	the	

continuous	monitoring	environment	to	identify	changes.	Culture	of	change	is	an	environment	where	people	

on	all	organizational	levels	have	positive	and	fearless	attitude	to	changes,	different	opinions,	new	ideas,	and	

technology.”	

We	did	not	incorporate	this	core	attribute	into	the	relationship	to	both	containers	and	VMs,	as	the	CMM.	
The	reason	is	that	this	attribute	is	focused	on	people	(O	of	OPT),	and	is	therefore	according	to	us	not	directly	
related	to	our	aim	of	technology	(T	of	OPT).	

	
	

	 	

133 | P a g e

Appendix	XII	–	TD:	Expert	interview	results	of	Iteration	2	
Appendix	XII,	XIII,	and	XIV	elaborate	on	the	results	of	the	performed	expert	interviews	of	respectively	iterations	
2,	3,	and	4.	Each	interview	report	consists	of	a	short	introduction	about	the	interviewee,	possible	quotes	(“quote	
1”),	a	table	including	summarized,	relevant	feedback	towards	CMM	modifications	and	our	rationale,	a	legend	
about	the	tag	visual15,	and	a	figure	of	the	tagged	soundbar.	In	the	tables,	some	sentences	are	placed	between	
square	brackets.	This	indicates	a	statement	of	questions	from	us,	where	the	interviewee	answers	to.	

No,	rejected	 Uncertain,	perhaps	future	 Yes,	but	for	future	 Partially	implemented	 Implemented	

The	interviewees	(experts)	have	been	partly	anonymized	due	to	made	confidentiality	agreements.	Their	input	
and	quotes	are	removed	from	the	public	version	of	the	thesis.	

Results	of	expert	interview	–	IT2Int#1	
Table	35:	Results	
#	 Summarized	description	of	main	

findings	
Rationale	 Y/N	

1	 	 We	agree	and	incorporated	a	question	into	the	PA	about	the	specific	cloud	
type	an	organization	is	using.	

	

2	 	 As	this	metric	is	focused	on	container	usage	in	all	tasks	related	to	coding,	we	
agree	with	this	statement	of	the	expert	and	incorporated	it	into	the	CMM.	

	

3	 	 Monitoring	of	the	applications	that	have	been	developed	is	also	an	aspect	of	
SDLC,	therefore	we	agree	that	we	should	incorporate	this	metric.	We	partially	
implemented	this	metric,	since	 it	 is	a	phase,	and	we	are	not	sure	 in	which	
area	to	implement.	

	

4	 	 We	believe	there	are	differences	in	how	containers	are	managed	and	used	
when	infrastructure	and/or	a	pipeline	is	managed	in-house	or	taken	from	the	
cloud.	 However,	 this	 is	 too	 comprehensive	 to	 process	 in	 current	 project.	
Therefore,	this	is	an	aspect	for	future	work.	

	

5	 	 We	agree	and	processed	this	into	the	CMM	with	its	current	structure.	 	

6	 [statement]	 -	

	

	

15	Each	interview	had	more	than	ten	discussed	aspects	of	the	taxonomy.	NVivo	12,	however,	is	restricted	to	depict	seven	colors.	Therefore,	we	numbered	
the	tag	legends	in	cumulative	manner	after	each	cycle	of	seven	colors,	to	increase	overview.

134 | P a g e

	

	
Results	of	expert	interview	–	IT2Int#2	
Table	36:	Results	
#	 Summarized	description	of	main	

findings	
Rationale	 Y/N	

1	 	 We	agree	and	changed	the	question	to	SD	processes	only.	 	

2	 	 Valid	point,	perhaps	for	future	research.	 	

3	 	 Private	cloud	usage	gives	an	indication	that	an	organization	may	be	of	risk	
for	performance	loses	or	lack	of	storage.	However,	this	depends	on	the	
context	and	operations	of	an	organization.	Therefore,	we	want	to	include	
this	question	in	the	PA.	

	

4	 	 We	agree	with	this	statement	as	every	tasks	generates	value.	The	difference	
is	that	no	all	tasks	directly	generated	business	value.	Therefore,	we	
incorporated	the	sharpening	of	the	concept	in	into	the	model	

	

5	 	 We	argue	that	this	is	a	potential	outcome	for	the	highest	levels	of	the	
metrics	

	

6	 	 We	added	a	Monitoring	phase	in	the	Development	area	of	the	CMM.	By	
doing	this,	it	follows	the	SDLC	phase	structure.	

