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“In the past, farmers made field-by-field assessments. Today they are moving towards 

foot-by-foot data collection and analysis to make better decisions.”  

(Financial Times 2017) 

 

“Global Market Insights forecasts that the agricultural drone market size will exceed $1 

billion and 200,000 units shipped by 2024. GMI attributes the growth through 2024 to 

increasing awareness of the pros and cons of drones in agriculture among farmers.” 

(Business Insider 2017) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*foot-by-foot as a distance measure 
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ABSTRACT 

Unmanned aerial vehicles (UAV) have emerged as a flexible, affordable, and easy-to-use 

technology for remote sensing within fields such as geoscience, precision agriculture and 

forestry management. The capacity of taking very high spatial resolution (VHR) optical 

images makes UAVs highly suitable for individual crop detection and analysis. Following 

an object-based image analysis (OBIA) approach, the thesis investigates to what extent 

image-objects can be built for cichorium endivia (endive) crops at the end of the growing 

season. The main capabilities of OBIA are delivering a highly accurate detection of crops 

(99.8% accuracy) and precise measuring of crop-covered areas without including any 

shadows or bare soil.  

Hyperspectral data and a digital surface model (DSM) are combined with the OBIA-based 

image-objects, so-called data fusion. These data-layers can be used for plant-volume 

calculations and application of vegetation indices (VI) on the object-level. A randomized 

agro-ecological field experiment by Barel et al. (2018) is used to validate results from 

spectral and geometric object analysis. They assess legacy effects of preceding crops via 

the soil, known as plant-soil feedback (PSF), by destructive sampling and qualifying 

cichorium plant traits such as biomass. Four different cover crop species and their mixtures 

are used as a plant-soil treatment: Lolium perenne (perennial ryegrass), raphanus sativus 

(radish), trifolium repens (white clover), and vicia sativa (common vetch). Optical and 

hyperspectral UAV-data was acquired prior to destructive sampling. OBIA shows 

comparable results. The raphanus monoculture and mixture raphanus + vicia cause 

highest plant-volumes and high scores for most VIs used. The lolium treatment has overall 

the lowest average crop volume and VI scores. 
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1 INTRODUCTION 
According to World Population Prospects: The 2017 Revision, the current world population of 7.6 

billion is expected to reach 8.6 billion in 2030, 9.8 billion in 2050, and 11.2 billion in 2100 (United 

Nations Department of Economic and Social Affairs 2017). The population growth is expected to 

continue with roughly 83 million people being added every year, even taking a declining fertility 

level into account. This asks for massive increase in agricultural yield and massive decrease in the 

use of fossil fuels and water. Hunger could be the most urgent problem of the 21st century. The 

Netherlands, with a size of 41,543 km² and over 17 million inhabitants, is the second largest global 

exporter of food (91.7 billion euros) after the United States, this creates optimism in respect to 

world’s urgent environmental and food security problems (CBS 2017; World Bank 2018). There 

is a desperate need for more innovative solutions within the agricultural sector and spread of 

agricultural innovations throughout the world. 

There are roughly two types of agriculture: on the one hand high-throughput or conventional 

agriculture and on the other hand low-throughput or organic agriculture. The fundamental 

qualitative and quantitative differences are in the flow of nutrients. High-throughput agriculture 

depends on large-scale use of synthetic fertilizers and pesticides. Low-throughput agriculture 

depends on the application of compost and manure, and the use of cover crops (Clark et al. 1976). 

Low-throughput agriculture depends on accurate and in-season information on the crop-level to 

make better management decisions according to the farm inputs, necessitating the rise of precision 

agriculture. Yet there are other motivations for precision agriculture: yield enhancement, 

management strategy improvement, financial cost reduction, scientific interest, and breakthrough 

of digital agriculture technologies. The following definition is used for precision agriculture: 

“Precision agriculture generally involves better management of farm inputs such as fertilisers, 

herbicides, seed, fuel (used during tillage, planting, spraying, etc.) by doing the right management 

practice at the right place and the right time” (Mulla 2013, p. 358). 

Precision agriculture started in the 80’s with ground sensors for measuring soil matter. Afterwards 

agricultural remote sensing platforms included satellites, airplanes handhelds, and tractors. Today, 

advanced sensor technologies are used such as light detection and ranging (LiDAR), fluorescence-

, thermal-, optical-, and near-infrared spectroscopy (Mulla 2013). 

Remote sensing (RS) with unmanned aerial vehicles (UAV) has potential for low-throughput and 

precision agriculture. UAVs have specific capabilities making them different from satellite and 

airborne platforms. First, UAVs have a very high spatial resolution which enables characterization 

of plant traits related to shape and dimensions (Feng, Liu, and Gong 2015). Second, digital surface 

models (DSMs) can be derived automatically which could provide more accurate estimations of 

crop height and volume (Suomalainen et al. 2014). Third, the spectral resolution of UAVs is higher, 
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resulting in more and narrower spectral bands. Fourth, they are capable of delivering flexible in-

time information (Andújar et al. 2016). Fifth, UAVs are advantageous because they are a relatively 

cheap solution and the images are unaffected by clouds due to low flying altitude (Andújar et al. 

2016).  

However, methods and applications that make use of these advantages need to be further developed 

and scientifically tested. Specifically, state-of-the-art Object-Based Image Analysis (OBIA) 

methods and techniques require further research to be able to take advantage of the very high spatial 

resolution (VHR) of the UAV-based data sources. OBIA allows for the observation and analyzation 

of variations in textural, contextual, and morphological object-features (Castillejo-González et al. 

2009). Crop-level analysis could provide more information about crop’s shape and dimensions 

(e.g. height, volume, and biomass). Data fusion with hyperspectral data could also provide 

biochemical characteristics on the individual crop-level. 

In a recent experiment by Barel et al. (2018), the legacy effects of diversity in space and time driven 

by preceding crop biomass and soil nitrogen concentration on successive crops (i.e. cichorium and 

Aaena) is analysed. Quantitative laboratory measurements show a significant influence of 

preceding crops on the successor’s quantity and quality. The key-concept is plant-soil feedback 

(PSF) and it describes reciprocal interactions between plants and soil biota. To understand and 

monitor these PSF effects, detailed characterization and monitoring of crop traits is a pre-requisite. 

Laboratory measurements to quantify crop traits is labour intensive and time consuming; this 

creates a bottleneck for precision agriculture in general. Our research attempts to achieve the same 

results as the field experiment by using VHR UAV-images, hyperspectral data, height data, and 

OBIA-methods. 
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2 RESEARCH IN CONTEXT 

The investigated methodology could be used for deriving plant traits during the growing season as 

an input for precision agriculture. Yield could increase while the use of fertilizers and herbicides 

decreases. Information and knowledge about plant-soil feedback could improve expansion of low-

throughput agriculture. Moreover, societal and scientific relevance is high. The growing world 

population demands an increase of yield in agriculture and a decrease of the use of water, 

chemicals, and raw materials. Multiple gaps in literature are present. Little is known about the 

effects of plant-soil feedback on plant traits (Putten et al. 2013). Moreover, little is written about 

the use of OBIA methods and techniques with VHR UAV-imagery and data fusion with 

hyperspectral images.  

2.1 UAV-REMOTE SENSING 

Information about plants for precision agriculture is often acquired using RS technologies; this 

means non-contact measurements of light emittance, reflectance, transmittance, and absorption 

(Mulla 2013). Plant traits are particularly measured from the canopy-level (Kooistra and Clevers 

2016). Today, UAV-RS is an active field of study and has potential for the retrieval of crop 

characteristics and precision agriculture. The key advantage of UAV-RS is that data acquisition is 

cheaper due to lower technological and operational costs compared to other RS platforms 

(Vastaranta et al. 2014). Reasons for the growth of UAV-usage in RS are: (1) improved UAV 

airframes, (2) development of small, high-quality, and low-cost sensors, and (3) increased 

computer processing capacity and improved 3D imaging software (Colomina and Molina 2014) 

The combination of UAV-RS and precision agriculture is a new and promising field of research. It 

has high potential for real-life applications. The possibility to acquire VHR-imagery at low 

altitudes (Feng, Liu, and Gong 2015), high spectral resolution, and automatic creation of DSMs 

(Suomalainen et al. 2014) are most important advantages of UAVs in respect to this research. This 

allows for more accurate estimations of plant traits, dimensions, and biomass.  

2.2 OBJECT-BASED IMAGE ANALYSIS  

Computer-based image processing techniques are currently used in different sectors, like the food 

and smartphone industries. Back in the 90s the food industry was one of the largest industries where 

image processing techniques were applied (Gunasekaran 1996). These technologies enabled a 

relatively recent paradigm shift in RS image analysis during the last twenty years. From a 

predominantly pixel-based model, we are moving towards an object-based contextual model which 

adapts the way humans interpret imagery (Hay and Castilla 2008). Image segmentation is one of 

the earliest methods for building image-objects, which dates back to the ‘70s. OBIA started to build 
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a critical bridge between the raster domain of RS and the primarily vector-domain of Geographical 

Information Systems (GIS) (Blaschke 2010).  

“Geographic Object-Based Image Analysis is a sub discipline of Geographic Information Science 

devoted to developing automated methods to partition Remote Sensing imagery into meaningful 

image-objects, and assessing their characteristics through spatial, spectral and temporal scales, 

so as to generate new geographic information in GIS-ready format” (Hay and Castilla 2008, p. 

77). 

The definition of Hay and Castilla (2008) is taken as the leading definition for OBIA. This 

definition focusses on the bridge between RS and GIS. It emphasizes on automated methods for 

partitioning RS-imagery and the use of image-objects as the basic spatial-unit for further analysis 

on spatial, spectral, and temporal scale. Research has proven that OBIA gives a much higher 

accuracy than a pixel-based approach in thematic mapping, as for a coal fire area in Inner Mongolia 

(Yan et al. 2006) or a mixed urban-suburban-agricultural landscape in Pennsylvania (Platt and 

Rapoza 2008).  

OBIA techniques are promising in relation with crop discrimination via RS. Conventional RS 

methods based on spectral pixel information lack the possibility to observe variations from textural, 

contextual, and morphological features (Castillejo-González et al. 2009). Using OBIA, adjacent 

pixels could be merged into spatially and spectrally homogeneous objects via segmentation and 

classification processes (Castillejo-González et al. 2009). No research is found which applies OBIA 

on the crop-level for deriving shape, plant dimensions, and biochemical characteristics. It is 

perceived that by using OBIA, estimated plant traits on the crop-level will be more accurate over 

using common pixel-to-pixel analysis.  

2.3 PRECISION AGRICULTURE 

Precision agriculture, as explained by the definition of Mulla (2013), is useful for low-throughput 

agriculture as well as high-throughput agriculture. A simpler and wider definition is given by Dixon 

and McCann (1997): “a management strategy that uses information technology to bring data from 

multiple sources to bear on decisions associated with crop production”. Some authors like Wang 

et al. (2006) emphasise more on the improvement of crop productivity while others like Mulla et 

al. (2002) and Tian (2002) emphasise more on the improvement of environmental quality because 

of the reduced use of fertilizers and pesticides. 

Precision agriculture started in the 80’s with remote sensors for soil matter and progressed through 

many stages from then on. It moved to more site-specific crop management, based on management-

zones and sampling methods. Currently, precision agriculture is inseparable related to spatial-

temporal information collection, analysis, and management.  
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3 RESEARCH OBJECTIVES 

The general objective is the development and evaluation of a methodology to measure plant traits 

and crop legacies based on VHR-imagery taken by UAVs. The following question is formulated 

to reach the research objectives:  

To what extent could legacy of plant-soil treatments be identified, using VHR optical UAV-imagery 

incorporating OBIA methods and techniques; considering plant dimensions, biomass, and 

biochemical plant traits? 

The objectives that should be reached in order to elaborate on the research problem are described 

by the following sub-questions: 

➢ To what extend can individual cichorium crops be identified using OBIA? 

