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Abstract

Methods from the field of machine learning can be applied to automatically predict disorders such
as dyslexia at an individual level. Early vocabulary is a plausible antecedent to later language
difficulties. Previous research on this link has been mostly correlational and not predictive. In this
study, productive and receptive vocabulary sizes measured in children between 17 and 35 months
were used to predict their later dyslexia status. Linear support vector machines were trained to
separate dyslexic subjects from nondyslexic subjects. Additionally, support vector regression was
used to predict age from vocabulary. Dyslexia could not be reliably predicted: the maximum
balanced accuracy was 58% for the group at 23 months old. The vocabulary age models did have
a good fit (for the best model, R2 = 0.686) and performed well on unseen data. Moreover, the
age models predicted dyslexic subjects to be up to two months younger than their nondyslexic
peers. This difference was however not enough to predict eventual dyslexia status. In conclusion,
infant vocabulary was a weak predictor of dyslexia. Using data from multiple points in time might
increase predictive performance, as vocabulary trajectory is nonlinear and differs in children with
dyslexia. Similarly, the “vocabulary age gap” could be examined further, since vocabulary age
models predicted dyslexics to be younger even without prior knowledge of dyslexia.
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1 Introduction

1.1 Machine learning within psychology

Diagnosis of cognitive or psychological disorders is often time-consuming and requires extensive
experience. Machine learning techniques can be used as methods to construct models which auto-
matically give predictions when given relevant data of people with or without the disorder to be
detected. Applying statistical methods like these can speed up the diagnostic process, which is
especially desired in disorders when early intervention is beneficial. It can also help experts find
anomalies and thus increase diagnostic accuracy. Models that learn from data alone, without human
preprocessing, might give new insights that were not considered a priori.

Using statistical methods for these tasks is a relatively new and promising approach, but there
are many things that can go wrong when applying machine learning in this domain of science
(Kassraian-Fard et al., 2016). Data of any sort of medical significance is expensive and difficult
to collect. As a result, this field suffers more than others from (very) small sample sizes. Models
that are trained with limited data usually do not generalize well to unseen data. Statistical models
often also require tuning parameters which are not calculated fairly because of limited available data
(Cawley and L. C. Talbot, 2010).

A second problem is that of data imbalance. Often, when researching a specific disorder, there
are fewer subjects to be found with that specific disorder in comparison to control subjects. This
also makes it harder to assess classification models properly, as it is tempting for a statistical model
to classify everyone as healthy just because that is the majority class. Additionally, when using a
predictive model, how certain does it have to be of its prediction? Do we allow many false positives
just to be certain we pick up on all cases, or is it better to be specific and allow more false negatives?
These problems need to be considered when using predictive models in practice.

Dyslexia is a cognitive disorder characterized by difficulties in reading and other language abili-
ties. It is classified as an early onset developmental disorder in the DSM-V. Early language skills
such as vocabulary, therefore, can be viewed as a plausible antecedent to dyslexia (Thompson et al.,
2015). However, collecting vocabulary data is time-consuming and may be inaccurate since it is
often reported by parents. In addition to that, dyslexia is estimated to occur in about 10 to 13% of
the population (Chen et al., 2017). There is bound to be some imbalance in the data. Using robust
machine learning techniques, is it still possible to predict dyslexia on an individual level?

1.2 Overview

At the start of chapter 2, literature on the prediction of dyslexia and the link between early vocabu-
lary and dyslexia is reviewed. In the later sections of this chapter, the theory behind the algorithms
and evaluation metrics that will be used is discussed, keeping the challenges of this particular study
in mind. Methods will be discussed in chapter 3, including a description of the data sample and its
features. Lastly, results for all models will be reported (chapter 4), followed by a discussion of these
results (chapter 5) and a conclusion (chapter 6).
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2 Background

2.1 Literature

Infant vocabulary can be separated into two categories: expressive vocabulary (or productive vo-
cabulary) is the set of words a child both produces and understands. A child’s receptive vocabulary
consists of all words a child understands but does not yet produce.

Although correlations between expressive and receptive vocabulary measured at 16 to 24 months
and school-age reading performance were highly statistically significant, their predictive ability at an
individual level was not. There seems to be a low developmental stability in early vocabulary knowl-
edge (Duff et al., 2015b,a). Many children with very low expressive vocabularies caught up later,
and many children with normal vocabularies did have reading difficulties later on. In other words,
there was a high rate of false negatives and a high rate of false positives predicting later language
difficulties from just vocabulary. Differences in expressive vocabulary measured at 18 months were
statistically significant for later reading outcome, but by no means determinative. When accounting
for other factors, such as gender and familial risk, the vocabulary assessment at such a young age
might assume more importance.

Dyslexia has an early onset, but its effects start to be noticed only when the child is already enrolled
in school. Reliable screening for risk of dyslexia in pre-school years could enable early intervention.
Studies so far have rarely used pre-school language abilities to predict individual (risk of) dyslexia.
Whereas the difference at group level between control and dyslexic children is reported, most did
not look at predictions on an individual level.

Thompson et al. (2015) did predict individual risk of dyslexia given vocabulary and grammar knowl-
edge in various pre-school age groups. The earliest models, at 42 months of age, performed poorly.
When set at a cutoff that gave 90% sensitivity, the specificity was very low (30%). Language skill
was not a significant predictor of dyslexia until the age of 5 years. Again, infant vocabulary did
not seem to be stable across childhood: the closer to school entry, the better the predictive models
were. Including familial risk of dyslexia yielded somewhat better results, but the study strongly
suggests that screening for language problems at just 42 months provides little useful information
with respect to later dyslexia.

Thompson et al. (2015) used logistic regression to predict individual risk, but the study was still
largely correlational rather than predictive. They did not test cases outside of the sample that was
used to build the model (Chen et al., 2017). A further limitation of this study is that the sample
included only high-risk children, either children at familial risk for dyslexia or with a specific lan-
guage impairment.

A study that did apply proper machine learning methods is Chen et al. (2017). Children’s ex-
pressive and receptive vocabulary between the ages of 17 and 35 months was measured and used to
build classifiers predicting familial risk of dyslexia1. Unlike Thompson et al. (2015), this study had
access to a control group not specifically at risk for dyslexia. Model performance was assessed on
subjects outside of the training sample. The best model performed with a 68% accuracy (and a 68%
balanced accuracy) on the 19 to 20 month model. Although this study did use cross validation to
report this accuracy, it still did not predict dyslexia itself, only familial risk, as the dyslexia status
of the subjects was unknown at the time.

A subset of these children were followed up and eventual dyslexia status was assessed. This yielded

1Meaning at least one parent is reading impaired, and one first-degree family member is reading impaired.
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2.1. LITERATURE CHAPTER 2. BACKGROUND

three groups: TD (typically developing children, no dyslexia and no familial risk), FR-ND (children
at familial risk without dyslexia) and FR-D (children at familial risk with dyslexia). There was
no significant group difference between TD and FR-ND children. However, for both expressive
and receptive vocabulary, the dyslexic children did consistently score lower than both nondyslexic
groups. The effect sizes were all small to medium. Infant vocabulary, therefore, may function as an
additional risk factor for the development of dyslexia, but it is still only weakly related (van Viersen
et al., 2017).

This study also noted that although early vocabulary studies regarding dyslexia are longitudal,
the focus is rarely on vocabulary trajectory. Vocabulary development is not entirely linear during
infancy: a vocabulary spurt in the second year of life has been regularly observed (Hamilton et al.,
2000). In FR-Dyslexic children, this vocabulary spurt had a later onset for expressive vocabulary.
For receptive vocabulary, the spurt seemed to be characterized by a lower initial growth followed
by a weaker deceleration at 29 to 35 months (van Viersen et al., 2017). Thompson et al. (2015)
reported accuracy for models fitted for every seperate age group, only accounting for vocabulary
size differences at specific points in time, and not for trajectory differences. Classifiers that have
knowledge of multiple age groups might perform better.

Aims of this study

Machine learning methods have not been used to predict dyslexia from early vocabulary. Most
studies focus on descriptive statistical methods, but so far, predictive models have been used to suc-
cessfully predict other disorders (Kassraian-Fard et al., 2016). Prediction of familial risk at dyslexia
yielded a maximum performance of 68% accuracy at 19 to 20 months (Chen et al., 2017). Since the
effect size between dyslexics and nondyslexics is much larger than that between FR and typically
developing (TD) (van Viersen et al., 2017), predicting dyslexia instead of FR at an individual level
could yield similar or better results. The goal is to not just fit the best possible model, but use
robust validation methods and consider the class imbalance when reporting on important metrics
(Kassraian-Fard et al., 2016).

The second aim is to predict age at an individual level. How big is the gap between real age
and predicted or “vocabulary” age in dyslexic children2? Likewise, is there a significant difference
between the control, FR-ND and FR-D groups in vocabulary age? Although this model predicts
age and not dyslexia, a persistent difference between real age and vocabulary age might give insight
into the dyslexia status of the developing child.

In the following sections, a theoretical overview of the used techniques is given.

2Similar to the real-age/brain-age gap for schizophrenia in (Schnack et al., 2016)
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2.2. SUPPORT VECTOR MACHINES CHAPTER 2. BACKGROUND

2.2 Support Vector Machines

Support Vector Machines, first introduced by Cortes and Vapnik (1995), are a popular machine
learning technique. SVMs are known to deal well with high dimensional and noisy data. It also deals
well with correlated features. Vocabulary categories are of course highly correlated with each other,
and these features can be noisy because of its manual collection via parental report. Additionally, in
contrast to other ML techniques like neural networks, a linear SVM has fairly interpretable feature
weights (Kassraian-Fard et al., 2016).

