
Artificial Intelligence
Graduate School of Natural Sciences

Intelligent Systems

Asking useful questions in information
gathering dialogues

W.D. Kumeling

1. Reviewer Floris Bex
Department of Information and Computing Sciences
Utrecht University

2. Reviewer Henry Prakken
Department of Information and Computing Sciences
Utrecht University

Supervisor Floris Bex

April 5, 2019



Abstract

Inquiry dialogues exist to gather data about a given topic. The dialogue systems
of Black and Hunter (2009) generate such dialogues. Those dialogues are, how-
ever, large, due to the exhaustive strategy. The limited commitment, limited
dialogue, smart dialogue and smart original strategy are proposed as modifica-
tions of that strategy to reduce the exhaustiveness of these dialogues. These
strategies are investigated in three ways. By simulating dialogues, the practical
effect of the modifications is investigated. By proving soundness and complete-
ness, the correctness of the strategies is investigated. Lastly, the effect of the
problem domain, an intake with the police, is briefly investigated. The smart
dialogue and the two limited strategies generate significantly smaller dialectical
trees, but are not sound or complete. Moreover, the generated dialogues were
generally not smaller. The smart original strategy was found to be sound and
complete, but only a marginal improvement. This thesis provides, furthermore,
evidence that the effectiveness of a strategy highly depends on the knowledge
base reasoned upon. It also demonstrates that building ‘smart’ strategies, that
are also sound and complete, with no extra information is hard.



Contents

1 Introduction 4

2 Argumentation 7
2.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Dialectical tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Dialogues 13
3.1 Dialogue systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Types of dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 The intake as a dialogue . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Strategies 16
4.1 Exhaustiveness and planning . . . . . . . . . . . . . . . . . . . . 16
4.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 User models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Relevancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 An inquiry dialogue system 21
5.1 Order of operations . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Dialogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Effect rules and query store . . . . . . . . . . . . . . . . . . . . . 24
5.5 Turn taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.6 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7 Dealing with sub-dialogues . . . . . . . . . . . . . . . . . . . . . 26
5.8 Knowledge base . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.9 Argument inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.10 Warrant inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Soundness, completeness and the exhaustive strategy 32
6.1 Soundness and completeness . . . . . . . . . . . . . . . . . . . . . 32

6.1.1 Argument inquiry . . . . . . . . . . . . . . . . . . . . . . 33
6.1.2 Warrant inquiry . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Exhaustive strategy . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Modified exhaustive strategies 36
7.1 Commitment store versus dialogue . . . . . . . . . . . . . . . . . 37

7.1.1 One argument per proposition . . . . . . . . . . . . . . . 37
7.1.2 Checking the status . . . . . . . . . . . . . . . . . . . . . 38

7.2 The strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2.1 The limited strategies . . . . . . . . . . . . . . . . . . . . 40
7.2.2 Smart strategies . . . . . . . . . . . . . . . . . . . . . . . 40

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Proving soundness and completeness 43
8.1 Limited strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.1.1 Argument inquiry . . . . . . . . . . . . . . . . . . . . . . 43
8.1.2 Warrant inquiry . . . . . . . . . . . . . . . . . . . . . . . 44

8.2 Smart strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.2.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.2.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9 Experiments 52
9.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.2.1 The data sets . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2.2 Splitting the data sets . . . . . . . . . . . . . . . . . . . . 55
9.2.3 The implementation . . . . . . . . . . . . . . . . . . . . . 57

9.3 The setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.4.1 Ambiguity handling . . . . . . . . . . . . . . . . . . . . . 62
9.4.2 Team defeat . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.4.3 Floating conclusions . . . . . . . . . . . . . . . . . . . . . 69

9.5 Discussion of experiments . . . . . . . . . . . . . . . . . . . . . . 72
9.5.1 General setup . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.5.2 Effects of the modified strategies . . . . . . . . . . . . . . 73
9.5.3 Influence of the intake setting . . . . . . . . . . . . . . . . 74
9.5.4 Behaviour of the modified strategies . . . . . . . . . . . . 75
9.5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 76

10 Discussion 78
10.1 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.2 Applicability of DeLP and Black and Hunter . . . . . . . . . . . 80
10.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

11 Conclusion 82
11.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References 85

2



A Intake setting 87
A.1 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Team defeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3 Floating conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 91

B Root arguments in the intake setting 93
B.1 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.2 Team defeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.3 Floating conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 94

C Random setting 95
C.1 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.1.1 Size of dialogues . . . . . . . . . . . . . . . . . . . . . . . 95
C.1.2 Size of dialectical trees . . . . . . . . . . . . . . . . . . . . 97

C.2 Team Defeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
C.2.1 Size of dialogues . . . . . . . . . . . . . . . . . . . . . . . 99
C.2.2 Size of dialectical trees . . . . . . . . . . . . . . . . . . . . 101

C.3 Floating conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 103
C.3.1 Size of dialogues . . . . . . . . . . . . . . . . . . . . . . . 103
C.3.2 Size of dialectical trees . . . . . . . . . . . . . . . . . . . . 105

3



Chapter 1

Introduction

How can agents communicate effectively in order to accomplish a given task?
In general, agents communicate to exchange information. One form of com-
munication is via dialogues. In dialogues, agents respond to each other until
some goal is met. By exchanging information in the form of arguments and
propositions, agents engage in what are called argumentation dialogues. Those
arguments and propositions are used by agents, for example, to exchange rea-
sons for their beliefs try to convince their opponent, or do other things. This
thesis will assume that such dialogues are between two agents.

Argumentation dialogues are formed by agents uttering moves. For example,
let two agents argue over whether a certain incident involved fraud. To begin
such a dialogue, one of the agents could utter assert(FraudOccured). With
this, the agent asserts that it believes that fraud took place. The other agent
may choose to reply with why(FraudOccured), asking for the reason that the
other agent believes that there was a fraud. Here, why(FraudOccured) is the
content, or locution, of the move. Moves contain, besides a content, also the
agent who uttered it and some information about why the move was uttered.
Moreover, locutions like why(FraudOccured) are of the form p(c), where p is a
performative and c an argument or proposition.

By uttering (or replying to) locutions, agents are making moves. By replying
to each other’s moves until some goal is met, a dialogue is formed. This thesis
focuses on argumentation dialogues that are formed according to rules set out by
dialogue systems. Dialogue systems contain rules on when and which locutions
may be uttered, how locutions affect the state of agents, when the dialogue ends,
and how agents take turns.

Argumentation dialogues are used to solve conflict. This conflict may entail
various things, such as agents having a conflict over resource allocation, or
simply disagreeing over some sort of topic. According to Prakken (2017) research
on argumentation dialogues can be divided into two areas. Firstly, research on
the dialogues themselves, on their formal definition and properties. Secondly,
research on the behaviour of agents within those dialogues. In general, the
overarching goal of the research is that argumentation dialogues should “promote
fair and effective resolution of conflicts” (Prakken, 2017).

This thesis treats argumentation dialogues wherein there exists a conflict
on the provability of a proposition (called inquiry dialogues). This means that
the goal of the dialogue is to cooperatively exchange information in order to

4



(dis)prove a proposition.
Inquiry dialogues are used because of the Intelligence Amplification for Cy-

bercrime (IAC) project. The Dutch national police have since 2016 with Floris
Bex and Bas Testerink been involved in the IAC project to enhance the quality
of online reports of crimes. The focus lies on automating the reporting of fraud
(e.g. fraud on websites like ‘marktplaats.nl’).

The project has chosen an agent-based approach (Bex et al., 2016). One
aspect of the system is the intake (software) agent, with which the complainant
communicates using a web interface. The intake agent collects the responses
from the complainant, asks him questions and shares the answers with a dia-
logue manager.1 The agent asks the complainant for more information if needed
and interprets the information given. However, choosing what to ask the com-
plainant is not a trivial task. For one, the intake should be as short as possible.
The police rather have a lower quality report than an unfinished one. Secondly,
the questions should be relevant. If the complainant says he was the victim of
a fraud, he should not be asked about whether he was the fraudster. Note that
these requirements may conflict with one another.

IAC is therefore modelling a dialogue in which the goal is to find whether an
acceptable argument for fraud exists. Inquiry dialogues have a similar goal. As
such, this thesis therefore treats inquiry dialogues in an effort to find out how
such dialogues can be made ‘smarter’.

Making dialogues ‘smarter’ is not straightforward. Normally it is already
hard for an agent to determine the best thing to do any time it needs to com-
municate. The same holds true for agents communicating to each other. An
agent therefore would like to follow a strategy which helps it communicate more
efficiently and accurately. Coming up with such a strategy is not trivial, as each
specific situation often requires different things of a strategy. Moreover, there
is still relatively few work done on strategies for argumentation dialogues. The
work that is done, often does so in the context of a persuasion dialogue (i.e.
when two agents try to convince each other) (Prakken, 2017, p. 2236).

However, the agent in the inquiry dialogue needs to have some sort of strategy
for deciding on a relevant question. The aim of this research is therefore to
improve on existing work on inquiry dialogues, and find out how such dialogues
can be navigated more smartly by agents. In the literature several approaches
are used in order to create smart strategies.

Firstly, the idea is to represent the state of the dialogue in such a way that
a planner can find an ‘optimal’ strategy, which they define as a strategy using
which the proponent has got the highest possible chance of making the dialogue
succeed. In inquiry dialogues, for example, the goal would be to find an ac-
ceptable argument as quickly as possible. Black et al. (2017) used propositional
planning to find optimal strategies for persuasion dialogues. Alahmari et al.
(2017), on the other hand, used Q-learning to let the agent find an optimal
strategy on his own. The downside of such an approach is, however, that a
training phase must be held before going into a dialogue.

Another approach is using a user model, such that an agent can make better
decisions, using a model of his opponent. Such a user model can be build upon
previous experiences, the history of the dialogue or other things. Hadoux et al.
(2015) put this information into the knowledge base itself (using probabilistic

1See for an in depth explanation of the system Bex et al. (2016).

5



rules), such that an external tool (after converting the dialogue into a MOMDP)
could ‘plan’ an optimal strategy. Hadjinikolis et al. (2013) and Rienstra et al.
(2013) both tried to predict the state of the opponent, by adding recursive user
models. Hadjinikolis et al. learned the user model from previous experiences,
while Rienstra et al. kept track of the current state of the dialogue.

Note that these approaches are mostly defined upon persuasion dialogue
systems. Persuasion dialogues, however, differ from inquiry dialogues in their
goal. Instead of cooperatively trying to prove a proposition, the goal is to
convince the opponent of a certain viewpoint. Due to this differing goal, it may
not be trivial to apply the discussed approaches to another types of dialogue
systems. Therefore, it is hard to know beforehand whether a strategy will be
effective upon another dialogue system.

But what should the inquiry dialogues that will be used look like? As al-
ready mentioned, the preliminary goal of IAC is to automate online intakes.
The inquiry dialogues used will thus be loosely modelled after intakes. This
thesis will take an existing inquiry dialogue system, and (try to) improve on its
corresponding strategy.

For this, the dialogue systems as described by Black and Hunter (2009)
are used. Black and Hunter defined two dialogue systems, for argument and
warrant inquiry dialogues. In an argument inquiry dialogue the goal is to find
an argument for a proposition. In warrant inquiry dialogues an acceptable
argument is sought.

Black and Hunter also defined a corresponding strategy, called the exhaustive
strategy. With this strategy, agents will first assert any known arguments, then
open sub-dialogues, or otherwise try to close the current dialogue.

The exhaustive strategy generates, however, dialogues that are quite long.
Therefore, two modifications on the exhaustive strategy are devised to reduce
the exhaustiveness of these dialogues. Those strategies are tested using simula-
tions. It is also investigated whether they are sound and/or complete as defined
by Black and Hunter.

The modifications on the exhaustive strategy are mainly tested in a setting
inspired by the intake. Herein, it is assumed that the proponent knows all the
rules, and the opponent all facts, to model the asymmetricity of the intake. This
setting is called the intake setting.

The influence of this intake setting is also investigated by simulating the
dialogues in a setting with randomized knowledge bases.

Chapter 2 will explain structured argumentation. Chapter 3 explains the
theory behind dialogues, a way to formally model communication between
agents, and what is known about the intake as a dialogue. Next, Chapter 4 de-
scribes related work on strategies which may be relevant to an intake dialogue.
In Chapter 5 the used dialogue system is explained in detail, with Chapter 6
describing the exhaustive strategy. Chapters 7 and 8 respectively define the
modified strategies investigated in this thesis, and investigate whether they are
sound or complete. These strategies are used to simulate dialogues, as specified
in Chapter 9, wherein also the results of the simulations are discussed. The re-
sults from the proofs and simulations are combined and discussed in Chapter 10.
Lastly, Chapter 11 concludes the thesis.

6



Chapter 2

Argumentation

Before discussing how agents are assumed to communicate with another, first
we need to define what information can be exchanged. Specifically, the argu-
mentation logic that is used must be defined. This chapter will discuss the logic
used, and how it is used to check the acceptability of arguments. Together, they
form what is called an argumentation framework. Argumentation frameworks
are used to enable reasoning with inconsistent knowledge bases and help decide
between multiple (conflicting) scenarios.

Two often used argumentation frameworks are abstract argumentation frame-
works and structured argumentation frameworks. While abstract argumenta-
tion frameworks merely look at arguments and their relations (often based upon
Dung (1995)), structured argumentation frameworks also specify the contents of
the arguments reasoned about. This chapter explains a modification of DeLP,
adopted from Black and Hunter (2009).

First, the modified logic itself it treated. Next, the relation of the logic to
arguments is discussed. Finally, it is explained how arguments are assumed to
interact with one another.

2.1 Logic
An adoption of DeLP (Garcia & Simari, 2004), using only defeasible facts and
rules, is used as the underlying logic. This adoption of DeLP assumes that
defeasible facts are atoms, not predicates as in normal DeLP.

First is defined what defeasible facts and rules are, and how they are notated.

Definition 2.1.1. Defeasible facts are literals, denoted by α, β, etc. Defeasible
rules are of the form β1 ∧ · · · ∧ βn ⇒ α where β1, . . . , βn and α are defeasible
facts.

Next, the topic language is defined. Generally, the topic language defines
what agents are able to talk about in a dialogue. The topic language for DeLP
consists of defeasible facts and rules, coupled with preference levels.

Definition 2.1.2. The topic language Lt consists of beliefs, denoted by the pair
(φ,L), where φ is a defeasible fact or rule (i.e. a proposition) and L a label that
denotes the preference level of the belief. plevel(φ) gives the preference level of
φ, such that plevel(φ) = L.

7



It is assumed that a lower preference level is more preferred. Therefore, if,
for example, the beliefs (a ⇒ b, 4) and (a ⇒ c, 2) exist, then a ⇒ c is more
preferred than a ⇒ b. The preference levels of beliefs will later be used to
compare arguments on their weakest links. First needs to be defined how new
knowledge can be derived.

New knowledge is defeasibly derived from a minimal set of premises. This
way, all sets of premises are finite.

Definition 2.1.3. A defeasible derivation of φ from Φ, denoted Φ |∼ φ, is a
finite sequence [β1, . . . , βn] such that βn is the defeasible fact φ and each literal
βm (1 ≤ m ≤ n) is in the sequence because:

1. (βm, L) is a belief in Φ with βm being a defeasible fact, or;

2. ∃(α1∧· · ·∧αj ⇒ βm, L
′) ∈ Φ such that every αi (1 ≤ i ≤ j) is an element

βk, with k < m, preceding βm in the sequence [β1, . . . , βn].

Example 2.1.4. Let Φ = {(p, 1), (r, 1), (p ⇒ q, 1), (q ∧ r ⇒ s, 1)}. Then,
{p, r, p ⇒ q, q ∧ r ⇒ s} |∼ s, since it is equivalent to the sequence [p, p ⇒
q, r, q ∧ r ⇒ s, s].

2.2 Arguments
Defeasible derivation is used to form arguments. If a belief is derived from a set
of premises, then there exists an argument with that set of premises supporting
the derived belief.

Definition 2.2.1. An argument A constructed from a set of beliefs Ψ ⊆ Lt is
a tuple 〈Φ, φ〉 where φ is a defeasible fact, and Φ a set of beliefs such that:

1. Φ ⊆ Ψ;

2. Φ |∼ φ;

3. ∀φ, φ′ s.t. Φ |∼ φ and Φ |∼ φ′, it is not the case that φ ∪ φ′ ⊥;

4. There is no subset of Φ that satisfies 1–3.

An argument is therefore a tuple consisting of a minimally consistent set
premises from which the conclusion can be defeasibly derived. The conclusion
is the second element of the tuple.

The following are definitions to more easily talk about arguments.

Definition 2.2.2. Let A = (Φ, φ) be an argument. Φ is then called the support
of the argument and is denoted by support(A). φ is called the conclusion of
the argument and is denoted by conc(A). Argument A1 is a sub-argument of
A iff support(A1) ⊆ support(A). The argumentation theory of a set beliefs Ψ,
denoted by ATΨ, contains all arguments that can be constructed from Ψ.

Example 2.2.3. Let Φ be as defined in Example 2.1.4. The following is then an
argument: A = ({p, r, p ⇒ q, q ∧ r ⇒ s}, s). support(A) = {p, r, p ⇒ q, q ∧ r ⇒

8



s}, and conc(A) = s. The argumentation theory constructed from Φ is:

ATΦ = {({p}, p),
({p, p⇒ q}, q),
({r}, r),
({p, r, p⇒ q, q ∧ r ⇒ s}, s)}

Note that Black and Hunter use A(Ψ) to denote all arguments constructable
from Ψ. Here, however, it is denoted by ATΨ. Furthermore, an argument is
said to be a sub-argument if its support is a subset of another argument.

An argument on its own, however, is not very interesting. A set of arguments,
and their interactions are more interesting, since arguments may conflict.
Definition 2.2.4. Two arguments A1 and A2 conflict iff conc(A1)∪conc(A2) `
⊥.

Arguments therefore conflict if their conclusions conflict. Using this notion
of conflict, the attack relation between arguments can be defined.
Definition 2.2.5. Let A1, A2, A3 be arguments such that A3 is a sub-argument
of A2. A1 attacks A2 at A3 iff A1 conflicts with A3.

Note that using this definition, arguments can be rebut as well as be under-
cut.

Now that the attack relation is defined, there needs to be defined when an
attack succeeds (i.e. results in defeat). This will be done via the notion of
preference levels.
Definition 2.2.6. Let A be an argument. The preference level of the argument
A, denoted plevel(A), is equal to plevel(φ) such that:

1. φ ∈ support(A);

2. ∀φ′ ∈ support(A) : plevel(φ′) ≤ plevel(φ).
The preference level of an argument is that of its least preferred proposi-

tion from its support. As conflicting arguments will be compared using their
preference levels, this results in a weakest link ordering.
Definition 2.2.7. Let A1, A2, A3 be arguments such that A3 is a sub-argument
of A2, and that A1 attacks A2 at A3. A1 is a proper defeater for A2 iff
plevel(A1) < plevel(A3). A1 is a blocking defeater for A2 iff plevel(A1) =
plevel(A3).
Example 2.2.8. Let Ψ = {(s, 2), (r, 1), (p, 2), (p ⇒ q, 2), (s ⇒ ¬q, 2), (r ⇒
¬q, 1)}. Also, let A = ({r, r ⇒ ¬q},¬q), B = ({s, s ⇒ ¬q},¬q) and C =
({p, p ⇒ q}, q). Then plevel(A) = 1, plevel(B) = 2 and plevel(C) = 2. Here,
A is a proper defeater of C, as plevel(A) < plevel(C). However, C is not a
defeater of A, as plevel(C) > plevel(A). Furthermore, B is a blocking defeater
of C, as plevel(B) = plevel(C).

An attack therefore succeeds if the preference level of the attacking argument
is equal or lower than the attacked argument. The defeat is considered to be
proper if the preference level is lower, otherwise the defeat is said to be blocked.

Given arguments and a notion of defeat, a way is needed to analyse the
status of arguments. For example, if in a set of arguments A,B,C B defeats C,
but A also defeats B, is argument B then still credible as a defeater of C?

9



2.3 Dialectical tree
The status of arguments is checked using so-called dialectical trees. Black and
Hunter use dialectical trees to check the acceptability of an argument in warrant
inquiry dialogues. A path from the root of a dialectical tree to one of its leaves
is called an argumentation line.

Definition 2.3.1. If ∆ = [〈Φ0, φ0〉, 〈Φ1, φ1〉, 〈Φ2, φ2〉, . . . ] is a sequence of ar-
guments such that each element of the sequence 〈Φi, φi〉 is a defeater of its
predecessor 〈Φi−1, φi−1〉, then ∆ is an argumentation line. ∆ is an acceptable
argumentation line iff

1. |∆| <∞;

2. 〈Φ0, φ0〉∪〈Φ2, φ2〉∪〈Φ4, φ4〉∪· · · 6` ⊥ and 〈Φ1, φ1〉∪〈Φ3, φ3〉∪〈Φ5, φ5〉∪· · · 6`
⊥;

3. No argument 〈Φk, φk〉 appearing in ∆ is a sub-argument of an argument
〈Φj , φj〉 that appears earlier in ∆ (j < k);

4. ∀i s.t. 〈Φi, φi〉 is a blocking defeater for 〈Φi−1, φi−1〉, if 〈Φi+1, φi+1〉 exists,
then 〈Φi+1, φi+1〉 is a proper defeater for 〈Φi, φi〉.

An argumentation line is therefore a sequence in which each argument defeats
its predecessor. It is an acceptable line if the sequence is finite, if the players that
constructed the line did not contradict themselves, if no argument is repeated,
and if the argumentation line only consists of proper defeaters.

Definition 2.3.2. Let Ψ ⊆ Lt be a set of propositions in dialogue d, and A0
an argument such that A0 ∈ ATΨ. A dialectical tree for A0, constructed from
Ψ, denoted T (A0,Ψ), is defined as follows

1. The root of the tree is labelled with A0;

2. Let N be a node of the tree labelled An, and let ∆i = [A0, . . . , An] be the
sequence of labels on the path from the root to node N . Let arguments
B1, B2, . . . , Bk be all defeaters for An that can be formed from ATΨ.
For each defeater Bj (1 ≤ j ≤ k), if the argumentation line ∆′i =
[A0, . . . , An, Bj ] is an acceptable argumentation line, then the node N
has a child Nj that is labelled Bj . If there is no defeater for An or there
is no Bj such that ∆′j is acceptable, then N is a leaf node.

A dialectical tree is therefore constructed given a root argument, and a set
of propositions. It furthermore is ‘complete’, in the sense that no new defeating
arguments can be added to any argumentation line from the root argument to
any leaf.

Example 2.3.3. Let Ψ, A, B and C be the set of beliefs and the arguments as
defined in Example 2.2.8. The dialectical tree T (C,Ψ) is shown in Figure 2.3.1.
C is the root of the tree, with arguments A and B defeating C.

The tree is used to find out whether an argument is warranted (i.e. ac-
ceptable) given a set of beliefs. In Chapter 5 dialogues are defined in which
dialectical trees are compared. Therefore, a notion of equality is needed.

10



C : ({p, p⇒ q}, q)

A : ({r, r ⇒ ¬q},¬q) B : ({s, s⇒ ¬q},¬q)

Figure 2.3.1: The dialectical tree T (C,Ψ).

Definition 2.3.4. Two dialectical trees T1 and T2 are equal iff

1. The root of T1 is A0, and the root of T2 is A0;

2. If node N1 is a node in T1 and [A0, . . . , An] is the argumentation line in
T1 from A0 to N1, then there is a node N2 in T2 such that [A0, . . . , An] is
in T2 the argumentation line from A0 to N2;

3. If node N2 is a node in T2 and [A0, . . . , An] is the argumentation line in
T2 from A0 to N2, then there is a node N1 in T1 such that [A0, . . . , An] is
in T1 the argumentation line from A1 to N1.

Two dialectical trees are therefore equal if they share the same root node,
and if each argumentation line of one tree has an equivalent in the other tree.

A dialectical tree, however, says nothing about the status of the contained
arguments. For that, the arguments need to be assigned a status, i.e. marked.
It is using this mark that the acceptability of an argument can be determined.

Definition 2.3.5. Let T (A,Ψ) be a dialectical tree, with A as an argument
and Ψ ⊆ Lt. The corresponding marked dialectical tree is obtained by marking
every node as follows

1. All leaves in T (A,Ψ) are marked in;

2. If N is a node of T (A,Ψ) and N is not a leaf node, then N is marked in
iff all its children are marked out. N is marked out iff at least one of its
children is marked in.

The marking of an argument in the tree determines its status. This defi-
nition is modified to refer to ATΨ instead of A(Ψ). Also, instead of using U
(undefeated) or D (defeated) as a status, in and out are used. They still mean
the same thing, however.

Definition 2.3.6. The status of an argument A given a set of rules and facts
Ψ ⊆ Lt, and the corresponding argumentation theory ATΨ, is returned by the
function status : ATΨ×P (Ψ)→ {in, out}. status(A,Ψ) = in iff A is marked in
in T (A,Ψ). Otherwise, status(A,Ψ) = out (i.e. if A is marked out in T (A,Ψ).

Example 2.3.7. Continuing the example from Example 2.3.3, Figure 2.3.2
shows the marked dialectical tree T (C,Ψ). Here, argument C is marked out, as
all its defeaters are in.

