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Abstract

In recent years there has been an increase in published research on video games.

However, few articles discuss semantic analysis of gameplay videos, which are avail-

able online on platforms such as YouTube or Twitch. A case-study was performed

where a three-step approach is proposed to analyze a speci�c scene in videos of the

game `This War of Mine'. The �rst step is to detect the location at which the scene

of interest takes place using a SVM with bag-of-visual-words histograms of SIFT

features. Then convolutional neural networks are used to detect which scene takes

place at that location and what choice the player makes during that scene.
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1 Introduction

In 2017, the video game industry was estimated to be worth approximately 108 billion
dollars [38, 8, 57]. The massive growth of the gaming industry is coupled with an increase
in research on games and gameplay over the last 20 years or so. Game research has been
approached from a multitude of perspectives. Radde-Antweiler et al. [47] give an overview
of game research, primarily focused on game environments and religion in games. They
also discuss Let's Play videos, which will be discussed further on in this section. Canossa
[11] takes an approach using telemetry and describes methods to turn the outcome of
the telemetry system into metrics, features and models. Jørgensen [26] investigated how
audio supports the visual gameplay of an online multiplayer game. Lankoski and Björk
[31] described how the formal analysis method, used in di�erent �elds such as archeology,
literature and �lm analysis, can be applied to the domain of video games. The types
of game research mentioned so far are primarily focused on commercial or entertainment
games. A di�erent type of games are serious games, which Mitgutsch and Alvarado de�ned
as games that "intend to ful�ll a purpose beyond the self-contained aim of the game itself"
[41]. They developed the Serious Game Design Assessment Framework, which analyses
serious games based on their purpose, content and information, mechanics, �ction and
narrative, aesthetics and graphics, framing and coherence and cohesiveness of the game
system [41]. As serious games are often used for education, Freire et al. [22] discuss
how knowledge from game analytics and learning analytics can be combined in order to
improve understanding of educational serious games.

A speci�c form of game research entails the analysis of gameplay videos, often referred
to as Let's Play-videos in the literature. Radde-Antweiler et al. de�ne these videos as
"self-recorded gaming videos in which the respective gamers, the `Let's Players', comment
on their journey through the game as well as on various aspects of it" [47]. These videos
are often available online on platforms such as YouTube and Twitch. Once again, the
purposes of this type of research can vary considerably. Milam and El Nasr [40] used
gameplay videos of 21 games to analyze their level designs and how these are used to
guide the player through the game. Mun et al. [44] introduced a framework to evaluate
the temporal reasoning capabilities of algorithms by using those algorithms to answer
questions based on segments of gameplay videos. Marczak et al. [36] used image process-
ing techniques to extract quantitative data from gameplay videos they recorded, which
could be combined with psychophysiological responses or self-report metrics to measure
how the player experiences a game. A method to perform event and highlight detection
on Twitch streams of League of Legends was developed by Chu and Chou [16]. To do so,
they used techniques from text recognition on the content on the screen and in the chat
boxes paired with the stream and also adapted regular video event detection techniques to
the game domain. While there has been an increasing amount of published game research
over the past years, there are still few articles that discuss visual and semantic analysis
of gameplay videos such as those by Marckzak et al. [36] and Chu and Chou [16]. The
topic of this thesis is visual semantic analysis of gameplay videos, speci�cally of the game
`This War of Mine'. It is part of an in-progress research project by De Smale et al. [20].

`This War of Mine' [4, 5] is a video game where the player plays as a group of civilians
trying to survive during the Bosnian War. The gameplay consists primarily of two phases,
a day phase and a night phase. During the day, the characters hide in a shelter, because it
is too dangerous to go outside. In this shelter, the characters can build items to improve
the shelter or make it more comfortable to live there, eat, sleep and so on. During the night
the player can send out a character to go scavenging in the city to �nd resources, such as
water, food, medicine and materials to construct items. For example wood and electrical
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parts to make a stove or bed. Scavenging can be dangerous due to soldiers being out there
at night, who will attack the character. There can also be encounters with less peaceful
other scavenging civilians. The player has to make moral decisions to keep his characters
alive. One such decision is when the player goes scavenging at a supermarket. There a
conversation can be overheard and an event can be watched through a keyhole, where an
armed drunk soldier tries to rape a scavenging woman. The player then has the choice to
remain passive and let the rape take place, which will allow the character to safely loot
the supermarket. However, this also negatively a�ects the character's emotional state,
because they witnessed a rape and did not try to stop it. Alternatively, the player can
interfere by attacking the soldier. This comes with the risk of being killed, because the
soldier is armed. However, the reward for intervening is bigger, because the dead soldier's
equipment can be looted, which will make protecting the shelter from raiders easier and
also gives protection against other hostile characters when scavenging further on in the
game.

Hundreds of gameplay videos of `This War of Mine' are available online through
YouTube. These videos can be used to analyze the game and the choices its players
make in situations such as the one described above. They can be analyzed manually, but
the topic of this thesis is investigating to what degree this process can be automated,
using computer vision techniques to analyze gameplay videos. The case study discussed
here is about analyzing the scene in the supermarket. Doing this analysis consists of three
parts:

1. Detecting whether the supermarket occurs in a video

2. Detecting whether the scene with the soldier takes place if the supermarket is visited

3. Determining what choice the player makes if this scene takes place

239 videos of `This War of Mine' have been studied, which contain 175 occurrences of
the supermarket in 139 videos. A more thorough description of the dataset is given in
Subsection 4.1

In section 2 a motivation is given for investigating speci�cally the scene in the super-
market as well as a motivation for why this topic is interesting and relevant to look at
from a technical perspective. Section 3 describes related work about techniques used in
the literature about video analysis. The formal research questions for this thesis are pre-
sented in Section 4. The approaches used to answer these research questions are discussed
in Section 5. The experiments performed to test the developed approaches are discussed
in Section 6 followed by a discussion about the results in Section 7. Lastly, conclusions
are drawn and formal answers are given to the research questions in Section 8.