The goal of any classifier is to predict which of two or more classes some subject belongs to, given
its features. A classifier has to separate the data into groups. The basic idea of a support vector
machine (SVM) is that it is a maximal margin classifier. Consider the two-dimensional dataset in
Figure 2.1: There are many ways it can be separated with a line, but not all of them would be
considered good separators.
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(c) The optimal separating line

Figure 2.1: A linearly separable dataset in two dimensions. All of the three lines separate the data
perfectly, but (c) does so while maintaining the maximum margin. The circled data points are the

so called support vectors.

The goal of an SVM is to separate the data, but specifically to do so while maximizing the margin,
the distance from the separating line to the nearest datapoint. In Figure 2.1a, for instance, the
distance to the nearest red datapoint is very small. To find the optimal separating line (or optimal
separating hyperplane in higher dimensions) we need an optimal weight for every dimension, plus
the intercept b. Let w be our weight vector. For some datapoint x the output of our SVM is:
sign(wTx + b). Suppose y is the actual label (equal to -1 or +1) for some x. Notice that when our
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classifier classifies x correctly, y(wTx + b) > 0.

In order to be true to our first constraint (classify everything correctly), the following must hold
for every data point x with label y: yn(wTxn + b) ≥ 1. Secondly, the margin with width 1

||w||
must be maximized. This is equivalent to minimizing the inverse of the margin width. Our problem
becomes:

Minimize ||w|| = 1

2
wTw

subject to yn(wTxn + b) ≥ 1

This can be reduced to a quadratic programming problem and solved accordingly.

2.2.1 Soft-Margin SVM

The aforementioned SVM works only on perfectly linearly separable data. When the data is not
separable by a line, the constraint “classify everything correctly” cannot be resolved. A more general
version of an SVM specifies that points may be classified incorrectly to a certain extent. This is
realistic, because many datasets are not linearly separable, but a big margin is still preferred.
The extent to which data may be classified incorrectly can be described by the hinge loss function,
which penalizes every data point according to how far away it is from the margin. Points are allowed
inside the margin, but they are given a penalty. This way, correctly classified data points outside of
the margin do not contribute to the error.
The amount of loss allowed is controlled by a new parameter C, also known as the cost parameter.
Let ξn be the hinge loss at any point n. Our optimization problem now becomes:

Minimize
1

2
wTw + C ·

N∑
n=0

ξn

subject to yn(wTwxn + b) ≥ 1− ξn,
ξn ≥ 0
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Figure 2.2: Four soft-margin support vector machines
All are trained on the same dataset, but with different values of C. Note that this dataset is

linearly seperable, but the lowest red dot seems to be an outlier we want to ignore. The dotted
lines next to the seperating line show the margin of the optimal separating hyperplane and a
circled datapoint indicates that this point is a support vector. With C = 1000, the classifier is

essentially a hard-margin SVM.

Notice that C controls the trade-off between minimizing the margin, and minimizing the error.
When C is small, the second term is less important. The margin will be bigger, but the error higher.
A very high C results in a small error, but at the cost of a small margin. When C is infinitely big,
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the optimal hyperplane is the same solution as a hard-margin SVM would give us. In Figure 2.2 the
influence of C can be clearly seen.
The cost parameter for SVMs has to be chosen empirically, usually from a range of values. In Figure
2.2, the optimal C seems to be about 2, but it is not hard to imagine that C has to be bigger or
smaller for different datasets and -distributions.

2.2.2 Support Vector Regression

Typically, SVMs are used as classifiers. They can however also be used as regression models (Drucker
et al., 1997). The classifier produced by an SVM, as described in the previous section, depends only
on a subset of the training data, because the cost function disregards any points outside of the
margin. For support vector regression, the same is true. We cannot ask for zero error (like we
could with classification), since our output is continuous. What we can ask for is an error within an
acceptable range, say an error per data point smaller than some ε > 0. This “hard” version of SVR
is formulated as follows:

Minimize
1

2
||w||2

subject to y −wx− b ≤ ε,
wx + b− y ≤ ε,

ε ≥ 0

Of course we cannot guarantee that the data is “linear enough” and the errors all lie inside the
ε-range. Again, a cost parameter C is introduced, along with the hinge loss per datapoint ξ to allow
for errors. This hinge loss is zero for every error smaller or equal to ε, and just like the classification
hinge loss, increases linearly when it is further away from epsilon (“outside the margin”).

Minimize
1

2
||w||2 + C

1

N

N∑
i=0

(ξi + ξ∗i )

subject to y −wx− b ≤ ε+ ξi,

wx + b− y ≤ ε+ ξ∗i ,

ξ(∗) ≥ 0,

ε ≥ 0

Now, there are two hyperparameters to optimize: C and ε. The “margin” of the SVM is now defined
by ε, which creates a tube of width 2ε around the regression line, and any points classified within
that tube do not contribute to the error. Since there is no real margin, C is now just a reguralization
constant, with a lower C accounting for a flatter, more regularized model (Smola and Schölkopf,
2004). The trade-off between the two parameters is shown in Figure 2.3.

Since the outcome of our model is highly dependent on ε, it would be nicer to tune this parameter
automatically. The most common variant of SVR used, ν-regression, does just this. When given a
0 ≤ ν ≤ 1, optimize ε as follows:

Minimize
1

2
||w||2 + C(

1

N

N∑
i=0

(ξi + ξ∗i ) + νε)

subject to y −wx− b ≤ ε+ ξi,

wx + b− y ≤ ε+ ξ∗i ,

ξ(∗) ≥ 0,

ε ≥ 0

Another property of ν is that it is an upper bound on the fraction of errors, and a lower bound on
the fraction of support vectors (Smola and Schölkopf, 2004). Often, as a default, ν = 0.5 is chosen
when there is no room for additional model tuning.
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Figure 2.3: ε-Regression for varying hyperparameters
For some fixed ε, we allow ε error for any point. Nine regression models trained on the same

(simulated) data for different values of ε, C. The support vectors (circled in blue) are the ones for
which our model prediction has an error > ε. Note that C determines the flatness of the model.

Maximizing C seems like the best thing to do in this situation, but for nonlinear problems,
optimizing C is less trivial.

2.3 Cross Validation

When assessing the performance of any model, it is not fair to do so on the same data that was
used to train this model in the first place. The model might overfit on the data, meaning it does
not generalize well on unseen data. A seperate dataset which is not used during training, called a
test set, can be used to report on the performance in a fair way. Usually, the provided data is split
up into a test set and a training set prior to any training. Data is trained on the training set and
its performance evaluated on the separate test set. But with a limited amount of data, this process
can be challenging. The larger the test set, the more accurate the performance assessment is for
unseen data. But a larger test set also results in a smaller training set, which in turn makes this
performance worse. When there is little data available, there are other techniques to evaluate model
performance.
Another common way to assess performance is K-fold cross validation. The available data is split
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2.3. CROSS VALIDATION CHAPTER 2. BACKGROUND

up into K subsets of roughly equal size, called folds. For every fold, a model is trained on all other
folds and then tested on the left-out fold. This way, all models are evaluated on data that they have
not seen before, and we get to keep all of our data. When K is equal to the number of datapoints in
a set, it is also known as leave-one-out cross validation (LOOCV). The model is then trained on all
subjects except one, and evaluated on the left-out subject. Although LOOCV tends to have higher
variance than regular K-fold CV, bias does decrease3.

When training a soft-margin linear SVM, an optimal C-parameter has to be selected empirically.
Choosing C based on the same data (i.e., the data the training set for a given fold) can easily lead
to overfitting (Kassraian-Fard et al., 2016). Therefore, the model for that fold should be tuned first,
with a nested cross validation procedure. This method is time-consuming but more robust than
regular cross validation (Cawley and L. C. Talbot, 2010).

Nested Cross Validation:

1. Split data up into K outer folds

2. For every outer fold:

(a) Create a train-data set of everything but the left-out outer-fold

(b) Repeat R times: Split train-data up into K ′ inner folds and for every fold:

i. Create a inner training set of everything but the left-out inner fold

ii. Pick a C from list of available C’s.

iii. Train an SVM with this C on the inner train set.

iv. Assess performance on the left-out inner fold (with a given metric, such as AUC or
Accuracy)

v. Average performance over all different C’s

(c) Evaluate which was the best C

(d) Train a final model for with this C-value on the outer-fold train data

(e) Evaluate the performance of this model on the left out outer fold

3. The estimated performance of an SVM on our dataset is the performance on all left-out folds.

This process is shown schematically in Figure 2.4.

3A high bias means the best possible model is still far from the golden standard. A high variance means models
trained on different data (for instance, different folds) produce wildly different performances. Both bias and variance
should be minimized, but there is a trade-off between the two.
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Outer fold 5

Outer fold 4

Outer fold 3

Outer fold 2

Outer fold 1

Training set of outer fold 1 Test set

Inner CV-loop for outer fold 5:

Inner fold 1

Inner fold 2

Inner fold 3

Tuning set of inner fold 3Validation set

Figure 2.4: Nested Cross Validation with K = 5 and K ′ = 3. The performance of the
crossvalidated model is measured using only the left-out outer folds, coloured in red.

2.4 Dealing with imbalanced data

Performance Metrics

The most well-known way to report on model performance is by measuring its accuracy, the amount
of correctly classified data divided by the total amount of data.
However, when the data distribution contains a lot of points labeled positive, and almost none la-
beled negative, the positives will contribute a lot to the final accuracy. Even when every negative
is incorrectly classified by our model, as long as the positives are all well, the accuracy stays high.
The accuracy metric is thus misleading when dealing with imbalanced data (Kassraian-Fard et al.,
2016; He and Garcia, 2009).

FN TN

Sensitivity Specificity

TP FP

Figure 2.5: Performance Metrics

For binary classification, there are four ways a model can
classify a datapoint. When a positive label means “this
person has dyslexia” and a negative one means “this per-
son does not have dyslexia”:

? TP or True Positive is when a dyslexic subject is
correctly classified as being dyslexic.