➢ To what extent can other data-layers as hyperspectral imagery and a DSM be combined 

with OBIA? 

➢ To what extent can plant dimensions and biomass be defined using the orthorectified 

image, DSM, and crop-objects? 

➢ To what extent can biochemical plant traits be defined using hyperspectral imagery and 

crop-objects? 

➢ To what extent are legacies of plant-soil treatments observable in the measured plant 

traits? 

➢ To what extent is the methodology used scalable? 

A first step is investigating to which extent crop-objects could be identified and classified. This is 

crucial for determining plant dimensions. A second step is investigating how well additional spatial 

data can be combined with OBIA-objects. Combining the objects with a DSM could give more 

insights on plant shape, dimensions, and biomass. Combining the objects with hyperspectral 

imagery could give more information about biochemical plant traits. Results could describe to what 

extent plant-soil treatments’ legacies are observable. The discussion deals with the scalability of 

the investigated methodology. 
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4 RESEARCH SCOPE 

Related research has been done by Meij et al. (2017) based on the data of Barel et al. (2018). They 

prove that plant traits and crop legacies can be well approached by UAV-based optical sensors. 

Our research has major differences compared to Meij et al. (2017). They focus on the crop species 

avena sativa (oats) instead of cichorium endivia (endive), use traditional pixel-to-pixel analysis 

methods and focus more on finding correlation between in-situ measurements and vegetation 

indices. Cichorium is a much smaller crop and is suitable for applying OBIA methods. This leads 

to information on plant dimensions and possibly higher accuracies concerning biochemical plant 

traits. Only measurements of cichorium’s root and shoot biomass are available. To be able to 

investigate results and patterns concerning plant-soil feedback, this research project depents on a 

comparison with earlier founded patterns by Barel et al. (2018).  

What is NOT included in the research project? 

➢ A full description of image data; descriptions can be found in Meij et al. (2017). 

➢ The creation of an orthophoto and DSM; methods and procedures used can be found in 

Suomalainen et al. (2014). 

➢ Sensor systems sensitive to other parts of electromagnetic spectrum than the visible and 

near-infrared regions. 

➢ Images derived by satellites, aircrafts or fixed-wing UAVs.  

➢ Further elaboration on phenotyping and the potential of UAV-RS for this discipline. 

➢ Own field measurements; descriptions can be found in Barel et al. (2018). 

➢ Computing time and other relevant challenges like extensive visualization, large data 

volumes and data redundancy. 

➢ A temporal aspect; the growth of the crops through time cannot be analysed or 

evaluated.  

➢ A comparison of different software packages and libraries. 
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5 THEORETICAL FRAMEWORK 

5.1 REMOTE SENSING IN AGRICULTURE 

Remote sensing (RS) is “the science of deriving information about an object without actually 

coming in contact with it" (Campbell and Wynne 2011). RS can be active (energy source: the RS 

platform) or passive (energy source: the sun). A sensor mounted to a platform measures the 

incoming radiation from a target object. The amount of incoming radiation depends on the amount 

of energy emitted by the energy source and energy transmitted, absorbed, and reflected by particles 

in the atmosphere, earth’s surface, and target-object. Traditional RS platforms are satellites and 

piloted aircrafts. Mostly, these do not have the suitable spatial and temporal resolutions for 

measuring plant traits on the plot or individual crop-level and real-time analysis. UAVs are 

relatively easy-to-use, flexible in terms of operability, affordable, and have a high resolution. A 

concise comparison of the RS platforms is given in table 5.1.  

TABLE 5.1 COMPARISON OF THE DIFFERENT RS PLATFORMS (SOURCE: CANDIAGO ET AL. 2015) 

 Spatial 

resolution 

Operability Field of 

view 

Usability Maximum 

weight 

sensors  

Cost data 

acquisition 

UAV 0.5 – 10 cm Flexible 50 – 500 m Easy Limited Low 

Helicopter 5 – 50 cm Moderate 0.2 – 2 km Pilot needed Almost 

unlimited 

Medium 

Airborne 0.1 – 2 cm Moderate 0.5 – 5 km Pilot needed Unlimited High 

Satellite 1 – 25 m Limited 10 – 50 km N/A N/A Very high 

UAV-platforms with imaging, ranging, and positioning sensors could offer excellent possibilities 

for precision agriculture (Guo, Kujirai, and Watanabe 2012), forestry management (Ouédraogo et 

al. 2014), and geosciences (Westoby et al. 2012). Usage of UAVs depends on the technological 

development of three different systems: airframes, sensors, and 3D imaging software. Two major 

airframe types, rotary and fixed-wing, are available within a price range of €600 - € 100,000. 

Capabilities such as battery range, payload capacity, and completely autonomous flights are 

improving as technology continuous to develop (Nex and Remondino 2014). Considering the 

UAVs limited payload capacity, the sensor’s size and weight is a limiting factor. Sensor 

development follows the same path as everyday smart-phone cameras. Smaller low-cost sensors 

with improved spatial and spectral resolutions are developed continuously. At last, improving 3D 

imaging software enables automated and improved generation of geo-referenced orthophotos and 

DSMs (Colomina and Molina 2014).  

Today, it is possible to acquire VHR-imagery with UAVs at low altitudes (Feng, Liu, and Gong 

2015), unaffected by clouds, relatively cheap, and in-time (Andújar et al. 2016). Mulla (2013) states 

that for precision agriculture a spatial resolution of at least 10 meters is needed for site-specific 

management, which makes UAV-RS promising for precision agriculture. Furthermore, with 
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relative cheap flights on a regular and flexible basis, farmers can make reliable decisions, save time 

and money, and potentially increase their productivity while applying low-throughput agriculture 

(Candiago et al. 2015).  

5.2 PLANT-SOIL FEEDBACK CONCEPT 

Plant-soil feedback (PSF) describes the reciprocal interactions between plants and soil biota. This 

mechanism may explain species invasion, maintenance of diversity through plant coexistence, and 

plant diversity-productivity relations (Cortois et al. 2016). Plant-soil feedback is important to 

understand in relation to low-throughput agriculture (Cortois et al. 2016). Specific preceding crops 

can have a positive or negative influence on the biomass of the succeeding crops. Winter crops 

could influence crop productivity, nitrogen (N) concentration, soil organic matter content, and soil 

mineral content (Barel et al. 2018). Recent decades have shown a growing scientific interest in 

PSF, though large-scale field studies are needed to evaluate the role of PSF processes under field 

conditions (Kulmatiski et al. 2008; Putten et al. 2013).  

An important process carried out naturally in the soil is nitrogen (N2) fixation. The importance of 

N2 fixation for low-throughput agriculture systems has been extensively reviewed (Ledgard 2001). 

There is a strong positive effect of a winter crop’s biomass and N-concentration on the biomass of 

succeeding crops. Some of the N-fixating bacteria have a symbiotic relationship with certain plant 

species such as legumes. Some plants such as rice have a looser relationship with those bacteria. 

Atmospheric N2 is converted to ammonia (NH3) by the enzyme nitrogenase (Postgate 1998): 

N2  +  8H+ +  8e− → 2NH3 + H2 

Soil biota describes all organisms that spend a significant part of their life within soil, such as 

earthworms, fungi, and bacteria. The composition of the soil’s biota influences the growth of plant 

species, but its effect-size and direction differ for different plant species. For graminoids, which 

are herbaceous plants with a grass-like morphology, and early-successional plant species, a 

predominantly negative plant-soil feedback is found. This is likely due to a build-up of host-

specific pathogens (Cortois et al. 2016). Late-successional plant species have a more positive plant-

soil feedback as they are slower growing and benefit more from arbuscular mycorrhizal fungi 

(AMF) colonization. AMF colonization is a form of mycorrhiza; fungus penetrates the cortical 

cells of the roots of a vascular plant (Heinze et al. 2015). 

Plants have an ability to insulate N for longer time periods than most microorganisms. For short 

timescales microorganisms compete better for N, especially NH44
+. Over the long-term plants will 

win: microorganisms will turn over N much faster than plants’ roots. N will become available again 

in the soil, whereby plants are able to retain more N. This turnover point is when the C:N ratio is 

reached; the higher this ratio, the less N is needed per unit C. On the contrary, when N is scarce, 
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bacteria and fungi will grow on the available C of organic material and deduct soil-N, so N is 

temporally not available to the plants’ roots (Hodge, Robinson, and Fitter 2000).  

Barel et al. (2018) found that lolium perenne, which is an English winter ryegrass, does not increase 

the productivity of cichorium and reduced productivity of avena. It is expected that this is partly 

due to temporal limited availability of mineral N, caused by the described processes, and plant-

feeding nematodes. Results could look similar to figure 5.1, where crop volume is relatively low 

for treatment 3 and relatively high for treatment 4. Barel et al. (2018) make use of destructive 

sampling which causes destruction of a small number of specimens within each plot. When 

generalizing destructive samples to the plot-level, irregularities within a plot could be missed. 

There is a need for the development of non-destructive sampling methods making use of RS. It 

enables to do research on PSF processes for larger areas and discards the need to destroy crops and 

to generalize from a limited number of samples. Biophysical molecules such as chlorophyll, are 

not always equally distributed over leaves and plants, so a non-destructive sampling approach could 

also be more accurate (Ciganda, Gitelson, and Schepers 2009). 

 

FIGURE 5.1 INFLUENCED CROP VOLUME BY PLANT-SOIL FEEDBACK MECHANISMS 
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5.3 OBJECT-BASED IMAGE ANALYSIS AND TEMPLATE MATCHING 

A relative recent paradigm shift in RS has taken place during the last twenty years, from a pixel-

based model to an object-based contextual (Hay and Castilla 2008). The Machineseg program 

developed in 1984, was one of the first object detection techniques in RS. It could identify roads 

based on shape, size, and spectral information (Flanders, Hall-Beyer, and Pereverzoff 2003). 

Revolutionary software that strengthened the paradigm shift is eCognition, which was released in 

late 2000. The following main object detection approaches can be distinguished: 1) Template 

matching-based; 2) OBIA-based; 3) Knowledge-based; and 4) Machine learning-based (Cheng and 

Han 2016). Knowledge-based and machine learning-based will not be treated in this research but 

could be interesting in further research.  

OBIA builds vector-objects based on raster data and starts to build a critical bridge between the 

raster-domain of RS and the primarily vector-domain of Geographical Information Systems (GIS) 

(Blaschke 2010). With OBIA meaningful multi-pixel objects can be created using spectral and 

spatial characteristics (Flanders, Hall-Beyer, and Pereverzoff 2003). Object variations like shape, 

size, and patterns can be derived from textural, contextual, and morphological features within the 

images. Conventional pixel-to-pixel approaches lack these capabilities and have difficulty with 

adequately exploiting contextual information or expert knowledge. It is hard to discriminate natural 

objects in especially heterogeneous areas with high spectral variability and mixed pixels. This 

makes making statements about object’s dimensions cumbersome (Peña-Barragán et al. 2014). An 

OBIA approach is highly suitable or even mandatory for measuring individual plant dimensions as 

area, height, and volume,.  

Castillejo-González et al. (2009) shows that the accuracy of thematic land-use mapping could 

increase by 22% when using OBIA over pixel-based analysis. Several studies confirm that OBIA 

can give much higher accuracies and enhance spectral separability compared to a pixel-based 

approach in thematic mapping (Yan et al. 2006, Platt and Rapoza 2008 Wang, Sousa, and Gong 

2004; Peña et al. 2014; Verhoeff 2017; Peña-Barragána et al. 2012).  

Segmentation and classification are fundamental parts of OBIA, as illustrated in figure 5.2. 

Segmentation is based on colour, texture, shape, and/or pixel-scale (Cheng and Han 2016). 