2 Motivation

The research presented in this thesis is part of an ongoing research project by De Smale
et al. [20]. The goal of this project is to visualize the decision paths a player makes when
playing `This War of Mine' through image analysis, using computer vision techniques.
This speci�c game was chosen as it is "potentially valuable for peace education and
con�ict resolution" [20]. The ultimate goal is to build a decision tree of the behavioral
choices made by the player when playing the game.

Extracting the decision path of a player playing the game has been split into two
separate problems. The �rst is to recognize which characters the player decides to use
to go scavenging, along with which characters were available. After all, if there is only
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one character available, this choice is less meaningful. It then boils down to taking the
risk of going scavenging or staying in the shelter, but dying to dehydration or starvation.
Also part of this problem is recognizing which items the player chooses to take with him
or her when going scavenging and what items are brought back to the shelter in such a
scavenging run. This sub-problem is not part of this research and is concurrently being
worked on independently.

The second part of visualizing the player's decision path is to extract the choices the
player makes in the moral dilemmas presented to him or her. The rape scene in the
supermarket is an example of such a dilemma and the case study chosen for this thesis.
The primary goal of this thesis is therefore to �nd out to which degree recognizing the
player's choices can be automated. The secondary goal is to investigate, if it does turn out
to be possible to get good results in an automated way, how well the developed method
can be generalized to other dilemmas in `This War of Mine' as well as to entirely di�erent
games.

Semantically analyzing player decisions in gameplay videos is also a relevant challenge
from a technical point of view. Little research on this speci�c topic has been published.
Even when expanding the search to the broader topic of video analysis, the focus is of-
ten on classifying videos or segments or analyzing their structure [24, 15, 12, 43], not on
semantically analyzing the events that take place in the video. Video footage is also com-
bined with other types of information such as sound or captions accompanying YouTube
videos [56, 14] to perform semantic analysis, whereas in this research the focus is on us-
ing only video footage. In cases where the actual events taking place in the video are
analyzed, the domains investigated are often very speci�c and lots of domain knowledge
can be used in them. Examples are analysis of sports videos [52, 25, 59, 62], surveillance
videos [32] and types of movement [51].

The topic of this study is relevant, because it does not require access to the source code
of the game being investigated, nor does a game have to be developed by researchers. If
commercial games can be more easily used for research, scientists outside technical �elds
such as computer science could use these games for case studies. For example social studies
could use the technique being developed here, instead of having to manually analyze all
videos in their case study, speeding up the process. It could also save money, because
existing games might be used to investigate topics such as peace education and con�ict
resolution (the reason 'This War of Mine' was selected in this research project). No new
game would have to be developed, saving considerable time and money.

3 Related work

This section gives an overview of techniques and methods that are used in various com-
puter vision related tasks, primarily focusing on analyzing video footage. It is by no
means an exhaustive list as that would be beyond the scope of this research and should
therefore not be interpreted as such.

Simple, but often-used features are color-related features. The literature shows a
great variety of uses for these relatively simple and computationally inexpensive features.
Marckzak et al. [36] used color ratios to detect objects of interest such as health bars and
color schemes to detect menu screens. Mühling et al. [43] used color moments to detect an
inactive game state in a �rst-person shooter game. Dominant color regions were used in
several articles regarding automatic analysis of sports videos to detect the �eld or speci�c
objects such as the referee [25, 59, 62, 21]. Color correlograms were used, among other
features, to represent shots in an algorithm to detect scenes in a video [42]. The color
features that appear to have been used the most in the literature are color histograms.
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These have been used for purposes from detecting special e�ects in Twitch streams [16]
to taxonomic classi�cation of online videos [56]. They are also often used for detection
and segmentation of scenes or segments in videos [42, 58, 18, 7, 61, 62, 13].

Di�erent features that are often used, yet are also still relatively simple are edge-related
features. Edge-related features have been used for purposes such as text detection [16],
detection and segmentation of scenes and segments in video footage [62, 42, 45, 25, 29, 13],
as one of the features in taxonomic video classi�cation [56], for line and region detection
[25] and even to detect aliasing in shadow-only images used for shadow map artifact
detection [45].

More complex features originating in image processing have also been applied to video
processing. Techniques such as Scale-Invariant Feature Transform (SIFT) [35], which �nds
a set of descriptive keypoints (features) of an image that are "largely invariant to changes
in scale, illumination and local a�ne distortions" [35]. While the original article used SIFT
to detect objects in images [35], it can also be used to extract information from videos.
SIFT features have been used to create a bag-of-visual words through K-means clustering,
which was used to train a SVM to estimate camera viewpoints in soccer videos [52]. A
similar approach was used by Hentschel et al. [24] to classify and annotate segments of
lecture videos. Mei et al. [39] used SIFT-features for near-duplicate keyframe detection.
An alternative to SIFT are Speeded-Up Robust Features (SURF), which achieve similar
results, while being computationally cheaper [9]. It has also been used in the video
processing domain. Apostolidis and Mezaris [7] achieved an even larger speedup by porting
SURF to the GPU in their system to detect shot boundaries in video footage. Both SIFT
and SURF are implemented in OpenCV as well as several other feature descriptors that
also see use in the literature. Examples are Fast Retina Keypoint (FREAK) [6], Binary
Robust Invariant Scalable Keypoints (BRISK) [34], Features from Accelerated Segment
Test (FAST) [49], Binary Robust Independent Elementary Features (BRIEF) [10] and
Oriented FAST and Rotated BRIEF (ORB) [50].

Processing videos means that types of features can be used that cannot be used during
regular image processing, which consists of individual images with no temporal relation-
ships. Working with video footage makes it possible to detect and track motion, which
can give valuable information in various domains. The literature shows many methods to
detect motion from videos. Examples are taking the sum of absolute di�erences between
horizontal and vertical projections of successive frames [25], deformable part models [52],
motion vector models/�elds [21, 61, 62, 13, 19], optical �ow [16], moving edge maps com-
bined with connected components analysis [29] and a continuous hidden Markov model
to detect human postures in surveillance videos [32].