11



C : ({p, p⇒ q}, q) out

A : ({r, r ⇒ ¬q},¬q) in B : ({s, s⇒ ¬q},¬q) in

Figure 2.3.2: The marked dialectical tree T (C,Ψ).

2.4 Conclusion
The used logic, a variant of DeLP, therefore supports defeasible facts and rules.
Arguments attack each other on conclusions, or premises. Conflict is resolved
via preference levels. Furthermore, dialectical trees are used to check the ac-
ceptability of arguments.

Take for example Figure 2.3.2. There, the dialectical tree consists of three
arguments, A, B and C. Argument C is the root argument and is out, since it
is attacked by A and B. Arguments A and B are attacking C since A and B’s
conclusion, ¬q, is a complement of C’s conclusion, q.

As mentioned, a dialectical tree is used to check the acceptability of the root
argument. A dialectical tree must, however, be built by exchanging arguments.
Chapter 5 will explain how, in the dialogue system used in this thesis, this is
done. The next chapter will explain how arguments are used in a dialogue.

12



Chapter 3

Dialogues

As mentioned in the introduction, arguments can be used by agents in dialogues
(so-called argumentation dialogues) to exchange information. Those dialogues
may have different types of purposes. Agents may, for example, want to convince
an opponent of the truth or a given statement, or may simply seek information.
In other words, agents may have different types of goals with a dialogue.

This chapter will discuss types of dialogues that are applicable to intakes,
and discuss what kind of dialogue an intake is. However, first is discussed how
dialogues are defined (i.e. using dialogue systems).

3.1 Dialogue systems
Dialogues are formed when agents respond to each others moves. However,
dialogues are bound by rules. Not every move is therefore always a valid response
to another move. For example, it is nonsense to ask someone the reason why
something is the case, when that person just asked you the same question.
Moreover, moves have got side effects. Asserting an argument, for example,
typically commits you to that argument. Also, it is useful to know when a
dialogue is done, and how turn taking takes place.

Dialogue systems define sets of valid dialogues. As such, they define how
agents are allowed to exhange information. It is assumed that dialogue systems
contain turn taking rules, rules about moves, termination rules and effect rules.
The turn taking rules define at what points in the dialogue agents are allowed
to utter moves (i.e. who’s turn it is). The termination rules define at what point
a dialogue is done (i.e. terminated). The effect rules determine the side effects
of the moves. Lastly, the rules about moves define per move whenever a move
is legal to be uttered.

Those rules define a set of dialogues that are valid for one particular dialogue
system. Dialogue systems are therefore designed with specific goals in mind. For
example, the dialogue systems as described by Black and Hunter (2009) say that
only dialogues in which either an argument is sought or an argument’s validity
is checked are valid.

Note that dialogue systems can be used to generate dialogues, although they
do not specify how. Instead, a ‘strategy’ does this. In Chapter 4 strategies are
discussed.

13



The next section will discuss which purposes dialogues may serve. The focus
lies on purposes that may be relevant to intakes. The last section will investigate
what types of dialogue an intake contains.

3.2 Types of dialogue
Dialogues can be of different types, which is visible in the different types of
interactions agents can have. Agents may, for example, communicate in order to
share information, or to allocate resources. This section gives a short overview
of the influential typology set out by Walton and Krabbe (1995) which was
expanded upon in Walton and Macagno (2007).

Walton and Krabbe (1995) divide agent interaction in six types, and specify
for each dialogue type the initial situation, the goal of the interaction and the
participant’s goals. Of the six types defined by Walton and Krabbe only per-
suasion, information-seeking and inquiry dialogues are covered here. The other
types are not relevant in case of the intake.

In persuasion dialogues one agent tries to persuade the opponent of some
proposition. The opponent is convinced of a proposition opposite to the one
the agent believes in. Both the agent and the opponent try, using arguments,
to convince the other of the truth of their proposition.

In an information-seeking dialogue an agent lacks information, and is talking
to an expert, or someone who has information. The agent’s goal is to get the
information he needs from the ‘expert’. Note that information-seeking dialogues
are asymmetrical, the agent knows less about the topic of the dialogue than
the expert. A successful information-seeking dialogue therefore ends with the
questioning agent knowing more about the topic of the dialogue. The goal for
the agent is thus not to win, but to retrieve information.

Inquiry dialogues are a collaborative effort. The goal of both parties is to
either prove a proposition or show the impossibility of proving it. A successful
inquiry dialogue is therefore one in which both parties agree upon the same
conclusion. Note that there is no conflict of opinion, both parties merely want
to collaboratively determine whether a proposition is provable.

It is worth noting that few dialogues are of one type. Often dialogues in-
corporate a sub-dialogue of a different type to help the main dialogue further
along. For example, if an agent wants to negotiate for a price, it may need to
know first what the other agent offers. In that case, the negotiation dialogue
will also contain an information-seeking sub-dialogue.

The next section will treat the intake and discuss what types of dialogues
are typically found within.

3.3 The intake as a dialogue
As explained in the previous section, few dialogues are of one type of dialogue.
Most dialogues contain elements of multiple dialogue types. So as what dialogue
type can the intake be classified? Unfortunately, no literature was found on a
possible classification for intakes.

Nevertheless, Walton (2003) investigated interrogation as a subclass of infor-
mation seeking dialogues. Furthermore, Arioua and Croitoru (2015) formalized

14



explanatory dialogues, Mason (2016) and van Charldorp (2014) analysed what
happens during and right after a police interrogation.1 in short, there does not
exist a clear answer as to what dialogue type an intake encompasses.

The police, however, clearly, seeks information from the complainant during
an intake. Also, both parties engage in an inquiry to find out what the final
report will be. Furthermore, it is reasonable to assume that a complainant can
be stubborn. For example, he could be stubborn to accept that the crime he
wants to report is merely a civil case, and not a criminal offense. In such a
case the complainant first needs to be persuaded that no swindle took place.
The intake therefore seems to be a mix of information-seeking, inquiry and
persuasion dialogue.

Important to note here is that even though the intake is not an interrogation,
it shares some of its goals with that of an interrogation. In both cases the wanted
outcome is a clear fact-based chronology of what happened (a written story).
Or, as observed by Charldorp: “The written story is a more factual, detailed,
precise and intentional story on paper constructed according to the institutional
perspective of the officer.” (van Charldorp, 2014).

An intake can therefore be assumed to be a persuasion, information-seeking
and/or inquiry dialogue. This thesis assumes, however, that in principle both
the complainant and the police officer want a complete report and that the com-
plainant is willing to share information. In other words, the intake is assumed
to be a dialogue in which both parties cooperatively share information and try
to find out what the final report will be. Therefore, this thesis treats the intake
as an inquiry dialogue. It is also assumed that the police officer tries to gain as
much accurate information as possible, while keeping the dialogue as short as
possible.

Note that the question is still open as to how an intake should be kept as
short and accurate as possible. Furthermore, it is not specified what specific re-
quirements an intake dialogue has got. This thesis investigates the first question,
assuming that the intake is an inquiry dialogue.

3.4 Conclusion
Dialogues are therefore formed using sets of rules. A dialogue system contains
those rules. Moreover, in dialogues agents respond to each others moves. A
dialogue is therefore assumed to be a list of moves.

The intake is assumed to be an inquiry dialogue. In an inquiry dialogue
agents cooperatively try to prove a proposition. In case of the intake, the goal
is to first find an argument for the topic, and then check its acceptability.

Dialogue systems on their own, however, are not capable of generating di-
alogues. Instead, it needs to be specified how a dialogue is generated, or what
strategy is followed for that to happen. The next chapter will explain how,
given a dialogue system and a strategy, dialogues are generated.

1i.e. how a police officer extracts a factual account of what happened out of a spoken story.

15



Chapter 4

Strategies

Dialogue systems do not specify how to generate dialogues. They therefore also
do not specify how agents can accomplish their goals as soon as possible within
a dialogue. Instead, agents use strategies to generate dialogues from dialogue
systems.

Strategies choose, from a list of currently valid moves, one move. A good
strategy will try to reach an agent’s goal as soon as possible.

How a strategy tries to fulfil the agent’s goal differs. Some strategies only
look at the history of the current dialogue, while others also look at earlier
dialogues (experience). Often the agent not only keeps track of its own state,
but also tries to predict the opponent’s state. This information can also be
used by a strategy. Due to these things a strategy is (per definition) tied to a
dialogue system.

This chapter describes papers with strategies that are either using a dialogue
of a similar type to that of the intake, or which show a general approach which
may be easy to adapt to an inquiry dialogue. The focus lies on describing the
aim and inner workings of the techniques, and in what capacity they achieve
their goal. The goal is to discuss possible approaches for a ‘good’ strategy for
intakes.

Note that most strategies described here are defined upon persuasion di-
alogues. As mentioned in the introduction, the goal of persuasion dialogues
differs from inquiry dialogues. Therefore, even if a strategy is very successful in
one dialogue system, it does not have to be successful in another. The strategies
that are defined upon persuasion dialogues may thus turn out to be ineffective
on inquiry dialogues.

4.1 Exhaustiveness and planning
This section treats two approaches as described by Black and Hunter (2009)
and Black et al. (2017). The first paper tries to generate dialogues which only
generate valid answers, and which give an answer if one exist. Black et al. (2017)
try to plan ahead, and use a propositional planner to come up with an optimal
strategy.

Black and Hunter (2009) sought to find a strategy to generate dialogues for
the medical domain. They discuss two subtypes of inquiry dialogue, namely

16



argument inquiry and warrant inquiry dialogues. In argument inquiry dialogues
agents share beliefs to construct an argument for a given proposition. Warrant
inquiry dialogues go further, since agents try to see whether a given proposition
is acceptable. Black and Hunter (2009) use for their knowledge representation a
defeasible variant of Defeasible Logic Programming (DeLP).1 The variant used
is explained in detail in Chapter 2. As in the medical domain a wrong decision
can have huge consequences, Black and Hunter (2009) sought a sound and com-
plete strategy. Such a strategy is guaranteed to give only arguments derivable
from the agents’ joint knowledge base (soundness) and to have generated an
exhaustive dialogue (one in which each existing argument is uttered, i.e. com-
pleteness). Their ‘exhaustive strategy’ fulfils both properties, and amounts to
first asserting all relevant beliefs, then open for each belief a sub-dialogue and
lastly close the current dialogue.2

For persuasion dialogues Black et al. (2017) used propositional planning
as a strategy. They only assume abstract argumentation as their knowledge
representation and leave the contents of the arguments unspecified. Arguments
are evaluated using grounded semantics. The agent’s goal in the argumentation
is to have its goal arguments to be acceptable at the end of the dialogue, under
the grounded semantics. Black et al.’s aim was to find, using a propositional
planner, a strategy that would be “successful no matter which arguments the
opponent asserts.”(Black et al., 2017). The propositional planner is used to find
an optimal ‘simple strategy’, i.e. one in which each successive move changes
the acceptability of the root argument of the dialogue. This is done with an
uncertain opponent model (ε, p) where ε is a set of opponent models with each
model representing a possible knowledge base, and with p denoting the perceived
likelihood that the opponent can be represented by the opponent model. As,
however, the success of a strategy also depends on the actions of the opponent,
few strategies succeed 100% of the time. Black et al. therefore searched for a
strategy which had got the highest probability of success. By iteratively setting
a higher probability as goal for the planner, a strategy can be found with the
highest possible chance of succeeding.

4.2 Machine learning
Besides using a propositional planner, machine learning can also be used to find
‘good’ strategies. An idea is to let the planning take place before the agent is
engaged in a dialogue, via Q-learning.

Alahmari et al. (2017) have taken such an approach. They tried to make
an autonomous learning agent, which can find an optimal strategy on its own,
using Q-learning. To keep the knowledge representation simple, they adopted
abstract argumentation as their knowledge representation, and grounded se-
mantics to determine the acceptability status of arguments. Alahmari et al. use
a persuasion dialogue. Agents are expected to take turns by moving arguments
that attack the previous argument. The dialogue ends when no further move
is possible, and the winner of the game is the agent that made the last move.
Besides this, Alahmari et al. place no additional restrictions on the dialogue or
agents. Q-learning is a form of reinforcement learning wherein an agent with a

1See for a detailed description of DeLP (Garcia & Simari, 2004).
2See for more detail Chapter 6.

17



certain chance either follows the learned policy or does a random action. This
provides the agent with rewards with which it can find an optimal policy (a
strategy such that in any situation the expected sum of rewards is maximised).
Alahmari et al. let the agent play against a random agent, a max-probability
utility agent and a min-probability utility agent. Rewards were given out at
the end of the dialogue. The reward of a dialogue was set to the number of
acceptable arguments of the learning agent. By letting the agent play against
the other agents, Alahmari et al. tried to teach the agent an optimal policy.
The agent, however, only consistently outperformed the min-probability utility
agent, which is not impressive. Alahmari et al. suspected that their limited state
representation was responsible, as the agent could not differentiate effectively
between different instances of the same argument.

4.3 User models
An opponent, however, does not have to be rational.3 Taking this into account
when designing an agent may improve that agent’s performance. By using a
stochastic user model, this can be done. Therefore, instead of having determin-
istic association rules, that tell for example that the user will say B if the agent
says A, there will be a chance that the user will say B or something completely
different.

Hadoux et al. (2015) took this approach. For a persuasion dialogue, in which
the agent wants to persuade its opponent of a goal argument, their goal was to
devise a strategy which would find an optimal sequence of moves, for a user that
behaves stochastically. Moreover, they did not assume that the user behaves ra-
tionally or that he has specific initial knowledge. They tested their approach on
a dialogical argumentation problem, which is an abstract argumentation prob-
lem with the possibility to move attack relations as well. The possible moves an
agent can make are then defined by a set of rules of the form rj : premj ⇒ actj
where the rule rj is applicable if premj is derivable from the knowledge base
or commitment store of the agent, after which actj is applied. actj is here a
list of modifications on the knowledge base and commitment store of the agent.
Hadoux et al. found an optimal sequence of moves by converting ‘Argumen-
tation Problems with Probabilistic Strategies’ (APS) into ‘Mixed Observation
Markov Decision Processes’ (MOMDP). An APS is an abstract argumentation
framework in which the rules (such as rj) used have probabilities. For example,
the rule rj : e(c, f)⇒ 0.5/�a(b)∨0.5/�a(c) is applicable if the attack relation
e(c, f) is in the knowledge base or commitment store, after which with chance
0.5 either b is added to the commitment store (denoted by �a(b)), or c (denoted
by �a(c)). A MOMDP is a Mixed Observation Markov Decision Process, in
which some states are visible to the agent and some are not. By converting the
APS to a MOMDP, an external MOMDP solver can find a policy, which directly
translates to an optimal sequence of moves. Like Black et al. (2017)’s approach
the problem is therefore converted into a form for which there are feasible ways
to solve it.

User modelling can also be done via predictions. In particular, Hadjinikolis
et al. (2013) look at learning association rules in the beliefs of users, i.e. if he
knows A then he should also know with a certain probability B too. Similar

3Meaning that he will not always take the most optimal action.

18



to Black et al. (2017) the aim is to persuade the user in a persuasion dialogue.
However, whereas Black et al. solved the problem by reducing it to a planning
problem, Hadjinikolis et al. tried to learn association rules, and let the agent
act thereupon. The association rules are modelled via a probabilistic model
over the possible beliefs of the user (modelling, that the user believes A with
x chance, given that he knows B and C). Calculating those probabilities is,
however, of exponential complexity. Hadjinikolis et al. therefore used a Monte-
Carlo simulation to sample the probabilities. It was found that with relatively
few samples a low error rate was achievable. Whether the learned probabilities
were effective in a persuasion dialogue, is not mentioned.

A related approach is taken by Rienstra et al. (2013), in which the user
model is included recursively in the agent’s own belief state. They used abstract
argumentation as knowledge representation. The goal of the agent is to persuade
the opponent about some goal argument, i.e. the agent’s goal is to make the goal
argument acceptable under the grounded semantics. The dialogue is therefore
a persuasion dialogue, with the goal being for the agent to win. Rienstra et
al. put the user model in the belief state of the agent in the following way:
(B, u,E) where B is the set of arguments the agent is aware of, u the utility
function and E = (B′, u′, E′) as the belief state of the user with B′ ⊆ B. Note
that theoretically the depth of this belief state can be infinite, even though the
depth will usually be fixed or limited. Rienstra et al. give two more of such
belief states, for example by extending the recursive belief state by allowing E
to be a set of belief states with probabilities. And secondly, by extending that
to support ‘virtual arguments’, arguments that the agent itself is not aware of,
but which are assumed to exist. Rienstra et al.’s goal was to find out whether
increased complexity in the user model equates to better performance. They
showed that by adding uncertainty over opponent models, the performance of
the agent can indeed be increased. Note that, unlike Hadoux et al. (2015)’s
approach, the user model itself is not stochastic. What is stochastic is the
chance of a possible user model being true. Within such a user model, the user
still acts deterministic.

4.4 Relevancy
While not a strategy, Prakken (2005) did describe relevancy as a potentially im-
portant property of strategies, and dialogues. Prakken (2005) studied coherence
and flexibility in dialogues, particularly persuasion dialogues. The goal was to
find out how different notions of coherence and flexibility affect a dialogue. In
particular, Prakken defined the notion of relevancy, the idea that arguments are
only desirable if they contribute towards the goal of the dialogue.

Prakken defined two notions of relevance, weak and strong relevance. Strong
relevance is defined such that “An attacking move in a dialogue d is [strongly]
relevant iff it changes the dialogical status of d’s initial move” (Prakken, 2005,
p. 20). This means that an argument is strongly relevant when it changes the
status of the root argument. Prakken notes, however, that strong relevance
requires a dialogue system in which agents can immediately reply to each other
(i.e. using an immediate reply turn taking rule). This may be a drawback in
some situations, which is why he also defined weak relevancy.

Weak relevancy states that “An attacking move in a dialogue d is weakly

19



relevant iff it creates a new winning part of d for the speaker or removes a
winning part of the hearer.” (Prakken, 2005, p. 21). There, the winning part of
a dialogue is defined as follows (adopted from Prakken (2005, Definition 5.8)).

Definition 4.4.1. Let d be a dialogue and p a player. A winning part dp of d
is recursively defined as follows.

1. First include the root argument;

2. for each move m of p that is included, include all its attackers;

3. for each attacking move m of p̂ that is included, include one attacker of
m that is in in d.

Prakken also notes that those notions of relevance are not complete. They
only look at the relevance of a move in a dialectical tree, not at its contents.
As such, a nonsense move like “I like birds, therefore this report of a crime is
valid.” may still found to be relevant.

4.5 Conclusion
There are many different ways to define a strategy. One could simply look at
the currently legal moves in a dialogue, or also keep track of additional state.
Likewise, using machine learning or Q-learning an agent may also be able to
learn an optimal strategy himself.

Most of the listed approaches use extra information to allow the agent to
make better decisions. This thesis will, however, first attempt to improve upon
strategies that do not require extra information. As such, the exhaustive strat-
egy from Black and Hunter (2009), the only strategy not using extra informa-
tion, is used as a baseline. The other approaches may be used as inspiration if
this thesis’s conclusion is that improving strategies without giving agents extra
information is hard.

Furthermore, the idea of relevancy as defined by Prakken (2005) may also
be useful, since it does not require the use of extra information. It also fits in
the idea of the intake, wherein the goal is to have a dialogue that is as short
and complete as possible.

20



Chapter 5

An inquiry dialogue system

This chapter will describe two dialogue systems that can be used to generate
inquiry dialogues. The dialogue systems used are an adoption of Black and
Hunter’s dialogue systems (Black & Hunter, 2009). The adoption consists of
some changes in notation. It will be noted whenever changes are made when
compared to Black and Hunter.

Black and Hunter (2009)’s dialogue systems can be used to generate ar-
gument and warrant inquiry dialogues. In an argument inquiry dialogue, an
argument for the topic (of that sub-dialogue) is sought. A warrant inquiry di-
alogue is used to first find an argument for the topic, and then check whether
that argument is acceptable.

Of those dialogue systems, warrant inquiry dialogues share the most simi-
larities with an intake. In an intake, the police officer and the complainant after
all first try to find out whether a crime has taken place, and then whether an
acceptable argument exist. Argument inquiry dialogues are used to find new
arguments.

Therefore, Black and Hunter’s dialogue systems provide a way to jointly
discover new arguments, and a way to check the acceptability of one. They
thus seem to be a good model of intakes. However, whether they are actually
a proper model of an intake, is discussed in the discussion (Chapter 10). This
chapter instead focusses on the inner workings of the dialogue system.

First is discussed what elements make up the dialogue systems, and in what
way they are used. Next, the dialogue systems are defined in detail. The next
chapter will explain the corresponding strategy as defined by Black and Hunter.

5.1 Order of operations
The dialogue systems use turn taking rules, a protocol and a commitment func-
tion. The turn taking rules determine which agent has got the turn, the protocol
determines the legal moves, and the commitment function defines what effect
moves have. The protocol contains rules on when moves are valid. Moves may
be valid only at the beginning of the dialogue, or only under some other cir-
cumstances.

The commitment function is defined for the commitment stores of the agents,
and the query store. The commitment stores, of which each agent has got one,

21



track the propositions agents are committed to. The query store contains the
current topic of the dialogue.

The validity of a move depends on the history of the dialogue. It is therefore
useful to explicitly define the order in which the elements of the dialogue system
are used. The following order is assumed.

1. The turn taking rules are used to determine which agent has got the turn;

2. The protocol gives for that agent a set of legal moves;

3. The agent chooses, using its strategy, a move from the set of legal moves;

4. That move is added to the dialogue history;

5. The effect rules on commitment and the query store are used to update
the commitment stores and query store;

6. It is checked whether the dialogue should terminate;

7. If the dialogue did not terminate, go to 1.

Note that during step 2 the last added move to the history is the one uttered
by the opponent.

5.2 Moves
Before defining any of the rules needed for a dialogue system, first the available
moves are defined. Only at the end of the chapter will be defined when these
moves are legal.

The available moves are determined by the communication language. It
defines not what agents are able to say, but rather in what context they are
able to say things during the dialogue.

Definition 5.2.1. The communication language Lc for argument and warrant
inquiry dialogues is a set of locutions. This set consists of {open, close, assert},
which respectively open a sub-dialogue, (attempt to) close the current dialogue,
and assert an argument. open is of the form open(θ, γ), where θ ∈ {wi, ai}
denotes the type of sub-dialogue that is being opened, and γ ∈ Lt is a defeasible
rule or fact. close is of the form close(θ, γ), with θ ∈ {wi, ai} and γ ∈ Lt. assert
is of the form assert(〈Φ, φ〉), where 〈Φ, φ〉 is an argument.

In argument and warrant inquiry dialogues, (sub-)dialogues can be opened,
arguments can be asserted, and the current dialogue can be closed. The notation
is slightly different from Black and Hunter (2009), in that the locutions have
parameters.

Locutions are used in moves, which are of the following form.

Definition 5.2.2. Moves are of the form {P,O} × {ai, wi} × Lc. A move is
denoted by 〈x, θ, p(c)〉, where x ∈ {P,O} denotes the player that uttered the
move, θ is the current dialogue type, and p(c) is a locution.

Moves are of a different form than in Black and Hunter (2009), to explicitly
show the dialogue type of the sub-dialogue the move was uttered in. Black and
Hunter defined a move as being of the form 〈x, p, c〉, where x is the player that
uttered the move, p a performative and c the ‘parameters’ of the locution p(c).

22



5.3 Dialogues
As explained in Chapter 3 dialogues are seen as a history of moves, i.e. as a list
of moves. The following is the notation used to denote this sequence.

Definition 5.3.1. A dialogue d of length n is a sequence of moves [m1, . . . ,mn],
such that:

• The ith move is given by d[i], and d[1] is the first move of the sequence;

• dr
t , such that 1 ≤ r < t ≤ n, denotes the sequence [mr, . . . ,mt];

• If, given dr
t , r equals 1, then dt = dr

t ;

• If d is assumed to be n moves long, then d = dn.

For example, let the dialogue d be n moves long, and consist of the sequence
[m1,m2, . . . ,mn−1,mn]. dn−1 then denotes dialogue d without the last move,
e.g. the sequence [m1,m2, . . . ,mn−1]. d2

n−1 denotes dialogue d minus the first
and the last move, e.g. the sequence [m2, . . . ,mn−1].

Note that the above notation is the exact opposite from Black and Hunter
(2009). Black and Hunter use, for example, Dt

r to denote the part of dialogue
D which runs from the rth to the tth move. Here, the notation is reversed,
such that a normal dialogue (of length n) is denoted by dn rather than by the
potentially confusing dn.

As sub-dialogues will be used, some terminology for the relationship between
dialogues is needed.

Definition 5.3.2. Let dr
t and dr1

t1
be two dialogues. dr1

t1
is a sub-dialogue of dr

t

iff dr1
t1

is a sub-sequence of dr
t (r < r1 ≤ t1 ≤ t). dr

t is a top-level dialogue if
r = 1; the set of all top-level dialogues is denoted Dtop. d1

t is a top-dialogue of dr
t

iff either the sequence d1
t is the same as the sequence dr

t or dr
t is a sub-dialogue

of d1
t . If dr

t is a sequence of n moves, dr
t2

extends dr
t iff the first n moves of dr

t2
are the sequence dr

t .

A sub-dialogue is therefore a dialogue which is contained in a larger dialogue.
Moreover, a top(-level) dialogue is a dialogue which is no sub-dialogue. Further,
Dtop denotes the set of all top dialogues.

