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Abstract

In this thesis the Schütte style completeness proof is used as a tool to compare different
sequent calculi. The Schütte style countermodel construction is the most important part
of this kind of completeness proof. This countermodel construction method is used to
compare three different sequent systems for the modal logics K, T, K4, and S4: A basic
modal sequent calculus system, a tree-hypersequent system and a labeled sequent system.
In the first part of the thesis we define what is meant with a Schütte countermodel and the
question is answered whether the possible Schütte style countermodels produced using
these sequents calculi are exactly the same sets of countermodels for each type calculus or
whether it depends on the sequent system what models can be constructed. It is proven
that each Schütte countermodel that can be constructed in one sequent system can also
be constructed in the other types of systems. This shows that the set of constructable
Schütte countermodels for these calculi are the same. As an additional part of the thesis,
we explore Schütte countermodel construction for the intuitionistic modal logic DYK .
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Chapter 1

Introduction

1.1 The Schütte style completeness proof

Not being able to find a proof for a proposition and finding a counterexample are generally
two different things. If it is not possible to find proof for something using some method, it
does not guarantee there exists a counterexample to it. However, in the case of symbolic
logic, this relation can sometimes be proven. For analytic calculi, the completeness
theorem explicitly states the duality between either being able to construct a proof with
the calculus for a proposition or the existence of a countermodel. An analytic calculus
is complete for a certain semantics if every tautology in that semantics can be proven
using that analytic calculus. Consequently, the modus tollens of completeness states that
every formula that cannot be proven in the analytic calculus cannot be a tautology in
that semantics, which means that there exists a countermodel to the formula.

A completeness proof for an analytic calculus, together with soundness, is important to
show the adequacy of the calculus for a semantics. However, completeness proofs are
not always constructive. They do not show how to find a proof for every proposition
and when one should give up the search for such a proof because the proposition is not
a tautology. An example is the Henkin style proof which "gives no way to obtain deriv-
ability from validity, nor does it show how to construct a countermodel for underivable
propositions."[19, p.2].

For sequent calculi, however, there is a style of completeness proof that is constructive.
It shows how one can construct countermodels from a failed proof search. This is the
"Schütte style" completeness proof, in which a combination of the sequents in a failed
derivation can be used to create a countermodel. Because of this close relation between
derivations, sequents and countermodels in the Schütte proof there has been renewed
interest in this style of completeness proof for sequent calculi [21], also in combination
with sequent systems for multi-modal logics [10].
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6 Chapter 1 Introduction

The Schütte style completeness proof can be found scattered around in the literature,
but they are not generally named as such. Examples where we can find them are [8, 17,
21, 23, 25]. However, its origin can be found earlier. In the 1950’s this kind of proof was
first given for first-order logic independently by Beth [3], Hintikka [13], Kanger [15] and
Schütte [24]. Naming these completeness proofs ’Schütte style’ is not something that
is widely used in literature. It can for example also be found in literature named as a
weak proof [6] or the standard ’tree’ or ’tableaux’ completeness proof [25], referring to
the importance of the tree structure of sequent derivation in the completeness proof and
the usage of it for tableaux systems. In this thesis, we will use the name Schütte proof
for this specific style of completeness proof.

The fact that the Schütte style completeness proof shows the completeness of a calculus
is the main point of the proof. However, the completeness itself is not central in this
thesis, but the method used in the proof to construct the countermodels. The Schütte
method to create countermodels will be used for comparison of three different sequent
systems for the modal logics K, T, K4 and S4: the basic (modal) sequent calculus system,
a tree-hypersequent system, and a labeled sequent system.

What exactly the requirements are for a completeness proof to be a Schütte proof, or
when a countermodel is a Schütte countermodel is not yet clearly defined, or widely
agreed on in literature. Therefore, this thesis also aims to set the first steps in this
direction. This is done by looking closer into the specific characteristic of these proofs,
and define what steps in a completeness proof are required for a proof to be called a
Schütte proof.

1.2 Gentzen calculi for modal logic

Gentzen systems for modal logics have historically been plagued with problems. It is not
easy to create a satisfactory sequent calculus for even some basic modal logics like S5
[20]. However, in recent years several generalizations of the basic Gentzen calculus have
been proposed which do succeed in describing most of the standard modal logics. These
developments include the formulation of labeled approaches, hypersequent approaches
and display calculi for modal logics.

Two important directions into which the Gentzen systems have developed are tree-
hypersequents [23] and labeled sequents [18]. Both approaches incorporate the relational
structure of the semantics in the calculus. Labeled sequents refer to the semantics di-
rectly, while tree-hypersequents use an extra layer of syntax to incorporate the semantics
implicitly. Labeled systems use world-indicating labels and relational atoms in their se-
quents. While tree-hypersequents use multiple, related sequents to encode the relational
structure of the semantics.
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With the development of numerous new Gentzen systems, the question of what makes
a good sequent calculus becomes more relevant. One would like to be able to rate and
compare the newly described calculi in their aptness as an analytic calculi for describing
a logic. With this, questions arise like: What are good properties to have as a sequent
calculus? It is important to know how the different Gentzen systems compare with each
other for different reasons. Firstly, it can show the superiority of one of the calculi.
Secondly, it can show what system is preferable to use in a specific context. And thirdly,
it can answer questions on the similarity of two systems, or give insight in where two
calculi differ.

There are already some ways in which one can compare different sequent calculi with
each other. For example, Avron [2] lists some properties a general proof-theoretical
framework, like the Gentzen calculus, should aim for. Among these six properties are for
example the sub-formula property, locality of the rules and the diversity of logics that can
be described with the framework. A more in-depth treatment of different properties of
sequent calculi can be found in Poggiolesi [22]. And with that, developing new properties
for comparison of different systems is an important topic of research.

1.3 Research question

In this thesis, the aim is to use the Schütte countermodel construction as a new measure
to compare sequent systems. Different sequent systems have slightly different Schütte
completeness proofs, and with it, different countermodel construction methods. Is it
possible to look at these methods, compare them and also compare the sets of possible
Schütte countermodels these sequent systems can produce.

In the thesis, the Schütte countermodels are explained and properly defined. Three
sequent calculi systems are compared based on their Schütte countermodel production.
These calculi are the tree-hypersequent system of Poggiolesi [22] (Ths⇤), the labeled
sequent calculus of Negri [18] (Tls⇤) and the basic sequent systems for modal logic
(G3m⇤) which are extended forms of G3 [27]. The question is answered whether the
possible Schütte style countermodels produced using these sequent systems are exactly
the same set of countermodels or whether it depends on the sequent system what models
can be constructed. In the thesis it is proven these three sequent systems can exactly
construct the same Schütte countermodels for basic sequents of the logics K, T, K4 and
S4. This is done by proving the following theorem:

Theorem 1.1. M is a G3m⇤ Schütte model for the sequent �) �, if and only if M is
a Ths⇤ Schütte model for the equivalent tree hypersequent � ) � if and only if M is a
Tls⇤ Schütte model for the equivalent labeled sequent x : �) x : �, where ⇤ is either K,
T, K4 or S4.



8 Chapter 1 Introduction

The research done in the thesis is important on three levels. First, it shows it is possible
to use meta-proofs of sequent systems, like the Schütte style completeness proof, and use
them to closely compare different systems. This is possible because these meta-proofs
about different systems can be similar, but differ on small but essential parts, which lay
bare differences between systems. Secondly, this research creates an overarching way to
look at different Schütte completeness proofs and identify different steps in the proof,
which are common over different instances of this kind of proof. With that, this research
is able to give more insight in exactly what a Schütte proof encompasses. And finally,
this thesis shows the similarity between three different sequent systems. It shows that
even though the labeled and tree-hypersequent are much more syntax-heavy still produce
the same set of Schütte countermodels as the basic modal sequent systems, and thus are
in this aspect not better. One might say they are even worse in this aspect because they
achieve the same with much more syntax.

The thesis is structured as follows. In chapter 2, the basics of propositional modal logic
are explained including Kripke semantics. In chapter 3 the necessary information about
the three different sequent systems is presented, this includes a general introduction
of the systems as well as some important lemmas like the admissibility of structural
rules. Chapter 4 includes a discussion on what exactly the Schütte method is, and when
a model can be called a Schütte countermodel. In chapter 5 we look at the calculus
specific parts which we encounter in their respective Schütte proofs. And finally, in
chapter 6 the theorem is proven that all the three systems exactly are able to create the
same Schütte models. Chapter 7 concludes this research but in chapter 8 we present
some extra exploration of the Schütte method in non-classical modal logic. Here we
prove that the modal Dyckhoff calculus is complete with respect to intuitionistic Kripke
models using a kind of Schütte method related to the one used in [26].



Chapter 2

Modal Logic

2.1 Modal propositional logic

Modal logics differ from classical propositional logic by the addition of an unary operator:
the modality, which is written as a box (2). This modality can be interpreted as many
things based on what kind of logic is used, but most basic interpretation is that of
necessity. So 2� is intuitively interpreted as ’it is necessary that �’. Most of the time
this box operator is accompanied by a diamond operator 3 which is the dual of the
box and 3� means ¬2¬� and then is interpreted as ’it is possible that �’. However
many different logics can be constructed with these operators, together with those of
classical propositional logic, which might lead to different intuitive interpretations of the
operators like ’it is admissible’ or ’it is known that’. The total language of formulas can
by described by:

[Lmodal] � ::= p | ? | ¬� | � ^ � | � _ � | �! � | 2� | 3� ,

where p is an atomic proposition of the set of used propositional variables A (p 2 A) and
? is falsum. Because some connectives can be rewritten in other connectives we will not
always use the full language for brevity sake.

2.2 Kripke semantics

The accompanying semantics that is used in this thesis is the relational semantics of
Kripke. In this semantics we have a set of worlds, in which different propositions can
be true. These worlds however have a relation between them. For some worlds we can
move from that world to other worlds: they are accessible by that world.
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10 Chapter 2 Modal Logic

The interpretation of the necessity and possibility operators then are linked to this rela-
tion between the worlds. If a proposition is necessary in a world, then it is true in every
world that is accessible from that world. If a proposition is possible in a world, then
there is a world which is accessible from that world where that proposition is true.

When we formalize this, it is nice to first define Kripke frames. Then we will see that
different kinds of modal logics are complete to Kripke models with specific frame condi-
tions.

Definition 2.1. A Kripke Frame is a tuple F =< W,R > such that:

1. W is a non empty set (of possible worlds).

2. R ✓ (W⇥W ) is a binary relation on W . If wRw
0 then we say world w

0 is accessible
from w.

With the use of this definition we can then define what a full Kripke model is.

Definition 2.2. A Kripke Model is a tuple M =< W,R, V > such that:

1. < W,R > is a Kripke frame.

2. V is a function assigning a truth value to each atomic formula p for each world
w 2 W . V (w, p) 2 {0, 1}.

With this and the following definitions for the truth values of the connectives we can
define the truth of a formula in a model.

Definition 2.3. let M =< W,R, V > be a Kripke model with w 2 W and A the set of
propositional variables with p 2 A. Then the truth of a formula is inductively defined
relative to model M and world w in the following way.

1. M, w ✏ p () V (w, p) = 1.

2. M, w ✏? () is not the case

3. M, w ✏  ^ � () M, w ✏  and M, w ✏ �.

4. M, w ✏  _ � () M, w ✏  or M, w ✏ �.

5. M, w ✏  ! � () M, w ✏  implies M, w ✏ �.

6. M, w ✏ 2 () For all w0
2 W , if wRw

0, then M, w
0 ✏  .

7. M, w ✏ 3 () There is a w
0 for which wRw

0 and M, w
0 ✏  .

Validity in Kripke semantics is defined as follows:
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Definition 2.4. Let  be a modal formula, C a class of Kripke frames and Mc a model
with a frame of class C then:

✏C  () Mc ✏  for all models Mc based on frames of class C.

Different normal modal logic’s then are defined semantically by their accessibility rela-
tion. The most basic one being K which has no restrictions on the kind of accessibility
relation. The logic K can be axiomatized by by the axioms and rules in table 2.1. We
can then define the soundness and completeness of K as:

Definition 2.5. A formula is a theorem of K if and only if it is true in all Kripke models:

✏  () `K  .

Axioms:
1 Any axiomitization of classical propositional logic
2 2(A ! B) ! (2A ! 2B)
3 3A $ ¬2¬A

Rules:
1 Modus Ponens: from A ! B and A, deduce B

2 Necesiation rule: from A, deduce 2A

Table 2.1: Axiomitization of K

By extending K with different axioms we can create different modal logics which relate
to specific classes of Kripke frames. The classes of these frames are based on specific
geometric relations that the accessibility relation satisfies. In table 2.2 we can see what
axioms relate to which class frames.

Name Axiom Frame Property
D 2A ! 3A Seriality: 8w 9w

0
wRw

0

T 2A ! A Reflexivity: 8w wRw

B A ! 23A Symmetry: 8w 8w
0
wRw

0
! w

0
Rw

4 2A ! 22A Transitivity: 8w 8w
0
8w

00
wRw

0
^ w

0
Rw

00
! wRw

00

Table 2.2: Axioms related to frame properties

With these properties and axioms we can create different logics which corresponds to
different frame classes. The naming is as follows. If we extend K with the axiom T, we
get the logic KT, if we extend it then with axiom D, we get KDT etc. Only the logics
KT4, KTB4 and KT have for historic reasons a different name: S4, S5 and T respectively.

There are also other axioms and with them come other modal logics that can be con-
structed. These do not necessarily have to coincide with specific frame properties of the
relational semantics. In this study we will not go into these and we will limit ourselves
only to the logics K, T, K4 and S4.





Chapter 3

Three Different Sequent Calculi

3.1 Basic modal sequent calculus

Sequent calculi for classical and intuitionistic propositional logic are originally formulated
by Gentzen [11]. For these logics, sequent calculus systems are recognized as one of the
most elegant and basic analytic calculi. In this thesis we will use a multiset variant of
the sequent calculus.

Definition 3.1. A sequent S is an expression of the form � ) � where � and � are
finite multisets of formulas. � is the antecedent, � is the succedent. We will also refer
to the antecedent (succedent) of a sequent S with S

a(Ss).

Definition 3.2. The interpretation of a sequent �) � is

I(�) �) ⌘
^
�!

_
� .

When � or � is empty the interpretation is
V
; ⌘ > and

W
; ⌘?.

Some examples of interpretations of sequents are the following:

I(p ! q, p ) q) = ((p ! q) ^ p) ! q ,

I() 2p) = 2p ,

I(2p ) 2q, p) = 2p ! (2q _ p) .

A prominent cut free version of a sequent calculus for classical propositional logic is G3

which can be found in Troelstra and Schwichtenberg [27]. Because the modal sequent
calculi that will be presented are all extensions of, G3 will be presented first.

13



14 Chapter 3 Three Different Sequent Calculi

Definition 3.3. Sequent calculus G3:
Axioms:

p,�) �, p
Ax

?,�) � Ax

Propositional Rules:

�, A,B ) �
�, A ^B ) � L^

�) �, A �) �, B

�) �, A ^B
R^

�, A ) � �, B ) �
�, A _B ) � L_

�) �, A,B

�) �, A _B
R_

�) �, A �, B ) �
�, A ! B ) � L !

�, A ) �, B

�) �, A ! B
R !

�) �, A

�,¬A ) � L¬
�, A ) �
�) �,¬A

R¬

For all rules we use the customary definitions of what the principal and auxiliary formulas
are. The principal formula is the formula in the conclusion which is created form the
auxiliary formula(s) of the premise(s) with the connective which is introduced in that
specific rule. � and � are the context.

Definition 3.4. A proof of a sequent S is a finite tree with at its nodes sequents which
are connected according to the rules of the sequent system. The root of the tree is the
sequent S and the leafs are sequents which have the form of axioms. We call such a tree
a prooftree.

If the sequent S is derivable by the prooftree D, and D has a depth of at most n, we
write D `n S.

Definition 3.5. A rule is depth preserving invertible if the following is true. When the
conclusion of a rule has a proof, then each premise of that rule has also a proof of at
most the same depth.

Notice that the propositional rules of all the sequent calculi G3 are depth preserving
invertible. This can easily be shown with induction on the depth of the derivation.
For reference, this can be found in Troelstra and Schwichtenberg [27] as the proof of
proposition 3.5.4.

Besides this contraction rules are depth preserving admissible in G3. This will not be
proven, however we will prove this for the modal sequent calculi which extend G3.
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3.1.1 Sequent calculi for K, T, K4 and S4

The sequent calculus G3 can be extended to G3mK for the modal logic K by adding
an additional rule. G3mK then can be extended to the logic G3mT by adding another
rule.

Definition 3.6. The sequent calculus G3mK can be constructed by extending G3 by
the following rule:

�) A

⌃,2�) �,2A
K2

The sequent calculus G3mT can be constructed by extending G3mK by the following
rule:

�,2A,A ) �
�,2A ) � T2

Remark 3.7. In the rule K2, 2� can only contain formulas of the form 2B and ⌃ does
not contain any formulas with the box operator as its main connective1.

The sequent calculi for the logics K4 and S4 can in a similar way be derived from G3.
The only difference is that, to create transitivity in the system, the K2 rule need to be
changed into the 42 rule.

Definition 3.8. The sequent calculus G3mK4 can be constructed by extending G3 by
the following rule:

2�,�) A

⌃,2�) �,2A
42

The sequent calculus G3mS4 can be constructed by extending G3mK4 by the following
rule:

�,2A,A ) �
�,2A ) � T2

Remark 3.9. In the rule 42, 2� can only contain formulas of the form 2B and ⌃ does
not contain any formulas with the box operator as its main connective.

For the rules K2 and 42 the formulas in 2�, are also seen as auxiliary formulas.

Remark 3.10. To address all four of the different modal sequent calculi based on G3 we
will write G3m⇤.

1Aometimes an additional condition on ⌃ is set saying it can only contain atoms, for example in
[4]. This assures saturation of the propositional rules between applications of this rule. We do however
not add this condition because this kind of saturation is defined somewhere else more specifically. See
definition 5.1.
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Although the K2 and the 42 rules are not invertible some nice properties of G3 are
still present in the modal variants. Most importantly for us later, the contraction rules
are still depth preserving admissible.

Proposition 3.11. For all the logics G3m⇤, contraction is depth preserving admissible:

If G3m⇤ `n A,A,�) �, then G3m⇤ `n A,�) � .

If G3m⇤ `n �) A,A,�, then G3m⇤ `n �) A,� .

Proof. Proof based on induction on the depth n of the derivation D. We will only proof
the first rule, the second is analogous.

If D is of depth 1:

A,A,�) � is an axiom. Therefore, A,�) � is also an axiom and thus derivable.

Induction hypothesis:

If n > 1, the induction hypotheses tells us that the admissibility of contraction holds for
n� 1, and we only have to verify for the last applied rule.

In case of a propositional rule:

If the last rule was a rule in which A is not the principal formula, then we can apply the
induction hypothesis directly to show that A,�) � is also derivable.

If, in the last rule was a propositional rule, like L^ with A as its principal formula, then
the last rule looks like this:

B ^ C,B,C,�) �
B ^ C,B ^ C,�) � L^

Because of the depth preserving invertibility of the propositional rules, G3m⇤ `n�1 B,C,B,C,�) �.
We can then apply the induction hypothesis for both B and C.

The argument for the rules L_, L¬ and L ! is analogous to this and we will not be
treated here.

If the last rule that was used is K2:

If A 2 ⌃, the application of K2 looks like this:

�) B

⌃0
, A,A,2�) �,2B

K2

In which case ⌃0
, A,2�) �,2B also derivable.

If A is 2B 2 2� , the application of K2 looks like this:

�0, B,B ) A

⌃,2�0,2B,2B ) �,2A
K2
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We then can apply the induction hypothesis on B.

If the last rule that was used was T2:

If A 2 � then we can apply the induction hypothesis directly, even if A is of the form B.
If A is 2B and the principal formula, the last rule looks like this:

2B,2B,B,�) �
2B,2B,�) � T2

Because of the induction hypothesis 2B,B,�) � is also derivable with a D with depth
n�1. And thus applying the rule 2T to this sequent gives us a derivation of 2B,�) �

of depth n.

If the last rule that was used was 42:

This case is analogous to K2. If A 2 ⌃, then we can use the induction hypothesis
directly. If A is 2B and in 2�, the premise contains both B and 2B twice, and we can
use the induction hypothesis twice. ⌅

3.1.2 Problems with the basic modal Gentzen systems

These modal sequent calculi are not as elegant as their propositional original. This is
because the new modal rules do not posses some of the nice properties the propositional
rules of G3 do posses such as symmetry and invertibility.

For example the sequent calculus G3mK is not symmetric. This is because it does not
have a right and left introduction rule for the modal operator, but only one rule: K2.
Besides this, the rule K2 and 42 also has implicit weakening in it. This makes the K2
and 42 rule not invertible and proof search a trickier business in the modal variants of
G3 than in normal version.

Rule T2 and 42 also include implicit contractions. This challenges the termination of
the proof searches for the sequent calculi which include these rules. However, the calculi
are terminating, but for this to happen additional strategies need to be used during the
proof search such as loop checking in the case of the transitivity rule 42, or in the case
of reflexivity, keeping track of what modal formula have been already used as prime
formulas in the T2 rule.

Because of these not so nice properties of the modal rules for the basic sequent system,
and the fact it has not yet been possible to capture the symmetry axiom for logics like B

and S5 in the basic sequent calculus, many different extensions of the sequent framework
have been proposed. Two of them are the ones that will be discussed in the next sections.
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3.2 Labeled sequent calculus

One extension of the basic sequent calculus is the labeled approach by Negri [18]. We
will present here a variant of this kind of system. This system does not use sequents and
formulas as their basic components, but labeled sequents by having prefixed formulas,
and relational atoms in the sequents instead of normal formulas. By introducing labels
in the sequents the possible world semantic of Kripke can be referenced more explicit in
the sequents themselves: different labels represent different worlds. This solves some of
the problems that were present for the G3m⇤ systems.

Definition 3.12. A prefixed formula is a formula A with a prefixed x and is written in
the following way: x : A. Two prefixes x and y can be used to construct relational atom
xRy. A labeled sequent is a sequent � ) �, in which � is a multiset that can contain
relational atoms and prefixed formula and � is a multiset that can contain only prefixed
formulas. If a multiset �, contains only formulas prefixed with the label x we will also
write it as x : �.

