
Utrecht University
Faculty of Science Artifical Intelligence

Approximating flexibility of social practices in a
household setting

By Maaike Burghoorn

Supervisors: Dr. F.P.M. (Frank) Dignum1, Professor Yoshihisa Kashima2

1. Utrecht University
2. University of Melbourne

March 15, 2019

Abstract

We aim to gain understanding in the factors that influence the daily pattern of social
practices in a household setting. Studies suggest that household water and electricity use are
generated by the interactions of the occupants within the infrastructure of the home. These
patterns are often interlocked and difficult to understand. Learning which factors influence
this interlocked pattern of practices can help understand how to shift everyday practices
to be more sustainable. In this thesis, a simulation was developed that approximates the
flexibility of these social practice patterns. The simulation uses agent-based modeling to
simulate a negotiation protocol. Scheduling techniques were used to build the daily inter-
locked patterns. The simulation was used to examine the influence of schedule tightness and
occupant flexibility on the interlocked patterns. It was found that the occupant flexibility
seems to not influence negotiation at all and in general tighter schedules do not require
more complex negotiation. Morning and midday tasks often did not require any negotia-
tion, thus the tightness and flexibility did not have a significant influence in these events.
However, households with a slightly busier schedule were more likely to require negotiation
when modifying evening tasks. This is due to the local tightness during the evenings. The
results suggest that shifting towards more sustainable living is not constrained by schedule
tightness or the willingness of people to change.

2

Acknowledgments

I would like to extend my thanks to Dr. F.P.M. Dignum for giving me the opportunity to do
my master’s thesis in Australia. I would also like to thank him for his advice and assistance in
keeping my progress on schedule and his useful criticism on my thesis.

I would like to express my great appreciation to Professor Yoshihisa Kashima for his valuable
suggestions during the development of this thesis. He always found time for our meetings in
his busy schedule. I always looked forward to sharing my progress and ideas and listening to
Yoshi’s thoughts and view.

I would also like to thank everyone in the Social Psychology department of the University
of Melbourne who joined the weekly social psychology group sessions. It was great listening to
all your researches and accompanying hardships. Thank you for listening to mine as well.

My special thanks are extended to Curtin University Sustainability Policy institute (CUSP).
Thank you for sharing your time, knowledge and for providing me with useful data for this
thesis. Special thanks to Professor Greg Morrison and his family for their efforts and providing
me accommodation.

3

CONTENTS

Contents

1 Introduction 5

2 Related work 7
2.1 Agent-based modeling . 7
2.2 Social practices . 8
2.3 Social practice theory in agent-based models . 9
2.4 Social practice theory in households . 11
2.5 Sustainability and application . 12

3 The Model 13
3.1 Purpose . 13
3.2 Entities, state variables, and scales . 13
3.3 Process overview and scheduling . 16
3.4 Design concepts . 17

3.4.1 Basic principles . 17
3.4.2 Emergence . 17
3.4.3 Adaptation . 18
3.4.4 Objectives . 18
3.4.5 Learning . 19
3.4.6 Prediction . 19
3.4.7 Sensing . 19
3.4.8 Interaction . 19
3.4.9 Stochasticity . 19
3.4.10 Collectives . 20
3.4.11 Observation . 20
3.4.12 Code design . 20

3.5 Initialization . 21
3.6 Input data . 26

3.6.1 Household data . 26
3.6.2 Shower data . 27

3.7 Submodels . 27

4 Scheduling 38
4.1 The fundamentals of scheduling . 38
4.2 The constraint satisfaction solver . 39
4.3 Schedule tightness measure . 42

5 Experimental setup 45

6 Results 47

7 Discussion 53

8 Conclusion 56

Appendix A Class annotations 60

Appendix B Household type (hType) compositions 60

4

1. INTRODUCTION

1 Introduction

In Western Australia water resource use is a big issue due to the Mediterranean climate which
causes a water shortage. Research has been pursued to gain understanding in the behavior
and technology that influence sustainable living. It was suggested that water and electricity
use is not solely dependent on the infrastructure of the home since the individuals living in the
home are responsible for the emission of the home (Eon et al., 2018c). Technologies have been
invented to provide occupants useful information regarding their resource use. However, these
technologies often fail to become integrated in the daily life of occupants and lose efficiency
after a while. It was also proposed to solely focus on influencing the behavior and intentions of
the occupants. Lopes et al. (2012) has demonstrated that this approach can achieve significant
energy savings. However, generally individuals are not willing to change their personal behavior
because this requires everyday effort which diminishes their living comfort.

Social practice theory shifts the behavior change question from ”How do we change indi-
viduals’ behavior to be more sustainable?” to ”How do we shift everyday practices to be more
sustainable?” (Spurling et al., 2013). This shift in approach is what recent studies have been
researching. Studies at the Curtin University Sustainability Policy Institute (CUSP) are aiming
to combine human behavior with the infrastructure of the home. It was proposed to view the
home as a system of practices to gain a deeper understanding of the complexities of the home
system (Eon et al., 2018a). This approach uses the idea that emissions are generated by the in-
teractions of the occupants with the infrastructure of the home. These interactions are the daily
social practices of all occupants in the household. All these practices affect the total resource
use of the household. In Spurling et al. (2013) it was argued that the pattern in which these
practices are performed is interlocked. Slightly adjusting one practice sometimes requires many
changes in this pattern. Macrorie et al. (2015) argued that to understand changes in practices,
it is required to understand not only the singular practice entities but the connections among
practices across both space and time as well. Practices interlocking can occur through sequences
of practices and synchronization of practices. The former forces an order in which practices are
performed, such as working day hours or shop opening hours. The latter causes interlocking by
people performing the same activities during the same period of time, such as driving to work
or showering before work.

Schedules of social practices within households differ in flexibility. This depends on a number
of factors, such as number of people within a household and the activities of each occupant.
However, it also depends on the specific meanings behind those activities. Besides the meaning,
this pattern was also shaped by the available resources and skills of the occupant. Social
practices stem from a theory within the sociological research field. Social-psychologists think
of social practices as the primary focus and the involved individuals are mere carriers of these
practices. However, within agent-based modeling and more specifically social simulation, social
practices are seen from the individual’s perspective. The practices still have a meaning attached
and require skill and resources. These meanings, skills and resources serve as constraints for
duration and timeslot in which a practice can be performed by the individual. Since agents have
to perform many social practices on daily basis, the pattern of these practices often becomes
interlocked and complex. Therefore when an agent has multiple meanings, skills and resources
attached to its social practices, this pattern becomes more difficult to change. Moving just one
practice can cause a chain reaction of changes within the schedule. This is due to the complex
connections among all practices. Practices can share meanings, skills and resources with other
practices making them interdependent.

In this thesis, we are testing the flexibility of these patterns in households. For a human
eye, it is often easy to see which changes are necessary to accommodate one small change in
the schedule. Humans are intuitively able to view the meaning, required skills and resources
behind the practices. However, for a machine handling these constraints is a difficult task.

5

1. INTRODUCTION

The meanings, skills and resources need to be built in as constraints for the machine to know
which moves are legal. In this thesis, we aim to build a social simulation that models the
social practice patterns within households. Using this simulation, we try to approximate the
flexibility of interlocked patterns of social practices in households. The simulation is based on
agent-based modeling techniques. We also use a technique called scheduling, which simulates the
interlocked patterns of practices within households. The scheduling technique is used to create
an initial schedule of practices that fulfills conditions. These conditions can be preferences of
the occupants, such as their preferred shower time. Other conditions consist of meanings, skills
and technology which are required to successfully perform a practice. The resulting schedule
is used as the default daily schedule. This basic schedule compares to System 1 behavior or
fast thinking as it allows people to follow some kind of pattern to avoid actively thinking about
ones actions each day, (Kahneman and Egan, 2011). The agent in the household will be given
the opportunity to modify their schedule. This process is handled by the use of a negotiation
protocol.

This thesis project is incorporated within the low carbon living project at the University of
Melbourne. This project studies households in Australia and the likelihood of changing their
behavior in favor of low-carbon living. This research draws some of their ideas from social
practice theory and how meaning, skills and resources can influence people’s decisions and
behavior towards low-carbon living. In this thesis we want to zoom in on a small subsection
of sustainable living, which is the water use and more specifically the showering practice. The
shower practice is shown to be the second biggest contributor of water use within the household
after garden irrigation, (Eon et al., 2018a). In this paper it was also shown that there exists a
lognormal distribution in the frequencies of the lengths of the showers. This distribution can be
interpreted to represent the different meanings of showers with different durations. The different
meanings make the showering practice an interesting application for the practice scheduling
model. Multiple meanings imply the different types of constraints which can interlock a daily
schedule in different ways. The shower practice can be used as a representative example of
a social practice with many constraints attached. Therefore, this thesis will focus on shower
practices in particular.

Research questions

Based on this problem description and the involvement of the low carbon living project, the
developed simulation will be used to answer the following research questions:

• How do schedule tightness and occupant flexibility influence the interlocked pattern of
social practices in a household setting?

• How do schedule tightness and occupant flexibility constrain the shower practice?

In Section 2, we present related work from both the Social Sciences field as well as the
Computer Science field. We will discuss studies towards agent-based modeling, social practice
theory and scheduling theory. We give an extensive description of the model developed for the
purpose of this thesis in Section 3. This section mainly describes the agent-based negotiation
protocol. Details on the scheduling protocol are explained in Section 4, which will be preceded
by a brief introduction to scheduling theory. The setup of the experiment which is used to
answer our research questions, is discussed in Section 5. This followed by the results of the
experiment in Section 6. Finally, we will discuss the implications of the results in Section 7
and use these implications answer the research questions, draw some conclusions and indicate
possible extensions of the model in Section 8.

6

2. RELATED WORK

2 Related work

Many studies have attempted to implement a social aspect in agent-based models (Athanasiadis
and Mitkas, 2005; Luo et al., 2008; Marsella et al., 2004; Mercuur, 2015). It has become more
important for agent-based systems to be socially aware. An agent must be able to understand
his social role within the social context and choose appropriate actions in given situations.
Most attempts that add a social context to their agent-based model use a fixed context. If the
social context were to change, the agents within the system are unable to reason about their
social roles in the new social context. Therefore, a context change often requires a complete
re-engineering of the system.

Several studies attempted to generalize the social deliberation system of the agents (Dignum
et al., 2015; Dignum and Dignum, 2014). Such a system allows agents to deduce their social
role given a social context and decide on appropriate actions. The difficulties lie in finding a
way to represent this social context and build a model which lets agents deduce social norms,
values and other social concepts from the context. Several papers have tried to represent the
social context using social practice theory and have created a social deliberation model using
this theory.

Social practices stem from a sociological theory called social practice theory (Shove et al.,
2012). The theory seeks to determine the link between practice and context within social
situations. Social practices are defined as activities that are performed by individuals on a
regular basis. These activities are a shared concept meaning, they are common activities among
individuals in society. However, each social practice can be performed differently as they are
dependent on the individual who performs them. An example of a social practice is ”going to
work”. Many individuals perform this practice on daily basis, but depending on the individual
one might drive to work or use the public transport.

Dignum and Dignum (2014) argue that social practice theory forms an efficient way to
represent social context because it connects practices to context. Social practices integrate
the individual with its surrounding environment, which allows the individual to assess how the
current social situation relates to its past experiences, capabilities and culture. In Dignum and
Dignum (2014) the social practice theory was used as the focal point of the deliberation process
of the agents. A model was developed which simulates the action planning process of an agent
using social practice theory. In Dignum et al. (2015) this model was extended to interaction
situations and several social aspects were integrated with social practices, such as norms, self
identity, and habits. The social aspects allows the agent behavior to be consistent overtime.

Social practice theory is also widely explored in other areas. Recent studies in the sus-
tainability field are using social practices to study resource use of households. Especially in
Australia a lot of research has been conducted in this area. The University of Melbourne is
currently working on a low-carbon living project (O’Brien et al., 2017). This project studies
households in Australia and the likelihood that they will change behavior in favor of low-carbon
living. This research draws some of their ideas from social practice theory and how meaning,
skills and resources can influence people’s decisions and behavior towards low-carbon living.

2.1 Agent-based modeling

Agent-based models (ABM) are computational models that simulate the actions and interactions
among autonomous agents in an environment. ABM allows the user to model the emergence of
macro behavior by simply modeling individual decision and interaction behavior. The possibility
of modeling these interactions is the main difference that separates agent-based modeling from
other computational models (Gilbert, 2008). Agent-based models are often used to model
complex phenomena and study the influence of numerous factors. In Schelling (2006) it is
explained how minor changes in the micro motives can cause a large effect in the macro behavior.
Minor motives is defined as the behavior on the individual level and the macro behavior is the

7

2. RELATED WORK

resulting aggregate behavior. An example mentioned in Schelling (2006) shows that individuals
with a slight racial preference can result in completely racially segregated neighborhoods.

An advantage of ABM is that an experiment can be repeated many times, while varying
several parameters. The ease of switching parameters allows for testing under different con-
ditions, while all other factors are kept constant. The simulation is isolated and all observed
effects can be explained by the modeled parameters.

Agent-based models consists of agents that interact with their environment. Agents are
individual entities that often follow simple decision rules. These decision rules often consist
of a policy function with the aim to optimize the agent’s utility. Therefore, the agents are
often rational entities, which are solely self-interested. However, in more social systems agents
have to collaborate to achieve a shared objective. These models require communication among
agents, which allows agents to share information with other agents. Most agent-based models
incorporate learning. In these models, agents learn from past experiences and update their
decision rules accordingly. Much research has been done towards developing learning algorithms
such as Reinforcement learning (Sutton and Barto, 1998), Bayesian learning (Young, 2004) and
Satisficing strategies (Stimpson et al., 2001).

The virtual world in which the agents are contained is called the environment. This environ-
ment can be spatial, where the agents have coordinates to indicate their location. In a spatial
environment the interactions among agents are usually limited to a specific range. In some
models agents are not allowed occupy the same location as other agents. In other models agents
might positively or negatively influence specific behavior of their neighbors. Another type of en-
vironment is networks. Agents within networks are connected by network links (Gilbert, 2008).
These networks can represent different types of relationships among agents, such as family or
customer relationships.

Agent-based social simulations is a branch within agent-based modeling which concerns itself
with modeling social behavior. In these simulations, the agents represent persons or a group
of persons. Modeling human behavior is quite complex because social interactions depend on
many different factors. It is therefore impossible to create a social simulation which completely
and accurately models the reality. However, the aim of social simulation is to create a simplified
representation of ”social reality” that encodes the way in which reality is believed to operate
(Gilbert, 2008). A set of simple rules can often closely represent the behavior in social reality.

In social simulation it is important that the agent or entities are able to communicate
with each other. One type of communication is negotiation, where the agents try to reach an
agreement. It is common for one agent to initiate the negotiation by sending a request to the
other agents. This thesis will use negotiation among agents to handle modification of schedules.
The negotiation protocol used in the model was inspired by Mester et al. (2015). In this study a
negotiation protocol, PRINEGO, was developed that allows agents to argue about their privacy
expectations. The protocol allows users to negotiate about their preferences regarding post
sharing on social media. It handles the flow of messages between negotiating parties. Agents
can either accept or reject a post request and negotiation continues until the majority of the
privacy expectations is met. Mester et al. (2015) does not use the concept of counter-offers, as
it is difficult to compare offers based on their privacy. However, in utility based negotiation,
counter-offers are commonly used.

2.2 Social practices

Society is full of habitual practices that are part of daily life. A few examples of these practices
are ”showering”, ”cleaning” and ”going to work”. These practices can be performed in many
different ways depending on the social context of the practice but also on the individual who
performs the practice. We should mention that social practice theory is a theory within soci-
ology. The practice itself is seen as the focal point, whereas the individuals are mere carriers
of these practices (Shove, 2010). The theory seeks to determine the link between practice and

8

2. RELATED WORK

context with social situations. Therefore, practices cannot be seen as deterministic entities but
should be viewed as shared (social) entities (Shove et al., 2012). People share practices in the
sense that everyone is familiar with the concept of ”cleaning”. But how, when and where this
practice is executed depends on the individual. One could see a social practice as an elaborate
condition-action rule (Dignum et al., 2015). A social practice is triggered by the context. One
might find a messy house that requires cleaning, another might assess the situation as a com-
fortable mess or not messy at all. Once a social practice has been identified, it is concretized by
filling in details. Dependent on which part of the house needs to be cleaned, a vacuum cleaner
or a mop might be required. More generally speaking, filling out the practice results in specific
actions dependent on multiple factors. Researchers in the social science (Holtz, 2014; Reckwitz,
2002) have categorized these factors into three broad categories: meaning, skill and technology

1. Meaning: The reason attached to the social practice. It specifies why a practice is triggered
and what objective the individual that carries the practice is trying to achieve.

2. Skill: The required competences that are necessary to perform the practice. An individual
might require a certain level of intelligence or a practice can require multiple individuals
at the same time.

3. Technology: The resources that are required to perform the practice. These resources can
be finite and/or shared with other practices or individuals.

The way these three elements of social practice are filled in can depend on social context,
habits, norms and social identity (Dignum et al., 2015). Habits refer to practices that are
performed frequently and do not require active thinking from the involved individuals. This
corresponds to System 1 or fast thinking. Actions that require a more deliberate process before
they can be executed, correspond to System 2 or slow thinking (Kahneman and Egan, 2011).
Social identity refers to how individuals perceive themselves and the social world (Dignum et al.,
2015). This allows for different meanings to be attached to a (shared) social practice. Once
these different meanings, required skills, and technologies are specified, the practice can be
carried out. Social practices can evolve over time and new meanings, skills and technologies
can be added to the practice.

2.3 Social practice theory in agent-based models

In this subsection we discuss some of the studies that have applied social practice theory to
agent-based modeling. In all of these studies, social practice theory is used as the foundation
of the deliberation process. However, different concepts are used to fill in the social practices
and select the suitable actions. The different studies will also show that social practice theory
in agent-based models can be applied to a diversity of social situations.

In many recent applications, agent-based models need to be aware of the social context.
This context is required for an individual to plan its goal and actions accordingly. A social
context concerns all surroundings of the agent, including other agents. Agents which can act
accordingly are agents that are capable of adapting their plans and actions given the social
context. However, in many social models the contexts are usually fixed. If a new context was
fed to an existing model, the agents in this model would not be able to reason about their social
roles in the new context. The reason is that agents are often implemented to operate in one
specific context. Therefore they are incapable of understanding new contexts without major
changes to their deliberation system. Several studies have attempted to solve this problem
by developing a generic deliberation model that interprets social contexts using social practice
theory.