? FP or False Positive is when a non-dyslexic subject
is incorrectly classified as being dyslexic.

? TN or True Negative is when a non-dyslexic subject
is correctly classified.

? FN or False Negative is when a dyslexic subject is
incorrectly classified as being non-dyslexic.

For many medical classification tasks, the positive group
(in our case, dyslexics) is often (very) small and easy to ignore. But this is the very thing we are
predicting, so it is important to pick up on those positive cases, although there are not many. The
sensitivity metric, also known as recall or true positive rate, tells us how many of the positive class
cases the model picked up on. With #TP standing for the total number of true positives, sensitivity
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2.4. DEALING WITH IMBALANCED DATA CHAPTER 2. BACKGROUND

is defined as:
#TP

#TP + #FN

When our classifier ignores positive subjects, this results in a high FN-rate, and in a low sensitivity.

With any medical classification, it is also important to avoid false positives(Thompson et al., 2015).
This means we have to have a high specificity, also known as true negative rate, defined as

#TN

#TN + #FP

When the classifier predicts many healthy subjects as dyslexic, “to be sure”, the amount of false
positives will be high and consequently, the specificity will be low.

Overall, there is a trade-off between sensitivity and specificity. This trade-off can be understood by
looking at the ROC curve of a predictive model. The ROC curve shows the predictive power of a
model at different thresholds. For an SVM, instead of using the sign of the prediction sign(wTx+b),
the actual prediction probability (a number between 0 and 1) can be used. Ideally, all positive
instances should have probabilities higher than every negative instance. A perfect classifier like this
has some optimal threshold with 100% specificity and 100% sensitivity. Two ROC curves are shown
in Figure 2.6. The area under this curve is a measure to assess the goodness of an ROC curve: how
much predictive power does a model have, regardless of the final chosen threshold? For a perfect
classifier the area under the ROC curve (AUC) is 1, as shown in the picture4. An AUC of 0.5 means
no predictive power.
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Figure 2.6: Example of an ROC curve for a small dataset (black), and perfect ROC curve (green),
along with corresponding AUC measures. Some interesting thresholds and their coordinates in the

specificity/sensitivity space are shown.

In a good model, both specificity and sensitivity have to be at least higher than 50%. The balanced
accuracy metric is the mean of these values. Both metrics are just as important in the balanced
accuracy, whereas with the regular accuracy metric they are important only proportionally to the
balance of data. It is relevant to report on such measures and look at trade-offs instead of just
accuracy (Schnack and Kahn, 2016).

4AUC can also be seen as the probability that some random positive datapoint has a higher probability than some
random negative datapoint.
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2.4. DEALING WITH IMBALANCED DATA CHAPTER 2. BACKGROUND

Sampling Methods

Reporting the results of a classifier model in a fair way is important, but during the training phase
we can also account for the imbalance in our data.
Instead of using our imbalanced data set, we could sample the data and pretend that it is bal-
anced. For big datasets, the majority class could be undersampled. For small datasets, we can
oversample the minority class. This means that during training, the algorithm randomly samples
the smaller class to be the same size as the majority class. Both classes are now equally important,
but this method can lead to overfitting (He and Garcia, 2009), because it reuses datapoints during
training.

Adding Class weights

Another way to account for class imbalance during the training phase is adding class weights. This
means that during training, a heavier penalty is given for misclassifying the smaller group. For an
SVM specifically, this means the C can be translated into two different costs, C1 and C2:

Minimize
1

2
wTw + C1 ·

N∑
yn=−1

ξn + C2 ·
N∑

yn=+1

ξn

There is no standard calculation of class weights. When the positive class is smaller, naturally,
C2 > C1 should be true for optimal results. If the two classes are equally important, these weights
can be chosen inversely proportional to the class distribution.
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3 Methods

3.1 Sample Description

The sample consists of 212 Dutch children in total, for whom both familial risk status (FR) and
dyslexia status is known. Their vocabulary was assessed at one or more stages, at 17, 23, 29 or 35
months of age. There were 147 children with data at all possible time steps.

Since more children from the at-risk group were followed up, there exists a class imbalance between
FR and typically developing (TD) children. Moreover, only a small subset of the sample developed
dyslexia, so there is an even higher imbalance between dyslexic and nondyslexic subjects. The
balance of the data can be seen in Table 3.1. Notice that dyslexia is a subset of FR, no TD children
developed the disorder.

At-Risk TD
No Dyslexia 92 69
Dyslexia 51 0

Table 3.1: Balance of all data

At-Risk TD
No Dyslexia 76 63
Dyslexia 40 0

(a) 17 months

At-Risk TD
No Dyslexia 81 63
Dyslexia 44 0

(b) 23 months

At-Risk TD
No Dyslexia 84 65
Dyslexia 48 0

(c) 29 months

At-Risk TD
No Dyslexia 87 59
Dyslexia 46 0

(d) 35 months

Table 3.2: Balance of data per age group

The children had their vocabularies assessed for words in 22 semantic word categories provided by
the N-CDI (Zink and Dejaegere, 2002), developed for children between 8 and 30 months. Categories
include “verbs”, “connecting words”, “places outside the house” and “animal names”. A full list of
categories can be found in the Results section in Figure 4.7. For each word in each category, parents
reported exactly one of three options: “does not understand”, “understands but does not produce”
or “understands and produces”. The third category will be referred to as productive vocabulary.
The receptive vocabulary is the sum of the second and third category, yielding the total amount of
words understood by the child. The average vocabulary trajectories are shown in Figure 3.1. For a
detailed description and statistical analysis of this data, see van Viersen et al. (2017).

Additionally, data from (Chen et al., 2017) was used for some validation. This includes subjects
from every age group for which only FR status is known, and two extra age groups of 18 and 19 to
20 months1. For the other ages, there is some overlap with the subjects from the main sample, but
the data includes more TD children and was balanced for the study in question.

1The subsets of children of 19 and 20 months were small: classification models were trained for these two ages
combined.
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3.2. PREDICTING DYSLEXIA CHAPTER 3. METHODS

Age 17 18 19-20 23 29 35
TD 100 57 60 102 95 84
At-Risk 99 57 60 103 94 82

Table 3.3: Balance of data for subjects used in (Chen et al., 2017), including the additional age
groups at 18 to 20 months. Their final dyslexia status is unknown.
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Figure 3.1: Mean and standard error of (A) total receptive vocabulary and (B) productive
vocabulary at the four different timesteps. Dyslexics are constantly behind at the group level.

3.2 Predicting Dyslexia

For every age group, a soft-margin linear SVM was trained and evaluated using the data of only
that age group. The classifiers separated either FR from TD, or dyslexics from nondyslexics2. The
classifiers were trained on either receptive vocabulary (REC) or the productive vocabulary (PROD).
This means 22 features per model. To increase the computational performance of the SVM, the
data was scaled between 0 and 1 separately for every feature. This was done by first subtracting
min(featureValue) and then dividing by max(featureValue)−min(featureValue).

For evaluation, nested cross validation was used with K = 5 and K ′ = 5. The amount of in-
ner repeats was 10. In the inner folds, C-values ranging from 0.001 to 10 were tuned (C ∈
{0.001, 0.05, 0.1, 0.25, 0.5, 1, 2, 5, 10}). The metric used for tuning was the area under the ROC.
K = 5 was chosen over a more traditional K = 10 because the dataset is imbalanced and small:
when K = 10, every outer fold consists of around 18 subjects, of which four would be expected to
have dyslexia. This can result in a very high variance of the sensitivity metric and overly optimistic
AUC values3.

To account for class imbalance, two different techniques explained in the previous chapter were
used. Half of the SVM’s were trained with class weights chosen inversely proportional to the data
distribution, with the positive weight (either FR or Dyslexia) equal to 1 and the control weight equal
to

#Positive-subjects

#Control-subjects

2FR-predictors were built in order to compare performance with the models built in (Chen et al., 2017).
3See also Figure 5.1 in the discussion section.
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3.2. PREDICTING DYSLEXIA CHAPTER 3. METHODS

where “positive” is either FR or Dyslexia. The other half of the SVMs used oversampling for the
tuning sets in every inner fold. Furthermore, the main metric to be reported is balanced accuracy
instead of accuracy.
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Figure 3.2: Distribution of all data
All datapoints plotted in “vocabulary space”: receptive vocabulary on the x-axis, and productive

vocabulary on the y-axis. Color signifies age, shape signifies dyslexia status. Notice that the
diagonal cut-off means children do not produce any more words than they understand. It is

crowded at the 35 month maximum, since the N-CDI is standardized for children up to 30 months,
and many 35-month olds know almost all possible words.
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3.3. PREDICTING AGE CHAPTER 3. METHODS

3.3 Predicting Age

In order to predict age from vocabulary, ν-support vector regression with a linear kernel was used
for different values of C (C ∈ {0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 5}). Since the training data consists of
at most 69 subjects, a fixed ν of 0.5 was chosen, which is the default in the e1071 package (Meyer
et al., 2018). The C-parameter was tuned using LOOCV per subject. For every control subject,
an SVR model was trained on all data of the other 68 control subjects and validated on the last
subject. This means at most four datapoints for validation per subject. The goodness of fit (R2)
for this first model was determined using only left-out datapoints. Then, the C with the lowest
RMSE was picked and used to train a final model on all control subjects. After that, the model was
evaluated on the FR-children, and on the extra data from the 18 to 20 month old group4. Then, it
was applied on the dyslexic subjects.
The vocabulary age models were trained on either REC or PROD features, and each feature was
scaled between -0.5 and 0.5, first dividing by the maximum value of a feature, then subtracting
0.5.

Two models were trained with additional nonlinear features, where there were 44 features in total:
for every feature x, x3 was included as a separate feature. This was to account for the nonlinearity
the vocabulary trajectory seems to have at this age (van Viersen et al., 2017). This nonlinearity
may also be seen in Figure 3.1.