In this version of the labeled sequent calculus we only do not consider relational atoms
existing in the succedent of sequents. This is contrary to the original calculus of Nergi,
where it is possible to have relational atoms in the succedent. However, Negri comments
that "no rule removes an atom of the form xRy from the right-hand side of sequents, and
such atoms are never active in the logical rules"[18, p.531] and that axioms that require
relation atoms in the succedent of a sequent "can as well be left out from the calculus
without impairing completeness of the system."[18, p.531]. Because of this relational
atoms have been left out of the succedents of sequents all-together.

Figure 3.1: A model that satisfies the labeled sequent x : A ) y : A.

3.2.1 Tree-labeled sequents

A problem with the labeled approach of Negri is that it lacks an interpretation function
of the sequents to modal formulas. The reason for this is that the language of labeled
sequents is richer than that of normal sequents. Because of the prefixes, the sequents say
something about labeled formulas instead of formulas proper. It is for example possible
to construct the labeled sequent x : A ) y : A. However, it is not possible for this
sequent to be written down in one modal formula. This is because there is no relation
between the worlds x and y. The sequent x : A ) y : A is for example satisfied in the
model in figure 3.1. But it is not possible to say something in one formula about these
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two worlds because they are not related. The labeled sequent is able to express something
about the model a formula is not able to express which shows why it it impossible to
have a proper interpretation of labeled sequents to modal formulas. A way to solve this
is to only consider tree labeled sequents. This is for example also done in [16] and [12].

Definition 3.13. Let LAB be all the labels that occur in a labeled sequent S and R be
the union of all the relational atoms in S

a.

A tree-labeled sequent is a labeled sequent such that the the relation R over the labels
LAB, is an outward directed rooted tree. We call the label x which is at the root of this
tree the root label.

Example 3.1. The following sequents are examples of sequents which are tree-labeled:

x : A ) x : B ^A ,

xRy, yRz, x : A, y : A,) z : B ^A ,

xRy, xRz, x : A, y : A ) z : B ^A .

The following sequents are examples of sequents which are not tree-labeled:

xRx, x : A ) x : B ^A ,

xRy, yRz, zRx, x : A, y : A,) z : B ^A .

When we only consider tree-labeled sequents it is possible to interpret the labeled se-
quents as formulas. It is now possible to do so, because we can interpret the relations
between the worlds in the sequent from the point of view of the root label as modal
relations.

Definition 3.14. The interpretation of a labeled sequent �) � can be constructed as
follows. For each label we have two different interpretation functions:

I
x(�, xRy1, xRy2, .., xRyn ) �) ⌘ Ix(�) �) _ 2I

y1(�) �) _ 2I
y2(�) �) _ .. _ 2I

yn(�) �) .

Ix(�, x : ⌃) �, x : ⇧) ⌘
^
⌃!

_
⇧ .

The interpretation I
x(�) �) where x is the root label is then the interpretation of the

whole labeled sequent.

When ⌃ or ⇧ is empty the interpretation is
V

; ⌘ > or
W
; ⌘?.

Intuitively this interpretation says that we should see the total labeled sequent as multiple
smaller sequents, one for each label. For these smaller sequents the normal interpretations
of a sequent applies. These individual interpretations are then ’glued together’ in one
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big disjunction and adding a modal operator between two sequents for each relational
atom.2

3.2.2 Tree-labeled sequent calculi for K, T, K4 and S4

Definition 3.15. Sequent calculus TlsK :
Axioms:

x : p,�) �, x : p Ax

Propositional Rules:

�, x : A, x : B ) �
�, x : A ^B ) � L^

�) �, x : A �) �, x : B
�) �, x : A ^B

R^

�, x : A ) � �, x : B ) �
�, x : A _B ) � L_

�) �, x : A, x : B
�) �, x : A _B

R_

�) �, x : A �, x : B ) �
�, x : A ! B ) � L !

�, x : A ) �, x : B
�) �, x : A ! B

R !

�) �, x : A
�, x : ¬A ) � L¬

�, x : A ) �
�) �, x : ¬A R¬

Modal Rules:

�, x : 2A, xRy, y : A ) �
�, x : 2A, xRy ) � L2 �, xRy ) �, y : A

�) �, x : 2A
R2⇤

*in R2, y has to be a fresh label (not occurring in � or �).

We can extend this sequent system for K with specific rules based on the frame properties
corresponding to T, K4 and S4 in Kripke semantics to get labeled sequent calculi for these
logics.

Definition 3.16. Sequent calculi TlsT , TlsK4 and TlsS4 can be created by extending
TlsK with the following rules based on the frame properties associated with these logics
in Kripke semantics:

�, x : 2A, x : A ) �
�, x : 2A ) �

ref
�, x : 2A, xRy, y : 2A ) �

�, x : 2A, xRy ) �
trans

Definition 3.17. For the rules L^, R^, L_, R_, L !, R !, L¬, R¬ and ref we call
the prefix x the active prefix of the rule.

2The smaller implications are connected with disjunctions in the interpretation because we still want,
just as in a normal sequent, that we can derive a sequent if and only if at least one of the succedent
formulas can be derived when all the antecedent formulas are true.
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For the rules L2, R2 and trans we call the prefixes x and y the active prefixes and xRy

the active relational atom of the rule, x is called the first prefix and y the second prefix.

The transitivity and reflexivity rules used here are not the original rules used by Negri
in [18]. The reason to use other transitivity and reflexivity rules is that these rules are
a bit easier to work with when comparing this calculus to Ths and G3m. Why this is,
and what changes when the original rules of Nergi are used is explained in 6.5.

Even though these calculi are not especially constructed for tree-labeled sequents, they
do preserve the tree labeling property when these rules are used in an bottom-up fashion.
This means that if we only want to limit our view to tree-labeled sequents, we can safely
use these sequent systems.

Proposition 3.18. If � ) � is an rooted tree-labeled sequent and a conclusion of one
of the rules of Tls, then the premises are also rooted tree-labeled sequents.

Proof. Check for each rule whether this is true.
For the Propositional rules, ref, trans and L2 this is trivial because they do not add
relational atoms.

The rule R2 adds a relational atom xRy such that x 2 LABconclusion and y /2 LABconclusion.
Therefore the added relational atom xRy adds a branch from x to the new label y, which
preserves the tree structure of Rconclusion to Rpremise. ⌅

These labeled calculi have some nice properties which the Gentzen sequent systems G3m

do not have such as symmetry of the modal rules and invertibility of all the rules.
However, the L2 rule includes implicit contraction which complicates simple termination
of the calculus even for TlsK . Besides this, weakening and contraction are both height
preserving admissible. This is proven in propositions 4.4 and 4.12 in [18].

3.3 Tree-hypersequent Calculus

In this section the tree-hypersequent system of Poggiolesi [23] is presented. This system is
very similar to Brünnler’s deep sequent system [5]. The system is an expansion of Avron’s
hypersequent system [2]. In the hypersequent system not only single sequents are used as
nodes in derivations, but multiple sequents are used together in one derivation step. The
tree-hypersequent system is an extension of hypersequents where a tree ordering between
the sequents is created. The syntax places these sequents in a tree structure. This tree
structure will be encoding the accessibility relation between different world nodes in the
semantics when creating the Schütte countermodels later on.
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Via this tree structure the connection with the tree-labeled calculi can be seen. Because
these calculi work with tree-hypersequents some additional notation is needed to encode
the tree structure between sequents. Besides that we establish some conventions which
make describing the rules of the system more concise.

• ";" and "/" are two meta-linguistic symbols that connect two sequents in the
hypersequent. "/" indicates a parent-child relation between the two sequents and
";" indicates an equal relation.

• �) �, .... denote (multiset) sequents.

• G,H, .... denote tree-hypersequents.

• X,Y , .... denote multisets of tree-hypersequents.

First let us see what tree-hypersequents are.

Definition 3.19. A tree-hypersequent THS is inductively defined in the following way:

• if S is a sequent, then S is a tree-hypersequent ,

• if S is a sequent and G1, ...Gn are tree-hypersequents, then S/G1; ....;Gn is a tree-
hypersequent .

The interpretation of tree hypersequents is similar to that of tree-labeled sequents.

Definition 3.20. The interpretation of a tree-hypersequent is inductively defined in the
following way

• I(�) �) ⌘def
V

i2�Ai !
W

i2�Bi .̇

• I(�) �/G1; ....;Gn) ⌘def I(�) _ 2I(G1) _ .... _ 2I(Gn) .

Example 3.2. The tree structure of the following tree-hypersequent is visually shown:

S1/((S2/S3);S4; (S5/(S6;S7))) .

S1

S2

S3

S4 S5

S6 S7
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The rules of the Ths⇤ calculi only focus on one or two sequents that are in the tree-
hypersequent. To do this without describing the whole context of the tree-hypersequent
we use the notation G[�) �] or G[H]. Informally this represents a focus function. G[ ]

should be seen as a tree-hypersequent G with one hole in it. It becomes a real tree-
hypersequent if this hole gets filled in with a sequent S, or a tree hypersequent H. If a
rule changes something in the sequents of the tree-hypersequents on which in focused, the
other sequents in the tree-hypersequent remain unchanged. If we for example have the
tree hypersequent G: S1/((S2/S3);S4; (S5/(S6;S7))), and we want to focus on sequent
�4 we can do this by describing G as G[S4]. Which means that we look at sequent
S4, which is somewhere in the tree-hypersequent G. More information and a formal
definition of this notation can be found in section 6.1 of [23].

3.3.1 Tree-hypersequent calculi for K, T, K4 and S4

Definition 3.21. Sequent calculus ThsK :
Axioms:

G[p,�) �, p]
Ax

Propositional Rules:

G[�) �, A]

G[¬A,�) �]
L¬

G[A,�) �]

G[�) �,¬A]
R¬

G[A,B,�) �]

G[A ^B,�) �]
L^

G[�) �, A] G[�) �, B]

G[�) �, A ^B]
R^

G[A,�) �] G[A,�) �]

G[A _B,�) �]
L_

G[�) �, A,B]

G[�) �, A _B]
R_

G[�) �, A] G[B,�) �]

G[A ! B,�) �]
L !

G[�, A ) �, B]

G[�) �, A ! B]
R !

Modal Rules:

G[2A,�) �/(A,⌃) �/X)]

G[2A,�) �/(⌃) �/X)]
L2

G[�) �/ ) A]

G[�) �,2A]
R2

Definition 3.22. Sequent calculi ThsT , ThsK4 and ThsS4 can be created by extending
ThsK with the following rules based on the frame properties associated with these logics
in Kripke semantics:

G[2A,A,�) �]

G[2A,�) �]
ref

G[2A,�) �/(2A,⌃) �/X)]

G[2A,�) �/(⌃) �/X)]
trans
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Just as the Tree-labeled sequent calculi these calculi have some nice properties like in-
vertibility of the rules and height preserving admisibility of contraction and weakening.
But is also has the same kind of problems as the tree-labeled sequent calculi. For example
the L2 rule also has implicit contraction in it, which makes termination of the calculus
not straightforward.

3.4 Initial comparison of the three calculi

The G3m⇤ calculi are very concise in syntax and have a close resemblance to the original
Gentzen systems for propositional logic. This makes them quite easy to use and read
derivations in them. However, the downside is that the calculus does not preserve its
’history’ when used in backwards proof search. When a modal rule like the K2 is used,
the additional boxed formulas that are in the antecedent of the conclusion are ’weakened
away’ and do not occur in the premise of that rule. If we then also want to unfold these
formulas, it is necessary to use backtracking.

This is not needed in the other two calculi. Here we preserve the formulas because the
usage of the R2 rule creates a new related sequent in Ths⇤ or an extra related label
in Tls⇤. This preservation of sequents or labels in the modal rules makes all of them
invertible and makes backtracking unnecessary in these calculi. On the other hand, it
makes them have a lot of formula’s accumulating in the sequents when doing backward
proof search. This makes nodes in derivations of these two calculi get big very fast, and
hard write down concise.

Although there is no backtracking needed in Ths⇤ and Tls⇤, the drawback of this is
that the L2 rule in both systems includes implicit contraction of the 2A formula in the
antecedent. Because of this even ThsK and TlsK are not straightforwardly terminating,
while this is the case for G3mK . However, this is easily fixed by limiting the application
of the L2 rule. In general, Ths⇤ and Tls⇤ are very similar and one can translate rules
and derivations of the one into the other, as is shown by Gore and Ramanayake [12].

More intricate differences between the these calculi will become clear when we start
looking at how the Schütte counter model construction works for these three calculi
in chapter 5. But before that we will first explain the Schütte method for proving
completeness and defining what a Schütte countermodel is.



Chapter 4

Proof Procedures and the Schütte
Method

To show that the three systems produce the same Schütte models, it is necessary to first
define what a Schütte model is. Because Schütte models are models that are constructed
in these specific Schütte style completeness proofs, we will first characterize these Schütte
proofs, and list three essential parts in the proof that need to be present in a completeness
proof if it wants to be categorized as a Schütte proof. These parts are a proof procedure,
saturation and countermodel construction. As we will see some parts of this overall
method are the same regardless which calculus is used. However, some parts of the proof
are calculus depended. In this chapter we will look at the shared parts of the Schütte
proof.

4.1 Example of a Schütte proof

As a start, we begin by looking at an example of a Schütte proof to get an idea of what
they look like. The example we will treat is the proof of completeness of TlsK for the
semantics of Kripke models. The Schütte proof we will treat here is based on the proof
of theorem 5.4 in [19], and a similar proof method can be found in chapter 8 (#4-#6)
of [9] for prefixed tableaus. A difference is that these sources also include proofs for the
Kripke semantics of the logics K4, T and S4. These will not be treated here for the sake
of keeping it short.

The proof rests on the idea that the backward application of the rules in a proof procedure
eventually unfolds every complex formula that is present in the to be proven sequent.
Because all formulas get unfolded, atomic propositions accumulate in the branches of
the derivation tree. When all leaves of the derivation eventually are axioms then we
have a proof. However, if such a proof does not exist, the application of the rules to

25
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these branches of the derivation tree goes on forever. If this is the case for a branch
in the derivation it is possible to use this branch to construct a Schütte countermodel.
This means that, just as every Schütte proof, we will show completeness using modus
tollens. We will proof that if a sequent is underivable, we can construct a countermodel
by directly using the failed derivation tree.

Lemma 4.1 (Königs lemma). An infinite tree with only finitely branching vertexes has
an infinite branch.

Theorem 4.2. Let S = � ) � be a labeled sequent in TlsK . Either the sequent is
derivable, or one can construct a Schütte countermodel which refutes the interpretation
of the sequent.

Proof. 1. Systematic proof procedure for sequent S

Stage 0: Put S at the root of the tree.

Stages n>0 have two cases:

Case 1: Every leaf of the derivation is an axiom. This makes our tree a proof of S and
we stop the procedure.

Case 2: Not every leave of the derivation is an axiom. We continue the construction
of the derivation tree by applying rules to the leafs of the derivation tree which are not
axioms following the order of the stages.

There are 10 different stages, one for each rule of TlsK . At stage 10+1, return to stage
1.

Stage 1 L^:

For each leaf sequent which is not an axiom apply rule L^ backwards as long as possible.
Meaning, if the sequent is of the form

x1 : A1 ^B1, ....., xm : Am ^Bm,�0 ) �

where there is no formula with conjunction as its main connective in �0, we will write

x1 : A1, x1 : B1, ....., xm : Am, xm : Bm,�0 ) �

above it and thus apply rule L^ backwards m times.

Stage 2 R^:

For each leaf sequent which is not an axiom apply rule R^ backwards as long as possible.
Meaning, if the sequent is of the form

�) x1 : A1 ^B1, ....., xm : Am ^Bm,�0
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where there is no formula with conjunction as its main connective in �0. We will write
2m premise sequents

�) x1 : C1, ....., xm : Cm,�

above it, where Ci is either Ai or Bi. And thus we apply rule R^ backwards m times.

Stage 3 L_:

For each leaf sequent which is not an axiom apply rule L_ backwards as long as possible.
This is done in the same way as in stage 2.

Stage 4 R_:

For each leaf sequent which is not an axiom apply rule R_ backwards as long as possible.
This is done in the same way as in stage 1.

Stage 5 L !:

For each leaf sequent which is not an axiom apply rule L ! backwards as long as possible.
Meaning, if the sequent is of the form

x1 : A1 ! B1, ....., xm : Am ! Bm,�0 ) �

where there is no formula with implication as its main connective in �0. We will write
2m premise sequents of the form

xi1 : Bi1 , ....., xik : Bik ,�
0
) xjk+1 : Ajk+1 , ....., xjm : Ajm ,�

above it, where i1, ..., ik 2 {1, ....,m} and jk+1, ...., jm 2 {i, ...,m}� {i1, ..., ik}. We thus
apply rule L^ backwards m times.

Stage 6 R !:

For each leaf sequent which is not an axiom apply rule R ! backwards as long as possible.
Meaning, if the sequent is of the form

�) x1 : A1 ! B1, ....., xm : Am ! Bm,�0

where there is no formula with implication as its main connective in �0. We will write

x1 : A1, ....., xm : Am,�) x1 : B1, ....., xm : Bm,�0

above it and thus apply rule R ! backwards m times.

Stage 7 L¬:

For each leaf sequent which is not an axiom apply rule L¬ backwards as long as possible.
Meaning, if the sequent is of the form

x1 : ¬A1, ....., xm : ¬Am,�0 ) �
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and there is no formula with negation as its main operator in �0. We will write

�0 ) x1 : A1, ....., xm : Am,�

above it and thus apply rule L¬ backwards m times.

Stage 8 R¬:

For each leaf sequent which is not an axiom apply rule R¬ backwards as long as possible.
This is done in the same way as in stage 7.

Stage 9 L2:

For each leaf sequent which is not an axiom apply rule L2 backwards as long as possible.
Meaning, if the sequent is of the form

x1 : 2A1, ....., xm : 2Am, x1Ry1, .., xmRym,�0 ) �

where there is no pair of labeled formula with the necessity operator as its main operator
and relational atom in �0 of the form x : 2A and xRy

1. We will write

y1 : A1, ...., ym : Am, x1 : 2A1, ....., xm : 2Am, x1Ry1, .., xmRym,�0 ) �

above it and thus apply rule L2 backwards m times.

Stage 10 R2:

For each leaf sequent which is not an axiom apply rule R2 as much as possible. Meaning,
if the sequent is of the form

�) x1 : 2A1, ....., xm : 2Am,�0

where there is no formula with the necessity operator as its main operator in �0. We
will write

x1Ry1, .., xmRym,�) y1 : A1, ...., ym : Am,�0

above it, where y1, ..., ym are fresh labels. We thus apply rule R2 backwards m times.

If for any stage n, the sequent is neither an axiom and the rule of that stage is not
applicable we will write the sequent itself above it.

If the reduction tree is finite, this means that each leaf is an axiom, and it is thus a proof
of the sequent at the root of the tree. If the reduction tree is infinite, there is an infinite
branch in the tree. This is based on the fact that all of our rules are finitely branching,
all of them have at most two premises. Because of this and Königs lemma we know that
the tree must have a finite branch to be a finite tree. This means that one of the leafs
does not result in an axiom and the tree is thus not a proof of the sequent at the root.

1Where the label of the boxed formula is the same as the first active prefix in the relational atom.
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2 Construction of the countermodel
It is now possible to construct a countermodel to that sequent by using a branch which
is infinite.

Let S0, S1, S2, ... be such an infinite branch.

Consider the sets of labeled formulas and relational atoms

� ⌘

[

0i

S
a
i � ⌘

[

0i

S
s
i

based on such branch.

A Kipke model is constructed which forces all formulas in � and no formula in �.

Consider the following Kripke model M =< W,R, V >:

• W is the set of labels in � and � .

• R consists of all relational atoms in � .

• For all atoms p: V (p, w) = 1 () w : p 2 � .

We can now show with induction on the complexity of the formulas that M, w ✏ A if
w : A 2 � and M, w 2 A if w : A 2 �.

Case w : A = w : p and w : A 2 �:

By the definition of the Kripke model if w : p 2 � then p is also forced in the model in
world w and thus M, w ✏ p.

Case w : A = w : p and w : A 2 �:

If w : p 2 � then w : p cannot also be in �, otherwise the branch would have an axiom
in it which is a contradiction. This is because there is no way in the logic to remove an
atomic formula in the branch if we look from the root to the leaf, the atomic propositions
are upward cumulative. So if w : p is also somewhere in � there has to be a sequent
in the branch such that w : p,� ) w : p,� which is an axiom. This means that if
w : p 2 �, then M, w 2 p.

Induction hypothesis:

If A is of the form B � C where � 2 {^,_,!} or A is of the form �B where � 2 {2,¬},
we know that for the formulas B and C that M, w ✏ B,C if w : B,w : C 2 � and
M, w 2 B,C if w : B,w : C 2 �.

Case w : A = w : B ^ C and w : A 2 �:

If w : B^C 2 �, then by the fact that our procedure was infinite and all rules are applied
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as much as possible, it must be the case that w : B and w : C 2 � by the use of rule L^.
By the induction hypothesis M, w ✏ B and M, w ✏ C. Therefore M, w ✏ B ^ C.

Case w : A = w : B _ C and w : A 2 �:

If w : B_C 2 �, then by the fact that our procedure was infinite and all rules are applied
as much as possible, it must be the case that w : B or w : C 2 � by the use of rule L_.
By the induction hypothesis then M, w ✏ B or M, w ✏ C. Therefore M, w ✏ B _ C.

Case w : A = w : B ! C and w : A 2 �:

If w : B ! C 2 �, then by the fact that our procedure was infinite and all rules are
applied as much as possible, it must be the case that w : C 2 � or w : B 2 � by the
use of rule L !. By the induction hypothesis then M, w 2 B or M, w ✏ C. Therefore
M, w ✏ B ! C.

Case w : A = w : ¬B and w : A 2 �:

If w : ¬B 2 �, then by the fact that our procedure was infinite and all rules are applied
as much as possible, it must be the case that w : B 2 � by the use of rule L¬. By the
induction hypothesis then M, w 2 B. Therefore M, w ✏ ¬B.

Case w : A = w : 2B and w : A 2 �:

If w : 2B 2 �, we consider all the relational atoms wRx 2 �. If there are none, then no
world is accessible from world w, so w ✏ 2B trivially holds. If there are relational atoms
wRx 2 �, then by the fact that our procedure was infinite and all rules are applied as
much as possible, it must be the case that x : B 2 � by the use of rule L2 for every
such relational atom. By the induction hypothesis then M, x ✏ B for every world x for
which wRx. Therefore M, w ✏ 2B.