Table 5.3.1 shows an example dialogue. There, the top dialogue is the whole
dialogue, denoted by dn or d1

6. The dialogue contains one sub-dialogue. As will
be explained in Section 5.6, a (sub-)dialogue terminates when both agents after
another want to close the dialogue. Therefore, the sub-dialogue of Table 5.3.1
is d2

4.
For notation purposes M<∞ will be used to denote the set of all dialogues

with a finite history, and M will denote a single move.
The topic of a dialogue is defeasible rule or defeasible fact (from Lt). The

goal of a dialogue is to do something with that topic. For example, in warrant
inquiry dialogues is the topic a defeasible fact, for which an acceptable argument
is sought. The topic in Black and Hunter (2009)’s argument inquiry dialogues
is a defeasible rule, for which an argument is jointly constructed.

Lastly, the effect of the moves on the dialogue need to be defined.

23



1 〈P, θ, open(θ, γ)〉
2 〈O, θ′, open(θ′, γ′)〉
3 〈P, θ′, close(θ′, γ′)〉
4 〈O, θ′, close(θ′, γ′)〉
5 〈P, θ, close(θ, γ)〉
6 〈O, θ, close(θ, γ)〉

Table 5.3.1: An example of a dialogue with one sub-dialogue. Here d2
4 is a sub-

dialogue of the whole dialogue, which is denoted by d1
6 or dn. θ and θ′ denote

the dialogue type, and γ and γ′ topics.

5.4 Effect rules and query store
As moves are uttered and added to the dialogue, they also have side effects.
Two kinds of side effects are used here. First is the usual effect of moves on the
commitment of agents, as defined by the commitment function. Note that no
subscripts are used to denote the commitment stores and query stores. This is
in contrast with Black and Hunter, to minimise the number of subscripts used.

Definition 5.4.1. A commitment function is of the type C : M<∞×{P,O} →
P (Lt), such that C(∅, p) = ∅. C(d, p) denotes the commitment store of player
p in dialogue d.

Definition 5.4.2. The commitment function for argument and warrant inquiry
dialogues is the following. Let dn be the current dialogue, γ a topic, and θ ∈
{ai, wi}:

C(dn, x) =


C(dn−1, x) ∪ Φ dn[n] = 〈x, θ, assert(〈Φ, φ〉)〉
C(dn−1, x) otherwise
∅ d = ∅

Note that the φ is not added to the commitment store. It is already part of
the query store, which is explained below. Furthermore, the commitment store
grows monotonically over time, as no elements are ever removed.

The second kind of side effect is the one on the query store. The query store
is used in argument and warrant inquiry dialogues to contain the literals of the
current topic. Both agents try to find (acceptable) arguments for the literals
that are a part of the query store.

Definition 5.4.3. Let dn be the dialogue so far, x ∈ {P,O} and θ, θ′ ∈ {ai, wi}.
The query store, denoted QS : M<∞ → P (Lt), is a finite set of literals, such
that:

QS(dn) =
{
{β1, . . . , βn, α} if dn[n] = 〈x, θ, open(θ′, β1 ∧ · · · ∧ βn ⇒ α)〉
∅ otherwise

The query store is set at the beginning of a (sub-)dialogue.

24



5.5 Turn taking
Now that is clear what can be said, and what the effects of the moves are, it
needs to be defined when an agent may say something.

In general, strict turn taking is assumed. An agent has always got a chance
with strict turn taking to respond to its opponent Thus, with dn being the
current dialogue of n moves long:

Definition 5.5.1. The turn taking rule, T : M≤∞ → {P,O}, for argument and
warrant inquiry dialogues is the following. Let γ ∈ P (Lt), θ ∈ {ai, wi}, and
p(c) be a locution (where p is a performative and c any existing parameter):

T (dn) =
{
P if dn[n] = 〈O, θ, p(c)〉
O if dn[n] = 〈P, θ, p(c)〉

(5.5.1)

5.6 Termination
But, when does the dialogue come to an end? Argument and warrant inquiry
dialogues terminate when both agents want to close the current dialogue. This
is realised via a notion of matched-close, when a dialogue extends another one,
and a notion of sub-dialogues.

Definition 5.6.1. Let dr
t be a dialogue of type θ, with topic γ and x, x̂ ∈

{P,O}. The move dr
t [s], such that r < s ≤ t, is a matched-close iff dr

t [s − 1] =
〈x, θ, close(θ, γ)〉 and dr

t [s] = 〈x̂, θ, close(θ, γ)〉

Matched-close requires both agents to agree on the closure of the current
dialogues. This way, if only one side wants to close the dialogue, then the other
side can still make a move.

A (sub-)dialogue terminates if the following holds:

Definition 5.6.2. Let dn be a (sub-)dialogue. dn terminates at n iff the fol-
lowing conditions hold:

1. dn[n] is a matched-close for dn;

2. @dm such that dm terminates at m and dn extends dm;

3. ∀dr
m (1 ≤ r ≤ m ≤ n) if dr

m is a sub-dialogue of dn,
then ∃dr

m1
such that dr

m1
terminates at m1;

and either dr
m1

extends dr
m or dr

m extends dr
m1

;
and dr

m1
is a sub-dialogue of dn.

A sub-dialogue has to be matched-close in order for it to terminate. Also,
the current (sub-)dialogue must not already be terminated and all sub-dialogues
must already be terminated.

25



5.7 Dealing with sub-dialogues
Sub-dialogues make it hard to say things about the current state of a dialogue.
After all, if a sub-dialogue just terminated, then the last uttered move is no
longer relevant for the current dialogue. The relevant move is in fact the one
before the move that opened the last closed sub-dialogue.

It is therefore useful to have a way to refer to the current (sub-)dialogue.

Definition 5.7.1. Let dn be a dialogue. The current (sub-)dialogue is given
by cDiag(dn) such that cDiag(dn) = dr1

n (1 ≤ r1 ≤ n) where the following
conditions hold:

1. dn[r1] = 〈x, θ, open(θ, γ)〉 for some x ∈ {P,O}, some γ ∈ Lt and some
θ ∈ {wi, ai};

2. ∀dr2
n1

if dr2
n1

is a sub-dialogue of dr1
n ;

then ∃dr2
n2

s.t. either dr2
n2

extends dr2
n1

or dr2
n1

extends dr2
n2
;

and dr2
n2

is a sub-dialogue of dr1
n ;

and dr2
n2

terminates at n2;

3. @dr1
n3

s.t. dr1
n extends dr1

n3
and dr1

n3
terminates at n3.

The current (sub-)dialogue is therefore a subsequence of the entire dialogue,
such that;

1. The first move of the sequence opens that dialogue;

2. For all sub-dialogues of the sequence, it holds that they are terminated;

3. The (sub-)dialogue itself has not yet terminated.

Given the current dialogue, the current topic and current query store can
easily be returned.

Definition 5.7.2. Given a dialogue dn, cTopic returns the topic of the current
dialogue. If dr

n = cDiag(dn) with dr
n[r] = 〈x, θ, open(θ, γ)〉, then cTopic(dn) =

γ.

Definition 5.7.3. Let dn be a dialogue, and dr
n = cDiag(dn) the current dia-

logue. The query store of the current dialogue, denoted cQS(dn), is then given
by QS(dr

n).

5.8 Knowledge base
The following section describes the propositions the agent has access to during
the dialogue. Besides his own and his opponent’s commitment store, he namely
also has got access to his private space, or knowledge base.

Definition 5.8.1. The knowledge base of agent x, denoted Σx, is a set of
defeasible rules and facts (Σx ⊆ Lt). The knowledge base of agent x is set
before the start of the dialogue.

26



Definition 5.8.2. Let dn be the dialogue so far, and player x have the turn
(T (dn) = x). Agent x then has access to the following knowledge, denoted by
K : M<∞ × {P,O} → P (Lt), such that K(dn, x) = Σx ∪ C(dn, x) ∪ C(dn, x̂).

An agent therefore reasons over his own knowledge base, and any commit-
ment stores.1

5.9 Argument inquiry
Next, the protocol for argument inquiry dialogues is defined. In argument in-
quiry dialogues, agents try to find an argument for a given defeasible rule. An
agent can always try and close the current dialogue. However, he can only open
sub-dialogues or assert arguments if they relate to the current query store, and
if the move was not uttered before.

A protocol is a function which, given the current player and the dialogue so
far, returns a list of legal moves.

Definition 5.9.1. The argument inquiry protocol is a function Prai : M<∞ ×
{P,O} → P (M). Let dn be a dialogue of n moves, or ∅ at the beginning of
the dialogue, such that dn[n] was uttered by x̂, and cTopic(dn) = γ. Then
Prai(dn, x) is

Prassert
ai (dn, x) ∪ Propen

ai (dn, x) ∪ {〈x, ai, close(ai, γ)〉}

where

Prassert
ai (dn, x) = {〈x, ai, assert(〈Φ, φ〉)〉|

Φ ⊆ K(dn, x),
φ ∈ cQS(dn),
Φ |∼ φ,
∀x′ ∈ {P,O} : 〈x′, ai, assert(〈Φ, φ〉)〉 /∈ dn}

and

Propen
ai (dn, x) = {〈x, ai, open(ai, β1 ∧ · · · ∧ βn ⇒ α)〉|

α ∈ cQS(dn) or cQS(dn) = ∅,
(β1 ∧ · · · ∧ βn ⇒ α) ∈ K(dn, x),
∀x′ ∈ {P,O} : 〈x′, ai, open(ai, β1 ∧ · · · ∧ βn ⇒ α)〉 /∈ dn}

An agent can therefore always try to close the current argument inquiry
dialogue. He can assert any argument which has not been asserted before, and
of which the support is a subset of his knowledge and the conclusion a member
is of the current query store. The agent can open a sub-dialogue using any
defeasible rule of which the conclusion is in the current query store, and which
has not been uttered before.

Table 5.9.1 shows an example of an argument inquiry dialogue. The propo-
nent starts with a knowledge base of {(c⇒ d, 1), (b⇒ c, 1), (a⇒ b, 1)}, and the

1The above definition assumes a dialogue between two agents, with two commitment stores.

27



opponent with {(a, 1), (b, 1)}. Meaning that all rules and facts have a preference
level of one. The dialogue starts with the proponent wanting to find an argu-
ment for the defeasible rule c ⇒ d. To this end, two sub-dialogues are opened,
one for b⇒ c, and the other one for a⇒ b.

First, the proponent opens an argument inquiry dialogue to find an argument
for c ⇒ d. The opponent reacts by saying that he does not know what to do,
and that he wants to close the dialogue. Instead, the proponent opens a sub-
dialogue for b⇒ c. After all, an argument for b⇒ c can be used in an argument
for c ⇒ d. The opponent reacts by asserting a, after which the proponent
knows enough to assert the argument 〈{a, a ⇒ b}, b〉. Both parties then have
nothing to say on the subject of a⇒ b, so they close the dialogue. Then, in the
sub-dialogue with topic b ⇒ c, is the opponent able to construct and assert an
argument for c. Afterwards, the sub-dialogue is closed. Next, the proponent and
opponent assert in order two different arguments for d using c⇒ d. Since after
those moves neither have anything to assert, or any rule to open a sub-dialogue
over, the dialogue is closed.

CSP History CSO QS
1 〈P, ai, open(ai, c⇒ d)〉 {c, d}
2 〈O, ai, close(ai, c⇒ d)〉
3 〈P, ai, open(ai, b⇒ c)〉 {b, c}
4 〈O, ai, assert(〈{b}, b〉)〉 b
5 b,b ⇒

c
〈P, ai, assert(〈{b, b⇒ c}, c〉)〉

6 〈O, ai, close(ai, b⇒ c)〉
7 〈P, ai, open(ai, a⇒ b)〉 {a, b}
8 〈O, ai, assert(〈{a}, a〉)〉 a
9 a,a ⇒

b
〈P, ai, assert(〈{a, a⇒ b}, b〉)〉

10 〈O, ai, close(ai, a⇒ b)〉
11 〈P, ai, close(ai, a⇒ b)〉
12 〈O, ai, assert(〈{a, a⇒ b, b⇒ c}, c〉)〉 a ⇒

b,b ⇒
c

13 〈P, ai, close(ai, b⇒ c)〉
14 〈O, ai, close(ai, b⇒ c)〉
15 c⇒ d 〈P, ai, assert(〈{b, b⇒ c, c⇒ d}, d〉)〉
16 〈O, ai, assert(〈{a, a⇒ b, b⇒ c, c⇒ d}, d〉)〉 c⇒ d
17 〈P, ai, close(ai, c⇒ d)〉
18 〈O, ai, close(ai, c⇒ d)〉

Table 5.9.1: An example argument inquiry dialogue, from Black and Hunter
(2009), with ΣP = {(c ⇒ d, 1), (b ⇒ c, 1), (a ⇒ b, 1)} and ΣO = {(a, 1), (b, 1)}.
As the commitment stores grow monotonically, only new entries are denoted.

5.10 Warrant inquiry
In warrant inquiry dialogues, an acceptable argument is sought for a defeasible
fact. An argument is acceptable, given a set of uttered propositions if the

28



argument is in in the corresponding dialectical tree.2
Next, some definitions used in the protocol for warrant inquiry dialogues are

defined. defderiv returns all literals that can be derived from a set of propo-
sitions. RootArg returns the first argument that was asserted in the current
dialogue, if it exists.

Definition 5.10.1. The function defderiv : P (Lt) → P (Lt) returns, given a
set of rules and literals Ψ ⊆ Lt, all literals that can be defeasible derived from
it:

defderiv(Ψ) = {φ|Φ ⊆ Ψ,Φ |∼ φ}

Definition 5.10.2. The function RootArg : M<∞ → 〈Φ, φ〉 returns the root
argument of a warrant inquiry dialogue. Let dr

t be a warrant dialogue, with
players {P,O}:

RootArg(dr
t ) =



〈Φ, φ〉 if ∃s s.t. r < s ≤ t,
dr

t [s] = 〈x, θ, assert(〈Φ, φ〉)〉,
T opic(dr

t ) = γ,

x ∈ {P,O},
@s′ such that r < s′ < s and

∃〈Φ′, φ′〉 s.t. dr
t [s′] = 〈x′, θ, assert(〈Φ′, φ′〉)〉

and x′ ∈ {P,O}
∅ otherwise

The protocol for a warrant inquiry dialogue is given below. Like with argu-
ment inquiry dialogues can warrant inquiry dialogues always be closed. More-
over, an agent can assert arguments which have not been asserted before, if
no other argument has been asserted before or if asserting the argument would
change the status of the root argument in the dialectical tree. Furthermore, an
agent can open an argument inquiry dialogue, if there is no root argument, or
if the defeasible rule’s negated conclusion can be derived from the commitment
stores.

Definition 5.10.3. If dn is the dialogue, with x ∈ {P,O} and topic(dn) = γ,
then the warrant inquiry protocol Prwi is

Prassert
wi ∪ Propen

wi ∪ 〈x,wi, close(wi, γ)〉

where

Prassert
wi = {〈x,wi, assert(〈Φ, φ〉)〉|
(1) RootArg(dn) = ∅ and φ = γ or

T (RootArg (dn) ,K(dn, x) ∪ Φ) 6= T (RootArg(dn),K(dn, x))
(2) @t′ s.t. 1 < t′ ≤ n and

dn[t′] = 〈x′, wi, assert(〈Φ, φ〉)〉 and x′ ∈ {P,O}}
2i.e. for an argument A and set of propositions Ψ, status(A, Ψ) = in.

29



Propen
wi = {〈x,wi, open(ai, β1 ∧ · · · ∧ βn ⇒ α)〉|
(1) RootArg(dn) = ∅ and α = γ or

¬α ∈ defderiv (C(dn, x) ∪ C(dn, x̂)) , and
(2) @t′ s.t. 1 < t ≤ n and

dn[t′] = 〈x′, wi, open(ai, β1 ∧ · · · ∧ βn ⇒ α)〉 and x′ ∈ {P,O}}

In warrant inquiry dialogues one can always try to close the current dialogue.
Asserting arguments can only be done if there is no root argument, or asserting
the argument would change the dialectical tree. Furthermore, only argument
inquiry sub-dialogues can be opened, and only if there is a root argument and the
consequent is the same as the current topic, or if the defeasible rule’s consequent
is negated.

Table 5.10.1 shows an example of an warrant inquiry dialogue, adapted from
the example given by Black and Hunter (2009). In the example, an acceptable
argument is sought for the proposition b. Furthermore, four argument inquiry
sub-dialogues are opened and closed. The commitment stores are depicted as
containing beliefs instead of propositions, since arguments are compared on their
preference levels.

5.11 Conclusion
The dialogue systems of Black and Hunter serve two purposes. Argument in-
quiry dialogues are used to find arguments and warrant inquiry dialogues check
whether arguments are acceptable.

The dialogue systems do not specify, however, how the dialogues should be
generated. Moreover, it needs to be specified whether the generated dialogues
should adhere to some sort of criteria. The next chapter will define such a
strategy.

30



CSP History CSO QS
1 〈P,wi, open(wi, b)〉 b
2 〈O,wi, close(wi, b)〉
3 (a, 4),

(a ⇒
b, 4)

〈P,wi, assert(〈{(a, 4), (a⇒ b, 4)}, b〉)〉

4 〈O,wi, assert(〈{(d, 3), (d⇒ ¬a, 3)},¬a〉)〉 (d, 3),
(d ⇒
¬a, 3)

5 (c, 3),
(c ⇒
¬b, 3)

〈P,wi, assert(〈{(c, 3), (c⇒ ¬b, 3)},¬b〉)〉

6 〈O,wi, assert(〈{(¬d, 1)},¬d〉)〉 (¬d, 1)
7 〈P,wi, open(ai, a⇒ b)〉 a, b
8 〈O, ai, close(ai, a⇒ b)〉
9 〈P, ai, close(ai, a⇒ b)〉
10 〈O,wi, open(ai, d⇒ ¬a)〉 d,¬a
11 〈P, ai, close(ai, d⇒ ¬a)〉
12 〈O, ai, close(ai, d⇒ ¬a)〉
13 〈P,wi, open(ai, c⇒ ¬b)〉 c,¬b
14 〈O, ai, close(ai, c⇒ ¬b)〉
15 〈P, ai, close(ai, c⇒ ¬b)〉
16 〈O,wi, open(ai, e⇒ ¬d)〉 e,¬d
17 (e, 2) 〈P, ai, assert(〈{(e, 2)}, e〉)〉
18 〈O, ai, assert(〈{(e, 2), (e⇒ ¬d, 2)},¬d〉)〉 (e, 2),

(e ⇒
¬d, 2)

19 〈P, ai, close(ai, e⇒ ¬d)〉
20 〈O, ai, close(ai, e⇒ ¬d)〉
21 〈P,wi, close(wi, b)〉
22 〈O,wi, assert(〈{(¬e, 1)},¬e〉)〉 (¬e, 1)
23 〈P,wi, close(wi, b)〉
24 〈P,wi, close(wi, b)〉

Table 5.10.1: An example warrant inquiry dialogue, from Black and Hunter
(2009). ΣP = {(a, 4), (a ⇒ b, 4), (c, 3), (c ⇒ ¬b, 3), (e, 2)} and ΣO =
{(d, 3), (d ⇒ ¬a, 3), (¬d, 1), (e ⇒ ¬d, 2), (¬e, 1)}. As the commitment stores
grow monotonically, only new entries are denoted. The commitment stores are
depicted as containing beliefs instead of propositions.

31



Chapter 6

Soundness, completeness
and the exhaustive strategy

The previous chapter did not specify how dialogues are generated from the
argument and warrant inquiry dialogue systems. Before explaining how Black
and Hunter (2009) generated dialogues, however, first will be explained what
set of goals the generated dialogue should adhere to.

As explained below, Black and Hunter’s inspiration is the safety-critical med-
ical domain. In short, their goal is therefore to generate dialogues that never
give a false answer, and that will always give an answer if one exists. These
properties are, respectively, called soundness and completeness.

Using those goals, Black and Hunter devised a strategy that generates sound
and complete dialogues. This strategy is called the exhaustive strategy.

In the following, firstly soundness and completeness is formally defined for
both argument and warrant inquiry dialogues. Secondly, the exhaustive strategy
is defined.

6.1 Soundness and completeness
Black and Hunter (2009)’s goal is to define a dialogue system that models the
medical domain. They argue that, since the medical domain is safety-critical,
completeness and soundness are important safety properties of any medical di-
alogue. After all, when dealing with a diagnosis, for example, you expect the
doctor to have explored all options (completeness) and to be given a correct
diagnosis (soundness). Black and Hunter’s aim is therefore to define a strat-
egy that generates sound and complete dialogues. Before defining a strategy,
however, first needs to be clear what exactly Black and Hunter mean with com-
pleteness and soundness. As they define each notion separately for the argument
and warrant inquiry, that distinction is followed here as well.

Note that dialogues are assumed to be ‘well-formed’. A well-formed dialogue
is a dialogue of which all moves are legal according to its dialogue system.

For both dialogue systems, first the notion of outcome is defined, then the
notion of soundness, and lastly completeness.

32



6.1.1 Argument inquiry
The outcome of an argument inquiry dialogue is defined as a set of all arguments
derivable from the union of the commitment stores whose conclusion is in the
query store.

Definition 6.1.1. Let dr
t be an argument inquiry dialogue with the participants

P and O. The function outcomeai : D → P (ATLt
) returns the outcome of an

argument inquiry dialogue, with

outcomeai = {〈Φ, φ〉 ∈ ATC(dr
t ,O)∪C(dr

t ,P )|φ ∈ QS(dr
t )}

Therefore, the outcome is empty if in an argument inquiry dialogue no ar-
gument is found for any of the propositions in the query store. Otherwise, the
outcome consists of all arguments constructible from the commitment stores
that support a proposition from the query store.

Black and Hunter say that an argument inquiry dialogue is sound if and only
if all arguments in the outcome of the dialogue are constructible from the union
of the agents’ beliefs.

Definition 6.1.2. Let dr
t be an argument inquiry dialogue. dr

t is sound iff
∀〈Φ, φ〉 ∈ outcomeai(dr

t ) it holds that 〈Φ, φ〉 ∈ ATΣO∪ΣP
.

Similarly, an argument inquiry dialogue is complete if the dialogue is termi-
nated and if all arguments constructible from the union of the agents’ beliefs
with a conclusion that is in the query store, are also in the outcome of the
dialogue. In other words, a terminated dialogue is complete if all possible argu-
ments for the propositions in the query store have been found.

Definition 6.1.3. Let dr
t be an argument inquiry dialogue. dr

t is complete if it
is terminated at t and ∀〈Φ, φ〉 ∈ {〈Ψ, ψ〉 ∈ ATΣO∪ΣP

|ψ ∈ QS(dr
t )} it holds that

〈Φ, φ〉 ∈ outcomeai(dr
t ).

6.1.2 Warrant inquiry
The outcome of a warrant inquiry dialogue is the root argument of the dialectical
tree iff the root argument is undefeated (out), and otherwise empty.

Definition 6.1.4. The outcome of a warrant inquiry dialogue is given by the
function outcomewi : D → ATLt . Let dr

t be a warrant inquiry dialogue, with
the participants P and O, and CS(dr

t ) = C(dr
t , P ) ∪ C(dr

t , O):

outcomewi(dt
r) =


RootArg(dt

r) status(RootArg(dr
t ), CS(dr

t )) = in

∅ RootArg(dr
t ) = ∅

∅ otherwise

The soundness of a warrant inquiry dialogue hinges on the status in the
dialectical tree. A dialogue is sound only if, given that the outcome is the
argument 〈Φ, φ〉, and that 〈Φ, φ〉 is the root of the dialectical tree, then the
status of 〈Φ, φ〉 in the tree is in.

33



Definition 6.1.5. Let dr
t be a warrant inquiry dialogue. dr

t is sound iff, if dr
t

terminates at t and outcomewi(dr
t ) = 〈Φ, φ〉, then status(〈Φ, φ〉,ΣO ∪ΣP ) = in.

Like with argument inquiry dialogues, is the definition of completeness prac-
tically the reverse of the definition of soundness. A warrant inquiry dialogue is,
therefore, complete if and only if there exists an argument in the union of the
agents’ beliefs that is in as the root in the dialectical tree, and if the outcome
of the dialogue is that argument.

Definition 6.1.6. The warrant inquiry dialogue dr
t is complete iff, if it ter-

minates at t, RootArg(dr
t ) = 〈Φ, φ〉 and status(〈Φ, φ〉,ΣO ∪ ΣP ) = in, then

outcomewi(dr
t ) = 〈Φ, φ〉.

6.2 Exhaustive strategy
As already mentioned, the goal of Black and Hunter (2009) is to define a dia-
logue system that models the medical domain. Therefore, their aim is to define
a strategy that generates sound and complete dialogues. Here, a strategy is a
function which, given a list of legal moves, selects a single one. This section de-
tails the proposed strategy of Black and Hunter, called the exhaustive strategy.
To this end, functions are defined which return a legal open move and a legal
assert move, if they exist.

Definition 6.2.1. Let Ξ = {〈x, θ, open(θ1, γ1)〉, . . . , 〈x, θ, open(θk, γk)〉} be a
set of legal open moves that agent x could make. The function picko returns the
selected open move to make. picko(Ξ) = 〈x, θ, open(θj , γj)〉 such that 1 ≤ j ≤ k
and @j′ : j′ < j.