Additionally, all models were trained on just the real data, or the real data plus some generated
data. This was in order to fight the effect of regression to the mean. Since the N-CDI measures
vocabulary starting at 8 months, the age models, which have seen data starting at 17 months, have
no knowledge of what happens before this age: children do not know any words yet. Two datasets
of 60 control subjects were added on both sides, at ages 8 and 44 months. Data was generated
separately for every vocabulary category, according to a normal distribution with µ = 0 words and
σ = 0.2 words5. The other dataset was added in the same manner at 35+9=44 months, with µ
equal to the maximum amount of words in a category and σ = 0.2. By adding this data, the full
vocabulary spurt might be seen more clearly. The average trajectory with generated data included
can be seen in Figure 3.3. With generated data, the sigmoidal shape of the curve is accentuated.

Measuring vocabulary age difference

Dyslexic children are expected to have a lower predicted vocabulary age than their nondyslexic peers.
To measure this effect size, FR-ND children were compared to FR-Dyslexic children. Including
control subjects would mean including the training data, and a bigger effect size could also be
explained by a worse generalization of the model and not the actual group difference. Effect sizes
between FR-ND and FR-D were calculated using an unequal variances t-test (Welch’s t and its
corresponding p-value were reported). Additionally, the Hedges’ g and mean difference in months
was reported.

The regression models use subjects of all ages during training, and therefore contain some information
about vocabulary trajectory. Seeing dyslexic children showed a low initial growth and more change
in growth over time (van Viersen et al., 2017), a model that has knowledge of multiple ages might
give better results.

To look at the predictive power of the vocabulary age model, an ROC curve was built for every age
group with possible thresholds starting at the minimum predicted vocabulary age to the maximum
predicted vocabulary age.

4Note that dyslexia status of these children is not known. With validation as a goal, these children were assumed
to be nondyslexic.

5When a negative score was generated for a category, the absolute value of this was taken instead. For the maximum
word groups, the opposite was done for the positive scores.
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Figure 3.3: Mean and standard error of (A) total receptive vocabulary size and (B) productive
vocabulary size, including the two generated age groups at 8 and 44 months. The youngest group

is expected to know zero words, the eldest group is expected to know all possible words in the
N-CDI. The curve of the vocabulary trajectory becomes less linear.

Finally, a classification model using the four predicted vocabulary ages as features was built on
the 147 children with full available data and cross-validated as described in Section 3.2.

Implementation

All of the models were created and evaluated in the R programming language. For (nested) cross
validation, the R package caret (Kuhn et al., 2018) was used. For both SVM and SVR, e1071 (Meyer
et al., 2018) was used.
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4 Results

4.1 Predicting Family Risk
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Figure 4.1: Cross validated performance of FR-trained models
Four different performance measures of all different crossvalidated FR-predictive models trained
with class weights, on either receptive (A) or productive (B) vocabulary. Sensitivity, specificity,
balanced accuracy and accuracy are shown. The standard deviation (between outer folds) for

balanced accuracy is also included. The horizontal line shows 50%, the minimum performance a
classifier can achieve.

Linear SVMs were trained to predict FR status. All models performed poorly, with balanced accu-
racies ranging from 42% to a maximum of 55% in the 18 month old group. Their AUC measures
ranged from a little above 0.5 (baseline classifier) to 0.64.

When trained on the balanced additional data described in Table 3.3, results did not improve.
Performance tables of the models trained on the additional data and all full results can be found in
Appendix A, but a summary can be seen in Figure 4.1.

The best performing models were the REC and PROD models at 18 months, yielding 56% and 54%
balanced accuracies respectively. For the models trained on the original data, balanced accuracies
were always 53% or less. The 23 month old PROD model with class weights was the only one
with a 70%+ sensitivity, and a 57% accuracy, but its specificity was low (45%). The best model
according to the AUC measure was PROD at 19 months at 0.64. Still, its balanced accuracy was
only 46%. Although many classifiers had medium AUC scores, they apparently failed to eventually
pick suitable thresholds. The AUC measures per age group can be seen in Figure 4.2.

4.2 Predicting Dyslexia

SVMs were trained to predict dyslexia status. Both REC and PROD models performed poorly, with
balanced accuracies ranging from 42% to 58%.

The most stable cross validated model was the oversampled PROD model at 23 months, with a
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balanced accuracy of 0.58, and mean specificity/sensitivity of 49% and 67%. The AUC for this
model was 0.64. This is the maximum balanced accuracy for all models, and the maximum AUC
for the oversampled models. The PROD model for the same age group with weights had a 50%
balanced accuracy (both sensitivity, specificity and accuracy around 50%) but a relatively high
AUC of 0.66.

The AUC scores for the dyslexia models were comparable to those of the FR-predictors, ranging
from 0.56 to 0.66. The AUC scores for different ages can be seen in Figure 4.3. Full results can be
found in the Appendix in Table A.6.
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Figure 4.2: AUC measures for FR-predictors
AUC performance measure for FR-predicting models with class weights, for every age group.

19



4.2. PREDICTING DYSLEXIA CHAPTER 4. RESULTS

0.50

0.55

0.60

0.65

0.70

17 23 29 35

Age (months)

A
U

C

OversamplingA

0.50

0.55

0.60

0.65

0.70

17 23 29 35

Age (months)

A
U

C

Class WeightsB

Feature set Receptive Productive

Figure 4.3: AUC measures for all dyslexia predictors
AUC measures for all crossvalidated models trained either with (A) oversampling or (B) class

weights to correct for imbalance.
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Figure 4.4: Cross validated performance of all dyslexia-trained models
REC or PROD signifies the feature set trained on, weights or sampling signifies which data
balancing technique was used. Shown in the graphs are four different performance metrics:

sensitivity, specificity, balanced accuracy and accuracy. The standard deviation (between outer
folds), for balanced accuracy, our main performance metric, is also included. The horizontal line

shows 50%, the minimum performance a classifier can achieve.
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4.3 Predicting Age

Goodness of fit

Real Data
Receptive linear feature models provide a good fit on the train data (crossvalidated R2 = 0.645).
The final receptive model has an MAE of 2.387 on the control data, and generalize well when tested
on the FR-ND group (MAE = 2.754) and on the FR-D group (MAE = 2.977). The PROD linear
model performed slightly better, with an R2 of 0.686. All mean absolute errors ranged from 2.3 to 3
months, which is a 17% error given the total age span1. The linear SVR models also generalize well
when tested on the unseen data of 18 and 19 months, with similar MAE and RMSE scores. The
PROD model did generalize slightly better. Results for all linear REC and PROD models can be
seen in Table 4.1.

Real Data Generated Data
Group Mean error RMSE MAE Mean error RMSE MAE
Control -0.252 3.067 2.387 -2.904 4.410 3.506
FR-ND -0.325 3.517 2.754 -3.099 4.994 3.892
FR-D -1.244 3.911 2.977 -4.202 5.957 4.934
TD-Val 1.386 2.995 2.246 -3.948 5.293 4.615
FR-Val 0.926 2.631 1.914 -4.271 5.262 4.598

(a) Goodness of fit for REC Models

Real Data Generated Data
Group Mean error RMSE MAE Mean error RMSE MAE
Control -0.091 3.014 2.415 -0.144 3.982 3.255
FR-ND -0.062 3.070 2.520 -0.082 3.917 3.248
FR-D -1.237 3.614 2.819 -1.590 4.414 3.530
TD-Val 1.612 2.544 1.854 0.573 4.121 3.340
FR-Val 1.131 1.935 1.377 0.075 3.534 2.682

(b) Goodness of fit for PROD Models

Table 4.1: Goodness of fit for REC and PROD linear models
Age regression models were trained on only real data (left) or included generated data (right). The
model was trained on the control group (first row in every table) and applied to all other groups.

The last two rows, TD-Val and FR-Val are from the additional dataset for 18 to 20 months, where
dyslexia status is unknown.

Adding nonlinear features to account for the nonlinear trajectory of vocabulary did not improve
performance. For the full performance results of the nonlinear models, see Appendix B.

Generated Data
Adding generated data for 8 and 44 months did not improve performance either, but instead de-
creased it. The fit on real train data was similar (R2=0.643 for REC-model, and R2 =0.675 for
PROD-model). As seen in Table 4.2, the MAE increased for almost all models, but especially for
the linear models and the receptive models. Although the mean error decreased,tThere was more
variance in the predictions, resulting in a higher MAE. Adding fewer data points did decrease vari-
ance, but those models did not outperform the models trained on real data. For full results see
Appendix B1.

Effect Sizes

There was no significant difference between the Control and the FR-ND when it comes to vocabulary
age. All models fit FR-ND about as well as they fit the training data. However, there were significant

1MAE / span = 3/(35-17)=0.167.
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Control FR-ND FR-DD TD-Val FR-Val
REC Linear -1.119 -1.139 -1.957 -2.369 -2.684
PROD Linear -0.840 -0.729 -0.711 -1.486 -1.306
REC Nonlinear -0.761 -0.900 -1.620 -1.872 -2.101
PROD Nonlinear -0.708 -0.609 -0.629 -1.505 -1.339

Table 4.2: Decline of the model performance when adding generated data. Shown in this table is
MAEreal −MAEgenerated per feature combination and group. Nonlinear models suffer less from the

added data, but still perform worse than models trained on only real data.

differences between the vocabulary ages of FR-ND and FR-D subjects, especially in the PROD
trained models. Hedges’ g ranged from low (0.2 for 35 month REC) to medium (0.57 for 29 months
PROD) for the linear models with real data. Both the nonlinear models and the models with
generated data had similar effect sizes between these two groups2. In Figure 4.6, the vocabulary age
gap for the three groups is visualized for the best performing model. All the number differences can
be seen in Table 4.3. A detailed density plot for the PROD models with linear features is available
in the appendix in Figure B.2.