Case w : A = w : B ^ C and w : A 2 �:

If w : B ^ C 2 �, then by the fact that our procedure was infinite and all rules are
applied as much as possible, it must be the case that w : B or w : C 2 � by the use of
rule R^. By the induction hypothesis M, w 2 B or M, w 2 C. Therefore M, w 2 B ^C.

Case w : A = w : B _ C and w : A 2 �:

If w : B _ C 2 �, then by the fact that our procedure was infinite and all rules are
applied as much as possible, it must be the case that w : B and w : C 2 � by the
use of rule R_. By the induction hypothesis then M, w 2 B and M, w 2 C. Therefore
M, w 2 B _ C.

Case w : A = w : B ! C and w : A 2 �:

If w : B ! C 2 �, then by the fact that our procedure was infinite and all rules are
applied as much as possible, it must be the case that w : C 2 � and w : B 2 � by the
use of rule R !. By the induction hypothesis then M, w ✏ B and M, w 2 C. Therefore
M, w 2 B ! C.
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Case w : A = w : ¬B and w : A 2 �:

If w : ¬B 2 �, then by the fact that our procedure was infinite and all rules are applied
as much as possible, it must be the case that w : B 2 � by the use of rule R¬. By the
induction hypothesis then M, w ✏ B. Therefore M, w 2 ¬B.

Case w : A = w : 2B and w : A 2 �:

If w : 2B 2 �, then by the fact that our procedure was infinite and all rules are applied
as much as possible, it must be the case that x : B 2 � for some x by the use of rule R2,
and we have the relational atom wRx 2 �. By the induction hypothesis then x 2 B for
a world x which is accessible from world w. Therefore M, w 2 2B.

For each formula in the to be proven sequent, it is the case that if the formula is in the
antecedent, then it is forced in the model, and if it is in the succedent of the sequent, then
it is not forced in the model. Therefore, the model is a countermodel to the interpretation
of that sequent ⌅

Corollary 4.3 (completeness). If a formula A is valid in every Kripke model, then the
sequent ) x : A it is derivable in TlsK

We see here that the proof contains two important parts. First, there is the proof
procedure which either finds a proof for the sequent or creates at least one infinite
branch. Secondly, there is the countermodel construction, where this infinite branch is
used to construct the worlds of the model using the labels in the branch, and forcing
the atomic propositions in the antecedents of the sequents in the branch. These two
steps are the main parts of a Schütte proof. However, to prove that the created model is
indeed a countermodel, it is especially important that the rules were used on all formulas
encountered such that we could use induction on the complexity of the formulas in the
sequent. This was ensured because the proof procedure used the rules of TlsK as much
as possible. We will see this essential part of the proof’s argument later come back as a
separate property of a derivation’s branch: saturation.

4.2 What is a Schütte proof?

In a Schütte proof of completeness for a sequent system there are three steps which
are important. Two of which we saw already explicitly in the example. First is the
proof procedure, this is the procedure which is used to create a derivation tree which
either results in a proof, or will have the information for us to create countermodels.
All derivation trees consist, like proofs, of sequent, tree-hypersequent or labeled sequent
nodes which are connected by the rules of the calculus, where the root node is the ’to be
proven’ sequent. In the proof of completeness for TlsK in the previous section we saw
one of these procedures.
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Next it is important that from this proof procedure we can derive a branch which is
rule-saturated if there is no proof for the root sequent. The the branch itself needs to
be saturated for all the rules, meaning that we used the rules in all possible ways at
least once. Generally this means that the proof procedure is designed in such a way
that each branch will either end with an axiom or be saturated for the rules, just as in
the example. But besides rule-saturation one can also define a more semantic version
of saturation which is based on the interpretation of the different connectives in Kripke
semantics in a sequent. Because of the closeness of the rules of sequent calculi to the
semantic interpretation of the connectives in Kripke semantics, most of the time this
kind of saturation follows directly from the rule application. In this thesis we will treat
this kind of saturation separate, because by separating these it is possible to show what
is common to the saturation in all the different calculi, and where the calculi differ: their
rules. To do this we will introduce a intermediate step between the rule-saturation of
the branch and the countermodel construction. We will introduce what we will call the
saturation of a Schütte set of sequents or a Schütte set.

Figure 4.1: Full process of creating Schütte countermodels.

The last part in a Schütte proof is to show that this saturated Schütte set of sequents
can be used to construct a Schütte model that refutes the original sequent, meaning it
is a countermodel to the formula which is the interpretation of that sequent. Because
of the saturation, it is provable that this model is actually a countermodel. Figure 4.1
shows these three steps in order. In the next three sections (4.2.1-4.2.3) we will define
all these concepts.

4.2.1 Proof procedure

Definition 4.4 (proof procedure, failed leaf, failed branch). A procedure is called a
proof procedure for a sequent system if and only if the following conditions are met

1. The initialization of the procedure includes placing the ’to be proven’ sequent at
the root of the derivation tree
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2. The steps in the proof procedure consist only of applying rules of the sequent
system to the leaves in a bottom-up fashion.

If the leaves of the finished derivation tree are all axioms of the sequent system, then the
derivation tree is a proof of the root sequent.

If at least one of the leaves of the derivation tree is not an axiom of the system, then the
derivation tree if not a proof of the root sequent. These leaves are called failed leaves,
and the branches from the root sequent to these leaves are called failed branches. It
can also be the case that a failed branch is infinite, as is the case in the example in the
previous section.

Remark 4.5. For the sequent calculi G3m⇤ we will allow for a certain amount of back-
tracking to take place. This is, however, limited in the following way:

In a derivation in G3m⇤ it is allowed to backtrack to a sequent which has occurred
earlier in the branch of the derivation tree if and only if that sequent is a conclusion of
either the K2 or 42 rule. And after backtracking, the K2 or 42 rule is immediately
applied backwards again such that the principal formula 2B of the newly applied K2
or 42 rule has not been used as a principal formula for a K2 or 42 rule, applied to this
sequent yet.2

In a Schütte proof such a procedure is used to show that if there is no proof found by
the procedure, the derivation tree can be used to construct a model that refutes the
root sequent, and thus showing completeness. For such a Schütte model not the whole
derivation tree is needed, we only need one branch of the derivation three. It is important
that the branch is a failed branch. This also means that with one derivation it might
be possible to create multiple different countermodels, when there are multiple different
failed branches in the derivation tree.

4.2.2 Saturation

The notion of saturation is important in Schütte completeness proofs because it will
ensure we have generated enough information in a derivation’s branch, by using the
calculus’ rules, to construct a countermodel. We do see notions of saturation for example
in [19], [10] and [17]. However, in some Schütte style proofs saturation is not explicitly
mentioned such as in our example of in section 4.1, but these proof implicitly include

2G3m⇤ does not really need the backtracking action itself. It is also possible to directly apply the
K2 or 42 rule multiple times to a sequent S. Once with each formula 2B 2 Ss as principal. This is
done in a disjunctive fashion meaning that if one of these premises is provable, then the sequent S is
provable. If it is done this way, there is no need for backtracking. This is for example done in section
2.2.1 of Bílková [4, p.15] and in Chapter 8 of this thesis with the calculus DYK. Here, however, we will
use backtracking to keep the similarity with Ths⇤ and Tls⇤
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saturation in some form. In the Schütte proof in section 4.1, the fact that all rules are
used exhaustively in infinite steps makes it saturated.

A branch of a derivation needs to be saturated for all the rules of the logic to be used as
a countermodel. But what does saturation exactly mean? First there is rule-saturation.
If a branch of a derivation is rule-saturated it means that it is saturated for all the
rules of the calculus. All the rules of the calculus are used in as many different ways as
possible. But because we are looking at different sequent systems with different rules
and sometimes additional syntax besides that of normal sequents, what counts as a rule-
saturated branch is different for each calculus. Therefore, we will treat this part of the
Schütte method in the next chapter, where we dive deeper into the specific sequent calculi
again.

Figure 4.2: Full process of creating Schütte countermodels, with addition of the
Schütte set of sequents intermediate step.

However it is possible to also define another type of saturation which is not based on the
rules of the calculus, but based on the truth conditions of Kripke models.

This kind of saturation is inspired by the definition of saturation described in definition
8.3 and 8.5 of [17, p.57-59] and the proof of theorem 2 of [1, p.936]. This kind of saturation
is not based on branches of a derivation, but saturation of sequents and saturation of sets
of related sequents. It is possible to create these sets of related sequents from saturated
branches, and then create countermodels from these sets. Because this kind of saturation
is the same for all of the three calculi we will use this as an intermediate step between
the saturated branch and the Schütte countermodel, as shown in figure 4.2.

Definition 4.6 (saturated sequent). A sequent S is a saturated sequent if the follow-
ing holds for all formula A,B and atomic proposition p:

1. If A ^B 2 S
a, then A 2 S

a and B 2 S
a.

2. If A ^B 2 S
s, then A 2 S

s or B 2 S
s.

3. If A _B 2 S
a, then A 2 S

a or B 2 S
a.

4. If A _B 2 S
s, then A 2 S

s and B 2 S
s.

5. If A ! B 2 S
a, then A 2 S

s or B 2 S
a.
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6. If A ! B 2 S
s, then A 2 S

a and B 2 S
s.

7. If ¬A 2 S
a, then A 2 S

s.

8. If ¬A 2 S
s, then A 2 S

a.

9. There is no atomic proposition p such that p 2 S
a and p 2 S

s

These sequents are saturated for the propositional truth conditions, but not for the
truth conditions for the modal operators. To create Kripke models we need more than
saturated sequents therefore we will also need a Schütte set of sequents. This set needs
than also to be saturated for the modal operator.

Definition 4.7 (Schütte set). A Schütte set of sequent S =< S,R > is a related set of
sequent such that:

1. S is a non empty set of sequents.

2. R ✓ (S ⇥ S) is a binary relation on S.

Definition 4.8 (Saturated Schütte set). A Schütte set of sequents S =< S,R > is
saturated if and only if the following conditions are met for every sequent S 2 S:

1. S is a saturated sequent

2. If 2A 2 S
a, then for all sequents S1 2 S such that SRS1 it is the case that A 2 S

a
1

3. If 2A 2 S
s, then there is a sequent S1 2 S such that SRS1 and A 2 S

s
1

Remark 4.9. For the modal logics T, K4 and S4 we need extra saturation conditions:

1. R is reflexive for T and S4

2. R is transitive for K4 and S4

As said, there is, besides this definition of a saturated Schütte set of sequents, also a way
of talking about the saturation of a branch of a derivation for the rules of that calculus.
However, we can use the idea of a saturated set of sequents as an additional condition
for a proof procedure to be a candidate for a Schütte style completeness proof and the
construction of Schütte countermodels.

Definition 4.10. A proof procedure is a possible proof procedure of a Schütte counter-
model construction if the following condition is met:

1. Each failed branch in the procedure is saturated for the rules of the calculus.
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2. For each failed branch in the procedure the sequents in that failed branch can be
combined (in a way specific to the sequent calculus) such that the created Schütte
set is a saturated Schütte set.

We will see in Chapter 5 that for the three different type of calculi G3m⇤, Tls⇤ and
Ths⇤, if a branch is rule-saturated for the rules of that calculus, it is also possible to use
this branch to construct a saturated Schütte set of sequents making condition 2 of the
definition follow from the first condition for these calculi. We will at the moment not
show explicitly how to construct these saturated Schütte sets of sequents from a failed
branch in a proof search for different calculi. This is shown in chapter 5.

4.2.3 Schütte countermodel construction

If a rule-saturated failed branch of a proof procedure can be used to construct a saturated
Schütte set of sequents then it can also be used to create a Schütte countermodel. We will
now show that we can use such a saturated Schütte set to create a countermodel. If we
have a Schütte set, we use it to create a Kripke model which has for each sequent in the
set a world corresponding to it, in which all the atomic propositions in the antecedent of
that sequent are forced. The relation function between these worlds in the constructed
Kripke model is the same as the relation between the sequents in the Schütte set of
sequents. This will mean that each world forces all propositions in the antecedent of its
corresponding sequent, but none of the propositions in the succedent of the sequent. The
relation between a Schütte set of sequents, and a Schütte model is very close, and this
idea of sequents becoming worlds in the model is important to keep in mind in the next
chapter.

Definition 4.11 (Construction of a Schütte countermodel from a saturated Schütte set
of sequents). If S =< S,R > is a saturated Schütte set of sequents then a countermodel
M can be constructed which is a countermodel so that for each sequent s 2 S. The
construction is as follows:

Construct the following Kripke model M =< W,R, V >

• W = S; For each Si 2 S we add an world wi to W .

• R is a relation over W such that wiRwj () SiRSj .

• For all atoms p: V (p, wi) = 1 () p 2 S
a
i .

Lemma 4.12. If S =< S,R > is a saturated Schütte set of sequents, then the model M
constructed from S according to the construction of definition 4.11 is a countermodel to
the interpretation of each of the sequents in Si 2 S. More precisely: M, wi 2 I(Si) for
each Si 2 S.
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Proof. We will show that for each sequent Si 2 S of S: M, wi ✏ A if A 2 S
a
i and

M, wi 2 A if A 2 S
s
i . This is shown by induction on the complexity of the formulas.

If A is atomic:

By the construction of the model M, if A 2 S
a
i then V (A,wi) = 1 and M, wi ✏ A. If

A 2 S
s
i then A cannot be also in S

a
i , based on the fact si is a saturated sequent and

the requirement (7) of definition 4.6. Because of this and the specific construction of M,
V (A,wi) = 0 and M, wi 2 A

If A is B ^ C and A 2 S
a
i :

If B ^ C 2 S
a
i , then based on the fact Si is a saturated sequent and the requirement

(1) of definition 4.6 also B and C 2 S
a
i . By the induction hypothesis M, wi ✏ B and

M, wi ✏ C. Therefore M, wi ✏ B ^ C.

If A is B ^ C and A 2 S
s
i :

If B ^ C 2 S
s
i , then based on the fact si is a saturated sequent and the requirement

(2) of definition 4.6 also B 2 S
s
i or C 2 S

s
i . By the induction hypothesis M, wi 2 B or

M, wi 2 C. Therefore M, wi 2 B ^ C.

Similar arguments when A is B _ C, B ! C or ¬B based on the fact the sequent Si is
saturated.

If A is 2B and A 2 S
a
i :

If 2B 2 S
a
i , then based on the fact that S is a saturated Schütte set of sequents and

the requirement (2) of definition 4.8 and the construction of the relation R in definition
4.11, all worlds wj for which wiRwj , B 2 S

a
j . By the induction hypothesis for all wj

M, wj ✏ B. Therefore M, wi ✏ 2B.

If A is 2B and A 2 S
s
i :

If 2B 2 S
s
i , then based on the fact that S is a saturated Schütte set of sequents and

the requirement (3) of definition 4.8 and the construction of the relation R in definition
4.11, there is a world wj for which wiRwj and B 2 S

s
j . By the induction hypothesis

M, wj 2 B. Therefore M, wi 2 2B.

The interpretation of a sequent I(Si) ⌘
V

S
a
i !

W
S
s
i . Because M, wi ✏ A for all A 2 S

a
i

and M, wi 2 A for all A 2 S
s
i , M, wi 2

V
S
a
i !

W
S
s
i . ⌅

If we have created this saturated Schütte set of sequents from a branch of a proof search of
a calculus, the completeness of that calculus for models with the proper frame properties
follows as a corollary. This is because the sequent at the root of the branch is incorporated
in one of the sequents of the Schütte set, which means the Schütte countermodel also
refutes the root sequent.
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We have seen that a Schütte countermodel is a countermodel created from a saturated
Schütte set of sequents which is derived from a rule-saturated failed branch of a proof
procedure. It depends on the logic when a branch is rule-saturated and how the Schütte
set is constructed out of the branch. In the next chapter we will look at how one can
construct a Schütte set of sequent from a branch in a derivation, and that if such a
branch is rule-saturated that constructed Schütte set is also saturated.



Chapter 5

Calculus Specific Parts of the
Schütte Method

This chapter looks at the calculus specific parts of the Schütte method for countermodel
construction. This includes (1) the construction of the Schütte set of sequents from a
failed derivation branch and (2) rule saturation for a derivation branch. We will also
show that if a failed branch is rule-saturated, it also constructs a saturated Schütte set
of sequents with the defined constructions.

In this Chapter, we will also explicitly see where the calculi differ. Because of this one
example is treated for all the three different calculi. An example for which a derivation,
a Schütte set of sequents and a Schütte countermodel are created. For this purpose, one
invalid sequent will be used which is the following:

2p ) 2p ^ 2q,2r

5.1 G3m

5.1.1 Rule-saturation

Definition 5.1 (Rule-saturation for G3m⇤). A branch in a derivation in G3m⇤ is
saturated for the rules of G3m⇤ if all its rules are used in all possible ways. This means
the following:

1. The propositional rules are used at least once for each different formula, which has
^, _, ¬ or ! as its main connective, which occur in the derivation branch between
applications of 42 or K2 rules. And this formula is used as the principal formula
in that propositional rule.

39



40 Chapter 5 Calculus Specific Parts of the Schütte Method

2. In G3mT and G3mS4, the rule T2 is used at least once for each different formula
2A 2 S

a which occur in the derivation branch between applications of 42 or K2
rules.

3. the rule K2 or 42 is used once for every different formula 2A 2 S
s occurring in

the derivation branch1.

Example 5.1. The following derivation is a derivation for 2p ) 2p^2q,2r in G3mK

and has a branch which is saturated for all the rules:

p ) p Ax

2p ) 2p,2r
K2

 
p ) r

2p ) 2q,2r
K2

p ) q
Backtracking

2p ) 2q,2r
K2

2p ) 2p ^ 2q,2r
R^

This derivation is not a proof because the second branch of the derivation tree does not
end in an axiom. Therefore we can use this branch in the construction of a G3mK

Schütte countermodel.

5.1.2 Schütte set of sequents construction

Before we can define the construction of a Schütte set from a derivation branch, we first
need to define a specific way to split up a G3m⇤ branch into segments. This is necessary
because specific parts of the branch will be used to make different sequents in the Schütte
set, and eventually worlds in the model.

Definition 5.2 (Branch segmentation marking). Let B = S1, S2, ..., Sn or B = S1, S2, ...

be a branch in a derivation in G3m⇤. This branch can be partitioned into segments u

by cutting the branch between the premise and conclusion of applied K2 or 42 rules
(depending on which calculus it is). We can mark these segments of a branch in a
bottom-up fashion giving us a set of sequent markers U and a binary relation on the
segments Q.

The marking of the segments is started with U0 = ; and Q0 = ;.

We start with marking sequent S1 and give it the segment-mark o, where U1 = U0 [ {o}

and Q1 = Q0.

Suppose Si is marked met segment-marker u, then we can also mark sequent Si+1 with
the following segment-marking rules:

1This can only be achieved via backtracking.
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1. If the K2 or 42 is used between Si and Si+1, sequent Si + 1 will be marked with
a new marker u

0, where Ui+1 = Ui [ {u
0
} and Qi+1 = Qi [ {(u, u0)}.

2. If a propositional rule or T2 is used between Si and Si+1, the sequent Si+1 will
get the same sequent marking u as Si, where Ui+1 = Ui and Qi+1 = Qi.

3. If backtracking is used between Si and Si+1, it is the case that Si+1 is the same
sequent as Sj and j < i. This means that Sj has already a segment-mark. Suppose
this mark is u

0. We will then give the sequent Si+1 also the mark u
0, where

Ui+1 = Ui and Qi+1 = Qi.

The final set of segment-markers U and the binary relation Q such that

U =
[

0in

Ui or with an infinite branch U =
[

0i

Ui .

Q =
[

0in

Qi or with an infinite branch Q =
[

0i

Qi .

This results in segments where each segment consists only of sequents which are con-
nected with each other via propositional rules and possible the T2 rule. Besides this,
each segment starts with either the root sequent, or a sequent which is a premise of the
K2 or 42 rule and ends with a sequent which is either the conclusion of the K2 or 42
rule, a backtracking action or the leaf node of the whole branch.

Remark 5.3. If we assume a limit on the T2 rule by adding the constraint that we use
the T2 rule only finitely many times on the same principal formula within a segment
then, because there are only finitely many different principal formulas, this lets us only
use the T2 rule finitely many times, and thus makes each segment finite.

Definition 5.4 (Schütte set of sequents construction for G3m⇤). A Schütte set of se-
quents SG3m =< S,R > can be constructed from a possibly infinite branch B of a
failed proof tree in G3m⇤ in the following way:

Let B = S1, S2, ..., Sn or B = S1, S2, ... be such a branch of sequents. This branch can
be partitioned into segments with marks U and binary relation Q by definition 5.2.

For a segment u let S1, S2, ..., Sm be all the sequents marked with u in the branch B.
For each segment-mark u 2 U a sequent Su can be created such that the antecedent and
succedent of Su are the following sets of formulas:

S
a
u = {A|A 2 S

a
j , 1  j  m} S

s
u = {A|A 2 S

a
j , 1  j  m}

With these sequents the Schütte set SG3m =< S,R > can be created where:

S = {Su|u 2 U}
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The binary relation R over the sequents in this set is defined in the following way:

SuRSu0 if and only if (u, u0) 2 Q

Besides this, if we are dealing with G3mT we take the reflexive closure of R, if we are
dealing with G3mK4 we take the transitive closure of R and if we are dealing with
G3mS4 we take the reflexive and transitive closure of R.

We can now use the Schütte set construction of definition 5.4 for the construction of the
set which comes with the failed saturated branch in example 5.1. The branch in this case
the sequence B =< 2p ) 2p ^ 2q,2r >,< 2p ) 2q,2r >,< p ) q;2p ) 2q,2r >

,< p ) r >. This branch can be separated into three segments:

1. u1 =< 2p ) 2p ^ 2q,2r >,< 2p ) 2q,2r >,< 2p ) 2q,2r > ,

2. u2 =< p ) q > ,

3. u3 =< p ) r > .

From these three segments we can create the following Schütte set of sequents SG3m =< S,R >,
where S = {Su1 , Su2 , Su3} with:

Su1 = 2p ) 2p ^ 2q,2q,2r ,

Su2 = p ) q ,

Su3 = p ) r

and the binary relation R = {Su1RSu2 , (Su1RSu3}. This Schütte set can then be used
to create the countermodel seen in figure 5.1 which refutes every sequent of the set S in
their respective world, and therefore also refutes the sequent 2p ) 2p ^ 2q,2r.

Figure 5.1: Schütte countermodel of the sequent 2p ) 2p ^ 2q,2r.