Definition 6.2.2. Let Ξ = {〈x, θ, assert(〈Φ1, φ1〉)〉, . . . , 〈x, θ, assert(〈Φk, φk〉)〉}
be a set of legal assert moves that agent x could make. The function picka re-
turns the selected assert move to make. picka(Ξ) = 〈x, θ, assert(〈Φj , φj〉)〉 such
that 1 ≤ j ≤ k and @j′ : j′ < j.

Definition 6.2.3. The exhaustive strategy for an agent x in a dialogue dn is a
function Sexh : Dtop →M . Let T (dn) = x, ctopic(dn) = γ and θ ∈ {ai, wi}:

Sexh(dn) =


picka(asserts(dn, x)) if asserts(dn, x) 6= ∅
picko(opens(dn, x)) if asserts(dn, x) = ∅ and opens(dn, x) 6= ∅
〈x, θ, close(θ, γ)〉 if asserts(dn, x) = ∅ and opens(dn, x) = ∅

where asserts(dn, x) returns all legal assert moves for agent x in dialogue dn,
and opens(dn, x) likewise returns all legal open moves.

The dialogues that are generated by the exhaustive strategy are called ‘ex-
haustive dialogues’. A dialogue is ‘generated’ by the exhaustive strategy iff every
move in the dialogue is the move that the exhaustive strategy would have picked
on that moment.

Example 6.2.4. The argument inquiry dialogue shown in Table 5.9.1 (on
page 28) is also an exhaustive argument inquiry dialogue (i.e. one in which
the exhaustive strategy was used). Likewise, the warrant inquiry dialogue shown
in Table 5.10.1 (on page 31) is also an exhaustive warrant inquiry dialogue.

34



The exhaustive strategy therefore returns a legal assert move if one exist,
otherwise it returns a legal open move. If no legal open move exists, it returns
the close move.

Note that dialogues generated by the exhaustive strategy have outcomes that
can also be reached by reasoning over the union of the agents’ beliefs. Black
and Hunter note this as well: “As the dialogue outcome we are aiming for is
the same as the outcome we would arrive at if reasoning with the union of the
agents’ beliefs, a natural question to ask is why not simply pool the agents’ beliefs
and then reason with this set?” (Black & Hunter, 2009). They give as answer
that in many real world scenarios this may not desirable/legal due to privacy
issues. In those cases it may be required to reason with separate knowledge
bases.

In other cases, it may simply be impossible to construct a union of the
knowledge bases, for example when dealing with the intake. Assuming that the
police officer knows the rules of the law and the complainant the facts, it is
not known beforehand by the police officer which facts are applicable. In other
words, only through a dialogue with the complainant is the police officer able
to ascertain the facts. Since the complainant has no intricate knowledge of the
law, he is assumed to be unable to give all relevant facts himself. Therefore, it
is reasonable to assume that for the intake it is impractical, if not impossible,
to construct the union of the agents’ beliefs.

6.3 Conclusion
Inspired by the medical domain, Black and Hunter specified that dialogues
should be complete and sound. In other words, dialogues should, respectively,
always produce an answer if one exists, and should only generate dialogues that
give valid answers. Their exhaustive strategy serves this purpose. By asserting
all known arguments, opening all possible sub-dialogues and closing the dialogue
otherwise, sound and complete dialogues are generated.

Note that dialogues generated using this strategy are typically large. While
this may be acceptable in the medical domain, it may not be for intakes. The
next chapter will thus show that the exhaustive strategy is not always ideal,
and define strategies that try to mitigate some of these problems.

35



Chapter 7

Modified exhaustive
strategies

The strategy as defined by Black and Hunter is not ideal for intakes. For
one, it generates long dialogues. This chapter will modify that strategy (the
exhaustive strategy from Black and Hunter (2009)) in two ways. Both times, an
extra condition is added for assert moves to be uttered. The exhaustive strategy
is modified in two ways, since it possibly contains two kinds of redundancies.
The modified strategies both aim to reduce one of these kinds of duplicity, as
inspired by the following scenario.

A complainant arrives at a police station to report online fraud. The police
officer handling the intake does not have the goal to make the intake as long
as possible. Rather, he firstly tries to determine whether fraud actually took
place. He uses his knowledge of the law to determine if it was fraud that took
place, and stops the intake otherwise. If he determines that fraud took place,
then he stops trying to ascertain that. Instead, he moves on to gather further
details of the case. In other words, the police officer stops seeking an argument
for a proposition if he already has got an argument for it, or, more importantly,
no further argument can change the status of the proposition.

As mentioned, there are thus two kinds of redundancy observed. The first
kind of redundant information is, therefore, the observation that during a dia-
logue multiple arguments for the same conclusion are found. The second kind of
unnecessary information is that the exhaustive strategy also asserts arguments
which do not change the status of the root argument. While only applicable to
warrant inquiry dialogues, these arguments seem to serve no purpose.

In other words, it seems that dialogues generated by the exhaustive strategy
can be made more relevant. Prakken (2005) also discussed relevancy, but for
persuasion dialogues. As discussed in Section 4.4, he defined two notions of
relevancy in order to get more coherent persuasion dialogues. Of those two
notions, strong relevancy might help to make inquiry dialogues more relevant.

The strategies defined in Section 7.2.2 in fact enforce that assert moves
either change the status of the root argument, or not modify the dialectical
tree. This is an application of strong relevance, with the caveat that agents are
allowed to ‘build’ arguments.

Note that the modifications proposed here may seem trivial, but are not.

36



This means that while the formal definitions might be trivial, it is not guaranteed
that those definitions are effective in making inquiry dialogues more relevant.

7.1 Commitment store versus dialogue
The goal is to make the exhaustive strategy generate smaller dialogues and
dialectical trees. However, maybe the protocol itself can also be made more
coherent, by changing where the strategy looks to see which arguments already
have been asserted. Therefore, the question needs to be answered, when does
an argument for a specific proposition exist? Should the argument have been
asserted in the dialogue? Or should the argument be constructible from the
union of the commitment stores?

In general, strategies often reason upon the union of the commitment stores
and the current agent’s knowledge base. It may be interesting, however, to see
what happens when a strategy instead reasons on a dialogue (and a knowledge
base). What ‘reasoning on the dialogue’ exactly means, will depend on the kind
of redundancy that this thesis tries to reduce.

When trying to reduce the number of arguments asserted in support of the
same proposition, for example, you can only look at the asserted arguments, or
look at the argumentation theory of the commitment stores. Therefore, only
the strategy itself has to be changed. On the other hand, when trying to assert
less irrelevant arguments, it may be useful to have a ‘more relevant’ dialectical
tree, by constructing it from the dialogue. In that case, first the notion of a
dialectical tree constructed on the dialogue is defined.

7.1.1 One argument per proposition
The following definitions closely follow the definition of picka (Definition 6.2.2).
The first picka modification checks whether the commitment stores not already
contain an argument for the given conclusion.

Definition 7.1.1. Let Ξ = {〈x, θ, assert(〈Φ1, φ1〉)〉, . . . , 〈x, θ, assert(〈Φk, φk〉)〉}
be a set of legal assert moves that agent x could make. The function picka,com

returns the selected assert move to make. picka,com(Ξ) = 〈x, θ, assert(〈Φj , φj〉)〉
such that 1 ≤ j ≤ k and @Φ′ : 〈Φ′, φj〉 ∈ ATC(dn,x)∪C(dn,x̂).

picka,com therefore picks the first legal assert move with a conclusion for
which no argument is constructible from the union of the commitment stores.

Next, instead of looking at the argumentation theory of the union of the
commitment stores, a picka is defined that looks at the dialogue.

Definition 7.1.2. Let Ξ = {〈x, θ, assert(〈Φ1, φ1〉)〉, . . . , 〈x, θ, assert(〈Φk, φk〉)〉}
be a set of legal assert moves that agent x could make. Also, let dr

t be the cur-
rent dialogue of length t, and θ ∈ {ai, wi}. The function picka,diag returns the
selected assert move to make. picka,diag(Ξ) = 〈x, θ, assert(〈Φj , φj〉)〉 such that
1 ≤ j ≤ k. Furthermore, @i such that r ≤ i ≤ t and ∀x ∈ {P,O} : @Φ′ : dr

t [i] =
〈x, θ, assert(〈Φ′, φj〉)〉.

picka.diag therefore picks the first assert move with a conclusion for which
no argument was asserted earlier in the dialogue.

37



7.1.2 Checking the status
For the second kind of duplicity, requiring that moves change the status of the
root argument, merely looking at the dialogue does not make sense. Since the
to-be-defined strategy will use the dialectical tree, it instead makes sense to
define a dialectical tree built upon a dialogue.

Such a tree is interesting for two reasons. Firstly, it introduces a dependency
on the order of moves in the dialogue. Secondly, the resulting tree should not
differ much when compared to a ‘proper’ tree, since every asserted argument is
also constructible from the commitment stores. It might even result in smaller
dialectical trees and/or dialogues, since it only looks at the assert moves in the
dialogue.

That notion of a dialectical tree is inspired by the dialectical graph used in
Prakken (2005). The dialectical graph has also got a root argument, and is also
based on the order of moves in a dialogue.

First, the modified notion of a tree is defined. Afterwards, the picka functions
are defined.

Another kind of tree

The dialectical tree constructed from a dialogue is therefore structured as follows.
The first argument in the dialogue that supports the topic, is the root argument.
Further on, if and only if an argument attacks another argument that is asserted
at an earlier point in the dialogue, then the attacker is a child of the attacked
argument.

Definition 7.1.3. Let dr
t be the current dialogue, x ∈ {P,O}, θ ∈ {ai, wi},

and A0 an argument such that dr
t [k] = 〈x, θ, assert(A0)〉 (r ≤ k ≤ t). A

dialectical tree constructed from a dialogue for A0, constructed from dr
t ,

denoted T (A0, d
r
t ), is defined as follows

1. The root of the tree is labelled with A0;

2. The argument A0 appears at j in dr
t such that dr

t [j] = 〈x, θ, assert(A0)〉;

3. Let N be a node of the tree labelled An, and let ∆i = [A0, . . . , An] be
the sequence of labels on the path from the root to node N . Let B be a
set of arguments defeating An such that B = {Bl|∃l : 1 < l ≤ t : dr

t [l] =
〈x, θ, assert(Bl)〉, Bl defeats An}. Also, let An be asserted at m such that
dr

t [m] = 〈x, θ, assert(An)〉 for some x ∈ {P,O} and θ ∈ {ai, wi}.
For each defeater C ∈ B, if the argumentation line ∆′i = [A0, . . . , An, C] is
an acceptable argumentation line and C is asserted earlier in the dialogue
than An (∃k : 1 ≤ k < m : dr

t [k] = 〈x, θ, assert(C)〉 for some x ∈ {P,O}
and θ ∈ {ai, wi}), then the node N has a child Nj that is labelled C. If
there is no defeater for An or there is no C such that ∆′j is acceptable,
then N is a leaf node.

Next, the status of an argument in a dialectical tree constructed from a
dialogue is defined. This definition is similar to Definition 2.3.6. The difference
being that the dialectical tree is constructed from a dialogue.

38



Definition 7.1.4. Let dn be a dialogue wherein the dialectical tree is con-
structed from a dialogue. The status of an argument A given a set of rules and
facts Ψ ⊆ Lt, the corresponding argumentation theory ATΨ, and the dialogue dn

is returned by the function status : ATΨ×Dtop → {in, out}. status(A, dn) = in
iff A is marked in in T (A, dn). Otherwise, status(A, dn) = out (i.e. if A is
marked out in T (A, dn) ).

The picka functions

First, the picka which uses Black and Hunter’s notion of a dialectical tree is
defined.

It will require assert moves to either change the status of the root argument,
or leave the dialectical tree unchanged. The second condition is needed to allow
agents to build up arguments. If, for example, in the argumentation theory of
the joint knowledge bases, the argument 〈{a, a⇒ b}, b〉 occurs, and if (a, 1) ∈ ΣO

and (a⇒ b, 1) ∈ ΣP , then that argument can only be asserted if the agents are
allowed to assert 〈{a}, a〉, even though it does not change the tree.

Definition 7.1.5. Let Ξ = {〈x, θ, assert(〈Φ1, φ1〉)〉, . . . , 〈x, θ, assert(〈Φk, φk〉)〉}
be a set of legal assert moves that agent x could make. The function picka′,bhtree

returns the selected assert move to make. Let CS(dn) = C(dn, x)∪C(dn, x̂) for
the current and the other player. picka′,bhtree(Ξ) = 〈x, θ, assert(〈Φj , φj〉)〉 such
that, given dn, 1 ≤ j ≤ k, either

• status(RootArg(dn), CS(dn) ∪ Φj) 6= status(RootArg(dn), CS(dn)), or;

• T (RootArg(dn), CS(dn) ∪ Φj) = T (RootArg(dn), CS(dn)).

Second, the picka′ which uses a tree constructed from the dialogue is defined.
It is similar to the above definition, but uses the modified dialectical tree.

Definition 7.1.6. Let Ξ = {〈x, θ, assert(〈Φ1, φ1〉)〉, . . . , 〈x, θ, assert(〈Φk, φk〉)〉}
be a set of legal assert moves that agent x could make. The function picka′,diagtree

returns the selected assert move to make. picka′,diagtree(Ξ) = 〈x, θ, assert(〈Φj , φj〉)〉
such that, given dn and 1 ≤ j ≤ k, either

• status(RootArg(dn), dn∪〈x, θ, assert(〈Φj , φj〉)〉) 6= status(RootArg(dn), dn),
or;

• T (RootArg(dn), dn ∪ 〈x, θ, assert(〈Φj , φj〉)〉) = T (RootArg(dn), dn).1

7.2 The strategies
Lastly, the modified strategies themselves are defined. The definitions are trivial,
only using the modified picka functions as defined above. Four strategies are
defined, each using a different picka function.

The strategies that limit that arguments are only asserted if no argument
for that proposition was already asserted, are called the limited strategies. The
strategies that ‘smartly’ check whether arguments change the root argument’s
status, are called the smart strategies.

First, the limited strategies are defined. Next, the smart strategies are de-
fined.

1The union of the dialogue with the move represents the dialogue with that move added.

39



7.2.1 The limited strategies
The limited strategy that checks the commitment store, using picka,com, is called
the limited commitment strategy.

Definition 7.2.1. The limited commitment strategy that checks the commit-
ment stores for an agent x in a dialogue dn is a function SlimCom : Dtop →M .
Let T (dn) = x, ctopic(dn) = γ and θ ∈ {ai, wi}:

SlimCom(dn) =



picka,com(asserts(dn, x)) if asserts(dn, x) 6= ∅ and
picka,com(asserts(dn, x)) 6= ∅

picko(opens(dn, x)) if asserts(dn, x) = ∅ and
opens(dn, x) 6= ∅

〈x, θ, close(θ, γ)〉 if asserts(dn, x) = ∅ and
opens(dn, x) = ∅

where asserts(dn, x) returns all legal assert moves for agent x in dialogue dn,
and opens(dn, x) likewise returns all legal open moves.

Likewise, the limited strategy that checks the dialogue, using picka,diag, is
called the limited dialogue strategy.

Definition 7.2.2. The limited dialogue strategy that checks the dialogue for
an agent x in a dialogue dn is a function SlimDiag : Dtop →M . Let T (dn) = x,
ctopic(dn) = γ and θ ∈ {ai, wi}:

SlimDiag(dn) =



picka,diag(asserts(dn, x)) if asserts(dn, x) 6= ∅ and
picka,diag(asserts(dn, x)) 6= ∅

picko(opens(dn, x)) if asserts(dn, x) = ∅ and
opens(dn, x) 6= ∅

〈x, θ, close(θ, γ)〉 if asserts(dn, x) = ∅ and
opens(dn, x) = ∅

where asserts(dn, x) returns all legal assert moves for agent x in dialogue dn,
and opens(dn, x) likewise returns all legal open moves.

7.2.2 Smart strategies
Here, the strategies that attempt to reduce the second kind of redundancy
(irrelevant arguments) are defined. They attempt to do so by requiring moves
to be either strongly relevant (see Section 4.4), or not modify the dialectical tree.
Strong relevance is used by Prakken (2005) to define more coherent persuasion
dialogues. Here, it is used in an attempt to reduce the number of asserted
irrelevant arguments. Arguments that do not change the dialectical tree are
always allowed to allow agents to ‘build’ arguments.

The smart strategy using Black and Hunter’s dialectical tree, is called the
smart original strategy.

Definition 7.2.3. The smart original strategy with Black and Hunter’s
notion of a dialectical tree, for an agent x in a dialogue dn is a function

40



Ssmart,bhtree : Dtop →M . Let T (dn) = x, ctopic(dn) = γ and θ ∈ {ai, wi}:

Ssmart,bhtree(dn) =



picka′,bhtree(asserts(dn, x)) if asserts(dn, x) 6= ∅ and
picka′,bhtree(asserts(dn, x)) 6= ∅

picko(opens(dn, x)) if asserts(dn, x) = ∅ and
opens(dn, x) 6= ∅

〈x, θ, close(θ, γ)〉 if asserts(dn, x) = ∅ and
opens(dn, x) = ∅

where asserts(dn, x) returns all legal assert moves for agent x in dialogue dn,
and opens(dn, x) likewise returns all legal open moves.

Secondly, the smart exhaustive strategy using the new dialectical tree (and
picka′,diagtree) is defined. It is called the smart dialogue strategy.

Definition 7.2.4. The smart dialogue strategy using the dialectical tree
based on a dialogue (Definition 7.1.3), for an agent x in a dialogue dn is
a function Ssmart,diagtree : Dtop → M . Let T (dn) = x, ctopic(dn) = γ and
θ ∈ {ai, wi}:

Ssmart,diagtree(dn) =



picka′,diagtree(asserts(dn, x)) if asserts(dn, x) 6= ∅ and
picka′,diagtree(asserts(dn, x)) 6= ∅

picko(opens(dn, x)) if asserts(dn, x) = ∅ and
opens(dn, x) 6= ∅

〈x, θ, close(θ, γ)〉 if asserts(dn, x) = ∅ and
opens(dn, x) = ∅

where asserts(dn, x) returns all legal assert moves for agent x in dialogue dn,
and opens(dn, x) likewise returns all legal open moves.

7.3 Conclusion
The modifications of the exhaustive strategy are inspired by the intake. The
limited strategies will not assert ‘duplicate’ arguments, to avoid having multiple
arguments supporting the same conclusion. The smart strategies check whether
an argument changes the root argument’s status, in order to avoid asserting
irrelevant arguments.

In short, the exhaustive strategy tries to do the following things in order.

1. assert an argument if possible
2. open any sub-dialogue
3. (try to) close the current sub-dialogue

The other strategies are a modification of the exhaustive strategy. They replace
the first item with a stricter condition on asserting arguments. The modified
strategies therefore require the following conditions to be met before an argu-
ment can be asserted.

The limited dialogue strategy only asserts an argument if there exists an
argument that supports a proposition for which no argument has been asserted
yet.

41



The limited commitment strategy only asserts an argument if there exists
an argument that supports a proposition for which no argument can be derived
from the union of the commitment stores.

The smart dialogue strategy uses the dialectical tree based on the dialogue.
Moreover, it only asserts an argument if that argument either changes the status
of the root argument of the dialectical tree, or if it does not change the dialectical
tree.

The smart original strategy uses Black and Hunter (2009) definition of a
dialectical tree. It also only asserts if an argument either changes the status of
the root argument of the dialectical tree, or if it does not change the dialectical
tree.

Whether these strategies are sound and complete is investigated in the next
chapter.

42



Chapter 8

Proving soundness and
completeness

This chapter will determine whether the modified strategies are sound and com-
plete in the sense of Section 6.1 (as defined by Black and Hunter (2009)).

Important to note is that a strategy is sound and/or complete if and only if
all dialogues it generates are either sound or complete.

8.1 Limited strategies
Here, first will soundness and completeness be checked for argument inquiry,
and then for warrant inquiry.

8.1.1 Argument inquiry
Both limited strategies are sound for argument inquiry dialogues. First lemmas
adopted from Black and Hunter (2009) are used to say that whatever is asserted
in an argument inquiry dialogue, comes from the union of the agents’ beliefs.
(i.e. the commitment stores are a subset of the agents’ beliefs)

Lemma 8.1.1. If dr
t is an argument inquiry dialogue, then C(dr

t , x)∪C(dr
t , x̂) ⊆

ΣP ∪ ΣO.

Proof. The only time the commitment store changes, is when an agent x ut-
ters 〈x, ai, assert(〈Φ, φ〉)〉. Following the protocol for argument inquiry dia-
logues (Definition 5.9.1) and the update function for commitment stores (Defi-
nition 5.4.2), after uttering that move it must hold that Φ ∈ C(dr

t , x)∪C(dr
t , x̂).

Since at the beginning of the dialogue the commitment stores are empty, any
member of the union of the commitment stores must also be a member of the
union of the agents’ beliefs. Therefore, C(dr

t , x) ∪ C(dr
t , x̂) ⊆ ΣP ∪ ΣO.

Lemma 8.1.2. Let Φ ⊆ Lt and Ψ ∈ Lt be two sets. If Φ ⊆ Ψ, then ATΦ ⊆ ATΨ.

Proof. Assume that Φ ⊆ Ψ and that 〈Π, π〉 is an argument such that 〈Π, π〉 ∈
ATΦ. From the definition of an argument (Definition 2.2.1), it holds that Π ⊆ Φ.

43



As Π ⊆ Φ and Φ ⊆ Ψ, Π ⊆ Ψ holds. Therefore, 〈Π, π〉 ∈ ATΨ (Definition 2.2.1).
Therefore, if Φ ⊆ Ψ and A ∈ ATΦ then A ∈ ATΨ, and ATΦ ⊆ ATΨ.

Using these lemmas, it is proven that the limited strategies, the limited
commitment as well as the limited dialogue strategy, are sound.

Proposition 8.1.1. The limited dialogue and limited commitment strategy are
sound.

Proof. Let dr
t be an argument inquiry dialogue formed by either the limited

dialogue, or limited commitment strategy. Neither strategy changes the defi-
nition of the outcome or the protocol. Let 〈Φ, φ〉 ∈ outcomeai(dr

t ). From the
definition of the outcome (Definition 6.1.1), 〈Φ, φ〉 ∈ ATC(dr

t ,x)∪C(dr
t ,x̂). From

Lemma 8.1.1, C(dr
t , x)∪C(dr

t , x̂) ⊆ ΣP ∪ΣO. Therefore, following Lemma 8.1.2,
〈Φ, φ〉 ∈ ATΣP∪ΣO

. Therefore, the argument inquiry dialogues formed by the
limited dialogue strategy, or the limited commitment strategy are sound.

This proof closely follows the proof of soundness of Black and Hunter for
the exhaustive strategy (Black & Hunter, 2009, p. 199). Since neither limited
strategy changes any condition for an argument to be in the commitment store,
that proof still holds. The limited strategies are therefore sound because any
argument in the union of the commitment stores is also derivable from the union
of the agents’ beliefs.

As for completeness (in the sense of Definition 6.1.3), neither strategy is
complete.

Proposition 8.1.2. The limited dialogue and limited commitment strategy are
not complete for argument inquiry dialogues.

Proof. Let dr
t be a dialogue, terminated at t, such that 〈{a, a⇒ b}, b〉, 〈{c, c⇒

b}, b〉 ∈ ATΣO∪ΣP
. Also, assume that the dialogue was generated by either the

limited dialogue strategy, or the limited commitment strategy. Then it cannot
be that 〈{a, a⇒ b}, b〉 ∈ ATC(dr

t ,x)∪C(dr
t ,x̂) ánd 〈{c, c⇒ b}, b〉 ∈ ATC(dr

t ,x)∪C(dr
t ,x̂).

Assume that 〈{a, a ⇒ b}, b〉 was asserted at some point in the dialogue.
Then, 〈{c, c⇒ b}, b〉 cannot have been asserted at some point afterwards. Why,
depends on the strategy. If the limited dialogue strategy generated dr

t , then
dialogue already contained an assert supporting b. Similarly, with the limited
commitment strategy the union of the commitment stores already contained an
argument for b. Assuming that 〈{c, c⇒ b}, b〉 was asserted first, the same story
holds. Therefore, neither the limited commitment or limited dialogue strategy
are complete for argument inquiry dialogues.

Both strategies are not complete. the condition that only one argument per
proposition may exist, adds the possibility for the strategy to keep argumenta-
tion lines out of the dialectical that would otherwise have changed the status of
the root argument.

8.1.2 Warrant inquiry
Just like for argument inquiry dialogues, the limited strategies do, however, not
generate sound dialogues for warrant inquiry dialogues. Take for example the
knowledge bases as described in Figure 8.1.1. It shows the dialectical tree as

44



constructed when using the exhaustive strategy. The problem is, that using the
limited dialogue or commitment strategy, two different trees can be generated.
Those trees each assign a different status to the root argument. The reason is
that the full tree (Figure 8.1.1) has got two arguments for the same proposition
¬b. Using the limited strategies only one of them makes it way into the tree.
The problem is that ({c, c⇒ ¬b},¬b) is a leaf, and therefore in, while ({d, d⇒
¬b},¬b) is out (see figure 8.1.2). Which status is assigned to the root argument
therefore depends on which of those two arguments is asserted first. After all,
after ({c, c ⇒ ¬b},¬b) is asserted, ({d, d ⇒ ¬b},¬b) can never be asserted, as
there already exists an argument for ¬b.

Note that this example, and the following proof, both hold for the limited
dialogue and limited commitment strategy. That is because both strategies
prevent one to assert multiple arguments that support the same proposition.