Segments are regions with homogeneity on one or more dimensions of a feature space (Blaschke 

2010). Classification is based on rule-based decisions and fuzzy logic classifiers. After completion, 

an accuracy assessment that measures how well the objects are selected and classified compared to 

existing geographic objects is important (Cheng and Han 2016). From an algorithmic perspective, 

there are four categories of segmentation: point-based, edge-based, region-based, and combined 

(Blaschke, 2010).  
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FIGURE 5.2 FLOWCHART OF OBIA-BASED OBJECT GENERATION 

The multiresolution image segmentation (MIRS) algorithm is a patented algorithm included in 

eCognition. It is a region-growing segmentation algorithm that creates multi-pixel object primitives 

based on both spatial and spectral features (Flanders, Hall-Beyer, and Pereverzoff 2003). It takes 

individual pixels as a starting point and merges the most similar adjacent regions, considering a 

user-defined threshold (scale-factor) for the maximum internal heterogeneity. The algorithm 

creates a hierarchy of fine objects. Those fine objects can be aggregated to larger objects during a 

classification process based on their hierarchy (Benz et al. 2004). Image segmentation algorithms 

always deal with the following trade-off: averaging pixels over a larger area is needed to be certain 

about a pixel’s class, while this makes the location of the object’s boundaries less certain (Bhalerao 

1995). MIRS can help overcome that problem by producing fine objects. It is hard to describe the 

algorithm in further detail as not all details are available. 

The scale-factor of MIRS defines the maximum standard deviation of the homogeneity criteria, as 

shown in figure 5.3, while respecting the weights of the image layers. Defining the optimal scale-

factor is not a standardized process. A large scale-factor results in large objects and vice versa 

(Wang, Sousa, and Gong 2004). Moreover, segmentation results also depend on data characteristics 

like the number of spectral bands, spatial resolution, image quantization, and scene characteristics 

(Stumpf and Kerle 2011).  

 

FIGURE 5.3 MIRS WORK FLOW DIAGRAM 
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Another segmentation method is segment mean shift, an unsupervised region-based segmentation 

algorithm that is included in the GIS software package ArcGIS. It uses a moving window with a 

certain bandwidth parameter. The algorithm seeks local maxima of density in the feature space. If 

the centre of a moving window matches with a centroid of points (local maxima of density), then 

the whole window is classified as a homogeneous vector-object. The steps of a moving window 

are larger within low-density regions and smaller in high-density regions (Tao, Jin, and Zhang 

2007). This process is summarized in figure 5.4.  

 

FIGURE 5.4 SEGMENT MEAN SHIFT EXPLAINED 

Template Matching (TM) is a measure of similarity between a template and a feature within an 

image (Lewis 1995; Kalantar et al. 2017); it is one of the simplest and earliest approaches of object 

detection. An overview of TM is shown in figure 5.5. The first step is template generation, which 

can be hand-crafted or learned-based on a training dataset. The second step is a similarity measure, 

the template is positioned and compared in all different positions. There are two main TM 

categories: rigid-TM and deformable-TM. Rigid-TM is applicable on objects with small variations 

and a simple appearance (e.g. roads). The template must be precise. It is sensitive to shape and 

density variations (Cheng and Han 2016). Deformable-TM is introduced by Fischler and Elschlager 

(1970), it can deal with shape deformations and intra-class variations (Cheng and Han 2016).  

 

FIGURE 5.5 FLOWCHART OF TM-BASED OBJECT DETECTION 
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Deformable-TM could roughly be divided in two classes: free-form deformable templates and 

parametric deformable templates. Free-form deformable templates take an arbitrary object shape 

with general constraints on aspects like continuity and smoothness. It is simple and easy to 

implement, but it is sensitive to change in shape and viewpoint, and is dependent on scale and 

rotation. Parametric deformable-templates use a formula to parameterize the object and its 

variations. It is powerful and flexible in dealing with the object’s shape and intra-class variations. 

On the other hand, computations are extensive and prior information on the geometrical shape is 

required (Cheng and Han 2016). A relevant study on the detection of tree-crowns on medium 

resolution UAV-imagery is done by Hung, Bryson, and Sukkarieh (2012).  

When building a template library for rigid-TM the following aspects should be taken in 

consideration: object’s shape, template size, image’s brightness, and shadow direction (Tiede et al. 

2017). Rectangular shapes can have shadows on a single-side or two-sides. With round objects, 

shadow can only occur at a single-side. A template should cover the object including all shadow 

directions and parts of the surrounding area. At last, it is important to select objects at different 

locations, other weather conditions, solar azimuth angles, and time-scales (Tiede et al. 2017).  

Verhoeff (2017) successfully applies rigid-TM. He uses Adaptive Gaussian thresholding (AGT), 

which uses a moving window with a user-defined window size and threshold value (TV). The TM 

algorithm implemented in eCognition uses normalized cross-correlation. Cross-correlation is a 

sophisticated recognition technique for detecting features. Cross-correlation normalizes both the 

template and image to unit length. It is a measure of similarity between two real-valued functions, 

f and g, incorporating a function of displacement (t) relating to the functions f and g. Cross-

correlation has a few drawbacks. Feature matching could fail if the energy displayed on an image 

is not constant, e.g. when there are bright spots. Furthermore, cross-correlation measurements are 

dependent on template’s size and image amplitudes (Lewis 1995). 

Cheng and Han (2016) show that OBIA methods and TM are generally handled separately. A 

typical problem of TM is a high number of false positives in more complex images. With generated 

OBIA-objects irrelevant areas can be excluded, this is so-called stratified TM (Tiede et al. 2017). 

A workflow, in which TM and OBIA are integrated, is recently found as a suitable and accurate 

method to detect a variety of objects within VHR images. Such objects are for example dwellings 

within refugee camps (Tiede et al. 2017) and oil palm trees (Kalantar et al. 2017). 
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5.4 SPECTRAL ANALYSIS  

Processing, interpretation, and analysis of retrieved RS data is needed. The energy interacts with a 

target-object and is reflected over many wavelengths of the electromagnetic spectrum. The 

reflection over these wavelengths is shaped by distinct properties of the target-object (Campbell 

and Wynne 2011). Reflectance data within the visible (VIS) and near-infrared (NIR) regions of the 

electromagnetic spectrum is an effective source of information for: monitoring vegetation, 

quantifying biochemical and biophysical plant traits, and temporal monitoring of plant 

development (Candiago et al. 2015).  

RS can give accurate approximations of biochemical aspects like chlorophyll for specific areas in 

the field (Franceschini et al. 2017). The amount of chlorophyll could give an estimation of the rate 

of photosynthesis and the crop’s response on N application (van Evert et al. 2012). More important, 

chlorophyll is an import proxy for plant productivity in space and time (Houborg, Fisher, and 

Skidmore 2015). The reflectance in the NIR does mainly rely on leaf structure, and reflectance in 

the VIS mainly relies on leaf chlorophyll content (LCC) (Daughtry et al. 2000). Measurements in 

the red edge region show best results for predicting N. Both the green (550nm) and red edge 

(710nm) bands show a high correlation with chlorophyll (Kooistra and Clevers 2016). Figure 5.6 

shows the VIS region of the electromagnetic spectrum, including the red edge and lowest part of 

the NIR region. 

 

FIGURE 5.6 SPECTRAL BANDS IN THE VISIBLE SPECTRUM 

The reflected light of plants has a characteristic spectral signature, which is affected by the 

morphology and physiology of the plant, and the open soil between canopies (Gates et al. 1965). 

Vegetation indices (VI) are appropriate for estimating plant traits. VIs are arithmetic calculations 

on the light reflected at different wavelengths. VIs vary in spectral wavelengths used for the 

calculations, have varying spectral resolutions (bandwidths), and use different arithmetic formulas 

(Rasmussen et al. 2016). The most common specializations of VIs are: LCC, above ground 

biomass, leaf area index (LAI), and N content (Rasmussen et al. 2016). Some are sensitive to LAI 

while insensitive to other aspects, like background and LCC (Kooistra and Clevers 2016). 

The earliest and most commonly VIs used are based on spectral bands in the red and NIR region. 

Differences of reflectance within and between these regions is characteristic for dense green 

vegetation. The Normalized Difference Vegetation Index (NDVI) is the most common VI. It is the 

ratio of NIR – red over NIR + red (Tucker 1979). The red edge region between 680 and 780 nm 
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has proven to be a good measure for LLC, N, and LAI, with low sensitivity for canopy structure 

(Wu et al. 2008; Ciganda, Gitelson, and Schepers 2009; Clevers and Kooistra 2012; Franceschini 

et al. 2017). Common VIs in the red edge region are Red Edge Position (REP) (Cho et al. 2007; 

Clevers and Kooistra 2012), MERIS Terrestrial Chlorophyll Index (MTCI) (Dash and Curran 

2004), MCARI (Haboudane et al. 2002), and red edge Chlorophyll Index (CI red edge) (Kooistra and 

Clevers 2016).  

NDVI =  
NIR − Red

NIR + Red
 

Several VIs are specialized in measuring LCC. Few VIs show correlations with LAI, height, and 

N. According to Meij et al. (2017) only NDVI [735,750], REP, and MTCI have, besides a strong 

correlation with LCC, a relatively high correlation with N content in avena crops. REP, MTCI, and 

MCARI/MTVI2 have the highest correlation with plant height. Correlation with LAI is limited. A 

VI for which LAI plays a relative large role (16.2% of the variation explained by LAI) is 

Chlorophyll Vegetation Index (CVI) (Kooistra and Clevers 2016). According to Kooistra and 

Clevers (2016) the CVI is also an effective VI for estimating LCC of potato plants. CVI requires 

bands in the green, red, and NIR range of the spectrum. 

Franceschini et al. (2017) found that most VIs are overestimating LCC when used on UAV-

imagery; red edge region VIs overestimate less. Red edge region VIs are considered to be the best 

predictors of LCC. Moreover, they show that MTCI has the best performance for the estimation 

of LCC for potato plants. An experiment with butterhead lettuce shows that red edge indices give 

better estimations on LCC compared to NDVI (Filella et al. 1995). Jones et al. (2007) shows that 

NDVI based on the red band 680 provided the best estimate of LCC for spinach plants. 

Experiments of Clevers and Kooistra (2012) shows that especially the red edge variations of 

MCARI/OSAVI [705, 750] and TCARI/OSAVI [705,750] are the best indices for estimating LCC of 

potato plants.  

The following red edge VIs are used: REP, MTCI, MCARI/OSAVI [705,750], TCARI/OSAVI 

[705,750], NDVI [735,750], NDVI [720,820], and CI red edge. Besides, the following regular VIs are used: 

NCVI [650,800], MCARI/MTVI2, MCARI/OSAVI, TCARI/OSAVI, CVI, and CI green. The indices 

used are shown in table 5.2 including their formulas, sensitivities, and sources. Red and green 

coloured names represent the red edge and regular indices respectively. 
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TABLE 5.2 VEGETATION INDICES EVALUATED IN THIS STUDY 

Vegetation Index Formula Sensitivity Source 

Cl green R780

R550
− 1 

LCC Gritz, and Merzlyak 

(2003) 

CVI R870

R550
∗

R670

R550
 

LCC and 

LAI 

Vincini, Frazzi, and 

D’Alessio (2008); 

Kooistra and 
Clevers (2016) 

MCARI / MTVI2  (R700-R670-0.2(R700-R550)) (
R700
R670

)

1.5(1.2(R800-R550)-2.5(R670-R550))

√2(R800 + 1)2 - 6(R800-5√R670 − 0.5

          

 

Height, N 

and LCC 

Tian et al. (2011); 

Meij et al. (2017) 

MCARI / OSAVI ((R700 − R670) − 0.2(R700 − R550))(R700/R670)

1.16(R800 − R670)/(R800 + R670 + 0.16)
 

LCC Daughtry et al. 