Videos contain a time dimension, which inherently means there are temporal relation-
ships in the video, not limited to motion alone. These temporal relationships have been
used as part of video analysis in the literature. Mun et al. [44] developed a dataset to test
video analysis algorithms on their temporal reasoning capabilities. They also built a 3D
fully convolutional neural network to detect temporal relationships [44]. Mohanta et al.
[42] used the time of appearance of visually similar frames to improve scene detection. A
similar approach was used by Yeung et al. [60]. Huang et al. [25] introduced a temporal
intervening network as an extension to a dynamic Bayesian network, which they used for
semantic analysis of soccer videos. Essentially this temporal intervening network was a
set of additional rules, based on temporal relationships, for the Bayesian network. Gu
et al. [23] used an energy minimization method to segment videos into scenes. In their
model context energy denoted the temporal relationships between shots, where a shot
contained more energy relative to another shot if these shots were assigned to di�erent
scenes while being temporally close to each other as well as visually similar [23].
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Earlier in this section various features for video processing have been discussed. The
methods used to train a system or part of a system with these features are also plentiful.
Hidden Markov Models are sometimes used [32, 17] and so are regular Bayesian networks
[12, 25]. Another sometimes used probabilistic model is the Gaussian mixture model
[32, 63, 17]. Neural networks have been used in the past [59], but have picked up in
popularity in recent years [44, 18, 37]. The most encountered method in the literature
study for this research are support vector machines (SVMs). However, as noted before,
this literature study is by no means a complete overview of the �eld and SVMs are
therefore not necessarily the most used method in the entire �eld. Additionally, the
majority of the articles studied here, which used SVMs are at least �ve years old [24,
43, 21, 53, 55, 54, 39]. When looking only at recent articles, an equal emount of articles
that use SVMs [16, 52, 17] are found to those that use neural networks [44, 18, 37]. The
advantage of SVMs over neural networks lies in their interpretability. While SVMs are
by no means an easy-to-interpret method, especially when not using linear SVMs, they
are not a completely black box method like neural networks. When training a SVM
with a bag-of-visual-words model such as in the approaches taken by Sharma et al. [52]
and Hentschel et al. [24] the words (features) on the decision boundary of the SVM
can be inspected to gain some insights into why those features are descriptive, which is
generally not possible with neural networks. Also, the current trend seems to be that
neural networks are used with large amounts of data, so-called big data, whereas SVMs
can also be used when only a smaller dataset is available.

The advantage of neural networks, in the case of image processing usually convolutional
neural networks, is that they can often achieve better performance than SVMs if enough
data is available. However, even when only a smaller dataset is available convolutional
neural networks can still yield satisfactory results through the use of transfer learning.
The simplest form of transfer learning on convolutional neural networks is to copy an
entire existing network's architecture and all its weights, only replacing its last layer with
one to classify to the classes of the new problem. More complex forms of transfer learning
are when only a subset of the layers is copied or when weights of certain layers are frozen,
i.e. these weights cannot be changed while retraining the network on a new problem. The
bene�t of transfer learning is that it can save considerable time compared to building a
new domain-speci�c network from scratch. Unfortunately there is not always a suitable
network available for transfer learning. The e�ectiveness and applicability of transfer
learning have to be investigated on a case-by-case basis. However, when transfer learning
is possible it can even be used to achieve state-of-the-art results as was demonstrated by
Oquab et al. [46].

4 Research questions

In this section a description of the dataset used during this research will be given. This
dataset will be used to answer the research questions posed later in this section. The
dataset is described in Subsection 4.1. As noted in the introduction, this research con-
sists of three parts, each part having its own research question. Detecting whether the
supermarket occurs in a video is discussed in Subsection 4.2. Detecting whether the scene
with the soldier takes place if the supermarket is visited is discussed in Subsection 4.3.
Lastly, determining what choice the player makes if the scene with the soldier takes place
is discussed in Subsection 4.4.
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4.1 Description of dataset

This study is part of ongoing research project. Earlier in this project, a set of videos of
`This War of Mine' had been scraped o� the internet to be used. This was the dataset
referred to by De Smale et al. [20]. In this article 500 videos are mentioned. However,
in a scenario speci�c search only 314 videos remained. A sizable part of these videos
have since been removed from the internet (or at least they can no longer be found using
the YouTube video identi�er that was recorded for the original dataset). Some of the
identi�ers linked to videos of other games or other topics entirely. All identi�ers which
did not link to a video of `This War of Mine' have been removed for this study. The reason
for removing the videos that did not contain `This War of Mine' are twofold. First, when
analyzing videos of `This War of Mine', it is a reasonable assumption that the videos
indeed contain footage of `This War of Mine'. Second, this study uses YouTube videos,
where the title can make clear whether the video contains footage of `This War of Mine'.
All but one video in the dataset used for this study had `This War of Mine' in its title
(or variations where the capital letters di�ered). The only one that did not contain it,
contained its abbreviation `TWOM'. Therefore, simple text analysis on the video's title
should su�ce to determine whether a video contains footage of `This War of Mine', which
allows the assumption that all videos used for this study contain footage of the game. This
assumption should ease the video processing problem in this study. Furthermore, some
videos were of very poor quality. They were for example extremely dark, which would
make it di�cult to recognize anything in them. In one video the screen also turned black
multiple times outside of loading screens. Another video was a review video of the game,
where only parts of the screen contained footage of the game and the rest of the screen
contained a background and the video's host. These poor quality videos have been �ltered
out of the dataset. After removing deleted and unrelated videos and videos of very poor
quality from the dataset 239 videos remained. Some of these videos contained multiple
occurrences of the supermarket. These videos have been split in the dataset used here, so
that each entry refers to one trip to the supermarket or does not contain the supermarket
at all (the negative samples). Out of the 239 videos used here, 139 videos contained the
supermarket for a total of 175 unique supermarket visits (entries in the dataset).

The videos in this dataset vary in resolution from 360p to 1440p. Certain videos
also contain an introduction and or ending segment of the YouTube channel they were
published on. These segments do not contain footage of `This War of Mine' and can
have completely di�erent visual content than the actual gameplay footage. Videos can
also have parts of the screen occluded by a display of the streamer playing the game.
These are usually windows in a corner of the screen where a recording of the streamer is
displayed. This can make parts of the user interface or the visited locations impossible to
see.