	

7	 	 This	may	be	a	useful	addition	for	when	developing	a	further	refined	version	
of	the	MA	questionnaire.	As	in	the	current	research,	we	focus	on	developing	
a	first	version	of	the	CMM.	

	

8	 [statement]	 –	

9	 	 Specified	tests.	 	

10	 	 Changed	hierarchy.	 	

11	 	 	 	

	

135 | P a g e

	

	
Results	of	expert	interview	–	IT2Int#3	
Table	37:	Results	
#	 Summarized	description	of	main	

findings	
Rationale	 Y/N	

1	 	 Processed	into	metric	specifications.	 	

2	 	 Based	on	the	(functional)	characteristics	of	containers,	we	agree	with	this	
statement	and	processed	this	into	the	PA.	

	

3	 	 Based	on	the	response,	we	agree	with	this	statement.	 	

4	 	 We	mostly	agree	with	 this	 statement	and	shortened	 the	PA.	However,	we	
think	 that	 incorporating	 other	 questions	 regarding	 an	 organization’s	
applications,	 (MS-)	 architecture,	 and	 frequency	 of	 deployment	 is	 also	
valuable.	

	

5	 	 We	 defined	 a	 question	 in	 the	 PA	 about	 such	 deployment	 pipeline	 usage.	
However,	 we	 do	 not	 agree	 with	 the	 statement	 about	 CMM	 irrelevance.	
Organizations	still	have	to	manage	their	internal	operations	to	be	able	to	use	
those	services.	Therefore,	we	believe	the	CMM	is	still	relevant	in	such	cases.	

	

6	 	 We	created	a	grading	scheme	for	the	PA.	For	future	research,	at	the	
moment	when	the	cross-links	are	defined,	we	think	it	is	interesting	to	create	
a	grading	scheme	for	the	MA	as	well.	

	

7	 	 Monitoring	is	removed	from	DEV	area	and	processed	into	the	OPS	area.	We	
did	not	remove	it	from	the	model,	since	we	think	that	monitoring	the	
applications	is	important	for	the	SDLC	process,	thus	for	the	CMM.	

	

8	 	 We	disagree	with	this	statement.	We	want	to	maintain	the	level	of	detail	in	
the	differentiating	levels	of	skill	regarding	container	usage	in	SDLC,	we	are	
aiming	to	provide	to	users	of	this	maturity	model.	

	

9	 	 Findings	 such	 cross-links	 would	 be	 a	 major	 improvement	 to	 the	 CMM,	
especially	in	the	results	part.	Although,	this	development	is	not	suitable	for	
current	research.	Therefore,	include	this	feedback	into	future	works.	

	

136 | P a g e

	
Results	of	expert	interview	–	IT2Int#4	
Table	38:	The	feedback	from	findings	
#	 Summarized	description	of	feedback	 Rationale	 Y/N	

1	 	 We	agree.	We	tried	to	elicit	more	answer	by	providing	too	broad	questions.	
However,	we	noticed	that	this	did	not	improve	answers.	

	

2	 	 We	added	aspects	regarding	MSA	to	the	PE.	We	agree	and	believe	that	an	
organization	 that	 wants	 to	 benefit	 from	 containers,	 should	 consider	 to	
migrate	to	a	MSA.	

	

3	 	 As	this	architectural	change	impacts	both	applications	and	how	
organizations	work	with	them,	or	develop	them,	we	agree	to	process	this	
aspect	into	the	PA.	

	

4	 	 It	would	be	an	informative	addition	to	the	model,	but	we	determined	not	to	
incorporate	this,	as	the	PA’s	decision	should	be	based	on	an	organization’s	
existing	functionalities	and	opportunities	in	the	SDLC	configuration,	not	on	its	
(business)	motives.	

	

5	 	 Interesting	 to	 know	 the	 opinion	 from	 experts	 directly	 from	 the	 field	 of	
practice.	However,	not	for	deciding	about	container-readiness.	