In Dignum and Dignum (2014) it was proposed to use the social practices as heuristics
for planning in social contexts. It is explained that several previous studies have added social

9

2. RELATED WORK

practice theory to their deliberation model, but always as an additional aspect. Dignum and
Dignum (2014) propose to use social practice theory as the foundation of the deliberation rather
than an extra filter at the end of the deliberation process. The paper describes two types of
behavior, reactive behavior and pro-active behavior. The former concerns behavior in habitual
circumstances and is similar to System 1 thinking. The later requires socially intelligent behavior
to analyze the social context. Most agent platforms only use one of the two types of behavior,
however in a social model both types of behavior are required.

Dignum and Dignum (2014) argue that social practice theory can be used to combine both
types of behavior. Social practice theory concerns habitual practices which are performed on
daily basis. They can be seen as blueprints which can be filled in by many different actions
depending on the context. Every time a practice is used, previous encounters of the practice,
the current environment, meanings and purposes of practice are adapted. Hence, both reactive
and pro-active behavior is used in the deliberation process. The paper also argues that since
social practices are shared concepts, they are very well suited to represent individual planning
in social simulations.

The final model in Dignum and Dignum (2014) defines several components of a social practice
that can be concretized. We will not describe each characteristic in detail, but rather explain
how these characteristics help to fill in the social practice. Fast thinking is used when a social
practice matches the characteristics of a situation and a habitual action can be triggered. If
the situation does not match previously used social practices, more deliberation is required.
The social practice is filled in by sensed observations, which concretizes the social practice until
an appropriate action can be deduced. The paper illustrates their model using an example in
which fire brigade agents have to manage a disaster situation. The situation involves a collision
between a truck and a passenger car which consequently caught fire. Analyzing the context
results in filling in the social practice ”tanker fire”. Depending on how the social practice is
filled in the action ”evacuation” or ”extinguish fire” might be triggered and performed. This
example scenario shows one of the many applications in which social deliberation agents can be
useful.

Dignum et al. (2015) is another paper that uses social practices as the foundation of the
deliberation process. This paper focuses on a scenario in which interaction among agents is
required. It uses several concepts such as social identity, norms and values to create consistency
in the resulting actions of the deliberation process. The concept of social identity is described
as the capability to perceive itself in the social world. The identity is represented with a set
of values which ensures a consistent type of behavior. The concept of norms is used to denote
which actions are (dis)allowed in certain contexts. This again provides consistency in actions
over time. Habits are actions that are performed frequently and are another way to create
consistency in the model. The paper describes how social practices can be filled in using these
concepts. Social identity is used to give a social meaning to a practice. The available actions
are filtered based on norms and habits are formed when a social practice is repeated frequently.

Dignum et al. (2015) presents a business case scenario. In the scenario a large company and
a smaller research institute negotiate business terms. Both parties portray completely different
self identities, which shows the necessity of using this concept in the deliberation process. A
rough deliberation cycle that uses self identity and social norms is presented. It shows how
these two concepts can be used and how habits can eventually be formed. First a selection of
self identity values is made based on the current situation. This self identity is used to identify
all applicable abstract social practices and the most suitable one is selected. Hereafter, the
social practice is filled in and an action is selected based on the concrete social practice. Finally
the action is executed and the results of the actions are evaluated. Social practices are adapted
based on this learning process. The self identity and norms are used both in selection process
and during instantiation of the social practices.

Another scenario example of applying social practice theory to an agent-based model is

10

2. RELATED WORK

presentend in Mercuur (2015). The illustrated model depicts meat-eating behavior while dining
out. It demonstrates the deliberation process of eating meat or eating vegetarian. It is argued
that social practices create an well-balanced combination of habitual and intentional behavior,
unlike traditional theories which adopt only either of the two. All three main elements of
social practices introduced by Shove et al. (2012) are used in the model: meanings, skills
and technology. Meanings of dining out can include pleasure, health or necessity. Required
skills might be etiquette and usage of cutlery, while cutlery itself and other tableware can be
categorized as the required material.

2.4 Social practice theory in households

In the 2.2 subsection we already explained the general concept of social practices. Practices can
range from ”going to work” to ”cleaning”. But in this research we are particularly interested
in practices that are performed in and around the house. This includes the ”sleeping” and
”showering” practice but also practices such ”working”. The latter practice is not a household
practice itself, but it does influence the water and energy use in the household as shown in
multiple studies (Eon et al., 2018a,c). Working occupants leave the household during the day
and therefore the energy and water use is minimal during these hours. Recently, several studies
have focused on social practices within the household. Many of these studies are conducted in
Western-Australia due to the Mediterranean climate, which causes a water shortage. We will
discuss some of the relevant studies here.

Before the focus shifted to social practices, the household was viewed as a single entity (Eon
et al., 2018c). In these models, energy and water use is only dependent on the infrastructure and
technology of the household. Technology has been incorporated in households to make occupants
more aware of their energy use. However, if this technology does not become embedded in
occupant everyday lifestyle, the technology is forgotten after a short while. However this way
of modeling does not match the energy use in actual houses. In Eon et al. (2018c) the daily
heating and cooling practices of occupants were studied. It was shown that households with
similar designs can still show very different patterns of energy use. This was due to difference
in choice of appliances and technology in the households. Another influencing factor was the
difference in lifestyle. This includes structure of the family in the household and their daily
practices. The study also found that lifestyles within households differed as much as lifestyles
between households. Different occupants may have different beliefs and therefore take different
actions regarding the same practice. This supports our idea to constraint tasks of occupants
based on the meanings attached to the practice.

In a follow-up research (Eon et al., 2018b), the influence of occupants and their practices
on resource use is also studied. In this study the homes are viewed as a system of practice
(SOP) to understand the resource and technology use in the home. This supports the idea
that household emissions are not dependent on the physical infrastructure of the house alone.
Instead they focus on the interaction of the occupants with the home and how practices are
filled in differently by different occupants. Occupants can attach different meanings, places and
contexts to these practices, which causes different interlocking patterns of practices. The term
interlocking is used to indicate the mutual dependency between daily practices. This means
that practices are constraint by their contexts and other practices. Results showed that changes
in practices were considered too much work by the occupants. However, a change in technology
was seen as a simple one-time solution. Occupants reported that changes in practices causes too
much discomfort, such as reducing the shower time. The showering practice sometimes serves
as a relaxation purpose, which makes it difficult to change this task. This again shows that
meanings constrain the practices and therefore our model will use meanings as constraints.

Another paper by Eon et al. elaborates on the SOP approach (Eon et al., 2018a). The study
applied the SOP approach to eight Australian homes, which incorporates human interaction
with other occupants but also with the technology in the household. This approach gains

11

2. RELATED WORK

a deeper understanding of the interlocking patterns within households, which is necessary to
further reduce resource use. The study found that practices are influenced by interlocked
practices and interlocking routines of other occupants. It was also shown that practices follow
established daily patterns. These results imply that highly interlocked practices are not easily
susceptible to change. However automation might slightly dis-interlock these practices from the
established daily pattern. Furthermore, the study shows that daily patterns can be re-aligned,
for example weekdays exhibit different social practice patterns than the weekend.

2.5 Sustainability and application

This research project is part of the sustainable living project at the University of Melbourne. For
that reason a sustainability setting was chosen to test our model. The University of Melbourne
is developing a social-psychological decision-making framework. They study the factors that
influence the transition to low carbon living. The paper argues that an individual’s daily
activities form a network which balances one’s own resources but also the activities of others.
Moving one activity can disrupt the balance of the entire network, which makes behavior change
a difficult task. A measure, called the Low Carbon Readiness Index (LCRI), was developed
which is used to identify the likelihood of transitioning to low carbon living. Different types
of mindsets towards low carbon living were identified and behavior was clustered to categorize
different types of change that accommodate more sustainable living. This allows the LCRI
measure to predict what sort of sustainable behavior change each type of mindset is likely to
show.

12

3. THE MODEL

3 The Model

This section provides an extensive description of the model developed during this thesis. The
details of the model will be discussed such as the overall process overview, design concepts
and used datasets. Each entity used in the model will be explained along with their initial
instantiation and update rules. This section provides an insight in the working of the model,
design choices of the model and allows for replication of the model. The model description
follows the ODD (Overview, Design concepts, Details) protocol (Grimm et al., 2006, 2010).

3.1 Purpose

The purpose of this social simulation is to simulate negotiation among occupants living in the
same household concerning their daily activity schedule. The simulation runs the negotiation
process of multiple different type of households at once. However, the households do not in-
fluence the negotiation process of other households. Each household is equipped with a basic
daily schedule that covers the daily activities of each member in the household. This schedule
represents the habitual pattern in which people tend to live. However, this habitual pattern is
not fixed and allows changes when required. The schema of each occupant is dependent on the
schemas of the other occupants. Therefore changes to one person’s schedule requires negotiation
with the other household members. This social simulation models this negotiation process of
alternation of the basic daily schedule. The influence of several factors is measured, such as the
tightness of the schedule.

3.2 Entities, state variables, and scales

This model consists of two parts: the scheduling of tasks within a household by a global mech-
anism and the negotiation of changes to this schedule. The later part concerns the agent-based
model with agent-like entities. However, we will explain the entities that appear in both the
parts of the simulation as the entities used in the agents part were designed to allow scheduling
by a global mechanism.

Persons

The Person entities represent the agents of the model. They are the occupants that live in
households and they are the entities for which a schedule is created. In the social simulation
component, these are the entities that negotiate with each other to modify to the schedule.
Each Person has a unique ID within their household and a Household object which defines
the household in which they live. A Person owns a list of tasks which represents their daily
activities. These tasks are the daily social practices of the agent. The list is filled with Task
entities. Besides this list of Tasks, a Person also owns a list of TaskAssignments, the difference
between the two entities will be explained below. It should be noted that the TaskAssignment
list describes the daily schedule of a Person, while the Task list simply defines the daily activities
of a Person. The difference being the time attribute.

A Person can be of three different types: Adult, Student or Child. These three subclasses
differ in a number of attributes. For example, a Person’s bedtime is set to always be scheduled
between 21h-24h. However, if the Person concerns a Child his/her bedtime is constrained to the
interval 20h-22h. By default, the risetime of a Person is set in the range of 6h-11h. However, if
a Person has a full-time job, he/she is required to get out of bed before 8h. Similarly, when a
Person has a Study task in his task list, he/she is required to get up before 9h.

Another varying attribute is the job type. This categorical variable can be set to full-
time, part-time or unemployed. The later category covering both stay-at-home parents, house-
wives/husbands and retirees. Full-time jobs can only be assigned to Adults. An Adult can

13

3. THE MODEL

also work part-time or be unemployed. A Student or Child can also have a part-time job or be
unemployed, but they are never assigned a full-time job. Unlike the name suggests, Students
are not the only subclass with a Study Task in their daily schedule. Some Children attend
school and therefore also have a Study Task. An Adult never has a Study Task as adults that
attend schools are categorized as Students.

The remaining variables are independent of subclass. The preferred shower time is the only
variable that is set at random within the Person class. This categorical variable specifies if a
Person prefers to shower in the morning or evening or has no preference at all. The morning
preference ranges from 6h to 11h, while the evening preference covers the range 20h-24h. The
final three attributes of the Person entity are a RuleBase object, a flexibility parameter and a
flexibility increase. The RuleBase object can be seen as a database in which the negotiation
rules of a Person are stored. A Person entity uses the rule-base during negotiation to respond
to negotiation offers. This object is identical for every agent, as everyone obeys the same rules.
The flexibility parameter specifies how flexible a Person is in making changes to his/her daily
schedule. When the Person is requesting change he/she is more flexible than when the Person
is responding to change. This increase in flexibility is set by the flexibility increase parameter.

TimeSlots

TimeSlot entities are used to represent time within schedules. A TimeSlot object has a unique
ID to distinguish it from other TimeSlot objects and a starting minute attribute. The starting
minute attribute represents the number of minutes that have passed since midnight. For exam-
ple, 06:00h is represented with a starting minute value of 360 and a value of 1020 indicates the
time 17:00h.

One day is represented by 96 TimeSlots, one object for every 15 minutes of the day. They
represent the available starting times for the daily tasks. The solver schedules a Task to start
at the starting time of the TimeSlot it is assigned to. TimeSlot objects also have a Person
attribute. This attribute is not instantiated upon creation, because a TimeSlot object can be
assigned to multiple TaskAssignments during the scheduling phase. After the scheduling phase,
these 96 TimeSlot objects are replaced by n ∗ 96 objects, where n is the number of people in
the household. Each TaskAssignment is assigned a unique starting TimeSlot object, which also
allows the TimeSlot person attribute to be instantiated. The reasoning is explained in Section
3.4.

Households

A Household object is a collective of Persons. It represents the living environment of these
Person objects which are otherwise referred to as occupants. The Household has a unique
ID and stores the Person objects in a list. Besides the occupant list, a Household contains
a list of TimeSlots, Tasks and TaskAssignments. The TimeSlot list stores all the available
TimeSlots for each Person. The Task list stores all the tasks of each Person and for each Task a
TaskAssignment is stored in the TaskAssignment list. The latter can be seen as the unassigned
schedule of the household. After the solver assigned a starting time to each TaskAssignment in
the list, the schedule can be visualized using the starting times and durations of Tasks.

A Household can have 1 to 5 occupants, this depends on the hType attribute. This attribute
specifies the type of the household. There are a total of 24 different households, which can be
read from the data (see Section 3.6).

Tasks and TaskAssignments

A Task object describes a daily activity that a Person can plan during his/her day. A Task
has a unique ID within the Household and belongs to only one Person. This Person object

14

3. THE MODEL

is attached to the Task as an attribute. Every Task has a release- and duedate. These two
dates respectively depict the earliest time the task can start and the latest time the task can
be completed during the day. A Task also has a processing time which is the duration of that
task in minutes.

A Task can be of eight different types: ShowerTask, WorkTask, StudyTask, SportsTask,
PartyTask, DinnerTask, BedTimeTask and RiseTask. Each type represents a different type of
daily activity and specifies its own limits of releasedates, duedates and processing times. They
are also constrained differently by the solver, as specified in the rules. These rules are explained
in Section 4. During negotiation the different task types are also constrained differently. Task
objects have a shrinkable and pushable trait, which are both boolean variables. When a task is
shrinkable its duration can be reduced during negotiation. Similarly, pushable allows relocation
of the task within the schedule. The instantiations of these variables for each task type are
indicated in Section 3.5.

ShowerTasks have a meaning attribute which specify the reason for the task. The meaning
can be set to one of the three specified types: freshness, cleanliness and relaxation. Initially,
these meanings are generated randomly but during negotiation a specific meaning is attached.
This meaning directly influences the duration of the showers. A correlation between the meaning
and the duration of showers is assumed, as implied by Eon et al. (2018a).

The starting time of a Task is not specified within the Task entity itself. Instead, TaskAs-
signment objects were created to specify this. The TaskAssignment entities contain a Task
object and a TimeSlot object. This TaskAssignment entity functions as a connection between
a Task object and a TimeSlot object. Therefore a TaskAssignment object assigns a task to a
starting time. This design choice will be explained in Section 3.4. A TaskAssignment object has
a unique ID within the household and matches the ID of the corresponding task. The object
also contains a Person object because a TaskAssignment can only belong to one individual.

Events

The Event objects are generated after the scheduling phase and therefore are not part of the
schedule. Instead, they are used to make changes to the basic schedule during the negotiation
phase. An Event describes adjustments to one or multiple TaskAssignments in the basic sched-
ule. These alterations represent sudden developments that can occur in real-life households,
such as an earlier meeting at work or an extra sports activity. We have chosen to only generate
events that require changes to the shower task, as this task is our main interest and serves the
purpose of our research. However, some adjustments to other tasks are also required such as
an extension of the working time or adding an additional task to the schedule.

Each Event belongs to one Person, whom we will refer to as the requesting agent. This
Person was randomly selected from the Household and added as an attribute to the Event.
Similar to the other entities, Event objects also have a unique ID. Besides the Event ID, the
ID of the changing TaskAssignment is also stored. This TaskAssignment always concerns a
ShowerTask that has to be rescheduled. In some Events a subtask object is included. This
subtask is an extra task that is requested to be added to the basic schedule, e.g. an Sports
Task. If no extra Task object is to be added, the subtask attribute is null.

The requesting agent proposes a starting time and duration of the new ShowerTask, these
details are stored in the Event. Another preset attribute is the maximum time to subtask.
This variable only allows scheduling of the ShowerTask within a specific time range of the
subtask. The final preset attribute is a boolean that indicates whether the ShowerTask should
be scheduled before or after the subtask. For example, the shower should occur after the Sports
Task but in the case of a Party task the shower should be planned before the subtask. The time
at which this subtask starts or ends, depending on this before or after constraint, is stored in a
time constraint variable. This time constraint is the time before or after which the ShowerTask
should start.

15

3. THE MODEL

A few attributes were added to the Event object to use during the negotiation process. The
reduction attributes stores how much the duration of the requesting agent’s ShowerTask should
be reduced to fit in the schedule. During negotiation, a list keeps track of the TaskAssignments
that were adjusted to fit the Event. This list consists of CounterOffers, which will be explained
below, and is used to update the schedule with all the required modifications when negotiation
is successful. A final attribute keeps track of the number of times scheduling of the Event was
tried at different time locations.

An Event can be of three types: earlyMeeting, eveningParty or workOut. The EarlyMeeting
event requires an increase in the duration of the WorkTask. The starting time of the WorkTask is
advanced by an hour and the end time remains constant. The ShowerTask should be scheduled
before the WorkTask. The eveningParty schedules an extra task during the evening of the
negotiating agent. This extra task is a PartyTask. Similar to the earlyMeeting event, the
ShowerTask should be scheduled before the PartyTask. The final event type, workOut, requires
the ShowerTask to be scheduled after the subtask. This subtask concerns a SportsTask which
is always scheduled in the evening.

Responses

During negotiation the other occupants in a Household respond to the requesting agent’s offers.
They answer these offers by sending a Response object back to the negotiator. This Response
object stores the Person object of the responding agent, as well as an response code to the offer.
The code is binary: “Y” for accept and “N” for reject. If an offer is rejected, the responding
agent also sends a counteroffer. This counteroffer is made by adding a CounterOffer object to
the Response.