For this study each video in the dataset has been annotated. The annotations di�er
by the contents of the entry. Each entry contains a boolean that represents whether it
contains the supermarket. Each entry also contains a note where peculiarities of the video
are described. For example when a glitch takes place. In the majority of the entries, the
note is empty. If and only if an entry contains the supermarket, it also contains a boolean
that represents whether the scene with the soldier takes place and a start and end time.
The start and end times denote the points in time, in the video tied to the entry, where
the supermarket appears and disappears. This time is in the [minute:second] format.
The entries that contain the scene with the supermarket also contain a start and end
time for this scene, once again in the [minute:second] format. These entries also contain
annotations about the choice the player made. Here there are three possibilities:
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1. Intervene: the player stops or attempts to stop the soldier from raping the woman.
Once this choice is the made, the woman will escape, but it is possible for the
player's character to be killed by the soldier. The scene is de�ned to have ended
when the soldier has been killed, the player's character has been killed, the soldier
retreats when he is very low on health or the player's character has escaped the
supermarket. The note described above is used when the player's character has
been killed, the soldier retreats or the player escaped. These events occur only in a
minority of the cases. The vast majority of cases sees the player's character kill the
soldier.

2. Passive: the player does not try to stop the soldier. The scene is de�ned to have
ended when the soldier and the woman enter a shack at the edge of the map, which
the soldier locks before the actual rape takes place.

3. Kill both: this is a rare occurrence where the player kills both the soldier and the
woman. The scene is de�ned to have ended when they have both been killed.

There are 55 occurrences of the scene with the soldier. In 38 of those the player chooses
to intervene, in 15 cases the player remains passive and in only 2 cases does the player kill
both the soldier and the woman. Of these two cases, in one this happens by accident due
to the player clicking on the wrong button and in the other it is a player-de�ned challenge
to kill all encountered non-playable characters (NPC's).

4.2 Research question 1

The �rst problem that needs to be solved is detecting whether a video contains the
supermarket. The other two problems are irrelevant if this is not the case. Therefore
successfully solving this problem is a requirement for solving the other two problems.
Given the dataset described above, the assumption is made that the video being processed
does indeed contain gameplay footage of `This War of Mine'. This leads to the following
formal research question:
How can it be determined if a video containing gameplay footage of `This War of Mine'
contains a scene that takes place at the supermarket location, which is unique within the
borders of the game?

To answer the other two research questions, it is not enough to only know if a gameplay
video of `This War of Mine' contains a scene in the supermarket, but also when a visit
to the supermarket takes place, when it begins and ends. Therefore the �rst research
question can be divided into two more concrete sub-questions:

1. How can it be determined if a frame containing gameplay footage of `This War of
Mine' displays the supermarket location, which is unique within the borders of the
game?

2. How can it be determined when a visit to the supermarket, which is unique within
the borders of the game, in gameplay footage of `This War of Mine' begins and
ends?

4.3 Research question 2

The second problem to be solved is detecting whether the scene with the soldier takes
place when the supermarket is visited. This problem uses the assumption that it is
known that the supermarket is visited and therefore requires the �rst research question to
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be answered before this problem can be solved. When the supermarket is visited, there
are four possibilities. The �rst time the supermarket is visited, either the scene with the
soldier will take place or a scene with three other scavengers, which are armed with guns,
takes place. The third possibility is when the supermarket is visited a second time (and
any times after that) after the scene with the soldier has taken place. Here, the player
will encounter a woman who comments on the event with the soldier that has taken place.
Her text depends on the choice the player has made in the scene with the soldier. The
fourth and last possibility is that the supermarket is empty. In this case, only the player's
character is present at the location. This scenario occurs on a second and any subsequent
visits if during the �rst visit the scene with the three other scavengers occurred. This
scenario will also take place if during the player's �rst visit the scene with the soldier
took place and the player has killed the woman that comments on this event during the
second or any subsequent visits. Any visits after this woman has been killed will also
show an empty supermarket, where the player's character is the only character present in
the supermarket. For the purposes of this study this problem is seen as a binary problem.
The scene with the soldier either takes place or it does not. The three scenarios where
the scene does not take place are considered as one case, the case where the scene with
the soldier does not take place. The formal second research question then becomes:
How can it be determined whether a scene takes place in the supermarket location in
`This War of Mine' where a soldier attempts to rape a woman when it is known that
the gameplay footage being studied contains a scene in the supermarket, which is unique
within the borders of the game?

4.4 Research question 3

The third and last problem to be solved is detecting what choice the player makes when
the scene with the soldier takes place. This problem uses two assumptions, that the video
being studied contains footage of `This War of Mine' and that in this footage the scene
with the soldier takes place. Therefore, it requires the �rst two research questions to be
answered before this question can be answered. There are three possibilities to the player:
to intervene, to remain passive and to kill both the soldier and the woman. What should
be noted is that choosing to kill both the soldier and the woman is essentially a special
case of intervening, because the player will �rst intervene in the scene and then proceed to
kill both these characters. In the dataset this choice is only made twice, which will make
it hard to uniquely distinguish. Nonetheless, it will be considered as a separate case. To
what degree it is possible to uniquely distinguish this case will become apparent during
this research and it may be dropped as a unique case if it cannot be reliably detected.
The third formal research question then becomes:
How can it be determined whether the player chooses to intervene, remain passive or
kill all characters in a video displaying a scene from `This War of Mine', where a soldier
attempts to rape a woman in a supermarket, which is unique within the borders of the
game?

5 Approach

In this section the preprocessing of the dataset is �rst discussed before introducing the
used approaches to solve each of the three sub-problems and to answer their corresponding
research questions. The preprocessing of the dataset is discussed in Subsection 5.1. The
used approach to solve detecting the supermarket is presented in Subsection 5.2. The
method used to detect the scene with the soldier when it is known that the supermarket
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is visited in a video is discussed in Subsection 5.3 and the approach used to detect the
player's choice in this scene is discussed in Subsection 5.4. All the operations discussed
in this section were performed using OpenCV in C++ unless stated otherwise.