(2000) 

NDVI [650,800] R800 − R650

R800 + R650
 

Overall 

condition 

canopy 

(Tucker 1979) 

TCARI / OSAVI 3((R700 − R670) − 0.2(R700 − R550) (
R700
R670

))

1.16(R800 − R670)/(R750 + R670 + 0.16)
 

LCC Haboudane et al. 
(2002) 

CI red edge R780

R710
− 1 

LCC Gritz, and Merzlyak 

(2003) 

MCARI /  

OSAVI red edge 

((R750 − R705) − 0.2(R750 − R550))(R750/R705)

1.16(R750 − R705)/(R750 + R70

5 + 0.16)

 
LCC Wu et al. (2008) 

MTCI R755 − R710

R710 − R680
 

Height, N 

LCC 

Tian et al. (2011); 
Meij et al. 2017) 

NDVI [735,750] R750 − R735

R750 + R735
 

Height, N 

LCC 

Meij et al. (2017) 

NDVI [720,820] R820 − R720

R820 + R720
 

Height, N 

LCC 

Meij et al. (2017) 

REP 
700 +  45 ∗

Rre − R700

R740 − R700
 Rre =

R670 + R780

2
 

Height, N 

and LCC 

Cho et al. (2007); 

Meij et al. (2017) 

TCARI /  

OSAVI red edge 
3((R750 − R705) − 0.2(R750 − R550) (

R750
R705

))

1.16(R750 − R705)/(R750 + R705 + 0.16)
 

LCC Wu et al. (2008) 
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6 STUDY AREA AND DATA 

6.1 STUDY AREA 

The field experiment is established in 2015 to investigate the legacies of different monocultures 

and mixtures grown during winter on the succeeding summer crops: avena sativa (oats) and 

cichorium endivia (endive). Lolium perenne (perennial ryegrass), raphanus sativus (radish), 

trifolium repens (white clover), and vicia sativa (common vetch) monocultures and their mixtures 

lolium + trifolium and raphanus + vicia are the used winter crops. One of the plant-soil treatments 

is classified as fallow, which means that the plot did not receive a treatment. The acre is property 

of Wageningen UR, specific coordinates are: 51°59’41.72’’ N and 5°39’17.89’’ E using WGS-

1984. The acre is divided in 120 plots of 3 × 3 m, of which 60 cichorium plots, each plot consists 

of two experimental units (1.5 × 3 m). Each crop rotation treatment is performed five times in a 

random order over the acre. Some plots accommodate two different mixtures, each within an own 

experimental unit (Barel et al. 2018). 

 

FIGURE 6.1 OVERVIEW OF THE STUDY AREA BASED ON THE RGB IMAGERY 
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6.2 SENSORS USED 

The lightweight hyperspectral mapping system (HYMSY) used has an ordinary camera with 16 

megapixels (Panasonic GX1), a pushbroom spectrometer (PhotoFocus SM2-D1328 + Specim 

ImSpector V10 2/3), and an IMU-enhanced GPS sensor for calibration (XSens MTi-G-700) on 

board. The spectrometer has a spectral range of 400 to 950 nm, a spectral resolution of 10nm, a 

speed of 25 lines/second, and a spatial resolution of 328 pixels/line (Suomalainen et al. 2014). The 

HYMSY can create orthophotos at 1-5 cm resolution, DSMs at 5-10 cm resolution, and 

Hyperspectral Datacubes (HSD) at 10-50 cm resolution (Suomalainen et al. 2014). 

Fresh biomass is recorded by clipping a small area per plot and weighing all above-ground 

vegetation. Dry biomass is derived by drying the fresh biomass in an oven of 70°C (Meij et al. 

2017). 

6.3 DATA DESCRIPTION 

Four datasets are provided, the specifications of these datasets are summarized in table 6.1. All 

images are projected in UTM zone 31N using WGS-84 global datum. The DSM and orthophoto 

are derived from the RGB photos using Agisoft PhotoScan Pro and steps described by Suomalainen 

et al. (2014). The imagery is geometrically corrected and radiometrically calibrated according to 

the procedures of Suomalainen et al. (2014). Required additional pre-processing is described in 

chapter 7. 

TABLE 6.1 DATASETS AND SPECIFICATIONS 

An HSD combines spatial and spectral dimensions in a three-dimensional Datacube. X and y 

represent the spatial dimension and λ the spectral dimension. It consists of a set of images all 

collected at a narrow spectral band positioned in the electromagnetic spectrum (McNamara et al. 

2009). The images are divided into 94 adjacent bands with 5 nm intervals between 450 to 915 nm. 

 

 

Dataset  Spatial resolution Spectral resolution Spectral range 

Orthophoto 1px = 1.5 cm N.A. RGB 

 

Digital Surface Model (DSM) 1px = 2.9 cm 

 

N.A. RGB 

Hyerspectral Datacube (HSD) 1px = 13.4 cm 

 

5 nm 450-915 nm 

Field Measurements N.A. 

 

N.A. N.A. 
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7 PRE-PROCESSING 

7.1 IMAGE RECTIFICATION 

To avoid including spectral data from non-crop pixels within crop-objects, OBIA requires strict 

alignment between image-objects based on the orthophoto and other data-layers. With pixel-to-

pixel analysis, the negative effects of misalignment on the results could be averted by manually 

selecting samples away from crop-edges, as is done by Meij et al. (2017). Image rectification is a 

transformation process to project images with different alignment and proportions onto a common 

image plane. It allows merging images taken from different perspectives into a common projection 

system. Geometric distortions can occur in images, which can be caused by: misalignment, 

variability of the platform’s attitude and altitude, lens distortions, and different viewing angles 

(Xiang and Tian 2011). The UAV used contains two separate sensors, an optical camera and a 

hyperspectral sensor, and therefore the risk of misalignment between the images (Suomalainen et 

al. 2014). Figure 7.1 (left) shows too much misalignment between the RGB image and the HSD. 

The HSDs for both flight lines are rectified. Its improved final alignment is shown in figure 7.1 

(right). 

 

FIGURE 7.1 COMBINATION OF THE RGB ORTHOPHOTO, THE RECEIVED HSD (LEFT) AND NEW 

HSD (RIGHT); WITH THE HSD SHOWN WITH 50% TRANSPARENCY 

The spectral images of two flight lines are rectified using Hexagon Erdas Imagine software. Image 

rectification needs a reference layer with clearly recognizable objects. First ground control points 

(GCP) and reference points (RP) are selected equally distributed over both flight lines. Thereafter 

a polynomial transformation as described by Richards (2013) is applied to shift the HSD images. 

The RGB orthophoto could be used as a reference layer, but it is decided to use the OBIA crop-
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objects as described in paragraph 8.1 and 9.1. It makes it easier to distinguish plot and crop borders, 

as it displays the edges of plots and crops properly. 

RPs are placed on the corners of cichorium plots. GCPs are placed on the HSD, which is an error-

prone process as edges are not always displayed clearly. At first attempt, 10 GCPs were used for 

the resampling operation. Based on visual inspection, it is concluded that the resulting image still 

shows too much misalignment at some plots. It is decided to place RPs and GCPs on all suitable 

plots containing cichorium, which results in improved alignment. Flight line 1 contains 117 GCPs 

with a root mean square (RMS) error on the x-asis of 0.2105 (pixels) and 0.1872 on the y-axis. For 

flight line 2, 119 GCPs are placed resulting in an RMS error on the x-axis of 0.2090 and 0.1506 on 

the y-axis. 

The higher the polynomial transformation order, the more complex distortions can be corrected. A 

higher order polynomial shift requires more calculation power and could cause more errors, but 

results are perceived to be more accurate (Richards, 2013). Polynomial shifts with an order up to 7 

are executed, but results do not improve after the second order. A second order polynomial shift is 

applied to rectify the images. To determine and calculate new pixel reflectance values for the new 

shifted raster image, a resampling algorithm is used. The following three algorithms are most 

common: nearest neighbourhood resampling, bilinear interpolation, and cubic convolution 

interpolation. Nearest neighbourhood is often chosen for large images as it is least time consuming 

(Richards 2013). Experiments show that bilinear and cubic convolution show slightly better results. 

In our case the difference in calculation-time is negligible, and resampling is done based on cubic 

convolution. For more information on these techniques, see Richards (2013). 

7.2 CROP SURFACE MODEL 

The DSM contains height values of the top surface, in respect to a vertical coordinate system. A 

vertically coordinate system is based on an ellipsoid which is a mathematically defined surface that 

approximates the true figure of the earth or the geoid. The DSM`s height values could represent 

both terrain and crops, or only crop height when actual terrain height is similar or lower than the 

ellipsoid. The DSM is created by digital aerial photogrammetry (DAP), with DAP it is not possible 

to look through vegetation to derive terrain heights, like LiDAR technology can (Vastaranta et al. 

2014). A first step is deriving a digital terrain model (DTM) from the DSM. The second step is 

normalizing the DSM with the DTM to derive a model representing crop heights, a so-called crop 

surface model (CSM). Figure 7.2 shows an overview of the DSM, DTM, and normalized DSM 

(CSM).  
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FIGURE 7.2 OVERVIEW OF THE DSM, DTM AND CSM 

The DTM is created by interpolating the height values of areas between plots. Only if enough areas 

without vegetation cover are available in the image, can an accurate DTM be created (Goodbody 

et al. 2017). Higher areas are overrepresented within the DSM; objects do not have sharp edges 

and height values decrease smoothly away from the object. The plots in the field are erased from 

the DSM, including a 30-centimeter buffer to compensate for the explained phenomenon. 

Literature confirms that heights of objects are mainly underestimated at the edges and area-cover 

is overestimated when using height models created by DAP (Tilly et al. 2014). 

The resulting raster is turned into a point cloud, containing 1,112,497 point-features. This point 

cloud is used to interpolate the final DTM. A random point sample is selected, containing 0.1 

percent of all points, to enhance calculation speed of interpolation and to have more equally 

distributed points. Inverse distance weighted (IDW), Triangular Irregular Network (TIN), Kriging, 

and Natural Neighbour (NN) are the three most common interpolation techniques. The best linear 

unbiased estimates are provided with the Kriging technique while IDW is much quicker and 

simpler (Mueller et al. 2004). The NN method uses the same basic equation as IDW, is as efficient, 

and does not need user-specified parameters. The NN method is appropriate for point-features with 

an uneven distribution and density. It limits overshoots of local high values and undershoots of 

local low values (Boissonnat and Gazais 2002). The final DTM is created by NN because of those 

advantages. 

The mosaic-line within the orthophoto is distinguishable in the DSM. Along both sides of the 

mosaic-line height values can deviate. This has effect on the interpolation and results in incorrect 

crop height values around the mosaic-line, which are close to zero or negative. This is the case for 

plot 105, 106, and 108, as shown in figure 7.3. These plots are excluded in further geometric 

analysis. 
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FIGURE 7.3 PLOT 105, 106 AND 108 WITH INCORRECT CROP HEIGHT VALUES DISPLAYED ON 

THE CSM 

7.3 CREATING PLOTS  

Plot-objects, or so-called areas of interest (AOI), need to be created in order to relate image-objects 

to a certain experimental plot and treatment. Creating those plots is done according to a custom 

workflow in Esri Arcmap, as presented in appendix XII. OBIA crop-objects as described in 

paragraph 8.1 and 9.1 are a required input for the workflow. Most single crops are in fact 

represented by a larger object due to leaf overlap, as visible in figure 7.4. The workflow selects the 

largest objects based on a certain threshold (> 1 m2) and these are taken as the basis for the plots. 

In some cases, individual cichorium crops are stored as single objects and are attached to the main 

plot. This is done by creating buffers of 10 centimetres around the largest objects and merging them 

with intersecting smaller objects. Finally, the created plot-objects are numbered and ready for 

further use. Figure 7.4 shows an example of input crop-objects and an output plot-object. 

 

FIGURE 7.4 CREATING PLOT-OBJECTS BASED ON OBIA OUTPUT 
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8 METHODOLOGIES 

This chapter describes the actions taken to investigate the research problem, including analysis 

steps and choices made. Consult chapter 7 for actions taken related to data pre-processing. The 

Object-Based Image Analysis exists of two parts, segmentation and classification, which are both 

executed in eCognition. Moreover, the TM process is described, which exists out of building a 

template library and applying a rigid-TM algorithm as described in paragraph 5.3. This chapter 

describes how TM and OBIA are combined, and how further spectral and geometrical analyses are 

executed and visualized. The goal is to find the most optimal settings for each processing step and 

to get the most accurate results possible. The analysis steps and software used are described in table 

8.1.  