CounterOffers

The CounterOffer object used in Responses contain the ID of the TaskAssignment the requesting
agent is willing to change. This TaskAssignment is always owned by the responding agent and
a CounterOffer can never propose to change another occupant’s activities. Besides the ID, a
starting time and an ending time are also stored in the CounterOffer. These times suggest to
move the responding agent’s conflicting task which potentially resolve the overlap. The new
starting- and ending time could imply a relocation of the task, a decrease in duration of the
task or both. However, if the agent is inflexible the reduction might be zero and the agent will
return its current times.

3.3 Process overview and scheduling

In algorithm 1 the main method of the simulation is shown in pseudo-code. In this function the
creation of a schedule by the solver and the negotiation of modifications to the schedule by the
agents are handled. The first step in this method builds a solver that can be used to schedule
a list of TaskAssignments using constraint satisfaction. More on this process is explained in
Section 4. Once the solver has been built, the shower duration distribution is read from a
datafile. This data will be used during creation of Household objects to assign sensible shower
durations to ShowerTasks. The number of Households to be created, solved and negotiated is
read from a slider set by the user in the experimentation environment. A for-loop is initiated
to handle the Households one by one. Consequently, the Household objects are handled in a
fixed order. However, this is irrelevant to the process because Households do not interact or
influence each other. At the end of this loop, the scores and the schedules created during the
process are written to output files.

A Household object is created using the generateHousehold method, which will be elaborated
in Subsection 3.7. Subsequently, the Household is handed to the solver, which determines and

16

3. THE MODEL

returns a schedule for the Household. The score of this solution is returned by the calculateScore
method. This method also provides the names of the violated hard- and soft-constraints. If the
returned schedule is optimal, the list of violated constraints is empty. Hereafter, the tightness
of the score is calculated. Once the schedule is fully processed, each Person in the household is
assigned his/her Personal schedule, which only includes their personal TaskAssignments.

The next step initiates the social simulation phase. Unless the event is specified by the
user, a random event is selected. The eligible agent is selected to negotiate the event. Eligible
refers to e.g. full-time working agents when an earlyMeeting event is requested. The selected
person will negotiate necessary modifications to the basic schedule. This negotiation process is
managed by the handleEvent method. The required adjustments are stored in the event object
and applied to the basic schedule in the applyChanges method.

This simulation does not use a time unit such as steps or ticks. Instead it uses TimeSlot
objects to represent time units within the schedules. As presented on page 14, these objects
represents the available time of an agent and can store the starting time of a task.

Algorithm 1 Main algorithm

1: function main
2: solver ← buildSolver()
3: READ shower data from file
4: nrHouseholds← nrHouseholds slider
5: for nrHouseholds do
6: household← generateHousehold()
7: solvedHousehold← solver(household)
8: score← calculateScore(household)
9: tightness← calculateTightness(household)

10: for p in Persons in household do
11: p.schedule← household.getPersonalSchedule()

12: event← generateEvent(solvedHousehold, eventType)
13: SELECT random eligible person
14: event← person.handleEvent(event)
15: negotiatedHousehold← applyChanges(solvedHousehold, event)

16: WRITE scores to file
17: WRITE household schedules to file

3.4 Design concepts

3.4.1 Basic principles

The model is based on two underlying theories. The first theory that is used is the scheduling
theory, which is used to build the daily schedules for the agents. The theory uses the concept of
constraint satisfaction theory which tries to solve a resource allocation problem while adhering
to several hard and soft constraint. Further details on this scheduling theory can be found in
Section 4. The second theory is agent-based modeling, which is used to simulate the negotiation
protocol among agents. The theory describes agents sending requests and responses to other
agents. Mester et al. (2015) designed a refined agent negotiation protocol (PRINEGO) on
which the negotiation protocol used in this thesis is based. Both theories are used as two major
components of the simulation. They form the basis of the model.

3.4.2 Emergence

The layout and tightness of a schedules is hard to predict. The number of persons within a
household, as well as their occupation, is preset in the data. Therefore, the daily tasks assigned

17

3. THE MODEL

to each person are also fixed. However the duration of these tasks is random which introduces
some unpredictability. Similarly, release- and duedates are also preset for each task type, but
these intervals are still large enough to allow variation. Some task order constraints were preset
as well, but these are very basic constraints and concern mostly the Bedtime- and RiseTasks.
Despite these preset variables, variation exists to the extent that emergence can occur. Each
set of tasks can create different solutions each time.

The scheduling process is not controlled by the agents themselves but only constrained by
their properties. On the contrary, during negotiation agents’ behavior does model the output.
The agents communicate to modify the basic schedule, which can vary in complex ways de-
pending on the characteristics of the agents and the basic schedule. The negotiating agent and
the type of event are selected at random. Once an event type has been determined, an eligible
agent is selected. For example, when a EarlyMeeting event is generated only full-time workers
can be selected as the negotiating agent. The time at which the event is scheduled depends on
the current basic schedule. The early meeting event advances and extends the current work-
ing time by exactly one hour. The shower is then scheduled before this event. Whether the
latter operation is successful depends on when the current working task is scheduled and on
the schedules of the other agents. If overlap occurs during negotiation, the flexibility trait of
the other agents is an important aspect that influences the output schedule. If an event could
not be fit at the proposed time, the negotiating will modify the proposal and choose a different
time. The final output schedule returned after the negotiating process is unpredictable due to
the many variables of the agents and the basic schedule.

3.4.3 Adaptation

During the scheduling procedure, the agents do not make decisions themselves. Instead, the
solver adheres to the constraint provided by the traits of each agents. For example, the shower
preference trait of an agent determines when an agent likes to shower. Therefore, the solver
tries to schedule the shower task of this agent at a preferred time. However no direct agent
behavior or adaptability exists during this process.

During the negotiation process, this agent adaptation does exist. The environment in this
simulation exist of the household schedule. One negotiator agents tries to modify this schedule
when a new event occurs. The responding agents adapt to this situation using their flexibility
trait. When the negotiating agent tries to fit the event in the household schedule, it might require
some modifications in the schedules of the other agents in the household. These changes involve
reducing or relocating one or multiple tasks. Each agent is assigned a flexibility parameter,
which indicates how much a task can be reduced.

This flexibility parameter changes depending on if the person is the requesting or responding
agent. Requesting agents are assigned a higher flexibility value. It also depends on task type.
For example, the shower task is the most flexible task, but the work task cannot be reduced
and is therefore the least flexible.

Adaptions in this simulation are purely used to cater the requesting agent. They are social
adaptions.

3.4.4 Objectives

The only objective during scheduling and negotiation is to find a solution that does not violate
any constraints. These constraints can be no overlap or task order constraint. But this also
includes constraints such as ”a new shower cannot be scheduled further than a certain interval
from the subtask”. Another constraint is the flexibility of agents which only allows for a certain
reduction of the task duration.

18

3. THE MODEL

3.4.5 Learning

No learning aspects were implemented in this simulation.

3.4.6 Prediction

When agents are asked to respond to an event, they evaluate the impact that the proposed
event will have on their schedule. They evaluate whether the event can fit in its current state
or has to be modified. If modification is necessary, they send a counteroffer. The responding
agents do not asses whether this counteroffer allows the requesting agent to fit. The responding
agents also do not communicate with one other and therefore they cannot predict whether their
proposed counteroffer will be sufficient to fit the proposed event.

3.4.7 Sensing

The negotiating agent does not sense the schedules of the responding agents directly. Instead,
the agent asks the other agents for a response to his/her proposal. When agents are asked to
respond to an event, they only evaluate their own schedule. They do not consider the schedules
or counteroffers of the other agents. Therefore, all agents can only sense each others state
variables through communication. However, this communication does not provide full insight
in others’ schedules.

3.4.8 Interaction

During scheduling, the entire process is handled by the solver and therefore agents do not
communicate. During negotiation the requesting agent initiates communication with the other
agents living in the same household. The requesting agent generates an event and creates a
proposal to fit this event in the household schedule. Communication is initiated when the
requesting agent asks the other agents to respond to the proposal. This request contains the
information on the starting time and duration of the shower task the negotiator agent would
like to schedule.

The responding agents respond by sending a reply. This reply contain a response code,
either ”Y” for accept or ”N” for deny. If denied, the response contains a counteroffer which
offers to slightly alter the responding agent’s schedule. This offer contains a new starting time
and duration for one of the responding agent’s tasks.

The requesting agent waits until it has received a response from all agents. It then evaluates
all responses. If all responses accept the proposal, changes are applied. Otherwise, the agent
revises the proposal using the counteroffers and sends a new request to all agents.

3.4.9 Stochasticity

Each task has a random duration chosen from a certain interval/set of options. This variable
was made stochastic to increase the variability in generated schedules. Average real-life duration
of these tasks were unknown during development of this simulation. However, they are also not
relevant because we are solely interested in how different types of schedules compare instead of
the effect of the duration of specific task type. The main interest of this research, the showering
practice, is based on data. It is still a stochastic variable but the duration is selected from a set
of durations based on real-life data.

Another way to increase variability was the preferred shower time trait of each agent. This
ensures that showers are not always planned in the most optimal timeslot. This stochastic
variable and the random durations create schedules with different tightness, which allows us to
test the effect of tightness on modification of the schedule.

19

3. THE MODEL

Event generation is random. The event that is generated is random but also the person that
generates the event is randomly selected. The person selection is limited to certain persons. For
example, only full-time workers can generate early meeting events. This stochasticity is also
used to increase variability among schedules. The cause of event generation was not relevant for
this research. Only the effects of different types of events are measured during experimentation.

3.4.10 Collectives

The agents in the simulation are grouped in a collective called a Household. Only agents within
the same Household can communicate and Households do not interact with or influence each
other in any way.

Different types of agents were included in the simulation: Adults, Students, Children. All
types share the same blueprint but the initialization of some of their variables is slightly different.
For example, agents of type Children have a earlier bedtime. Also the set of daily tasks differs per
agent type. For example, Students have a StudyTask while Adults have a full-time WorkTask.

The simulation also contains different types of tasks, e.g WorkTask or BedTimeTask. All
blueprints for these task types are the same, but similarly to the agent types some variables are
instantiated differently such as the release- and duedates and durations.

3.4.11 Observation

When the simulation is run, data is stored in two ways. The first data collection stores data
in a dataset, which will be used for quantitative analysis. This dataset stores information for
each household created in a separate entry. If the simulation generates 500 households, the
dataset contains 500 rows of data. One entry contains information on the household’s ID, score,
tightness, negotiator tightness, event type etc. For exact specification see Section 5. The data
for each household is only saved after a simulation run has been completed.

For the purpose of qualitative analysis, the schedules that are created during a simulation
run are stored as pictures and text. Both the basic schedule and the modified schedule after
negotiation are saved. The negotiation protocol that agents used to handle modifications to
the schedule is also stored as text. This information shows what requests were made by the
negotiator agent and what counteroffers were sent by the responding agents. The document
also contains information regarding the occupants preferred shower time, their flexibility and
the hType. This data is also only stored after the run was completed.

Simulation runs that generated a basic schedule which violated one or multiple hard con-
straints were excluded from the data collection. Therefore, if n=500 the actual n might slightly
differ from this number. However, the percentage of schedules that were excluded from collec-
tion is relatively small. Further setup of data collection such as the variables that were varied
during experimentation are further described in Section 5.

3.4.12 Code design

This subsection was originally not included in the ODD protocol. However some design decisions
were made that should be explained but did not fit in the other subsections. These design
decisions concern details of the model, particularly decisions based on code design.

Section 3.2 explained that tasks are not simply represented by one entity type. Besides the
Task entity, a TaskAssignment entity was created to specify the starting times of tasks. The
Task entities do not have this variable. But they are connected to a TaskAssignment entity
which indirectly assigns a Task a starting time. This design choice was made due to the structure
of the constraint satisfaction library. The solver requires a planning entity that stores the other
planning attributes. This container entity allows us to connect a Task object to a TimeSlot
object and store them in the same container. It also allows for extension of the model with other

20

3. THE MODEL

planning variables. In the current model implementation, the duration of tasks is fixed. But
using the TaskAssignment as a container object enables adding other planning variables, such
as the duration. If multiple planning variables are present, the solver will assign both planning
objects, such as the starting timeslot and the duration, to the tasks objects. However, both the
starting time and durations have a rather large search space. Using both as planning variables
would result in a long solving time. Therefore, the choice was made to use the duration as a
fixed attribute.

Another type of entity used in the model is the TimeSlot entity, which is used to represent
time. The solver requires the use of objects when assigning planning variables to the planning
entity. Upon setup, a total of 96 TimeSlot objects are created and added to the Household’s
available timeslots list. We chose to create only 96 objects, regardless of the number of people
living in the household. Each object represents a different 15 minute interval within the day.
The first object is assigned a starting time of 00 : 00h and the last object has a starting time of
23 : 45h. The 15 minute interval was chosen based on some experimentation. The options of 1,
5, 10 and 30 minutes were tested and compared to the 15 minutes interval. It was found that any
interval smaller than 15 minutes tremendously slowed down the solving process, whereas any
bigger intervals left some schedules unsolved as smaller gaps in the schedule were not considered
by the solver. Therefore, the 15 minutes interval returns the most accurate solutions within an
acceptable time-frame.

Instead of 96 objects in total, it was considered to generate 96 objects per person. But
this was deemed redundant as every person within the household should have the same daily
time available. Furthermore, using n times 96 objects would slow down the solving process
tremendously, as the solver would have to consider 96 ∗ n possibilities instead of just 96. The
library also allows assigning the same planning variable object to multiple planning entities.
However, this design choice can complicate extending the model because it allows multiple
TaskAssignments to refer to the same TimeSlot object. Therefore, after solving was completed
a new TimeSlot object was created for each TaskAssignment. The new TimeSlot objects were
instantiated using the old TimeSlot objects. Thus, the new objects are identical to the old
ones apart from the objects not being shared by multiple TaskAssignments. This eliminates the
complications of cross-referencing.

The final design choice concerns the variety of subtasks in the model. A total of six sub-
tasks is available for scheduling: RiseTask, BedTimeTask, WorkTask, StudyTask, DinnerTask
and ShowerTask. An additional two subtasks were created for negotiation: SportsTask and Par-
tyTask. It was considered to add several other tasks, however adding more tasks to the model is
time expensive implementation-wise. Furthermore, it would further restrain the schedule which
leads to longer solving times. If tighter schedules were required, the original objects’ durations
could be extended to cover for example travel time. It was found that these eight types of tasks
filled the schedules enough but they are also generic enough to apply to an average person.
The showering practice is the focus of this research, therefore this task had to be included.
Work- and StudyTasks cover the majority of the day. Rise- and BedTimeTasks were added
because every person requires sleep. They were separated to allow the schedule to range from
00 : 00 − 24 : 00 hours. This way the time is represented as a monotone increasing number
which eases the implementation.

3.5 Initialization

In our model we can define two states as the initial state. The first being the state of the
Household upon creation and the second initial state occurs after scheduling has finished. In
both scenarios we view the Household object as the model world, as this is the environment
in which the agents live and negotiate. Upon Household creation all variables are created
and initialized. But during the scheduling procedure the values of some of these variables are
changed. Consequently, the initial world the negotiation phase receives differs from the world

21

3. THE MODEL

upon creation in some aspects. We will describe both initial states below.

Household creation

A Household object is a collective of Person objects, TaskAssignments, Tasks and TimeSlots.
As the pseudo-code in algorithm 2 indicates, all these objects are created and stored in separate
lists in the generateHousehold method. The generation of the Tasks objects is not visible in
this method, as it is hidden within the createPersons method.

Algorithm 2 Generate household

1: function createHousehold
2: starting minute options← every 15min of the day
3: household← new household
4: household.persons← createPersons()
5: household.timeslots← createTimeSlots(starting minute options)
6: household.taskassignments← createTaskAssignmentList()
7: return household

In createPersons the Person objects are created and added to the Household. A random
household is selected from a datafile that contains templates for Person objects. This datafile
will be explained in detail in Section 3.6. For each person in the selected household in the
datafile, a Person object is created. The data file contains a variable that describes the persons
adolescence and studies. If the person is described as an adult but not as a student, an Adult
object will be instantiated. Otherwise the Person object is instantiated as a Student object.
If the person is not an adult, a Child object is created. The next variable that is instantiated
is the job type. The data file also specifies this information. If the person is a full-time or
part-time worker the job type is set to full-time or part-time respectively. Otherwise, the job
type is set to unemployed. The final attribute read from the data is the persons student status.
Since, both adults and children can be students this is not clear from the object instantization
alone. The student status is stored in a boolean.

Two Person attributes are instantiated at random. These attributes concern the bedtime
and risetime of a Person. The bedtime is set to a random time between 21h and 24h with steps
of 15 minutes. If the Person concerns a child this range is changed to 20-22h. The risetime of
all Persons is set to a random value in the interval 6h-11h, again with steps of 15 minutes. The
final Person attribute is constant during the simulation and equal for all Person objects. The
flexibility is set by the user using a slider in the experimental environment. The value ranges
from 0.0 to 1.0, where 0.0 equals no flexibility and 1.0 is the maximum flexibility.

Following the object creation, the Persons are assigned a unique ID and the createTask
method is called. This method creates a list of Tasks for that Person depending on the previously
set variables. Each Person receives a ShowerTask, RiseTask, BedTimeTask and DinnerTask. If
the agent is an Adult, a WorkTask is added. Similary, the student boolean specifiy the addition
of a StudyTask. Each task is randomly assigned a duration. The duration ranges for each task
type is preset in the corresponding subclass. The specific intervals can be found in Table 2.

Some of the preset durations are removed during task creation. This was done to assure that
all tasks could still fit in the timespan of one day. If a Person works full-time all durations greater
than 8 hours were removed for the RiseTask. Similarly, if a Person is a student all RiseTask
durations above 9 hours were excluded. The job type determines the WorkTask duration. Full-
time workers can only work 8 hours a day, while part-time workers work 4 hours a day. If
the part-time worker concerns a child, the worktime is set to 1 hour a day. The duration of
the BedTime is not variable, unlike Table 2 seems to suggest. The BedTimeTask indicates
the time a Person spends sleeping before midnight, whereas a RiseTask indicates the sleeping
time after midnight. During Person object creation the bedtime of each Person was initialized.