Proposition 5.5. If a failed branch in a derivation in G3m⇤ is saturated for the rules
of G3m⇤ then the Schütte set of sequents SG3m =< S,R > constructed from it by
definition 5.4 is a saturated set of sequents (definition 4.8).
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Proof. This is proven by looking at the conditions of definition 4.8 individually. Starting
with the conditions of definition 4.6.

Condition 1 of definition 4.6:

Suppose B ^ C is in an antecedent of a sequent in the branch segment u. Because of
the condition 1 of definition 5.1 we know that the segment is saturated for the L^ rule.
This means that the rule L^ is applied in the segment in at least the following way:

�, B, C ) �
�, B ^ C ) � L^

According to the construction of definition 5.4, we know therefore that for a sequent
Su 2 S that if B ^ C 2 S

a
u, then B,C 2 S

a
u. This satisfies condition 1 of definition 4.6.

Condition 2 of definition 4.6:

Suppose B ^ C is in an succedent of a sequent in the branch segment u. Because of the
condition 1 of definition 5.1 we know that the segment is saturated for the R^ rule. This
means that the rule R^ is applied in the branch in at least one of the following ways:

�) �, B

�) �, B ^ C
R^

�) �, C

��, B ^ C
R^

According to the construction of definition 5.4, we know therefore that for a sequent
Su 2 S that if B ^ C 2 S

s
u either B 2 S

s
u or C 2 S

s
u. This satisfies condition 2 of

definition 4.6.

The proofs for conditions 3-8 of definition 4.6 and the other propositional connectives
are similar to conditions 1 and 2.

Condition 9 of definition 4.6:

Suppose p is in a sequent of segment u in the branch. Because the branch is failed (and
atoms are upward cumulative in a segment of the branch) we know that p cannot be
in both an antecedent and succedent of any sequent in the branch segment. Because of
the construction of definition 5.10, we know therefore that if p 2 S

a
u that p /2 S

s
u, and if

p 2 S
s
u that p /2 S

a
u which satisfies condition 7 of definition 4.6.

This shows that condition 1 of 4.8 holds.

Condition 2 of definition 4.8:

Suppose 2B is in an antecedent of a sequent in the segment u. Because in the segment,
formulas of the form 2B are upwards cumulative we know that each formula 2B in the
antecedent of any sequent in the segment, it is also in the top sequent of the segment.
According to the construction of definition 5.4 the only sequents S0

u 2 S for which SuRSu0

are in the Schütte sequents created from segments which are connected to the top sequent
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in branch u with the K2 or 42 rule in the following way:

�) A

⌃,2�) �,2A
K2

Where for all formulas of the form 2B in the antecedent it is the case that 2B 2 2�,
therefore B is in the antecedent of the root sequent of segment u

0 and thus B 2 S
a
u0

which satisfies condition 2 of definition 4.8.

Condition 2 of definition 4.8:

Suppose 2B is in a succedent of a sequent in the segment u. Because in the segment
formulas of the form 2B are upwards cumulative we know that each formula 2B in the
succedent of any sequent in the segment, it is also in the top sequent of the branch.
Because of the saturation for the K2 or 42 rule we know that the K2 or 42 rule is
applied at least in the following way:

�) B

⌃,2�) �,2B
K2

Where the sequent � ) B is the bottom sequent of a new segment u
0. Because of the

construction of SG3m according to definition 5.4 we know there is the sequent Su0 for
which SuRSu0 and B 2 S

s
u0 which satisfies condition 3 of definition 4.8. ⌅

Remark 5.6. If we have a saturated branch in G3mT , G3mK4 or G3mS4 the transitivity
and reflexivity conditions hold trivially. Besides this, the saturated application of the
rules T2 and 42 ensure that condition 2 of definition 4.8 still holds.

5.2 Ths

5.2.1 Rule-saturation

Definition 5.7. A branch in a derivation in Ths⇤ is saturated for the rules of Ths⇤ if
all its rules are used in all possible ways at least once. This means the following:

1. All propositional rules are used at least once for each different formula in each
different sequent that occurs in the tree-hypersequents in the branch.

2. The rule L2 is used at least once for every different combination of parent-child
sequents and different formula 2A in the antecedent of the parent sequent in the
tree-hypersequents in the branch.

3. The rule R2 is used at least once for every sequent and 2A in the succedent of
that sequent that occurs in the three-hypersequents in the branch.
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4. in ThsT and ThsS4 the rule ref is used at least once for each different sequent
and each formula 2A in occurring in the antecedent of that sequent in the tree-
hypersequents in the branch.

5. in ThsK4 and ThsS4 the rule trans is used at least once least once for every different
combination parent-child sequents and different formula 2A in the antecedent of
the parent sequent in the tree-hypersequents in the branch.

Remark 5.8. With ’different sequent’ in the tree-hypersequents in the branch, we mean
the intuitive meaning of different sequents which occur throughout the tree-hypersequents
in a branch. These are exactly different in their marking as in definition 5.10 which we
see later on.

Example 5.2. The following derivation is a derivation of the example sequent 2p ) 2p ^ 2q,2r

in ThsK

2p ) 2r/p ) p
Ax

2p ) 2r/ ) p
L2

2p ) 2p,2r
R2

 
2p ) /p ) r; p ) q

2p ) / ) r; p ) q
L2

2p ) 2r/p ) q
R2

2p ) 2r/ ) q
L2

2p ) 2q,2r
R2

2p ) 2p ^ 2q,2r
R^

We see that the second branch of this derivation is not an axiom and that it is saturated
for all the rules. It is therefore possible to use this branch for the construction of a
Schütte countermodel.

5.2.2 Schütte set of sequents construction

Just as with G3m⇤ we need a preliminary definition before we can immediately create
the Schütte set. Now we do not have to segment parts of the derivation branch, but it
is necessary to track the different sequents which are in the tree-hypersequents in the
branch. We do this by adding markers to the sequents in the tree-hypersequent along
the branch.

Definition 5.9 (Tree-hypersequent branch marking). Let B = G1, G2, ..., Gn or B = G1, G2, ...

be a branch of tree-hypersequents connected with the rules of Ths⇤. The sequents in
the tree-hypersequents in this branch can be recursively marked in a bottom-up fashion,
giving us a set of markers M and a binary relation over these markers P .

The marking is started with M0 = ; and P0 = ;.

We start the marking at G1. Because G1 is only a single sequent of the from �) � we
give this sequent the mark o. Where M1 = M0 [ {o} and P1 = P0
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Suppose Gi is marked then we can construct a marking for Gi+1 in the following manner:

For each next tree-hypersequent up in the branch we have the following marking rules:

1. If the R2 rule is used such that:

G[

mz }| {
�) � /

m’z}|{
) A]

G[�) �,2A| {z }
m

]
R2

The newly created sequent in the tree-hypersequent in the premise is marked with
the fresh marker m0 and all other sequents in the tree-hypersequent in the premise
take over their marks from the conclusion tree-hypersequent. Mi+1 = Mi [ {m

0
}

and Pi+1 = Pi [ (m,m
0)

2. If another rule than R2 is used: All sequents in the tree-hypersequent in the
premise take over their marks from the conclusion tree-hypersequent. Mi+1 = Mi

and Pi+1 = Pi

The final set of markers M and the binary relation P such that

M =
[

0in

Mi or with an infinite branch M =
[

0i

Mi

P =
[

0in

Pi or with an infinite branch P =
[

0i

Pi

Definition 5.10 (Combined Sequents Ths⇤). The set of combined sequents from a
branch B of a failed proof tree in Ths⇤ can be constructed in the following way:

Let B = G1, G2, ..., Gn or B = G1, G2, ... be such a branch of tree-hypersequents. The
sequents in the three-hypersequents in this branch can be marked in a bottom-up fashion
according to definition 5.9 where we also gain a set of markers M , and a binary relation
over these markers P .

We can then split every tree-hypersequent Gi of the branch in its separate marked se-
quents so that Sm,i is the sequent in Gi which is marked with the mark m. For each
mark which is created in the marking of the branch we can create the following two sets:

�m = {A|A 2 S
a
(m,i) ^ 1  i  n} or with an infinite branch: �m = {A|A 2 S

a
(m,i) ^ 1  i}

�m = {A|A 2 S
s
(m,i) ^ 0  i  n} or with an infinite branch: �m = {A|A 2 S

s
(m,i) ^ 1  i}

We can then create the sequents Sm = �m ) �m for each marker m 2 M . With these
sequents we can create the Schütte set SThs =< S,R > such that

S = {Sm|m 2 M}
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The relation function R is defined such that: SxRSy if and only if, (x, y) 2 P . Besides
this, if we are dealing with ThsT we take the reflexive closure of R, if we are dealing
with ThsK4 we take the transitive closure of R and if we are dealing with ThsS4 we
take the reflexive and transitive closure of R.

With the saturated branch in example 5.2 it is possible to create a Schütte set with
definition 5.10. If we mark the sequents with the sequentmarking of definition 5.9 the
branch then consists of the following marked tree-hypersequents2:
< 2p ) 2p ^ 2q,2r >m1

< 2p ) 2q,2r >m1

< 2p ) 2r >m1 / <) q >m2

< 2p ) 2r >m1 / < p ) q >m2

< 2p )>m1 / <) r >m3 ;< p ) q >m2

< 2p )>m1 / < p ) r >m3 ;< p ) q >m2

Besides this we obtain the binary relation P = {(m1,m2), (m1,m3)}. With the con-
struction of definition 5.10 for the sequent set construction we create a sequent set
SThs =< S,R > where:

S = {S1, S2, S3}

R = {S1RS2, S1RS3}

with:
S1 = 2p ) 2p ^ 2q,2q,2r

S2 = p ) q

S3 = p ) r

If we use this set of saturated sequents to create a Schütte model we get the same model
as with G3mK , the model in figure 5.1.

Proposition 5.11. If a failed branch in a derivation in Ths⇤ is saturated for the rules of
Ths⇤ then the Schütte set of sequents SThs =< S,R > constructed from it by definition
5.10 is a saturated (definition 4.8).

Proof. This is proven by looking at the conditions of definition 4.8 individually. Starting
with the conditions of definition 4.6.

Condition 1 of definition 4.6:

Suppose B ^C is in the antecedent of a sequent marked with m in the branch. Because
2For readability the individual sequents in the tree-hypersequents are surrounded by "<>" and

marked.
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of the condition 1 of definition 5.7 we know that the branch is saturated for the L^ rule.
This means that the rule L^ is applied in the branch in at least the following way:

G[

mz }| {
�, B, C ) �]

G[�, B ^ C ) �| {z }
m

]
L^

According to the construction of definition 5.10, we know therefore that for the sequent
Sm 2 S, if B ^ C 2 S

a
m that B,C 2 S

a
m. This satisfies condition 1 of definition 4.6.

Condition 2 of definition 4.6:

Suppose B ^ C is in the succedent of a sequent marked with m in the branch. Because
of the condition 1 of definition 5.7 we know that the branch is saturated for the R^ rule.
This means that the rule R^ is applied in the branch in at least one the following ways:

G[

mz }| {
�) �, B]

G[�) �, B ^ C| {z }
m

]
R^

G[

mz }| {
�) �, C]

G[�) �, B ^ C| {z }
m

]
R^

According to the construction of definition 5.10, we know therefore for the sequent Sm 2

S that if B ^ C 2 S
s
m that either B 2 S

s
m or C 2 S

s
m. This satisfies condition 2 of

definition 4.6.

The proof condition 3-6 of definition 4.6 for the other propositional connectives is similar.

Condition 7 of definition 4.6:

Suppose p is in a sequent marked with m in the branch. Because the branch is failed
(and atoms are upward cumulative in the branch) we know that p cannot be in both an
antecedent and succedent of a sequent marked with m in the branch. Because of the
construction of definition 5.10, we know therefore that if p 2 S

a
m that p /2 S

s
m, and if

p 2 S
s
m that p /2 S

a
m which satisfies condition 7 of definition 4.6.

This shows that condition 1 of definition 4.8 holds.

Condition 2 of definition 4.8:

Suppose 2B is in the antecedent of a sequent marked with m in the branch. Because of
the condition 2 of definition 5.7 we know that the branch is saturated for the R2 rule.
This means that the rule R2 is applied in the branch at least once for each sequent
marked m

0 which is an immediate child of m in the branch in the following way:

G[

mz }| {
�,2B ) � /

m’z }| {
�0, B ) �0]

G[�,2B ) �| {z }
m

/�0 ) �0
| {z }

m’

]
L2
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According to the construction of definition 5.10, we therefore know that if 2B 2 S
a
m that

for all sequents m
0 such that SmRSm0 , B 2 S

a
m0 . This satisfies condition 2 of definition

4.8.

Condition 3 of definition 4.8:

Suppose 2B is in the succedent of a sequent marked with m in the branch. Because of
the condition 3 of definition 5.7 we know that the branch is saturated for the L2 rule.
This means that the rule L2 is applied in the branch at least once in the following way:

G[

mz }| {
�) � /

m’z}|{
) A]

G[�) �,2A| {z }
m

]
R2

According to the construction of definition 5.10, we know therefore that if 2B 2 S
s
m

there is a sequent m
0 such that SmRSm0 and B 2 S

s
m0 . This satisfies condition 3 of

definition 4.8. ⌅

Remark 5.12. If we have a saturated branch in ThsT , ThsK4 or ThsS4 the transitivity
and reflexivity conditions hold trivially. Besides this, the saturated application of the
rules ref and trans ensures that condition 2 of definition 4.8 still holds.

5.3 Tls

5.3.1 Rule-saturation

Definition 5.13. A branch in a derivation in Tls⇤ is saturated of the rules of Tls⇤ if all
its rules are used in all possible ways. This means the following:

1. All propositional rules are used at least once for each different prefixed formula
that occurs in the branch.

2. The rule L2 is used at least once for every different combination of prefixed formula
x : 2A and relational atom xRy which occur in the antecedent of a sequent in the
branch.

3. The rule R2 is used at least once for every different prefixed formula x : 2 which
occur in the succedent of a sequent in the branch.

4. In TlsT and TlsS4 the rule ref is used at least once for each different formula
x : 2A which occurs in the branch.

5. In TlsK4 and TlsS4 the rule trans is used at least once for every different com-
bination of prefixed formula x : 2A and relational atom xRy which occur in the
antecedent of a sequent in the branch.
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Example 5.3. The following derivation is a derivation for the example sequent 2p ) 2p ^ 2q,2r

in TlsK

xRy, x : 2p, y : p ) x : 2r, y : p Ax

xRy, x : 2p ) x : 2r, y : p L2
x : 2p ) x : 2p, x : 2r

R2

 
xRy, xRz, x : 2p, y : p, z : p ) y : q, z : r

xRy, xRz, x : 2p, y : p ) y : q, z : r L2
xRy, x : 2p, y : p ) x : 2r, y : q R2

xRy, x : 2p ) x : 2r, y : q L2
x : 2p ) x : 2q, x : 2r

R2
x : 2p ) x : 2p ^ 2q, x : 2r

R^

As with the example derivation in G3mK and ThsK , the second branch does not end in
an axiom and is saturated. This branch can be used to create a Schütte countermodel.
Notice that this derivation has much in common with the derivation in ThsK . But,
except for the syntax of ’/’ and ’;’ between the different sequents, here the sequents are
mixed together in one sequent and the labels show how we can pick them apart. The
relational atoms take the place of the meaning of the ’/’ syntax.

5.3.2 Schütte set of sequents construction

In G3m it was necessary to create a segment-marking of the branch, in Ths was neces-
sary to create a sequent marking of the Tree-hypersequents but for Tls it is not necessary
to create additional markings because the markings are already explicitly apparent in
the labeled sequents. These markings are the labels and thus the labels will be used to
create different sequents for the Schütte set of sequents.

Definition 5.14 (Combined Sequents Tls). The set of combined sequents from a branch
B of a failed proof tree in Tls⇤ can be constructed in the following way:

Let B = S1, S2, ..., Sn or B = S1, S2, ... be such a branch of labeled sequents. From
this branch two sets � and � of labeled formulas can be created, and a set of relational
atoms R such that:

� = {x : A | x : A 2 S
a
i , 1  i  m} or with an infinite branch: � = {x : A | x : A 2 S

a
i , 1  i}

� = {x : A | x : A 2 S
s
i , 1  i  m} or with an infinite branch: � = {x : A | x : A 2 S

s
i , 0  i}

R = {xRy | xRy 2 S
a
i , 1  i  m} or with an infinite branch: R = {xRy | xRy 2 S

a
i , 1  i}

Construct the set of combined sequents by making the following combined sequents
Sx = �x ) �x for each label x that is occurring in the sets � and � such that:

�x = {A|x : A 2 �}

�x = {A|x : A 2 �}
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With these sequents we can create the the Schütte set S =< S,R > where

S = {Sx|x is a label occurring in �,� or R}

The relation function R over this set of combined sequents is defined as:

SxRSy if and only if xRy 2 R

Besides this, if we are dealing with TlsT we take the reflexive closure of R, if we are
dealing with TlsK4 we take the transitive closure of R and if we are dealing with TlsS4

we take the reflexive and transitive closure of R.

It is now possible to use the saturated branch of example 5.3 to create a Schütte set of
sequents, and a countermodel. If we first create the sets �, � and R.

� = {x : 2p, y : p, z : p}

� = {x : 2p ^ 2q, x : 2q, x : 2r, y : q, z : r}

R = {xRy, xRz}

With this create a Schütte sequent set STls =< S,R > where:

S = {Sx, Sy, Sz}

R = {SxRSy, SxRSz}

With:
Sx = 2p ) 2p ^ 2q,2q,2r

Sy = p ) q

Sz = p ) r

If we use this set of saturated sequents to create a Schütte model we get again the same
model as with G3m, the model in figure 5.1 where x = 1, y = 2 and z = 3.

Proposition 5.15. If a branch in a derivation in Tls⇤ is saturated for the rules of Tls⇤

then the Schütte set of sequents STls =< S,R > constructed from it by definition 5.14
is saturated (definition 4.8).

Proof. This is proven by looking at the conditions of definition 4.8 individually. Starting
with the conditions of definition 4.6.

Condition 1 of definition 4.6:

Suppose x : B^C is in an antecedent of a sequent in the branch. Because of the condition
1 of definition 5.13 we know that the branch is saturated for the L^ rule. This means
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that the rule L^ is applied in the branch in at least the following way:

�, x : B, x : C ) �
�, x : B ^ C ) � L^

According to the construction of definition 5.14, we know therefore that for a sequent
Sx 2 S, if B ^ C 2 S

a
x that B,C 2 S

a
x. This satisfies condition 1 of definition 4.6.

Condition 2 of definition 4.6:

Suppose x : B^C is in an succedent of a sequent in the branch. Because of the condition
1 of definition 5.13 we know that the branch is saturated for the R^ rule. This means
that the rule R^ is applied in the branch in at least one of the following ways:

�) �, x : B
�) �, x : B ^ C

L^
�) �, x : C

�) �, x : B ^ C
L^

According to the construction of definition 5.14, we know therefore that for a sequent
Sx 2 S, if B ^ C 2 S

s
x that either B 2 S

s
x or C 2 S

s
x. This satisfies condition 1 of

definition 4.6.

The proof condition 3-6 of definition 4.6 for the other propositional connectives is similar.

Condition 7 of definition 4.6:

Suppose x : p is in a sequent in the branch. Because the branch is failed (and atoms are
upward cumulative in the branch) we know that x : p cannot be in both an antecedent
and succedent of a sequent in the branch. Because of the construction of definition 5.14,
we know therefore that for each sequent Sx 2 S, if p 2 S

a
x then p /2 S

s
x, and if p 2 S

s
x

then p /2 S
a
x which satisfies condition 7 of definition 4.6.

This shows that condition 1 of definition 4.8 holds. Condition 2 of definition 4.8:

Suppose x : 2B is in an antecedent of a sequent in the branch. Because of the condition
3 of definition 5.13 we know that the branch is saturated for the R2 rule. This means
that the rule R2 is applied in the branch at least once for each relational atom in xRy

which occur in an antecedent of a sequent in the branch in the following way:

�, x : 2B, xRy, y : B ) �
�, x : 2B, xRy ) � L2

According to the construction of definition 5.14, we know therefore that for each sequent
Sx 2 S, if 2B 2 S

a
x that for all sequents Sy such that SxRSy, B 2 S

a
y . This satisfies

condition 2 of definition 4.8.

Condition 3 of definition 4.8:

Suppose x : 2B is in an succedent of a sequent in the branch. Because of the condition
2 of definition 5.13 we know that the branch is saturated for the L2 rule. This means
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that the rule L2 is applied in the branch at least once in the following way:

�, xRy ) �, y : B
�) �, x : 2B

R2

According to the construction of definition 5.14, we know therefore for each sequent
Sx 2 S, that if 2B 2 S

s
x that there is a sequent Sy such that SxRSy and B 2 S

s
y. This

satisfies condition 3 of definition 4.8. ⌅

Remark 5.16. If we have a saturated branch in TlsT , TlsK4 or TlsS4 the transitivity
and reflexivity conditions hold trivially. Besides this, the saturated application of the
rules ref and trans ensure that condition 2 of definition 4.8 still holds.

5.4 Differences in Schütte set of sequents construction

In the construction of the Schütte sets there is one difference between the three different
calculi which is most important. This difference is in what parts of the sequents in the
reduction tree the sequent in the Schütte set, which eventually will represent worlds in
the countermodel. What needs to be combined of the derivation tree to create a Schütte
sequent for these three calculi differs in what ’level’ of syntax we need to look at in these
derivation trees.

First, we have G3m, where whole segments of the branch need to be combined together
to create the Schütte sequents and countermodel worlds. This is the highest syntactic
’level’ at which these Schütte sequents are constructed from. It is on the level of the
derivation. In G3m, one segment of a derivation stands for one world in a model, where
the K2(or 42) rule splits these segments. From this perspective it is obvious that we
only have one modal rule which expresses the whole relation between different worlds 3.
The fact that whole parts of a derivation represent a world also gives rise to the need
of backtracking to be able to create countermodels and the problem of having a G3mB

calculus with also symmetric relation between worlds.

The Tree-hypersequent calculi have different sequents which represent the Schütte se-
quents. Because the calculus is not about sequent themselves but hypersequents, These
sequents representing Schütte sequents and worlds in the model can be written all along
the branch of the derivation. This makes it possible to have multiple worlds present
beside each other in one node of the derivation tree. The sequent is the ’level’ of syntax
in which the tree-hypersequent operates. Because of this, it is important in the Schütte
set of sequents construction to mark the sequents along the derivation to show what
Schütte sequent they eventually belong to.