The biggest effect size was found in the 29 month old PROD predictions with real data, where
dyslexics were estimated 1.9 months younger than their nondyslexic peers3 (p = 0.004). The 23
month olds of this model were around 1.4 months behind (p = 0.017). The best REC effect size,
again of 29 month old children, had a similar difference in months, estimating dyslexics 1.5 years
younger (p = 0.022).

Real Data Generated Data
Age Hedges’ g Gap Welch’s t (p) Hedges’ g Gap Welch’s t (p)

17 0.275 -0.555 1.475 (p = 0.144) 0.111 -0.302 0.589 (p = 0.558)
23 0.298 -1.027 1.531 (p = 0.130) 0.323 -1.252 1.643 (p = 0.104)
29 0.428 -1.504 2.334 (p = 0.022) 0.454 -1.945 2.477 (p = 0.015)
35 0.199 -0.557 1.042 (p = 0.301) 0.202 -0.814 1.096 (p = 0.276)

(a) Receptive

Real Data Generated Data
Age Hedges’ g Gap Welch Hedges’ g Gap Welch’s t (p)

17 0.319 -0.226 2.006 (p = 0.047) 0.468 -1.341 2.598 (p = 0.011)
23 0.433 -1.438 2.427 (p = 0.017) 0.373 -1.611 1.997 (p = 0.049)
29 0.565 -1.881 2.996 (p = 0.004) 0.498 -2.092 2.724 (p = 0.008)
35 0.404 -1.039 2.031 (p = 0.046) 0.392 -1.670 2.016 (p = 0.047)

(b) Productive

Table 4.3: Effect sizes between FR-ND and FR-D for all linear models, trained on either only real
data (left) or generated data (right), on (a) receptive features or (b) productive features. The

“Gap” column refers to the mean difference in months: FR-D− FR-ND.

Although the effect sizes were overall smaller for the youngest and oldest age groups, adding gener-
ated data to the productive models sometimes increased the differences between FR-ND and FR-D.
This change can also be seen comparing Figure 4.6A and B, on page 24. For the linear PROD mod-
els, the effect size increased from an age difference of 0.2 months (p = 0.04) to 1.3 months (p = 0.01)
for dyslexic children at 18 months of age. None of the REC models had this outcome.

2The results for models with nonlinear features can again be seen in the appendices, Table B.3.
3Note that this difference is relative to other children and not to actual age. As seen in Figure 4.6A, all 35 month

olds are predicted to be younger than 35 months, but this is the fault of the model (regression to the mean) rather
than the fault of the children’s vocabulary size.
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Predictive power of vocabulary age

The calculated AUC scores for different vocabulary age thresholds were all between 0.57 and 0.64
for the productive models, and between 0.45 and 0.65 for the receptive models. The AUC scores
were lower for the youngest and oldest group, even after adding generated data. These AUC scores
are visualized in Figure 4.5, and the numbers can be found in Table B.13 in the appendices.

Finally, SVM models were trained with the four vocabulary ages as features and crossvalidated for
the original models (linear features, real data). These classification results are not better than the
original, one-age classification models in section 4.2. The REC model had a balanced accuracy
of 55% and an AUC of 0.62, and the PROD model a balanced accuracy of 47% and an AUC of
0.63.
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Figure 4.5: How predictive is vocabulary age of dyslexia?
AUC values for different age thresholds between the minimum and maximum predicted age, given

a certain age group. All different models return similar AUC values for the same age groups.

Feature weights

In order to predict vocabulary age, a weight was assigned to every feature in the 22 word categories
by the SVR algorithm. The feature weights for the best performing model (the linear PROD model
trained on real data) are visualized in Figure 4.7 on page 25. The categories “toys”, “verbs” and
“helping verbs” have the largest positive weights, contributing positively to the vocabulary age
outcome. Some word categories, such as “people words” and “animal names” have negative weights,
although their absolute value is not as large as the biggest positive weights. Weights for other models
varied. Two other weight vectors can be seen in Figure B.3.
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Figure 4.6: Visualized performance of two PROD-trained models, trained (A) wihout or (B) with
generated data. The hinges cover the 25th to the 75th percentile of the predictions, the lines show

another 1.5 interquartile range on top of that. Outliers are presented as dots. The diagonal line
shows x = y, predictions around this line are close to the actual age. For the TD and FR groups at
18 to 20 months, dyslexia status is unknown, but the models perform similarly on this data. The

model with generated data (B) has less regression to the mean, but has a wider range of
predictions, especially for the younger groups. There is more variance and the fit is therefore

worse. However, the dyslexic group at 17 months is more clearly behind the nondyslexic groups.
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Figure 4.7: SVR feature weights for the best performing age model (PROD - Lin - Real
data)

Shown in gray to the right of every feature weight is the size (scaled by 10) of this word category.
The “verbs” category, for instance, contains 120 words. A large positive weight means the category

contributes a lot to vocabulary age. On the other side, knowing many words in a negatively
weighted category means the age model predicts you to be younger.
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5 Discussion

5.1 Classification: Predicting Dyslexia

Linear support vector classifiers were trained to predict (familial risk of) dyslexia individually. Ini-
tially, familial risk of dyslexia was predicted in order to reproduce the original study. At first, only
the complete data (subjects with known dyslexia status) was used to train the models. Then, addi-
tional data from (Chen et al., 2017) was used for more balanced results. Neither of the approaches
yielded good results. Balanced accuracies ranged from 42% to 55%. Although the AUC measure was
higher for the 19 to 29 month olds (the groups in the middle of the vocabulary spurt), this was not
necessarily the case for the balanced accuracy or accuracy metric. When sensitivity and specificity
were not both approximately 50%, they were very skewed (30%-70%). Models with a high sensitivity
have a higher accuracy, because the majority group is at FR. These results are not very reliable.
Even though the plotted AUC measures in Figure 4.2 seem to mimic the low-high-low performance
(AUC and balanced accuracy being higher in the middle age groups) of the models reported in the
original study, results are worse. Especially the sensitivity/specificity trade-off is worse. Whereas
the best model in the original paper had a sensitivity of 65% and a specificity of 72%, the new
cross-validated models struggled to get both metrics above 50% at the same time.

The main methodological difference with (Chen et al., 2017) is model selection. The original models
were assessed with LOOCV, and C was not tuned in a nested loop. This time, the best C for the
folds of every model varied wildly, which may have led to higher variance in the final assessment.
The small dataset did not really allow for much model selection, for instance, K = 10 was not desired
because of the small sample size. Using 5-fold CV over LOOCV has probably increased bias, giving
all models less training data and a worse fit. In (Chen et al., 2017), predictive perormance peaked
at 19 months, which may have been a criticical point in vocabulary development. Unfortunately,
data for this age group was not available.

Dyslexia

As for the prediction of dyslexia, results were comparable. The dyslexia-trained models usually
suffered from a low sensitivity in comparison to the specificity, meaning the detection rate of dyslexia
was low. Whereas the balanced accuracy was always low (42%-58%), AUC scores were relatively
better (0.56-0.66).

So far, the relatively high AUC measures have given the models some credit: there is some predictive
power in the features, but the models just cannot find the best thresholds1.

However, for highly imbalanced data, the AUC value might be too optimistic (He and Garcia, 2009).
Shown in Figure 5.1 are some typical ROC curves of a model validated on one outer fold. Because
there are so little positive subjects (as described in chapter 3), the ROC curve is bumpy, resulting
in a large but unrealistic AUC. Increasing the number of positive subjects with K = 5 gave a more
realistic number for how well the final model performed.

A feature that was not used was the FR-status of children. Including FR as a feature improved all
measures (specificity, sensitivity, AUC) for the prediction of dyslexia in (Thompson et al., 2015).
Since this dyslexic group was a subset of the FR group, using FR as a feature would be unfair. More-
over, it might be preferable to predict dyslexia just on the basis of vocabulary and not FR.

1Hand-picking better thresholds increased balanced accuracy to up to 68% for the 23 month old PROD model (see
Table A.8 in the appendices). Still, this is the best possible performance we can force out of the model, and it is still
a medium balanced accuracy.
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Figure 5.1: ROC curves for imbalanced data.
Two ROC curves for one outer fold with K = 10 and K = 5. and final model after crossvalidation.

Every “step” in sensitivity corresponds to about one more dyslexic subject being classified
correctly. Curves plotted from the 29 month productive model with class weights. Shown on curve

is best suggested threshold.

Hyperparameters had to be tuned, which is the reason nested crossvalidation was used. An inner
fold during the training phase would be of size 190/25 ≈ 8. Based on these eight test subjects, some
C was chosen. Even with good resampling strategies and fair assessment metrics, there may have
been too little data for reliable, crossvalidated results in the first place.

Lastly, a linear classifier may not be the right solution for this problem. All the trained classification
models are insensitive to any nonlinear changes2. A linear SVM can in some cases be more successful
than one with a nonlinear kernel3. Linear models are also less likely to overfit, and their feature
weights are relatively easy to interpret. For these reasons, linear models were used.

5.2 Predicting Age

Linear support vector regression was used to predict vocabulary age. The models fit well on the
train data of control subjects, and performed similarly on the FR-ND group, but slightly worse on
the FR-D group. Dyslexics were, on the average, predicted up to two months younger than non-
dyslexics. The largest effect size was found in the 29 month old group, with g = 0.57 and t = 2.99.
Nonlinear features were added to give the models space to fit a more sigmoidal curve, but perfor-
mance did not increase.

