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Abstract 
Marchenko redatuming is a recently developed framework, which is used to retrieve up- 
and down going waveforms from an arbitrary depth in the subsurface. For this, the scheme 
only needs single-sided surface reflection data and a little information about the medium, 
for example a conventional velocity model. The obtained Green’s function can be used to 
obtain more detailed images of the subsurface, which is especially important and more 
difficult for perturbed media, or complex media, e.g. a medium containing a subsalt 
structure. 
This research focuses on two new developments in Marchenko calculations: The first is 
solving the Marchenko system by means of inversion instead of iteration, which has so far 
been the main solving method. Secondly a newly proposed variation on the Marchenko 
system is tested. It focuses specifically on perturbed fields, which will have complex-media 
reflection data. This will result in a more difficult problem to solve. 
This research uses two example models to show that the Marchenko system can be solved 
by inversion, and to show that the results of this new construction validate the proposed 
approach. Both these findings will be useful for further use of the Marchenko scheme, 
especially when the models become more complex, for example, in heterogeneous and/or 
variable velocity models. 
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Introduction 
Seismic wavefields can be used to construct images of the subsurface, which can help to 
obtain a better understanding of its structure. A challenge of seismic imaging can be to 
correctly estimate wavefields, when there is little to no knowledge or observation of the 
subsurface available. One of the methods that can be used to locate structures in the 
subsurface, using only reflection data obtained at the surface and a velocity model, is the 
Marchenko method, which is a recent development in seismic data processing (Broggini and 
Snieder, 2012). The scheme of Marchenko is made up of the important Marchenko equations, 
which are based on reciprocity theorems. The focus of the Marchenko scheme is to retrieve 
up- and down going Green’s functions at a desired depth. For this, it uses only single-sided 
surface reflection data and a smooth background model, which means there is no need for 
first locating reflectors in order to reconstruct multiple scattering effects. (Wapenaar et al., 
2014; Slob et al., 2014, Van der Neut et al., 2015). 
The obtained Green’s function can eventually be used for various applications such as 
redatuming, constructing virtual sources and receivers, and target oriented-imaging.  
Ravasi et al. (2016) have successfully used this method for the first time to obtain target-
oriented images in a North Sea field.  
 
Marchenko focusing is an inverse problem, which, in the research and field examples that 
have been done so far, has always been solved by means of iteration (e.g. Ravasi et al., 2016; 
Jia et al., 2018); i.e. the result of the Marchenko inversion can be written as a Neumann’s 
series expansion, which can be iterated to convergence. However, this iterative solution 
needs strict conditions for it to converge (Staring et al., 2017a), seriously limiting its 
applicability. The scheme of Marchenko (and its method of solving) that is currently used, is 
limited. More realistic and/or complex models will have to be simplified and smoothened in 
order to meet the conditions of the iterative solving method. Secondly, the scheme is limited 
to only using single arrival inputs. Altogether, the Marchenko method needs further research 
and updates for it to be able to solve more complex models from more complex media such 
as in Jia et al. (2018), where a subsalt model in the Gulf of Mexico is analyzed. 
 
It is in this light that this research focuses on two main aspects of Marchenko: the solving 
technique, and a new variation of the original Marchenko scheme. The first goal is trying to 
solve the Marchenko scheme by inversion instead of having to use an iterative scheme. 
Solving by inversion will be computationally more expensive, but when it is used correctly, 
more complex models can now directly be solved, since they are not subject to the 
assumptions made by the iterative scheme. This will benefit the quality of the results. An 
example of a such a complex system are perturbed fields. Vasconcelos and Van der Neut 
(2016) provided a variation on the Marchenko system, which focuses on perturbed fields. It 
aims at overcoming some of the limitations that the conventional scheme imposes on initial 
focusing functions, when looking at a more complex medium. This variation will be very 
important in targeting scattered fields, such as in highly heterogeneous models containing 
sharp interfaces. Using inversion as a more convenient way of solving a Marchenko system, 
this newly proposed framework is tested in this research.  
 
In this research the basic method of Marchenko is discussed in the first section. A clear 
summary of the original Marchenko scheme can also be found in Cui et al. (2018), but it is 
useful to describe the method of Marchenko the way it is used in this research. Secondly, the 
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new Marchenko variation as proposed by Vasconcelos and Van der Neut (2016) is explained 
and tested. Next, the two different solving techniques of iteration and inversion are discussed 
in detail. Finally, this paper concludes with the discussion on further possibilities and 
conclusions of this research.  
 