3Sometimes we have an extra rule, the T2 rule, but this rule is only about the relation of that world
with itself
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The labeled sequent calculi go one step of syntax smaller to represent the Schütte se-
quents. Labeled sequent calculi label the formula in the sequents. By going one step
smallest than sequents themselves it is possible to put all the labeled formula in one
sequent per node in the derivation tree. Here the labels of the formula will indicate to
what Schütte sequent the formula belongs, and in which world in the Schútte model it
will be forced or not forced (depending on whether the formula is in the antecedent or
succedent).

These three calculi differ in what level of syntax they encode the Schütte sequents or
worlds of the model. Is it on the derivation level, sequent level or formula level. And
by this several different things are possible in the last two calculi which are not possible
in the first. For example, the tree-hypersequent calculi and the labeled calculi are able
to also create calculi for symmetric logics, while this is not possible for the normal
modal sequent calculus G3m. This is because multiple parts of the model (multiple
Schütte sequents) can be represented in one node of a derivation in these calculi, and
any transference of information between these worlds can be encoded in rules for these
calculi. This is not possible for the G3m calculi, which only can transfer information in
one direction, because if we get to another world, the information about the last world
is not in the leaf nodes of the derivation anymore.

In the next chapter, we will see that this difference in approach to constructing the
Schütte sequents, whether it is done either on the derivation, sequent or formula level, is
only a matter of taste. We will show that these derivation branches can be translated into
one another and still produce the same Schütte sets of sequents and eventually Schütte
countermodels.



Chapter 6

Schütte Model Equivalence of G3m,
Ths and Tls

In this chapter, we will prove the main theorem of this thesis which shows the close
relationship between the three different sequent systems based on Schütte models.

Theorem 6.1. M is a G3m⇤ Schütte model for the sequent �) �, if and only if M is
a Ths⇤ Schütte model for the equivalent tree hypersequent � ) � if and only if M is a
Tls⇤ Schütte model for the equivalent labeled sequent x : �) x : �, where ⇤ is either K,
T, K4 or S4.

We prove this by showing that one can translate branches of derivations in one calculus
to another and still keep exactly the same Schütte set which is created from that branch,
and thus also keeps the same Schütte countermodel. Because we have three different
calculi it is not needed to proof al six different directions, we can do just three directions
and this is enough to proof al six. We will prove the directions shown in figure 6.1.

Figure 6.1: Directions in which the main theorem will be proven.

Notice that the theorem only talks about basic sequents or their translation into the
tree-hypersequent or labeled framework. The theorem will not hold if we also include
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56 Chapter 6 Schütte Model Equivalence of G3m, Ths and Tls

tree-hypersequents with more than one sequent or labeled sequents with more than one
label. This is mainly done because nodes with multiple sequents do not exist in G3m

and are therefore not properly translatable in this kind of calculi.

6.1 Translation of failed branches

6.1.1 G3m to Ths

To transform a branch of a derivation in G3m⇤ to a branch in Ths⇤, we use a trans-
lation of the applied rules in the branch in a bottom-up fashion starting at the root
sequent of the branch. However, to know to which sequent(s) in a tree-hypersequent
the translated rule needs to be applied, we make use of the segment-marking for the
G3m⇤ branch according to definition 5.2 and the sequent marking of definition 5.9 for
the tree-hypersequents in the translated Ths⇤ branch.

Definition 6.2 (Translation Function G3m⇤ ! Ths⇤). Here we define the translation
function F from G3m⇤ to Ths⇤. The function uses as input a saturated failed branch of
a derivation tree of a sequent S1 = �) � in G3m⇤ and it returns a derivation branch
in Ths⇤ for the tree-hypersequent G1 = �) �.

Let B
G3m = S1, S2, ..., Sn or B

G3m = S1, S2, ... be such a saturated branch of sequents
from a derivation in G3m⇤.

The function works in a step by step translation of the branch G3m⇤ starting at S1

and then translating applications of rules in the branch B
G3m in a bottom-up fashion.

During the steps of the function, we keep track of the part of BG3m that is translated
as B

t, and the translation itself as B
Ths. The function stops if it reaches the top of the

branch. The function F starts at step 0.

Step 0:

Sequent S1 = � ) � at the root of the branch B
G3m is translated into the same tree-

hypersequent G1 = � ) �. We mark the sequent � ) � which G1 solely consists
of with the same marking as the segment-mark of S1. Create the translation branch
B

Ths
0 = G1. Also create the already translated subbranch B

t
0 = S1. Go to step 1.

Step i > 0:

Suppose sequent Sj is the last sequent of Bt. What is done in this step depends on which
rule is applied backward from sequent Sj to Sj+1 of B

G3m. We therefore distinguish
different cases for each applied rule.

Case 1. L^:
The rule L^ rule is used between Sj and Sj+1 where both sequents are in segment m in
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the following way:1
m:
��
m:

�, A,B ) �
�, A ^B ) � L^

This is translated in an application of the L^ rule of Ths⇤ to the sequent m in the last
tree-hypersequent of the branch B

Ths in the following way:

G[

mz }| {
�, A,B ) �]

G[�, A ^B ) �| {z }
m

]
L^

We add this bottom-up application of the L^ rule to the translation branch B
Ths
i�1 to

get the branch B
Ths
i . We add Sj+1 to the already translated subbranch such that B

t
i =

B
t
i�1, Sj+1. Then go to step i+1.

Case 2. R^:
The rule R^ rule is used between Sj and Sj+1 where both sequents are in segment m in
one of the following ways, based on which of the two premise sequents of the rule is in
the branch:

m:
��
m:

�) �, A

�) �, A ^B
R^1

m:
��
m:

�) �, B

�) �, A ^B
R^2

This is translated in an application of the R^ rule of Ths⇤ to the sequent m in the last
tree-hypersequent of the branch B

Ths in one of the the following ways:

G[

mz }| {
�) �, A]

G[�) �, A ^B| {z }
m

]
R^1

G[

mz }| {
�) �, B]

G[�) �, A ^B| {z }
m

]
R^2

We add this application of the R^ rule to the translation branch B
Ths
i�1 to get the branch

B
Ths
i . We add Sj+1 to the already translated subbranch such that B

t
i = B

t
i�1, Sj+1.

Then go to step i+1.

In cases 3. L_, 4. R_, 5. L !, 6. R !, 7. L¬ and 8. R¬:
If one of the other propositional rules is used between Sj and Sj+1, the translation
function works in a similar way as in the case of L^ and R^.

Case 9. K2:
The K2 rule is used between Sj and Sj+1 where sequent Sj is in segment m and sequent
Sj+1 is in segment m

0 in the following way:

m
0 :

��
m :

B1, B2, ..., Bl ) A

⌃,2B1,2B2, ...,2Bl ) �,2A
K2

1The m : before the sequents show the segment-marks of the sequents in the rule
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This is translated in an application of the R2 rule and l applications of the L2 rule of
Ths⇤ to the sequent m in the last tree-hypersequent of the branch B

Ths in the following
way:

G[

mz }| {
⌃,2B1,2B2, ...,2Bl ) � /

m’z }| {
B1, B2, ..., Bl ) A]

"
L2l

G[⌃,2B1,2B2, ...,2Bl ) �/B1, B2 ) A]
L2...

G[⌃,2B1,2B2, ...,2Bl ) �/B1 ) A]
L22

G[⌃,2B1,2B2, ...,2Bl ) �/ ) A]
L21

G[⌃,2B1,2B2, ...,2Bl ) �,2A| {z }
m

]
R2

where the new sequent created with the R2 rule is marked with the marker m0. We add
this application of the R2 rule and the l applications of the L2 rule to the translation
branch B

Ths
i�1 to get the branch B

Ths
i . We add Sj+1 to the already translated subbranch

such that B
t
i = B

t
i�1, Sj+1. Then go to step i+1.

Case 10. 42:
The 42 rule is used between Sj and Sj+1 where sequent Sj is in segment m and sequent
Sj+1 is in segment m

0 in the following way:

m
0 :

��
m :

2B1,2B2, ...,2Bl, B1, B2, ..., Bl ) A

⌃,2B1,2B2, ...,2Bl ) �,2A
42

This is translated in an application of the R2 rule and l applications of the L2 and trans
rule of Ths⇤ to the sequent m in the last tree-hypersequent of the branch B

Ths in the
following way:

G[

mz }| {
⌃,2B1,2B2, ...,2Bl ) � /

m’z }| {
B1, B2, ..., Bl,2B1,2B2, ...,2Bl ) A]

G[⌃,2B1,2B2, ...,2Bl ) �/B1, B2, ..., Bl,2B1,2B2, ... ) A]
transl

"
L2l

G[⌃,2B1,2B2, ...,2Bl ) �/B1, B2,2B1,2B2 ) A]
L2...

G[⌃,2B1,2B2, ...,2Bl ) �/B1, B2,2B1 ) A]
trans2

G[⌃,2B1,2B2, ...,2Bl ) �/B1,2B1 ) A]
L22

G[⌃,2B1,2B2, ...,2Bl ) �/B1 ) A]
trans1

G[⌃,2B1,2B2, ...,2Bl ) �/ ) A]
L21

G[⌃,2B1,2B2, ...,2Bl ) �,2A| {z }
m

]
R2

where the new sequent created with the R2 rule is marked with the marker m0. We add
this application of the R2 rule and the l applications of the L2 and trans rule to the
translation branch B

Ths
i�1 to get the branch B

Ths
i . We add Sj+1 to the already translated

subbranch such that B
t
i = B

t
i�1, Sj+1. Then go to step i+1.
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11. T2:
The rule T2 rule is used between Sj and Sj+1 where both sequents are in segment m in
the following way:

m:
��
m:

�,2A,A ) �
�,2A ) � T2

This is translated in an application of the ref rule of Ths⇤ to the sequent m in the last
tree-hypersequent of the branch B

Ths in the following way:

G[

mz }| {
�,2A,A ) �]

G[�,2A ) �| {z }
m

]
ref

We add this application of the ref rule to the translation branch B
Ths
i�1 to get the branch

B
Ths
i . We add Sj+1 to the already translated subbranch such that B

t
i = B

t
i�1, Sj+1.

Then go to step i+ 1.

12. Backtracking:
If backtracking is used between Sj and Sj+1, BThs

i�1 = B
Ths
i . We add Sj+1 to the already

translated subbranch such that B
t
i = B

t
i�1, Sj+1. Then go to step i+ 1.

The function stops when Sj is the last sequent in the branch B
G3m and the translation

of BG3m is B
Ths
i�1 .

Lemma 6.3. Suppose the translation function F is used on a branch B
G3m, then it is

the case that after step i of function F the top sequent of the branch B
t
i which has the

segment-mark m is exactly the same sequent as the sequent marked with m in the top
tree-hypersequent of the branch B

Ths
i .

Proof. We prove this with induction on the step i of the function F .

If i = 0:

The lemma holds trivially.

Induction hypothesis:

If we are at step i = n + 1, we know that at step i = n, that the top sequent of the
branch B

t
n which has the segment-mark m is exactly the same sequent as the sequent

marked with m in the top tree-hypersequent of the branch B
Ths
n .

If i=n+1:

We discern cases by the different cases 1-11 of the step i < 0 of the translation function
F .

Case 1:
If the function executed case 1, it translated the L^ rule of G3m⇤. Because of the
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induction hypothesis we know that the top sequent of branch B
t
n with segment-mark m,

is the same as the sequent marked m in the top tree-hypersequent of branch B
Ths
n . This

means that if the rule is translated in the following way:

m:
��
m:

�, A,B ) �
�, A ^B ) � L^  

G[

mz }| {
�, A,B ) �]

G[�, A ^B ) �| {z }
m

]
L^

we know that the conclusions sequent of the G3m⇤ L^ rule and the focused sequent m

in the tree hypersequent of the conclusion of the Ths⇤ L^ rule are the same. This make
the premise sequents in these rules also the same. This means that in this case, the top
sequent of Bt

n+1 is the same sequent as the sequent in the top tree-hypersequent of BThs
n+1

with the same mark.

The cases 2, 3, 4, 5, 6, 7, 8 and 11 are similar to case 1.

Case 9:
If the function executed case 9, it translated the K2 rule of G3m⇤. Because of the
induction hypothesis we know that the top sequent of branch B

t
n with segment-mark m,

is the same as the sequent marked m in the top tree-hypersequent of branch B
Ths
n . This

means that if the rule is translated in the following way:

m
0 :

��
m :

B1, B2, ..., Bl ) A

⌃,2B1,2B2, ...,2Bl ) �,2A
K2

 

G[

mz }| {
⌃,2B1,2B2, ...,2Bl ) � /

m’z }| {
B1, B2, ..., Bl ) A]

"
L2l

G[⌃,2B1,2B2, ...,2Bl ) �/B1, B2 ) A]
L2...

G[⌃,2B1,2B2, ...,2Bl ) �/B1 ) A]
L22

G[⌃,2B1,2B2, ...,2Bl ) �/ ) A]
L21

G[⌃,2B1,2B2, ...,2Bl ) �,2A| {z }
m

]
R2

we know that the conclusions sequent of the K2 rule and the focused sequent m in
the tree hypersequent of the conclusion of the R2 rule are the same. This makes the
premise sequent of the K2 rule with segment-mark m

0 and the sequent with mark m
0 in

the premise tree-hypersequent of the rule L2l also the same. This means that in this case,
the top sequent of Bt

n+1 is the same sequent as the sequent in the top tree-hypersequent
of BThs

n+1 with the same mark.

Case 10 is similar to case 9.

Case 12:
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If the function executed case 12, the translation added nothing to B
T
hsn. However, we

know that backtracking was used in the branch B
G3m to a previous segment which is

the conclusion of a K2 or a 42 rule. Suppose this is sequent Sj of the branch B
t
n with

segment-mark m.

Because we can only backtrack to a sequent which is the conclusion of the K2 or 42 rule,
and because we can only apply the K2 or 42 rule immediately after this (see remark
4.5), we know that above the sequent Sj of the branch B

t there is no rule other than
K2 or 42 which applies to a sequent with segment-mark m.

Therefore, we know that in the translation branch B
Ths
n+1 that after the translation of Sj ,

there is no rule applied to the sequent marked with m in the tree hypersequents of the
branch other than the L2, R2 and trans rules. These rules do not change the sequent
marked with m. Because of this and the induction hypothesis, we know that in B

t
n+1

there is the sequent m which is exactly the same as the sequent Sj . ⌅

This lemma secures that it is always possible to apply the translated rule at each step of
the function. But it does not show yet that both branches give the same Schütte sets.

Lemma 6.4. Suppose the translation function F is used on a branch B
G3m, then it is

the case that after step i of function F , the branch B
t
i constructs the same Schütte set

Si =< S,R > using the construction of definition 5.4 as the translation branch B
Ths
i

using the construction of definition 5.10.

Proof. We prove this with induction on the step i of the function F .

If i = 0:

Both branches in B
t
0 and B

Ths
0 only consist of the (tree-hyper)sequent �) �. Therefore

it is trivial to check that the set of sequents that are created with the definitions 5.10
and 5.4 are the same.

Induction hypothesis:

If we are at step i = n+ 1, we know that at step i = n, that the top the branch B
t
i

constructs the same schütte set Sn =< S,R > as the translation branch B
Ths
n .

If i = n+ 1

We discern cases by the different cases 1-12 of the step i < 0 of the translation function
F .

Case 1:
The last rule that was applied in B

t
n+1 is L^. It is applied in the following way:

�, A,B ) �
�, A ^B ) � L^
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where �, A^B ) � is in segment m. We know by the set construction of definition 5.4
that the only change made to the Schütte set Sn is to the Schütte sequent in the set
that corresponds with the segment m, which now also contains the formulas A and B in
its antecedent.

In B
Ths
n+1 we know that the extra rule applied with respect to B

Ths
n is L^. Which is done

in the following way:
G[�, A,B ) �]

G[�, A ^B ) �]
L^

Where the focused sequent in G is the sequent with the mark m. We know by the set
construction of definition 5.10 that the only change made to the Schütte set Sn is to
the Schütte sequent in the set with the mark m, which now also contains the formulas
A and B in its antecedent. This means that the Schütte sets constructed from both the
B

t
i and the B

Ths
i are the same.

The argumentation is analogous for the cases 2,3,4,5,6,7,8 and 11.

Case 9:
The last rule that was applied in the branch B

t
n+1 is K2, it is done in the following way:

B1, B2, ..., Bn ) A

⌃,2B1,2B2, ...,2Bn ) �,2A
K2

Where the conclusion of the K2 rule is has the segment-mark m and the premise has
the segment-mark m

0. This means that by the set construction of definition 5.4 that for
Sn+1, Sn+1 = Sn[{Sm0} where Sm0 is the set version2 of the sequent B1, B2, ..., Bl ) A.
And Rn+1 = Rn [ {(SmRSm0)}.

In B
Ths
n+1 we know that the extra rules applied with respect to B

Ths
n are R2 and l appli-

cations of L2. Which is done in the following way:

G[

mz }| {
⌃,2B1,2B2, ...,2Bn ) � /

m’z }| {
B1, B2, ..., Bl ) A]

"
L2l

G[⌃,2B1,2B2, ...,2Bl ) �/B1, B2 ) A]
L2...

G[⌃,2B1,2B2, ...,2Bl ) �/B1 ) A]
L22

G[⌃,2B1,2B2, ...,2Bl ) �/ ) A]
L21

G[⌃,2B1,2B2, ...,2Bl ) �,2A| {z }
m

]
R2

We know by the set construction of definition 5.10 that the set Sn+1 of the Ths⇤ branch,
Sn+1 = Sn[{Sm0} and Rn+1 = Rn[{(SmRSm0)} where Sm0 is the sequent constructed
by combining the sequents in the tree-hypersequents in the branch that are marked with
m

0. This means that the sequent Sm0 for the constructed set of the Ths⇤ branch is also
2This is because in the construction of definition 5.4 the sequents are created from sets of formulas
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exactly the set version of the sequent B1, B2, ..., Bl ) A. This means that the Schütte
sets constructed from both the B

t
i and the B

Ths
i are the same.

The argumentation is analogous for case 10.

Case 12:
Nothing changes in both branches and therefore the Schütte sets constructed from both
the B

t
i and the B

Ths
i are the same. ⌅

Remark 6.5. If a branch of G3mT is translated into ThsT or a branch of G3mS4 is
translated into ThsS4, the relation R is reflexive for both Schütte sets because of the
constructions of definitions 5.4 and 5.10. This is also true for the transitivity of relation
R in the translations from G3mK4 to ThsK4 and G3mS4 to ThsS4.

Corollary 6.6. If BG3m is a rule saturated branch in a derivation of G3m⇤ and produces
the Schütte set S, then the translated branch B

Ths also produces the same the Schütte
set S.

To show the translated branch in the tree-hypersequent calculus can also be used to
create a Schütte model, it is important to show that this branch is also saturated for the
rules.

Lemma 6.7. If a branch B
G3m of a derivation in G3m⇤ is rule saturated according to

definition 5.1 then the translation B
Ths created by using function F is rule saturated for

Ths⇤ according to definition 5.7.

Proof. This needs to be proven for each different condition of definition 5.7 separately.
This can be done using proof by contradiction. We only prove conditions 2 and 3 because
these are the most interesting and the others are similar.

Condition 2:

Suppose B
Ths is not saturated for the L2 rule. This means that there is a formula 2A

in an antecedent of a sequent marked m and a child sequent m0 for which the rule L2 is
not applied in the branch B

Ths.

Getting a child sequent m
0 for m in the tree hypersequent of BThs is only possible if in

the translation there is a step of case 9 or 10 where the K2 (or 42) is applied in the
following way:

m
0 :

��
m :

B1, B2, ..., Bn ) C

⌃,2B1,2B2, ...,2Bn ) �,2C
K2

But because the L2 rule is not applied with formula 2A as principal between the sequent
m and m

0, none of the formulas 2B1,2B2, ...,2Bn can be of the from 2A. Otherwise the
rule L2 was applied in the translation. Therefore 2A 2 ⌃ but this is a contradiction and
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therefore B
Ths has to be saturated for the rule L2 and meets condition 2 of definition

5.7.

Condition 3:

Suppose B
Ths is not saturated for the R2 rule. This means that there is a formula 2A

in a succedent of a sequent marked m for which the rule A2 is not applied in the branch
B

Ths.

This means that in the branch B
G3m there is a sequent with segment-mark m in which

the formula 2A has not been principal for the rule K2 or 42. Otherwise, the rule R2
was applied in the translation with principal formula 2A in the sequent marked m.

This means that in the branch B
G3m there is a sequent with segment-mark m in which

the formula 2A has not been principal in either the rule K2 or 42. This, however,
contradicts the fact that the branch B

G3m is rule saturated according to definition 5.1.
Therefore B

Ths has to be saturated for the R2 rule and meets condition 3 of definition
5.7. ⌅

Corollary 6.8. If M is a G3m⇤ Schütte model for the sequent � ) �, then M is a
Ths⇤ Schütte model for the equivalent tree hypersequent �) �, where ⇤ is either K, T,
K4 or S4.

6.1.2 Ths to Tls

The transformation of a branch of a derivation in Ths⇤ to a branch in Tls⇤ is done in the
same manner as the translation from G3m⇤ to Ths⇤. For this translation, the sequent
markers of the sequents in the tree-hypersequents are used to label the formulas in the
labeled sequents. The translation is possible by matching the marks to the labels. It
is actually possible to translate all tree-hypersequents to tree-labeled sequents and vice
versa. Besides this, all the rules of Ths⇤ can easily be translated to rules of Tls⇤. This
is shown in [12]. However, we will limit ourselves to translating branches of derivations
of the two calculi.

Definition 6.9 (Translation Function Ths⇤ ! Tls⇤). Here we define the translation
function G from Ths⇤ to Tls⇤. The function uses as input a saturated failed branch of a
derivation tree of a tree-hypersequent G1 = �) � in Ths⇤ and it returns a derivation
branch in Tls⇤ for the tree-hypersequent S1 = x : �) x : �.

Let BThs = G1, G2, ..., Gn or BThs = G1, G2, ... be such a saturated branch in a derivation
in Ths⇤.

The function works in a step by step translation of the branch Ths⇤ starting at G1 and
then translating applications of rules in the branch B

Ths in a bottom-up fashion. During
the steps of the function, we keep track of the part of BThs that is translated as Bt, and



Chapter 6 Schütte Model Equivalence of G3m, Ths and Tls 65

the translation itself as BT ls. The function stops if it reaches the top of the branch. The
function G starts at step 0.