5.1 Preprocessing

The gameplay footage containing the supermarket does not contain only the supermarket.
There are also multiple overlay screens that can cover the screen displaying the supermar-
ket. When an overlay screen appears, the content behind it is covered. The parts of the
screen that are not part of the overlay screen are blurred, making the location impossible
to recognize. The most common overlay is the inventory or backpack screen. This screen
appears when the player wants to collect loot from piles in a location or when the player
clicks the backpack button to check what items he or she has with him or her. There are
also some objects in locations that can be inspected. These objects are represented by a
looking glass on the map. When such a looking glass is clicked on, an overlay with text
appears that gives more information about the object. Usually the text displayed here is
for lore-building to add atmosphere to the game, but sometimes it can contain hints to
discover hidden loot locations (although the latter is not the case in the supermarket).
Other overlays that can appear are the menu screen, the pause screen and the character
biography screen, which gives some background information about the selected character
and their views on events that have taken place in the game so far. These views represent
the emotional state of the character. What all these possible overlays have in common
is that they obscure the location being visited. When detecting features which can be
used to train a model that can uniquely identify a location, the supermarket in this study,
these overlays should not be taken into account as they would reduce the quality of the
results. Therefore these overlays have to be recognized so they can be �ltered out of the
footage.

When the overlays appear on the screen, the content of the screen changes signi�cantly.
This fact can be used to detect these overlays. By calculating three one-dimensional color
histograms, for the red, green and blue channels individually, and comparing the his-
tograms between frames, changes can be detected. To compare histograms two built-in
histogram comparison methods from OpenCV were used. The histogram correlation
method was used as well as the Chi-squared method. Two methods were used to im-
prove the accuracy of the results. When using only one method the number of false
negatives was too high. All histogram comparison methods from OpenCV were tested
and these two gave the best results. The correlation method in OpenCV is de�ned as: "

d(H1, H2) =

∑
I

(
H1 (I)−H1

) (
H2 (I)−H2

)√∑
I

(
H1 (I)−H1

)2∑
I

(
H2 (I)−H2

)2 (1)

where

Hk =
1

N

∑
J

Hk (J) (2)

and N is a total number of histogram bins." [2]. The Chi-square method is de�ned in
OpenCV as: "

d(H1, H2) =
∑
I

(H1 (I)−H2 (I))
2

H1 (I)
(3)

" [2]. Both of these methods return a number which is compared against a threshold,
where each method has its own threshold. When either of the thresholds is exceeded a
screen change is detected.
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Color histograms are simple and fast-to-compute features. However, comparing all
frames turned out to be too slow due to the sheer volume of data. Additionally, comparing
all frames caused false positives due to screen fading. When the location appears or
disappears, it fades in from or out to the loading screen, which causes false positives.
In some videos screen fading also occurred when an overlay appeared or disappeared,
once again causing false positives. To solve this problem and lower the computational
load, only each 30th frame of a scene containing the supermarket is processed. The start
and end times of the scene are taken from the annotations made earlier and described in
Subsection 4.1. A new problem arose from only looking at every 30th frame. Between
two 30th frames the player can have moved considerably in the location, which causes the
camera viewpoint to change location as well. These camera changes cause di�erences in
the screen content above the threshold to detect a screen change, while no screen overlay
has appeared. The solution to this problem was to check the entire interval of 30 frames
when a screen change was detected between the two 30th frames. Between successive
frames the camera movement is smaller and therefore the changes in histograms are below
the screen change detection threshold. Only when the threshold is exceeded between two
successive frames in the 30 frame interval, a screen change is de�nitively detected.

This method was used to �nd the frame numbers where a screen change takes place,
if those frames are part of a scene that contains the supermarket (the annotations of
the dataset were used for this). Only every 30th frame was considered. Some screen
changes were still missed or erroneously detected by this method. These were usually in
particularly di�cult cases, such as a sudden �ash on the screen, either due to the recording
equipment or a lightning strike in the game. Sudden large camera jumps caused false
positives. It is possible in the game to move the camera without moving the character.
This way the location can be quickly explored without showing details such as objects
that can be looted. However it is also possible to then quickly move the view back to the
character through a jump in the camera viewpoint, which is detected as a screen change
while no overlay appears. Because this does not happen gradually, checking the entire
interval does not prevent these camera jumps from causing false positives. However,
automatically detecting rare events such as these would cost disproportionately large
amounts of work. As there were no ground truths available for correct frame numbers
of appearances of overlays, the results were manually veri�ed and if necessary corrected.
The only remaining possibility for not detecting an overlay now is when an overlay both
appears and disappears within a 30 frame interval. This does not matter, because the
frames in that interval will not be used for further processing and therefore any such
missed overlay appearances and disappearances within a 30 frame interval will not a�ect
results of later processing steps.

The preprocessing described above results in a list of frame numbers where the su-
permarket appears or disappears. Each entry in the dataset has its own list if that entry
contains a visit to the supermarket. These lists also include changes caused by screen
fading at the start or end of the segment containing the supermarket. All other changes
in the list represent an overlay screen appearing or disappearing. Additionally for each
entry in the dataset a boolean has been added that represents whether the �rst frame of
the scene clearly contains the supermarket. If it does, this boolean starting value is true,
otherwise it is false. By keeping track of the frame number of the frame being processed
during further processing, this boolean can be used to determine whether the frame should
be processed. The value of this boolean is �ipped around whenever a screen change has
occurred at the current frame number according to the list of screen changes discussed
above. If after this check the boolean is true, it means the frame contains the supermarket
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and should be processed. If it is false, it means the supermarket is not clearly visible and
therefore the frame should not be processed.

5.2 Detecting the supermarket

Detecting the supermarket can be split into two more concrete sub-problems, as dis-
cussed in Subsection 4.2. The �rst sub-problem is determining whether a frame displays
the supermarket, which is discussed in Subsubsection 5.2.1. The second sub-problem is
to determine when a visit to the supermarket begins and ends, which is discussed in
Subsubsection 5.2.2.