The two outlined goals of this study are tested by using two example models: one basic, 
layered medium and a more complex medium, containing a subsalt structure. Both media are 
synthetic models and assume a constant velocity. Figure 1a shows the layered medium. The 
depth of interest in this case is at 800 m, right below one of the reflection layers. The 
colourbar indicates density. Next to this layered medium a truncated medium is defined, in 
which the bottom reflectors below the depth of interest are left out. This is now called the 
truncated medium (Figure 1b). The red stars are source locations, and the triangles represent 
receiver locations. It is assumed there are no free-surface multiples.  
The calculations in this research are done in MATLAB. Since inverting large matrices is a 
computationally expensive task, SPOT operators (Ewout van den Berg and Michael P. 
Friedlander) have been used in the calculations. This is explained in more detail in the section 
on solving techniques. 
 

Figure 1: Constant velocity models used in the layered example. The legend indicates density in kg/m3.  
a) full medium with reflectors. b) truncated medium. 
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The Marchenko method 
The fundamentals of the Marchenko scheme are explained by means of an overview in a 1D 
medium. This is displayed in Figures 2 and 4, which are taken from Cui et al. (2018). 
They contain depth versus time plots in a 1D medium. Reflection layers are indicated by the 
black dotted lines. The white dotted line marks the area of interest. Important is the 
difference between the medium in Figure 2a-b and Figure 2c. Figure 2c shows the full medium 
with a reflector below the area of interest, whereas that reflector is cut off in Figures 2a and 
2b. The cut-off medium is the so-called truncated medium. The eventual goal of Marchenko 
is to retrieve up- and down going Green’s functions at the level of interest. 
 

Figure 2 (extracted from Cui et al., 2018): An illustration of concepts behind the Marchenko method in 
1D media. a) injecting a wavelet causes multiples. b) down going focusing function as a function of 
time, resulting in: c) down going Green’s function. The star indicates a virtual source. 
 
In this figure a seismic wavelet is ‘injected’ into the medium (Figure 2a). This is displayed by 
the down going, solid red line. This wavelet is displayed above the figure, where td stands for 
the direct arrival time. As can be seen, the wavelet is injected at a time of –td, so that it arrives 
at the level of interest at t = 0. Apart from the waveform that travels directly to the depth of 
interest, the wavelet will produce multiples due to reflections of the overlying layers. The 
multiples are indicated by the dashed blue (up going) and dashed red (down going) lines. This 
coda is undesired. It is with this reason that instead of a wavelet made up of a delta function, 
a so called focusing wavefield (Slob et al., 2014), or a focusing function (Wapenaar et al., 
2014), is injected over time. It is represented by the red lines in Figure 2b. This focusing 
function cancels out the coda and focuses the wavelet at the desired depth. Again, the 
corresponding wavelet is displayed above the figure. The f1

+(t) in the figure stands for the 
down going focusing function, and it is defined by equation 1. The up going f1

-(t) is defined in 
equation 2. They are in fact the focusing wavefields observed at the surface. The + sign 
indicates down going wavefields, and the – sign indicates up going wavefields. 
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𝑇(𝑡) ∗ 𝑓'((𝑡) = 𝛿(𝑡)																																				(1) 

 
𝑅.(𝑡) ∗ 𝑓'((𝑡) = 𝑓'/(𝑡)																															(2) 

 
From equation 1 it can be seen that the f1

+ is in fact the inverse of the transmission response 
of the truncated medium, as is proposed by Vasconcelos et al. (2015). The reflection response 
of this down going focusing function is the up going f1

- (equation 2), where RA is the reflection 
response of the truncated medium. The reflection response of a medium is based on the 
single sided surface reflection data of that medium. Figure 3 shows what the reflection 
response of the full layered medium looks like.  
 

Figure 3: Reflection response of the layered medium 
 
When looking back at Figure 2, it can be seen that the injected f1

+ ‘cancels out’ the coda, so 
that the waveform that remains is now the down going Green’s function G+ in the full medium 
(Figure 2c). The white star in Figure 2c now acts as a virtual source from with G+(t) is 
‘produced’. The way this down going Green’s function is retrieved by using reflection data, 
and both the up- and down going focusing functions is stated in equation 3.  
 