TABLE 8.1 ANALYSIS STEPS AND RELEVANT SOFTWARE PACKAGES 

Step Activity Software 

1A Pre-processing: Rectification HSD Erdas Imagine 

1B Pre-processing: Interpolation and calculation CSM Arcmap 

2A OBIA: Image segmentation and classification eCognition  

2B TM: Generation template and execution matching eCognition 

3A Processing: Creation AOI’s (plots) Arcmap  

3B Processing: Join geometric and hyperspectral attribute 

data on vector-objects 

Arcmap  

4A Geometric analysis: Calculation volumes Arcmap, Python (Pandas and Scikit) 

4B Hyperspectral analysis: Application vegetation indices Python (lib.: Pandas and Numpy) 

5 Visualizations: Plot statistics Python (lib.: Pandas and Seaborn) 

8.1 OBIA APPLIED 

Prior to the research project, several segmentation methods and techniques included in available 

software programs and libraries were explored and assessed: those are segment mean shift included 

in ArcGIS, algorithms in Orfeo Toolbox, and multi resolution image segmentation included in 

eCognition. The segment mean shift algorithm is described in paragraph 5.3. Unfortunately, this 

algorithm cannot be described as a truth OBIA method. It produces a classified raster image instead 

of meaningful vector-objects; its main purpose is image classification. Individual crops could not 

be clearly distinguished. Alternatively, Orfeo Toolbox could be used which contains several 

segmentation algorithms: segment mean shift, connected components and watershed segmentation. 

eCognitions’s multi-resolution image segmentation (MIRS) algorithm gets most attention in 

previous research articles on image segmentation. Neubert et al. (2001) show that MIRS does best 

segmentation based on VHR imagery compared to several other segmentation algorithms. Different 

papers show excellent results for building image-objects with MIRS (Flanders, Hall-Beyer, and 

Pereverzoff 2003; Cheng and Han 2016). MIRS will be used and is further elaborated in this 

chapter. A further comparison of software packages and algorithms is not given. 
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The RGB image is used as input for MIRS. The available hyperspectral data and elevation data are 

considered as possible additional sources for segmentation, as it could enhance final segmentation 

results. Unfortunately, this is impossible due to too much difference in resolution between all data 

sets and too much geometric distortion within the hyperspectral data. Data fusion with raster data 

sets is only possible with adequate alignment between images. The following time-consuming 

OBIA related steps are taken: first, determine the right parameters for MIRS; second, define the 

rules for classification; third, manually check OBIA results with the plots or areas of interests 

(AOI). 

The segmentation algorithm uses three parameters as described in paragraph 5.3 and shown by 

figure 5.4: the scale-factor, the weight of shape heterogeneity, and the weight of compactness. In 

addition to those parameters, the outcome of the segmentation depends on several other choices. 

The choices are related to the weight factors used for the spectral bands and classification rules. 

All settings and parameters are tested in isolation. In other words, when an individual parameter is 

tested, all other parameters are kept on default. It would be too complicated and time-consuming 

to test all combinations; using a programming language would allow more extensive testing, but 

eCognition does not allow this. A decision upon the most optimal parameter is made based on the 

visual results, those results are shown in the appendices.  

The first test adjusts the weights of the individual spectral bands, according to the values in table 

8.2. By default, the weights are equal. It is expected that increasing the weight value of the green 

band would have positive effects on the segmentation results as the green band shows most contrast 

between crop-covered areas and other land cover types. A higher weight for the green layer results 

in slightly more isolated crop-objects. Moreover, the shapes of resulting crop-objects differ slightly 

but they are not convincingly smaller or larger. It is decided to keep all band layer weights equal. 

A comparison of segmentation results using weight factors 1 and 20 for the green layer is shown 

in Appendix II.  

TABLE 8.2 TESTED VALUES MIRS PER PARAMETER  

Parameter Values 

Scale-factor 1 5 10 15 20 25 30 35 40 45 50 
 

Shape 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
   

Compactness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
   

VI (TGI) threshold value 10 15 20 25 30 35 36 37 38 39 40 45 

Red band weight factor 1 2 3 5 10 15 20 
     

Green band weight factor 1 2 3 5 10 15 20 
     

Blue band weight factor 1 
           

The second test adjusts the scale-factor. This is a user-defined threshold value for the maximum 

internal heterogeneity within an object (Benz et al. 2004); a lower scale-factor results in smaller 

objects. With a low scale-factor (e.g. value 5) and thus small objects, the final classified objects 

look grainier. When using a scale-factor higher than 10, some non-crop areas between crops are 

wrongly classified as crops, thus enabling potential overestimation of cichorium-covered areas. 
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Images of this test are shown in Appendix III. The default scale-factor 10 is chosen for the final 

segmentation. 

The third test increases the shape factor with steps of 0.1 between 0.1 and 0.9. The higher the value, 

the lower the influence of colour on the segmentation process. With the highest possible value of 

0.9 some cichorium crops are missed. For the example plot shown in appendix IV there are five 

crop areas not detected as crop when using value 0.9. It is concluded that there are no significant 

improvements when increasing the default value of 0.1. 

The fourth test adjusts the compactness value. It defines the weight of the compactness criterion, 

the higher the value the more compact image-objects may be. The default value is increased with 

steps of 0.1 between 0.1 and 0.9. The higher the compactness value the less protrusions are 

observed. Changes are minor and above 0.5 negligible, results are shown in appendix V. 

For the classification of the objects three VIs suitable for RGB images are explored: an adjusted 

version of NDVI (Rabatel et al. 2011), VARI and TGI (Mckinnon and Hoff 2017). Appendix VI 

shows applications of the three VIs. TGI shows highest contrasts and cichorium is standing out 

more clearly. Moreover, edges of individual crops are shown more clearly with TGI. The formula 

is: 

𝑇𝐺𝐼 = 𝐺𝑟𝑒𝑒𝑛 − 0.39 ∗ 𝑅𝑒𝑑 − 0.6 ∗ 𝐵𝑙𝑢𝑒 

Small objects can be classified and merged to larger crop-objects based on a TGI value. The 

minimum TGI value or threshold value is found by trial-and-error. The most optimal threshold 

value found is 38. Appendix VII shows the classifications for values 37, 38 and 39. When using 

value 37 more open spots within the plots and areas outside the plots are classified as cichorium 

crops, which are so-called false positives. The amount of missed cichorium crops is low, so-called 

false negatives. When increasing the value to 38, there are more open areas within the plots while 

the classification still seems to cover the cichorium crops properly. With TV 39 some crops are 

completely missed in the classification. 

8.2 TEMPLATE MATCHING 

An optimized template is created during an iterative process, consisting of two main steps: sample 

template selection and template testing. A template library is built from several manually selected 

samples. As described in paragraph 5.3 samples with different shapes, sizes, and shadow directions 

should be selected. Crops can have overlap on four sides; those are all included in the initial 

template library. The different categories are: no-overlap, one-side, two-side, three-side, and four-

side overlap. In addition, other contextual factors should be considered: crops within high-density 

plots, surrounded by bare soil, situated at a plot’s corner, and with shadow. Those criteria resulted 

in eight selected template samples, presented in table 8.3. A first average template is created based 
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on those 8 samples, the values of the overlapping pixels are averaged. Figure 8.1 shows the results 

of TM.  

TABLE 8.3 INITIAL SAMPLE TEMPLATES 

No-overlap (bare soil) 

 

 

Two-sided overlap   

 

 

Three-sided overlap 

 

 

Four-sided overlap 

(high-density plot) 

 
Non-shadow side 

 

Shadow side 

 

Plot corner 

 

Error 

 

A region is selected to test the initial average template. This region should include at least one plot 

with cichorium crops and part of the remaining features within the image: bare soil and other 

vegetation. A test region containing one plot and part of the described surrounding area can contain 

around 350 to 500 generated matches compared to approximately 100 actual crops. Features that 

match the initial template are automatically selected and manually checked afterwards. This 

workflow is facilitated by eCognition, which classifies matches as correct or incorrect. Based on 

the correct matches and initially selected samples, a new average template is generated. TM is 

executed on a single spectral band. The band with the highest visual contrast between crops and 

background, and the highest correlation score during testing is selected. The template test gives a 

correlation score between 0-1. TM is executed three times, once for every spectral band: red, green, 

and blue. The green band shows both the highest contrast and highest correlation: 0.768 compared 

to 0.627 (red band) and 0.591 (blue band). 

 

FIGURE 8.1 GENERATED TEMPLATE 
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TM uses two parameters: a rotation angle and a correlation threshold. The rotation angle defines 

how many times the template rotates each step. The rotation angle parameter does not need 

extensive testing. The crops are round-shaped which makes template rotation unnecessary. The 

correlation threshold determines when a match is detected; a lower value results in more matches 

and potentially more false-positives. Correlation threshold values between 0.30 and 1 are tested, as 

shown in table 8.4. The threshold value is decreased by steps of 0.05 from 1 onwards, until no 

additional crops are detected within plots. A threshold value of 0.55 resulted in 10,883 identified 

crops and 0.35 resulted in 21,500 identified crops. 

TABLE 8.4 TESTED VALUES TEMPLATE MATCHING PER PARAMETER  

Parameter Values 

Input layer Red Green Blue 
         

Rotation angle 0 
           

Correlation threshold 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.8 0.9 1 

To evaluate the results of TM, the true positives (TP), false positives (FP), and false negatives (FN) 

should be counted and used to calculate an accuracy index (AI). A point is considered a TP when 

it correctly represents the geographical crop-object. Table 8.5 explains what TPs, FPs, FNs, and 

true negatives (TN) are in respect to our research. True negatives are not produced during the 

analysis. The algorithm finds crops and does not find areas without trees. Following two research 

papers (Pouliot and King 2005; Pouliot et al. 2005), an accuracy index quantifying the trade-off 

between omission (FP) and commission errors (FN) can be defined as the formula below. The FN 

value will be zero. The equitation allows for negative AI values if the performance is poor. 

𝐴𝐼(%) = 100 (1 −
𝑁𝐹𝑃 + 𝑁𝐹𝑁

𝑁𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
) 

TABLE 8.5 A DESCRIPTION OF TPS, FPS, FNS, AND TNS 

True Positive 

 

Reality: There is an actual crop  

Computer says: Crop (point-feature)  

False Positive 

 

Reality: There is no actual crop  

Computer says: Crop (point-feature)  

False Negative 

 

Reality: There is an actual crop 

Computer says: No crop (no point-feature)  

True Negative 

 

Reality: There is no actual crop 

Computer says: No crop (no point-feature)   
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8.3 INTEGRATION OF OBIA AND TM 

A workflow in which TM and OBIA are integrated could be a suitable and accurate method to 

detect a variety of objects within VHR images (Kalantar et al. 2016; Tiede et al. 2017), as is 

explained in paragraph 5.3. TM and OBIA methods are executed independent and results are 

integrated in further analysis steps. Those methods result in point-features representing identified 

crops and vector-objects representing crop-covered areas. The results will be combined within the 

research’s workflow at three steps. Figure 8.2 gives an overview of the workflow. TM and OBIA 

come together at the following steps:  

1. The image-objects are used to mask (or clip) the point-features;  

2. The number of crops within an image-object is used to calculate the average crop 

volume;  

3. Attributes associated with the image-objects are linked to the individual point-features 

to account for various object sizes and vector image-objects containing different 

numbers of crops. 