Step 0:

Tree-hypersequent G1 = � ) � at the root of B
Ths is marked with the marker x is

translated into the tree-labeled sequent S1 = x : � ) x : �. Create the translation
branch B

T ls
0 = S1. Also create the already translated subbranch B

t
0 = G1. Go to step 1.

Step i > 0:

Suppose tree-hypersequent Gj is the last tree-hypersequent of Bt. What is done in this
step depends on which rule is applied backward from tree-hypersequent Gj to Gj+1 of
B

Ths. We therefore distinguish different cases for each applied rule.

Case 1. L^:
The rule L^ rule is used between Gj and Gj+1 in the following way:

G[

mz }| {
�, A,B ) �]

G[�, A ^B ) �| {z }
m

]
L^

This is translated in an application of the L^ rule of Tls⇤ to the prefixed formula
m : A ^B in the last sequent of the branch B

T ls in the following way:3

�,m : �,m : A,m : B ) m : �,⌃
�,m : �,m : A ^B ) m : �,⌃ L^

We add this bottom-up application of the L^ rule to the translation branch B
T ls
i�1 to

get the branch B
T ls
i . We add Gj+1 to the already translated subbranch such that B

t
i =

B
t
i�1, Gj+1. Then go to step i+1.

In cases 2. R^, 3. L_, 4. R_, 5. L !, 6. R !, 7. L¬ and 8. R¬:
If one of the other propositional rules is used between Gj and Gj+1, the translation
function works in a similar way as in the case of L^.

Case 9. R2:
The R2 rule is used between Gj and Gj+1 in the following way:

G[

mz }| {
�) � /

m’z}|{
) A]

G[�) �,2A| {z }
m

]
R2

3In the tree-labeled sequents � and ⌃ stand for the formulas that are present in all the other sequents
of the tree hypersequent which are not shown in the rule. The presentation of the rules of Tls⇤ uses
the focus function ’[]’ to focus on one or two sequents in the tree-hypersequent. Because this is not the
case for the tee-labeled sequents we add these formulas (with there proper prefix based on the sequent
marks) to the context of the rules in Tls⇤ as the multisets � and ⌃.
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This is translated in an application of the R2 rule of Tls⇤ to the prefixed formula m : 2A

in the succedent of the last sequent of the branch B
T ls in the following way:

�,m : �,mRm
0
) ⌃,m : �,m

0 : A
�,m : �) ⌃,m : �,m : 2A

R2

We add this bottom-up application of the R2 rule to the translation branch B
T ls
i�1 to

get the branch B
T ls
i . We add Gj+1 to the already translated subbranch such that B

t
i =

B
t
i�1, Gj+1. Then go to step i+1.

Case 10. L2:
The L2 rule is used between Gj and Gj+1 in the following way:

G[

mz }| {
�,2A ) � /

m’z }| {
 , A ) ⇧]

G[�,2A ) �| {z }
m

/ ) ⇧| {z }
m’

]
L2

This is translated in an application of the L2 rule of Tls⇤ to the prefixed formula m : 2A

in the antecedent of the last sequent of the branch B
T ls in the following way:

�,m : �,m0 :  ,mRm
0
,m : 2A,m

0 : A ) m : �,m
0 : ⇧,⌃

�,m : �,m0 :  ,mRm
0
,m : 2A ) m : �,m

0 : ⇧,⌃
L2

We add this bottom-up application of the L2 rule to the translation branch B
T ls
i�1 to

get the branch B
T ls
i . We add Gj+1 to the already translated subbranch such that B

t
i =

B
t
i�1, Gj+1. Then go to step i+1.

Case 11. trans:
If the trans rule is used between Gj and Gj+1, the translation function works in a similar
way as in the case of L2.

Case 12. ref:
The ref rule is used between Gj and Gj+1 in the following way:

G[

mz }| {
�,2A,A ) �]

G[�,2A ) �| {z }
m

]
ref

This is translated in an application of the ref rule of Tls⇤ to the prefixed formula m : 2A

in the antecedent of the last sequent of the branch B
T ls in the following way:

�,m : �,m : 2A,m : A ) m : �,⌃
�,m : �,m : 2A ) m : �,⌃

ref

We add this bottom-up application of the ref rule to the translation branch B
T ls
i�1 to get
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the branch B
T ls
i . We add Gj+1 to the already translated subbranch such that B

t
i =

B
t
i�1, Gj+1. Then go to step i+1.

The function stops when Gj is the last sequent in the branch B
Ths and the translation

of BThs is B
T ls
i�1.

Lemma 6.10. Suppose the translation function G is used on a branch B
Ths, then is it

the case that after step i of function G that for each formula A in each sequent with mark
m in the top tree-hypersequent of the branch B

t
i there is a prefixed formula m : A in the

top tree-labeled sequent of the branch B
T ls
i .

Proof. This is easily checked with induction on i. ⌅

This lemma secures that it is always possible to apply the translated rule at each step of
the function. But it does not show yet that both branches give the same Schütte sets.

Lemma 6.11. Suppose the translation function G is used on a branch B
Ths, then it is

the case that after step i of function G, the branch B
t
i constructs the same Schütte set

Si =< S,R > using the construction of definition 5.10 as the translation branch B
T ls
i

using the construction of definition 5.14.

Proof. We prove this with induction on the step i of the function G.

If i = 0:

Both branches in B
t
0 and B

T ls
0 only consist of the tree-hypersequent �) � marked with

m and m : � ) m : �. Therefore it is trivial to check that the Schütte set of sequents
that are created with the definitions 5.10 and 5.14 are the same.

Induction hypothesis:

If we are at step i = n+ 1, we know that at step i = n, that the top the branch B
t
i

constructs the same schütte set Sn =< S,R > as the translation branch B
T ls
n .

If i = n+ 1

We discern cases by the different cases 1-12 of the step i < 0 of the translation function
G.

Case 1:
If the last rule that was applied in B

t
n+1 is L^. It is applied in the following way:

G[

mz }| {
�, A,B ) �]

G[�, A ^B ) �| {z }
m

]
L^
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Where the sequent �, A^B ) � in G is marked with m. We know by the set construction
of definition 5.10 that the only change made compared to the Schütte set Sn is the
Schütte sequent in the set that corresponds with the marker m, which now also contains
the formulas A and B in its antecedent.

In B
T ls
n+1 we know that the extra rule applied with respect to B

T ls
n is L^. Which is done

in the following way:

�,m : �,m : A,m : B ) m : �,⌃
�,m : �,m : A ^B ) m : �,⌃ L^

Where the prefix m corresponds to the sequent mark m in the B
t
n+1 branch. We know

by the set construction of definition 5.14 that the only change made compared to the
Schütte set Sn is in the Schütte sequent in the set that corresponds to sequent with the
label m, which now also contains the formulas A and B in its antecedent. This means
that the Schütte sets constructed from both the B

t
i and the B

T ls
i are the same.

The argumentation is analogous to case 1 for the cases 2,3,4,5,6,7,8 and 12.

Case 9:
If the last rule that was applied in B

t
n+1 is R2, it is applied in the following way:

G[

mz }| {
�) � /

m’z}|{
) A]

G[�) �,2A| {z }
m

]
R2

This means that by the set construction of definition 5.4 that for Sn+1, Sn+1 = Sn[{Sm0}

where Sm0 is the sequent ) A and Rn+1 = Rn [ {(SmRSm0)}.

In B
T ls
n+1 we know that the extra rule applied is R2, which is done in the following way:

�,m : �,mRm
0
) ⌃,m : �,m

0 : A
�,m : �) ⌃,m : �,m : 2A

R2

We know by the set construction of definition 5.14 that for the the Schütte set Sn+1 of
B

T ls
n+1, Sn+1 = Sn[{Sm0} where Sm0 is the sequent ) A and Rn+1 = Rn[{(SmRSm

0)}.
This means that the Schütte sets constructed from both the B

t
i and the B

T ls
i are the

same.

Case 10:
If the last rule that was applied in B

t
n+1 is L2, it is applied in the following way:

G[

mz }| {
�,2A ) � /

m’z }| {
 , A ) ⇧]

G[�,2A ) �| {z }
m

/ ) ⇧| {z }
m’

]
L2
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We know by the set construction of definition 5.10 that the only change made compared
to the Schütte set Sn is the Schütte sequent in the set that corresponds with the marker
m

0, which now also contains the formula A in its antecedent.

In B
T ls
n+1 we know that the extra rule applied is L2. Which is done in the following way:

�,m : �,m0 :  ,mRm
0
,m : 2A,m

0 : A ) m : �,m
0 : ⇧,⌃

�,m : �,m0 :  ,mRm
0
,m : 2A ) m : �,m

0 : ⇧,⌃
L2

Where the labels m and m
0 corresponds to the sequent labels m and m

0 in B
t
n+1. We

know by the set construction of definition 5.14 that the only change made compared to
the Schütte set Sn is the Schütte sequent in the set that corresponds to sequent with
the label m0, which now also contains the formula A in its antecedent. This means that
the Schütte sets constructed from both the B

t
i and the B

T ls
i are the same.

The argumentation for case 11 is analogous to case 10. ⌅

Remark 6.12. If a branch of ThsT is translated into TlsT or a branch of ThsS4 is
translated into TlsS4, the relation R is reflexive for both Schütte sets because of the
constructions of definitions 5.10 and 5.14. This is also true for the transitivity of relation
R in the translations from ThsK4 to TlsK4 and ThsS4 to TlsS4.

Corollary 6.13. If BThs is a rule saturated branch in a derivation of Ths⇤ and produces
the Schütte set S, the translated branch B

T ls also produces the same the Schütte set S.

Lemma 6.14. If a branch B
Ths of a derivation in Ths⇤ is rule saturated according to

definition 5.7 then the translation B
T ls created by using function G is rule saturated for

Tls⇤ according to definition 5.13.

Proof. This needs to be proven for each different condition of definition 5.13 separately.
This can be done using proof by contradiction. We only prove condition 1, the others
are similar.

Condition 1:

Suppose B
T ls is not saturated for the propositional rule L^. This means that there is a

prefixed formula m : A ^ B in an antecedent of a sequent for which the rule L^ is not
applied in the branch B

T ls.

This means that in the branch B
Ths there is a sequent in a tree-hypersequent with mark

m in which the formula A^B has not been principal for the rule L^. Otherwise the rule
L^ of Tls⇤ was applied in the translation B

T ls with principal prefixed formula m : A^B.

This means that in the branch B
Ths there is a formula A^B in a sequent with mark m in

a tree-hypersequent which is never principal in any L^ rule. This, however, contradicts
the fact that the branch B

Ths is rule saturated according to definition 5.7. Therefore
B

Ths has to be saturated for the R2 rule and meets condition 1 of definition 5.13. ⌅
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Corollary 6.15. If M is a Ths⇤ Schütte model for the tree-hypersequent � ) �, then
M is a Tls⇤ Schütte model for the equivalent tree-labeled sequent x : �) x : �, where ⇤

is either K, T, K4 or S4.

6.1.3 Tls to G3m

Translating a branch of a derivation in Tls⇤ into a branch in G3m⇤ is not that straight-
forward. To carry out a proper translation we need some lemmas about the possibility
of permuting the order of the application of rules in a derivation tree. We first have to
reorder the branch in Tls⇤ appropriately so that we can create segments in the G3m⇤

translation which consist of rules that all have principal formulas with the same labels.
This has to be done, because the K2, and 42 rules of G3m⇤ cannot permute over the
propositional rules, while this is possible for the modal rules of Tls⇤ in some cases.

6.1.3.1 Permutation lemma’s

Lemma 6.16. In a branch of Tls⇤, instances of the L2 and trans rules permute down
with respect to the rules L¬, R¬, L^ , R^, L_, R_, L !, R ! and ref if the first active
prefix in the L2 or trans rule is not the same as the active prefix in the rule which is
permuted up.

Proof. There are two cases for the relation between the prefixes active in the rules. We
will show that the lemma holds for the two cases.

In the case the prefixes active in the two rules are different the permutation is straight-
forward. For example L2 permuting with L^:

x : 2A, y : A, z : B, z : C, xRy,�) �
x : 2A, z : B, z : C, xRy,�) � L2
x : 2A, z : B ^ C, xRy,�) � L^

#

x : 2A, y : A, z : B, z : C, xRy,�) �
x : 2A, y : A, z : B ^ C, xRy,�) � L^

x : 2A, z : B ^ C, xRy,�) � L2

It is also possible in the case that the active prefix in the upwards permuted is the same
as the second active prefix of the downwards permuted rule. For example of the active
prefix of the upward permuted L^ rule is y and xRy is the active relational atom in the
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permuted L2:

x : 2A, y : A, y : B, y : C, xRy,�) �
x : 2A, y : B, y : C, xRy,�) � L2
x : 2A, y : B ^ C, xRy,�) � L^

#

x : 2A, y : A, y : B, y : C, xRy,�) �
x : 2A, y : A, y : B ^ C, xRy,�) � L^

x : 2A, y : B ^ C, xRy,�) � L2

⌅

Lemma 6.17. In a branch of Tls⇤ the rules L2 and trans permute down with respect to
rules trans and L2 if the first active prefix in the permuted down rule is not the second
active prefix in the permuted up L2 or trans rule.

Proof. There are three cases for the relation between the prefixes active in the rules. We
will show that the lemma holds for all the three cases.

1. The two rules have different prefixes in their active relational atoms:
The permutation is trivial.

2. The two rules have the same first prefix in their active relational atoms:
We show as example the permutation between two L2 rules:

x : 2A, x : 2B, y : A, z : B, xRy, xRz,�) �
x : 2A, x : 2B, y : A, xRy, xRz,�) � L2

x : 2A, x : 2B, xRy, xRz,�) � L2

#

x : 2A, x : 2B, y : A, z : B, xRy, xRz,�) �
x : 2A, x : 2B, z : B, xRy, xRz,�) � L2

x : 2A, x : 2B, xRy, xRz,�) � L2

3. The permuted down rule has as second active prefix the the first active prefix of the
the permuted up rule:
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We show as example the permutation between two L2 rules:

x : 2A, y : 2B, y : A, z : B, xRy, yRz,�) �
x : 2A, y : 2B, z : B, xRy, yRz,�) � L2

x : 2A, y : 2B, xRy, yRz,�) � L2

#

x : 2A, y : 2B, y : A, z : B, xRy, yRz,�) �
x : 2A, y : 2B, y : A, xRy, yRz,�) � L2

x : 2A, y : 2B, xRy, yRz,�) � L2

⌅

Lemma 6.18. In a branch of Tls⇤, the rules L2 and trans permute down with respect
to rule R2 when the relational atom created in the R2 is not active in these rules.

Proof. There are two cases for the relation between the prefixes active in the rules. We
will show that the lemma holds for the two cases.

1. The two rules have totally different labels in their active relational atoms:
The permutation is trivial.

2. The two rules have the same first active prefix in their active relational atoms:
We show as example a permutation with an L2 rule.

x : 2A, y : A, xRy, xRz,�) �, z : B
x : 2A, xRy, xRz,�) �, z : B L2
x : 2A, xRy,�) �, x : 2B

R2

#

x : 2A, y : A, xRy, xRz,�) �, z : B
x : 2A, y : A, xRy,�) �, x : 2B

R2
x : 2A, xRy,�) �, x : 2B

L2

⌅

Lemma 6.19. In a branch of Tls⇤, the rule R2 permutes down with respect to the rules
L¬, R¬, L^ , R^, L_, R_, L !, R ! and ref if the first active prefix in the R2 rule
is not the same as the active prefix in the upward permuted rule.

Proof. Similar to the proof of lemma 6.16 ⌅

Lemma 6.20. In a branch of Tls⇤, the rule R2 permutes down with respect to the rules
R2, L2 and trans if the first active prefix in the permuted down R2 rule is not the
second active prefix in the upwards permuted R2, L2 or trans rule.
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Proof. The only cases for relations between the prefixed of the rule we need to check are
when the prefixes are completely different or whenever the two active relational atoms
in the rules have the same first label.

1. The prefixes are completely different:
Trivial.

2. The two active relational atoms in the rules have the same first label: This is the
reverse permutation of the permutation seen in the proof of case 2 in lemma 6.18. ⌅

Lemma 6.21. In derivations, Rules L¬, R¬, L^ , R^, L_, R_, L !, R ! and ref
permute down with respect to rules L¬, R¬, L^ , R^, L_, R_, L !, R ! and ref in the
case the active prefix in the rule is not the same as the active prefix in the rule permuted
with.

Proof. trivial ⌅

Lemma 6.22. In derivations, Rules L¬, R¬, L^ , R^, L_, R_, L !, R ! and ref
permute down with respect to rules R2, L2 and trans whenever the active prefix in the
rule is not the second active prefix in the permuted trans, R2 or L2 rule.

Proof. The permutation is straightforward. For example the rule L^ permuting with
L2:

x : 2A, y : A, z : B, z : C, xRy,�) �
x : 2A, y : A, z : B ^ C, xRy,�) � L^

x : 2A, z : B ^ C, xRy,�) � L2

#

x : 2A, y : A, z : B, z : C, xRy,�) �
x : 2A, z : B, z : C, xRy,�) � L2
x : 2A, z : B ^ C, xRy,�) � L^

⌅

6.1.3.2 Reordering of tree-labeled sequent branches and translation

With all these permutation lemmas it is possible to rearrange a derivation branch of Tls⇤

in such a way that the application of the rules follows a specific order. An order in which
all the rules with principal formulas with the same prefixes are grouped together starting
with modal rules. Table 6.1 gives a summary of all the permutation lemmas proven in
the previous section.

Lemma 6.23. Suppose we have a failed branch of a derivation in Tls⇤. It is possible to
reorder the branch in such a way that all rule applications which have the same active
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Lemma Permuting

(down)

Permuted

(up)

Condition

6.16 L2 or Trans Propositional
rules and ref

The first active prefix in the permuting
rule is not the active prefix in the per-
muted rule.

6.17 L2 or Trans L2 or Trans First active prefix in the permuting rule
is not the second active prefix of the per-
muted rule.

6.18 L2 or Trans R2 Relational atom created in permuted is
not active in the permuting rule.

6.19 R2 Propositional
rules and ref

The first active prefix in the permuting
rule is not the active prefix in the per-
muted rule.

6.20 R2 R2, L2 and
trans

The first active prefix of the permuting
rule is not the second active prefix of the
permuted rule

6.21 Propositional
rules and ref

Propositional
rules and ref

The active prefixes of both rules are not
the same

6.22 Propositional
rules and ref

R2, L2 and
trans

The active prefix in the permuting rule
is not the second active prefix in the per-
muted rule.

Table 6.1: Summary of the permutation lemma’s

prefix or active second prefix in the case of modal rules are grouped together in the fol-
lowing order seen from the root to the leaf: (1) R2 (2) trans (3) L2 (4) propositional
rules and ref.

Proof. This is done with the induction on the height h of the tree described by the
relational atoms in the union of antecedents in the branch.

If h = 1:

If h = 1 there is only one prefix in the branch, otherwise it would not be a tree. Therefore,
all used rules can only be propositional rules and ref rules with the same label, and thus
there is no reordering needed.

Induction hypothesis: A branch with height h = n is reorderable.

If h = n+1:

Suppose the labels at height n+1 of the relation tree are the labels l1,l2,..,lm with li, lj 2

{l1, l2, .., lm}. All the propositional rules or the ref rule with active prefixes which are
not l1,l2,..,lm can be permuted down with all the rules which have one of the l1,l2,..,lm
prefixes as their active prefix or active second prefix. This is evident from lemma 6.21
and lemma 6.22.
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Besides this the rules R2, L2 and trans which do not have any of the labels l1,l2,..,lm
as their second active prefix can be permuted down with all the rules which have one
of the l1,l2,..,lm prefixes as their active prefix or active second prefix. This is because
of lemma’s 6.19, 6.20, 6.16, 6.17 and 6.18 plus the fact that the permuted down rules
cannot have any of the labels l1,l2,..,lm as their first active prefix as these labels are the
leafs of the relation tree.

This means that the branch can be split into a lower part with only labels which are of
height h  n and an upper part which only contains formulas with the labels l1,l2,..,lm
as their active or second active prefix. Because of the induction hypothesis, this lower
part can be reordered according to the to be proven lemma. Which means we only still
have to prove that the upper part can be ordered too.

Because all these labels l1,l2,..,lm are at height n+1 of the relation tree they cannot be
related to each other, otherwise, the sequents in the branch would not be tree-labeled
sequents. Therefore we know that for none of the rules L2,R2 or trans a relational atom
of the form liRlj is active.

We also know that all the propositional or ref rules with a label li as their active prefix or
L2 and trans rules with li as their second prefix have to be applied after the application
of the R2 rule which introduced the label li.

For every label, li, the L2 and trans rules which have li as their second prefix can be
permuted downward such that they are applied right after the R2 rule which introduced
the label li (and has it as it secondary prefix). For this to happen the L2 and trans rules
have to be permuted down with propositional or ref rules which have one of the labels
l1,l2,..,lm as their active prefix, or L2, R2 and trans rules which do not have li as their
first prefix.

These permutations are possible because of lemma 6.16, lemma 6.17 and lemma 6.18.

For every label, li, the propositional and ref rules which have the label li as their active
prefix can be permuted downward such that they are applied after the R2, L2 and trans
rules which have li as their second prefix. For this to happen the propositional and ref
rules have to be permuted down with propositional or ref rules which have one of the
labels l1,l2,..,lm but not li as their active prefix, or L2, R2 and trans rules which do not
have li as either their first or second prefix.

These permutations are possible because of lemma 6.21 and lemma 6.22.

If these permutations are done for each label li 2 {l1, l2, .., lm} the second part of the
branch is ordered which concludes the proof. ⌅

Definition 6.24 (Translation Function Tls⇤ ! G3m⇤). Here we define the translation
function H from Tls⇤ to G3m⇤. The function uses as input a saturated failed branch of a
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derivation tree of a tree-labeled sequent S1 = x : �) x : � which is reordered according
to lemma 6.23. It returns a derivation branch in G3m⇤ for the sequent T1 = �) �.

Let B
T ls = S1, S2, ..., Sn or B

T ls = S1, S2, ... be such a branch.

The function H works in a step by step translation of the branch Tls⇤ starting at S1 and
then translating applications of rules in the branch B

T ls in a bottom-up fashion. During
the steps of the function, we keep track of the part of BT ls that is translated as B

t, and
the translation itself as B

G3m. The function stops if it reaches the top of the branch.
The function H starts at step 0.