5.2.1 Determining if a frame displays the supermarket

To recognize the supermarket, keypoints were extracted from every 30th frame in 50
segments containing the supermarket. One video can contain multiple segments in the
supermarket. In this case, each visit has its own entry and annotations in the dataset.
Frames not containing the supermarket, overlay screens or screen fading during a visit
to the supermarket are excluded here. Additionally keypoints were extracted from every
300th frame in 50 videos not containing the supermarket. The keypoints are extracted
using SIFT [35] and descriptors are also computed using SIFT. Recently, some studies
have compared multiple feature descriptors and they concluded that the best results were
still accomplished using SIFT [27, 28] compared to more recent methods. This, combined
with there being no requirement for the program to process videos in real-time, was
the reason SIFT was chosen over other feature descriptors. The SIFT descriptors were
clustered using K-means clustering to construct a bag-of-visual-words. This process yields
a codebook, also referred to as a dictionary in the literature. Separate codebooks were
constructed for the descriptors extracted from footage that contains the supermarket and
footage that does not. Frames from other videos can then be compared against these two
codebooks, which will yield two matrices, representing bag-of-visual-words histograms.
These can be concatenated to form the features to train or test a binary SVM classi�er.
Once trained, this SVM predicts whether a given frame contains the supermarket. A
2-class SVM with C-Support Vector Classi�cation and a linear kernel was trained on
50 di�erent segments containing the supermarket than the segments used to create the
codebooks. Every 30th frame was processed, but once again frames not containing the
supermarket, overlay screens and frames containing screen fading were excluded. The
negative training samples consisted of every 60th frame for 30 videos not containing the
supermarket, that were not used to create the codebooks. The SVM was trained using
OpenCV's trainAuto method, which automatically optimizes the parameters of the SVM
and applies 10-fold cross-validation.

The features calculated to train the SVM can also be directly used to train a K-nearest
neighbor classi�er, so this was done to compare the results of the two classi�cation meth-
ods. To set K the rule of thumb that K should equal the square root of the number of
training samples was used. The SVM performed better, which will be shown in Subsub-
section 6.1.2. All other results referred to in this Subsubsection will also be presented
there. Since the SVM performed better, further processing was only performed on the
classi�cations made by the SVM.

To improve the results of the SVM classi�cation, features were computed for the
average of every interval of 30 frames instead of only looking at every 30th frame. The
idea behind this was that the average of the interval would better capture the information
contained within that frame interval than only one frame at a �xed location. However,
using the average of frame intervals led to worse results so this method was discarded.
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A di�erent method to improve the classi�cation results was added, a `temporal smooth-
ing' method. This method looks at the predicted label of each classi�ed frame and com-
pares it to the predicted labels of the surrounding frames. If all surrounding frames have
a di�erent predicted label than the current frame, the current frame is likely to have been
classi�ed incorrectly. For example if in a video not containing the supermarket, with a
frame rate of 30 frames per second , the frames 1, 31, ... , 121 and the frames 181, 211,
... , 301 are all predicted as not containing the supermarket, but frame 151 is predicted
to contain the supermarket, this is probably a false positive, because all the surround-
ing frames do not contain the supermarket and from watching videos in the dataset and
through playing `This War of Mine', the assumption can be made that a visit to the
supermarket lasts as least 10 seconds. I.e. a one second visit cannot take place and would
therefore have to be a false positive. The number of surrounding frames that are looked at
for each classi�ed frame can be changed. All window sizes from looking at one classi�ed
frame before and after each frame up to and including 5 classi�ed frames before and after
each frame were tested. The full results are presented in Subsubsection 6.1.2. The best
results on the training set and primary test set were obtained with a window size of 2,
where only the �rst classi�ed frames before and after each frame were used for `temporal
smoothing'. This means that the closest surrounding classi�ed frames contain the most
information about the current frame, which is not surprising, but also that adding infor-
mation about more surrounding frames does not lead to larger improvements, which is
not immediately apparent. On some alternative smaller test sets a larger window size led
to slightly better results, but because on the largest datasets a window of size 2 led to the
biggest improvements, this window size was selected for further processing. An additional
note that needs to be made is that the overall improvement of the results is not large,
at most a few percent, but compared to generating the features to classify frames using
the SVM, it is a fast method, that does consistently lead to a small improvement in the
results. Therefore, the method was deemed worth using, despite only yielding a small
improvement of the results.

5.2.2 Determining the beginning and ending of a visit to the supermarket

The SVM described in Subsubsection 5.2.1 only classi�es individual frames. However,
because a video can contain multiple visits to the supermarket it is necessary to determine
at what frames a visit begins and ends. Otherwise solving the other two research problems
would become more di�cult and may also lead to incorrect results. For example if in a
second visit strong evidence is found for an empty supermarket (i.e. no scene with the
soldier), this may erroneously classify the entire video as a scene in an empty supermarket
even if the scene with the soldier has taken place earlier.

To determine where a supermarket visit starts and ends the predictions of the SVM
for individual frames are used. These predictions are ordered based on the frame they
correspond to. If a frame has been predicted as positive and no scene has started yet (i.e.
as containing the supermarket), a window of 900 frames (30 seconds) after that frame is
investigated. Every classi�ed frame in that window (every 30th frame) is looked at and
the number of frames in that window that are also classi�ed as positive are counted. If
there are less than 900 frames remaining in the video, every 30th frame until the end of
the video is taken into account. If the percentage of positively classi�ed frames in this
window exceeds a threshold, it is determined that a scene starts at the frame before the
window. The reason for this window is that supermarket visits have a certain minimum
length, but only looking at consecutively positively classi�ed frames does not work well,
because overlay screens can appear during a supermarket visit. The threshold was set at
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0.4. This value was chosen based on the lengths of the supermarket visits in the videos
in the dataset and on experience from playing the game.