 

FIGURE 8.2 WORKFLOW OF THE OBIA AND TM INTEGRATION 

According to Tiede (2014) integrating vector-objects and information of raster images with 

different scales can be complex. Different options are: select pixels fully within the object, select 

pixels with any overlap with the object, and select pixels with a certain minimum overlap with the 

object. As both the CSM and HSD tend to have more error at the edges of real-life objects it is 

convenient to exclude all pixels partly intersecting the object. The chosen solution can be 

categorized as “select pixels with a certain minimum overlap”. The raster cells of the HSD and 

CSM are converted to point-features, representing the cells’ centroid. A value is aggregated to the 

object-level if the point-feature intersects with the object. This ensures that pixels at the object’s 
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edge are aggregated to the object if they have approximately 50 percent overlap. Theoretically a 

pixel with less overlap could also be aggregated to the object if it is underneath a spur of a vector-

object. Finally, the area of the object is used together with the number of point-features within an 

object to calculate average crop volume, as shown in the formula below.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑟𝑜𝑝 𝑣𝑜𝑙𝑢𝑚𝑒 =  
𝐻𝑒𝑖𝑔ℎ𝑡 ∗  𝐴𝑟𝑒𝑎

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑟𝑜𝑝𝑠
 

Figure 8.3 shows that the CSM and HSD do not completely match with the created vector-objects. 

The left image shows hardly recognizable object boundaries in the CSM and the right    image 

shows misalignment of the HSD. The causes of misalignment for the HSD are explained in 

paragraph 7.1 and the error at the object’s boundaries in the DSM in paragraph 7.2. It is debatable 

whether the object-level is the right way for spatially aggregating raster data. Despite this criticism, 

both the CSM and HSD tend to represent the general shapes of the plots adequately. An OBIA 

approach could compensate for errors within crop-covered areas because pixel values will be 

averaged. Due to geometric distortions and spatial resolution, it is decided that claims on the object-

level cannot be done when vector-objects represent small geographical objects like individual 

crops. The vector-object’s attributes are added to the intersecting identified crops and finally 

averaged to the plot-level in further analysis as explained by the workflow in figure 8.2. 

 

FIGURE 8.3 THE CSM (LEFT) AND HSD (RIGHT) COMBINED WITH A CROP-OBJECT 
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8.4 Visualization, statistics and interpretation 

As described in paragraph 8.3 both spectral and geometric attributes are assigned to the individual 

detected crops. Those points are again aggregated to the corresponding plots. This is necessary to 

account for the fact that some vector-objects almost cover the whole plot while others cover smaller 

areas or even individual crops. Not taking this into account would cause misleading variation in 

final statistics. Moreover, the CSM and HSD data-layers are not precise enough for further analyses 

based on small vector-objects. 

The VIs are applied on the spectral object attributes using Python together with the Pandas library 

developed for data manipulation and analysis. Reflectance values for available spectral bands are 

stored in columns within a data table containing all individually identified crops. The Python 

libraries, Matplotlib and Seaborn, are used for visualization of spectral signatures, VIs, average 

crop volumes, and correlations. Python scripts are attached in Appendix XIV to XVII. A boxplot 

is a simple visualization method for insights on basic statistics. It visualizes the median, the 

quartiles, and the highest and lowest values, so-called outliers. The spread, symmetry, and level of 

distribution can easily be identified and described according to the boxplot (Williamson, Parker, 

and Kendrick 1989). 

Murakami and Idezawa (2013) have shown positive correlation between crop-covered areas and 

fresh weights of plants for different treatments of crisphead lettuce. This research will investigate 

if there is correlation with the estimated crop volumes and the in-situ shoot biomass per treatment 

measured by Barel et al. (2018). A suitable correlation test will be executed which describes the 

dependency of the variable volume on the independent variable biomass. The Pearson correlation 

coefficient is a common measure for linear correlation between variables x and y. Pearson 

correlation is sensitive to data distribution; it assumes values to be continuous, normally 

distributed, and linear related. A non-parametric approach could give more meaningful results if 

normality does not hold (Soper et al. 1932). Spearman correlation coefficient is a non-parametric 

measure which describes the relationship’s monotonicity between two datasets and does not 

assume normality (Hauke and Kossowski 2011).  

An Analysis of Variance (ANOVA) or non-parametric Kruskal Wallis test could provide additional 

statistical information. These methods can test for significant differnces between population’s 

means of two or more groups (Fisher 1928). The ANOVA test is used in a similar context by Meij 

et al. (2017); they measured the statistical difference between in-situ quantified plant traits as 

chlorophyll and predicted plant traits. Volume and shoot biomass have incomparable units of 

measurement, so a statistical comparision of the means between those two groups will not be 

carried out in this study. The Spearman correlation test is more suitable.  
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9 RESULTS 

The results of OBIA and stratified TM are presented in this chapter. MIRS and further classification 

results in vector-objects covering cichorium crops adequately, while excluding bare soil within 

plots. TM produces over 21,500 points-features of which 15,000 false positives. An integration of 

the resulting vector-objects and point-features resulted in 8 false positives and 1 false negative for 

crop detection. The overall accuracy rate of the combined methods for identifying crops is 99.8%. 

Technically, the OBIA-based results show two major advantages. First, the method compensates 

for peaks in additional datasets, like the CHM, and underrepresented areas at the object’s edges. 

Those values are aggregated to the vector-object-level. Second, the natural shape of vegetation is 

well represented by the vector-objects. This allows for accurate calculations of crop-covered area 

which is difficult with a common pixel-to-pixel approach and related classification methods.  

9.1 OBIA 

MIRS is executed as described in paragraph 8.1. Highest sensitivity and most influence on the 

OBIA results is shown for the scale-factor, the contrast enhancing VI used, and related 

classification. A scale-factor that is too high will include many shadows within vector-objects. The 

threshold value to classify segments based on the VI is sensitive; crop-covered areas can easily be 

under- or overrepresented if this value is changed. 

MIRS, in combination with a suitable classification, is well capable of distinguishing crop-covered 

areas. The contrast enhancing VI TGI delivers proper results with classification. Both the VI and 

the VI classification threshold could be different for other crop species or light conditions. After 

segmentation and classification, in total 339 objects are identified as cichorium crops. An overlay 

with the plots (AOI) resulted in 138 objects identified as false positives because they are located 

outside the plots.  

A single crop could be covered by several fine segments before classification. Moreover, within 

high-density plots, segments could include parts of two or more individual crops, as shown in figure 

9.1. Single objects for individual crops could not be built by MIRS within a high-density plot. If a 

crop is surrounded by bare soil, around 3-6 centimetre, a single object could be created for that 

crop. Bare soil and shadows are not classified as crop-objects. The objects are highly suitable for 

calculating crop-covered areas and data fusion with additional data-layers. 
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FIGURE 9.1 SEGMENTS CREATED BY MIRS FOR ONE OF THE PLOTS WITHIN THE EXPERIMENTAL 

FIELD. THE RED OBJECT IS AN OBJECT THAT IS PART OF TWO DIFFERENT PLANTS. 

9.2 TEMPLATE MATCHING 

With the final used settings, 21,500 spots are identified as crops, in contrast to the actual total of 

5,930 crops. As described in paragraph 8.2, decreasing the threshold value for TM results in less 

missing crops within plots, which means a smaller number of false negatives but a tremendous 

number of false positives. TM as a stand-alone method is not suitable for crop detection. Visual 

inspection shows that crops are identified precisely within plots, without hardly any false negatives. 

In terms of accuracy, most points are not representing the exact crop’s centroids. The points tend 

to be located more towards the crop’s shadow. TM is non-time-consuming and achieves good 

results. Objects with different characteristics and conditions (e.g. size, shape) can easily be 

included within the workflow. 
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FIGURE 9.2 MATCHES WITH TM FOR PART OF THE EXPERIMENTAL FIELD. 

9.3 INTEGRATION OF OBIA AND TM 

The combination of the resulting objects from OBIA with TM delivers accurate results. The image-

objects are used as a mask for the matches derived with TM as explained in paragraph 8.3. In this 

way, points outside the vector-objects are identified and removed. This results in 5,922 identified 

cichorium crops. All plots are inspected to identify and count false positives and negatives. A false 

positive is found on plot 34 and a false negative on plot 21, 37, 61, 67, 80, 86, 92, 94, and 119. The 

cichorium crops are detected with an accuracy of 99.83%. An example of the combined OBIA and 

TM dataset is presented in figure 9.3; results are summarized in table 9.1. The vector-objects, point-

features, and their integration is shown for the complete field in Appendix IX to XI. 

TABLE 9.1 RESULTS OF TM AND THE COMBINATION WITH OBIA 

Manual Actual number of crops  5,930 

TM Identified crops 21,500 

TM and 

OBIA 

Identified crops combined TM and OBIA  5,922 

True Positives (TP) 5,921 

False Positives (FP) 1 

False Negatives (FN) 9 

Overall accuracy  99.83% 
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FIGURE 9.3 RESULTS OBIA AND TM COMBINED FOR ONE OF THE PLOTS WITHIN THE 

EXPERIMENTAL FIELD. 

9.4 SPECTRAL ANALYSIS 

The spectral signatures of cichorium are discussed and compared for all associated plant-soil 

treatments. Figure 9.4 shows the full spectral signatures; the visible and near-infrared part of the 

electromagnetic spectrum are shown separately in figure 9.5. Within the green part of the visible 

spectrum, the following three plant-soil treatments have the highest average reflectance values: (1) 

the combination of lolium and trifolium, (2) lolium monoculture, and (3) the mixture of raphanus 

and vicia. This higher reflectance could indicate a higher amount of green chlorophyll pigments 

within the plant. Within the near-infrared part of the visible spectrum the following three plant-soil 

treatments have the highest average reflectance values: (1) the combination of raphanus and vicia, 

(2) raphanus monoculture, and (3) vicia monoculture. As described in paragraph 5.3, high 

reflectance at the near-infrared wavelengths is mainly caused by the internal structure of healthy 

leaves. 
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TABLE 9.2 OVERVIEW OF ALL PLANT-SOIL TREATMENTS INCLUDING A CONCLUSION BASED ON 

THE SPECTRAL ANALYSIS 

Abbreviation  Full name  Main conclusion(s) 

Fa Fallow Low performance with leaf chlorophyll content (LCC) related VIs. 

Lp Lolium Low performance with all Vis. 

Rs Raphanus High performance with leaf chlorophyll (LCC) related VIs. 

Rs + Vs Raphanus and Vicia 

mixture 

High reflectance values within the NIR part and spectrum overall. High 

performance with leaf chlorophyll (LCC) related VIs. 

Lp + Tr Lolium and 

Trifolium mixture 

Highest reflectance values in the green part of the electromagnetic 

spectrum. Low performance with all VIs. 

Tr Trifolium Average performance with all VIs 

Vs Vicia Average performance with all VIs 

Notable is that raphanus as a monoculture and mixture has high reflectance values overall which 

likely indicates a high productivity. A quantitative comparison of the productivity between the 

treatments is not directly possible based on the spectral signatures only. A notable treatment is the 

combination of lolium and trifolium, as it has one of the highest reflectance values in the green part 

of the visible spectrum but low reflectance values in the near-infrared spectrum. 

 

FIGURE 9.4 THE SPECTRAL SIGNATURES OF CICHORIUM GROWN IN DIFFERENT EXPERIMENTAL 

PLOTS WITH ASSOCIATED TREATMENTS. PLANT-SOIL TREATMENTS ARE FALLOW, LOLIUM 

PERENNE, RAPHANUS SATIVUS, TRIFOLIUM REPENS, VICIA SATIVA, AND TWO MIXTURES. 
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FIGURE 9.5 THE SPECTRAL SIGNATURES OF CICHORIUM GROWN IN DIFFERENT EXPERIMENTAL 

PLOTS WITH ASSOCIATED TREATMENTS, ZOOMED-IN ON THE VISIBLE (LEFT) AND THE NEAR-

INFRARED PART (RIGHT) OF THE SPECTRUM. 

Figure 9.6 shows two red-edge VIs: MTCI (sensitive for LCC, N, and height) and MCARI/OSAVIr 

ed edge (LCC), and two VIs including green: CVI (LCC and LAI) and CI green (LCC). Additional 

vegetation indices are attached in appendix XVIII and their sensitivities and sources in paragraph 

5.4. A treatment is classified as underperforming if the mean value for a VI is relatively low, the 

variance is relatively large, or both. The most optimal treatment should show a relatively high mean 

and a small variation between image-objects. This could indicate a stable high production; the 

treatment is classified as outperforming.  