 

𝐺((𝑡) = 𝑅(𝑡) ∗ 𝑓'((𝑡) − 𝑓'/																					(3) 
 
 
 
 



 6 

In the same way, a time reversed f1
- can be ‘injected’ 

into the full medium. This is represented by the 
dashed blue lines in Figure 4. The corresponding trace 
is displayed above the figure. The injected f1

-(-t) 
generates the time reversed f1

+, shown as the solid 
and dashed red arrows. The following waves 
propagate as if they were produced by a virtual source 
(hollow star). This generates the up going Green’s 
function G-. Equation 4 shows the way the up going 
Green’s function is retrieved from the Reflection data 
and the time reversed up- and down going focusing 
functions.  
 
 
Figure 4 (Cui et al., 2018): a) time reversed up going 
focusing function results in an up going Green’s function G 
-. 

 
𝐺/(𝑡) = −𝑅(𝑡) ∗ 𝑓'/(−𝑡) + 𝑓'((−𝑡)					(4) 

 
Let us recall that retrieving the up- and down going Green’s functions is the goal of the 
Marchenko method. Equations 3 and 4 are therefore key equations, and when they are 
combined, we get a system which is known as the coupled Marchenko equations (equation 
5). Note that the asterisk indicates time convolution.  
Since surface reflection data is the only input given in the Marchenko system, only the 
reflection response of the medium is known. All of the focusing functions and the Green’s 
functions are unknown. It is therefore impossible to solve this system with only two equations 
and four unknowns. To reduce the number of unknowns, two constrains must be introduced: 
the windowing operator, and an initial focusing function. The windowing operator is 
discussed in the next section. 
 
 

6−𝐺
/

𝐺(∗ 7 = 6 𝐼 −𝑅
−𝑅∗ 𝐼 7 6

𝐹/
𝐹(7					(5) 

 
 
The windowing operator 
It is assumed that the Green’s functions from the Marchenko equations contain a distinct 
direct arrival from the level of interest. This direct arrival is calculated by means of a reference 
velocity model of the medium. All waveforms arriving after the direct arrival are defined as 
coda. A windowing matrix 𝜃 is defined, which will remove the events at and after the first 
arrival. The window function is symmetric around t = 0, meaning that every waveform arriving 
at or before -td is removed as well. The window function 𝜃	is	displayed in Figure 5. 
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Figure 5: Window function 𝜃 for the 
layered example. Inside the (negative) 
direct arrival 𝜃 = 1. Outside the (negative) 
direct arrival 𝜃 = 0.  
	
The result of windowing the Green’s 
functions is of course that the 
waveforms that make up the Green’s 
function are all removed, as is made 
clear from equations 6 and 7. The 
Green’s function can in this way be 
eliminated from equation 5, already 
making the Marchenko system a 
solvable system, since it now has two 
unknowns.  
 

 
𝜃{𝐺((𝑡)} = 0					(6) 

 
𝜃{𝐺/(𝑡)} = 0					(7) 

 
If a window matrix is applied to the left hand side of the system (i.e. the Green’s functions), 
then it must be applied to the right hand side as well. When looking at how the focusing 
functions respond to the application of the windowing matrix, it is important to recall that it 
is assumed that the up going focusing function too, contains a direct arrival (f1,d

+) and a coda 
(f1,m

+). This can clearly be seen from the trace at the top of Figure 2b. The direct arrival of 
course peaks at –td, and will therefore be eliminated by the window function. The coda arrives 
within the window, which ranges from –td to td, and will therefore be left unchanged by the 
matrix 𝜃. Altogether this adds up to the results of equation 8. The up going focusing function 
however, falls completely within the range of window 𝜃, as can be seen from the wavelet in 
the top of Figure 4. It is therefore that the up going focusing function is unchanged by the 
window matrix. This is displayed in equation 9. A more extended and detailed explanation on 
this windowing function and its properties can be found in van der Neut, et al (2015). 
 