22

3. THE MODEL

Therefore the starting time of the task is already known. The duration of the BedTimeTask
should always be equal to 24h minus a Person’s bedtime. E.g. if someone’s bedtime is set to
22:30h, the BedTimeTask duration equals 90 minutes. The ShowerTask is the only task type
not included in Table 2 because the durations for this task are drawn from a distribution. This
distribution is drawn from a datafile (3.6) and depends on the meaning attribute. This meaning
attribute is randomly assigned one of the following values: freshness, cleanliness or relaxation.
Each meaning specifies a range of durations from which a random value will be drawn. This
range is created by selecting all values from the data that fall in this interval. The ranges for
each meaning are specified in Table 1.

Meaning Min value Max value

Freshness 1 15
Cleanliness 1 20
Relaxation 10 30

Table 1: Duration ranges for each ShowerTask meaning

Besides durations, release- and due-dates are preset in the task subclasses as well. These
values determine the earliest time a Task can start and the latest time a Task can be com-
pleted respectively. The release- and due-dates are shown in Table 3 for each task type. The
BedTimeTasks and RiseTasks both represent the sleeping tasks but they are instantiated in
different ways. In the case of the BedTimeTask the bedtime variable determines when the task
will commence. Contrarily, the risetime variable of a RiseTask does not regulate the starting
time but the ending time or more specifically the duration of the Task. For this reason, the
starting time of the RiseTask will always equal its releasedate while the ending time of the
BedTimetTask will always equal its duedate.

The final preset Task attributes are the pushable and shrinkable booleans. These booleans
indicate whether a task can be relocated or respectively reduced in duration during the nego-
tiation phase. The instantiation for each task type is shown in Table 4. These instantiations
are based upon intuition, e.g. a Party can be attended later but will not start later because
one person cannot be in time. For the WorkTask, working hours are usually not very strict but
the working time is fixed. Other tasks, such as the Rise- and BedTimeTask, are not pushable
because this could cause gaps in the schedule during the night.

After Task object creation, they are assigned a unique ID within the Household and the
complete list of Tasks of all occupants is added to the Household object. Thereafter, the House-
hold is added as an attribute to all Person objects and a list of Person objects is stored as an
attribute in the Household. Subsequently, the TimeSlots objects are created in the createTimeS-
lots method. This method is provided with all available starting minute options instantiated in
the createHousehold method. For each possible starting minute option a TimeSlot object with
a unique ID is created and the starting minute value is added as an attribute. This results in
a total of 96 unique TimeSlots. The objects are stored in a list and added to the Household.
We should note that TimeSlot objects are only created once, instead of once per person. The
solver can use one TimeSlot object multiple times, unless it is restricted to do so. We only
constrained the solver to use a TimeSlot object more than once per person. However, the solver
is free to assign a TimeSlot object to different Persons simultaneously. The TaskAssignments
are created in a similar way. For each Task previously created, a TaskAssignment object with
the same ID is generated. Both the Person stored in the Task and the Task itself are added to
the TaskAssignment entity and finally the list of all TaskAssignments is given to the Household.
This list forms the unsolved schedule.

23

3. THE MODEL

Task type Shortest duration (minutes) Longest duration (minutes) Timestep (minutes)

Rise 300 (= 5 hours) 660 (= 11 hours) 15
BedTime 0 180 (= 3 hours) 15
Dinner 45 45 0
Work 60 480 (= 8 hours) 240
Study 360 (= 6 hours) 600 (= 10 hours) 30
Sports 30 90 (= 1.5 hours) 30
Party 60 150 (= 2.5 hours) 30

Table 2: Preset Task duration intervals

Task type Releasedate (hours) Duedate (hours)

Rise 00:00 12:00
BedTime 20:00 24:00
Dinner 17:00 21:00
Work 08:00 19:00
Study 06:00 24:00
Sports 08:00 22:00
Shower 06:00 24:00
Party 19:00 24:00

Table 3: Preset Task release- and due-dates

Initial schedules

During scheduling the Household objects have been changed in a few ways. The TaskAssign-
ments stored in a Household were instantiated with empty TimeSlot objects, as the starting
time is unknown during setup. The solver used constraint matching to find suitable timeslots for
each of the assignment objects. During this process, TimeSlot objects are assigned to the start-
ing timeslot attribute of each TaskAssignment. Therefore, the negotiation phase is presented
with a fully initialized schedule.

Initially, Households only received a total of 96 TimeSlot objects, one for every 15 minutes
of the day. After scheduling we replace this list with 96 TimeSlot entities for each person
living in the Household. This prevents accidental modification of Tasks assigned to the same
TimeSlot during negotiation. This design choice was further explained in Section 3.4. Every
Person in the Household also receives his/her personal schedule. This schedule only contains the
TaskAssignments that belong to the corresponding person and will be used during negotiation.

Before negotiation can start an Event is required. Event objects form the basis of the
modifications made to the schedule. Depending on the type of Event that is generated, different
values are assigned to its variables. First, a random eligible Person is selected to handle the
negotiation of the Event. Which persons are eligible as well as several other variables depend
on the event type. The specifications can be found in Table 5.

Three different types of events can be generated: earlyMeeting, eveningParty and workOut.
The earlyMeeting event requires an advancement and extension of the WorkTask by 1 hour. The
ShowerTask should be scheduled before the corresponding WorkTask. Similarly, the shower of
the eveningParty event should also be scheduled before its subtask. This subtask is a PartyTask
task which is added to the schedule as an extra evening task. The third type of event, the
workOut event, requires the addition of a SportsTasks which should be scheduled after a work
or study task. If the person has neither, the SportsTask is scheduled directly after the RiseTask.
Contrary to the other events, the ShowerTask has to be scheduled after the SportsTask.

24

3. THE MODEL

Task type Shrinkable Pushable

Shower Yes Yes
Work No Yes
Study Yes Yes
Rise Yes No
BedTime Yes No
Dinner Yes Yes
Sports Yes Yes
Party Yes No

Table 4: Overview of shrinkable and pushable tasks during negotiation

Some event traits are dependent on the event type. For example the time constraint, which is
always equal to the start or end time of the subtask. Whether the time constraint is equal to the
start or the end of the subtask depends on the before constraint. The max time to subtask trait
does not depend on the event type and is always set to 2 hours, which implies that the Shower
Task should take place within two hours of the start or end of the subtask. The requesting
agent, ID of the changing TaskAssignment and duration of the Shower are also assigned during
event generation. The proposed duration is a random number selected from the shower data.
The interval from which the random number is selected, is restrained by the meaning of the
shower. This meaning depends on the type of event that is generated. The earlyMeeting and
eveningParty events create a shower with the purpose of freshness. The shower of the workOut
event is used for cleanliness.

The number of attempts in the event is initialized at 0 and the adjusted TaskAssignments
list is initialized as an empty list. The proposed starting time of the new ShowerTask is only
assigned during negotiation. This time is dependent on the subtask of the Event, the first
starting time that is proposed places the Shower directly before or after the subtask. The total
reduction required is also assigned during the negotiation process. The differences among the
event types are summarized in Table 5.

All Event types require a relocation or extra ShowerTask to be scheduled. While an Event
is being generated, it is calculated whether the current ShowerTask in the negotiating agent’s
schedule is scheduled within a specific timespan from the subtask. When a shower is scheduled
within this timespan, the current ShowerTask is added to the Event. This task will be relocated
during the negotiation process. However, if the current ShowerTask exceeds this timespan an
extra shower is added to the schedule. This extra ShowerTask is added to the Event and the
original shower remains in its current position. The reason behind this are meanings attached
to the shower practice, which are likely to change when shower occurs at a different time during
the day. The earlyMeeting event requires a shower in the morning before the start of the
WorkTask. If the original shower was scheduled after 14:00h a new ShowerTask object is added.
The eveningParty event requires a shower in the evening, before the start of the PartyTask. A
new ShowerTask is added when the original shower was scheduled more than 9 hours before
the start of the PartyTask. The workOut event requires a shower after the SportsTask. The
original shower is only relocated when it was scheduled within 2 hours after the SportsTask.
Otherwise, an extra shower is added.

State variables

The simulation uses a few sliders which can be set by the user in the experiment environment.
The nrHouseholds slider changes the number of Households created at once. This can be used to
create a lot of instances at once, as results are written to files and can be analyzed and compared.
Another slider sets the flexibility of the agents during negotiation. This slider ranges from 0.0

25

3. THE MODEL

Event type Subtask Eligible persons Shower placement Shower meaning

earlyMeeting None Full-time workers Before Freshness
eveningParty PartyTask All Before Freshness

workOut SportsTask
All but persons with
both job and study

After Cleanliness

Table 5: Initialization details for each Event type

to 1.0, where 0.0 is inflexible to change and 1.0 is maximal flexibility. The flexibility increase
slider can be used to change the flexibility of the negotiating agent opposed to the responding
agents. Ideally, the negotiator is somewhat more flexible than the responding agents as this
agent is requesting alterations to the schedule.

3.6 Input data

Our model uses two datasets to instantiate some of its variables. These variables are the shower
durations of the ShowerTasks and some of the attributes of the Person agents. Both datasets
were extracted from data provided by Curtin University Sustainability Policy Institute (CUSP),
Perth.

3.6.1 Household data

As explained in Section 3.5 some of the attributes of the Person agents are instantiated using
data. This data was obtained by combining two datasets containing occupation information
of several households in Fremantle near Perth, Western-Australia. The datasets described 10
and 14 different households, resulting in a sample size of 24. This data was combined and
only the occupation details of the residents were used. This combined dataset contains the
following information: number of occupants, occupation of each person (full-time, part-time or
unemployed), age group of each person (adult or child) and student status. During Household
object creation a random household is selected from this database and the Person objects are
instantiated according to this data.

Figure 1: Shower duration distribution in minutes

26

3. THE MODEL

3.6.2 Shower data

The durations of the ShowerTask are taken from a distribution. This distribution was created
using multiple datasets provided by CUSP, Perth. For a total of 10 households the water,
electricity, gas and other utility uses were recorded during a time period of 2 years. We selected
4 households from those 10 and sampled a total of 91 days from these remaining datasets. The
other 6 households were not used because they contained some data disturbances or missing
data, which complicates the analyzation process. In addition to this, some datasets required
a different analysis process due to different hot water sources. From each of the remaining 4
datasets, 2 samples were randomly selected per month, which produces a total of 96 samples.
Some households suffered from faulty recording systems during a specific period of time and
therefore some months had to be excluded. The remaining 91 samples were used for analysis.

All 91 samples were analyzed manually. It was assumed that showers use 9 liters per
minute and do not last longer than 30 minutes. The data was recorded in timeslots of 15
minutes, therefore a shower uses 135 liters at maximum each timeslot. If water use reached
above this limit it was assigned to other appliances such as the washing machine, dishwasher
or garden irrigation. Besides water use, we analyzed the hot water source use to distinguish
garden irrigation from showers. Furthermore, it was assumed that the showers, dishwashers
and washing machines were the only appliances using the hot water source. Households using
the same source for hot water as central heating were filtered in the household selection step.
It should be noted that the number of occupants in each household was known, including the
persons’ occupation. Only weekday data was used which allowed us to detect a pattern in
the water use of each household. Every shower was marked in the datafiles, after which the
durations of each individual shower was calculated. The histogram in Figure 1 shows the found
distribution of shower durations.

3.7 Submodels

In this subsection we will discuss the methods mentioned in Section 3.3. All discussed Submod-
els are part of the negotiation phase of the simulation. Submodels related to the scheduling
procedure will be discussed in Section 4.

The negotiation model was inspired by the PRINEGO model discussed in Mester et al.
(2015). This paper provided pseudocode for their main negotiation method, which handles
responses from the other agents and revision of the proposal. We extended this model by
allowing the agents to respond with counteroffers if an event does not immediately fit in their
schedule. The revision function of our model is more extensive than the revision done in
PRINEGO, as revising schedules is more complicated than revising post offers. However, the
selection of agents influenced by the offer is relatively easy as an Event always affects all members
in the household.

Algorithm 3 Handles the negotiation of a generated event

1: function handleEvent(event)
2: event← eventPlacementSelf(event)
3: if event 6= null then
4: return person.negotiate(event, c, m)
5: else
6: return null

As shown in the pseudo-code provided in Section 3.3 the negotiation phase starts by gen-
erating an Event. The generation of these Events has already been discussed in Section 3.5,
therefore we will not discuss it here. Once an Event has been generated it is passed to the
negotiator agent’s handleEvent method. The pseudocode can be found in Algorithm 3. This

27

3. THE MODEL

method performs a self-check in the agent’s personal schedule before it initiates the negotiation
process. The c and m parameters are the current number of iterations and the maximal number
of iterations. They are used as an early stopping condition in the negotiate method.

Algorithm 4 Instantiate starting time of shower

1: function eventPlacementSelf(event)
2: nrAttempts← event.nrAttempts
3: event.nrAttempts← nrAttempts+ 1
4: event.duration← event.duration+ event.reduction
5: event.reduction← 0
6: event.adjustedtasks← ∅
7: if event.beforeconstraint then
8: event.starttime← event.timeconstraint− event.duration ∗ (nrAttempts+ 1)
9: else

10: event.starttime← event.timeconstraint+ event.duration ∗ (nrAttempts)

11: eventStart← event.starttime
12: eventEnd← eventStart+ event.duration
13: if event.beforeconstraint then
14: if event.timeconstraint− eventEnd ≥ event.maxtimetosubtask then
15: newEvent← null
16: if event.subtask 6= null then
17: newEvent← relocateSubTask()

18: if newEvent == null AND !event.othertaskpushed then
19: event.othertaskpushed← true
20: newEvent← pushOtherTasksSelf(event, false)
21: if newEvent == null then
22: return pushOtherTasksSelf(event, true)

23: return newEvent
24: else
25: if eventStart− e.timeconstraint ≥ event.maxtimetosubtask then
26: newEvent← null
27: if event.subtask 6= null then
28: newEvent← relocateSubTask()

29: if newEvent == null AND !event.othertaskpushed then
30: event.othertaskpushed← true
31: newEvent← pushOtherTasksSelf(event, false)
32: if newEvent == null then
33: return pushOtherTasksSelf(event, true)

34: return newEvent
35: if selfCheck(event) then
36: return event
37: else
38: return eventPlacementSelf(event)

In Algorithm 4 the number of attempts is increased every time this function is called and
the event variables are reset. It is checked whether we are dealing with a before or after event.
This indicates whether the requested shower should be added before or after the subtask. The
first assignment of the start time places the shower task directly before or after the subtask. If
for some reason the negotiation fails, the shower is moved a little further from the subtask if it
does not exceed the maximum time range. If a possible start time was found, the agent tries

28

3. THE MODEL

to fit the event in its schedule using selfCheck. However, if no suitable timeslot could be found
for the shower task, it is tried to relocate the subtask. This subtask relocation only works for
the eveningParty and workOut event as the earlyMeeting event does not have a subtask. If
the subtask could not be relocated, it is tried to push the other tasks of the requesting agent.
Pushing the other tasks is not tried when the event is already in the process of pushing.

The relocation of the subtask is handled by Algorithm 5. The new start of the subtask is
equal to its current starting time plus the maxtime to subtask. This way no possible shower slots
are skipped because each relocation skip is equal to the max time to subtask. The algorithm
checks whether the subtask can move to the skipped starting time. If it overlaps with any of
the agent’s other tasks, the subtask is relocated to the end of the proposed time. This way
relocation is tried in small steps and possible fitting gaps cannot be missed. When relocation is
successful, the while loops ends. The algorithm checks whether the subtask has not been moved
outside the daily hours and returns the updated event.

Algorithm 5 Relocate the subtask of an event

1: function relocateSubTask(event)
2: mySchedule← event.requestingagent.schedule
3: newstart← substart+ event.maxtimetosubtask
4: restart← true
5: while restart do
6: restart← false
7: newend← newstart+ subtask.duration
8: for each taskassignment in mySchedule do
9: if !(taskass.end ≤ newstart OR newend ≤ taskass.start) then

10: restart← true
11: newstart← taskass.end
12: if newstart ≥ 24 ∗ 60 then
13: return null
14: event.subtask ← subtask
15: return event

In Algorithm 6 it is tried to push the other tasks in the requesting agent’s schedule to fit
the subtask. Only tasks that block the window in which the shower could be scheduled are
pushed. This window is the start minus the maxtime to subtask or the end plus the max time
to subtask, depending on the beforeconstraint. It is checked for every taskassignment in the
agent’s schedule whether it was scheduled (partially) during this time window. The shower task
itself is excluded from the check, as this task is the one being rescheduled. The task should be
pushable if we want move it. For each task that was found to overlap with the time window,
the previous and next task in the schedule are calculated. The time difference between the end
of the previous task and the beginning of the overlapping task indicates the left push distance.
The time difference between the start of the next task and the end of the overlapping task
determines the right push distance. These are the maximum distances the overlapping task can
be pushed to the left and the right respectively.

It is checked whether the overlap between the task and the time window occurs on the
left or right side of the time window. If the overlap occurs in the right part, pushing to the
left is tried first. Otherwise, the task is pushed to the right. The maximum and required push
distances are calculated. The minimum of the two distances is subtracted from the starting time
of the overlapping task. This forms the new starting time for the overlapping time. Hereafter,
it is checked whether reduction of tasks is allowed. The first call of this method tries fit the
shower task without reducing any task’s duration. However, when a second call is required this
implies that simply pushing tasks was not sufficient and reduction is allowed. If the overlapping

29

3. THE MODEL

task is shrinkable, it is calculated whether the required distance is bigger than the maximum
pushing distance. The algorithm calculates the maximum shrinkage of the respective task, this
depends on the task type and the agent’s flexibility. The task’s duration is only reduced by the
maximum required and allowed shrinkage. The shrinkage always occurs on the opposite side as
the pushing. In other words, if a tasked is pushed to the left, the task can only be reduced on
the right side and vice versa.

A new Event object is created with the pushed and potentially shrunk task details. There-
after, the handleEvent method (Algorithm 3) is called to continue the negotiation process. If
the negotiation with the updated pushed and shrunk task still fails, the task is reset to its
original position and it is tried to push in the opposite direction.

In Algorithm 5 the function getFlexibility is called. This function determines the flexibility
of the agent with respect to the type of task that is being shrunk. Some tasks are more flexible
than others, this is reflected by subtracting some value from the original agent flexibility. The
flexibility subtractions for each task can be found in Table 6. A maximum function is used to
assure that the flexibility does not become negative.