Proposition 8.1.3. The limited dialogue and limited commitment strategy are
not sound for warrant inquiry dialogues.

Proof. Let ΣP = {(a ⇒ b, 4), (c ⇒ ¬b, 3), (d ⇒ ¬b, 3)}. Furthermore, let
ΣO = {(a, 4), (c, 3), (d, 3), (¬d, 2)}. The limited strategies generate the dia-
logue shown in Table 8.1.1. Irrespectively of the specific limited strategy, after
〈{f, f ⇒ ¬b},¬b〉 is asserted, no other argument for ¬b will be asserted. The
corresponding dialectical tree is shown on the right in Figure 8.1.2. There,
({a, a⇒ b}, b) is marked in, while status(({a, a⇒ b}, b), ATΣO∪ΣP

) = out. The
marking of the root argument in Table 8.1.1 differs from its status in the union
of the knowledge bases. The dialogue is, therefore, not sound. The limited
exhaustive strategy therefore is not sound.

({a, a⇒ b}, b) out

({c, c⇒ ¬b},¬b) in ({d, d⇒ ¬b},¬b) out

({¬d},¬d) in

Figure 8.1.1: The (marked) dialectical tree generated by using the exhaus-
tive strategy with ΣP = {(a ⇒ b, 4), (c ⇒ ¬b, 3), (d ⇒ ¬b, 3)}, ΣO =
{(a, 4), (c, 3), (d, 3), (¬d, 2)} and a warrant inquiry dialogue about b.

({a, a⇒ b}, b) out

({c, c⇒ ¬b},¬b) in

({a, a⇒ b}, b) in

({d, d⇒ ¬b},¬b) out

({¬d},¬d) in

Figure 8.1.2: The two possible (marked) dialectical trees generated by using
a limited strategy with ΣP = {(a ⇒ b, 4), (c ⇒ ¬b, 3), (d ⇒ ¬b, 3)}, ΣO =
{(a, 4), (c, 3), (d, 3), (¬d, 2)} and a warrant inquiry dialogue about b.

The limited strategies are, likewise, not complete. This is because leaving
out an argument can make the root argument a different status.

45



〈P,wi, open(wi, ({b}, b))〉
〈O,wi, close(b)〉
〈P,wi, open(ai, a⇒ b)〉

〈O, ai, assert(〈{a}, a〉)〉
〈P, ai, assert(〈{a, a⇒ b}, b〉)〉
〈O, ai, close(a, b)〉
〈P, ai, close(a, b)〉

〈O,wi, close(b)〉
〈P,wi, open(ai, f ⇒ ¬b)〉

〈O, ai, assert(〈{f}, f〉)〉
〈P, ai, assert(〈{f, f ⇒ ¬b},¬b〉)〉
〈O, ai, close(¬b, f)〉
〈P, ai, open(ai, c⇒ ¬b)〉

〈O, ai, assert(〈{c}, c〉)〉
〈P, ai, close(¬b, c)〉
〈O, ai, close(¬b, c)〉

〈P, ai, close(¬b, f)〉
〈O, ai, close(¬b, f)〉

〈P,wi, close(b)〉
〈O,wi, assert(〈{¬f},¬f〉)〉
〈P,wi, close(b)〉
〈O,wi, close(b)〉

Table 8.1.1: A possible dialogue using a limited strategy and the knowledge
bases shown in figure 8.1.1

Proposition 8.1.4. The limited dialogue and limited commitment strategy are
both not complete for warrant inquiry dialogues.

Proof. Let dr
t be a warrant inquiry dialogue terminated at t, generated by one

of the limited strategies1, with ΣP = {p⇒ q, r ⇒ ¬p, s⇒ ¬r, t⇒ ¬r, u⇒ ¬t}
and ΣO = {p, r, s, t, u}. The goal of the dialogue is to find an acceptable
argument for q. Figure 8.1.3 shows the dialectical tree generated from the
union of the agents’ beliefs. At some point j (r ≤ j ≤ t) in the dialogue,
the dialectical tree shown in Figure 8.1.4 will have been generated. Following
the limited strategies (Definitions 7.2.1 and 7.2.2), either 〈{t, t ⇒ ¬r},¬r〉 or
〈{s, s ⇒ ¬r},¬r〉 will then be asserted at some point after j. Assume, how-
ever, 〈{t, t ⇒ ¬r},¬r〉 is asserted in dr

t . Following the limited strategies, next
〈{u, u ⇒ ¬t},¬t〉 is asserted, after which the dialogue is terminated. Note
that the root argument in the dialectical tree constructed from the agents’
beliefs is in. Therefore, status(〈{p, p ⇒ q}, q〉,ΣP ∪ ΣO) = in. However,
status(〈{p, p⇒ q}, q〉, C(dr

t , x) ∪ C(dr
t , x̂)) = out, therefore outcomewi(dr

t ) = ∅.
The limited strategies are therefore not complete for warrant inquiry dialogues,
since status(〈{p, p⇒ q}, q〉,ΣP ∪ ΣO) = in, but outcomewi(dr

t ) = ∅.

1In this case the specific variant does not matter.

46



〈{p, p⇒ q}, q〉

〈{r, r ⇒ ¬p},¬p〉

〈{t, t⇒ ¬r},¬r〉

〈{u, u⇒ ¬t},¬t〉

〈{s, s⇒ ¬r},¬r〉

Figure 8.1.3: The dialectical tree generated by the exhaustive strategy in a
warrant inquiry dialogue, with ΣP = {p⇒ q, r ⇒ ¬p, s⇒ ¬r, t⇒ ¬r, u⇒ ¬t}
and ΣO = {p, r, s, t, u}.

〈{p, p⇒ q}, q〉

〈{r, r ⇒ ¬p},¬p〉

Figure 8.1.4: The dialectical tree generated by a limited strategy at some point
in the dialogue, with ΣP = {p ⇒ q, r ⇒ ¬p, s ⇒ ¬r, t ⇒ ¬r, u ⇒ ¬t} and
ΣO = {p, r, s, t, u}.

8.2 Smart strategy
This section will prove for both smart strategies whether they are sound and/or
complete for warrant inquiry dialogues. Here, only warrant inquiry dialogues
are considered since a dialectical tree is used in the strategy. Therefore, it only
operates on warrant inquiry dialogues. Like with the limited strategies, first is
examined whether the strategy is sound, then whether it is complete.

8.2.1 Soundness
The smart dialogue strategy is first investigated to see whether it is sound.
Afterwards, the smart original strategy is investigated for the same thing.

The smart dialogue strategy is not sound. There exists a situation in which
the dialectical tree of the generated dialogue gives a different status to its root
argument than the dialectical tree of the union of the agents’ beliefs.

Proposition 8.2.1. The smart dialogue strategy is not sound for warrant in-
quiry dialogues.

Proof. Let ΣP = {a ⇒ b, d ⇒ ¬b, e ⇒ ¬d, c ⇒ ¬b, f ⇒ ¬c} and ΣO =
{a, c, d, e, f}. Let dr

t be a warrant inquiry dialogue of t long, generated by the
smart dialogue strategy, with b as its initial topic. Table 8.2.1 (page 51) shows
a warrant inquiry dialogue generated using the previous settings. Figure 8.2.1
shows the dialectical tree generated by that dialogue, and Figure 8.2.2 shows
the dialectical tree of the union of the agents’ beliefs. The figures clearly show
the root argument having a different status than the root argument in the other
dialectical tree. The smart dialogue strategy therefore does is not sound.

In the dialogue shown in Table 8.2.1 something interesting happens. While
〈{f, f ⇒ ¬c},¬c〉 is asserted, it does not make it into the dialectical graph.
The reason being that 〈{c, c ⇒ ¬b},¬b〉 is asserted after 〈{f, f ⇒ ¬c},¬c〉.

47



({a, a⇒ b}, b) out

〈{d, d⇒ ¬b},¬b〉 out

〈{e, e⇒ ¬d},¬d〉 in

〈{c, c⇒ ¬b},¬b〉 in

Figure 8.2.1: The dialectical tree as created by the dialogue of Table 8.2.1, with
ΣP = {a ⇒ b, d ⇒ ¬b, e ⇒ ¬d, c ⇒ ¬b, f ⇒ ¬c}, ΣO = {a, c, d, e, f} and a
warrant inquiry dialogue about b.

({a, a⇒ b}, b) in

〈{d, d⇒ ¬b},¬b〉 out

〈{e, e⇒ ¬d},¬d〉 in

〈{c, c⇒ ¬b},¬b〉 out

〈{f, f ⇒ ¬c},¬c〉 in

Figure 8.2.2: The dialectical tree as generated by the union of the agents’ beliefs,
using ΣP = {a⇒ b, d⇒ ¬b, e⇒ ¬d, c⇒ ¬b, f ⇒ ¬c} and ΣO = {a, c, d, e, f}.

So, in this particular dialogue 〈{c, c⇒ ¬b},¬b〉 was not asserted early enough.
In fact, after the move 〈O, ai, assert(〈{c}, c〉)〉 the argument was known by
the proponent. If it wasn’t for the strategy, the argument could have been
asserted. Ultimately, the argument was not asserted, since it would change
the dialectical tree, but not the status of the root argument (see Figure 8.2.3).
For a sound dialogue, 〈{c, c ⇒ ¬b},¬b〉 should even have been asserted before
〈{d, d⇒ ¬b},¬b〉. The smart strategy could have done this. After the argument
inquiry sub-dialogue about a ⇒ b it chose to open a sub-dialogue for d ⇒ ¬b,
instead of c ⇒ ¬b. Choosing the right sub-dialogue would have generated a
sound dialogue. The smart dialogue strategy therefore did not sufficiently take
the consequences of opening a sub-dialogue into account.

({a, a⇒ b}, b) out

〈{d, d⇒ ¬b},¬b〉 in

Figure 8.2.3: The dialectical tree of Table 8.2.1 just after the move
〈O, ai, assert(〈{c}, c〉)〉.

On the other hand, the smart original strategy (which uses Black and Hunter’s
dialectical tree) is sound.

Proposition 8.2.2. The smart original strategy is sound for warrant inquiry
dialogues.

Proof. Let dr
t be a dialogue terminated at t, with RootArg(dr

t ) = 〈Φ, φ〉, such
that outcomewi(dr

t ) = 〈Φ, φ〉. Following Definition 6.1.4, status(〈Φ, φ〉, C(dr
t , x)∪

C(dr
t , x̂)) = in. Following Definition 7.2.3, all arguments that would have

changed the status of the root argument have been asserted.
Therefore, no argument in ΣP ∪ΣO \C(dr

t , x)∪C(dr
t , x̂) can cause 〈Φ, φ〉 to

be out. Therefore, status(〈Φ, φ〉,ΣP ∪ΣO) = in. Hence, all dialogues generated

48



by the smart original strategy are necessarily sound, and therefore the strategy
itself is sound.

The smart original strategy is sound, since if an argument is found to be
acceptable in a dialogue, then that argument is also acceptable in the union of
the agents’ beliefs. After all, all arguments that could cause the root argument
to be out are defeated by other arguments, since the smart original strategy
asserts all arguments which change the status of the root argument.

8.2.2 Completeness
Like in the previous section first the smart dialogue strategy is investigated.
The difference being that now is being checked whether the strategy is complete.
Afterwards, the same is done for the smart original strategy.

The smart dialogue strategy is not complete, due to the same reason that it
is not sound.

Proposition 8.2.3. The smart dialogue strategy is not complete for warrant
inquiry dialogues.

Proof. Let dr
t be a dialogue, terminated at t, with a root argument such that

status(RootArg(dr
t ),ΣO ∪ ΣP ) = in. Table 8.2.1 shows a dialogue where that

is the case. However, as explained in Proposition 8.2.1, the status of the root
argument 〈{a, a ⇒ b}, b〉 is out in the dialogue, while its status in the full tree
(Figure 8.2.2) is in. Therefore, the smart dialogue strategy is not complete.

The smart original strategy does not suffer from this flaw, and is complete.
The crux being that if an argument is not asserted by the smart original strategy,
then no argumentation line is created which would make the root argument out.

Proposition 8.2.4. The smart original strategy is complete (following Defini-
tion 6.1.6) for warrant inquiry dialogues.

Proof. Let dr
t be a dialogue terminated at t, with RootArg(dr

t ) = 〈Φ, φ〉 and
status(〈Φ, φ〉,ΣO∪ΣP ) = in. It places, when compared to the exhaustive strat-
egy, a restriction upon assert moves. In order for the smart original strategy
to assert an argument, it should (1) either change the root argument’s status,
or (2) not change the dialectical tree.

The smart original strategy therefore asserts all arguments that have an
influence on the status of the root argument. It also allows the agents to build up
all of these arguments. Following the protocol for warrant inquiry dialogues and
the smart original strategy, argument inquiry sub-dialogues are opened for every
rule that might end up being an attacking argument. During these argument
inquiry sub-dialogues, the premises supporting an argument containing the topic
are still asserted. These arguments do not change the dialectical tree, therefore
the smart original strategy still asserts them. The only arguments not asserted,
are arguments that do not change the root argument’s status, but would change
the dialectical tree.

Therefore, all arguments that might influence the root argument’s status will
be at some point in the dialogue legal assert moves. All of these arguments are
asserted by the smart original strategy. Therefore, if in the union of the agents’
beliefs the root argument is in, the outcome of the warrant inquiry dialogue

49



generated by the smart original strategy will be that root argument. The smart
original strategy is therefore complete.

8.3 Conclusion
Of all modified strategies, only the smart original strategy is both sound and
complete. The limited strategies are only sound in argument inquiry dialogues.
For warrant inquiry dialogues they are not sound and complete because it is
possible that an argument that would change the root argument’s status is not
asserted. Table 8.3.1 shows an overview over what was proven in this chapter.

Nevertheless, the next chapter will investigate the usefulness of the modified
strategies.

50



〈P,wi, open(b)〉
〈O,wi, close(b)〉
〈P,wi, open(ai, a⇒ b)〉

〈O, ai, assert(〈{a}, a〉)〉
〈P, ai, assert(〈{a, a⇒ b}, b〉)〉
〈O, ai, close(a, b)〉
〈P, ai, close(a, b)〉

〈O,wi, close(b)〉
〈P,wi, open(ai, d⇒ ¬b)〉

〈O, ai, assert(〈{d}, d〉)〉
〈P, ai, assert(〈{d, d⇒ ¬b},¬b〉)〉
〈O, ai, close(¬b, d)〉
〈P, ai, open(ai, c⇒ ¬b)〉

〈O, ai, assert(〈{c}, c〉)〉
〈P, ai, close(¬b, c)〉
〈O, ai, close(¬b, c)〉

〈P, ai, close(¬b, d)〉
〈O, ai, close(¬b, d)〉

〈P,wi, open(ai, f ⇒ ¬c)〉
〈O, ai, assert(〈{f}, f〉)〉
〈P, ai, assert(〈{f, f ⇒ ¬c},¬c〉)〉
〈O, ai, close(¬c, f)〉
〈P, ai, close(¬c, f)〉

〈O,wi, close(b)〉
〈P,wi, open(ai, e⇒ ¬d)〉

〈O, ai, assert(〈{e}, e〉)〉
〈P, ai, assert(〈{e, e⇒ ¬d},¬d〉)〉
〈O, ai, close(e,¬d)〉
〈P, ai, close(e,¬d)〉

〈O,wi, close(b)〉
〈P,wi, assert(〈{c, c⇒ ¬b},¬b〉)〉
〈O,wi, close(b)〉
〈P,wi, close(b)〉

Table 8.2.1: A counterexample to show that the smart dialogue strategy does
not always generate sound dialogues. Uses the knowledge bases as defined in
Figure 8.2.1.

Argument inquiry Warrant inquiry
Sound Complete Sound Complete

Limited dialogue Yes No No No
Limited commitment Yes No No No

Smart dialogue N/A N/A No No
Smart original N/A N/A Yes Yes

Table 8.3.1: An overview of whether the modified strategies are sound and/or
complete according to the definitions in Chapter 6.

51



Chapter 9

Experiments

In Chapter 7, modifications to the exhaustive strategy were proposed. Some of
these new strategies were sound and/or complete. The practical effect of these
strategies on warrant or argument inquiry dialogues is, however, not yet clear.
This chapter therefore simulated dialogues in order to investigate the effect
of those strategies in a setting that is as close as possible to intakes. It also
simulated dialogues in a setting where the distribution of knowledge is random,
to investigate the influence of the previously mentioned setting.

The strategies were compared using a method adopted from Hecham et al.
(2018). Hecham et al. compared different tools for defeasible reasoning (e.g.
ASPIC+, DeLP, etc.). They subjected the tools to different kinds of infer-
ence graphs. Their goal being to compare the tools on their performance and
expressibility.

Here, the goal was to subject the strategies to different kinds of dialectical
trees, in order to test them in different situations. For this, three inference
graphs of Hecham et al. were taken and changed into equivalent dialectical trees.
The rules and facts used to form these dialectical trees were then distributed
over the participants, and a dialogue was simulated.

Those rules and facts were distributed in two ways. Firstly, they were dis-
tributed such that the proponent knows all the rules and the opponent all the
facts. This distribution of knowledge tried to model the asymmetricity that is
present in intakes. Secondly, the rules and facts were distributed randomly over
all participants, such that each rule/fact had an equal chance of being in either
the proponent’s or opponent’s knowledge. Per strategy, data set and a certain
size of that data set, 30 dialogues with each a different random distribution
of knowledge were simulated. This way, the effect of the first distribution of
knowledge on the behaviour of the strategies was investigated.

Further on, the experiments that were done using a random distribution of
knowledge are called the random tests, while the other tests were ’set in an
intake setting’. Those tests will be called the ‘normal’ tests.

In the following, first the goal of the experiments will be clarified. Next, will
be discussed using what means the experiments were conducted. Lastly, the
setup of the experiments is explained, as well as the results of the experiments.
The chapter ends with a discussion about the results.

52



9.1 Research questions
The goal of the modified strategies is ultimately to reduce the size of the dia-
logues and/or the dialectical trees when compared to the exhaustive strategy.
The experiments therefore investigated whether those strategies actually accom-
plish that goal. For this, they were first tested in an intake setting.1

The research questions are twofold. Firstly, the goal was to find out what
difference the modified strategies make in the intake setting within different
data sets. Secondly, it was investigated how much of an influence the intake
setting is on these strategies. The first goal was achieved by comparing, within
the intake setting and within a certain data set, the modified strategies to the
exhaustive strategy. The second goal was achieved by comparing each modified
strategy within the intake setting to its counterpart in the random setting.

From this, the following research questions arose:

1. Within the same data set;

(a) What difference do the modified strategies in the intake setting make
in terms of dialogue and dialectical tree size, when compared to the
exhaustive strategy?

(b) Do the strategies in the random setting each show the same behaviour
as the strategies in the intake setting? In other words, how much of
an influence is the intake setting on the behaviour of the strategies?

9.2 Methods
As mentioned at the beginning of this chapter, dialectical trees based on the
inference graphs used in Hecham et al. (2018) were used to test the modified
strategies. The modified strategies were tested to investigate the practical effect
of the modifications to the exhaustive strategy.

To test these dialectical trees (or data sets), an implementation of the di-
alogue system of Black and Hunter (2009) was developed. This implemen-
tation is one of the few open source dialogue engines. It can be found on
https://gitlab.com/Kumeling/agentdialogues. The implementation also allows
one to easily program new dialogue systems, or simulate dialogues using different
knowledge bases.

Each combination of a strategy and data set was tested in two ways. The
difference being whether the distribution of knowledge was generated randomly
or not.

This section will first explain exactly what data sets were used, secondly
how these were used and thirdly what implementation was used.

9.2.1 The data sets
In total, three inference graphs (data sets) from Hecham et al. (2018) were used
to investigate the effect of the modified strategies in controversial situations.
These graphs were used by Hecham et al. to investigate the semantics of several
tools for defeasible logic.

1Where the proponent knows all of the rules, and the opponent all of the facts.

53

https://gitlab.com/Kumeling/agentdialogues


Here, the data sets were used to investigate the effect of the modified strate-
gies on dialogues generated using these controversial situations. They were not
used to test the semantics or expressibility of the underlying logic (a defeasible
variant of DeLP).

The following data sets were used. It is also explained what situation the
data sets try to test.

1. Ambiguity handling: How does the dialogue handle information derived
from an argument that is attacked?

2. Team defeat: Whether an argument can be defended by another argu-
ment, or whether the argument must be more preferred than its attacking
counterpart to defend itself.

3. Floating conclusions: If two arguments attack each other, but later reach
the same conclusion, is that conclusion then valid, or contested?

The data sets were mainly chosen for the specific shape of their inference
graph. Ambiguity handling, for example, was chosen in order to see what the
effect of having series of attackers would be on the modified strategies. Team
defeat was chosen to test how the modified strategies would behave in a situation
where some arguments are attacked by two arguments.

The floating conclusion data set was, however, chosen for a different reason.
It was chosen because its equivalent dialectical tree is always two arguments
large. This will hopefully help show more clearly what effect the modified strate-
gies have on the size of a dialogue.

The inference graphs

Figure 9.2.1 shows per data set the structure of the corresponding inference
graph. The arrows represent defeasible implication, the >’s represent a propo-
sition that is always true, and dotted lines represent attacks. Note that the data
sets as used by Hecham et al. assume the usage of first order logic.

Take for example the ambiguity data set. Here, s0(a), q0(a) and p0(a) follow
necessarily from T . Also, from q0(a) defeasibly follows q1(a), and q2(a) follows
defeasibly from q1(a), etc., until ¬p2n(a) follows defeasibly from q2n(a). The
same holds for p0(a), which ends in p2n(a). The dotted line between p2n(a) and
¬p2n(a) shows that both propositions conflict.

Adoption

As already mentioned, the data sets used to run the simulations use dialectical
trees similar in structure to the above data sets. In general, the dialectical trees
are similar to the inference graphs shown in Figure 9.2.1.

Team defeat is, however, modelled differently. It is modelled such that the
joint knowledge bases produce a dialectical tree in which the root argument is
attacked by two arguments and defended by two arguments. Those defenders
are in turn attacked and defended by four arguments (two attackers, two de-
fenders). This results in n layers of arguments that are attacked and defended.
Figure 9.2.2 shows the dialectical tree for team defeat for n = 2.

Therefore, in team defeat n layers of arguments exist. At the first layer one
argument is attacked by two arguments. These arguments are in turn attacked

54



Figure 9.2.1: The different types of inference graphs as used by Hecham et al.
(2018). The tests are parametrized by n to allow one to test with arbitrary-sized
graphs. floating(n) is the test used for floating conclusions, ambiguity(n) is
used for ambiguity handling, team(n) is used for team defeat and consistent(n)
is not used. Note that first order logic is used. Adopted from Hecham et al.
(2018).

each attacked by an argument, who therefore defend the original argument.
These defenders (on the next layer) are in turn attacked and defended by argu-
ments. This goes on n times, such that n ‘layers’ of arguments exist. In total,
team defeat contains for a given n, 2n+2 − 3 arguments.2

The floating conclusions data set contains 2n facts, and 2n rules. For each
j such that 1 ≤ j ≤ n, there exists pj , ¬pj , pj ⇒ q and ¬pj ⇒ q. The topic of
the dialogue is q. In total the data set contains 2n facts, 2n rules, and therefore
2n arguments. Note for an instance of this data set multiple dialectical trees
are possible. The reason being that a dialectical tree can only have one root.
Figure 9.2.3 shows, for example, all possible dialectical trees for when n = 2.

The ambiguity data set contains the rules sn ⇒ q, pn ⇒ ¬q, rn/2 ⇒ ¬pn/2,
and the facts sn, pn and rn/2. It also contains n rules, where i s.t. 1 ≤ i < n,
si ⇒ ¬si+1, si, pi ⇒ ¬pi+1 and pi. Moreover, it also contains n/2 rules, with j
s.t. 1 ≤ j < n/2, ri ⇒ ri+1 and ri. The topic of the dialogue is q. In total, it
contains b1 1

2nc + 3 facts, b1 1
2nc + 3 rules, and therefore b1 1

2nc + 3 arguments.
Figure 9.2.4 shows, if n = 5, the corresponding dialectical tree.

9.2.2 Splitting the data sets
The only remaining issue is how to split the knowledge bases over the partic-
ipants of the dialogue. Unfortunately, determining how to split the knowledge

2Each layer increases the number of arguments by 4 times the number of defenders added
previously.

55



A0

A1,1

A1,2

A2,0

A2,1

A2,2

A2,3

A1,3

A1,4

A2,4

A2,5

A2,6

A2,7

Figure 9.2.2: The dialectical tree for team defeat 2.

〈{p2, p2⇒ q}, q〉

〈{¬p2},¬p2〉

〈{¬p2,¬p2⇒ q}, q〉

〈{p2}, p2〉

〈{p1, p1⇒ q}, q〉

〈{¬p1},¬p1〉

〈{¬p1,¬p1⇒ q}, q〉

〈{p1}, p1〉

Figure 9.2.3: The possible dialectical trees for the floating conclusions data set
with n = 2. Assuming that the goal proposition is q. The arguments supporting
q are the root arguments.

bases is not trivial. Especially since some modified strategies are not sound, the
split may in part determine the outcome of the dialogue.

As mentioned at the beginning of the chapter, the data sets are used in two
ways. Firstly the data sets are used to test the strategies in an ‘intake setting’.
The intake is one which tries to model the asymmetricity of the intake. Secondly,
the data sets are distributed randomly over the agent’s knowledge bases.