Step 0:

tree-labeled sequent S1 = x : � ) x : � at the root of B
T ls is translated into the

sequent T1 = �) �. Create the translation branch B
G3m
0 = T1. Also create the already

translated subbranch B
t
0 = S1. Go to step 1.

Step i > 0:

Suppose tree-labeled sequent Sj is the last tree-labeled sequent of B
t. What is done

in this step depends on which rule is applied backward from Sj to Sj+1 in B
T ls. We

therefore distinguish different cases based on the applied rule(s).

Case 1. L^:
The rule L^ rule is used between Sj and Sj+1 in the following way:

�, x : �, x : A, x : B ) x : �,⌃
�, x : �, x : A ^B ) x : �,⌃ L^

This is translated in an application of the L^ rule of G3m⇤ to the last sequent of the
branch B

G3m, which has the segmentmark x because of the reordering, in the following
way:

x:
��
x:

�, A,B ) �
�, A ^B ) � L^

We add this application of the L^ rule to the translation branch B
G3m
i�1 to get the branch

B
G3m
i . We add Sj+1 to the already translated subbranch such that B

t
i = B

t
i�1, Sj+1.

Then go to step i+1.

In cases 2. R^, 3. L_, 4. R_, 5. L !, 6. R !, 7. L¬ and 8. R¬:
If one of the other propositional rules is used between Sj and Sj+1, the translation
function works in a similar way as in the case of L^.

Case 9. R2 and B
T ls is a branch in a derivation of TlsK or TlsT :

Because the branch B
T ls is ordered we know that if the R2 is used between Sj and

Sj+1 in B
T ls. We know that the labeled sequents Sj+1, ..., Sj+l+1 are seperated by l

applications of the L2 rule with the same active relational atom xRy that is active
in the R2 rule. Besides that we know that the branch B

T ls is saturated. This means
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according to condition 2 of definition 5.13 that for every different formula x : 2B the rule
L2 is used with relational atom xRy. Therefore we can assume the following applications
of rules between the tree-labeled sequents Sj , Sj+1, ..., Sj+l+1:

 , x : ⌃, xRy, x : 2�, y : B1, y : B2, ..., y : Bl ) ⇧, x : �, y : A
"

L2l

 , x : ⌃, xRy, x : 2�, y : B1, y : B2 ) ⇧, x : �, y : A
L2...

 , x : ⌃, xRy, x : 2�, y : B1 ) ⇧, x : �, y : A
L22

 , x : ⌃, xRy, x : 2�) ⇧, x : �, y : A
L21

 , x : ⌃, x : 2�) ⇧, x : �, x : 2A
R2

Where x : 2� is the multiset of all labeled formulas of the form x : 2B in the antecedent
of these labeled sequents. Because of the saturation we know that x : 2B 2 x : 2�
if and only if y : B 2 {y : B1, y : B2, ..., y : Bl}. The two multisets only dif-
fer in duplicates. This is translated in an application of backtracking to the sequent
⌃,2B1,2B2, ...,2Bm ) �,2A, which is at the end of segment xand the K2 rule of
G3m⇤ to the last sequent S

0 of the branch B
G3m in the following way:

y:
��
x:
��
z:

B1, B2, ..., Bm ) A

⌃,2B1,2B2, ...,2Bm ) �,2A
K2

S
0 backtrack

It is possible that the rule L2 is used more than once for one prefixed formula x : 2B,
or that x : 2B occurs two times in the antecedents of Sj+1, ..., Sj+l+1 and the rule L2
is only used once. This means that the K2 rule sometimes needs to be helped by extra
height preserving contractions or height preserving weakening after the application of
K2. Two examples of this are the following two translations:

x : ⌃, xRy, x : 2B, y : B, y : B ) x : �, y : A
x : ⌃, xRy, x : 2B, y : B ) x : �, y : A L2

x : ⌃, xRy, x : 2B ) x : �, y : A L2
x : ⌃, x : 2B ) x : �, x : 2A

R2

 
B,B ) A

B ) A
contraction

⌃,2B ) �,2A
K2

x : ⌃, xRy, x : 2B, x : 2B, y : B ) x : �, y : A
x : ⌃, xRy, x : 2B, x : 2B ) x : �, y : A L2
x : ⌃, x : 2B, x : 2B ) x : �, x : 2A

R2

 
B ) A

B,B ) A
weakening

⌃,2B,2B ) �,2A
K2
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We add these applications of backtracking the K2 rule and possible extra contractions
and weakenings to the translation branch B

G3m
i�1 to get the branch B

G3m
i . We add

all the labeled sequents Sj+1, ..., Sj+l+1 to the already translated subbranch such that
B

t
i = B

t
i�1, Sj+1, ..., Sj+l+1. Then go to step i+1.

Case 10. R2 and B
T ls is a branch in a derivation of TlsK4 or TlsS4:

These can be translated into backtracking, the 42 rule and extra weakenings and con-
tractions in a similar way as in case 9 with the addition that we treat the extra trans
rules the same way as the L2 rules.

Case 11. ref:
The rule ref rule is used between Sj and Sj+1 in the following way:

�, x : �, x : 2A, x : A ) ⌃, x : �
�, x : �, x : 2A ) ⌃, x : �

ref

This is translated in an application of the T2 rule of G3m⇤ to the last sequent of the
branch B

G3m, which has the segmentmark x because of the reordering, in the following
way:

x:
��
x:

�,2A,A ) ⌃,�
�,2A ) � T2

We add this application of the T2 rule to the translation branch B
G3m
i�1 to get the branch

B
G3m
i . We add Sj+1 to the already translated subbranch such that B

t
i = B

t
i�1, Sj+1.

Then go to step i+1.

Lemma 6.25. Suppose the translation function H is used on a saturated reordered branch
B

T ls, then it is the case that after step i of function H that for each formula x : A in
the top tree-labeled sequent of the branch B

t
i where x is the active or second active prefix

of the last rule in B
t
i , there is a formula A in the top tree-labeled sequent of the branch

B
G3m
i .

Proof. This is checked with induction on i. ⌅

This lemma secures that after each step, the next step of the translation can also be
executed if we are translating any propositional or the ref rules. This is because these
are sorted on the active prefix. Besides that, the R2 rule and the L2 and trans rules
can also be translated into the K2 or 42 rule, because we can use backtracking to go to
the last sequent with the appropriate label segment label. Next, we want to show that
both branches give the same Schütte sets.

Lemma 6.26. Suppose the translation function H is used on a branch B
T ls, then it is

the case that after step i of function H, the branch B
t
i constructs the same Schütte set

Si =< S,R > using the construction of definition 5.14 as the translation branch B
G3m
i

using the construction of definition 5.4.
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Proof. We prove this with induction on the step i of the function H.

If i = 0:

Both branches in B
t
0 and B

T ls
0 only consist of the tree-labeled sequent x : �) x : � and

the sequent � ) � marked with x. Therefore it is trivial to check that the Schütte set
of sequents that are created with the definitions 5.14 and 5.4 are the same.

Induction hypothesis:

If we are at step i = n+ 1, we know that at step i = n, that the top the branch B
t
i

constructs the same schütte set Sn =< S,R > as the translation branch B
G3m
n .

If i = n+ 1

We discern cases by the different cases 1-11 of the step i < 0 of the translation function
H.

Case 1:
If the last rule that was applied in B

t
n+1 is L^, it is applied in the following way:

�, x : �, x : A, x : B ) ⌃, x : �
�, x : �, x : A ^B ) ⌃, x : � L^

We know by the set construction of definition 5.10 that the only change made compared
to the set Sn =< S,R >n is the sequent in the set that corresponds with the label x,
which now also contains the formulas A and B in its antecedent.

In B
G3m
n+1 we know that the extra rule applied is L^. Which is done in the following way

in the segment with mark x:

x:
��
x:

�, A,B ) �
�, A ^B ) � L^

We know by the set construction of definition 5.14 that the only change made compared
to the Schütte set Sn =< S,R >n is the sequent in the set that corresponds to sequent
with the label m, which now also contains the formulas A and B in its antecedent. This
means that the Schütte sets constructed from both the B

t
i and the B

G3m
i are the same.

The argumentation is analogous to case 1 for the cases 2,3,4,5,6,7,8 and 11.

Case 9:
If an R2 rule is applied in the in step n+1 in B

t
n+1 with the relational atom xRy, it also

includes all the L2 rules that occur in the branch with the same active relational atom
xRy. This is evident from the ordering of lemma 6.23. This means that the application
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of the R2 and the m L2 rules in the Tls branch looks like this:

⌃, xRy, x : 2�, y : B1, y : B2, ..., y : Bm ) �, y : A
"

L2m

⌃, xRy, x : 2�, y : B1, y : B2 ) �, y : A
L2...

⌃, xRy, x : 2�, y : B1 ) �, y : A
L22

⌃, xRy, x : 2�) �, y : A
L21

⌃, x : 2�) �, x : 2A
R2

where x : 2� is the multiset of all formulas of the form x : 2B in the antecedent of the
sequents. We know that x : 2B 2 x : 2� if and only if y : B 2 {y : B1, y : B2, ..., y : Bm}

because the total branch B
T ls is saturated.

This means that by the set construction of definition 5.14 that for Sn+1, Sn+1 = Sn[{Sy}

where Sy is the set version of the sequent B1, B2, ..., Bm ) A. And Rn+1 = Rn [ {SxRSy}.

In B
G3m
n+1 we know that the extra rule applied in step n+1 are backtracking and the K2

rule. This is done in the following way:

y:
��
x:
��
z:

B1, B2, ..., Bo ) A

⌃,2B1,2B2, ...,2Bo ) �,2A
K2

S
0 backtrack

Were x : 2� = {x : 2B1, x : 2B2, ..., x : 2Bo} and the conclusion of the K2 rule is the
end of the segment x, and the premise is the first sequent in the segment y. Besides this
it is possible that after the application of the K2 rule some implicit contraction is used
for double applications of the L2 rule for the same formula x : 2B in B

t
n+1, or implicit

weakening for formula of the from x : 2C for which the rule L2 is not used. However,
because we know the branch is saturated, there is no formula x : 2C 2 {x : 2B1, x :

2B2, ..., x : 2Bo} which is different from all formulas x : 2B1, x : 2B2, ..., x : 2Bm for
which the L2 rule is used. This means that the set version of B1, B2, ..., Bo ) A is the
same as the set version of B1, B2, ..., Bm ) A.

This means that by the set construction of definition 5.4 that for Sn+1, Sn+1 = Sn[{Sy}

where Sy is the set version of the sequent B1, B2, ..., Bn ) A and Rn+1 = Rn [ {SxRSy}.
This means that the Schütte sets constructed from both the B

t
i and the B

G3m
i are the

same.

Case 10 is proven analogous to case 9 where we deal with the translations of trans rules
in the same was as with the L2 rules. ⌅

Remark 6.27. If a branch of TlsT is translated into G3mT or a branch of TlsS4 is
translated into G3mS4, the relation R is reflexive for both Schütte sets because of the
constructions of definitions 5.14 and 5.4. This is also true for the transitivity of relation
R in the translations from TlsK4 to G3mK4 and TlsS4 to G3mS4.
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Corollary 6.28. If B
T ls is a reordered rule saturated branch in a derivation of Ths⇤

and produces the Schütte set S, the translated branch B
G3m also produces the same the

Schütte set S.

Lemma 6.29. If a branch B
T ls of a derivation in Tls⇤ is rule saturated according to

definition 5.13 then the translation B
G3m created by using function H is rule saturated

for G3m⇤ according to definition 5.1.

Proof. This needs to be proven for each different condition of definition 5.1 separately.
This can be done using proof by contradiction. We only prove condition 3, the most
interesting one, the others are similar.

Condition 3:

Suppose B
G3m is a branch of either TlsK or TlsT and is not saturated for the K2 rule.

This means that there is a formula 2A in a succedent of a sequent with segment-mark
x for which the rule R2 is not applied in the branch B

G3m.

This means that in the branch B
T ls there is a formula x : 2A in the succedent of a

sequent for which the R2 has not been used with x : 2A as principal. Otherwise, the
rule K2 was applied in the translation function H with principal formula 2A in the
sequent marked x.

This means that in the branch B
T ls there is a sequent in which the formula x : 2A

is in the antecedent which has not been principal in any the R2 rule in the branch.
This, however, contradicts the fact that the branch B

T ls is rule saturated according to
definition 5.13. Therefore B

G3m has to be saturated for the K2 rule.

The same argument can be made for when B
G3m is a branch of either TlsK4 or TlsS4 and

is not saturated for the 42 rule. This means that in either case, BG3m meets condition
3 of definition 5.1. ⌅

Corollary 6.30. If M is a Tls⇤ Schütte model for the sequent x : � ) x : �, then M

is a G3m⇤ Schütte model for the equivalent sequent �) �, where ⇤ is either K, T, K4
or S4.

6.2 Equality of Schütte countermodels

It is now straightforward to prove that these three calculi exactly produce the same
Schütte countermodels.

Theorem 6.31 (Schütte Model Equivalence). M is a G3m⇤ Schütte model for the
sequent S, if and only if M is a Ths⇤ Schütte model for the equivalent tree hypersequent
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S
0 if and only if M is a Tls⇤ Schütte model for the equivalent labeled sequent S00, where

⇤ is either K, T, K4 or S4.

Proof. Evident from Corollary 6.8, 6.15 and 6.30 ⌅

6.3 Limitation of the Schütte model equivalence theorem

A limitation of the theorem of Schütte model equivalence is that we only look at coun-
termodels for sequents which are directly translatable into sequents of G3m, while both
Tls and Ths are able to express more than just these single label tree-labeled sequent, or
single sequents tree-hypersequents. In Ths we can for example also try to find counter-
models for tree-hypersequents which contain more than one sequent such as the following
sequent:

p ) q/p ) q; p ) q

If this is a tree-hypersequent of ThsK , the branch existing of this one sequent is already
saturated and via the Schütte set construction of definition 5.10 and the countermodel
construction of 4.2, we come to the countermodel of figure 6.2.

Figure 6.2: ThsK Schütte countermodel of the tree-hypersequent p ) q/p ) q; p )

q.

There is, however, no way of translating this tree-hypersequent directly into G3mK .
The fact that is consists of three sequents already implies that the K2 rule of G3mK

is used already twice. From the perspective of the Schütte countermodel construction
it seems as if the tree-hypersequent should be translated in a partial derivation in G3m

and not in a single sequent.

One could decide to just use the interpretation of p ) q/p ) q; p ) q and use the
sequent ) I(p ) q/p ) q; p ) q) as a translation in G3mK . This, however, can
produce the Schütte countermodel in figure 6.3, while this is not a Schütte countermodel
of the tree-hypersequent p ) q/p ) q; p ) q. Does this mean that G3mK can construct
more Schütte countermodels for translations of complex tree-hypersequents than ThsK

can? This is not the case, because the sequent ) I(p ) q/p ) q; p ) q) is also a
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tree-hypersequent, and because of the Schütte model equivalence theorem this produces
the same Schütte modal in G3mK as in ThsK .

Figure 6.3: G3mK Schütte countermodel of the sequent ) I(p ) q/p ) q; p ) q).

Because of this it is not a problem that the Schütte model equivalence theorem only
considers simple sequents. If we consider more complex sequents like Tree-hypersequents
with multiple sequents or a labeled sequent with multiple prefixes, we will use the inter-
pretation of these sequents and use that to construct a simple sequent from it. In this
sense, the theorem considers all cases.

6.4 Evaluating the three sequent systems based on Schütte
countermodel generation

With the proof of Schütte model equivalence it is shown that the three sequent systems
construct the same set of Schütte countermodels for the modal logics K, T, K4 or S4.
What does this mean for the overall evaluation of these three calculi. How do they
compare?

At first glance the most striking result is that the simple G3m systems are as powerful
as the extended sequent calculi systems of Ths and Tls. The extra syntax on top of the
normal sequent calculus that these two systems bring is not necessary when aiming to
make Schütte models, they can only construct Schütte models that are also possible to
construct in G3m. From this point of view, the G3m systems seem the best. On the
other hand, G3m needs backtracking on the K2 and 42 rule to construct the Schütte
models, which is not needed in the other systems. This might be seen as the main problem
Ths and Tls overcome by introducing the extra syntax from the Schütte countermodel
construction point of view.

It is also possible to look at some good and bad aspects of the other two systems based
on the way Schütte model construction is done. Ths shows the relation between sequents
and the worlds in the countermodel the best. The Schütte sequents in the Schütte set are
basically the different sequents in the tree hypersequents along the branch, and because
in these sequents along the branch the atomic propositions are upwards cumulative it is
even possible to directly construct the countermodel from the leaf sequent in the branch
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(if we use a finite proof procedure). In this sense one might see Ths as a system that
represents the relation between Kripke semantics and sequents that is visible in the
Schütte method for modal logics most elegant.

Tls makes for easy countermodel construction because the labels and relational atoms
are all already in the sequents. But this also makes this system less elegant. All formulas
for all worlds are gathered together in one sequent, while in Ths and G3m there are
separate sequents for separate worlds. One could therefore argue that Ths and G3m

show the close relationship between the sequents and worlds in the Schütte countermodel
more clearly than the labeled approach.

6.5 Comments on alternative geometric rules for Tls

For the labeled logic we did not use the standard reflexivity and transitivity rule used
by Negri in [19] which are shown below. However, ’translations’ of the tree-hypersequent
reflexivity and transitivity rules into the labeled system were used. This is possible
because these kind of calculi are so similar, and a rigorous explanation of how one can
translate rules between the calculi is explained in [12]. The difference between these two
pairs of rules if that the original ones of Negri directly encode transitivity and reflexivity
in the relational atoms, and then use the L2 rule to unfold modal formulas according to
the transitive or reflexive atoms. The translated rules use the modal formulas directly
in the transitivity and reflexivity rules, as is the case for these rules in Ths and G3m.

�, xRx ) �
�) �

ref
0 �, xRy, yRz, xRz ) �

�, xRy, yRz ) � trans
0

There is a specific reason why the standard instances of these rules are not used here,
and it has to do with the fact that when we use these rules the tree-like structure of the
tree-labeled sequents is not preserved, one instead has to include (partially) transitive or
reflective trees into the admissible structures the relational atoms can form in a labeled
sequent. This itself is not something that makes these rules problematic when comparing
the calculus to Ths and G3m, but it has an impact on the way the Schütte method is
used on the Tls calculi. It means that in the set of sequent construction of definition
5.14 it is not necessary anymore to explicitly define the transitivity and the reflexivity of
the relation function. With the ref ’ and trans’ rules the reflexivity and transitivity is of
the relational function is already built into relational atoms occurring in the antecedent
of the Tls branch.4 This makes it different from G3m and Ths, which need to have
the transitivity or reflexivity of the relation function explicitly stated. There is however
another reason the alternative rules for the Tls calculus were used.

4These rules are also problematic when we only limiting ourselves to tree-labeled sequents.
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This has to do with the transitivity rule trans’ and how that affects formulas in the
sequents of the constructed Schütte set of sequents. Because the trans’ works totally with
the relational atoms, the use of this rule does not duplicate the principal 2A formula
itself to the related world. The difference can be seen in example 6.1, where there is no
labeled formula y : 2A, but a relational atom xRz instead. This makes showing that
the Schütte set of sequents are the same for translations of the three calculi a bit of a
problem. It would lead to some 2A formulas being in some sequents of the Schütte sets
constructed from the ThsK4/S4 and G3mK4/S4 branches while they do not appear in
the corresponding sequents of the Schütte set constructed by the translated branch in
TlsK4/S4. This difference is, however, only limited to only a set of 2A formulas. This
means that the Schütte models created from these Schütte sets still are equal because
the model constructions of definition 5.4, 5.10 and 5.14 only take into account the atomic
propositions of each sequent.5

Example 6.1. Example of the trans rule in either TlsK4 or TlsS4:

x : 2A, y : 2A, xRy, yRz )

x : 2A, xRy, yRz )
trans

Example of the alternative trans’ rule in either Tls0K4 or Tls0S4 as in [19]:

x : 2A, xRy, yRz, xRz )

x : 2A, xRy, yRz )
trans

0

This concludes the reason for using alternative transitive and reflexive rules. It changes
some occurrences of modal formulas in some Schütte sequents in the Schütte sets, but
because it does not change the atoms that are in these sequents or the relational atoms,
it does not change the Schütte models.

5And the saturation of these sequents lead to the assurance that these models are countermodels.
But the saturation is not in danger by using these alternative rules.
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Conclusion

In this thesis, three different sequent systems for modal logic were analyzed with respect
to their role in the creation of Schütte countermodels. These sequent systems were a
basic modal sequent calculus, a labeled sequent calculus, and a hypersequent calculus.

To compare these proof systems, first, the Schütte style completeness proof was explored
in the context of the modal logic, Kripke semantics, and sequent systems. This lead to
an overarching structure which is apparent in all the Schütte completeness proofs and
consists of a proof procedure, rule-saturation and countermodel construction based on
a failed branch of the derivation tree. As an extra step in the Schütte countermodel
construction, the concept of a Schütte set of sequents was defined. This extra step shows
the closeness between sequents and countermodels, where all formulas in the antecedent
of a sequent are true in the Schütte model, and all formulas in the consequent are refuted
in the countermodel. Besides this, the Schütte set also shows that in the Schütte coun-
termodel, the modal relations between worlds coincide with relations between sequents
in the Schütte set which can directly be found in the branch.

As the main result this thesis proved that the Schütte models that could be created
with the sequent systems G3m, Ths and Tls were exactly the same for the logics K, T,
K4 or S4. This shows that these systems are equivalent with respect to Schütte model
construction. As a consequence of this result, it is now evident that none of these calculi
is in any sense better in creating Schütte countermodels. This also means that specific
measures of the Schütte countermodels, like the smallest depth of the model, or the
smallest amount of worlds is the same for these three calculi. This must be, because
for each Schütte model that can be created from a branch on one of these calculi, an
identical Schütte model can be created from a translated branch in the other calculus,
so none of these sequent calculi is able to make smaller (in depth or size) models than
the other.

For the translations of the branches of the different sequent calculi themselves, it is clear

87
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that the translation from Tls to G3m is more difficult than the other two translations.
While the translation of Ths to Tls and G3m to Ths can be done easily, translating
per rule in the original branch, this is not the case of the translation from Tls to G3m.
For this translation, the original branch in Tls needs to be reordered. This is needed
because of the inflexibility of the K2 or 42 rules of the G3m calculus, and because of
the segmentation in the G3m branches. The same problems would arise if we would
have translated branches of Ths to G3m directly. However, the fact that the unordered
branches of Tls cannot be translated into G3m has no impact on which Schütte models
can be created with these calculi. The reason being that reordering a branch in Tls does
not change the created Schütte set created from that branch. In that sense, the fact that
the translation is a bit more difficult from Tls to G3m is not important. One could even
say that, with respect to Schütte models, the only thing that is gained by the additions
of labels in Tls1 compared to G3m is more ways to achieve the same.