Generated data was added to give the models more “insight” into the vocabularies of children
outside of the recorded age frame. The first models trained on real data showed regression toward
the mean, i.e., the youngest age group was constantly predicted to be slightly older, and the eldest
age group was constantly predicted to be slightly younger. Adding two outer age groups could help
in counteracting this phenomenon. This countermeasure helped, but overall performance decreased.
Models did account for the outermost real age groups (17 and 35 months), but had to give up some
performance in the relevant middle groups. Variance increased for all age groups. This method of
adding data may not have been nuanced enough4. The nonlinear models seemed to deal slightly
better with the added data than the linear ones, but not consistently so. Adding fewer data points

2It can also be insensitive to possible heterogeneity. In the Appendix in Figure B.2, a small group of dyslexic
subjects is ahead of the other dyslexic subjects. Nondyslexic subjects seem to have just one “hump”.

3For instance, in (Kassraian-Fard et al., 2016).
4With different age groups on either side (5 and 47 months, or 11 and 41 months), performance did not change.
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5.3. FURTHER RESEARCH CHAPTER 5. DISCUSSION

(20 instead of 60 generated datapoints) yielded better results for the PROD generated models, but
not for the REC generated models. Again, these results were not better than the original PROD
real models, but very similar. Differences between groups (FR-ND and FR-D) were slightly better,
but AUC scores were not.

An interesting side effect of adding generated data was that group differences increased for some age
groups. Whereas there was almost no difference between the predictions for FR-ND and FR-D at
17 months (FR-D predicted to be 0.2 months younger, t = 2), the same model trained on generated
data gave a difference of 1.3 months (t = 2.6). This effect can also be seen in Figure B.2.

These models were trained on control subjects of all different age groups and predicts age fairly
well. They have knowledge of all ages opposed to the classification models, which were trained on
one age group only. Still, there was too much overlap between the two groups to set a vocabulary
age-threshold separating dyslexics from non-dyslexics: AUC scores ranged from 0.55 to 0.65.

Finally, the weights of the best performing model were mostly positive. This makes intuitive sense:
a larger vocabulary should not contribute to a younger vocabulary age. The biggest negative weight
was the “people” category, which includes words such as “mom” and “dad”. These simple words
might be the reason some feature weights are negative. On the other side, a large positive feature
weight might indicate a category containing more complex words not understood by younger children.
The largest feature weight was that of the “toys” category. “Verbs” was the second largest feature
weight. This is also the biggest category with 120 different words: it is less prone to noise than
smaller categories. This reliability could explain large feature weights for larger categories in the
weight vector in Figure 4.7.

It should however be noted that feature weights differed for similarly performing models: these
specific weights should not be overinterpreted. For instance, both the REC model with linear
features trained on real data and the PROD model with linear features trained on generated data
assigned smaller weights to the “verbs” category. The “people” category had a large positive weight
in the latter model. These weights can be found in the appendices in Figure B.3.

5.3 Further research

This study differed from previous research in its use of methods from the field of machine learning. Of
course, only some ML techniques could be used. Vocabulary had no predictive power when using lin-
ear SVMs, but different (nonlinear) modelling techniques could result in better performance.

In addition to using nonlinear methods, ensemble methods could be employed to combine multiple
weak learners (with low to medium predictive power) into a stronger learner. Ensemble methods,
such a boosting, can decrease bias and variance by letting the weak learners “vote” for each predic-
tion.

Another approach might be one-classification. This may be used for highly imbalanced data. The
“classifiers” are trained on mainly, or only one class. For this problem, say, non-dyslexics. These
models should learn the concept of a typical vocabulary size. Rather than differentiating between
positive and negative class instances, they recognize whether a given instance is in line with the
learned concept (He and Garcia, 2009). A dyslexic subject would be considered an anomaly, and not
belong to this group. For some problems, this approach of outlier detection can be more successful
than conventional learning approaches.

Currently, most of the research efforts in imbalanced learning focus on specific algorithms and/or
case studies5; only a limited amount of theoretical understanding on the principles and consequences
of this problem have been addressed (He and Garcia, 2009). Fields that suffer a data imbalance, such
as psychiatry and psychology, might benefit from more theoretical research on this subject.

5Admittedly, this is one of them.
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As for prediction of age, the age prediction models that were not explicitly trained to classify dyslexia
could do so implicitly by predicting a lower vocabulary age for dyslxic subjects. This vocabulary age
gap could be explored more in-depth. In the same line, using vocabulary data from multiple ages
could yield better results, since early vocabulary trajectory differs in dyslexic children (van Viersen
et al., 2017).

It should be kept in mind that the link between early vocabulary and later dyslexia is weak. Good
predictors might not be achievable, even when using complex methods.

6 Conclusion

This study examined whether dyslexia could be predicted on an individual level using infant vo-
cabulary at 17 to 35 months. Whereas earlier work was largely correlational, the aim was to use
techniques from the field of machine learning, such as cross validation, to build and assess models.
In line with previous results (Thompson et al., 2015; Duff et al., 2015b,a), early vocabulary was
not a good predictor of dyslexia. All models, trained either on receptive of productive vocabulary,
performed poorly. The small sample size and class imbalance made it difficult to tune the models.
Vocabulary was a good predictor of age. Even though the age models were not trained to predict
dyslexia, dyslexics were significantly behind nondyslexics when it came to vocabulary age. This gap
was not large enough to individually predict dyslexia, but future research could examine this gap
further. Taking vocabulary trajectory into account, as the age prediction models did, rather than
training on one age group, might provide more valuable results. The imbalance of data should be
kept in mind when using machine learning in the field of psychology and psychiatry, both when
choosing methods and reporting model performance.
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A Predicting Dyslexia

Reproduced Results

Predicting FR with nested crossvalidation as described in Section 3.2. Used were either class weights
(Table A.1) or oversampling (Table A.2). Since the additional data was already balanced, no bal-
ancing methods were needed for the results in Table A.3. This also goes for the 18 and 19 month
old group.

Age Feature Set Balanced Accuracy AUC Sensitivity Specificity Accuracy
17 REC 0.481 0.511 0.418 0.543 0.463
18 REC 0.568 0.591 0.419 0.716 0.560
19 REC 0.489 0.617 0.419 0.559 0.467
23 REC 0.523 0.575 0.390 0.656 0.493
29 REC 0.491 0.592 0.512 0.470 0.488
35 REC 0.530 0.549 0.401 0.660 0.479
17 PROD 0.457 0.599 0.421 0.493 0.430
18 PROD 0.542 0.615 0.405 0.679 0.561
19 PROD 0.463 0.637 0.387 0.540 0.475
23 PROD 0.507 0.625 0.769 0.245 0.579
29 PROD 0.469 0.569 0.426 0.513 0.428
35 PROD 0.521 0.565 0.470 0.572 0.489

Table A.1: Predicting FR: reproduced results, models trained with class weights

Age Feature Set Balanced Accuracy AUC Sensitivity Specificity Accuracy
17 REC 0.423 0.593 0.611 0.235 0.493
23 REC 0.498 0.563 0.540 0.455 0.511
29 REC 0.518 0.604 0.582 0.453 0.543
35 REC 0.453 0.577 0.606 0.300 0.515
17 PROD 0.531 0.582 0.610 0.452 0.559
23 PROD 0.480 0.528 0.524 0.437 0.500
29 PROD 0.465 0.605 0.451 0.480 0.457
35 PROD 0.502 0.595 0.486 0.519 0.484

Table A.2: Predicting FR: reproduced results, models trained with oversampling

Age Feature Set Balanced Accuracy AUC Sensitivity Specificity Accuracy
17 REC 0.495 0.543 0.390 0.600 0.482
23 REC 0.476 0.554 0.688 0.263 0.488
29 REC 0.491 0.520 0.190 0.792 0.497
35 REC 0.610 0.570 0.703 0.517 0.613
17 PROD 0.489 0.548 0.243 0.735 0.503
23 PROD 0.448 0.615 0.439 0.457 0.468
29 PROD 0.462 0.632 0.383 0.542 0.461
35 PROD 0.484 0.561 0.643 0.326 0.500

Table A.3: Predicting FR: reproduced results for balanced additional data
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APPENDIX A. PREDICTING DYSLEXIA

Dyslexia Prediction Results

First, the built FR-models were used to predict dyslexia. The results can be seen in Table A.4.

Age Feature Set AUC
17 REC 0.601
23 REC 0.536
29 REC 0.581
35 REC 0.557
17 PROD 0.576
23 PROD 0.605
29 PROD 0.505
35 PROD 0.581

Table A.4: Predicting Dyslexia with FR-trained models
Cross-validated AUC score for testing final outer fold models of FR-trained models on DYS.

BalAcc is not included since it is always 0.5 (sens=0, spec=1). AUC scores are slightly lower than
true DYS-trained models, but not extremely low. The features that are predictive of FR are also

somewhat predictive of dyslexia.

Then, dyslexia models were trained as describe in Section 3.2.

Age Feature Set Balanced Accuracy AUC Sensitivity Specificity Accuracy
17 REC 0.514 0.564 0.633 0.395 0.398
23 REC 0.483 0.575 0.270 0.696 0.600
29 REC 0.479 0.587 0.411 0.547 0.497
35 REC 0.479 0.596 0.416 0.543 0.506
17 PROD 0.557 0.643 0.603 0.510 0.527
23 PROD 0.491 0.655 0.529 0.453 0.463
29 PROD 0.424 0.630 0.370 0.478 0.457
35 PROD 0.459 0.597 0.326 0.592 0.526

Table A.5: Predicting dyslexia: results for models trained with oversampling

Age Feature Set Balanced Accuracy AUC Sensitivity Specificity Accuracy
17 REC 0.514 0.564 0.633 0.395 0.398
23 REC 0.483 0.575 0.270 0.696 0.600
29 REC 0.479 0.587 0.411 0.547 0.497
35 REC 0.479 0.596 0.416 0.543 0.506
17 PROD 0.557 0.643 0.603 0.510 0.527
23 PROD 0.491 0.655 0.529 0.453 0.463
29 PROD 0.424 0.630 0.370 0.478 0.457
35 PROD 0.459 0.597 0.326 0.592 0.526

Table A.6: Predicting dyslexia: results for models trained with class weights
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APPENDIX A. PREDICTING DYSLEXIA

Handpicked Thresholds

Instead of using the thresholds calculated by the SVM trained on four outer folds, the best threshold
was picked as seen in the ROC curve. Model performance increased slightly, but a (balanced)
accuracy of 64% is still low. Picking tresholds during validation can also result in overfitting.