Determining the end of a visit is done in a similar way. The same 900 frame window is
investigated, but here it is checked if none of the frames are classi�ed as positive. However,
a 900 frame interval of negative predictions does not necessarily mean that a scene has
ended. It could also be an overlay screen and that the scene will continue after this overlay
screen disappears. Therefore, if no positive prediction is found in the 900 frame window,
the 1800 frames after that are investigated as well for a total of a 2700 frame window (90
seconds). If the number of positive frames in this 2700 frame window is smaller than or
equal to a threshold of 1

30
, the scene is determined to have ended. The 2700 frame window

was selected based on the smallest time between scenes in the dataset and on experience
of how quickly nightly raids can succeed one another gained from playing the game. There
was one video in the complete dataset where two visits directly succeeded each other, but
this is an outlier and was also not a proper Let's Play video, but a compilation of ways
to kill the soldier in the supermarket.

While this method worked well to identify supermarket visits, it also detected many
visits erroneously. This was caused by the false positives of the frame predictions often
being clustered. To combat this, initially a second SVM was trained on the false positives
against the true positives of the frame classi�cation method described in Subsubsection
5.2.1 on the extended training set. The idea behind this was that it could distinguish
between true displays of the supermarket and other scenes. Unfortunately this method
did not work well. The frame classi�cation method used an SVM with a linear kernel,
so instead SVMs with di�erent kernels were trained on the regular and extended training
sets and compared with the existing SVM. Of these alternative SVMs, the best results
were obtained using an SVM with a Radial Basis Function (RBF) kernel on the extended
training set. While this SVM achieved lower recall than the SVM with a linear kernel,
it also achieved a higher precision and similar accuracies and F1-scores. Using this SVM
with a RBF kernel, fewer visits were erroneously detected. The full results of the SVM
with the RBF kernel on various datasets are presented in Subsubsection 6.1.2 and a
comparison of the scenes detected by the method described in this section between the
SVM with a linear kernel and a RBF kernel can be found in Subsubsection 6.1.3. The
SVM with an RBF kernel performs equally or better than the linear SVM on the scene
times training set. It does not detect any scenes incorrectly there. On the scene times test
set there are di�erences between the methods. The linear SVM detects two more scene
starts correctly and one more scene end correctly than the SVM with the RBF kernel.
However, it also detects 15 more scenes incorrectly. So overall, the SVM with a RBF
kernel performed better on the scene times test set than the linear SVM. Of the scene
ends identi�ed too late in the scene times test set in several cases this was due to an
overlay screen being present for a prolonged period of time near the end of a supermarket
visit. This is due a strategy in the game of moving all loot in a location to one container
and then picking the best items from that container just before leaving the location. In
these cases an overlay screen is present for more than 2700 frames, which causes the
method described in this section to detect the appearance of such an overlay screen to
be the end of a visit. While this is not correct, these wrongly predicted scene ends do
not a�ect the detection of the scene with the soldier, because after the disappearance
of such an overlay screen, the character only moves to the exit of the location, i.e. the
videos do not contain any information anymore about whether the scene with the soldier
occurs. In an attempt to improve the results di�erent methods for detecting keypoints
and extracting descriptors were used, ORB and SURF, but these led to worse results.
Using these methods individually performed worse than SIFT. Combining them with the
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existing SIFT features actually decreased the quality of the results. Therefore the choice
was made, also due to time constraints, to use the existing method of SIFT features on a
SVM with a RBF kernel and move on to solving the second research problem. The SVM
with a RBF kernel was chosen over the linear SVM due to strictly better results on the
training set and overall better results on the test set.

One last thing that can be done to make the detection of starts and ends of supermarket
visits slightly more accurate in certain videos is to detect the occurrence of loading screens
before and after the visit. In a signi�cant portion of the videos containing the supermarket
a loading screen is displayed before the start or after the end of a visit. This screen is
almost entirely black, containing only some white text. These screens can be detected
by converting frames to grayscale and calculating the percentage of black pixels on the
screen. To this end, nearly black pixels are thresholded to fully black pixels. A threshold
of grayscale value 3 was used. If at least 95% of the pixels on the screen are black, it is
determined that a loading screen is displayed. By looking at the 300 frames before the
start of a supermarket visit or after its end, detected by the method described above,
and when a loading screen is displayed, the start and end frames of that visit can be
determined more precisely. A 300 frame window was selected to accommodate for frames
classi�ed incorrectly due to screen fading. Not all videos contain loading screens. If this
method does not detect a loading screen the frames that are de�nitively considered to be
the start or end of a scene are the frames that are found by the method described earlier
in this Subsubsection.

5.3 Detecting the scene with the soldier

Detecting whether the scene with the soldier takes place during a supermarket visit can
be split into two more concrete sub-problems, in the same vein as detecting whether
the supermarket is visited in a video. The �rst sub-problem is determining whether a
frame displays the scene with the soldier. This is discussed in Subsubsection 5.3.1. The
second sub-problem is to determine whether a supermarket visit does or does not contain
the scene with the soldier, which corresponds to the second research question. This is
discussed in Subsubsection 5.3.2.

5.3.1 Determining if a frame displays the scene with the soldier

To detect the scene with the soldier, initially the same method as to detect the supermar-
ket was used. The idea behind this was that the approach could be used in an iterative
fashion on a more speci�c dataset. Therefore, keypoints were extracted from every 30th

frame in 18 videos containing the scene and 40 videos not containing the scene. Frames
containing overlay screens or screen fading were �ltered out in the 18 videos containing
the scene with the soldier. The class imbalance above is due to there only being 55 videos
that contain the scene in the dataset, whereas there are 120 videos not containing the
scene. SIFT was used to extract the keypoints and also to calculate the descriptors from
these keypoints. The SIFT descriptors were then clustered, using K-means clustering,
into two codebooks, one for videos with and one for videos without the scene. Since both
classes have their own codebook, the impact of the di�erence in number of videos per
class used to extract features from, is strongly reduced, because there are enough samples
per class to generate a codebook.