	

6	 	 Changed	grading	of	the	PA.	 	

7	 	 Not	relevant	in	current	form	of	questioning.	 	

8	 	 Conducted	more	research	on	this	topic	and	processed	results	in	the	CMM.	 	

9	 	 Agreed	and	processed.	 	

10	 	 We	 think	 this	 is	 a	 too	detailed	aspect	 for	 current	 research	project.	We	do	
believe	this	concept	can	play	a	role	in	future	research,	as	performance	gains	
can	be	won	by	using	the	correct	(container-minded)	languages	

	

11	 	 Processed	all	CICD	related	metrics	to	specific	phases	of	SDLC.	 	

12	 	 Done.	 	

	

	

	

 	

137 | P a g e

Appendix	XIII	–	TD:	Expert	interview	results	of	Iteration	3	
The	 interviewee	 is	 partly	 anonymized	 due	 to	 made	 confidentiality	 agreements.	 Its	 input	 and	 quotes	 are	
removed	from	the	public	version	of	the	thesis.	

Results	of	expert	interview	–	IT3Int#5	
Table	39:	Results	
#	 Summarized	description	of	main	

findings	
Rationale	 Y/N	

1	 	 Agreed	with	both	statements.	Shortened	the	PA	and	added	a	question	about	
the	amount	of	stateless	applications	(%)	of	all	applications.	

	

2	 [statement]	 –	

3	 [statement]	 –	

4	 	 We	agree	and	changed	 the	question	 in	 the	PA	about	a	pipeline	 towards	a	
‘standardized	deployment	pipeline	for	more	than	50%	of	your	SD	processes’.	

	

5	 	 Outsourcing	may	 be	 interesting	 to	 know,	 since	 it	 can	 indicate	whether	 an	
organization	 needs	 a	 strong	 network,	 the	 amount	 of	 dependencies	 on	
external	dev-teams	and	thus	how	CI	is	configured.	We	decided	not	to	include	
this	in	the	current	CMM,	as	it	would	take	too	much	time	to	investigate	this	
link.	Therefore,	we	added	this	to	the	future	works.	

	

6	 	 Verified	 our	 programming	 languages	 question	 from	 the	 prior	 expert	
interview.	

	

7	 	 We	agreed	with	this	statement.	The	business	motive	is	interesting	to	know,	
but	will	 not	 be	 the	major	 aspect	 that	 influences	 the	 decision	whether	 an	
organization	is	container-ready.	

	

8	 	 We	understood	the	statement	and	processed	everything.	Moreover,	this	 is	
the	 same	 feedback	 from	 IT2Int#4,	 which	 we	 misunderstood	 and	 did	 not	
perceive	as	relevant	for	the	CMM	at	that	moment.	

	

9	 	 We	understood	 the	 statement	and	 switched	monitoring	 from	DEV	area	 to	
OPS	area.	We	also	added	the	proposed	concepts	as	metrics	to	the	CMM	in	
OPS.	The	images	are	added	as	metrics	in	the	DEV	area.	

	

10	 	 Agreed.	We	processed	all	test-related	metrics	to	the	test	phase	in	DEV	area.	
We	 removed	 the	 split	 of	 app-dependent	 and	 –independent	 tests,	 and	
specified	all	tests	through	automation.	

	

11	 	 These	 levels	of	maturity	 in	automation	described	how	automatic	 tasks	are	
executed.	We	used	 this	 level	 structure	as	a	base	 for	defining	each	phase’s	
Task	automation	metric,	where	we	customized	the	m-levels.	

	

12	 	 We	also	used	this	(abstract)	level	structure	as	a	base	for	all	our	component	
metrics.	For	each	metric,	we	refined	the	levels	suitable	to	its	functionality.	

	

13	 [statement]	 This	validates	our	 statement	by	a	 relevant	expert	 that	 is	 specialized	 in	 the	
domain	of	interest.	

–	

14	 	 Agreed	and	processed	into	CMM.	 	

15	 	 We	 think	 that	 this	would	 be	 an	 addition	 of	 high	 value,	 as	we	 can	 further	
specify	each	metric	into	more	detail,	and	can	withhold	information	for	future	
dashboards.	 However,	 considering	 our	 scope	 and	 remaining	 time,	 we	
considered	this	would	require	too	much	time.	Hence,	we	believe	this	 is	an	
aspect	for	future	research.		

	

16	 [statement]	 –	

As	this	expert	is	specialized	in	the	exact	domains	the	CMM	is	aiming	for,	we	regard	this	interview	as	the	most	
valuable	interview	of	all	iterations.	The	interviewee	had	suggestions,	criticism,	and	positive	feedback	on	both	
high	and	specific	level	components.	Therefore,	where	possible	we	processed	all	of	his	feedback	into	the	model.	