Algorithm 7 shows the calculation used to reduce the task duration. The minimum duration
is dependent on the current duration of the task and the agent’s flexibility. For example, suppose
an agent has a flexibility value of 0.5 and the current task duration is equal to 10 minutes. The
minimum time requested by this agent is 7.5 minutes, which is rounded down to 7 minutes. If
the minimum requested time violates the minimum duration threshold, the minimum duration
will be set to 2 minutes.

In Algorithm 8 the agent checks for overlap with the event in its personal schedule. It
examines whether the overlap occurs on the left or right side of the new shower task. It
calculates the number of minutes its willing to subtract from its current shower duration using
its flexibility parameter. This flexibility parameter is dependent on the meaning of the shower.
Some meanings reduce or increase the flexibility of the agent, as shown in Table 7. The flexibility
never exceeds the 0− 1 interval.

Task type Flexibility

ShowerTask agentflex
WorkTask 0
StudyTask agentflex− 0.3
DinnerTask agentflex− 0.1
BedTimeTask agentflex− 0.2
RiseTask agentflex− 0.2
PartyTask agentflex− 0.1
SportsTask agentflex− 0.1

Table 6: Flexibility of each task type, where agentflex is the flexibility of the agent

Shower meaning Flexibility

Cleanliness agentflex
Freshness agentflex+ 0.3
Relaxation agentflex− 0.3

Table 7: Flexibility of each shower meaning, where agentflex is the flexibility of the agent

30

3. THE MODEL

Algorithm 6 Relocate other tasks of the negotiating agent

1: function pushOtherTasksSelf(event, allowReduce)
2: if event.beforeconstraint then
3: windowEnd← event.timeconstraint
4: windowStart← windowEnd− event.maxtimetosubtask − event.duration
5: else
6: windowStart← event.timeconstraint
7: windowEnd← windowStart+ event.maxtimetosubtask

8: for each task in personal schedule do
9: if task.id 6= event.id then

10: if task.pushable then
11: overlap← min(taskend,windowEnd)−max(taskstart, windowStart)
12: if overlap > 0 then
13: endprevtask ← −1
14: startnexttask ← max integer value
15: for each othertask in personal schedule do
16: if othertask.id 6= event.id then
17: if othertask.end ≤ task.start AND

othertask.end > endprevtask then
18: endprevtask ← othertask.end

19: if othertask.start ≥ task.end AND
othertask.start < startnexttask then

20: startnexttask ← othertask.start
21: pushleft← ||task.end− windowStart|| < ||task.start− windowEnd||
22: if pushleft then
23: leftdist← task.start− endprevtask
24: requireddist← overlap
25: pushdist← min(leftdist, requireddist)
26: newstart← task.start− pushdist
27: task.start← newstart
28: dist← 0
29: if allowReduce then
30: if task.shrinkable then
31: diff ← requireddist− leftdist
32: if diff > 0 then
33: taskflex← rulebase.getFlexibility(task, person.flexibility)
34: maxshrink ← task.duration−

rulebase.getMinDuration(taskflex, task.duration)
35: diff ← min(maxshrink, diff)
36: task.duration← task.duration− diff
37: newEvent← person.handleEvent(event)
38: if newEvent 6= null then
39: return newEvent
40: task.start← originalstart
41: task.duration← task.duration+ max(0, diff)
42: if requireddist > leftdist+ diff then
43: push right, similar to left push

44: else
45: push right, similar to left push

46: return null

31

3. THE MODEL

Algorithm 7 Calculate the minimal task duration given the agents flexibility

1: function getMinDuration(flexibility, duration)
2: minDuration← 2
3: reduction← −duration

2 ∗ flexibility + duration
4: if reduction < minDuration then
5: reduction← minDuration
6: return floor(reduction)

Algorithm 8 Try to fit event in personal schedule

1: function selfCheck(event)
2: reductionL← 0
3: reductionR← 0
4: flex← ruleBase.getShowerMeaningFlexibility(evening.meaning, person.flexibility)
5: minShowerT ime← getMinDuration(max(flexibility + increase), event.duration)
6: maxReduction← event.duration−minShowerT ime
7: for t in personal schedule do
8: if event.taskID 6= t.ID then
9: if t overlaps with event then

10: if event.end < t.start then
11: reductionR← reductionR+ overlapinminutes
12: else
13: reductionL← reductionL+ overlapinminutes

14: if reductionL+ reductionR < maxReduction then
15: updateEvent(event, reductionL, reductionL+ reductionR)
16: return true
17: else
18: return false

Algorithm 9 Push and reduce the time of the event

1: function updateEvent(event, pushdistance, reduction)
2: if pushdistance < 0 then
3: pushdistance← pushdistance+ reduction

4: event.duration← event.duration− reduction
5: event.reduction← event.reduction+ reduction
6: event.starttime← event.starttime+ pushdistance

If the reduction necessary to fit the event in the schedule does not exceed the maximum
reduction, the event is updated using Algorithm 9. When a task is pushed, the starting time
of the event is changed by adding or subtracting a time difference. This moves the task to the
right or respectively left in the schedule. The location of a task in the schedule is dependent
on its starting time and duration. When a duration reduction on the right side of a task is
required, the duration of the task can simply be reduced. However, if a reduction on the left
side is required, the task should be pushed towards the right as well.

After the requesting agent has analyzed its personal schedule and found a suitable timeslot
for the event, the agent initializes the negotiation process. The negotiation method presented in
Algorithm 10 first checks the early stopping condition. If the stopping condition has not been
met yet, all other occupants are asked for a response to the event proposed by the requesting
agent. If all agents send the response code “Y”, the event is returned and negotiation was

32

3. THE MODEL

successful. If at least one of the agents send the response code “N”, the counteroffers are
inspected. If the counteroffers allow the event to fit in the schedule, the event is returned and
negotiation is successful. Otherwise, the event has to be revised by the negotiator agent. If an
alternate event can be generated, the negotiation process is restarted. If not, negotiation was
unsuccessful.

Algorithm 10 Send offers to other agents and check if their counteroffers are sufficient. Oth-
erwise revise the offer and renegotiate

1: function negotiate(event, current try, max try)
2: if current try > max try then
3: return event
4: responses← ∅
5: occupants← getPersonList()
6: for person in occupants do
7: if person 6= self then
8: response← person.ask(event)
9: responses.add(response)

10: if responses.All(”Y ”) then
11: return event
12: else
13: if checkCounterOffer(event, responses) then
14: acceptCounterOffer(event, responses)
15: return event
16: alternate event← revise(event, current try,max try, responses)
17: if alternate event 6= null then
18: return negotiate(alternate event, current try,max try, responses)
19: else
20: return null

Algorithm 11 Call the rule base of the responding agent

1: function ask(event)
2: response← agent.checkRuleBase(event)
3: return response

Algorithm 11 calls the rule base of an agent when asked to respond to a proposal. This
rule-base, presented in Algorithm 12, will check for any contradictions. It is checked whether
the requested shower overlaps with the responding agent’s shower. If no overlap was found,
the response “Y” is sent. Otherwise, it is calculated whether the overlap occurs mostly on the
left or right side of the requested shower. The responding agent generates a counteroffer that
proposes a duration reduction of its task on the overlapping side. The pseudo-code for the rule
base can be found in Algorithm 12.

Once the requesting agent has received all responses, the counteroffers are inspected one by
one by Algorithm 13. If the counteroffers were not sufficient to resolve all conflicts, the check
fails and the event will have to be revised. Otherwise, the counteroffers will be processed and
accepted using Algorithm 14. The adjustments made to the existing tasks in the schedule are
stored in the event.

33

3. THE MODEL

Algorithm 12 Rule-base of an agent

1: function checkRuleBase(agent, event)
2: shower ← agent.schedule.getShower()
3: response.agent← agent
4: if no shower in personal schedule then
5: response.answer ← ”Y ”
6: else if event shower overlaps personal shower then
7: if ||shower end− event start|| < ||shower start− event end|| then
8: response.answer ← ”N”
9: flex← getShowerMeaningFlexibility(meaning, agent.flexibility)

10: minShowerT ime← getMinShowerTime(flex, showerduration)
11: reduction← showerduration−minShowerT ime
12: counteroffer.starttime← showerstart
13: counteroffer.endtime← showerend− reduction
14: counteroffer.taskID ← shower.ID
15: response.counteroffer ← counteroffer
16: else
17: response.answer ← ”N”
18: flex← getShowerMeaningFlexibility(meaning, agent.flexibility)
19: minShowerT ime← getMinShowerTime(flex, showerduration)
20: reduction← showerduration−minShowerT ime
21: counteroffer.starttime← showerstart+ reduction
22: counteroffer.endtime← showerend
23: counteroffer.taskID ← shower.ID
24: response.counteroffer ← counteroffer

25: else
26: response.answer ← ”Y ”

27: return response

Algorithm 13 Check if the offer fits given the counteroffers

1: function checkCounterOffer(event, responses)
2: for response in responses do
3: offer ← response.getCounterOffer()
4: if offer 6= null then
5: if offer overlaps with event then
6: return false
7: return true

Algorithm 14 Accept counteroffers by storing changing in event

1: function acceptCounterOffers(event, responses)
2: counteroffers← event.adjustedtaskassignments
3: for r in responses do
4: offer ← r.counteroffer
5: if offer 6= null then
6: counteroffers.add(offer)

7: event.adjustedtaskassignments← counteroffers

34

3. THE MODEL

Algorithm 15 Revises offer based on received counteroffers

1: function revise(event, current try, max try, responses)
2: for response in responses do
3: offer ← response.getCounterOffer()
4: if offer 6= null then
5: if offer overlaps with event then
6: pushLeft← ||offerStart− eventEnd||
7: pushRight← ||offerEnd− eventStart||
8: if pushRight < pushLeft then
9: requiredReduction←tryFit(event, pushRight, responses)

10: if requiredReduction ≥ 0 then
11: acceptCounterOffer(event, responses)
12: updateEvent(event, pushRight, requiredReduction)
13: return event
14: else
15: requireReduction←tryFit(event, -pushLeft, responses)
16: if requireReduction ≥ 0 then
17: acceptCounterOffer(event, responses)
18: updateEvent(event,−pushLeft, requiredReduction)
19: return event
20: return eventPlacementSelf(event)

Algorithm 16 Try to fit the event by pushing and reducing given the counteroffers

1: function tryFit(event, pushDistance, responses)
2: pushedStart← eventStart+ pushDistance
3: pushedEnd← pushedStart+ event.duration
4: requiredReduction← 0
5: flex← ruleBase.getShowerMeaningFlexibility(event.meaning, agent.flexibility)
6: minShowerT ime← getMinShowerTime(self.flexibility, event.duration)
7: maxReduction← event.duration−minShowerT ime
8: for taskAssignment in requestingAgent.schedule do
9: if event.taskID 6= taskAss.ID then

10: overlap← min (pushedEnd, taskEnd)−max (pushedStart, taskStart)
11: if overlap > requiredReduction then
12: requiredReduction← overlap

13: if requiredReduction+ event.currentReduction > maxReduction then
14: return −1

15: for response in responses do
16: offer ← response.offer
17: if offer 6= null then
18: overlap← min (pushedEnd, offerEnd)−max (pushedStart, offerStart)
19: if overlap > requiredReduction then
20: requiredReduction← overlap

21: if requiredReduction+ event.currentReduction > maxReduction then
22: return −1

23: return requiredReduction

If the proposed counteroffers were not sufficient, the event is revised using the revise method
shown in Algorithm 15. The counteroffers are taking into consideration while trying to relocate

35

3. THE MODEL

the event task in the schedule. It is also tried to reduce the duration of the requested event.
The tryFit method, shown in Algorithm 16, calculates the required reduction. The pushdistance
provided by the revise method moves the event task slightly to the left or right in the schedule.
Therefore, the tryFit method inspects if the pushing has introduced any new overlap in the
personal schedule of the requesting agent. If this is the case, it is checked whether the task’s
duration can be reduced to prevent this collision. The maximum reduction is calculated using
the agent’s flexibility, which equals the default flexibility value plus the flexibility increase
because it concerns the requesting agent. When the required reduction exceeds the maximum
reduction, the pushing has caused an impossible fit in the agent’s personal schedule. If the
reduction does not violate this threshold, it is reassessed whether the counteroffers still overlap
with the event task. This overlap can be resolved by further reducing the event task’s duration.
If a positive reduction value is returned to the revise method, the reduction was sufficient to fit
the event task in the schedule. Subsequently, the counteroffers are accepted and the event is
updated with the necessary relocation and reduction. If the changes offered by the responding
and requesting agents were not sufficient, Algorithm 4 is called. This method increases the
attempt counter, relocates the event and restarts the event handling process.

Algorithm 17 Modifies the schedule to fit the event

1: function applyChanges(requesting person, household, event)
2: if event == null then
3: for t in household.taskassignments do
4: if t.task instanceof ShowerTask then
5: if t.start == null then
6: remove empty shower object
7: else
8: for t2 in household.taskassignments do
9: if t 6= t2 then

10: if t.start 6= null then
11: if t overlaps with t2 then
12: remove t from schedule
13: return household
14: for t in household.taskassignments do
15: if t.ID == event.taskID then
16: t.startingtime← event.startingtime
17: t.duration← event.duration
18: if event.subtask 6= null then
19: substart← event.subtask.start
20: subID ← subtask.id
21: for counteroffer in event.adjustedtaskassignments do
22: for t in household.taskassignments do
23: if counteroffer.ID == t.ID then
24: t.startingtime← counteroffer.startingtime
25: t.duration← counteroffer.duration

26: if subID == t.ID then
27: t.startingtime← substart

28: return household

Once the event handling process has finished, the applyChanges method is called to modify
the existing schedule. Algorithm 17 shows the pseudo-code of this method. When an event was
not negotiated successfully, an empty event is returned. This means no suitable time for the
requesting agent’s shower task could be found and has to be removed from the schedule. The

36

3. THE MODEL

changes made by event’s subtask, such as the early meeting event which extends the working
duration, were already processed during the event generation step. These changes are not
removed from the schedule because they are independent of the agent’s showering task. An
early meeting is not canceled when an agent cannot find a suitable shower time in advance.
The new schedule is returned. If the event was negotiated successfully, the starting time and
duration of the original shower task of the requesting agent are updated in the Household’s
schedule. Subsequently, all TaskAssignments influenced by the event are updated by processing
the counteroffers stored in the adjusted TaskAssignment list. The new schedule is returned.

37

4. SCHEDULING

4 Scheduling

Our model combines the concept of scheduling with the concept of agent-based modeling. The
scheduler is responsible for creating a basic schedule, while the agent-based model allows for
modifications within this schedule. A household has one or multiple occupants who perform
daily tasks. These tasks need to be performed in a specific order or at specific times. The initial
order of these tasks is decided by an external mechanism, called a scheduler. In order to create
this initial schedule, the scheduler resorts to constraints. These constraints depend on the so-
cial context such as socially accepted work times or bathroom availability. The preferences of
occupants can also be expressed in constraints, e.g. a preferred shower time. These preferences
are different for each occupant and are used to express the self-identity of the occupant. Occu-
pants can also attach meaning to certain tasks, such as taking a shower to relax, freshening up
before work or get clean. This meaning is part of the self-identity of the occupant. If multiple
occupants wish to shower at the same time, the scheduler will not allow this as the shower is a
limited resource.

The final schedule will incorporate all these constraints and preferences. It combines the
occupant logic within one entity, the household. The schedule forms a basic order in which
daily tasks are executed. This conforms with the psychological definition of habits. Behavior
is often the cause of a goal that an individual wishes to achieve. But after many repetitions of
the same behavior it becomes a habit and the individual no longer needs to bear the goal in
mind. In our model these habits are created by scheduling the tasks of a household at the start
of the simulation. This basic schedule is used as the start of negotiation within the household.
Individuals do not have to actively consider each and every one of their actions, but can submit
to their automatic behavior. Once the basic schedule is finished and negotiation can be initiated,
the external mechanism is no longer in control. The fundamentals of the scheduling and the
constraints used to create the basic schedule are explained in the following two subsections.

4.1 The fundamentals of scheduling

Scheduling is a theory within computer science which concerns itself with assigning specified
tasks to resources. In our model every household has a number of occupants and each occu-
pant has daily activities. These daily activities need to be scheduled alongside plans of other
occupants. Each activity, hereafter called task, has several constraints that need to be met.
For example, the dinner task can only be scheduled after work and before the sleeping task.
Furthermore, most families prefer to have dinner together and therefore the dinner tasks of all
occupants are preferably planned at the same time.

Scheduling theory deals with allocation of (scarce) resources to tasks over time. Its goal is
to optimize the schedule given one or more objectives (Pinedo, 2016). Such planning problems
are found in many different situations, such as manufacturing companies, vehicle routing or
course timetabling. The resources and tasks take different forms in each situation. Resources
can be machines in a factory, employees at a company or processing units in a computer. Tasks
can be production processes, meetings or computer programs. The objectives can also differ in
each application. Some objectives try to minimize the total processing time of all jobs in the
schedule. Other objectives may be maximizing profit or happiness of employees and customers.

In this paper we will focus on finite and deterministic scheduling models. Finite models
assume that the number of jobs that need to be scheduled and the number of machines are
finite. A deterministic model only deals with planning problems of which the job data is fully
known. In stochastic models processing times, release dates or due dates may not be known in
advance. Usually a distribution is known however, the exact values only become apparent once
a job has finished processing. In our model all job data is generated and set before handed to
the scheduler.

Before going in depth on the details of our scheduling model, the basics of scheduling will be

38

4. SCHEDULING

discussed. The used notation is based on the notation in Pinedo (2016). In scheduling problems
jobs have to be allocated to resources over time. These resources are often called machines and
the number of machines is denoted by m. The number of jobs is denoted by n. Subscripts are
used to refer to a specific job or machine. For jobs the subscript j is used and machines use
the subscript i. The pair (i, j) refers to job j being processed on machine i. All jobs in the
model have a processing time, pij . This is the time it takes to complete job j on machine i. In
some cases jobs have a release date rj and/or a due date dj . These dates indicate the timespan
in-between which job j has to be completed. A job j cannot start processing before the release
date and a penalty applies when a job finishes processing after its due date. If the due date
must be met, this is called a deadline. Some jobs are more important than other jobs. This can
be indicated by giving jobs different weights, denoted by wj .