Age Feature Set Balanced Accuracy Sensitivity Specificity Accuracy AUC
17 REC 0.584 0.597 0.571 0.587 0.511
23 REC 0.629 0.627 0.632 0.618 0.575
29 REC 0.626 0.556 0.696 0.610 0.592
35 REC 0.598 0.570 0.625 0.589 0.549
17 PROD 0.655 0.667 0.644 0.664 0.599
23 PROD 0.652 0.731 0.573 0.687 0.625
29 PROD 0.590 0.560 0.620 0.574 0.569
35 PROD 0.624 0.587 0.661 0.615 0.565

Table A.7: Handpicked thresholds for outer folds (class weights) - FR

Age Feature Set Balanced Accuracy Sensitivity Specificity Accuracy AUC
17 REC 0.635 0.620 0.649 0.632 0.564
23 REC 0.615 0.592 0.639 0.627 0.575
29 REC 0.635 0.564 0.706 0.669 0.587
35 REC 0.651 0.629 0.673 0.667 0.596
17 PROD 0.671 0.627 0.715 0.693 0.643
23 PROD 0.677 0.694 0.661 0.664 0.655
29 PROD 0.647 0.650 0.644 0.639 0.630
35 PROD 0.667 0.632 0.702 0.687 0.597

Table A.8: Hand-picked thresholds for outer folds (class weights) - Dyslexia
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B Predicting Vocabulary Age

Group results

This includes results for models trained on 44 features, including the nonlinear ones. There is
little to no difference for the group results and the full results between these linear and nonlinear
models.

Real Data Generated Data
group mean error RMSE MAE mean error RMSE MAE
Control -0.252 3.067 2.387 -2.904 4.410 3.506
FR-ND -0.325 3.517 2.754 -3.099 4.994 3.892
FR-DD -1.244 3.911 2.977 -4.202 5.957 4.934
TD-Val 1.386 2.995 2.246 -3.948 5.293 4.615
FR-Val 0.926 2.631 1.914 -4.271 5.262 4.598

(a) REC - Linear features

Real Data Generated Data
group mean error RMSE MAE mean error RMSE MAE
Control -0.194 3.084 2.410 -2.468 4.068 3.171
FR-ND -0.238 3.506 2.761 -2.712 4.676 3.661
FR-DD -1.193 3.860 2.949 -3.783 5.579 4.569
TD-Val 1.026 2.835 2.116 -2.866 4.678 3.989
FR-Val 0.617 2.534 1.906 -3.378 4.656 4.008

(b) REC - Nonlinear features

Table B.1: Performance for all REC trained regression models

Real Data Generated Data
group mean error RMSE MAE mean error RMSE MAE
Control -0.091 3.014 2.415 -0.145 3.982 3.255
FR-ND -0.062 3.070 2.520 0.082 3.917 3.248
FR-DD -1.237 3.614 2.819 -1.590 4.420 3.530
TD-Val 1.612 2.544 1.854 0.573 4.143 3.340
FR-Val 1.131 1.935 1.377 0.075 3.520 2.683

(a) PROD - linear features

Real Data Generated Data
group mean error RMSE MAE mean error RMSE MAE
Control -0.121 2.992 2.383 -0.262 3.773 3.091
FR-ND -0.107 3.090 2.522 -0.100 3.775 3.131
FR-DD -1.273 3.636 2.835 -1.763 4.291 3.464
TD-Val 1.548 2.507 1.828 0.486 4.044 3.333
FR-Val 1.081 1.903 1.361 -0.031 3.462 2.700

(b) PROD - Nonlinear features

Table B.2: Performace for all PROD trained regression models.
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APPENDIX B. PREDICTING VOCABULARY AGE

Real Data Generated Data
Age Hedges’ g Gap Welch Hedges’ g Gap Welch

17 0.315 -0.673 1.679 (p = 0.097) 0.154 -0.415 0.811 (p = 0.420)
23 0.311 -1.072 1.600 (p = 0.114) 0.324 -1.187 1.655 (p = 0.102)
29 0.432 -1.497 2.353 (p = 0.021) 0.455 -1.839 2.480 (p = 0.015)
35 0.206 -0.561 1.083 (p = 0.282) 0.196 -0.762 1.051 (p = 0.296)

(a) REC - Nonlinear features

Real Data Generated Data
Age Hedges’ g Gap Welch Hedges’ g Gap Welch

17 0.289 -0.207 1.826 (p = 0.071) 0.459 -1.294 2.547 (p = 0.012)
23 0.428 -1.429 2.402 (p = 0.018) 0.400 -1.641 2.156 (p = 0.034)
29 0.559 -1.883 2.977 (p = 0.004) 0.547 -2.108 2.991 (p = 0.004)
35 0.387 -1.027 1.954 (p = 0.055) 0.387 -1.630 2.008 (p = 0.048)

(b) PROD - Nonlinear features

Table B.3: Effect sizes for all nonlinear models

Full results per age group

Results for generated data were included: Real-data models could not reach the added ages. No difference in
generated data was added between groups. Errors for generated ages were not included in the group results
section above.

Group Age Mean error RMSE MAE
NA 8 8.249 0.124 8.249
Control 17 1.346 2.252 1.603
FR-ND 17 1.783 2.737 1.992
FR-DD 17 1.228 2.189 1.570
TD-Val 18 1.562 3.236 2.414
FR-Val 18 1.456 2.907 2.053
TD-Val 19 1.266 2.760 2.143
FR-Val 19 0.577 2.436 1.822
TD-Val 20 1.173 2.736 2.032
FR-Val 20 0.278 2.244 1.743
Control 23 0.921 2.881 2.297
FR-ND 23 0.871 3.334 2.654
FR-DD 23 -0.156 3.717 2.887
Control 29 -0.417 3.211 2.650
FR-ND 29 -0.148 3.381 2.808
FR-DD 29 -1.652 3.971 3.243
Control 35 -3.029 3.770 3.029
FR-ND 35 -3.451 4.324 3.459
FR-DD 35 -4.008 5.037 4.008
NA 44 -8.679 8.679 8.679

(a) REC - Linear - Real Data

Mean error RMSE MAE
1.016 1.045 1.016

-1.668 2.826 2.327
-1.655 3.205 2.651
-1.957 3.191 2.626
-3.191 4.923 4.221
-3.626 4.844 4.162
-4.629 5.602 4.980
-4.275 5.041 4.429
-4.704 5.640 4.997
-5.455 6.132 5.558
-2.193 3.477 2.976
-2.286 4.232 3.471
-3.538 5.537 4.879
-2.980 4.932 3.898
-2.836 5.010 3.866
-4.781 6.495 5.707
-4.899 5.846 4.899
-5.372 6.645 5.394
-6.186 7.423 6.186
-6.135 6.140 6.135

(b) REC - Linear - Gen. Data

Table B.4: Full results for REC - Linear features
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Group Age Mean error RMSE MAE
NA 8 7.713 7.714 7.713
Control 17 1.333 2.347 1.651
FR-ND 17 1.771 2.807 2.072
FR-DD 17 1.098 2.235 1.594
TD-Val 18 1.237 3.047 2.268
FR-Val 18 1.150 2.731 1.956
TD-Val 19 0.907 2.666 2.063
FR-Val 19 0.315 2.404 1.917
TD-Val 20 0.749 2.572 1.887
FR-Val 20 -0.080 2.259 1.806
Control 23 1.056 2.964 2.385
FR-ND 23 1.066 3.389 2.699
FR-DD 23 -0.006 3.708 2.887
Control 29 -0.322 3.179 2.619
FR-ND 29 -0.034 3.334 2.776
FR-DD 29 -1.531 3.881 3.161
Control 35 -3.016 3.729 3.016
FR-ND 35 -3.405 4.245 3.405
FR-DD 35 -3.966 4.944 3.966
NA 44 -8.796 8.797 8.796

(a) REC - Nonlinear - Real data

Mean error RMSE MAE
0.715 0.775 0.715

-1.158 2.608 2.065
-1.139 2.935 2.425
-1.554 2.967 2.404
-2.363 4.601 3.897
-2.841 4.444 3.769
-3.417 4.855 4.222
-3.461 4.520 3.853
-3.276 4.649 3.939
-4.288 5.136 4.592
-1.592 2.971 2.519
-1.762 3.822 3.163
-2.949 4.965 4.326
-2.655 4.513 3.581
-2.524 4.640 3.700
-4.362 6.023 5.304
-4.595 5.566 4.595
-5.155 6.366 5.168
-5.917 7.166 5.917
-5.739 5.745 5.739

(b) REC - Nonlinear - Gen. Data

Table B.5: Full results for REC - Nonlinear features

Group Age Mean error RMSE MAE
NA 8 10.725 10.725 10.725
Control 17 1.922 2.063 1.922
FR-ND 17 1.940 2.104 1.940
FR-DD 17 1.714 1.757 1.714
TD-Val 18 1.796 2.346 1.798
FR-Val 18 1.293 1.642 1.326
TD-Val 19 1.173 2.279 1.535
FR-Val 19 0.769 1.323 0.943
TD-Val 20 1.686 3.074 2.255
FR-Val 20 1.173 2.746 1.875
Control 23 0.342 2.990 2.648
FR-ND 23 0.380 3.460 2.857
FR-DD 23 -1.058 3.140 2.622
Control 29 -0.212 3.191 2.473
FR-ND 29 0.250 3.075 2.535
FR-DD 29 -1.631 3.984 3.109
Control 35 -2.569 3.632 2.627
FR-ND 35 -2.525 3.375 2.696
FR-DD 35 -3.564 4.675 3.665
NA 44 -8.597 8.597 8.597