138 | P a g e

	

	 	

139 | P a g e

Appendix	XIV	–	TD:	Expert	interview	results	of	Iteration	4	
This	appendix	provides	the	main	feedback	derived	from	all	interviewed	experts	of	IT4.	We	did	not	use	Nvivo12	
to	analyse	the	interviews,	but	made	notes	during	the	interviews	instead,	which	we	afterwards	processed	into	
the	tables.	

The	interviewees	(experts)	have	been	partly	anonymized	due	to	made	confidentiality	agreements.	Their	input	
and	quotes	are	removed	from	the	public	version	of	the	thesis.	

Results	of	expert	interview	–	IT4Int#6	
Table	40:	Results	
#	 Summarized	description	of	main	

findings	
Rationale	 Y/N	

1	 	 Added	a	question	about	applications	that	run	virtualized.	 	

2	 	 Processed	the	feedback	into	grading	of	PA.	 	

3	 	 We	agree	and	processed	this	information	into	our	results.	 	

4	 	 We	based	 the	 first	 version	of	our	CMM	on	 literature.	Because	of	 this,	we	
missed	 the	delivery	aspect.	After	 further	 investigation	on	 the	concept,	we	
understood	this	statement	and	immediately	started	to	process	this	feedback	
into	 the	 CMM.	 We	 added	 an	 area	 regarding	 the	 application	 and	
infrastructure	landscape	of	an	organization	to	provision	its	business	domain.	

	

	

Results	of	expert	interview	–	IT4Int#7	
Table	41:	Results	
#	 Summarized	description	of	main	

findings	
Rationale	 Y/N	

1	 	 Partially	implemented	as	we	complemented	the	metrics	specification.	 	

2	 	 Agreed	and	added	the	metric	and	the	maturity	levels.	 	

3	 	 Processed	these	specifications	towards	the	metrics.	 	

4	 	 Partially	processed	feedback	into	corresponding	metrics.	 	

5	 	 For	now,	we	did	not	incorporate	this,	as	we	maintained	the	metric.	
However,	we	consider	this	as	valid	feedback	and	therefore	may	include	it	in	
future	versions.	

	

	

Results	of	expert	interview	–	IT4Int#8	
Table	42:	Results	
#	 Summarized	description	of	main	

findings	
Rationale	 Y/N	

1	 	 We	 agreed	 with	 this	 suggestion,	 as	 this	 helps	 users	 in	 understanding	 the	
cohesion	of	 the	model.	Due	 to	 this	 change,	users	will	 associate	 the	model	
quicker	towards	something	they	know.	Hence,	improving	the	usability	from	
their	perspective.	

	

2	 	 This	 feedback	 is	 processed	 into	 the	App&Infra	 area	metric	 around	 service	
orchestration.	The	maturity	specifications	of	level	3	and	4	are	complemented	
with	this	feedback.	Therefore,	partially	implemented.	

	

3	 	 Added	Vulnerability	scanning	to	the	metric	specification	of	level	3.		 	

	 	 We	added	A/B	testing	to	the	Load	balancing	metric.	Additionally,	we	added	
On-premise	as	infrastructure	option	in	level	5.	

	

140 | P a g e

4	 	 This	would	be	a	great	form	to	convert	the	final	version	of	the	CMM	into	order	
to	 show	 the	 content	 of	 the	 maturity	 levels	 in	 a	 brief	 way	 to	 (higher)	
management.	However,	due	to	time	restrictions	and	current	content	of	the	
CMM,	 we	 did	 not	 include	 such	 abbreviated	 version	 in	 this	 thesis.	 Future	
research	should	focus	on	this	aspect.	

	

	

Results	of	expert	interview	–	IT4Int#9	
Table	43:	Results	
#	 Summarized	description	of	main	

findings	
Rationale	 Y/N	

1	 	 We	added	this	concept	in	the	CMM,	as	we	argued	that	this	functionality	could	
be	a	level	4	or	5	maturity	specification,	as	the	impact	of	such	function	on	a	
system	tests	the	resilience	on	high	level.	