A planning problem is described by the triplet α|β|γ. α describes the machine environment,
β describes the processing characteristics and γ describes the optimization criteria. Schedules
can have many characteristics, since the scheduling theory applies to a wide variety of situations.
We will explain only the characteristics necessary to understand our model. In the α field the
number and types of machines is described. In our model the occupants of the households are
considered the machines. Each household has 1 to 5 machines. The machines are not identical
because occupants have different characteristics. In the case of multiple occupants, the machines
are in parallel. The speeds of the same type of job can vary depending on the machine. E.g.
one person can sleep for 6 hours while another person sleeps for 8 hours.

In the β field the processing restrictions and constraints are specified. Our model uses
release dates for the tasks, such as the dinner task. The use of due dates is not specified in the
scheduling triplet. The optimization criteria will indirectly imply the existence of due dates.
Some jobs in the system have precedence constraints. These type of constraints imply that one
or more jobs have to be completed before job j is allowed to start processing. E.g. a person
has to get out of bed before starting any other tasks. Another characteristic is the machine
eligibility restrictions. This implies not all machines are capable of processing each type of job.
As an example, in our model each occupant has its own task list. Therefore, the tasks in this
list can only be completed by the owner of the list.

In this paper a few assumptions are made which simplifies the scheduling process. It is
assumed that once a job has started processing, it cannot be interrupted until completion. This
allows us to simplify the model and reduce the search space for the solver. It is also assumed that
the jobs in our simulation do not require any setup time in-between tasks. Meaning, one tasks
can be directly planned after completion of another task. Travel times are also not included. If
necessary, these can be incorporated by extending the job processing time. Finally, the model
assumes no batch processing, a machine can process only one job at a time. The optimization
criteria in the γ field will be explained later.

After all machines and jobs are created and specified, the scheduler has to solve the sched-
ule. Solving means that the jobs are allocated to the machines while optimizing the objectives.
There are many different algorithms for assigning these jobs to the machines, these are called
optimization algorithms. Which optimization algorithm is used depends on the situation. How-
ever, optimization is often a trade-off with duration. In real world scheduling problems the
search space is often very large. In these cases it is often impossible to find the optimal solution
in the available time. Therefore, a trade-off is made and a solution is accepted once a stopping
condition is met. E.g. when the score exceeds a certain threshold or when time runs out.

4.2 The constraint satisfaction solver

In this section we will explain the scheduling phase of the model in detail. This phase is used
to create basic schedules for the households in the simulation. All TaskAssignments within
a Household are assigned an appropriate starting time while adhering to several hard and
soft constraint. These constraints will also be described in detail in this section. The entire

39

4. SCHEDULING

simulation was made in Java. For the purpose of scheduling we used the Optaplanner1 library,
which is a constraint satisfaction engine that optimizes planning problems and can be easily
embedded in existing software.

Name Hard/Soft Score Description

noTaskOverlapWithinPersonalSchedule Hard -1
Tasks within each agent’s personal
schedule cannot overlap.

showerScarceResource Hard -1 ShowerTasks cannot overlap

invalidStartingOrEndingTime Hard -1
Tasks cannot start before their
releasedate and must end before
their duedate.

invalidTaskOrder Hard -1
In the personal schedule of agents,
tasks cannot start before their
preceding tasks have finished.

durationEqualsMidnight Hard -1
Starting time of a BedTimeTask
must equal midnight minus the
duration of the task.

riseFromMidnight Hard -1
The starting minute of a RiseTask
must always equal 0.

familyDinner Soft -10
Preferably everyone in the same
household has dinner at the same
time.

showerTimePreference Soft -2
Preferably a persons shower is
scheduled according to his
preference.

Table 8: Hard and soft constraints used in during the scheduling phase

The scheduling process is initiated by generating and instantiating a solver factory object.
This factory object is created using the planner configuration as specified in an XML file. The
file specifies which Java project contains the planning entities, solutions and variables. The
classes in the Java project have been annotated to indicate which objects need to be scheduled.
The annotations of the classes can be found in Appendix A.

The XML file also specifies the optimization criteria and the file in which the scoring rules
can be found. These optimization criteria serve as a stopping rule for the solver. Once one
of these stopping conditions has been met, the solver will abort and the found solution will
be returned. For the purpose of this simulation and the conducted experiments, we set two
stopping conditions. When a planning solution has been found with a score of 0hard/0soft, no
constraints are violated and an optimal solution has been found. If the solving process takes
a long time, the scheduling process is aborted early on. After some testing, we set this second
stopping condition to 20 seconds in real time.

The scoring rule file contains all hard and soft constraints to which the solver should adhere
when trying to find a satisfactory solution to the planning problem. The initializing scoring
trend was set to only minimize the score because only negative constraints were used. We
use two levels of constraints: hard constraints and soft constraints. Both constraint types are
negative, meaning a penalty is imposed when the constraint is broken. A hard constraint must
not be broken, for example the shower cannot be used by two people at the same time. While

1https://www.optaplanner.org/

40

4. SCHEDULING

a soft constraint should not be broken if it can be avoided, e.g. families like to have dinner
together. All constraints used during the scheduling phase are shown in Table 8.

Once a schedule has been solved, a basic schedule is given as output. This basic schedule
forms a solution to the planning problem. All taskassignments in the household were assigned
a timeslot which adhere to the constraints. An example of a solution is shown in Figure 1. The
score of a optimal solution equals 0hard/0soft. In this case no hard or soft constraints are
violated in the provided solution. If a hard constraint is violated a penalty of -1 is imposed.
This penalty is the same for all hard constraints. On the contrary, soft constraints impose
different penalties when violated. The scores can be found in Table 8. The soft constraints were
assigned different penalty values to express the importance of each rule.

Figure 2: A basic schedule solution of a household with 5 occupants

We will briefly discuss the meaning and usefulness of each constraint provided in Table 8.

Each Person within the household has his/her own set of tasks to complete during the
day. Logically, only one task can be executed at the same time. Therefore the next task can
only start after the previous task has been completed. Several constraints were implemented
to enforce a certain order in which the tasks are scheduled. Most importantly, two tasks
cannot be scheduled at the same time. When (partial) overlap occurs within the schedule, the
noTaskOverlapWithinPersonalSchedule constraint will penalize this. This constraints prevents
overlap among tasks in each agent’s personal schedule. A second constraint that restricts the
order in which the tasks can be scheduled is imposed by the release- and duedates that were
assigned to the tasks during setup. These dates are times of the day and are preset for each
task type as shown in Table 3. The constraint is violated when a task is scheduled before
its releasedate or is completed after its duedate. If violated a penalty will be imposed by the
invalidStartingOrEndingTime constraint.

A final constraint that restricts the task order is the invalidTaskOrder constraint. Some
tasks need to be completed before other tasks. For example, the first task of the day should
always be the RiseTask. An agent cannot start any other tasks before getting out of bed first.
The bedTimeTask is always the last task in an agents schedule. Details on all preceding and
succeeding tasks can be found in Table 9. The SportsTask and PartyTasks do not appear in
this table, because these tasks do not exist during the schedule procedure. They only become
available during event generation and the negotiation phase.

41

4. SCHEDULING

Specific to this simulation are the shower tasks. The bathroom is a scarce resource and each
household is assumed to only have one shower facility available at a time. The showerScarceRe-
source constraint was implemented to ensure that the shower is treated as a scarce resource.
Only one person within the household can shower at a time. In other words, this rule ensures
that two ShowerTasks cannot overlap. All four order enforcing constraints are implemented
as hard constraints. Schedules that violate any of these constraints will not be considered for
experimentation.

Constraints that should be optimized but are allowed to be violated are called soft con-
straints. We implemented two social rules as soft constraints. The first rule is the familyDinner
constraint. This soft constraint induces a preference for having dinner together with the rest
of the family. This family consists of all agents living in the same household. This rule also
ensures a central point of the day for all agents.

The second social rule is the showerTimePreference constraint. Every agent in the household
has a preferred time of the day to shower. If this soft constraint is not violated every agent’s
shower is scheduled during it’s preferred time period. The shower preference can be set to
morning (06:00-11:00h), evening (20:00-24:00h) or no preference. This constraint was added to
increase variation within schedules and to ensure that schedules are not always solved in the
optimal way. For example, an agent might have a lot more time to shower in the morning, but
prefers to shower in the evening. This causes the schedule to be tighter.

The two final constraints do not enforce any task order or social rules. They were imple-
mented to ensure a working scheduler system. The Rise- and BedTimeTask are two special task
types, as one of their variables is already fixed. The RiseTask has a fixed starting time while
the BedTimeTask has a fixed ending time. The scheduler does not know that these variables
should be fixed and therefore the durationEqualsMidnight and riseFromMidnight constraints
were added. The former constraint ensures that the starting time of a RiseTask will always
be equal to midnight (00:00h). The duration of the RiseTask is the only variable that causes
the RiseTask to have different ending times for each person. The ending time of the BedTime
task always equals midnight (24:00h). Therefore the starting time seems flexible but in fact it
is fixed. The duration of this tasks determines the starting time, which should always be equal
to midnight minus the duration of the task. Both constraints are hard constraints. Schedules
that violate this constraint are not considered to be valid.

Task type Predecessor Tasks Successor Tasks

Rise None All other tasks
BedTime All other tasks None
Shower Rise BedTime
Study Rise BedTime
Work Rise BedTime, Dinner
Dinner Rise, Work BedTime

Table 9: Predeccessor and successor tasks for each task type

4.3 Schedule tightness measure

For the purpose of experimentation, a measure was designed to capture the tightness of a sched-
ule. This measure encapsulates different aspects of the schedule. Solely measuring the free time
within a schedule is not sufficient to explain that schedule’s flexibility. If all tasks in a schedule
are placed consecutively, without any gaps in between, the schedule cannot be considered flex-
ible. People are often not willing to alter their schedule in drastic ways. Therefore, it will be
hard to move tasks around within this block of consecutive tasks.

42

4. SCHEDULING

The tightness measure consists of three submeasures that all describe a different inflexibility
of the schedule. All measures are calculated for each person’s personal schedule in the household.
Hereafter, the submeasures are weighted and combined to one value for each person. The final
value is the average of the values of all agents.

The first submeasure calculates the ratio between the occupied time and the total time
within the personal schedule. A day always lasts 24 hours, therefore the total time in one’s
schedule is fixed. However, it is measured in minutes instead of hours. The occupied time is the
sum of the durations of all tasks in minutes in one’s schedule. The shower task time was not
counted as occupied time, because we are looking at the flexibility of a schedule with respect
to the showering tasks. The ratio is created by diving the occupied time by the total amount
of time.

The second submeasure measures the free time in minutes within a personal schedule. Free
time is considered to be the time of the day where no tasks have been scheduled. We will call
this the empty space. However, since we are mostly interested in the flexibility of the shower
tasks, we subtracted the time the shower was unavailable to the agent from the empty space.
The shower is considered unavailable when another agent has scheduled a shower task during
that time. The remaining free time in minutes is divided by the empty space. This ratio
expresses the usefulness of an agent’s free time with regard to showering. A higher ratio implies
more useful free time and a more flexible schedule. However, the total measure measures the
tightness of a schedule instead of the flexibility. Therefore, we subtract the ratio from 1.0 to
correctly measure the tightness. This measure will be referred to as the shower ratio.

The third measure evaluates the number of consecutive tasks. Two tasks are considered to
be consecutive, when one task’s ending time equals the other task’s starting time. The total
number of consecutive tasks is divided by the total number of tasks minus 1. The latter value
describes the number of possible connections between tasks. Dividing the two values results in
a ratio that measures how flexible a schedule is when pushing tasks.

t(s) = w1 ∗ soccupiedRatio + w2 ∗ sshowerRatio + w3 ∗ sconsecutiveRatio (1)

The three submeasures were combined using weights which express the importance of the
submeasures, see Formula 1. The submeasures are ratios between 0.0 and 1.0. The sum of
the weights also equals 1.0 and therefore the resulting total is always a value between 0.0 and
1.0. The most flexible schedule has a tightness value of 0.0, whereas the tightest schedule has
a value of 1.0. In our model, no basic schedule with an tightness value of 0.0 can be produced.
Every generated schedule always assigns at least four tasks to each occupant: Rise, BedTime,
Shower and Dinner task. All these tasks are also assigned a positive duration. Therefore, the
occupied ratio measure can never be 0. Our model can potentially generate a schedule with a
tightness measure of 1.0. However, this is very unlikely. For each person in the household, all
three submeasures would have to equal 1.0. This can only occur when one’s schedule is fully
occupied.

The weights were chosen after some qualitative experimentation. The weights were tweaked
until schedules with visually different tightness were assigned distinctive enough values. This
distinctiveness was based on intuition and the design of the negotiation process. During negoti-
ation, tasks can be reduced in duration and their starting time can be pushed. If an agent has
a very busy schedule, meaning much of his/her time is occupied by tasks, it will be difficult to
push tasks to make room for the event. For this reason, the occupied time ratio was seen as the
most important submeasure. If an event requires to fit in a new shower, this event is constrained
by the occupation of the bathroom. Therefore, the shower ratio was included. However, this
submeasure is a very specific restriction and therefore less important than the occupied ratio
submeasure. The number of consecutive tasks can complicate the process of pushing tasks.
However tasks can still “jump” over other tasks. Therefore, this submeasure seemed to be the
least important and was assigned the smallest weight. As a result, the weights in Formula 1

43

4. SCHEDULING

Person Tightness

Person 0 (Adult) 0.67
Person 1 (Adult) 0.67
Person 2 (Child) 0.89
Person 3 (Child) 0.89
Person 4 (Child) 0.89

Average 0.80

Table 10: Tightness of household Figure 3c

were set to w1 = 0.7, w2 = 0.2 and w3 = 0.1.

(a) (b)

(c)

Figure 3: Basic schedules for three different households

In Figure 3, three schedules are shown, each for a different household. Figure 3a and 3b
show schedules for single person homes. The person in 3a has a full time job, while the person
in 3b is unemployed. Preferably, busier schedules such as the schedules of full-time workers,
are assigned a higher tightness value. The designed tightness measure captures this effect with
the occupied time submeasure. The found tightness values for 3a and 3b are 0.67 and 0.42
respectively. The measure successfully assigned a larger value to the tighter schedule.

Figure 3c shows a schedule for a 5 person home. The children in the household (person 2
- 4) all go to school and have a part-time job. This results in a visually tight schedule. The
parents (person 0 and 1) seem to have more flexible schedules, especially in the morning. The
calculated tightness values are shown in Table 10. As shown in Figure 3c the children are
assigned a higher value, whereas the parents receive a lower value. This affects the average
tightness of the schedule which is equal to 0.80. This is still a higher value than the single
person home schedules.

44

5. EXPERIMENTAL SETUP

5 Experimental setup

The developed model will be used to answer our research question by generating several thou-
sand simulation runs and observing the different outcomes of the negotiation process. In this
section we will show the simulation run setup and describe which results are stored and analyzed.

As explained in the Section 3 one simulation run will generate a household, create a basic
schedule and negotiate some alterations to the schedule. A total of 4000 runs was performed
with the parameter settings shown in Table 11. Each run all parameter values were chosen
at random. Several parameters cannot be selected or randomly generated. The tightness of
the basic schedule is calculated during simulation and the number of occupants in a household
depends on the hType. As shown in the Table 11 not all household types were included. Several
hTypes removed because the composition is the same as another hType. For example, hType
1 and 10 both consist of one full-time working adult. Separate runs do not influence each other
and are therefore independent. Some simulation runs were not included in the final dataset
because they violated one or multiple hard constraints. Runs that violated soft constraints
were not removed.

Parameter Value range

hType [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 19, 21, 22, 24]
Negotiating Agent Random eligible occupant
eventType [earlyMeeting, workOut, eveningParty]
Agent flexibility [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
Flexibility increase [0.3]

Table 11: Value ranges of each simulation parameter

The experiment will consist of two parts: a quantitative analysis followed by a qualitative
analysis. The quantitative analysis is based on several thousand samples generated by the de-
veloped model. During this phase the simulation run results of the scheduling and negotiation
process were stored in a dataset. Table 12 shows a snapshot of a few rows of the stored results.
Each simulation is assigned a unique ID. This way the matching pictures and other correspond-
ing results can be found. The score column indicates the score of the basic schedule solved
during the scheduling phase. Only the results of simulation runs that did not violate any hard
constraints were saved. The total tightness of the basic schedule, as well as the tightness of the
negotiating agent were stored in the table. Other results that were saved are the flexibility of the
agent’s during negotiation, the flexibility increase of the negotiating agent, the number of occu-
pants living in the household, the household type, the event type generated during negotiating
and the negotiator type. The flexibility increase was not varied during experimentation. It was
assumed that the agent requesting alterations should be somewhat more flexible than his/her
fellow housemates. The negotiator type encodes the type of person that requests the event.
The code consists of three attributes: adolescence occupation studentstatus. Adolescence can
be set to adult or child. The occupation options are FT for full-time workers, PT for part-time
workers or N for unemployed people. The studentstatus is indicated by a boolean.

The final two columns are the most important column for the quantitative analysis. The
Successful column indicates whether negotiation was completed successfully during the sim-
ulation run. If an event could not be generated or an event could not be handled successfully
the column is assigned the value No. Successful negotiation is indicated by the value Y es. The
RequiresNegotiation column indicates whether the requested event could be fit in the schedule
without altering the schedules of other agents. These final two column will be used as the predic-
tor variable during quantitative analysis. Samples will be divided in three classes: unsuccessful
negotiation, successful negotiation that requires no alterations and successful negotiations that

45

5. EXPERIMENTAL SETUP

requires at least on alteration.

ID Score Tightness TightnessNegotiator Flexibility FlexIncrease nrPersons hType eventType negotiatorType Successful RequiresNegotiation

1551360553622 ID8 0hard/0soft 0.447917 0.447916667 0 0.3 1 9 eveningParty adult N F Yes false
1551360553714 ID9 0hard/0soft 0.589375 0.739583333 0.2 0.3 5 24 eveningParty adult FT F Yes true
1551360553841 ID10 0hard/0soft 0.611979 0.68125 1 0.3 2 5 earlyMeeting adult FT F No false
1551360553953 ID11 0hard/0soft 0.6875 0.622916667 0.4 0.3 4 22 eveningParty adult FT F Yes true
1551360554110 ID12 0hard/0soft 0.658333 0.779166667 0.2 0.3 4 22 eveningParty child N T Yes true
1551360554270 ID13 0hard/0soft 0.725 0.717708333 1 0.3 5 2 workOut adult FT F Yes true
1551360557093 ID14 0hard/0soft 0.673333 0.659375 0.2 0.3 3 19 workOut adult FT F Yes true
...