The intake setting is one in which the proponent knows all rules, and the op-
ponent all the facts. This division is inspired by the intake scenario, in which the
police officer is assumed to know the law (thus the rules), and the complainant
the facts (or what happened).

The data sets are also used with a random distribution of knowledge. In this
setting, each rule of fact exists with a 50% chance either in the proponent’s or
opponent’s knowledge base.

That random setting is also tested differently. Instead of simulating 1 dia-

A0

S4

S3

S2

S1

P5

P4

P3

P2

P1 R2

R1

Figure 9.2.4: The exhaustive dialectical tree for the ambiguity data set for n = 5.
A0 is the root argument, supporting the proposition q.

56



logue per combination of a strategy, data set, and a certain size of that data
set, 30 dialogues each with different knowledge bases are simulated.

9.2.3 The implementation
To run the strategies on different data sets, an implementation of Black and
Hunter’s dialogue system was developed.3 It implements the argument inquiry
and warrant inquiry dialogue systems, along with the exhaustive and all modi-
fied strategies.

First, is explained how the program can be used to simulate dialogues. Next,
is discussed in more detail how the program is programmed.

Usage

The program as-is can be used to easily simulate an argument or warrant inquiry
dialogue. Only the knowledge bases, topic, which dialogue system to start with,
and the strategies the agents should use, have to be specified.

To specify the knowledge bases of the agents, three files are needed. The files
firstplayer.txt and secondplayer.txt each respectively specify the knowl-
edge bases of the proponent and opponent, and should contain propositions. The
other file, levels.txt, specifies for each rule or fact in the union of the agents’
knowledge bases the corresponding preference level. This file should therefore
contain all beliefs (i.e. the propositions with their preference level). Due to a
technical limitation, firstplayer.txt and secondplayer.txt cannot contain
beliefs.

A fourth file (initial.txt) is used to specify the topic of the initial dialogue.
The topic is specified as a defeasible fact. The type of the initial dialogue and the
strategies that the agents should follow are specified when running the program.

Table 9.2.1 shows how the defeasible facts, rules, and beliefs are expected to
appear in the aforementioned text files.

Note that defeasible facts are modelled as defeasible rules with an empty
head. As seen in Table 9.2.1 for example, the defeasible fact a is modelled as a
-< TRUE., such that TRUE models the logical >.

Because of this modelling, the knowledge bases, not levels.txt, must also
contain “TRUE.”. The logical > is namely modelled as a strict fact.

Formal representation Expected input
Defeasible fact a a -< TRUE.
Defeasible fact ¬c !c -< TRUE.

Defeasible rule a⇒ b b -< a.
The belief (a, 5) a -< TRUE.; 5

The belief (a⇒ b, 4) b -< a.; 4

Table 9.2.1: How the formal notation used in this paper maps to the input that
is expected by the program.

Note that this syntax is a result of the way Tweety prints its arguments.
There was unfortunately no time to change it.

3https://gitlab.com/Kumeling/agentdialogues/

57

https://gitlab.com/Kumeling/agentdialogues/


As a result, the dialectical trees, and dialogues generated by the program
also use the syntax that is shown in Table 9.2.1. Therefore, the dialogues and
dialectical trees shown in this chapter look different than the representation as
defined in the previous chapters.

Example dialogue

The argument inquiry dialogue shown in Table 5.9.1 on page 28 can therefore
be simulated as follows.

The contents of firstplayer.txt should be as follows:

d -< c.
c -< b.
b -< a.
TRUE.

The contents of secondplayer.txt should be as follows:

a -< TRUE.
b -< TRUE.
TRUE.

levels.txt should contain the following:

d -< c.; 1
c -< b.; 1
b -< a.; 1
a -< TRUE.; 1
b -< TRUE.; 1

And, lastly, initial.txt should contain “d -< TRUE.”.
These files should all be together in a single folder. In order to simulate

an argument inquiry dialogue with both agents using the exhaustive strategy,
the following command can then be used: app diag -f exhaust -s exhaust
black_ai <path_to_dataset_folder> In order to simulate warrant inquiry
dialogues, replace black_ai with black_wi. Using the command app diag -h
will give more information about the available options.

Technical details

Here, it is discussed what libraries are used in the program to support the logic
used. The high-level architecture is explained in the next section, as the program
also makes it easy to write other dialogue systems.

Internally, the program uses the Tweety library (Thimm, 2017) for defeasible
reasoning. More precisely, it uses its implementation of DeLP. That implemen-
tation, however, does not support defeasible facts, preference levels, and uses
first order logic to represent its terms instead of propositional logic.

The implemented dialogue system works around the first two restrictions.
The lack of support for defeasible facts is solved by modelling them as defea-
sible rules. Support for preference levels is implemented as a custom way of
comparing arguments (via a custom ComparisonCriterion).

The use of first order logic is not a limitation, as it is a superset of propo-
sitional logic. The program is, however, slow on large data sets, in part due to
the use of first order logic.

58



Figure 9.2.5: How the program determines for one turn of a dialogue what move
is chosen. It shows from top to bottom all steps that are undertaken by the
Platform.

High-level architecture

The driving force of the program is the Platform. The platform continuously
seeks the agent who’s turn it is, which moves are legal, which move the agent
chooses to make and whether the dialogue should end. It communicates with
a TurnTakingRule class which contains all participants, and which determines
whose turn it is. Next, the Protocol, which contains the rules determining
which moves are legal, will return which moves are legal for the agents who’s
turn it is. The Strategy of the agent whose turn it is, picks a move from this
list. The picked move is added to the History, after which the effects of the
move are applied. An assert move, for example, will add its argument to the
commitment store of the agent that uttered it. After ‘applying’ the move, the
cycle starts again. This continues until there are no legal moves, a strategy
picked none of the legal moves, or if one of the dialogue system’s termination
rules are triggered. Figure 9.2.5 shows graphically how the Platform handles
one turn of a dialogue.

Note that a dialogue system is here split into various parts. In the pro-
gram the Protocol, TurnTakingRule and the way the history of the dialogue
is recorded, determine the set of valid dialogues. The Strategy is then used
to generate the dialogues. As already mentioned, the protocol contain rules
on when certain moves are legal, and when the dialogue should end. The turn
taking rule contains logic on how the turn order is determined.

Difficulties

Some difficulties were encountered in the development of the software. The main
one being the dialectical tree implementation of Tweety. The implementation
in Tweety has got a small flaw. When the getDefeaters method is called to
compute the set of defeaters on a specific node in the dialectical tree, first all

59



of its already existing children are thrown away. It therefore does not provide
a way to incrementally grow an existing dialectical tree.

Therefore, different dialectical trees, that are called BHBetterDiacTree and
BetterDiacTree, were implemented. BHBetterDiacTree implements a dialec-
tical tree that is constructed from the commitment stores. Moreover, the other
tree, BetterDiacTree, implements the dialectical tree constructed from a dia-
logue as discussed in Section 7.1.2.

9.3 The setup
Two experiments are performed. In the first one, the modified strategies are per
data set compared to the exhaustive strategy, in an ‘intake’ setting. The second
experiment involves the same data sets and strategies, but with randomized
knowledge bases. The goal of the second experiment is to check whether the
behaviour of the strategies in the first experiment is a consequence of the intake
setting.

Note that in both experiments, no argument inquiry dialogues are simulated.
Instead, warrant inquiry dialogues are simulated. Argument inquiry dialogues
are not tested for two reasons. Firstly, also testing argument inquiry dialogues
would double the simulations required. Secondly, in case of the intake, an
argument has to be checked on its validity, and not just found.

The size of the simulated dialogues and of the resulting dialectical trees are
both measured. For the dialogues, the number of moves is measured. For the
dialectical trees, the number of arguments is noted.

The first experiment is performed in what is called the ‘intake setting’.
Herein, the proponent knows all the rules, and the opponent all of the facts.
Furthermore, per combination of a strategy, a data set, and a certain size of
that data set one dialogue is simulated.

The second experiment is set in the ‘random setting’. Here, knowledge is
distributed such that each rule or fact is with a 50% chance in either the pro-
ponent’s or opponent’s knowledge base. Furthermore, per combination of a
strategy, a data set, and a certain size of that data set thirty dialogues each
with different, random, knowledge bases are simulated.

For each experiment, first the data sets whereupon the strategies are tested
are generated. Then, the strategies are tested on those data sets. For a par-
ticular size of a given data set, all strategies are therefore tested on the same
knowledge bases. For example, take ambiguity at n = 1. At n = 1, this data
set contains the following rules and facts.

q -< s1.
!q -< p1.
!p0 -< r0.
s1 -< TRUE.
p1 -< TRUE.
r0 -< TRUE.

In the first experiment, these rules are divided such that the proponent
knows the first three rules and the opponent the last three. Then, the modified
strategies are all tested using that distribution of knowledge.

60



In the random setting (the second experiment), knowledge is divided ran-
domly. For each size of a data set this is done thirty times. As such, for each
size of each data set, thirty ‘test cases’ are generated. The modified strate-
gies are then tested on all of these test cases. This ensures that the results of
the modified strategies in the random setting are comparable with one another.
Therefore, for ambiguity at n = 1, for example, there exist 30 ‘test cases’ with
different distributions of knowledge. The modified strategies are then tested on
all of these thirty ‘test cases’.

The experiments are also tested on smaller data sets than one might expect.
The reason for this is that the software used is not particularly fast. For example,
running the limited commitment strategy on the team defeat data set of size 5
would take around 5 hours. Tables 9.3.1 and 9.3.2 show up to which n dialogues
were simulated.

Team defeat Floating conclusions Ambiguity
Exhaustive strategy 4 35 20

Smart original 4 35 22
Smart dialogue 4 35 20

Limited commitment 4 35 25
Limited dialogue 4 35 25

Table 9.3.1: For the experiments in the intake setting, up to which size of
the data set dialogues were simulated. If, for example, 35 is specified, then
n ∈ [1, 35].

Team defeat Floating conclusions Ambiguity
Exhaustive strategy 3 15 12

Smart original 3 15 12
Smart dialogue 3 15 12

Limited commitment 3 15 12
Limited dialogue 3 15 12

Table 9.3.2: In the random setting up to which size of the data set dialogues
were simulated. If, for example, 15 is specified, then n ∈ [1, 15].

Therefore, 2 sets of experiments were performed, each with 3 data sets of
varying sizes, and 5 strategies. In the first set 1 dialogue per combination of
strategy, data set, and a particular size of that data set was simulated. In the
second set of experiments, 30 dialogues were simulated per such a combination.

9.4 Results
This section will discuss the results of the experiments. It will do so by answering
the research questions per data set.

The results are discussed per data set in an attempt to more clearly see their
behaviours on a single type of dialectical tree. This is, however, not a realistic
scenario. In the real world, knowledge bases are never clearly of one particular
shape. As mentioned, however, such knowledge bases may also make it harder
to clearly see how the strategies behave.

61



The modified strategies are compared to the exhaustive strategy as part of
the experiments. It is therefore useful to be able to refer to the dialectical tree
that strategy has generated. That dialectical tree will be called the full tree.
The full tree is the same as the dialectical tree constructed from the union of the
agents’ beliefs (Black & Hunter, 2009). Likewise, the status of its root argument
is the same as the root argument’s status in the dialectical tree constructed from
the union of the agents’ beliefs. Further on, the exhaustive strategy’s dialectical
tree will therefore be called the full tree.

The data that is discussed, is included in the appendix. There, Appendix A
(on page 87) shows per data set in the intake setting the size of the generated
dialogues and dialectical trees. Appendix B (on page 93) shows the statuses of
the root arguments, also in the intake setting. Lastly, Appendix C (on page 95)
shows for the random setting the size of the generated dialogues and dialectical
trees.

In the following, dialectical trees will be shown differently than in the rest
of the thesis. This is because the dialectical trees shown are taken directly from
the program. As a result, attack relations are shown using arrows, and the
root argument is on the bottom. Furthermore, the dialectical trees will follow
the syntax explained in Section 9.2.3. The defeasible fact ¬a will therefore
be represented as !a -< TRUE. and the defeasible rule ¬a ⇒ b as b -< !a..
However, arguments are also represented differently. The argument 〈{¬a,¬a⇒
b}, b〉 is represented as <{b -< !a., !a -< TRUE.}, b>.

For the same reasons as mentioned above, dialogues use the alternative syn-
tax for the arguments. For example, the move 〈P, ai, assert(〈{s1, s1⇒ q}, q〉)〉
will be shown as 〈P, ai, assert(<{s1 -< TRUE.,q -< s1.},q>)〉. The change in
syntax is inconvenient, but unfortunately a result of the way how Tweety prints
arguments in DeLP.

9.4.1 Ambiguity handling
Here, the results of the experiments regarding the research questions posed in
Section 9.1 for the ambiguity data set are discussed.

First, as part of the first research question, are the modified strategies within
the intake setting compared to the exhaustive strategy. Secondly, it is investi-
gated how much the intake setting influences those results.

Intake setting

Looking at the results for ambiguity handling in the intake setting, it is obvious
(see Figure A.1.1 and A.1.4) that the modified strategies generally generate
smaller dialectical trees, but not smaller dialogues. The reason why differs for
the limited and for the smart strategies.

The smart strategies generate smaller trees but not smaller dialogues, even
if the current dialectical tree allows them to be ‘smart’ (i.e. and there are no
more arguments that change the status of the root argument). In such a case
there will namely still be arguments that are asserted. This has got to do with
the second condition of the smart strategies. The smart strategies require that
arguments either change the status of the root argument, or do not modify
the dialectical tree. Therefore, if there are no more arguments left to assert
that would change the status of the root, all arguments that do not modify the

62



dialectical tree are still asserted. Look, for example, at n = 4. The full tree of
that size is shown in Figure 9.4.1, while Figure 9.4.2 shows the tree generated
by the smart strategies. The dialogue shown in Figure 9.4.4 is an excerpt from
the dialogue generated by the smart dialogue strategy. In that dialogue, most
of the close moves have been removed. The dialogue shows that even though
the argument <{p4-<TRUE., !q-<p4.}, !q> was not asserted, the argument
<{p3 -< TRUE.,!p4 -< p3.},!p4> was asserted.

Figure 9.4.1: The full tree for ambiguity of size 4 in the intake setting.

Figure 9.4.2: The dialectical tree generated by the smart strategies in the intake
setting for ambiguity of size 4.

The limited strategies, on the other hand, show the same behaviour, even
though an argument will not be asserted if there already exists an argument
that supports the same proposition. Note, however, that ambiguity handling
contains only one such instance of arguments supporting the same proposition.
The limited strategies will therefore, when compared to the exhaustive strategy,
assert only one move less. For example, continuing from the example in the
previous paragraph for n = 4, Figure 9.4.3 shows the dialectical tree generated
by both limited strategies. It shows that the argument <{!p3 -< p2.,p2 -<
TRUE.},!p3> was never asserted, since there already existed an argument for

63



!p3. However, like with the smart strategy, the argument <{!p2 -< p1.,p1
-< TRUE.},!p2> was in fact asserted. Therefore, even though the dialectical
tree was smaller through the extra condition placed upon asserts by the lim-
ited strategies, it did not prevent arguments that would never end up in the
dialectical tree from being asserted.

Figure 9.4.3: Dialectical tree generated by both limited strategies for ambiguity
of size 4.

In short, when compared to the exhaustive strategy, all modified strategies
generate smaller dialectical trees. However, the dialogues they produced were
not significantly smaller. In fact, the biggest difference between dialogues gen-
erated by the exhaustive strategy and the modified strategy, was 2 moves. This
difference is purely due to the single argument that is not asserted by the limited
or smart strategy.

Influence of the intake setting

The influence of the intake setting differs for the smart and for the limited
strategies. For the smart strategies the influence is far greater than on the
limited strategies. However, this influence is, within ambiguity handling, only
visible on the size of the dialectical trees. This section will show in what way the
influence of the intake setting is visible on the smart and the limited strategies,
when comparing the intake setting’s results to the results from the experiments
with random knowledge bases.

The smart strategies in the random setting, for example, show that the
specific distribution of knowledge heavily influences the resulting size of the
dialectical trees (see Section C.1.2 on page 97). This is shown by the huge
differences in the maximum and minimum sizes of the generated dialectical
trees. The intake setting, for example, causes the smart strategies to generate
dialogues that have either very large or very small dialectical trees, which can
be seen by comparing Figure A.1.1 with the plots in Section C.1.2. The reason
being that it depends on the specific dialectical tree and the order of moves
in the dialogue, whether the smart strategies end up in a situation wherein no
argument is able to change the status of the root argument. At n = 4, for
example, is the dialectical tree generated by the smart dialogue strategy quite

64



1. 〈P,wi, open(wi, q -< TRUE.)〉
2. 〈O,wi, close(q)〉
3. 〈P,wi, open(ai, q -< s4.)〉
4. 〈O, ai, assert(<{s4 -< TRUE.},s4>)〉
5. 〈P, ai, assert(<{q -< s4.,s4 -< TRUE.},q>)〉

...
9. 〈P,wi, open(ai, !s4 -< s3.)〉

10. 〈O, ai, assert(<{s3 -< TRUE.},s3>)〉
11. 〈P, ai, assert(<{!s4 -< s3.,s3 -< TRUE.},!s4>)〉

...
15. 〈P,wi, open(ai, !s3 -< s2.)〉
16. 〈O, ai, assert(<{s2 -< TRUE.},s2>)〉
17. 〈P, ai, assert(<{!s3 -< s2.,s2 -< TRUE.},!s3>)〉

...
21. 〈P,wi, open(ai, !s2 -< s1.)〉
22. 〈O, ai, assert(<{s1 -< TRUE.},s1>)〉
23. 〈P, ai, assert(<{!s2 -< s1.,s1 -< TRUE.},!s2>)〉

...
27. 〈P,wi, open(ai, !q -< p4.)〉
28. 〈O, ai, assert(<{p4 -< TRUE.},p4>)〉

...
31. 〈P,wi, open(ai, !p4 -< p3.)〉
32. 〈O, ai, assert(<{p3 -< TRUE.},p3>)〉
33. 〈P, ai, assert(<{p3 -< TRUE.,!p4 -< p3.},!p4>)〉

...
37. 〈P,wi, open(ai, !p3 -< p2.)〉
38. 〈O, ai, assert(<{p2 -< TRUE.},p2>)〉
39. 〈P, ai, assert(<{!p3 -< p2.,p2 -< TRUE.},!p3>)〉

...
60. 〈O,wi, close(q)〉
61. 〈P,wi, close(q)〉

Figure 9.4.4: An excerpt from the dialogue generated by the smart dialogue
strategy on ambiguity of size 4 in the intake setting. Most close moves, except
the final two, have been omitted.

65



small (Figure 9.4.2). However, at n = 5 the generated dialectical tree is a lot
bigger. As mentioned, whether this happens or not depends on the order of the
moves in the dialogue. It is unclear why exactly this happens. Further analysis
would be needed to find out why.

For the limited strategies, the same thing holds. It depends on the specific
dialectical tree, and the order of the moves in the dialogue, whether the resulting
dialectical tree is large, or small.

9.4.2 Team defeat
Here, the same things as with ambiguity are investigated, but only for the team
defeat data set.

Note that the team defeat data set consists of n arguments that each are
attacked by two arguments, and that those attackers each also have got one
attacker. Figure 9.4.5 (from Section 9.2.1), shows an example for n = 2.

A0

A1,1

A1,2

A2,0

A2,1

A2,2

A2,3

A1,3

A1,4

A2,4

A2,5

A2,6

A2,7

Figure 9.4.5: The dialectical tree for team defeat 2.

Intake setting

The modified strategies make in the intake setting little to no difference on the
size of the dialogues (see Plot A.2.2). The biggest difference, that is seen on
n = 4, is only 10 moves on a total of more than 300.

On the other hand, the limited strategies and the smart dialogue strategy
do generate smaller dialectical trees, but the smart original strategy does not.
Take, for example n = 4. Here, the dialectical tree generated by the smart
original strategy is as large as the tree generated by the exhaustive strategy.
However, the other modified strategies have generated smaller dialectical trees.
Once again, the reason why this is the case differs for the limited strategies, and
the smart dialogue strategy.

The limited strategies are quite interesting, since the trees generated by them
grow linearly instead of exponentially. This has got to do with the structure
of team defeat. Within team defeat, each argument has got up to 2 attackers.
Those two attackers also always attack the same premise. Therefore, since the
limited strategies only assert one argument per proposition, there will be in
the dialectical trees generated by them at most one attacker per argument.
The resulting tree always only contains one series of arguments. This series
of arguments is also n arguments long. It is therefore no surprise that the
dialectical trees generated by the limited strategies grow linearly.

66



The smart dialogue strategy, however, also generates small dialectical trees,
even though it is able to assert multiple arguments for the same proposition.
Furthermore, the dialectical tree that it generates at n = 4 (see Figure A.2.1
on page 90) is even smaller than the dialectical tree generated by both limited
strategies. To see why the generated dialectical tree at n = 4 is so small,
we compare the generated tree to full tree. The difference between those two
dialectical trees is quite big. The tree generated by the smart dialogue strategy
has got 4 arguments, while the full tree contains 61. The tree generated by the
smart dialogue strategy is shown in Figure 9.4.7. The figure seems to show that
the smart dialogue strategy ended up in a situation where no other argument
could change the status of the root argument. That is, however, not the case.
There does exist such an argument, namely <{!p4 -< p5., p5 -< TRUE.},
!p4>, which attacks the argument <{p4 -< TRUE., !p0 -< p4.}, !p0>. Why
that argument was not included in the dialectical tree has got to do with why
the dialogue generated by the smart dialogue strategy is not much smaller (see
Figure A.2.2, page 90).

The dialogues generated by the smart dialogue strategy are, despite smaller
trees, not much smaller for the same reason as that the dialogues within the
ambiguity data set are not much smaller. Within the ambiguity data set, the
reason was that there were, despite the smart dialogue strategy, still a lot of
irrelevant arguments asserted. That is also the case here, since the smart dia-
logue strategy does not forbid one to assert arguments that do not end up in the
tree. Note that this property is in fact desirable. It is needed in order to allow
the agents to build arguments. However, this ‘loophole’ is also used by agents
to assert irrelevant arguments, i.e. arguments that do not change the status of
the root argument. Take, for example, an argument that is not being asserted
because it does not change the status of the root. Attackers of that argument
will still be asserted, since they do not change the dialectical tree. Those argu-
ments are therefore not relevant, but still inserted in the dialogue. The excerpt
shown in Figure 9.4.6 shows a couple of those arguments being asserted as the
33rd, 303rd and the 353rd move in the dialogue. Those arguments were not
relevant (i.e. did not change the status of the root argument, see Figure 9.4.7),
but were still asserted.

On the other hand, continuing the example of the smart dialogue strategy
on n = 4, the argument <{!p4 -< p5., p5 -< TRUE. }, !p4> would change
the root, was asserted, but is not present in the resulting dialectical graph (Fig-
ure 9.4.7). The reason being the same as to why the smart dialogue strategy
is not sound on warrant inquiry dialogues. That reason was that the type of
dialectical tree used has got a dependency on the order of moves in the dia-
logue. The argument <{!p4 -< p5., p5 -< TRUE. }, !p4> is, therefore, not
included in the dialectical tree, since it was asserted before <{p4 -< TRUE.,!p0
-< p4.},!p0>.

Influence of the intake setting

From the results of the experiments in the random setting (Section C.2.1), it
is immediately clear that the intake setting has little influence on the size of
the dialogues, even when the corresponding dialectical trees (Section C.2.2) are
small.

Furthermore, it is clear that the assertion of irrelevant arguments, as ex-

67



1. 〈P,wi, open(wi, p0 -< TRUE.)〉
2. 〈O,wi, assert(<p0 -< TRUE.,p0>)〉

...
5. 〈P, ai, assert(<{!p0 -< p2.,p2 -< TRUE.},!p0>)〉

...
7. 〈P, ai, open(ai, !p0 -< p4.)〉

...
15. 〈P, ai, assert(<{!p4 -< p5.,p5 -< TRUE.},!p4>)〉

...
21. 〈P, ai, assert(<{p12 -< TRUE.,!p5 -< p12.},!p5>)〉

...
25. 〈P, ai, assert(<{p10 -< TRUE.,!p5 -< p10.},!p5>)〉

...
33. 〈P, ai, assert(<{p11 -< TRUE.,!p10 -< p11.},!p10>)〉

...
43. 〈P,wi, assert(<{p4 -< TRUE.,!p0 -< p4.},!p0>)〉

...
305. 〈P, ai, assert(<{p23 -< TRUE.,!p22 -< p23.},!p22>)〉

...
353. 〈P, ai, assert(<{!p50 -< p51.,p51 -< TRUE.},!p50>)〉

...
362. 〈O,wi, close(p0)〉
363. 〈P,wi, close(p0)〉

Figure 9.4.6: An excerpt from the dialogue generated with team defeat 4 in the
intake setting using the smart dialogue strategy. It shows that key arguments
are asserted in an order that causes the associated dialectical tree to not include
certain arguments.

Figure 9.4.7: The dialectical tree generated using the smart dialogue strategy
on the team defeat data set using an n of 4.

68



plained in the previous section, can only be fixed by changing the strategy used.
After all, the specific distribution of knowledge has got, with team defeat, little
to no influence on the final size of a dialogue.