	

2	 	 A	valid	point	that	improves	quality	of	both	the	model	as	the	research	process.	 	

3	 	 We	agree	with	this	addition,	as	microservices	is	the	main	architectural	style	
that	 enables	 the	 benefits	 of	 containers	 in	 an	 organization.	 Extending	 the	
migration	to	a	MSA	towards	a	 long	term	strategy	(more	than	three	years),	
means	 that	 stateless	 applications	 are	 not	 important	 to	 the	 organization.	
Hence,	 containerization	 does	 not	 improve	 that	 organization,	 making	 the	
CMM	irrelevant	for	them.	

	

4	 	 We	immediately	processed	these	suggestions	into	the	CMM,	as	we	defined	
these	metric	specifications	in	collaboration	with	this	expert.	

	

5	 	 The	same	as	in	row	4,	we	determined	these	high-level	metric	specifications	
together	with	the	expert	during	this	interview.	Partially	implemented.	

	

	 	 Equivalent	to	row	4	and	5,	we	stated	and	directly	incorporated	these	metric	
specifications	 into	 the	 metrics.	 Later	 on	 in	 this	 iteration,	 we	 made	 some	
adjustments	to	these	metric	specifications.	Hence,	we	partially	implemented	
this	feedback.	

	

6	 	 We	immediately	processed	these	suggestions	into	the	CMM,	as	we	defined	
this	metric	specification	in	collaboration	with	this	expert.	

	

	

Results	of	expert	interview	–	IT4Int#10	
Table	44:	Results	
#	 Summarized	description	of	main	

findings	
Rationale	 Y/N	

1	 	 This	 is	 true.	We	eventually	 processed	 this	 container	 usage	 as	 component-
functionality	 throughout	 the	metrics	 in	 the	metric	 specifications	 (maturity	
levels),	and	removed	the	specific	container	usage	per	phase.	

	

2	 	 We	 believe	 this	 is	 interesting	 to	 know	 for	 dev-teams	 that	 developed	 an	
application,	 and	 for	management	of	 the	development	department	 as	 new	
strategies	can	be	applied.	However,	we	intend	to	include	technology-based	
aspects	only	into	the	model	(besides	metrics	that	include	human-interaction	
as	metric	specification).	This	feedback	is	denotes	responsibility	of	actual	dev-
teams.	

	

3	 	 In	collaboration	with	the	expert,	we	defined	five	levels	for	the	Build	server	
metric.	

	

3	 	 Agreed	with	this	statement.	At	first,	we	added	for	each	DEV	area	phase	a	
metric	that	consists	of	business	logic	container	usage.	After	that,	we	
determined	to	process	this	as	a	high-level	metric	in	the	App	&	Infra	area.	

	

	

	
	

141 | P a g e

Results	of	expert	interview	–	IT4Int#11	
Table	45:	Results	
#	 Summarized	description	of	main	

findings	
Rationale	 Y/N	

1	 	 In	several	level	5	metric	specifications,	we	included	the	ecosystem	aspect	as	
this	 realizes	 further	 reach	 for	 functionality	 in	 the	 environment	 of	 an	
organization.	

	

	 	 We	added	to	level	3	of	Artefact	repository	–	system	specifications	‘central’,	
and	the	reusing	functionality.		

	

2	 	 We	agreed	and	complemented	the	metric	with	these	additions.	 	

	 	 We	split	both	unit-testing	and	Integration	testing.	Of	Unit-testing,	we	have	
put	the	internal	sources	at	level	2,	as	internal	sources	are	easier	to	reach	and	
control	mostly.	The	unit-testing	of	external	sources	is	added	to	level	3.	For	
Integration,	we	use	the	same	reasoning	and	processed	internal	 into	level	3	
and	external	into	level	4.	

	

3	 	 Valuable	suggestion.	Decided	to	postpone	this	feedback	to	future	versions.	 	

	
	 	

142 | P a g e

Appendix	XV –	TD:	Interview	protocol	IT2	
Semi-structured	interview	with	internal	PwC	expert	

Goal:	to	find	out	what	experts	think	about	the	content	of	a	Container	Maturity	Model.	

Introduction	
- Introducing	myself;	
- Tell	about	the	master;	
- Briefly	explain	the	master	thesis	project,	including	structure,	deliverables,	expectations;	
- Explain	the	goal,	structure,	subjects,	and	timespan	of	this	interview,	and	why	this	person;	
- Ask	for	permission	to	record	this	interview.	The	record	will	only	be	used	to	make	a	transcription	and	

analysis	about	 the	 results.	 The	analysis	 is	used	 to	 scientifically	use	 the	 results	 to	 further	design	 the	
CMM.	