𝜃{𝑓'((𝑡)} = 𝜃C𝑓',E( (𝑡)F + 𝜃C𝑓',G( (𝑡)F = 𝑓',G( (𝑡)					(8) 
 

𝜃{𝑓'/(𝑡)} = 𝑓'/(𝑡)																																																									(9) 
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After now having applied the window matrix to each term in the Marchenko system of 
equation 5, this scheme now looks as stated in equation 10. This system of two equations is 
now, in principle, solvable, since it contains only two unknowns: the up going focusing 
function (F1

-), and the coda part of the down going focusing function (F1m
+). Again, the direct 

arrival is calculated by using the assumed velocity structure. This solvable Marchenko system 
is as follows: 
 

J𝜃𝑅𝐹E
(

0
K = 6 𝐼 −𝜃𝑅

−𝜃𝑅∗ 𝐼 7 J
𝐹'/

𝐹'G(
K					(10) 

 
A new Marchenko system 
Though the Marchenko method has improved over the past years (and applied to field data 
(Ravasi et al., 2016)), there are still more ways in which this method can be researched and 
used. We have seen now that Marchenko redatuming is capable of providing accurate 
information on primaries as well as internal multiples. However, with increasing complexity 
of the subsurface this will become more of a challenge. Jia et al. (2018) show that when 
applying the Marchenko scheme to a model containing a subsalt structure, it can already 
produce more continuous images than traditional imaging methods (such as reverse time 
migration), and that it is effective in suppressing the artifacts caused by internal multiples. 
Even though these are positive results, with these more complex media it is much more easy 
to miscalculate Green’s functions, for example due to a mismatch between the calculated 
direct arrivals and the actual reflection data. Also, the inverse transmission matrices that are 
being used (equation 1), induce artefacts, due to the complexity of the reference model, even 
though it does produce better results (Vasconcelos et al., 2015). It is for these reasons that a 
variation on the original Marchenko scheme is set up by Vasconcelos and Van der Neut 
(2016). This variation focuses on media with high heterogeneities and/or large contrast 
structures such as subsalt. The system follows the original Marchenko rules but it leaves out 
some of the inconveniences that made the system hard to solve for complex media. 
Altogether, the new Marchenko system is designed for application to scattered/perturbed 
fields. It is explained in this section. 
 
To evaluate the perturbed medium correctly, the Marchenko scheme must be solved twice. 
Once for the full medium, as displayed in equation 11, and once for a known reference 
medium as displayed in equation 12. The 0 subscript indicates that the function or matrix is 
evaluated in the reference medium. This reference medium is often represented by a velocity 
model which should resemble the true velocity model (which in itself is of course unknown, 
only the true reflection response is known). In the cases of both the layered example and the 
subsalt example, this reference model is smoothened, so that smaller reflectors below the 
area of interest will not be as prominent as in the full medium. Figure 6 shows the reflection 
responses of both the real medium and the reference medium of the subsalt example. 
 

6−𝐺
/

𝐺(∗ 7 = 6 𝐼 −𝑅
−𝑅∗ 𝐼 7 6

𝐹/
𝐹(7							(11) 

 

J
−𝐺L/

𝐺L(∗
K = J

𝐼 −𝑅L
−𝑅L∗ 𝐼 K J

𝐹L/

𝐹L(
K					(12) 
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Figure 6: Reflection responses of: a) The full medium in the subsalt example. b) the reference medium 
in the subsalt example. The real medium shows a more detailed structure than the reference medium. 
The concave shape at the lower half of the image is not visible in the reflection response of the 
reference medium. 
 
To obtain the goal of calculating the focusing functions and the Green’s functions of the coda, 
it is possible to subtract the reference medium from the real medium. This would result in the 
system displayed in equation 13, where the 𝛿𝑅 denotes the reflection response of the 
reference medium subtracted from the reflection response in the real medium. Again, the 
system contains two equations with four unknowns, since in the real medium only the 
reflection response is known. After applying the window matrix, we get the system displayed 
in equation 14. 
 

6−𝛿𝐺
/

𝛿𝐺(∗
7 = 6 0 −𝛿𝑅

−𝛿𝑅∗ 0
7 + 6 𝐼 −𝑅

−𝑅∗ 𝐼 7 6
𝛿𝐹/
𝛿𝐹(

7					(13) 
 

6 0 −𝜃𝛿𝑅
−𝜃𝛿𝑅∗ 0

7 J
𝐹L/

𝐹L(
K = 6 𝐼 −𝜃𝑅

−𝜃𝑅∗ 𝐼 7 6𝛿𝐹
/

𝛿𝐹(
7					(14) 