Conceptually, the most interesting result in this thesis is how derivations in these three
different kinds of sequent calculi compare with respect to the Kripke semantics. Where
we have segments of the derivation representing Schütte sequents and worlds in a Kripke
model in the basic sequent systems, we have sequents in the tree-hypersequent system
and prefixes in the labeled system. This shows that these systems differ on what level
of syntax they encode the worlds and relations of the Kripke semantics in the sequents:
on the derivation level, on the sequents level or on the level of the formulas.

7.1 Limits and future research

Even though this thesis makes a first step at formalising the Schütte method, what
exactly counts as a Schütte countermodel is still up for debate. These countermodels are
created from failed derivations of the analytic calculus, but what extra conditions there
are for the construction and the derivation can be chosen differently than is done in this
thesis. Here we have defined a Schütte countermodel being a model which is constructed
from the saturated application of the rules of a calculus in a branch on a derivation, and
the whole branch was used in the creation of the countermodel.

Choosing different constraints for a model to be called a Schütte countermodel can also
change the effectiveness of analytic calculi to make them. A possible other condition that
could be put on the construction of the Schütte countermodels is that they should be
created only from a failed leaf of a derivation, instead of the whole failed branch. This
would, for example, limit the possibility of the G3m⇤ calculi to make countermodels
because the different sequents of the Schütte set, and the different worlds of the Schütte

1Or the tree structure in Tls for that matter.



Chapter 7 Conclusion 89

countermodels are found along the derivation branch2. This is not the case for Tls⇤ or
Ths⇤ which have the sequents of the Schütte set and the worlds of the Schütte model
occurring in each node of the branch. But even though it is possible to alter the way
these Schütte models are constructed from the proof systems, the specific constructions
chosen in this thesis are sensible and intuitive ones.

A way in which this research can be continued is extending it to other logics and analyzing
the Schütte method for other calculi. In this thesis we only looked at the modal logics
K, T, K4 or S4. It might be possible to do something similar for other logics like GL, D

or S5. Besides this, the research could also be expanded to include other calculi which
are inspired by sequent calculi like a display calculus.

In this thesis, we compared analytic calculi based on the Schütte completeness proof,
that is, we used the Schütte method to construct countermodels from a proof system
as a tool to compare sequent calculi. This Schütte completeness proof lends itself very
well for comparison because it created countermodels as a part of the proof, which then
can be used as a measure, by for example looking at the depth or size of these models.
However, the same approach might be used for comparison based on other meta-proofs
about proof systems. Can we compare analytic calculi based on other standard proofs
of properties common to those calculi?

2This shows immediately that this choice for limiting the Schütte countermodel construction is a
bad one, because the failed branch in a derivation of G3m⇤ does give enough information to make a
countermodel





Chapter 8

Schütte Completeness for Modal
Dyckhoff Calculus DYK

In this extra chapter we will construct a Schütte completeness proof for the intuitionistic
modal calculus DYK

1 presented in [14] which is an extension of the intuitionistic propo-
sitional calculus presented by Dyckhoff in [7]. This is done as an exploration into how
Schütte counter-models could be constructed for non-classical modal logics. The Schütte
completeness proof shown here is inspired by the proof in [26] for the propositional Dy-
ckhoff calculus. DYK is especially interesting because it is terminating, and differs from
the classical modal calculi treated in the rest of this thesis by the fact that it only allows
for single formula succedent sequents. We will see that this changes the way extra nodes
in the Schütte model are created. But before we can go into the calculus and the proof,
we first have to look at the specific Kripke models which can be used as a semantic for
intuitionistic modal logic.

8.1 Intuitionistic modal Kripke models

Intuitionistic modal Kripke frames differ a bit from normal Kripke models. This is
because we have two kinds of relations over the worlds, the modal relation, and the
intuitionistic relation.

Definition 8.1. An intuitionistic Kripke Frame is a tuple F =< W,, R > such that:

1. W is a non empty set (of possible worlds).

2.  is a partial order on W .
1We will only consider the 3 free part of intuitionistic modal logic

91
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3. R ✓ (W⇥W ) is a binary relation on W . If wRw
0 then we say world w

0 is accessible
from w.

With the use of this definition, we can then define what a full intuitionistic Kripke model
is.

Definition 8.2. An intuitionistic Kripke Model is a tuple M =< W,, R, V > such
that:

1. < W,, R > is an intuitionistic Kripke frame

2. V is a function assigning a truth value to each atomic formula p for each world
w 2 W . V (w, p) 2 {0, 1}. We require V to be monotone with respect to . Such
that if V (w, p) = 1 and w  w

0, then V (w0
, p) = 1.

We can now give an interpretation of the connectives for intuitionistic modal Kripke
models.

Definition 8.3. let M =< W,, R, V > be an intuitionistic Kripke model with x, y, z 2 W

and A,B and C modal formula and p an atom. Then the truth of a formula is inductively
defined relative to model M and world x in the following way.

M, x 2?

M, x ✏ p () V (x, p) = 1

M, x ✏ A ^B () M, x ✏ A and M, n ✏ B

M, x ✏ A _B () M, x ✏ A or M, x ✏ B

M, x ✏ A ! B () For all y for which x  y: If M, y ✏ A then M, y ✏ B

M, x ✏ 2A () For all y for which x  y: For all z: If yRz, then M, z ✏ A

Lemma 8.4 (monotonicity). For each formula A, model M and world w in M, if M, w ✏
A then for each world w

0 such that w  w
0 it is the case that M, w

0 ✏ A.
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8.2 DYK and some preliminary theorems

Definition 8.5. DYK consist of the following rules:

Axioms:

�, p ) p
Ax

Rules:

�, A,B ) D

�, A ^B ) D
L^

�, A ) D �, B ) D

�, A _B ) D
L_

�, A ) D

�, p, p ! A ) D
Lp !

�, A ! (B ! C) ) D

�, A ^B ! C ) D
L^ !

�) A ⇧,2�, B ) D

⇧,2�,2A ! B ) D
L2 !

�,?) D
L ?

�) A �) B

�) A ^B
R^

�) A1,2

�) A1 _A2
R_1,2

�, A ) B

�) A ! B
R !

�, A ! C,B ! C ) D

�, A _B ! C ) D
L_ !

�, B ! C ) A ! B �, C ) D

�, (A ! B) ! C ) D
L !!

�) A

⇧,2�) 2A
K2

Lemma 8.6. All rules of DYK except K2, L2, R_ and R !! are invertible.

We will also define the size of a sequent analogous to how this is done in [7].

Definition 8.7. To define the size of a sequent we first need to define the weight of a
formula. The weight of a formula is inductively defined as follows:

1. wt(p) = 1

2. wt(2A) = wt(A) + 1

3. wt(A _B) = wt(A ! B) = wt(A) + wt(B) + 1

4. wt(A ^B) = wt(A) + wt(B) + 2

If we look at a sequent as the multiset {Sa
, S

s} as consisting of the multisets of the
antecedent and the succedent. We can now define an ordering over sequents. We say
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that for two sequents S and T that sequent S >> T if {T a
, T

s} is the result of replacing
one or more formula of {Sa

, S
s} for zero or more formula of lower weight. We say that

T is of lower size than S.

Definition 8.8. A sequent �,2�) A is critical if:

1. A is of the form B _ C, 2B or p.

2. For all formulas B 2 � they are of the form p,2B, (B ! C) ! D, p ! C or
2B ! C.

3. there is no formula p ! B 2 � for which also p 2 �.

4. If A is the atom p, it cannot be the case that p 2 �

Notice that none of the rules Ax,L ?, L^, R^, L_, Lp !, R !, L^ !, and L_ ! can
be applied to a critical sequent.

Theorem 8.9. A critical sequent �,2�) A is an intuitionistic tautology if and only if
at least one of the following is true:

1. A is of the form B _ C and and at least one of the following sequents is an intu-
itionistic tautology < �,2�) B >,< �,2�) C >

2. A is of the form 2B and �) B is an intuitionistic tautology.

3. There is an implication (B ! C) ! D 2 � such that both �� {(B ! C) ! D},2�, B, C ! D ) C

and �� {(B ! C) ! D},2�, D ) A are intuitionistic tautologies.

4. There is an implication 2E ! F 2 � such that both �) E and �� {2E ! F},2�, F ) A

are intuitionistic tautologies.

Proof. The proof is from contradiction via countermodels: If we have countermodels
as a result of the fact that statements 1-4 are false, it is possible to also construct a
countermodel to the critical sequent.

Let us look at the case that A is of the form 2G, because the cases that it is an atom
or ? are easier, and the case that A is B _ C is explained in [26] and is also quite
straightforward. Let (B1 ! C1) ! D1, ..., (Bn ! Cn) ! Dn be a list of all the formulas
of that form in �. Let 2E1 ! F1, ...,2Em ! Fm be a list of all the formulas of that
form in �.

1. Statements 1 is immediately false because formula A is not of that form.
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2. Because statement 2 is not true there must be a countermodel for the sequent
� ) G. Let X be these countermodels with the root xi which is the world in
which the sequent is countered.

3. Because statement 3 is not true for each formula (Bi ! Ci) ! Di 2 � there must be
a countermodel for one of the sequents �� {(Bi ! Ci) ! Di}, Bi,2�, Ci ! Di ) Ci

or �� {(Bi ! Ci) ! Di},2�, Di ) A. If we have a countermodel to the sequent
�� {(Bi ! Ci) ! Di},2�, Di ) A we also have immediately a countermodel to
the sequent �,2�) A and the proof is easily shown. Because of this, we as-
sume the more interesting case, that for every i we only have a countermodel
for �� {(Bi ! Ci) ! Di},2�, Bi, Ci ! Di ) Ci. Let Ki be these countermodels
with the root ki which is the world in which the sequent is countered.

4. Because statement 4 is not true for each formula 2Ej ! Fj 2 � there must be a
countermodel for one of the sequents �) Ej or �� {2Ej ! Fj},2�, Fj ) A. If
we have a countermodel to the sequent �� {2Ej ! Fj},2�, Fj ) A we also have
immediately a countermodel to the sequent �,2� ) A and the proof is easily
shown. Therefore, we assume that for every j we only have a countermodel for
� ) Ej . Let Lj be these countermodels with the root lj which is the world in
which the sequent is countered.

With the use of all these countermodels, it is possible to construct a bigger countermodel
which refutes all. We do this by adding creating the model M =< MW

,M
,MR

,MV
>

2.
All the countermodels X,K1, ...,Kn, L1, ..., LM together plus another world w which is
the root of the model. w  ki for 1  i  n, wRlj for 1  j  M and wRx.

MW = X
W

[K
W
1 [ ... [K

W
n [ L

W
1 [ ... [ L

W
m [ {w}

M = X

[K


1 [ ... [K


n [ L


1 [ ... [ L


m [ {w  ki|1  i  n}

MR = X
R
[K

R
1 [ ... [K

R
n [ L

R
1 [ ... [ L

R
m [ {wRlj |1  j  M} [ {wRx}

MV = X
V
[K

V
1 [ ... [K

V
n [ L

V
1 [ ... [ L

V
m [ {V (p, w) = 1|p 2 �}

Note that forcing all atoms p in w for which p 2 � does not violate monotonicity. This
is because in all atoms in � are also forced in the root nodes of all sub-models K1, ...,Kn

(and monotonicity holds in these models!). And the roots of these sub-models are the
only worlds for which w  w

0. The total model is also visualised in figure 8.1.

To show that M is a countermodel to the sequent �,2�) A we need to show that for
each formula � 2 � and each formula � 2 2� that M, w ✏ � and that M, w 2 A.

2In the definition below, we assume the transitive closure of M
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Figure 8.1: Countermodel M with root world w.

Because A is of the form 2G and there is the root x of sub-model X for which wRx and
M, x 1 G it is true that M, w 1 2G.

For each world w
0 for which wRw

0 we know that M, w
0 ✏ B for each formula 2B 2 2�.

We know this because these are precisely the root-worlds x, l1, ..., lm of the sub-models
X,L1, ..., Lm. And in all of these worlds all formulas in b 2 � are forced.

Because the sequent �,2� ) A is critical we know that the sort of formula occurring
in � is limited to the forms described in definition 8.8, we therefore only have to look at
formulas of these forms.

For each atom p 2 � it is forced in w by definition.

For each formula � 2 �,2� where � is of the form p ! B, 2B or 2E ! F we know
that in every world w

0 which is not w for which w  w
0 it is the case that M, w

0 ✏ �.
We know this because these w

0 are precisely the root-worlds k1, ..., kn of the sub-models
K1, ...,Km plus for each of these sub-models the other worlds in these sub-models which
are following from the root node. We know that for each formula � and for each ki

where 1  i  n that M, ki ✏ � because the model Ki is a countermodel to the sequent
� � {(Bi ! Ci) ! Di}, Bi,2�, Ci ! Di ) Ci. And it is also true for each world
following ki in model Ki because of monoticity in these sub-models.

For each formula p ! C 2 � we know that it cannot be that p 2 � by definition 8.8
therefore M, w 1 p. Besides that we know that in every world w

0 which is not w for
which w  w

0 it is the case that M, w
0 ✏ p ! C. Therefore M, w � p ! C.

For each formula 2B 2 2� we know that all worlds w0 for which wRw
0 it is the case that

M, w
0 ✏ B. These are the worlds l1, ..., lm, x and we know that they force each formula

B because these worlds are countermodels to the sequents < �) E1 >, ..., < �) Em >

,< �) G >. Therefore, M, w ✏ B.

For each formula 2Ej ! Fj 2 � we know that M, lj 2 Ej . Therefore M, w 1 2Ej .
Besides that we know that in every world w

0 which is not w for which w  w
0 it is the
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case that M, w
0 ✏ 2Ej ! Fj . Therefore M, w � 2Ej ! Fj .

For each formula (Bi ! Ci) ! Di 2 � we know that M, ki 2 Ci and M, ki ✏ Bi and
thus M, ki 2 Bi ! Ci. Because of this and w  ki we know that M, w 2 (Bi ! Ci).
We know that M, ki ✏ (Bi ! Ci) ! Di because ki 2 Bi ! Ci and for each world for w

0

which for which ki  w
0 we also know the following: M, w

0 ✏ Bi and M, w
0 ✏ Ci ! Di

because of monoticity and thus in each world w
0 Mw

0 ✏ (Bi ! Ci) ! Di regardless of
whether Ci becomes forced in world w

0. We also know that (Bi ! Ci) ! Di is also
forced in all other root worlds kk of the sub-models Kk where k 6= i and all worlds
in these sub-models following from the root node because (Bi ! Ci) ! Di 2 � and
monoticity of the sub-models. This means that for all different worlds v for which
w  v M, v ✏ (Bi ! Ci) ! Di and M, w 2 Bi ! Ci) resulting in the fact that
M, w ✏ (Bi ! Ci) ! Di.

This means that in M there is the world w which forces all the formulas in the antecedent
of the critical sequent �,2� ) A but does not force the formula in the succedent and
therefore M is a countermodel to the critical sequent.

This means that if none of the statements 1-4 is true, then the sequent �,2� ) A is
not an intuitionistic tautology. ⌅

8.2.1 Proof procedure and Schütte proof

With the result of theorem 5.1, it is possible to create a proof procedure which shows
the Schütte completeness of the calculus DYK for intuitionistic Kripke models. We first
use all the invertible rules exhaustively. If none of these rules are applicable anymore,
we use the rules L2 !, L !!, R_1,2 and K2 together on that sequent.

Definition 8.10 (Proof Procedure). The proof procedure starts with writing the to be
proven sequent S at the root of the reduction tree, and then use the following proof
function on each leaf of the tree until no rule can be applied anymore. the function also
returns either true or false which will indicate whether we found a proof for the sequent.

Suppose the leaf is of the form �,2� ) D, then try to apply the rules of DYK in the
following way in the following order to the leaf. There are 9 cases:

1. if D is p and p 2 � or ?2 �, end the application of rules to the leaf, the leaf is an
axiom and return true.

2. If D is A ^ B apply the rule R^ and write the two sequents �,2� ) A and
�,2� ) B above the leaf in the reduction tree. Return true if both of the new
leaf sequents return true.
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3. If D is A ! B apply the rule R ! and write the sequent �,2�, A ) B above the
leaf. Return true if the new leaf sequent returns true.

4. If � contains a formula of the form p ! A and the atom p, apply the rule Lp !

to the leaf. Write the sequent � � p ! A, p,A,2� ) D above it. Return true if
the new leaf sequent returns true.

5. If � contains a formula of the form A ^ B ! C, the rule L^ ! is applied to the
leaf. Write the sequent ��A ^B ! C,A ! (B ! C),2�) D above it. Return
true if the new leaf sequent returns true.

6. If � contains a formula of the form A _ B ! C, the rule L_ ! is applied to the
leaf. Write the sequent ��A _B ! C,A ! C,B ! C,2�) D above it. Return
true if the new leaf sequent returns true.

7. If � contains a formula of the form A^B, the rule L^ is applied to the leaf. Write
the sequent ��A ^B,A,B,2�) D above it. Return true if the new leaf sequent
returns true.

8. If � contains a formula of the form A_B, the rule L_ is applied to the leaf. Write
the sequents ��A _B,A,2�) D and ��A _B,B,2�) D above it. Return
true if both new leaf sequents return true.

9. If this step is reached in the function, we know that the leaf �) D is critical. We
will call the rules L !!, L2 !, R_ and K2 on the leaf multiple times if possible
as shown beneath. We will return true if at least one of the following returns True:

K2:
If D is of the form 2A the rule L_ is applied to the leaf. We will write the sequent
�) A above the leaf and return true the new leaf sequents returns true.

R_:
If D is A _ B apply the rule R_ two times to the leaf and write the sequents
�,2�) A and �,2�) B above the leaf. Return true if at least one of the new
leafs return true.

L2 !:
Let 2E1 ! F1, ...,2En ! Fn be a list of all the formulas of that form in �. We will
apply the rule L2 ! using each of these formulas as principal. This means that for
each 1  i  n we will write the sequents �) Ei and �� 2Ei ! Fi, Fi,2�) D

above it. Return true if there is at least one i for which both new leaf sequents
return true.

L !!:
Let (A1 ! B1) ! C1, ..., (Am ! Bm) ! Cm be a list of all the formulas of
that form in �. We will apply the rule L2 ! (and immediately R ! to the
left premise) using each of these formulas as principal. This means that for each
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1  j  m we will write the sequents �� (Aj ! Bj) ! Cj , Aj , Bj ! Cj ,2�) Bj

and � � (Aj ! Bj) ! Cj , Cj ,2� ) D above it. Return true if there is at least
one j for which both new leaf sequents return true.

If none of 1-9 are applicable to a leaf sequent, stop the function for that leaf. If a sequent
does not return true, it is false.

Theorem 8.11. The procedure is finite

Proof. Each application of the cases 1-9 of the proof function writes zero or more sequents
above the leaf of lower size than the original leaf sequent according to the weight function
described in definition 8.7. Because the weight of any formula cannot be smaller than 1,
and it is impossible to have infinite formulas in a sequent, the procedure terminates. ⌅

Theorem 8.12. If the procedure fails (the root sequent returns false) we can create a
Schütte countermodel that refutes the root sequent based on a sub-tree of the reduction
tree.

Proof. We can create a sub-tree of the reduction tree the following way:

Start at the root sequent and go up the reduction tree bottom-up, choosing what parts of
the tree will stay based on the application of the function at that node of the reduction
tree.

We know case 1 is not applied to a node, otherwise, the of that node would not be false.

If the function applied cases 2-8 to a node, we choose one next node which has returned
false. We know there is one because the previous sequent was false.

If the function applied case 9 to a node, we choose one next node for each application of
a rule L !!, L2 !, R_ and K2 which has returned false. We know there is one for
each application because the previous sequent was false.

we now can create a countermodel for the root sequent of this sub-tree. This is done
with induction on the depth of the sub-tree. The depth is straightforwardly defined as
the longest row of applied cases 1-9 of the proof procedures function.

If D = 0:

We know the only sequent in the sub-tree must be of the form �,2� ) D where all
formulas in � are either atoms or implications of the form p ! A where p /2 � and D is
an atom q. We know all this because otherwise one of the parts 2-9 of the proof function
could be applied. We also know that the atom q /2 �, otherwise �,2� ) D would be
an axiom and not false.

Because of this we can create a countermodel M =< W,, R, V > such that:
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1. W = {w}

2. The partial order  on W is only consisting of w  w.

3. The binary relation R is empty

4. V (w, p) = 1 $ p 2 �

This model M forces all formulas in �,2� in world w while M, w 1 q. This is trivial.

Induction Hypothesis:

If D = n we can create a Schütte model that refutes the root sequent.

If D = n+ 1 and the last call to the function applied the rules of 1-8:

Because the rules applied in 1-8 are all invertible a countermodel to the premise of that
rule is also a countermodel to the conclusion of that rule.

If D = n+ 1 and the last call to the function applied the rules of 9:

As shown in theorem 8.9 it is possible to use the countermodels of all the premises of
the applied rules and construct a countermodel to the sequent to which 9 was applied
to. ⌅

Example 8.1. We can for example apply the function to the sequent ) ¬¬2p _ ¬2p,
which gives us the following tree.

2p )?

) 2p !?
3

) p ?)?

2p !?)?
9

) (2p !?) !?
3

) (2p !?) _ ((2p !?) !?)
9

This gives us the countermodel M =< W,, R, V > where:

W = {w1, w2, w3, w4}

= {w1  w2, w1  w3}

R = {w3Rw4}

V = ;

In figure 8.2, we can see the countermodel M. It is a countermodel for ¬¬2p _ ¬2p for
the following reasons. w4 2 p and thus w3 2 2p, because there is no other world w

0 such
that w3  w

0
w3 ✏ ¬2p and also w3 2 ¬¬2p. Besides this w2 ✏ 2p, and w2 2 ¬2p.

Therefore w1 2 ¬¬2p and w1 2 ¬2p which results in w1 2 ¬¬2p _ ¬2p.
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Figure 8.2: DYK Schütte countermodel of the sequent ) ¬¬2p _ ¬2p.
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