Start	recording	with	phone	

General	
“I	would	like	to	start	with	some	general	information.”	

• Ask	interviewee	to	tell	something	about	him-/herself,	position,	daily	tasks	etc.;	

• What	do	you	think	about	the	role	of	containers	in	organizations	nowadays?	
• What	do	you	think	is	one	of	the	main	benefits	for	organizations	of	using	containers?	

explain	about	found	results	on	containers	showing	their	benefits	solely	in	certain	contexts	

• To	what	extent	do	you	agree	with	this?	What	do	you	think	about	the	SDLC	context?	

	

Container	Maturity	Model	(CMM)	

*Explain	about	the	structure	of	the	model,	specifying	the	three	areas	(Containers,	How	Agile,	and	Business	

Case).*	

In	general,	ask	the	expert	about	his	opinion	about:	

- Relevance	of	element;	
- Elaboration	of	element	in	current	model;	
- Agreements	(positive	comments);	
- Missing	elements	regarding	SDLC	AND	containers	(negative	comments).	

	

1.	Pre	assessment	(10	min)	

• Considering	the	goal	of	CMM,	to	what	extent	do	you	think	that	the	content	of	the	pre	assessment	is	
sufficient	to	determine	if	an	organization	is	container-fit	(i.e.	will	benefit	from	applying	containers)?	

• Do	you	see	any	topics	that	are	crucial	for	determining	the	container-fitness?	

	

2.	Assessment	(45	min)	

143 | P a g e

Walk	through	the	model	by	discussing	every	step	of	all	three	areas	(Development,	Operations,	Output).	

Development	(20	min)	

• What	do	you	think	about	the	metrics	that	are	currently	measured?	

• To	what	extent	do	you	agree	with	the	given	levels,	and	their	positioning?	

• Would	you	add	or	remove	elements	from	this	CMM	area?	

	

Operations	(20	min)	

• What	do	you	think	about	the	topics	that	are	currently	questioned	to	measure	the	organization’s	agility	of	
their	SDLC	configuration?	

• What	do	you	think	about	the	given	levels	of	these	topics?	

o Are	they	using	the	correct	concepts?	

o What	do	you	think	about	the	order?	

o To	what	extent	do	you	agree	with	the	given	maturity	levels	(e.g.	what	would	you	consider	
mature)?	

• Given	the	goal	of	this	CMM	area,	would	you	add	or	remove	elements	to	increase	the	effect	of	this	area?	

	

Output	(5	min)	

• What	do	you	think	about	the	content	of	this	CMM	area?	

o Do	you	agree	with	the	statement	about	“VMs	vs	Containers”?	

o And	that	the	topic	of	main	benefit	of	containers	is	storage	and	data	usage?	

	

Finalizing	(5	min)	

• Is	there	something	I	forgot	to	ask	about,	what	you	consider	as	important?	

• Do	you	want	to	add	something	else?	

	

*End	of	interview	

-	Thank	interviewee	for	the	interview;	
-	Offer	to	send	the	results	when	project	is	finished;	
-	Ask	for	possibility	of	additional	questions	if	later	required;	
-	Ask	if	interviewee	wants	to	see	the	transcript	to	check	validity.	

144 | P a g e

Appendix	XVI –	TD:	Interview	protocol	IT3	&	IT4	
Semi-structured	interview	at	ING	

Goal:	to	find	out	what	experts	think	about	the	content	of	a	Container	Maturity	Model.	

Introduction	
- Introducing	myself;	
- Tell	about	the	master;	
- Briefly	explain	the	master	thesis	project,	including	structure,	deliverables,	expectations;	
- Explain	the	goal,	structure,	subjects,	and	timespan	of	this	interview,	and	why	this	person;	
- Ask	for	permission	to	record	this	interview.	The	record	will	only	be	used	to	make	a	transcription	and	

analysis	about	 the	 results.	 The	analysis	 is	used	 to	 scientifically	use	 the	 results	 to	 further	design	 the	
CMM.	

Start	recording	with	phone	

General	(10	min)	
“I	would	like	to	start	with	some	general	information.”	