(a) PROD - Linear - Real data

Mean error RMSE MAE
2.992 2.994 2.992

-0.965 3.007 2.490
-1.040 3.206 2.652
-2.381 3.357 2.940
-0.091 4.034 3.211
-0.397 3.120 2.539
0.786 3.770 3.071

-0.974 3.185 2.539
1.597 4.644 3.830
1.924 4.400 3.083
0.285 3.952 3.368
0.328 4.263 3.586

-1.282 4.462 3.580
0.351 4.580 3.694
1.119 4.206 3.443

-0.973 4.402 3.496
-0.274 4.211 3.465
-0.171 3.854 3.267
-1.841 5.150 4.030
-3.015 3.017 3.015

(b) PROD - Linear - Gen. Data

Table B.6: Full results for PROD - Linear features
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Group Age Mean error RMSE MAE
NA 8 10.760 10.760 10.760
Control 17 1.849 1.998 1.849
FR-ND 17 1.878 2.051 1.878
FR-DD 17 1.671 1.715 1.671
TD-Val 18 1.718 2.283 1.732
FR-Val 18 1.243 1.627 1.294
TD-Val 19 1.125 2.264 1.563
FR-Val 19 0.735 1.320 0.963
TD-Val 20 1.632 3.058 2.255
FR-Val 20 1.108 2.678 1.857
Control 23 0.265 2.970 2.618
FR-ND 23 0.291 3.467 2.863
FR-DD 23 -1.138 3.178 2.658
Control 29 -0.231 3.192 2.467
FR-ND 29 0.203 3.127 2.571
FR-DD 29 -1.680 4.014 3.154
Control 35 -2.515 3.609 2.609
FR-ND 35 -2.512 3.420 2.721
FR-DD 35 -3.539 4.704 3.684
NA 44 -8.357 8.357 8.357

(a) PROD - Nonlinear - Real data

Mean error RMSE MAE
2.692 2.695 2.692

-0.940 3.065 2.527
-1.121 3.190 2.652
-2.415 3.355 2.957
-0.230 4.027 3.277
-0.545 3.137 2.538
0.698 3.755 3.166

-0.943 3.124 2.612
1.604 4.327 3.593
1.767 4.245 3.079
0.379 3.746 3.168
0.435 4.088 3.423

-1.207 4.183 3.282
0.147 4.082 3.320
0.816 3.819 3.150

-1.292 4.140 3.304
-0.673 4.117 3.358
-0.589 3.897 3.261
-2.219 5.179 4.247
-2.717 2.720 2.717

(b) PROD - Nonlinear - Gen. Data

Table B.7: Full results for PROD - Nonlinear features
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B.1. ADDING FEWER DATA POINTS APPENDIX B. PREDICTING VOCABULARY AGE

B.1 Adding fewer data points

Adding fewer data points (20 control subjects instead of 60) resulted in a better fit for the PROD models.
In the boxplots in Figure B.1 it can be seen that variance is lower for the younger age groups. This time,
the nonlinear models did not perform better. Performance for these models are comparable to the original
PROD linear models, but they suffer less from regression to the mean.
The REC models performed just as bad as with the large amount of datapoints added. AUC scores for all
of the models did not increase either. Full performance results and effect size results can be found in the
tables on the next page.
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Dyslexia Status TD FR CONTROL FR-Nondyslexic FR-Dyslexic

Figure B.1: Age prediction model performance for varying amounts of data
Visualization of age prediction models trained with linear features (REC or PROD), for varying
amounts of added data. The two leftmost plots are of models trained on 60 datapoints, the two

rightmost plots are of models trained on only 20 datapoints. The data was added on both sides of
the original sample at 8 and 44 months.

The hinges cover the 25th to the 75th percentile of the predictions, the lines show another 1.5
interquartile range on top of that. Outliers are presented as dots. The diagonal line shows x = y,

predictions around this line are close to the actual age.
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Linear Nonlinear
Group Mean error RMSE MAE Mean error RMSE MAE
Control -1.395 3.586 2.704 -1.558 3.553 2.659
FR-ND -1.523 4.090 3.127 -1.687 4.063 3.111
FR-DD -2.654 4.847 3.887 -2.739 4.801 3.804
TD-Val -2.796 4.109 3.571 -2.012 3.778 3.215
FR-Val -3.148 4.206 3.707 -2.399 3.805 3.234

Table B.8: Goodness of fit for all REC-trained models with 20 extra datapoints. Models either
trained with linear features (left) or nonlinear features included (right).

Linear Nonlinear
Group Mean error RMSE MAE Mean error RMSE MAE
Control -0.152 3.352 2.617 -0.257 3.394 2.679
FR-ND -0.095 3.192 2.522 -0.180 3.258 2.608
FR-DD -1.590 3.778 2.844 -1.725 3.864 2.984
TD-Val 0.753 2.717 2.083 0.543 2.891 2.301
FR-Val 0.148 2.078 1.533 -0.097 2.292 1.761

Table B.9: Goodness of fit for all PROD-trained models with 20 extra datapoints. Models either
trained with linear features (left) or nonlinear features included (right).

Linear Nonlinear
Age Hedges’ g Abs Welch Hedges’ g Abs Welch

17 0.262 -0.693 1.389 (p = 0.169) 0.204 -0.523 1.078 (p = 0.284)
23 0.288 -1.124 1.473 (p = 0.145) 0.322 -1.143 1.651 (p = 0.103)
29 0.438 -1.882 2.401 (p = 0.018) 0.441 -1.729 2.408 (p = 0.018)
35 0.208 -0.791 1.114 (p = 0.268) 0.204 -0.750 1.095 (p = 0.277)

Table B.10: Difference in predictions between FR-D and FR-ND children for all REC-trained
models, trained including 20 generated datapoints. Models either trained with linear features (left)

or nonlinear features included (right).

Linear Nonlinear
Age Hedges’ g Gap Welch Hedges’ g Gap Welch

17 0.475 -0.685 2.746 (p = 0.007) 0.475 -0.785 2.732 (p = 0.007)
23 0.391 -1.417 2.135 (p = 0.035) 0.396 -1.478 2.162 (p = 0.033)
29 0.600 -2.274 3.279 (p = 0.001) 0.610 -2.305 3.325 (p = 0.001)
35 0.448 -1.516 2.294 (p = 0.025) 0.445 -1.546 2.279 (p = 0.026)

Table B.11: Difference in predictions between FR-D and FR-ND children for all PROD-trained
models, trained including 20 generated datapoints. Models either trained with linear features (left)

or nonlinear features included (right).

Age 17 23 29 35
REC - Linear - Gen. Data (20) 0.588 0.626 0.625 0.558
REC - Nonlinear - Gen. Data (20) 0.555 0.636 0.628 0.560
PROD - Linear - Gen. Data (20) 0.641 0.629 0.644 0.612
PROD - Nonlinear - Gen. Data (20) 0.640 0.630 0.648 0.609

Table B.12: AUC scores for all age prediction models, trained including 20 generated datapoints.
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Additional results

Age 17 23 29 35
REC - Linear - Real Data 0.556 0.613 0.613 0.546
REC - Linear - Gen. Data 0.529 0.642 0.633 0.563
REC - Nonlinear - Real Data 0.572 0.614 0.612 0.551
REC - Nonlinear - Gen. Data 0.456 0.650 0.634 0.559
PROD - Linear - Real Data 0.567 0.635 0.635 0.596
PROD - Linear - Gen. Data 0.638 0.620 0.621 0.597
PROD - Nonlinear - Real Data 0.552 0.635 0.635 0.594
PROD - Nonlinear - Gen. Data 0.636 0.625 0.637 0.601

Table B.13: AUC scores with vocabulary age thresholds for all age prediction models

First, a single SVM was trained for both feature sets (PROD or REC) using the four features generated by
the linear age prediction model trained on real data: vocabulary age at 17, vocabulary age at 23, vocabulary
age at 29 and vocabulary age at 35. Results are reported in Table B.14. Then, the SVMs were build as
before and crossvalidated, but only using the four vocabulary age features. Results were not better than
the single age-group models, as can be seen in Table B.15. Both models were trained using class weights.

BalAcc Sensitivity Specificity AUC
REC 0.602 0.546 0.658 0.670
PROD 0.614 0.667 0.561 0.682

Table B.14: Training accuracy for two SVMs trained on four features: vocabulary age at 17,
vocabulary age at 23, vocabulary age at 29 and vocabulary age at 35.

BalAcc Sensitivity Specificity AUC
REC 0.549 0.733 0.365 0.618
PROD 0.471 0.333 0.579 0.625

Table B.15: Performance of crossvalidated SVMs trained on four features: vocabulary age at 17,
vocabulary age at 23, vocabulary age at 29 and vocabulary age at 35.
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Figure B.2: Density plot of predicted ages for all thee groups. Models were trained with 22 PROD features, on (A) only real data or (B) including
60 generated datapoints. For every age group, a vertical line with the actual age is included for clarity. Adding generated data increases variance,
especially at 17 months. It also increases the gap between dyslexics and nondyslexics: compare (A) 17 months and (B) 17 months. At 35 months,

most dyslexic subjects seem to have “caught up”. In (B) at 29 months, there is a clear group of dyslexic subjects that is catching up already.
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Figure B.3: SVR feature weights for two different models
Although their performance on unseen data is similar, these weight vectors differ from the weight vector of PROD - Linear - Real data (as shown in

Figure 4.7). For instance, the REC model in (A) has almost no negative weights, and the PROD model with generated data in (B) assigns a
negative weight to the “verbs” category.
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