The fallow treatment underperforms for most indices like MCARI/OSAVI, TCARI/OSAVI, and 

their red edge counterparts. Fallow shows large variations between plots with REP, CVI, CI green, 

CI red edge, and NDVI [550,800]. The indices where fallow underperforms mainly focus on LCC. 

Despite low performance with the mentioned indices, the treatment performs well with CVI, MTCI, 

NDVI [720,820], and NDVI [735,750]. Together with the low reflectance values in the green part of the 

spectrum, as shown in figure 9.5, this could indicate a low amount of chlorophyll within the crops.  

The underperformance of crops treated with lolium monoculture applies for all VIs and is, 

therefore, much clearer as for fallow. The same applies for the mixture lolium and trifolium, 

although this mixture peforms slightly better for all indices than lolium’s monoculture. The mixture 

raphanus + vicia, and the monoculture raphanus outperform with the MCARI/OSAVI red edge and 

TCARI/OSAVI red edge indices. Both indices are strongly related to LCC but insensitive to other 

aspects as LAI. Raphanus monoculture shows smaller variation between plots compared to its 

mixture, this could indicate a stable high production of cichorium. Raphanus monoculture slightly 

outperforms the mixture and performs equal for all indices. The ranking of the vegetation index 

CVI is deviating from other VIs. CVI which is mainly sensitive to LCC and LAI, shows best results 

for fallow, trifolium and raphanus.  
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FIGURE 9.6 THE AVERAGE VEGETATION INDEX VALUES OF CICHORIUM GROWN IN DIFFERENT 

EXPERIMENTAL PLOTS WITH ASSOCIATED TREATMENTS. VEGETATION INDICES ARE MTCI, 

CVI, MCARI/OSAVI RED EDGE, AND CI GREEN. 

9.5 GEOMETRIC ANALYSIS 

The average plant-volumes in cubic centimetres are visualized in figure 9.7. As described in 

paragraph 7.2, plots 105, 106, 108A, and 108B are removed due to distortion. Those plots are part 

of the following treatments respectively: fallow, lolium, lolium + trifolium, and raphanus + vicia. 

The raphanus monoculture is the most productive treatment based on the volume calculations. 

Raphanus + vicia, vicia monoculture, and trifolium monoculture show good results as well. 

Especially lolium monoculture is underperforming and it is notable that there is a significant 

difference with its mixture. This generally corresponds with the results based on the spectral data. 

The difference between raphanus’s monoculture and its mixture also stands out clearly. A 

vizualization of the average crop volume per plot is presented in appendix XX. 
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TABLE 9.3 OVERVIEW OF ALL PLANT-SOIL TREATMENTS INCLUDING A CONCLUSION BASED ON 

THE GEOMETRIC ANALYSIS 

Abbreviation  Full name  Main conclusion(s) 

Fa Fallow Moderate performance. 

Lp Lolium Lowest performance. 

Rs Raphanus Highest performance. 

Rs + Vs Raphanus and Vicia High performance. Lower performance than Raphanus monoculture. 

Lp + Tr Lolium and 

Trifolium 

Moderate performance. Higher performance than Lolium monoculture. 

Tr Trifolium High performance. 

Vs Vicia High performance. 

Statistical exploration of the volume and shoot biomass data shows that volume is normally 

distributed while shoot biomass is not. These explorative statistics are shown in appendix XIX. 

Shoot biomass’ distribution is more hyperbolic than linear. The hyperbolic distribution could have 

a significant influence on the performance of Pearson correlation coefficient. Pearson shows an f-

value of 0.433 and a p-value of 0.000286. F-value 0 means no correlation, +1 an exact monotonic 

positive relation, and -1 an exact monotonic negative relation. Alternatively, Spearman correlation 

coefficient is used as it does not assume normal distribution. Spearman shows an f-value of 0.462 

and a p-value of 0.000094. 

 

FIGURE 9.7 AVERAGE PLANT-VOLUME (CM3) INCLUDING 95% CONFIDENCE INTERVAL 
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10 DISCUSSION 
The suitability of the investigated methodology for analysing plant traits and plant-soil treatment’s 

legacies is discussed. The emphasis is on both strengths and deficiencies of the followed 

procedures. Important aspects are the degree of detail, accuracy, scalability, and automation. The 

discussion could give more insights on the potential of the methodology for delivering in-time 

information, usable for precision agriculture. This chapter will follow the six research questions 

presented in chapter 3. 

10.1 OBIA 

Multiresolution image segmentation (MIRS) alone is not capable of building single objects for 

individual crops. As described in Benz et al. (2004), the algorithm minimizes the average 

heterogeneity of image-objects over the whole image. It creates a hierarchical structure of fine 

objects; this hierarchical structure could have helped with classification and creating final crop-

objects. Unfortunately, it turns out that too many fine objects cover multiple geographical crop-

objects, as shown in figure 9.1. Despite its fine objects, MIRS likely has problems related to an old 

trade-off in image segmentation: averaging pixels over a larger area is needed to be certain about 

a pixel’s class, while on the other hand, this makes the location of the object boundaries less certain 

(Bhalerao 1995). This finding shaped the rest of the research in terms of further chosen 

methodologies and the level of detail in the results. 

Further research could investigate or develop new algorithms for improved individual crop 

segmentation and classification. It is decided to combine OBIA with a method for object detection. 

TM has the problem of overdetection, as previous described by Cheng and Han (2016). The 

problem is averted by using the OBIA objects for stratification. Individual cichorium crops could 

be detected with an accuracy of 99.83% based on VHR optical UAV-images using OBIA in 

combination with TM. More details on these results are shown in paragraph 9.3 and detected crops 

are shown in figure 9.3 and appendix XI.  

There is some criticism on the classification method used. The classification does not make use of 

the hierarchy between fine objects. This is not possible because fine scale objects are not capable 

of representing single geographical crops, as they often overlap multiple crops. Instead. all three 

spectral bands red, green, and blue are used together within a VI for classification. The suitable VI 

is likely different for other crop species. Moreover, the classification threshold value of the VI is 

highly sensitive in respect to the OBIA results.    

The objects derived with MIRS can be described as crop-covered areas instead of individual crops. 

Only if there is a minor buffer of bare soil (around 3-6 cm) around a crop, can this crop be 

represented by a single image-object, as shown in appendices III to V. This means that individual 
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crop-objects could have been built in early season. Plots include approximately 100 actual crops 

and are surrounded by bare soil, as shown in figure 6.1. If information about crop area on a more 

detailed level is desired, it is recommended to plant in smaller plots or rows. Despite this setback, 

it can be concluded that the resulting image-objects are highly suitable for calculating crop-cover 

surface. Crop and non-crop areas are well distinguished by the MIRS algorithm.  

Until an algorithm is developed that could create single objects for individual crops despite overlap, 

it should be considered how many geographical crops an image-object represents. The detected 

crops with TM are suitable to use as a weight factor for image-objects. The object’s surface can be 

averaged to a crop-level. Moreover, the smaller the number of crops without overlap with other 

crops the more accurate the results could be on the individual crop-level. No research is found in 

which they are able to build image-objects for individual crops. Torres-Sánchez et al. (2015) comes 

close, although they do not include a weight factor based on the number of crops within the image-

object. 

10.2 DATA FUSION 

Combining other data sources with OBIA-objects is not self-evident. The DSM is well aligned with 

the orthophoto, but this is not the case for the HSD. Misalignment in shown in figure 7.1. The 

spectral data was captured by an additional sensor attached to the UAV. This allowed for a minor 

geometric shift between the orthophoto and the HSD. Although pre-processing steps are repeated 

and refined, the HSD is not suitable enough for individual crop-based analysis because of minor 

misalignment. An alignment error with a maximum of only a few percent of the total crop-width 

is desired. In this case, it is in our favour that MIRS creates objects containing multiple crops. 

Possible errors for individual crops are in this way disguised. Results of this research are promising 

as spectral analysis shows similar patterns as the field analysis of Barel et al. (2018) and the 

geometric analysis. Potential error-effects are overestimating and underestimating the VI values 

because of the exclusion or inclusion respectively of non-crop pixels. Further research on those 

effects is necessary but can only be done if field measurements for individual crops’ plant traits, 

such as chlorophyll, are available. The development of a hyperspectral sensor which additionally 

creates RGB images is promising, as it does not allow for misalignment. Such a system is described 

by Chen et al. (2014) and the first sensor (RIKOLA Hyperspectral Camera) is successfully applied 

by Roosjen et al. (2018).  

Distortions of a digital surface model (DSM) are common for height models created by stereo 

photogrammetry or digital aerial photogrammetry (DAP) (Tilly et al. 2014). Underestimated values 

occur at the edges of objects, overestimated values in the middle, and objects tent to be larger than 

the real-life objects. Again, the larger the image-objects, the smaller the effects of the DSM on the 

results. DAP data does not seem suitable for individual crop volume calculation, although it is 

suitable for finding patterns of productivity for different plots and treatments, based on average 
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crop volume. It should be considered that smaller and more isolated image-objects tend to have 

underestimated height values. 

The height values of the CSM are depended on the DSM and the DTM. An accurate DTM can only 

be created if enough areas without vegetation cover are available for selection and interpolation, as 

shown by Goodbody et al. (2017). Special attention is needed around mosaic-lines within the 

image, a mosaic-line is where two flight lines are combined. It is decided to exclude three plots 

from the geometric analysis, because of too much distortion around the mosaic-line. A height 

deviation of 20 centimetres between the flight lines is too much when working on a crop scale. 

More about the DSM and CSM is explained in paragraph 7.2. With LiDAR technology real 3D 

object representations can be created without the cons of DAP. It is able to accurately estimate 

volume and aboveground biomass under conditions where passive optical and active radar sensors 

typically fail (Lefsky et al. 2002). Unfortunately, LiDAR’s suitability for flexible applications in 

precision agriculture is limited, as it is far from being cost effective compared to UAV-technologies 

(Goodbody et al., 2017). 

For further analysis, data fusion is necessary. Both the HSD and CSM data-layers need to be 

aggregated to the object-level. According to the literature this could be done by: selecting pixels 

completely within the image-object, selecting pixels with any overlap with the image-object and 

selecting pixels with a certain minimum overlap with the object (Tiede, 2014). Considering the 

distortions of the DSM, it is likely best to include only the pixels completely within objects. No 

comparisons of different selection procedures are executed, which is an accepted drawback. It is 

assumed that effects on the results between the different approaches are small due to reasonably 

fine pixel sizes. The method used creates a centroid for each raster cell. The attributes of all points 

within the target image-object are assigned to that object. More information on data fusion can be 

found in paragraph 8.3. The method was most feasible in respect to time and technical constraints. 

It can be categorized as selecting pixels with a certain overlap. 

10.3 PLANT DIMENSIONS BASED ON DSM 

Plant dimensions as crop-covered area, average crop volume, and biomass can be derived using 

OBIA and TM. Total crop-covered area can be calculated precisely, OBIA captures and represents 

crop-covered areas without including any shadows or within plot bare soil. It is assumed that 

statements about the crop-covered area could not be as detailed when using traditional pixel-to-

pixel approaches. In particular, the exact crops’ borders and bare soil areas within plots would have 

been difficult to incorporate with other methods. Second, average crop volume can be determined 

using OBIA in combination with TM. It was expected that OBIA could build objects around single 

real-life objects, but this is not possible. OBIA combined with TM is a suitable method for 

calculating average crop volume. A moderate positive correlation is found between average crop 
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volume and biomass. This confirms that volume can be used to make statements about crops’ 

biomass. A more accurate DSM likely improves correlation. 

10.4 BIOCHEMICAL PLANT TRAITS BASED ON HSD 

Biochemical plant traits can be derived to a limited extent and with a limited certainty. Some 

vegetation indices focus mainly on leaf chlorophyll content (LCC), while others are also sensitive 

to other biochemical plant traits. For further elaboration on the used vegetation indices, consult 

paragraph 5.4. Different types of vegetation indices do not show remarkable contrasting results. 