• Ask	interviewee	to	tell	something	about	him-/herself,	position,	daily	tasks	etc.;	

• What	do	you	think	about	the	role	of	containers	in	organizations	nowadays?	
• What	do	you	think	is	one	of	the	main	benefits	for	organizations	of	using	containers?	

explain	about	found	results	on	containers	showing	their	benefits	solely	in	certain	contexts	

• To	what	extent	do	you	agree	with	this?	What	do	you	think	about	the	SDLC	context?	

	

Container	Maturity	Model	(CMM)	

*Explain	about	the	structure	of	the	model,	specifying	the	three	areas	(Containers,	How	Agile,	and	Business	

Case).*	

In	general,	ask	the	expert	about	his	opinion	about:	

- Relevance	of	element;	
- Elaboration	of	element	in	current	model;	
- Agreements	(positive	comments);	
- Additional	tips	or	remarks;	
- Missing	elements	regarding	SDLC	AND	containers	(negative	comments).	

	

1.	Pre	assessment	(20	min	in	IT3	–	10	min	in	IT4)	

• Considering	the	goal	of	CMM,	to	what	extent	do	you	think	that	the	content	of	the	pre	assessment	is	
sufficient	to	determine	if	an	organization	is	container-fit	(i.e.	will	benefit	from	applying	containers)?	

• Do	you	see	any	topics	that	are	crucial	for	determining	the	container-fitness?	

	

2.	Assessment	(80	min	in	IT3	–	45	min	in	IT4)	

145 | P a g e

Walk	through	the	model	by	discussing	every	step	of	all	three	areas	(Development,	Operations,	Output).	

Development	(30	min	in	IT3	–	20	min	in	IT4)	

• What	do	you	think	about	the	metrics	that	are	currently	measured?	

• To	what	extent	do	you	agree	with	the	given	levels,	and	their	positioning?	

• Would	you	add	or	remove	elements	from	this	CMM	area?	

	

Operations	(40	min	in	IT3	–	20	min	in	IT4)	

• What	do	you	think	about	the	topics	that	are	currently	questioned	to	measure	the	organization’s	agility	of	
their	SDLC	configuration?	

• What	do	you	think	about	the	given	levels	of	these	topics?	

o Are	they	using	the	correct	concepts?	

o What	do	you	think	about	the	order?	

o To	what	extent	do	you	agree	with	the	given	maturity	levels	(e.g.	what	would	you	consider	
mature)?	

• Given	the	goal	of	this	CMM	area,	would	you	add	or	remove	elements	to	increase	the	effect	of	this	area?	

	

Output	(10	min	in	IT3	–	5	min	in	IT4)	

• What	do	you	think	about	the	content	of	this	CMM	area?	

o Do	you	agree	with	the	statement	about	“VMs	vs	Containers”?	

o And	that	the	topic	of	main	benefit	of	containers	is	storage	and	data	usage?	

	

Finalizing	(10	min	in	IT3	–	5	min	in	IT4)	

• Is	there	something	I	forgot	to	ask	about,	what	you	consider	as	important?	

• Do	you	want	to	add	something	else?	

	

*End	of	interview	

-	Thank	interviewee	for	the	interview;	
-	Offer	to	send	the	results	when	project	is	finished;	
-	Ask	for	possibility	of	additional	questions	if	required	later;	
-	Ask	if	interviewee	wants	to	see	the	transcript	to	check	validity.	

	

146 | P a g e

Appendix	XVII –	Container	Maturity	Model	
This	part	is	excluded	from	the	public	version	of	the	master	thesis.	Please	feel	free	to	contact	me	for	additional	
details	about	specific	topics	or	concepts.	

	

Appendix	XVIII –	TD:	Sources	and	traceability	of	metrics	
Included	 in	 this	document	 is	an	Excel	 sheet	 that	provides	an	overview	about	 the	origin	of	each	metric,	and	
modifications	of	all	metrics.	

Sources and
traceability of 	

	

 	

147 | P a g e

Appendix	XIX –	Concept	version	of	scientific	report	
	

	

	

	

	

148 | P a g e

	

	

	

	

	

	

	

149 | P a g e

	

	

	

	

	

	

150 | P a g e

	

	

	

	

	

	

151 | P a g e

	

	

	

	

	

	

152 | P a g e

	

	

	

	

	

	

	

153 | P a g e

	

	

	

	

	

154 | P a g e

	

	

	

	

	

	

155 | P a g e

	

	

	

	

	

156 | P a g e

	

	