Table 12: Several rows of the dataset used for quantitative analysis

The simulation run dataset was processed and analyzed using classification models. Several
models were tested but it was found that decisions trees formed the most interpretable model
in this scenario. It also allows for dealing with interaction variables, as a tree structure allows
for interactions automatically. Several single decision trees were build on the data. The dataset
was first split in three subsets where each subset contains all data for a specific eventType. Each
subset was split in a trainingset (70%) and testset (30%). A decision tree model was trained on
each trainingset and evaluated on each testset. This will provide in an indication to whether
the models are reliable representations of the data. This quantitative analysis is performed to
find the most important variables that influence the negotiation process. The results obtained
from this analysis will be used to select certain scenarios for qualitative analysis.

The decision trees models were built using the Gini index as the impurity function. No
early stopping conditions were used, which allows the tree to grow maximally. Afterwards, the
tree is pruned to prevent overfitting and to apply to more generic scenarios. A generic model is
necessary to explain the factors that generally influence the negotiation process and not just in
specific scenarios/households. However, we did split the data by event type because each event
represents a different scenario in which different factors could influence the negotiation.

The earlyMeeting represents scenarios where an existing tasks needs to be extended and a
shower should be scheduled in advance of this task. The eveningParty also represents the shower
in advance scenario with the difference that an extra task has to be added to the schedule. The
workOut event also requires this additional task but requires a shower afterwards. The factors
in these events might be different. The events are also scheduled during different times of the
day, which can again lead to different influencing factors.

46

6. RESULTS

6 Results

(a)

(b) (c)

Figure 4: Decision trees for the earlyMeeting (a), eveningParty (b) and workOut (c) events

During the quantitative analysis it was found that the majority of the samples succeeded
in scheduling an event without further changes to other tasks, they were labeled with Y es.
The other two categories, labeled with No and Conditional, represent only 9.4% and 3.6%
of the data respectively. Figure 4a, 4b and 4c show the decision trees for the earlyMeeting,
eveningParty and workOut event for this data. Each tree has been pruned using the complexity
parameter with the smallest cross validation error. This will create a more generic tree model.
Pruning also allows us to analyze simply the most important splits. The variable importance
of each variable in the datasets were also calculated, they are shown in Table 13 and 14. The
importance of a variable is the sum of the decrease in impurity. This decrease in impurity is only
counted when the variable was one of the most effective split variables in a node. The importance
of all variables is converted into a percentage scoring. The most important variables for each
eventType will be shown according to the variable importance measure and the resulting tree.

In figure 4a the decision tree for the earlyMeeting event data is shown. The model classifies

47

6. RESULTS

all samples as either Y es or No. No nodes in the tree have Conditional as its majority class
as this class only represent a small proportion of the data. Both the tree and Table 13 show
that the tightness of the negotiator and the hType are the most important variables. The top
four splits are made by these variables. The tightnes values used in the splits are very similar
values. If the tightness of the negotiator’s schedule does not exceed 0.69, most cases do not
require any negotiation. If they do exceed this threshold and are part of hType 1,6, 12 or 13 the
event is most likely not successfully scheduled. These households do not have any school-going
children or students as occupants, which the other hTypes do have. The next split on hType
separates homes with several children or students and classifies them as no negotiation needed.
The remaining households are split on tightness several times and shows that households with
a greater tightness value and two occupants are more likely to fail negotiation.

In figure 4b the decision tree for the eveningParty event is shown. This model did not
exclude the Conditional category however the No category no longer appears in the tree. The
tree and Table 14 show that hType is the most important variable. The second variable in the
table does not correspond to the second split in the tree. The tightness measure is responsible
for separating the Conditional cases from the Y es cases which decreases the impurity of the
tree and is therefore rated as a more important variable. In general, the importance percentages
of all variables are very small which implies that these variables cannot differentiate among the
three classes with high accuracy. This is most likely also due to the overrepresentation of the
Y es class in the data. Similarly, the decision tree model built on the workOut event data cannot
differentiate the different classes at all, as shown in Figure 4c. The fully grown tree had several
more layers however each leaf nodes would have the Y es class as its majority class. This shows
the effect of overrepresentation of one class in the data.

Another quantitative analysis was performed to gain more information regarding the nego-
tiation process. The data was filtered to prevent overrepresentation. The samples that did not
require any negotiation and could fit the event immediately were removed from the data. This
leaves only the samples where negotiation was initiated somewhere during the event scheduling.
The data was then split in two categories: successful negotiation and unsuccessful negotiation.
It was found that in most cases the negotiation was completed successfully. Only 2% percent of
the samples failed to schedule the event. All of these cases were workOut events. This covers
6% of the entire workOut event samples. A decision tree model was trained to classify successful
versus failed negotiation. However, since hardly any cases failed the negotiation the dataset was
to small to measure the influence of variables on negotiation success. The resulting decision
tree consisted of a single node.

TightnessNegotiator hType Tightness nrPersons Flexibility

43.1797075 26.7363821 12.4931399 9.1114118 0.1012893

Table 13: Variable importance for earlyMeeting decision tree

hType Tightness nrPersons negotiatorType Flexibility TightnessNegotiator

4.9641709 3.6815787 3.2257240 2.4426468 2.3350746 0.7499764

Table 14: Variable importance for eveningParty decision tree

A third comparison was made based on only the successful cases. The samples where the
event scheduling was processed successfully can be split in two groups. The cases where negoti-
ation was required to fit the event and the cases where the event could immediately fit without
changes to other agents’ schedule. For each group the means of the numerical features were
calculated. These features are the schedule tightness, the tightness of the negotiator’s personal

48

6. RESULTS

schedule and the flexibility of the agents. This test was performed to estimate the influence
of the tightness and the flexibility parameters on negotiation. The means were calculated for
each event type separately. Furthermore, the samples where an event could not be scheduled
successfully were excluded from this analysis. This includes the samples where no negotiation
was initiated because the requesting agent could not fit the event in his/her personal sched-
ule and the samples where event negotiation failed because of the other occupants. The first
case was not included because they should not be in the the same category as the schedules
that have enough room to schedule the event immediately. Otherwise, the means might be
distorted. For the second case, the data was shown to hardly contain any failed negotiation
samples. Therefore, these samples will not influence the mean and can be removed without
distorting the data.

For the earlyMeeting event, the means of the tightness, negotiator tightness and the agent
flexibility per group were compared by conducting independent t-tests. No significant difference
in tightness for the negotiation required group (M = 0.678, SD = 0.065) and no negotiation
required group (M = 0.691, SD = 0.057) was found, conditions; t(30) = −1.09, p = 0.283.
Similarly, there was no significant difference in negotiator tightness for the negotiation required
group (M = 0.680, SD = 0.0330) and no negotiation required group (M = 0.681, SD = 0.039)
conditions; t(31) = −0.16, p = 0.872. Furthermore, no significant difference for flexibility was
found for the negotiation required group (M = 0.441, SD = 0.331) and the no negotiation
required group (M = 0.514, SD = 0.346) conditions; t(31) = −1.16, p = 0.255.

The same independent t-tests were performed for the workOut event. No significant differ-
ence in tightness for the negotiation required group (M = 0.684, SD = 0.064) and no negotiation
required group (M = 0.667, SD = 0.077) was found, conditions; t(51) = 1.81, p = 0.075. Sim-
ilarly, there was no significant difference in negotiator tightness for the negotiation required
group (M = 0.658, SD = 0.0986) and no negotiation required group (M = 0.660, SD = 0.089)
conditions; t(49) = −0.12, p = 0.902. Furthermore, no significant difference for flexibility was
found for the negotiation required group (M = 0.528, SD = 0.327) and the no negotiation
required group (M = 0.493, SD = 0.346) conditions; t(50) = 0.71, p = 0.480.

The same independent t-tests were performed for the eveningParty event. A significant
difference in tightness for the negotiation required group (M = 0.695, SD = 0.061) and no
negotiation required group (M = 0.668, SD = 0.075) was found, conditions; t(69) = 3.45, p =
0.0009. Similarly, there was a significant difference in negotiator tightness for the negotiation
required group (M = 0.713, SD = 0.074) and no negotiation required group (M = 0.665,
SD = 0.102) conditions; t(71) = 4.86, p = 6.822e − 06. Furthermore, no significant difference
for flexibility was found for the negotiation required group (M = 0.449, SD = 0.320) and the
no negotiation required group (M = 0.511, SD = 0.341) conditions; t(67) = −1.46, p = 0.149.

The remaining features in the dataset are categorical values. Several chi squared tests were
performed to find dependencies between a categorical variable and the necessity to negotiate.
However, for many variables no accurate chi squared approximation could be calculated. This
is due to the lack of examples for some of the combinations of variables.

A chi-square test of independence was performed to examine the relation between necessity
of negotiation and number of occupants for eveningParty events. The relation between these
variables was significant, X2(4, N = 1371) = 32.961, p < 1.216e − 06. Households with three
or more persons are more likely to require negotiation for eveningParty events than smaller
households.

A chi-square test of independence was performed to examine the relation between necessity of
negotiation and number of occupants for workOut events. The relation between these variables
was significant, X2(4, N = 1297) = 49.208, p < 5.285e − 10. Households with four or more
persons are more likely to require negotiation for workOut events than smaller households.

Finally, some examples will be presented to show how certain circumstances can complicate
the process of negotiation. The examples are shown in Figure 5. The left pictures show the basic

49

6. RESULTS

schedules before negotiation and the right pictures show the resulting situation after negotiation.

Figure 5a shows a 4 person household with hType 16. The type of people living in this
household can be found in Appendix B. The score of the basic schedule is 0hard/0soft, the agent’s
flexibility is 0.2 and tightness and negotiator’s tightness are 0.6029 and 0.6958 respectively.
Person 2 requests a eveningParty event and wants to shower beforehand. The party starts at
21:00h and Person 0 would like to shower for 9 minutes starting at 20:51h. This event fits in
his/her personal schedule, but conflicts with Person 1’s showering practice. As Person 1 uses
the shower for the purpose of relaxation his/her flexibility is reduced. This results in a flexibility
of 0.0. Therefore, the agent is not willing to reduce the duration of the shower practice. The
negotiator agent tries to relocate his/her shower task and suggests 20:42h with a duration of
9 minutes. The shower still fits in the agent’s personal schedule, but still overlaps Person 1’s
shower task with 6 minutes. The negotiator tries to his/her show push 6 minutes to the left,
starting at 20:36h. The shower fits and does not conflict with any other showering practices.
The event is resolved successfully.

Example 2, as shown in Figure 5c and 5d, shows how a showering practice can fit in a
very busy schedule. In this five person household of hType 2, Person 4 tries to schedule an
eveningParty event. If a party task does not fit in an agent’s schedule, an agent is allowed to
reduce its sleeping task to fit the party. The party is scheduled at 21:00h with a duration of 90
minutes. The agent’s dinner tasks ends at 20:45h and the requested shower has a duration of
6 minutes. This duration is quite short, but this is due to the meaning that is attached to the
showering practice. An eveningParty event generates a showering practice with the freshness
which generally results in short showers. Person 3’s showering task is scheduled to start at
20:45h, right after dinner, with a duration of 8 minutes. Preferably, requesting agents schedule
their shower right before the party task. Since the agent requested a shower of 6 minutes, this
indicates a starting time at 20:54h. The shower fits in the basic schedule as Person 3 finished
his/her shower 1 minute before.

The third example, depicted in Figure 5e and 5f, shows the schedules before and after a
workOut event. The five person household (hType = 2) has a tightness of 0.764 and a negotiator
tightness of 0.674. The agent’s have maximum flexibility (=1.0) and the majority of the agents
prefers to shower in the evening. Coincidentally, Person 0 is the only person who showers in the
morning and is also the one with the smallest tightness value. Preferably the workOut event is
scheduled after work but the gap until dinner is to small and is therefore scheduled after dinner.
Person 0 tries to schedule a shower right after the sports practice but all other agent also shower
in the evening. Person 0 sends a request to start his/her shower at 20:30h with a duration of
8 minutes. However, Person 3 has already scheduled a 4 minute shower during this time, but
offers to reduce his shower by 2 minutes due to his/her high flexibility value. This offer is not
sufficient, so Person 0 tries to push his shower to the right by 2 minutes, right after Person 3’s
shower. Even though every occupant showers around the same time, no new conflicts arise.

Figure 5g and 5h show a rare example where negotiation with more than one person was
required. In this four person household (hType = 16), Person 0 tries to schedule a workOut
event in the morning. Usually, the event is scheduled in the evening after work or study but
since Person 0 is unemployed it is scheduled the morning instead. In the basic schedule, Person
0 and 2 usually shower in the evening while Person 1 and 3 shower in the morning. The total
tightness and negotiator tightness are 0.56 and 0.45 respectively and the agent’s have a flexibility
value of 0.6. The negotiator agent requests a shower at 07:30h with a duration of 9 minutes.
However, this causes a conflict with Person 3 who showers from 07:30h till 07:43h. Person 3 is
willing to start 2 minutes later. This does not resolve the conflict for Person 0 and he/she tries
to schedule a shower starting at 07:39h instead. This still overlaps with Person 3 shower, but
it conflicts with Person 1’s schedule as well. Person 1’s shower starts at 07:45h with a duration
of 21 minutes, but offers to shower from 07:48h instead. Person 3’s old offer is removed and
replaced by a new offer. Instead of starting 2 minutes later, Person 3 is willing to finish his/her

50

6. RESULTS

shower 3 minutes earlier. Person 3 was willing to reduce more than Person 1 even though the
former’s shower is shorter. This is due to the different meanings attached. Person 1 takes a
shower for relaxation purposes while Person 3 showers to freshen up. The reduction is small but
offers just enough space for Person 0 to fit his/her shower in between the other two showers.

Figure 5i and 5j show an example of a successful earlyMeeting negotiation. The three
occupants all prefer to shower in the morning. The tightness of the schedule is 0.703 and the
tightness of the negotiator’s personal schedule is 0.623. Person 1’s schedule is also the least
tightest schedule due to less sleeping hours. The negotiator agent working time is extended and
advanced by one hour from 09:00h to 08:00h. The agent requests a shower starting at 07:51h
with a duration of 9 minutes. However, this overlaps with Person 1’s schedule who showers from
07:45h till 07:53h. The agent is flexible (flexibility = 0.8, meaning = cleanliness) and offers to
finish his/her shower 2 minutes earlier. This counteroffer is sufficient to fit Person 1’s requested
shower. Person 2’s shower only starts at 08:00h which directly connects all three showers.

Figures 5k and 5l show an example of a schedule where negotiation failed. Person 0 planned
a sports activity in the evening and tried to schedule a shower afterwards. The agent requested
a shower with a duration of 11 minutes. This request fits in the agent’s personal schedule as
the gap between the SportsTask and BedTime task is 15 minutes long. However, Person 1 also
scheduled a shower during this time. A simple solution could be to push Person 1’s shower task.
However in the current model other agents besides the negotiator are not willing to relocate
their tasks due to implementation limits. But they are willing to reduce their showertask.
Person 1 sends a counter offer to Person 0 offering to reduce its shower time by several minutes.
However, this reduction is not sufficient to fit the agents requested shower. Person 0 tries to
relocate the Sports task but fails due to his tight evening schedule. The agent’s flexibility does
not allow a sufficient reduction of its shower task either. Negotiation fails and the event remains
unresolved.

(a) (b)

(c) (d)

Figure 5: Examples of negotiation

51

6. RESULTS

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 5: Examples of negotiation (cont.)

52

7. DISCUSSION

7 Discussion

In this section the implications of the results and shortcomings of the model will be discussed.
It was shown that when the samples were split in three categories, Y es, No and Conditional,
the majority of the samples belonged to the Y es class. The decision tree built on this data
showed that it was difficult to distinguish between these classes due to this overrepresentation
of the majority class in the data. In none of the trees the Conditional samples were split from
the No samples. If the differences between these to classes were to be measured, more data is
required. However, simply generating more samples does not solve the problem because this
would also generate many more Y es labeled samples. More No and Conditional samples should
be generated without generating a huge amount of Y es samples. The model should be extended
to create tighter schedules that require negotiation with the other occupants more often. The
analysis where the data was split between successful and failed negotiation also showed that
more data is required as only 2% of the cases failed to schedule the event.

The earlyMeeting and eveningParty decision tree use a combination of tightness and flexi-
bility thresholds to distinguish between samples that require negotiation and samples that can
place the event without modification. This indicates a two-way interaction between the flex-
ibility and tightness variables, which implies that when a schedule is tighter a higher agent
flexibility is required to successfully adjust the schedule. Currently this only holds for very few
cases of the earlyMeeting and eveningParty data. More data on negotiation samples is required
to further investigate this two-way interaction. It should also be noted that the tightness val-
ues of schedules that allowed for instant modification of the schedules are very similar to the
tightness values of schedules that failed negotiation. This is shown in the earlyMeeting decision
tree where splitting on the negotiator tightness occurs twice with very similar values.

The third analysis where data was split between samples that required negotiation and
samples that could instantly fit the event was used to test the influence of each variable on
this split. None of the numerical variables showed a significant effect for the earlyMeeting or
workOut data. For the eveningParty there was a significant difference in tightness and nego-
tiator tightness for the required negotiation and instant fit class. The tightness and negotiator
tigthness values were found to be slightly higher for the required negotiation class. This implies
that if a schedule is busier, negotiation is more likely to be required to schedule an eveningParty
event. This is contradictory to the other two events, where tightness showed no significant differ-
ence between classes. This difference might be caused by the time during which an event needs
to be scheduled. The eveningParty event is set to be scheduled during the evening, while the
earlyMeeting event is scheduled during the morning. The workOut event should be scheduled
after the agent’s final task before dinner, this could be either during the morning if the agent is
unemployed or the evening of the agent is employed or is a student. Generally, the evening in
the schedules seems busier as more tasks are scheduled during that time. The evening schedule
is also heavily influenced by the other people in the household as the dinner task is preferably
shared with the other occupants. Therefore, the dinner task is sometimes scheduled at later
hours if one agent in the household works till late. This can cause the schedule of other agents
to become tighter in the evening as the gap between dinner and bedtime decreases. If an agent
then wishes to schedule an eveningParty task during this time the schedule is generally tighter
during this time then other parts of the day. This local tightness could cause negotiation to be
required more often.