Consequently, biochemical traits other than LCC cannot be predicted. It must be taken into 

consideration that in-situ measurements for those traits are not available. Correlation tests and 

mean-comparison tests, like ANOVA and Kruskal Wallis, could therefore not be applied. The 

estimations of LCC are compared with theories on plant-soil feedback and findings of the field 

experiment by Barel et al. (2018). Most effects on LCC are caused by the availability of N in the 

soil. The N-pool increases with more available organic material and more release of N by bacteria 

and fungi (Hodge, Robinson, and Fitter 2000). Similar patterns compared to Barel et al. (2018) can 

be found between plant-soil treatments for most vegetation indices. 

10.5 PLANT-SOIL TREATMENT’S LEGACIES 

Barel et al. (2018) states that treatments including raphanus could be a threefold more productive 

than trifolium and lolium monucultures and its mixtures. Although the difference is not as large as 

stated by Barel et al. (2018), this pattern is clearly visible in figure 9.7 which represents the results 

of the geometric analysis. An interesting finding is that the raphanus + vicia mixture performs 

slightly better than raphanus monoculture with most vegetation indices, as shown in figure 9.6 and 

appendix XVIII, which goes against the results of Barel et al. (2018) and our own geometric 

analysis. Field measurements of chlorophyll could determine if the VIs deliver correct information. 

A question arises from the findings: do successive crops of the raphanus + vicia treatment indeed 

contain more chlorophyll and are they healthier? When talking about productivity and general 

differences between treatments, the geometric analysis seems to deliver sufficient results. 

Barel et al. (2018) saw no difference between the monoculture and related mixture treatments for 

cichorium’s productivity. An interesting finding is that both geometric and spectral analysis show 

differences between the two. With the geometric analysis, the raphanus monoculture performs 

better than raphanus + vicia mixture. Besides, lolium + trifolium mixture performs much better 

than its lolium monoculture. Especially, the lolium monoculture is underperforming for all 

vegetation indices. Finally, Barel et al. (2018) found that lolium monoculture, its mixture, and the 

fallow treatment significantly reduced the production of avena due to N availability. The reason 

for this is that the release of N by bacteria and fungi in the soil takes longer compared to other 

treatments. Cichorium crops are planted a few months after avena crops. It was expected that 
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effects of plant-soil feedback would be less visible between treatments, but the effects are still 

notable. So, an interesting finding is that the effects of these plant-soil treatments occur longer than 

expected. Research in the field of plan soil feedback should confirm and clarify this. 

Besides minor differences and notable findings, OBIA results are largely in line with results of 

previous studies. Especially the lolium monoculture is underperforming with the geometric 

analysis and for most VIs with the spectral analysis, as shown in figure 9.6 and 9.7. This 

corresponds with the findings of Barel et al. (2018) and the theory of Hodge et al. (2000). High 

performance of raphanus monoculture and mixture also corresponds with previous findings. 

Assumptions about productivity can be done and patterns recognized. Notwithstanding, because of 

the lack of field measurements of biochemical plant traits, it is first hard to determine accuracies 

for plant trait estimations, and second to proof which plant-soil feedback mechanisms are 

accountable for the differences between treatments. 

10.6 SCALABILITY 

As described by Andújar et al. (2016), UAVs are affordable and allow for flexible in-time delivery 

of information, are able to capture VHR optical images, and are not affected by clouds. DSMs can 

be derived automatically by DAP (Suomalainen et al. 2014). To be able to automate further 

analysis, data quality must be sufficient and consistent. It would be excellent if the methods and 

parameters used are directly scalable. However, there are some aspects that could be different for 

every dataset. 

Although an UAV-derived orthophoto and DSM can currently be georeferenced automatically, 

extensive quality checking and additional pre-processing is still needed. It needs to be assessed if 

the orthophoto, HSD, and DSM are aligned sufficiently. Alignment is a time-consuming process. 

The development of a combined sensor is a true deal-breaker because it makes rectification 

completely superfluous. Moreover, a DTM must be created to be able to derive crop heights. DTM 

creation is only possible if there are enough bare ground areas between plots and around the field. 

If there are mosaic-lines in the image, it must be assessed if measurements around the line should 

be excluded in further processing and analysis due to height deviations. 

The images used are taken just before harvest. As described before, images taken earlier in the 

season would improve results from the OBIA perspective. It is expected that the vast majority of 

the crops will be represented by single objects. It is assumed that the same MIRS parameters and 

TGI vegetation index can be used for cichorium crops during the whole season. It is also assumed 

that the TGI vegetation index is applicable for other light green crops; for dark green crops this 

assumption cannot be made. As the threshold value for classification based on the TGI vegetation 

index is highly sensitive to changes, this needs special care. When applying the investigated 

methods on other crop species, the most suitable segmentation parameters (especially the scale-

factor), chosen vegetation index, and classification threshold value may be different. 
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It is assumed that the same template for TM could be used during the whole season because it 

incorporates different shadow directions, and the shape of the crops does not change over time. For 

other crop species, a different crop template should be built. TM is semi-automated within 

eCognition and easy to use, so no obstacles are foreseen. The crops in the image showed overlap, 

had irregular shapes, and included shadows. Based on these difficult conditions, it is assumed that 

TM will deliver similar results for other crop species. TM will only become more difficult when 

objects are generally not round shaped.  
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11 CONCLUSION 

This chapter answers the main research question: “To what extent could plant-soil treatments’ 

legacies be identified using VHR optical UAV-imagery incorporating OBIA methods and 

techniques; considering plant dimensions, biomass and biochemical plant traits?” 

The real power of OBIA is its ability to accurately calculate the areas of concerned real-life objects, 

even if shapes are irregular and small areas representing other land-use types are located within 

and between objects. The MIRS algorithm is not capable of detecting individual crop-objects in 

high-density areas nor building individual crop-objects. The TM detection algorithm can detect 

crops with an accuracy of 99.8% if used together with the results of MIRS. The quality of the HSD 

and DSM is rated insufficient for data fusion with individual crop image-objects. The resulting 

objects include a maximum of 10 x 10 crops, without including any shadow or bare soil. If an actual 

crop is surrounded by at least 3-6 cm of bare soil on all sides, it is represented by a single image-

object. The larger resulting image-objects are found better suitable for further analysis in respect 

to the characteristics of additional data sources. In this way, an OBIA approach compensates for 

peaks and underrepresented areas in additional datasets, like in the CHM. 

An advantage of using both TM and OBIA together is that the average crop area and volume can 

be calculated for image-objects representing multiple crops. This information could give insights 

on the crops’ productivity. The calculated average crop volume is a reasonable indicator for 

biomass as a moderate positive correlation was found between average crop volume and shoot 

biomass. The raphanus monoculture is the most productive treatment based on the volume 

calculations. Raphanus + vicia mixture, vicia, and trifolium show good results as well, while the 

lolium monoculture is underperforming. This pattern corresponds with the findings of Barel et al. 

(2018).  

Raphanus monoculture and its mixture treatment have high reflectance values over the whole 

electromagnetic spectrum. The underperformance of crops treated with lolium monoculture and its 

mixture applies for all VIs. It is notable that differences between monocultures and mixtures are 

less present compared to the geometric analysis, which is more in line with Barel et al. (2018). 

They see no difference between the monoculture and related mixture treatments for the production 

of cichorium. Vegetation indices with different sensitivities did not show remarkable contrasting 

results. 

The notable clear differences between treatments is not only interesting from a methodological 

perspective. It was expected by Gerlinde de Deyn, co-author of Barel et al. (2018), that effects of 

plant-soil feedback (PSF) would be minimal for cichorium. This because cichorium crops were 

planted a few months after avena crops, the other examined crop species in their research. The 

effects of the plant-soil treatments occur longer than expected.  
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The difference between plant-soil treatments’ legacies could be identified in the hyperspectral and 

geometrical analysis; main patterns match with results of previous research based on destructive 

sampling. The methodology could be used in large scale research concerning plant-soil feedback 

and in precision agriculture. The UAVs flexibility and affordability together with the detail with 

which OBIA and related methods could give information about crop productivity, are a strong and 

promising combination for applications in precision agriculture. Although some adjustments are 

needed, it is assumed that the investigated methodology can be applied under different conditions 

and with different crop species. 
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12 RECOMMENDATIONS 

There is a need for extended research that includes field measurements on the individual crop-level 

while covering a broader aspect of plant traits. This enables discovering and describing statistical 

relations between metrics of crops’ image-objects and field measurements. This will provide more 

insight on the variability of certain OBIA metrics between individual crops. When estimation of 

certain plant traits on the individual crop-level is desired for precision agriculture, it is not only 

needed to find patterns and relations but also to prove consistency of the estimates. 

As MIRS was not capable of building objects for individual crops, alternative algorithms need to 

be investigated or developed. It will be challenging to automatically build objects for individual 

crops in high-density areas. A suggestion is to look at seeded segmentation algorithms that could 

take detected crops, like detected with TM, as a starting point for building segments. It is 

recommended to work with a segmentation library in a programming language if possible. This 

allows for an extensive sensitivity analysis with multiple combinations of settings. 

It is also recommended to investigate technologies and methods with which a more precise height 

model could be created. Segmentation algorithms based on a height model could then be 

investigated. A height model could also be represented by a point cloud instead of a raster-based 

DSM. Segmentation based on a point cloud enables creation of additional height metrics as 

standard deviation, maximum, minimum and mean height. Moreover, as described in paragraph 

7.2, a DTM is needed to normalize the DSM and calculate crop heights. Within areas of large 

vegetation-cover, it can be difficult to derive an accurate DTM. It should be investigated if a 

LiDAR-based DTM could be used together with a DAP-based DSM. 

As regards to data fusion with hyperspectral data, new sensors that could create optical as well as 

hyperspectral images at once are a welcome contribution. It ensures excellent alignment between 

the optical and hyperspectral images. This is necessary if accurate estimations of biophysical plant 

traits are desired for fine image-objects.  
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12 APPENDICES 

I DSM > DTM > CSM 

 

II SEGMENTATION TEST LAYER WEIGHT VALUES 

Weight value of the green layer is 1 (left) and 20 (right). Using final classification rules. 
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III SEGMENTATION TEST SCALE-FACTORS 

From the left to right image the scale-factor is 5, 10, and 15. Using final classification rules. 

 

IV SEGMENTATION TEST SHAPE FACTORS 

From the left to right image the shape factor is 0.1, 0.2, and 0.5. Using final classification rules. 

 

V SEGMENTATION TEST COMPACTNESS FACTORS 

From left to right image compactness factor is 0.1, 0.5, and 0.9. Using final classification rules. 
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VI VEGETATION INDICES APPLIED ON RGB IMAGE 

From the left to right image the VIs NDVI (RGB version), VARI, and TGI are applied. 

 

VII CLASSIFICATION BASED ON TGI VEGETATION INDEX 

From the left to right image the threshold values are 37, 38, and 39. 
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VIII TEMPLATE GENERATION 
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IX OBIA VECTOR-OBJECTS 
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X TM POINT-FEATURES 
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XI POINT-FEATURES RESULTING FROM TM AND OBIA 
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XII ARCMAP-WORKFLOW FOR CREATING AOIS 

 

XIII ARCMAP-WORKFLOW FOR ADDING ATTRIBUTES TO OBJECTS AND 

POINT-FEATURES 
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XIV PYTHON SCRIPT SPECTRAL SIGNATURES 
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XV PYTHON SCRIPT VEGETATION INDICES 
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XVI PYTHON SCRIPT VOLUME PLOTS 
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XVII PYTHON SCRIPT CORRELATION 
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XVIII VEGETATION INDICES APPLIED PER TREATMENT 
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XIX EXPLORATION CORRELATION VOLUME AND SHOOT BIOMASS 
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XX AVERAGE CROP VOLUME (CM3) FOR EACH PLOT 

 

 

 