 
The window function 𝜃 will be identical for both the real model and the reference model, 
since the reference model is built in such a way that it is assumed that the direct arrival in the 
two models will be the same. Solving equation 14 for the focusing functions is the main 
problem this research focuses on. When this is successfully done, the up- and down going 
Green’s functions can then be reconstructed with the calculated focusing functions. The 
importance of proving that this new system (equation 14) can be solved is that it allows for 
the use of arbitrarily complex reference models, such as those used in e.g. subsalt imaging 
practice. This is not possible under the conventional Marchenko framework.  
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For finding the up going focusing function in the reference medium, F0
+, again the inverse of 

the transmission matrix in the reference medium can be used, just like in equation 1. From 
there, its reflection response in the reference medium is F0

-, just like in equation 2. In this 
research however, both the up- and down going F0’s are calculated by solving the reference 
model separately. This is done by inversion, which will be discussed in the next section. The 
additional down going F0

- was not present in the original Marchenko scheme that was solved 
(equation 10). It accounts for reflections due to F0

+, and together with the δR it accounts for 
scattering effects due to sharp contrasts or discontinuities.  
In the following examples it is shown that the results of this new system are indeed identical 
to the result of calculating the two systems separately and subtracting them. Now that it is 
proved that it can be solved, especially with inversion, this new system will be a next step 
towards accurately solving perturbed fields, or fields with large contrasts and sharp 
discontinuities. These results show both the new system solved in the layered example 
(Figure 7) and in the subsalt example (Figure 8).  

 
Figure 7: focusing functions in the layered example: a) difference between the focusing functions of 
the real medium and the reference medium. b) focusing functions calculated with 𝛿R. The two plots 
are  identical. When subtracting them from each other the result is 0. 
 
 
 
 
 
 
 
 
 



 11 

 
 
 
 

Figure 8: focusing functions in the sub-salt example: a) difference between the focusing functions of 
the real medium and the reference medium. b) focusing functions calculated with 𝛿R. Again, the two 
ways of calculating produce the exact same focusing functions. 
 
Iteration versus Inversion 
As mentioned in the previous sections, the Marchenko system can either be solved by an 
iterative scheme, or by inversion. The layered example has been used to test and compare 
the two different techniques. Once proven that the results of the two calculations of this 
simple model were the exact same, inversion has been the method that is used for the new 
Marchenko scheme and all the subsalt calculations, since inversion has the advantage of 
solving more complex problems in more complex media. This section discusses what that 
advantage is, and why iteration will fail to perform certain calculations. 
The solution of the system in equation 14 can be written as a summation (equation 15), where 
k indicates the number of summations and thus iterations. For this series to converge, one 
necessary condition is that the norm of the Marchenko operators containing the two 
reflection responses of the real medium has to be smaller than one. More complex media will 
have more complicated reflection responses, with norms potentially larger than one. 
Therefore, this iterative solver will not be accurate for just any model. 
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J
𝛿𝐹'/

𝛿𝐹'G(
K = M6 0 −𝜃𝑅

−𝜃𝑅∗ 0 7
N

O

NPL

6 0 −𝜃𝛿𝑅
−𝜃𝛿𝑅∗ 0

7 J
𝐹L/

𝐹L(
K					(15) 

 
In the models used in this research, both iterative substitution and inversion lead to the same 
results. However, future work may involve stronger heterogeneities in the subsurface or more 
complex background models. Staring et al. (2017a) makes a comparison between solving the 
Marchenko system by inversion and by iteration for three different kind of models. All three 
models are evaluated with and without consideration of reflections of the free surface. It can 
be seen in Figure 9 that when the free surface reflection is included, the more complex the 
models become, the harder it is to solve them by means of iteration. The results of Model 3 
will eventually become unstable.  It can be seen that for those calculations, solving by 
iteration does not yield correct results. A solver using inversion is needed for such 
calculations. 
 

 
Figure 9 (extracted from Staring et al, 2017a): Three models that differ in complexity solved by 
iteration. The red dashed line shows the level of interest. The more complex the models are, the higher 
the error. Also, adding free surface reflections increases the complexity. Model 3 with the free surface 
multiples can not be solved by iteration: the result becomes unstable. 
 