The chi-squared tests showed that it was hard to measure the dependence between the
categorical features and the necessity of negotiation. This was due to the lack of data for
certain combinations of variables. Only for two of the variables the dependence relation could
be shown. The requirement of negotiation for eveningParty events was shown to be dependent on
the number of persons variable. A household with three or more persons is more likely to require
negotiation to schedule an evening party than smaller households. Similarly, a dependence

53

7. DISCUSSION

relation was shown to exist by the workOut event negotiations and the number of persons
variable. Larger households with four or more persons are more likely to require negotiation
to schedule a sports task than smaller households. These dependency relationships show that
the number of people in the household can complicate modifications to schedule. This implies
that the number of people influences the interlockedness of the social practices pattern. For
eveningParty it was already shown that tightness influences the need for negotiation. The
number of persons could cause this higher tightness due to the shared dinner task. The tightness
and number of persons variables are correlated. For the workOut event no significant difference
in tightness was found. This might be due to the larger range of time during which the event
can scheduled. The event can be scheduled in the morning where schedules are generally less
tight. Or during the evening, where the scheduling can be influenced by the shared dinner task.
Another difference between the eveningParty and workOut events is that agents do not have to
wait for other agents to get home before they can start their sportstask. Party tasks are always
scheduled after dinner, whereas a sports task can be scheduled before dinner if time allows it.

The qualitative analysis shows that meaning can complicate the negotiation process. If
the schedule in Figure 5a was any tighter the requesting agent might not be able to push or
reduce and the event scheduling would fail. Example 2 in Figure 5c showed a case where no
communication among the agents was required. However, if one of the agents had scheduled or
requested a shower with a different meaning or duration, negotiation would have been initiated
and might have been a very complex process as the space is very narrow. In these cases,
the flexibility of the agents come into play. But due to the low probability of these types of
examples being generated, this complicated negotiation process hardly occurs. If cases like
these were more likely to occur, the influence of the flexibility and the tightness parameter
could be further tested. Creating tighter and more constraint schedules could increase the
probability of such situations. Example 3 in Figure 5e shows another example of how people
usually tend to shower around the same time in a household. However, it again shows that
due to some really short showers and the negotiators loose schedule, resolving the conflict is
easy. It also shows that negotiation is unlikely to happen among more than two persons as
this example depicts a situation where the showers are scheduled in very close time range.
Example 3 also shows that another occupant was willing to reduce his/her shower duration due
to high flexibility. However, this reduction could have been avoided if the negotiator person had
pushed his shower by 4 minutes instead of 2. This is caused by the orderly fashion in which the
negotiation protocol is programmed. As an extension, the necessity of a duration reduction can
be checked during the pushing procedure. Example 4 in Figure 5g shows that a high tightness
value is not a requirement for multi-agent negotiation. It shows how tightness can be local
which can cause a tough negotiation process. Example 5 in Figure 5i shows how tight morning
schedules do not always require complex negotiation due to the short duration of shower tasks.
A failed cases of negotiation was shown in example 6, Figure 5k. This is due to implementation
limits and could be resolved in future extensions by allowing pushing and relocation of other
agents’ tasks.

In general the results imply that the tightness of a schedule does not influence the necessity
or success of negotiation. However, this might be due to the lack of data on successful and
failed negotiation. The dependency relationships of most categorical variables could also not
be determined due to this lack of data. The influences of the numerical and categorical vari-
ables should be further tested by extending the model. More data on samples are required that
involve negotiation. This could be achieved by creating tighter schedules. In the current imple-
mentation, generally schedules are too loose and therefore usually do not require negotiation or
modifications to the basic schedule to fit an event. This could be achieved by adding more tasks
to the schedules, such as house chores or by adding extra constraints to tasks such as meanings.
Another addition could be parent-child relationships. For example, currently children do not
need to ask their parents if they can go to a party. Another addition could be different types

54

7. DISCUSSION

of events, that take up more space in the schedule or require multiple participants, such as a
birthday party for one of the occupants. These were not added to the current model given the
timespan of this thesis.

Another improvement of the model addresses the tightness measure. A better tightness
measure will have to incorporates other factors. No significant difference between the tightness
of the schedules with and without negotiation was found. Whether a sample needs negotiation
to fit an event should be reflected in someway by the tightness measure. It was shown that
tightness seemed to influence the negotiation of eveningParty events but not the negotiation
of the other event types. It was suggested that this could be due to the local tightness in the
schedules. Therefore, the tightness measure could be improved by incorporating local tightness.
Another factor to consider is the range of the tightness measure. Currently, the majority of the
values fall in the range of 0.35-0.70. Therefore it is hard to differentiate between loose and tight
schedules. Tightness values should be more distinctive for different classes.

Agent negotiation can also be extended with pushing and relocating of other agent’s tasks.
Furthermore, it could be extended by allowing reordering of tasks. Another improvement could
be to check the pushing and reduction possibilities in a different order which can in some cases
provide a solution where the current order cannot. However, these are edge cases as this event
hardly occurred. If the schedules become more complex and are more interlocked these edge
cases could be encountered more often.

Another extension of the negotiation model involves shower tasks. Shower tasks are shown
to be very small tasks that have no trouble fitting in small time gaps in the schedule. The
examples provided in Figure 5 show that when negotiation is required it is often easily solved
with a very small adjustment. In reality, these small adjustments may not be made as people
do not tend to clock their showers by the minute. More meanings could also be added to shower
tasks. In the current implementation only cleanliness, freshness and relaxation are used but
other constraints such as preference to shower before another person could be added. This could
constrain the shower tasks a little further to lead to more interesting negotiations.

55

8. CONCLUSION

8 Conclusion

In Western Australia water shortage is caused by the Mediterranean climate. Many studies have
been conducted to gain understanding in the behavior and technology that influence sustainable
living. Many sustainable resource technologies have been developed and it was also tried to
influence the behavior of individuals. However, this was soon found to be ineffective as human
beings tend to fall back into old behavioral patterns after a while. It was suggested to shift
the approach from individual behavior to the sustainability of everyday practices. Studies at
CUSP are aiming to combine human behavior with the infrastructure of the home. The home
is viewed as a interlocked system of social practices. Slightly adjusting one practice sometimes
requires many changes in this pattern. Therefore, it is important to understand the connections
among practices. Social practices are constrained by factors such as resources, meaning and
skills of its carrier. These factors influence the flexibility of the social practice. It becomes more
difficult to measure this flexibility once this practice is situated in an interlocked schedule of
many other practices. Practices are interdependent as they can also share meanings, skills and
resources with other practices.

In this thesis, we aimed to gain understanding in the flexibility of these social practices
patterns. In particular, how tightness and occupant flexibility influence the flexibility of the
social practices in a household setting. As the focus of this thesis lies on sustainability, the
shower practice is the focal point. A social simulation was developed to approximate this
flexibility of social practice patterns. The model was based on scheduling and agent-based
modeling techniques. Scheduling was used to simulate the daily interlocked patterns practices
within households. This allowed us to design several hard and soft constraints for the practices
and the occupants. The resulting schedule was used as the basis for the negotiation protocol.
This negotiation protocol allows agents to request changes to the original schedule. One agent
could initiate negotiation and suggest a change. Other agents are able to respond to this change
in the form of counteroffers. The success of the negotiation protocol is based on the constraints
induced by the interlocked social practices.

An experiment was set up to measure the influence of several parameters on the negotiation
protocol. A measure was designed to calculate the tightness of a schedule before negotiation.
This measure incorporated the occupied time, the amount of time available for showering and
the number of consecutive tasks. This tightness was measured for the total schedule and all
agents individually. The simulation was run several thousands times. Numerical and categorical
values were stored in a dataset for quantitative analysis. The basic and negotiated schedules
were saved as images and as text for qualitative analysis. Several parameters such as the
flexibility of agents were varied for each simulation run.

In general no significant relation was found for the tightness of the schedules and flexibility of
the agents on the negotiation protocol. The dataset was deemed too small to measure influence
of parameters on success of negotiation as majority of the samples succeeded to schedule the
event without adjusting the other agents’ schedules. The dependency relationships of most
categorical variables could not be measured due to this lack of data. For earlyMeeting and
workOut events tighter schedules and less flexible occupants did not increase the need for
negotiation. However, for eveningParty events a significant difference in tightness and individual
tightness for the requirement of negotiation was found. This implied that busier daily schedules
are more likely to require negotiation to schedule party tasks. This holds for both individual
tightness as well as tight household schedules. The absence of this significance relation for
the other event types could be explained by local tightness. The eveningParty event requests
modifications of a busier part of the schedule in comparison to the other event types. Another
observation showed that households with more than three people for eveningParty events and
households with more than four people for workOut events are more likely to require negotiation.
This shows that the number of people influences the interlockedness of social practices and

56

8. CONCLUSION

complicates modifications to this pattern.
The qualitative analysis showed that the meanings attached to shower tasks can influence

the negotiation process. The relaxation meaning was shown to complicate the negotiation
because this meaning does not allow the duration of a shower task to be greatly reduced. The
analysis also showed that most of the samples required no negotiation because the shower tasks
are very small and are not very likely to overlap. Showers could also be scheduled in smaller
gaps in between tasks as most showers only last 10-15 minutes depending on the meaning. In
almost all cases where negotiation was required, the requesting agent would have to negotiate
with only a single other occupant. Practically no multi-agent communication occurred. The
multi-agent negotiation case showed that these cases are very unlikely to occur even if all agents
shower during the same time period because showers are very short tasks and therefore are very
unlikely to overlap. It also showed why flexibility was not found to be significant. Negotiation
was not necessary to modify the schedule in most samples. Therefore, only in some cases the
flexibility parameter would be useful. But even in the negotiation cases they could often be
solved by simple 2 or 3 minute reduction of one of the shower tasks. One example was shown
where negotiation failed. However, this failed case could easily be avoided by extending the
model.

In general tightness and flexibility were found to not significantly influence the negotiation
protocols. Therefore, tightness and flexibility do not seem to be the major constraints that
interlock the pattern of social practices. This implies that the flexibility of human beings
and the tightness of their daily lives are not the factors that restrain humans to change their
behavior towards more sustainable living. However, the eveningParty showed that tightness
and flexibility can be important factors for busier times during the day. This implies that in
general the simulation schedules might not be interlocked enough to measure this influence for
all event types. This could be studied further by extending the model.

The shower tasks could easily be modified to allow changes to the schedule. These practice
are not restrained by any other practices and additional showers could easily be scheduled
thanks to their short durations. The flexibility of the shower practices was slightly influenced
by its attached meaning, such as the relaxation meaning. However, the presence of this meaning
did not result in any major conflicts as it still allowed for modification.

In future research the model can be improved in three ways. The scheduler can be extended
to increase the tightness of the daily schedules. This could be achieved by adding more basic
tasks such as household chores. More constraints should be added to showers as they currently
fit in the schedule very easily due to their short duration. Another extension is an improvement
of the tightness measure. The tightness value of loose and tight schedules are very similar in
its current state. The measure should also incorporate local tightness. Another item subject to
future research is the negotiation process. It should be extended with more options to relocate
and reduce tasks in other occupants schedules. An additional constraint could be extra shower
meanings that allow relocation but not reduction or vice versa. All these extensions will allow
for further study and improvement in the representation of interlocked social practice patterns.

57

REFERENCES

References

Athanasiadis, I. N. and Mitkas, P. A. (2005). Social influence and water conservation: An
agent-based approach. Computing in Science & Engineering, 7(1):65.

Dignum, F., Dignum, V., Prada, R., and Jonker, C. M. (2015). A conceptual architecture for
social deliberation in multi-agent organizations. Multiagent and Grid Systems, 11(3):147–166.

Dignum, V. and Dignum, F. (2014). Contextualized planning using social practices. In Interna-
tional Workshop on Coordination, Organizations, Institutions, and Norms in Agent Systems,
pages 36–52. Springer.

Eon, C., Breadsell, J. K., Morrison, G. M., and Byrne, J. (2018a). The home as a system of
practice and its implications for energy and water metabolism. Sustainable Production and
Consumption, 13:48–59.

Eon, C., Liu, X., Morrison, G. M., and Byrne, J. (2018b). Influencing energy and water use
within a home system of practice. Energy and Buildings, 158:848–860.

Eon, C., Morrison, G. M., and Byrne, J. (2018c). The influence of design and everyday prac-
tices on individual heating and cooling behaviour in residential homes. Energy Efficiency,
11(2):273–293.

Gilbert, N. (2008). Agent-based models. Number 153. Sage.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J.,
Grand, T., Heinz, S. K., Huse, G., et al. (2006). A standard protocol for describing individual-
based and agent-based models. Ecological modelling, 198(1-2):115–126.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., and Railsback, S. F. (2010).
The odd protocol: a review and first update. Ecological modelling, 221(23):2760–2768.

Holtz, G. (2014). Generating social practices. Journal of Artificial Societies and Social Simu-
lation, 17(1):17.

Kahneman, D. and Egan, P. (2011). Thinking, fast and slow, volume 1. Farrar, Straus and
Giroux New York.

Lopes, M., Antunes, C., and Martins, N. (2012). Energy behaviours as promoters of energy
efficiency: A 21st century review. Renewable and Sustainable Energy Reviews, 16(6):4095–
4104.

Luo, L., Zhou, S., Cai, W., Low, M. Y. H., Tian, F., Wang, Y., Xiao, X., and Chen, D.
(2008). Agent-based human behavior modeling for crowd simulation. Computer Animation
and Virtual Worlds, 19(3-4):271–281.

Macrorie, R., Foulds, C., and Hargreaves, T. (2015). Governing and governed by practices:
Exploring interventions in low-carbon housing policy and practice.

Marsella, S. C., Pynadath, D. V., and Read, S. J. (2004). Psychsim: Agent-based modeling of
social interactions and influence. In Proceedings of the international conference on cognitive
modeling, volume 36, pages 243–248.

Mercuur, R. (2015). Interventions on contextualized decision making: an agent-based simulation
study. Master’s thesis.

58

REFERENCES

Mester, Y., Kökciyan, N., and Yolum, P. (2015). Negotiating privacy constraints in online
social networks. In Advances in Social Computing and Multiagent Systems, pages 112–129.
Springer.

O’Brien, L. V., Kashima, Y., and Walshe, J. (2017). Year 3 project report: Transformation to
low carbon living - social psychology of low carbon behavioral practice (rp3012).

Pinedo, M. L. (2016). Scheduling: theory, algorithms, and systems. Springer.

Reckwitz, A. (2002). Toward a theory of social practices: A development in culturalist theoriz-
ing. European journal of social theory, 5(2):243–263.

Schelling, T. C. (2006). Micromotives and macrobehavior. WW Norton & Company.

Shove, E. (2010). Beyond the abc: climate change policy and theories of social change. Envi-
ronment and planning A, 42(6):1273–1285.

Shove, E., Pantzar, M., and Watson, M. (2012). The dynamics of social practice: Everyday life
and how it changes. Sage.

Spurling, N. J., McMeekin, A., Southerton, D., Shove, E. A., and Welch, D. (2013). Interventions
in practice: Reframing policy approaches to consumer behaviour.

Stimpson, J. L., Goodrich, M. A., and Walters, L. C. (2001). Satisficing and learning cooperation
in the prisoner s dilemma. In IJCAI, volume 1, pages 535–540.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, volume 1.
MIT press Cambridge.

Young, H. P. (2004). Strategic learning and its limits. OUP Oxford.

59

A. CLASS ANNOTATIONS

Appendix A Class annotations

The classes in the Java project were annotated as instructed by the Optaplanner library.

Annotation Class Description of annotation

Planning Solution HouseholdSchedule class
Objects of this type will contain all building
blocks for the schedule. The solver will store
the found solution in objects of this class.

Planning Entity
Collection Property

TaskAssignment list in
Household class

List of building blocks that need to be assigned
by the solver.

Planning Fact
Collection Property

TimeSlot list in
Household class

List of building blocks that can be assigned by
the solver.

Planning Entity TaskAssignment class
Objects of this type are assigned a planning
variable by the solver.

Planning Variable
Starting TimeSlot object
in TaskAssignment class

This variable is assigned a value by the solver
during scheduling.

Planning Score
HardSoft score object in
Household class

In this object the solver will store the score of
the found solution.

Table 15: Annotated classes in Java project

Appendix B Household type (hType) compositions

Codes used in Table 16:

• FT = full-time worker

• PT = part-time worker

• UE = unemployed

• home-Child = home-staying child, if not indicated school-going child

60

B. HOUSEHOLD TYPE (HTYPE) COMPOSITIONS

hType nrPeople Occupants

1 1 1x FT-Adult
2 5 2x FT-Adult, 3x PT-Child
3 3 1x FT-Adult, 2x PT-Child
4 4 2x FT-Adult, 2x Child
5 2 1x FT-Adult, 1x PT-Adult
6 2 2x FT-Adult
7 3 1x FT-Adult, 1x PT-Adult, 1x Student
8 2 1x FT-Adult, 1x Child
9 1 1x UE-Adult
12 4 1x FT-Adult, 2x PT-Adult, 1x home-Child
13 3 3x FT-Adult
15 4 4x Students
16 4 1x FT-Adult, 1x UE-Adult, 1x Child, 1x home-Child
19 3 2x FT-Adult, 1x PT-Student
21 3 2x UE-Adult, 1x Student
22 4 1x FT-Adult, 1x PT-Adult, 2x Child
24 5 1x FT-Adult, 1x UE-Adult, 1x Child, 2x home-Child

Table 16: Types of occupants living in each hType

61

	Introduction
	Related work
	Agent-based modeling
	Social practices
	Social practice theory in agent-based models
	Social practice theory in households
	Sustainability and application

	The Model
	Purpose
	Entities, state variables, and scales
	Process overview and scheduling
	Design concepts
	Basic principles
	Emergence
	Adaptation
	Objectives
	Learning
	Prediction
	Sensing
	Interaction
	Stochasticity
	Collectives
	Observation
	Code design

	Initialization
	Input data
	Household data
	Shower data

	Submodels

	Scheduling
	The fundamentals of scheduling
	The constraint satisfaction solver
	Schedule tightness measure

	Experimental setup
	Results
	Discussion
	Conclusion
	Appendix Class annotations
	Appendix Household type (hType) compositions