When looking at the size of the generated dialectical trees within the ran-
dom setting, a mostly similar picture as within the intake setting is painted.
Firstly, the limited strategies’ dialectical trees grow without exception linearly
(Section C.2.2). Secondly, the smart dialogue strategy’s generated dialectical
trees within the intake setting (Figure A.2.1) are shown to mostly follow the
same pattern as the dialectical trees within the random setting.

The same is true for the smart original strategy, except for an outlier in the
random setting at n = 3.

The influence of the intake setting is therefore minimal in the team defeat
data set.

9.4.3 Floating conclusions
Lastly, the research questions are investigated for the floating conclusions data
set.

Intake setting

All generated dialectical trees are 2 arguments long. This is not a consequence
of either the intake setting or any of the strategies. It is a consequence of
the floating conclusions data set. As explained in Section 9.2.1, the floating
conclusions data set contains 2n arguments for q, and 2n arguments that each
attack one of the arguments that support q. Therefore, the maximum number
of arguments within a single dialectical tree is, within the floating conclusions
data set, 2 arguments.

There is, within the intake setting, a visible difference in the size of the dia-
logues, when using the limited strategies and comparing them to the exhaustive
strategy. The smart strategies, however, do not generate smaller dialogues.

The smart strategies do not generate smaller dialogues, probably because
there are no opportunities within this dataset for those strategies to be ‘smart’.
In other words, there is never a time in a dialogue wherein arguments cannot
be asserted by the smart strategies. Take, for example, floating conclusions
on n = 2, shown in Figure 9.4.8. Using that data set, the smart strategies will
always act like the exhaustive strategy, therefore always asserting all arguments.
Remember that using the smart strategies arguments cannot be asserted if they
do not change the status of the root argument (assuming they would change
the tree when asserted). However, during a dialogue with floating conclusions,
no argument will ever fulfil that condition, and be un-assertable. Instead, every
argument will at some point in the dialogue either change the status of the
root, be an argument that supports q (iff there is no root argument), or not
change the dialectical tree. Therefore, the smart strategies will always assert
every argument in a dialogue. For example, when n = 2 and there is not yet
a root argument, then there are four arguments that can be asserted. When
one of those arguments is chosen as the root argument, then the other three
arguments no longer change the tree, and can be asserted. The same holds for
the attackers of those arguments.

69



Figure 9.4.8: The four possible dialectical trees for the floating conclusions data
set with n = 2. Assuming that the goal proposition is q. The arguments
supporting q are the root arguments.

The limited strategies, on the other hand, do generate dialogues that are
smaller. Those dialogues are smaller because the limited strategies do not assert
a lot of arguments. For example, the floating conclusions data set contains
2n arguments supporting q. Of these, only one is asserted with the limited
strategy. The rest (2n−1 arguments) will never be asserted, since there already
was an argument asserted for q. This does not hold for the attackers of the
arguments supporting q. Those attackers attack the arguments on their premise,
not on q. Moreover, each argument supporting q has got different premises (see
Figure 9.4.8 for n = 2). Therefore, all of those attackers are still asserted. Since
the limited strategies therefore assert fewer arguments, the generated dialogues
are also smaller.

However, the dialogues generated by the limited strategies are not that much
smaller, even though roughly half of the arguments are not asserted. Within
the intake setting, the reason for this is the number of argument inquiry sub-
dialogues that are still opened, explored until an argument is nearly discovered,
and then closed. An example is given in Figure 9.4.9. In that dialogue, on
the eleventh move, an argument inquiry sub-dialogue is opened to search for
an argument for the rule q -< !p1. (i.e. ¬p1 ⇒ q). In the next move, !p1 is
asserted. Next, the sub-dialogue is closed, and the argument <{!p1 -< TRUE.,
q -< !p1.}, !p1> was not asserted. That argument was not asserted because
earlier in the dialogue another argument supporting q had already been as-
serted. However, there was still an argument inquiry sub-dialogue opened for
it, resulting in four ‘useless’ moves.

The influence of the intake setting

As expected, the random setting shows that the intake setting has got, within
floating conclusions, no influence on the size of the generated dialectical trees.
This is no surprise, since, as explained earlier, the maximum size of a dialectical
tree is 2 arguments long within this data set.

There is, however, a huge difference between the size of dialogues generated
in the random setting, and those in the intake setting. Regardless of the strategy,
in all dialogues in the random setting for n ≥ 6, no dialogue is longer than six
moves. For 1 ≤ n ≤ 5, the maxima of the tests in the random setting are

70



1. 〈P,wi, open(wi, q -< TRUE.)〉
2. 〈O,wi, close(q)〉
3. 〈P,wi, open(ai, q -< p2.)〉
4. 〈O, ai, assert(<{p2 -< TRUE.},p2>)〉
5. 〈P, ai, assert(<{q -< p2.,p2 -< TRUE.},q>)〉
6. 〈O, ai, close(q, p2)〉
7. 〈P, ai, open(ai, q -< p1.)〉
8. 〈O, ai, assert(<{p1 -< TRUE.},p1>)〉
9. 〈P, ai, open(ai, q -< !p2.)〉

10. 〈O, ai, assert(<{!p2 -< TRUE.},!p2>)〉
11. 〈P, ai, open(ai, q -< !p1.)〉
12. 〈O, ai, assert(<{!p1 -< TRUE.},!p1>)〉
13. 〈P, ai, close(q, !p1)〉
14. 〈O, ai, close(q, !p1)〉
15. 〈P, ai, close(!p2, q)〉
16. 〈O, ai, close(!p2, q)〉
17. 〈P, ai, close(p1, q)〉
18. 〈O, ai, close(p1, q)〉
19. 〈P, ai, close(q, p2)〉
20. 〈O, ai, close(q, p2)〉
21. 〈P,wi, close(q)〉
22. 〈O,wi, close(q)〉

Figure 9.4.9: The dialogue generated in the intake setting, on floating conclusion
with n = 2, by the limited dialogue strategy.

71



1. 〈P,wi, open(wi, q -< TRUE.)〉
2. 〈O,wi, assert(<{q -< !p3.,!p3 -< TRUE.},q>)〉
3. 〈P,wi, assert(<{p3 -< TRUE.},p3>)〉
4. 〈O,wi, close(q)〉
5. 〈P,wi, close(q)〉

Figure 9.4.10: An example of a dialogue generated with floating conclusions for
n ≥ 6 within the random setting.

the same as the dialogues generated in the intake setting by the corresponding
strategies.

Figure 9.4.10 shows the kind of dialogue encountered for n ≥ 6. The differ-
ence with the dialogues in the intake dialogue, is that here no argument inquiry
sub-dialogues are opened. Since this does not happen, there are, besides the two
arguments shown, no other arguments asserted. Those other arguments (other
supporters of q, or attackers of those arguments), will only be asserted in a
sub-dialogue, since in warrant inquiry an argument needs to change the dialec-
tical tree in order to be asserted. There are no argument inquiry sub-dialogues
opened, because the proponent knew both a valid root argument and the at-
tacker of that argument. However, within the intake setting, he only knows the
rules, and is he forced to open a sub-dialogue. Therefore, the dialogue is short,
because the proponent knew both a root argument and an attacker.

To make sure that a dialogue generated with the floating conclusion data set
is ‘long’ (as was achieved within the random setting for 1 ≤ n ≤ 5), therefore
a specific distribution of knowledge is needed. The dialogue will namely only
be cut short if one of the participants knows both a valid root argument, and
an attacker. Long dialogues were, therefore, not achieved for n ≥ 6 because the
greater the data set, the greater the chance that a participant knows a valid
root argument from the start of the dialogue.

The influence of the intake setting on the modified strategies in the float-
ing conclusions data set is therefore a negative one. The specific distribution
of knowledge that is assumed with the intake setting causes all strategies to
generate long dialogues, which is not the goal.

9.5 Discussion of experiments
In this section the results of the simulations are discussed. First, the general
setup of the experiments is explained and discussed. Secondly, the results for the
first research question are discussed. Thirdly, the influence of the intake setting
(the second research question) on the results of the experiments is discussed.
Next, a general overview of the observed behaviour of the modified strategies is
given. Lastly, the potential limitations of the experiments are discussed.

9.5.1 General setup
Here, the general setup of the experiments will be discussed. In both settings,
the strategies were tested in isolation, i.e. on a single data set. First will be
discussed whether this setup is realistic. Secondly, it will be discussed whether

72



the three data sets that were used are ‘enough’, i.e. whether the selection was
not too limited.

It is not really realistic to test strategies in isolation. Real-world knowledge
bases contain mixtures of different types of dialectical trees. The ‘real’ practical
effect of the modified strategies is thus still unclear. However, by testing the
strategies separately on different data sets, their behaviour can be observed
more clearly.

The number of data sets used (three) is, moreover, also limited. The ques-
tion therefore arises whether three data sets are sufficient, especially since the
strategies were tested in isolation. The number of data sets is indeed quite
limiting. Nevertheless, interesting results were obtained using ‘just’ those three
data sets. Note the ‘just’. Besides the three data sets, simulations were also
performed with five strategies, the intake setting, the random setting, and vari-
ous sizes of the three data sets. The total number of simulations was very high
despite the total number of data sets. In addition, the results obtained were
quite clear. Therefore, the number of data sets were, despite being limited,
sufficient.

9.5.2 Effects of the modified strategies
The first research question was whether the modified strategies make a differ-
ence in the size of the generated dialogues and dialectical trees. Or, in other
words, whether they reduce or completely eliminate irrelevant arguments. This
section will, firstly, discuss that the modified strategies only reduce the num-
ber of irrelevant arguments, and not eliminate them. Secondly, it is discussed
why the modified strategies are not particularly effective. Thirdly, it will be
discussed that unnecessary sub-dialogues are also a reason for irrelevancy in
warrant inquiry dialogues.

Lack of smaller dialogues

After the experiments in the intake setting, a common theme was found when
investigating the effect of the modified strategies. Often, one of the modified
strategies would generate a (relatively) small dialectical tree, but not a smaller
dialogue. For example, the smart dialogue strategy in the ambiguity data set,
in the intake setting, generated smaller dialectical trees, but not significantly
smaller dialogues.

It was discovered that the main reason is that none of the modified strategies
completely block irrelevant arguments (i.e. that do not contribute to the goal of
the dialogue). These arguments do not cause the dialectical tree to grow, but do
contribute to the size of the dialogue. The reason why the modified strategies
still assert those arguments, differs per strategy.

The limited strategies

The limited strategies assume that irrelevant arguments are arguments that
support a proposition that already has an argument supporting it. Therefore,
they limit the number of arguments supporting the same proposition to one.
This means that arguments are only asserted if they support an unsupported

73



proposition. This extra condition is, however, not enough to completely prevent
irrelevant arguments from being asserted.

For example, while the generated dialectical trees within the team defeat
data set were much smaller, the size of the dialogues was not (See Plot A.2.1
and A.2.2, and Section 9.4.1). The generated dialogues were, however, a little
smaller. Therefore, the limited strategies did not prevent all irrelevant argu-
ments from being asserted.

The smart strategies

The smart strategies, on the other hand, assume that only arguments that
change the status of the root argument are relevant. Therefore, arguments have
to either change the root argument’s status or not change the tree before being
asserted. However, the second condition is a ‘loophole’.

The ‘loophole’ of the smart strategies is their second condition, namely that
arguments that do not modify the dialectical tree may always be asserted. This
condition is necessary to allow the agents to build arguments. However, as
explained in Section 9.4.1, this condition also allows agents to assert most of
the irrelevant arguments. Those arguments do not contribute to the size of the
dialectical tree, but do contribute to the size of the dialogue.

Irrelevant sub-dialogues

The floating conclusions data set, on the other hand, revealed that irrelevant
arguments are not the entire reason for the lack of smaller dialogues. Instead,
the number of sub-dialogues also plays a role. For example, within the floating
conclusions data set for n ≥ 6 the main difference between dialogues generated
in the random setting and the intake setting was that in the random setting
no sub-dialogues were opened. In the intake setting often a sub-dialogue was
opened, one argument (a premise of another argument) was asserted, and the
sub-dialogue was closed. Such a sub-dialogue contributes nothing to the goal of
the dialogue and is therefore generally useless.

In addition, it is possible that some irrelevant arguments that are still as-
serted, are tied to the irrelevant sub-dialogues that are opened. After all, most
arguments are, before being asserted, discovered in an argument inquiry sub-
dialogue. Reducing the number of irrelevant sub-dialogues would in that case
also reduce the number of irrelevant arguments that are asserted.

Unfortunately, the modified strategies did not place extra conditions on the
opening of sub-dialogues. It is therefore unknown if it is even doable to place
such conditions cleverly. After all, assuming distributed knowledge, there is no
way for the agents to know beforehand whether a sub-dialogue is going to be
relevant. They simply do not know which arguments will be discovered in such
a sub-dialogue.

9.5.3 Influence of the intake setting
The second research question will be discussed in this section. The question
was in what way the intake setting influences the behaviours of the modified
strategies. The first pair of simulations were done in the intake setting, wherein
the proponent knew all the rules, and the opponent all the facts. The question

74



therefore arose, what is the effect of the intake setting? The second set of
experiments were performed for this reason. By also simulating the modified
strategies with randomized knowledge bases, the effect of the intake setting was
investigated.

The precise influence of the intake setting differed per data set. Within the
team defeat data set, the influence was limited. As mentioned in Section 9.4.2,
the intake setting did not influence the behaviour of the modified strategies.

The ambiguity data set saw more influence. Especially the smart strategies’
behaviour was heavily influenced. Moreover, the experiments in the random
setting showed that, depending on the distribution of knowledge, the smart
strategies generated small or large dialogues/dialectical trees.

Unsurprisingly, the floating conclusion data set saw the most influence of
the intake setting. As mentioned in the results for the floating conclusions data
set, the only time small dialogues were generated, was when one of the agents
knew both a valid root argument, and its attacker. In the intake setting, no
agent initially knows any argument, as the rules and facts are split over different
agents. The dialogues are therefore large and grow linearly, instead of staying
the same size as is the case for every strategy for n ≥ 6 in the random setting.

9.5.4 Behaviour of the modified strategies
The limited strategies were generally observed to generate smaller dialectical
trees and dialogues. This is no surprise since the limited strategies assert per
proposition only one argument in support of it. In other words, they were
therefore thorough in reducing the size of the dialectical trees. Whether the
generated dialogues were also more relevant is, however, a more complicated
question. One can say that they were more relevant. After all, in the generated
dialogues there were fewer arguments asserted, and thus probably also fewer
irrelevant arguments. On the other hand, neither one of the limited strategies
was sound or complete. It is therefore unclear which of the smaller dialogues
actually reached a ‘correct’ outcome (as defined by Black and Hunter (2009)).
In other words, the limited strategies may have been too thorough.

Of the smart strategies, the smart original strategy (using the dialectical
tree as defined by Black and Hunter (2009)) did indeed generate smaller, more
relevant, dialogues. The catch is that the dialogues that are generated, were
not that much smaller. Moreover, in most cases the smart original strategy
generated the same dialogues as the exhaustive strategy. Its prime advantage
is, however, that it is sound and complete. The smart dialogue strategy (using
a dialectical tree based on the dialogue), on the other hand, is not sound and
complete. The dialogues generated using it were, consequently, smaller than the
one generated by the smart original strategy.

In general, the modified strategies did assert less irrelevant arguments. How-
ever, the limited strategies often asserted ‘too few’ arguments (as they are not
sound or complete), and the smart strategies were only a marginal improvement
over the exhaustive strategy. The general problem is that the strategies still not
seem ‘smart’ enough. The limited strategies, for example, flat out refuse to
assert duplicate arguments, while a duplicate argument may in fact be better
than the one that was already asserted. Furthermore, the smart dialogue strat-
egy is too dependent on the order of the moves in the dialogue, while the smart
original strategy still asserts too many irrelevant arguments.

75



9.5.5 Limitations
Here, some limitations of the experiments are discussed. In general, two ques-
tions arise. Firstly, is the software that was used to simulate the dialogues good
enough? Secondly, is the notion of relevancy represented well? In the follow-
ing, first two of the main limiting factors of the software used are discussed.
Secondly, the notion of relevancy that is used is discussed.

The software

The performance of the program was quite low, partly due to the internal use of
predicate logic. For example, the ambiguity data set in the intake setting with
n = 22 took around 2 hours to run using the smart original strategy. Therefore,
fewer simulations than desired were run. Especially in the random setting, there
were simulations performed up to smaller n than in the intake setting. Due
to the internal use of Tweety’s (Thimm, 2017) DeLP implementation, which
uses predicate logic, the simulations spend a lot of time deriving all possible
arguments from a knowledge base. Converting the implementation of DeLP to
use propositional logic instead may alleviate this problem a bit. This was not
attempted due to time constraints.

Secondly, the used software also does not support generating multiple dia-
logues given a single knowledge base. Most times, this is not a problem. The
exhaustive strategy, for example, is specified to choose the first assert move from
the list of all legal assert moves. The ordering of this list is unspecified, which is
no problem for the exhaustive strategy, as the strategy is sound and complete.
However, the limited commitment strategy is not sound and complete for war-
rant inquiry dialogues. Therefore, the ordering of the list of legal moves does
matter when using that strategy. For example, if in the union of the agents’
beliefs two arguments supporting q exist, then it matters which argument is
asserted first. This means that in that case at least two different dialogues can
be generated, depending on which argument is asserted first. The first dialogue
may have a defeated root argument, while the second has an undefeated root
argument.

Idea of relevancy

The modified strategies were created to generate ‘more relevant’ dialogues, by
generating smaller dialectical trees and dialogues. However, is this a good im-
plementation of the notion of relevancy? As mentioned in Section 4.4, Prakken
defines strong relevance in persuasion dialogues such that: “An attacking move
in a dialogue d is [strongly] relevant iff it changes the dialogical status of d’s
initial move [i.e. root argument].” (Prakken, 2005, Definition 6.1).

Note that this definition in principle only holds for persuasion dialogues, in
which there exists a conflict between the two agents. In inquiry dialogues, no
such conflict exist. Instead, both agents want to find out the acceptability of
an argument. However, with this goal strong relevance is still applicable. After
all, when trying to find out whether an argument is acceptable, only arguments
that change the status of the root argument are relevant.

Note that the smart strategies require arguments to either not change the
dialectical tree, or be strongly relevant. This thesis therefore tested whether the
notion of strong relevancy is effective in inquiry dialogues. It seems that strong

76



relevance is somewhat effective in reducing the size of dialectical trees. However,
it does not reduce the size of the dialogues significantly (See Section 9.5.4). After
all, the smart original strategy did not generate significantly smaller dialogues.
It took another notion of a dialectical tree (used in the smart dialogue strategy)
to get significantly smaller dialogues.

The limited strategies, on the other hand, were not an implementation of
strong or weak relevancy. Instead, they require that there are no duplicate
arguments for the same proposition. The experiments show that the notion of
relevancy that they do implement, does cause them to generate smaller dialogues
and dialectical trees. Whether these dialogues are more relevant, however, is
still up for debate, since none of the limited strategies are sound or complete.

77



Chapter 10

Discussion

The aim of this chapter is to discuss the findings that were presented in this
thesis. Furthermore, this chapter also aims to discuss the chosen dialogue system
and logic are a good model of an intake. Firstly, the findings of this thesis are
discussed. Afterwards, it is discussed whether the logic and dialogue system
used were a good choice for running the experiments on.

10.1 Discussion of results
In Chapter 8 it was investigated whether the modified strategies are sound
and/or complete. Section 9.5 discussed whether the modified strategies gener-
ated dialogues that improved upon dialogues generated by the exhaustive strat-
egy. Moreover, it was investigated in what way the intake setting influenced
the behaviour of the strategies. Therefore, firstly, the observed behaviour of the
strategies (i.e. a summary of the results) will be discussed. Then, some improve-
ments for the modified strategies are suggested. Lastly, it is discussed whether
the notions of soundness and completeness need refinement when dealing with
the intake setting.

Summary of results

As mentioned in Section 9.5, only the smart dialogue and the limited strate-
gies were able to generate smaller dialectical trees. The smart original strategy,
on the other hand, only generated smaller dialectical trees in a handful of in-
stances. The smaller dialectical trees did unfortunately not always result in
smaller dialogues.

The influence of the intake setting on the modified strategies was also inves-
tigated. In general, the influence of the intake setting depends on the data set.
Within the team data set, the intake setting had no influence on the modified
strategies. The ambiguity data set showed that the intake setting’s influence
made the modified strategies generate ‘extreme’ dialogues. This means that the
generated dialectical trees were either the largest or the smallest of the pos-
sible dialectical trees that could have been generated. Compare for example
Figure A.1.1 with one of the plots in Section C.1.2. It is easily seen that the
dialectical trees that are generated in the intake setting are either the largest
or the smallest. Within the floating conclusions data set, the influence of the

78



intake setting is even greater. As explained in Section 9.4.3, the intake setting
causes the modified strategies to generate dialogues that grow linearly. The
reason for this is that the intake setting is a distribution of knowledge wherein
the rules and facts are strictly separated.

Two reasons were identified for the lack of smaller dialogues. Firstly, there
were a significant number of ‘irrelevant’ sub-dialogues observed. Secondly, no
modified strategy completely blocked irrelevant arguments from being asserted.
The smart strategies still allowed some of those arguments to be asserted, since
irrelevant arguments often do not change the dialectical tree. Likewise, the
limited strategies only blocked duplicate arguments for the same proposition,
and not all irrelevant arguments.

Those ‘irrelevant’ sub-dialogues are sub-dialogues in which no relevant ar-
guments are asserted. For example, Figure 9.4.9 on page 71 shows such a sub-
dialogue at move 11 till 14. Such an ‘irrelevant’ sub-dialogue does not add
arguments to the dialectical tree, but it does contribute to the size of the dia-
logue. Note that the modified strategies do not place extra conditions on the
opening of sub-dialogues. They therefore do not reduce the number of irrelevant
sub-dialogues.

The modified strategies, on the other hand, are designed to limit the number
of irrelevant arguments that are asserted. Nevertheless, as mentioned in Sec-
tion 9.5, they still allow some irrelevant arguments to be asserted. The modified
strategies are therefore either still not smart enough, or use the wrong approach.

Improving the strategies

Here, three suggestions for improving the modified strategies are given. Firstly,
different notions of soundness or completeness may be necessary. Secondly, using
different notions of completeness, the number of sub-dialogues may be limited.
Lastly, maybe the modified strategies need to be allowed to reason using extra
data.

Chapter 8 proved which of the modified strategies were sound and complete.
Except the smart original strategy, however, none of them were for warrant
inquiry dialogues. Maybe the modified strategies therefore need to be judged on
different criteria (i.e. using different notions of soundness/completeness). After
all, besides the smart original strategy, no modified strategy was sound and
complete (using Black and Hunter (2009)’s definitions). Even though the smart
original strategy is sound/complete, it is the only modified strategy that was not
a significant improvement over the exhaustive strategy. The results therefore
show that it is hard to design sound and complete strategies that generate more
relevant dialogues. Strategies that completely eliminate irrelevancy may thus
need different notions of completeness and soundness.

Different notions of soundness and completeness may include omitting the
requirement for a strategy to be complete. For example, while having a sound
strategy (such that its dialogues produce no false answers) might be important,
that strategy might not have to be complete (being able to find all acceptable
arguments). After all, all intakes should be correct, but there does not neces-
sarily have to be a report of every crime ever committed. Therefore, a strategy
could be acceptable as long as it is sound.

Dropping the requirement that strategies need to be complete, opens the
door to limiting the number of sub-dialogues. As explained in Section 9.5,

79



empty sub-dialogues are one reason for the fact that the modified strategies did
not generate smaller dialogues. It is therefore worthwhile to design such a strat-
egy. However, simply omitting sub-dialogues makes strategies automatically not
complete. This is for the reason that agents do not know before opening a sub-
dialogue whether a relevant argument is going to be found or not. The intake
setting may provide a solution in that case. In the intake setting, the proponent
is assumed to know all the rules. Assuming that this means that the proponent
also knows the structure of the full dialectical tree, he can use this information
by not opening sub-dialogues that would have found irrelevant arguments.

Likewise, one could require strategies to be sound and complete in most
dialogues they generate. This means that there exist a certain chance that the
generated dialogue is either not sound or complete. The goal would then be to
create strategies where that chance is as low as possible.

On the other hand, maybe no different notion of soundness or completeness is
needed, but instead the strategies need more data. For example, an agent could
be allowed to reason using extra information. This is done in order to make a
strategy that is noticeably ‘better’ in terms of dialogue and dialectical tree size.
This extra information may be in the form of a user model (Section 4.3).

10.2 Applicability of DeLP and Black and Hunter
The results discussed above were obtained by simulating dialogues using a vari-
ant of DeLP, warrant inquiry dialogues and argument inquiry sub-dialogues.
It was assumed that this combination is a good (enough) model of an intake.
The question remains whether this is actually the case. This section will discuss
whether the used logic and dialogue systems are a good model of an intake. This
encompasses two things. Firstly, this encompasses the question whether the di-
alogue systems provides a good model of the intake. Secondly, this encompasses
the question whether the chosen logic is strong enough to reflect everything that
is typically said in an intake.

Warrant inquiry dialogues were designed with the medical domain in mind
and not the intake. Therefore, the goal was to generate dialogues which only
generate correct answers (soundness), and only generate answers if there are
any (completeness). These goals are similar to the ones the police have with
intakes. In an intake, a police officer first of all tries to ascertain that the
crime being reported is a criminal offence, and not a civil matter. Secondly,
he tries to find out what exactly happened. Both these things need to be done
as accurately as possible. Otherwise, the police have an incorrect report of
a crime. In other words, the police’s goal with an intake is to only generate
correct reports. Likewise, the police only want reports for crimes that actually
took place (i.e. not erroneously create false reports). The police’s goals with the
intake are therefore comparable to Black and Hunter’s medical domain.