In order to overcome the limits that go with using the iterative system, it is necessary to find 
a system that is capable of dealing with the convergence issue. Equation 14 can be seen as a 
simple linear equation such as 𝐴	𝑥 = 𝑏. This is displayed in equation 16. In this case the δF- 
and δF+ are represented by x, the variable that we are interested in. This can then of course 
be calculated by taking the inverse of this equation: 𝑥 = 𝐴/'	𝑏. Finding inverse matrices for 
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these larger and complex models is computationally more expensive than using an iterative 
solver. However, it is necessary in order to overcome the limits explained in the previous 
paragraph. The solution of this direct inversion can be found in several different ways. The 
complexity of the models and matrices used is an important factor when you choose a 
method of solving. In this research we propose the use of the LSQR method, which is well 
suited for over-determined equations. In this method an error is defined as 𝑟 = 	𝐴	𝑥 − 𝑏. The 
solution x is chosen so that ‖𝑟‖ is minimized. 
The results of the focusing functions calculated by inversion were identical to the iterative 
solutions in the layered model. This proves that the inversion calculation works correctly. It 
can be used for more complex calculations, for example in perturbed fields and models with 
sharp contrasts. It is for this reason that after testing inversion on the layered model, all the 
calculations in the subsalt example and the calculations of the new Marchenko scheme 
described in the previous section, are done by means of inversion, even though it is 
computationally more expensive than iteration. 
 

6 0 −𝜃𝛿𝑅
−𝜃𝛿𝑅∗ 0

7 J
𝐹L/

𝐹L(
K

VWWWWWWXWWWWWWY
Z

= 6 𝐼 −𝜃𝑅
−𝜃𝑅∗ 𝐼 7VWWWWXWWWWY

.

6𝛿𝐹
/

𝛿𝐹(
7VXY

[

									(16) 

 
The calculations in this research are done in MATLAB. Inverting matrices and finding LSQR 
solutions with large reflection responses is computationally expensive. It is therefore that 
the matrices found in equations 14 and 16 are stored as SPOT operators (Ewout van den 
Berg and Michael P. Friedlander). SPOT is a linear operator toolbox provided for MATLAB 
calculations. In our calculations, the data operator R consists of a multidimensional 
convolution (MDC) operator: even for these relatively small examples, the time-domain 
version of this MDC operator would yield too large a matrix to be explicitly stored and used 
in the calculations. Using the SPOT library, we can handle the time-domain Marchenko 
operators in the time domain efficiently, while maintaining the convenience of matrix-like 
syntax in our scripts. 
 
Conclusion  
This research has shown two important aspects in the ongoing goal of improving calculations 
with the Marchenko system. It has shown that there is a new Marchenko scheme which is 
able to focus on complex and perturbed fields. It does so by adding a reference medium to 
the Marchenko calculations. As a result of this, not only an up going focusing function is used 
as known term in the calculation, but also a down going focusing function, which can account 
for the scattering effects of the medium of interest. Next to that the difference between the 
reflection response of the full medium and the known reference medium is used in the 
calculations. The results of this research show that the proposed variation on the Marchenko 
system produces the same results as subtracting separate calculations for the truncated 
medium from results of the full medium calculations. This is convenient for any future 
calculations with more complex setups or velocity structures. The example models in this 
research have all used a constant velocity. For complex models, such as sub-salt, and/or 
models that use a variable velocity, the new Marchenko scheme will provide a potentially 
better calculation of the up- and down going waveforms. 
Secondly, this research explains why solving the Marchenko scheme by iteration is limited. 
For convergence, the norm of the matrix that is summed must eventually approach zero. 



 14 

Again, with complex reflection responses this term will be more difficult to be met. This 
research suggests solving the system by inversion. The results show that for the layered, 
constant velocity example the iterative results are identical to the results obtained by using 
the LSQR method. This is used an argument for only using inversion for the remaining tests of 
the research. 
Overall this research will hopefully contribute to further research and improvement of the 
Marchenko system, and the use of it. Some of the related research are briefly discussed in 
the final section below. 
 
Related Research 
The Marchenko scheme has been subject of multiple research the past few years. It has been 
tested with (complex) field data, and further improvements on the system can still be made. 
One of the examples of further improving the system is by using an adaptive double focusing-
method for source-receiver redatuming, as proposed by Staring et al. (2017b). Here, source 
redatuming is done by taking the calculated up going Green’s function and the down going 
focusing function to obtain a redatumed reflection response of the real medium. This is done 
instead of the usual calculation of the Green’s functions as presented in this research.  
A second way to apply Marchenko redatuming is by combining the coupled Marchenko 
equations with a Rayleigh integral representation. This is called Rayleigh-Marchenko 
redatuming, and it is explained by Ravasi (2017). His newly proposed scheme can handle 
internal as well as free-surface multiples.  
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