However, as mentioned in Section 3.3, intakes probably encompass more than
just inquiry dialogues. They also contain elements of both information-seeking
and persuasion dialogues. Argument inquiry dialogues are partly used for
information-seeking, although the information-seeking happens cooperatively.
Warrant inquiry dialogues do contain elements of persuasion. After all, agents
use counter-arguments in order to cooperatively find out the acceptability of
an argument. Neither dialogue systems are, however, capable of dealing with

80



arguments that are off topic. As such, an angry or uncooperative complainant
cannot be simulated.1 Instead, it is assumed that the complainant is willing
to cooperate. Neither warrant nor argument inquiry dialogues are therefore a
complete model of intakes, although they probably come very close.

The used logic (a propositional, defeasible variant of DeLP) was chosen by
Black and Hunter, since in the medical domain all knowledge is defeasible (Black
& Hunter, 2009). Is it therefore still capable of encoding the information usually
discussed in an intake? First it is discussed whether the defeasible logic itself is
capable of encoding this information. Next, it is discussed whether the warrant
procedure of the variant of DeLP is sufficient.

The main difference in the topic language of the used logic and DeLP is the
absence of strict rules and predicate logic. It is assumed that all knowledge is
defeasible. Even though some knowledge in law is strict, this knowledge can
be modelled using defeasible rules that are not attacked. Even the absence
of predicate logic is, using careful modelling of the knowledge reasoned upon,
surmountable.

The warrant procedure of the used logic is, however, a weak point. Specif-
ically, it is the dialectical trees that may pose a problem. The problem occurs
whenever there are multiple arguments supporting the same proposition. Let,
for example, q be that proposition, arguments A0 and A1 support q and argu-
ment A2 attack A0. Also, let the goal be to find an acceptable argument for
q. The problem is that, using a warrant inquiry dialogue (using the exhaustive
strategy), it depends on whether A0 or A1 is the root argument if an acceptable
argument for q is found. If in such a warrant inquiry dialogue A0 is the root
argument, no acceptable argument is found. Depending on the root argument,
it may therefore be falsely concluded that no argument for q has got a war-
rant. This is a problem, since in a dialogue it is unknown whether A1 (which is
acceptable) exists, as knowledge is distributed. The problem is therefore how
warrant inquiry dialogues use dialectical trees (i.e. by using one root argument
per dialogue).

The issue with having multiple arguments supporting the same topic can,
however, be mitigated by making the dialogues more specialised. The police
currently try to do a similar thing with certain types of intakes. For example,
there exists a special telephone number to report cargo thefts from trucks.2

The dialogue system of Black and Hunter (2009) is therefore clearly not able
to fully model intakes. After all, as explained in Section 3.3, it is safe to assume
that a ‘real’ intake also has got elements of persuasion and information-seeking
dialogues. The chosen dialogue system is, however, still a good simplified model
of reality.

10.3 Contribution
Another contribution is the dialogue engine developed for the simulations. As
explained in section 9.2.3, the developed dialogue engine can be used to more
easily implement dialogue systems. The dialogue systems of Black and Hunter
(2009) are, for example, implemented on top of this engine.

1Assuming that he/she also needs to be persuaded of the outcome of the dialogue.
2https://www.politie.nl/nieuws/2017/mei/16/11-politie-opent-speciaal-aangifteloket-ladingdiefstal.

html

81

https://www.politie.nl/nieuws/2017/mei/16/11-politie-opent-speciaal-aangifteloket-ladingdiefstal.html
https://www.politie.nl/nieuws/2017/mei/16/11-politie-opent-speciaal-aangifteloket-ladingdiefstal.html


Chapter 11

Conclusion

This chapter will summarize the results as they have been presented in this
thesis.

In an intake, an asymmetric conversation takes place. The complainant
knows why he has come to file a report, but only the police officer knows whether
what happened actually was in violation of the law. In other words, it is assumed
that only the police officer knows the rules. Furthermore, it is the joint goal of
both participants to exchange information, such that the police officer can file a
report. The police officer therefore asks questions in order to gain information,
while the complainant may also ask questions. Such a dialogue is an inquiry
dialogue. An inquiry dialogue is, according to Walton and Krabbe (1995), a
dialogue in which both participants try to prove a proposition. In case of the
intake, both participants try to prove that the crime the complainant has come
to report actually took place. It is assumed that they are cooperatively trying
to find an acceptable argument.

The goal of this thesis was to find out how such dialogues can be made
shorter. The idea being to take an existing dialogue system that generates
inquiry dialogues, and improve on the corresponding strategy. In the literature
several approaches are used in order to create smart strategies.

Firstly, the idea is to represent the state of the dialogue in such a way
that a planner can find an ‘optimal’ strategy, which they define as a strategy
using which the proponent has got the highest possible chance of making the
dialogue succeed. In warrant inquiry dialogues, for example, the goal would
be to find an acceptable argument as quickly as possible. Black et al. (2017)
used propositional planning to find optimal strategies for persuasion dialogues.
Alahmari et al. (2017), on the other hand, used Q-learning to let the agent find
an optimal strategy on his own. The downside of such an approach is, however,
that a training phase must be held before going into a dialogue.

Another approach is using a user model, such that an agent can make better
decisions, using a model of his opponent. Such a user model can be build upon
previous experiences, the history of the dialogue or other things. Hadoux et al.
(2015) put this information into the knowledge base itself (using probabilistic
rules), such that an external tool (after converting the dialogue into a MOMDP)
could ‘plan’ an optimal strategy. Hadjinikolis et al. (2013) and Rienstra et al.
(2013) both tried to predict the state of the opponent, by adding recursive user
models. Hadjinikolis et al. learned the user model from previous experiences,

82



while Rienstra et al. kept track of the current state of the dialogue.
The work mentioned above assumes the existence of a persuasion dialogue.

The goal of an inquiry dialogue, however, is completely different from a persua-
sion dialogue. Therefore, it is not trivial to convert the described strategies to
work on inquiry dialogues.

Black and Hunter (2009) described two inquiry dialogue systems, along with
a corresponding strategy (the exhaustive strategy). They described an argument
inquiry dialogue system and a warrant inquiry dialogue system. Argument in-
quiry dialogues try to find an argument for the goal proposition, while warrant
inquiry dialogues also check whether the argument is acceptable. Of these dia-
logue system, warrant inquiry is used in the simulations as it models the intake
the best, as explained in the discussion.

The exhaustive strategy is a strategy designed to be sound and complete
(hence exhaustive). Using this strategy, agents first try to assert an argument,
then open a sub-dialogue, or otherwise try to close the current dialogue. The ex-
haustive strategy, however, generates long dialogues. It was therefore researched
whether a modification of the exhaustive strategy could improve upon the dia-
logues generated by the exhaustive strategy. In other words, it was investigated
whether those dialogues could be made more relevant.

Two modifications on the exhaustive strategy were devised and compared to
the exhaustive strategy in warrant inquiry dialogues. The idea being to devise
strategies that do not require extra information. The first modification only
asserted arguments for which no earlier argument was asserted. The second
only asserted ’relevant’ arguments, i.e. arguments that change the status of
the root argument in a dialectical tree. This is an implementation of strong
relevancy as defined by Prakken (2005). Both modifications were formalised
into two variants. The first one (the limited strategies) was split in a strategy
which only looks at the dialogue to find out which arguments were uttered
(limited dialogue), and another which looks at the union of the commitment
stores (limited commitment). The second modification (the smart strategies)
was split in a strategy that uses Black and Hunter’s dialectical tree (smart
original strategy), and another that uses a tree based on the dialogue (smart
dialogue strategy). The smart dialogue strategy was inspired by the dialectical
graph as used in Prakken (2005).

A setting inspired by the intake was used in the first set of experiments. In
this ‘intake setting’ the proponent knows all the rules, and the opponent all the
facts. This distribution models an intake wherein the police officer knows the
law (the rules), and the complainant what happened (the facts).

A first set of experiments researched the effect of the modified strategies on
the size of the generated dialogues and dialectical trees. In this intake setting,
the modified strategies were tested using different sets of dialectical trees. Per
data set, the exhaustive and modified strategies were tested on different sizes of
the data set. The resulting status of the root argument, the number of moves
uttered and the number of arguments in the dialectical tree were recorded.

The influence of the intake setting was investigated by a second set of ex-
periments. This experiment was set in the ‘random setting’. This means that
dialogues were simulated using the same strategies and sets of dialectical trees
(data sets), but with randomized distributions of knowledge. In this random-
ization, each fact or rule had a 50% chance of being in either of the agent’s
knowledge bases. Per combination of a strategy, data set, and a particular size

83



of that data set 30 dialogues were simulated, each with different distributions
of knowledge.

In addition to the experiments, it was also proven whether the modifications
were sound and/or complete.

In conclusion, none of the modified strategies were sound and complete, and
generated significantly smaller dialogues and dialectical trees. Nevertheless, two
strategies systematically reduced either the size of the dialogue or dialectical
tree. The smart dialogue, limited commitment and limited dialogue strategies,
were however not sound and complete for warrant inquiry dialogues. The smart
original strategy was sound and complete but did not generate smaller dialogues
or dialectical trees when compared to the exhaustive strategy.

It was also found that the influence of the intake setting heavily depends on
the type of dialectical tree it is tested. The same holds true for the behaviour
of the modified strategies.

Most importantly, empirical evidence was found that the modified strategies
did not completely eradicate irrelevant arguments. To improve those strategies
two things can be done. Firstly, strategies could be allowed to reason using extra
information (using a user model). Secondly, different criteria may need to be
set upon the strategies (using other definitions of soundness and completeness).
In addition, work can be done to ensure that the irrelevant arguments that are
otherwise asserted, are not found, by limiting the number of sub-dialogues.

11.1 Future work
It was found that improving existing strategies, without adding extra informa-
tion to reason about, is hard. For example, the smart original strategy was only
a marginal improvement. Therefore, it may be interesting to explore whether
extra information can allow a strategy to be ‘smarter’. Using a user model,
for example, a strategy may be able to say earlier in a dialogue that certain
propositions will never become in again. Then, it may skip those propositions.

Furthermore, in this thesis it is assumed that both participants use the same
strategy for simplicity reasons. An intake, however, is an asymmetric dialogue.
Therefore, dialogues wherein agents may have different strategies could be better
models of the intake. For example, the goal of the complainant may be to
complete the intake as soon as possible, while the police officer may be to be
more thorough.

Different notions of soundness and/or completeness can also be researched.
Using Black and Hunter’s notion, the limited strategies are not interesting, even
though they do reduce the size of dialogues and dialectical trees. Moreover,
maybe weaker notions of soundness and completeness may also be acceptable
for modelling intake dialogues.

84



References

Alahmari, S., Yuan, T., & Kudenko, D. (2017). Reinforcement learning for ab-
stract argumentation: A Q-learning approach. In Adaptive and Learning
Agents workshop (at AAMAS ’17).

Arioua, A., & Croitoru, M. (2015). Formalizing Explanatory Dialogues. In Scal-
able Uncertainty Management (pp. 282–297). Springer International Pub-
lishing.

Bex, F., Peters, J., & Testerink, B. (2016). A.I. for online criminal complaints:
From natural dialogues to structured scenarios. ECAI 2016 workshop on
Artificial Intelligence for Justice.

Black, E., Coles, A., & Hampson, C. (2017). Planning for Persuasion. In Pro-
ceedings of the Sixteenth International Conference on Autonomous Agents
and Multiagent Sytems (pp. 933–942).

Black, E., & Hunter, A. (2009, October). An inquiry dialogue system. Au-
tonomous Agents and Multi-Agent Systems, 19 (2), 173–209.

Dung, P. M. (1995). On the Acceptability of Arguments and its Fundamen-
tal Role in Nonmonotonic Reasoning, Logic Programming and n-Person
Games. Artificial Intelligence, 77 (2), 321–357.

Garcia, A. J., & Simari, G. R. (2004). Defeasible Logic Programming: An Ar-
gumentative Approach. Theory and Practice of Logic Programming, 4 (2).

Hadjinikolis, C., Siantos, Y., Modgil, S., Black, E., & McBurney, P. (2013).
Opponent modelling in persuasion dialogues. In Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence (pp. 164–
170).

Hadoux, E., Beynier, A., Maudet, N., Weng, P., & Hunter, A. (2015). Opti-
mization of probabilistic argumentation with Markov decision models. In
Proceedings of the Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence (Vol. 2015-01, pp. 2004–2010).

Hecham, A., Croitoru, M., & Bisquert, P. (2018). A First Order Logic Bench-
mark for Defeasible Reasoning Tool Profiling. In Rules and Reasoning
(pp. 81–97). Springer. Springer International Publishing.

Mason, M. (2016, May). The ‘preparatory’ and ‘argumentation’ stages of police
interrogation: A linguistic analysis of a criminal investigation. Language
& Communication, 48, 79–87.

Prakken, H. (2005). Coherence and Flexibility in Dialogue Games for Argumen-
tation. Journal of Logic and Computation, 15 (6), 1009–1040.

Prakken, H. (2017). Historical Overview of Formal Argumentation. IfCoLog
Journal of Logics and their Applications, 4 (8), 2183–2262.

85



Rienstra, T., Thimm, M., & Oren, N. (2013). Opponent models with uncertainty
for strategic argumentation. In Proceedings of the Twenty-Third Interna-
tional Joint Conference on Artificial Intelligence Opponent (pp. 332–338).

Thimm, M. (2017). The Tweety Library Collection for Logical Aspects of Ar-
tificial Intelligence and Knowledge Representation. Künstliche Intelligenz,
31 (1), 93–97.

van Charldorp, T. C. (2014). What happened? From talk to text in police
interrogations. Language & Communication, 36 (1), 7–24.

Walton, D. (2003). The interrogation as a type of dialogue. Journal of Pragmat-
ics, 35 (12), 1771–1802.

Walton, D., & Krabbe, E. C. W. (1995). Commitment in dialogue: Basic con-
cepts of interpersonal reasoning. SUNY press.

Walton, D., & Macagno, F. (2007). Types of Dialogue, Dialectical Relevance
and Textual Congruity. Anthropology and Philosophy, 8 (1/2), 101–120.

86



Appendix A

Intake setting

This appendix contains plots for the experiments performed with a specific
distribution of knowledge. See Chapter 9 for details. Per combination of a
strategy, data set, and a particular size of that data set, the size of the generated
dialogue and dialectical tree is shown.

A.1 Ambiguity
The first plot shows for all strategies the size of the generated dialectical trees.
Plot A.1.2 and A.1.3 show the same strategies, only split over multiple plots for
clarity.

0 5 10 15 20 25
0

20

40

n

Si
ze

of
di
al
ec
tic

al
tr
ee

Exhaustive strategy
Smart original strategy
Smart dialogue strategy

Limited commitment strategy
Limited dialogue strategy

Figure A.1.1: The size of the dialectical trees constructed by all strategies. The
strategies are plotted on top of each other.

87



0 5 10 15 20
0

10

20

30

40

50

n

Si
ze

of
di
al
ec
tic

al
tr
ee

Exhaustive strategy
Smart original strategy

Figure A.1.2: The size of the dialectical trees constructed by the exhaustive and
smart original. The strategies are plotted on top of each other.

0 5 10 15 20 25
0

20

40

n

Si
ze

of
di
al
ec
tic

al
tr
ee

Smart dialogue strategy
Limited commitment strategy
Limited dialogue strategy

Figure A.1.3: The size of the dialectical trees constructed by the smart dialogue,
limited commitment and limited dialogue strategy. The limited strategies are
plotted on top of each other.

88



0 5 10 15 20 25
0

100

200

300

400

n

Si
ze

of
di
al
og
ue

Exhaustive strategy
Smart original strategy
Smart dialogue strategy

Limited commitment strategy
Limited dialogue strategy

Figure A.1.4: The size of the dialogues generated on the ambiguity data set.
All strategies generate the same length of dialogues.

A.2 Team defeat

89



1 1.5 2 2.5 3 3.5 4
0

20

40

60

n

Si
ze

of
di
al
ec
tic

al
tr
ee

Exhaustive strategy
Smart original strategy
Smart dialogue strategy

Limited commitment strategy
Limited dialogue strategy

Figure A.2.1: This plot shows for team defeat the size of the dialectical tree.
Note that the limited commitment and limited dialogue strategy are plotted on
top of each other. Until n = 3 the smart dialogue strategy overlaps with the
exhaustive and smart original strategy.

1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

n

Si
ze

of
di
al
og
ue

Exhaustive strategy
Smart original strategy
Smart dialogue strategy

Limited commitment strategy
Limited dialogue strategy

Figure A.2.2: The size of the generated dialogues, plotted per strategy. Here,
the exhaustive, smart original and smart dialogue strategies are plotted on top
of each other. Similarly, the limited strategies are also plotted on top of each
other.

90



A.3 Floating conclusions

0 10 20 30

2

n

Si
ze

of
di
al
ec
tic

al
tr
ee

Exhaustive strategy
Smart original strategy
Smart dialogue strategy

Limited commitment strategy
Limited dialogue strategy

Figure A.3.1: The size of the dialectical trees constructed by the generated
dialogues. The size of the dialectical tree is in all instances 2.

91



0 10 20 30
0

100

200

300

400

n

Si
ze

of
di
al
og
ue

Exhaustive strategy
Smart original strategy
Smart dialogue strategy

Limited commitment strategy
Limited dialogue strategy

Figure A.3.2: The size of the dialogues generated on the floating conclusions
data set by the specified strategies. Here, the exhaustive, smart original and
smart dialogue strategies are plotted on top of each other. Similarly, the limited
strategies are also plotted on the same line.

92



Appendix B

Root arguments in the
intake setting

Here, per simulated dialogue in the intake setting is shown what the resulting
status of the root argument was.

B.1 Ambiguity
n exhaustive smart original smart dialogue limited commitment limited dialogue
1 Out Out Out Out Out
2 Out Out Out Out Out
3 In In In In In
4 Out Out Out Out Out
5 Out Out Out Out Out
6 Out Out Out Out Out
7 In In In Out Out
8 Out Out Out Out Out
9 Out Out Out In In
10 Out Out Out Out Out
11 In In In Out Out
12 Out Out Out Out Out
13 Out Out Out In In
14 Out Out Out Out Out
15 In In In Out Out
16 Out Out Out Out Out
17 Out Out Out Out Out
18 Out Out Out Out Out
19 In In In Out Out
20 Out Out Out Out Out
21 Out Out Out
22 Out Out Out
23 In In
24 Out Out
25 In In

93



B.2 Team defeat
n exhaustive smart original smart dialogue limited commitment limited dialogue
1 In In In In In
2 In In Out In In
3 In In Out In In
4 In In Out In In

B.3 Floating conclusions
n exhaustive smart original smart dialogue limited commitment limited dialogue
1 Out Out Out Out Out
2 Out Out Out Out Out
3 Out Out Out Out Out
4 Out Out Out Out Out
5 Out Out Out Out Out
6 Out Out Out Out Out
7 Out Out Out Out Out
8 Out Out Out Out Out
9 Out Out Out Out Out
10 Out Out Out Out Out
11 Out Out Out Out Out
12 Out Out Out Out Out
13 Out Out Out Out Out
14 Out Out Out Out Out
15 Out Out Out Out Out
16 Out Out Out Out Out
17 Out Out Out Out Out
18 Out Out Out Out Out
19 Out Out Out Out Out
20 Out Out Out Out Out
21 Out Out Out Out Out
22 Out Out Out Out Out
23 Out Out Out Out Out
24 Out Out Out Out Out
25 Out Out Out Out Out
26 Out Out Out Out Out
27 Out Out Out Out Out
28 Out Out Out Out Out
29 Out Out Out Out Out
30 Out Out Out Out Out
31 Out Out Out Out Out
32 Out Out Out Out Out
33 Out Out Out Out Out
34 Out Out Out Out Out
35 Out Out Out Out Out

94



Appendix C

Random setting

Per combination of strategy, data set and a particular size of that data set, 30
dialogues each with a random distribution of knowledge were simulated. Note
that the tests done here are on a smaller n than in the ‘normal’ tests. This is
because of time constraints.

C.1 Ambiguity
C.1.1 Size of dialogues

0 2 4 6 8 10 12
0

50

100

150

200

n

Si
ze

of
th
e
hi
st
or
y

Exhaustive strategy

95



0 2 4 6 8 10 12
0

50

100

150

200

n

Si
ze

of
th
e
hi
st
or
y

Smart original strategy

0 2 4 6 8 10 12
0

50

100

150

200

n

Si
ze

of
th
e
hi
st
or
y

Smart dialogue strategy

0 2 4 6 8 10 12
0

50

100

150

200

n

Si
ze

of
th
e
hi
st
or
y

Limited Commitment strategy

96



0 2 4 6 8 10 12
0

50

100

150

200

n

Si
ze

of
th
e
hi
st
or
y

Limited dialogue strategy

C.1.2 Size of dialectical trees

0 2 4 6 8 10 12
0

10

20

30

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Exhaustive strategy

97



0 2 4 6 8 10 12
0

10

20

30

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Smart original strategy

0 2 4 6 8 10 12
0

10

20

30

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Smart dialogue strategy

0 2 4 6 8 10 12
0

10

20

30

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Limited Commitment strategy

98



0 2 4 6 8 10 12
0

10

20

30

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Limited dialogue strategy

C.2 Team Defeat
C.2.1 Size of dialogues

1 2 3

50

100

150

n

Si
ze

of
th
e
hi
st
or
y

Exhaustive strategy

99



1 2 3

50

100

150

n

Si
ze

of
th
e
hi
st
or
y

Smart original strategy

1 2 3

50

100

150

n

Si
ze

of
th
e
hi
st
or
y

Smart dialogue strategy

1 2 3

50

100

150

n

Si
ze

of
th
e
hi
st
or
y

Limited Commitment strategy

100



1 2 3

50

100

150

n

Si
ze

of
th
e
hi
st
or
y

Limited dialogue strategy

C.2.2 Size of dialectical trees

1 2 3

10

20

30

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Exhaustive strategy

101



1 2 3

10

20

30

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Smart original strategy

1 2 3

10

20

30

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Smart dialogue strategy

1 2 3

10

20

30

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Limited Commitment strategy

102



1 2 3

10

20

30

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Limited dialogue strategy

C.3 Floating conclusions
C.3.1 Size of dialogues

0 5 10 15

20

40

60

n

Si
ze

of
th
e
hi
st
or
y

Exhaustive strategy

103



0 5 10 15

20

40

60

n

Si
ze

of
th
e
hi
st
or
y

Smart original strategy

0 5 10 15

20

40

60

n

Si
ze

of
th
e
hi
st
or
y

Smart dialogue strategy

0 5 10 15

20

40

60

n

Si
ze

of
th
e
hi
st
or
y

Limited Commitment strategy

104



0 5 10 15

20

40

60

n

Si
ze

of
th
e
hi
st
or
y

Limited dialogue strategy

C.3.2 Size of dialectical trees

0 5 10 15

2

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Exhaustive strategy

105



0 5 10 15

2

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Smart original strategy

0 5 10 15

2

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Smart dialogue strategy

0 5 10 15

2

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Limited Commitment strategy

106



0 5 10 15

2

n

Si
ze

of
th
e
di
al
ec
tic

al
tr
ee

Limited dialogue strategy

107


	Introduction
	Argumentation
	Logic
	Arguments
	Dialectical tree
	Conclusion

	Dialogues
	Dialogue systems
	Types of dialogue
	The intake as a dialogue
	Conclusion

	Strategies
	Exhaustiveness and planning
	Machine learning
	User models
	Relevancy
	Conclusion

	An inquiry dialogue system
	Order of operations
	Moves
	Dialogues
	Effect rules and query store
	Turn taking
	Termination
	Dealing with sub-dialogues
	Knowledge base
	Argument inquiry
	Warrant inquiry
	Conclusion

	Soundness, completeness and the exhaustive strategy
	Soundness and completeness
	Argument inquiry
	Warrant inquiry

	Exhaustive strategy
	Conclusion

	Modified exhaustive strategies
	Commitment store versus dialogue
	One argument per proposition
	Checking the status

	The strategies
	The limited strategies
	Smart strategies

	Conclusion

	Proving soundness and completeness
	Limited strategies
	Argument inquiry
	Warrant inquiry

	Smart strategy
	Soundness
	Completeness

	Conclusion

	Experiments
	Research questions
	Methods
	The data sets
	Splitting the data sets
	The implementation

	The setup
	Results
	Ambiguity handling
	Team defeat
	Floating conclusions

	Discussion of experiments
	General setup
	Effects of the modified strategies
	Influence of the intake setting
	Behaviour of the modified strategies
	Limitations


	Discussion
	Discussion of results
	Applicability of DeLP and Black2009
	Contribution

	Conclusion
	Future work

	References
	Intake setting
	Ambiguity
	Team defeat
	Floating conclusions

	Root arguments in the intake setting
	Ambiguity
	Team defeat
	Floating conclusions

	Random setting
	Ambiguity
	Size of dialogues
	Size of dialectical trees

	Team Defeat
	Size of dialogues
	Size of dialectical trees

	Floating conclusions
	Size of dialogues
	Size of dialectical trees