The codebooks were used to create bag-of-visual-words histograms on the training
and test sets. The training set consisted of 18 videos containing the scene where every
30th frame containing the scene was processed, and of 40 videos not containing the scene
where every 30th frame was processed. The test set consisted of 19 videos containing the
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scene, where once again every 30th frame was processed, and 40 videos not containing the
scene, where also every 30th frame was processed. In both the training set and test set
overlay screens were �ltered out in the positive samples, but not in the negative samples.
The bag-of-visual-words histograms were used as features to train SVMs, with a linear
and a RBF kernel. The full results are displayed in Subsection 6.2.2. Unfortunately,
both of these SVMs performed poorly. Upon investigating the detected keypoints and
detectors, it turned out that a signi�cant part of the detected keypoints were part of
the user interface (UI), which does not contain any information about which scene takes
place. To prevent the UI from in�uencing the results, new codebooks were generated
based on frames where the UI had been �ltered out through an image mask. These
new codebooks were then used to generate new bag-of-visual-words histograms on the
training and test sets, but this time, the UI had been �ltered out of all frames here as
well. New SVMs were trained, using these modi�ed bag-of-visual-words histograms, now
also testing a SVM with a histogram intersection kernel. Filtering out the UI did lead
to an improvement in the results, but overall the results were not yet satisfactory with a
highest recall of 64.9%.

Several di�erent keypoint descriptors were tried to see if they would lead to an im-
provement in the results. These descriptors were SURF, ORB, BRISK and KAZE, but
they did not lead to improvements. So far, the keypoints have been detected on frames
directly. In an attempt to only detect keypoints on clear objects and not also in the
background, keypoints were detected on Canny edge maps. However, bag-of-visual-words
histograms extracted from these edge maps led to SVMs that always predicted the same
value. The bag-of-visual-words histograms of Canny edge maps turned out to not be good
enough features to distinguish between classes. Therefore, this method was discarded.

The objects in frames that give the most information about which scene is taking
place, are the characters, i.e. the presence of the soldier and the woman, the scavengers
or no characters other than the player's character. The non-playable characters also
appear at approximately the same locations, usually near the middle of the screen. One
of the disadvantages of the bag-of-visual-words method used so far, is that it does not
take into account any spatial relationships. The scene with the soldier takes place for the
most part in the center of the screen, so to detect this scene spatial information could
be useful. A method that uses spatial relationships with bags-of-visual-words features is
spatial pyramid matching [33]. This method divides an image into layers. The �rst layer
is the original image, the second layer divides the image into four equal-sized cells and so
on for any additional layers. For each cell, a bag-of-visual-words histogram is calculated.
Histograms of smaller cells get a higher weight. The concatenation of all histograms
forms the feature vector for a sample. A spatial pyramid with one layer is essentially just
a regular bags-of-visual-words histogram.

Spatial pyramids with two and three layers were used to train and test SVMs with a
linear kernel, a RBF kernel and a histogram intersection kernel. The same videos were
used to train and test these SVMs as for the SVMs described earlier in this Subsubsection.
The only di�erence in the training and test data was that the overlay screens were now
also �ltered out in videos not containing the scene with the soldier. A three-layer pyramid
resulted in a decrease in performance for the linear and RBF SVMs and an increase of
about 2% for the histogram intersection SVM. A two-layer pyramid resulted in comparable
results to using no spatial pyramid matching for the linear and RBF SVMs and an increase
of around 4% for the histogram intersection SVM. A two-layer pyramid still looks at a
quarter of the frame in each cell in the second layer, so it still considers a large area of
the frames and only gives limited information about spatial relationships in frames. The
reduced performance of three-layer pyramids suggests that the spatial relationships are
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either not detected by the method or just not relevant enough to aid in classifying which
scene takes place. The best results were achieved using a two-layer spatial pyramid with a
histogram intersection SVM, with a recall of 68.3%. A two-layer pyramid achieved better
results than a three-layer pyramid, so four-layer pyramids were not tested. Four-layer
or even deeper pyramids would also become very computationally expensive, which is
another reason these were not tested. The full results are presented in Subsubsection
6.2.2.

A recall of 68.3% was still lower than desired, so the bag-of-visual-words histograms
were used as input to train multi-layer perceptrons, a type of neural networks. Unfor-
tunately, these did not lead to an improvement in the results. Various parameters of
the network were tried as well as di�erent training algorithms, RPROP [48] and regular
back-propagation. Di�erent combinations of the number of hidden layers and the number
of hidden nodes per layer were tried, but to no avail. Networks that were trained with
a number of samples per class equal to the distribution in the test set, approximately 1
to 10, almost always predicted the negative class. Increasing the ratio to approximately
1 to 4 by decreasing the intervals between processed frames for the positive samples led
to similar results. An explanation could be that the nodes "die" during training, where
their weights reach 0, from which the network cannot recover. Another explanation could
be that the network simply learns the bias to negative samples in the training set and
therefore always predicts that the scene does not take place. Unfortunately, most net-
works trained on an equal number of positive and negative samples in the training set
performed poorly as well. Many con�gurations also predicted predominantly the same
class, but even the ones that did not were not suited for determining if the scene takes
place. The best network achieved a recall of over 97.9% and a true negative rate of 76.8%.
However, because there are more negative test samples than positive, the precision of this
network is still only 28.5%, which is just too low to use the method in practice. The
full results of the best-performing network are given in Subsubsection 6.2.2. It is possible
that bag-of-visual-words histograms are just not good enough features to uniquely detect
which scene takes place. The location is the same for all possible scenes, so even after
�ltering out the UI, many of the detected visual words are still the same for every scene.
SVMs also struggled to separate the scenes, so the di�erences in detected visual words
could just be too small to uniquely identify a scene. Additionally, even in the supermarket
location, there are multiple unique views that have di�ering words, making the number
of training samples from which unique visual words can be distinguished even smaller.
Bags-of-visual-words histograms did work well to identify the supermarket location, but
the di�erences between the supermarket and other locations in the game are larger, so
there it is easier to �nd descriptive visual words.

To get satisfactory results an even more complex method was needed. For this pur-
pose convolutional neural networks were used. They were trained in Python using the
Microsoft Cognitive Toolkit (CNTK) [3]. All networks discussed here were trained via
transfer learning from a CNTK implementation of AlexNet1 [1], which is based on work
by Krizhevsky et al. [30]. Initially networks were trained that intended to solve both the
second and third research questions at once with various parameters to �nd a good con-
�guration. However these netwerks did not perform that well and the choice to kill both
the soldier and the woman was never predicted correctly on the testset. Therefore the
choice to kill both the soldier and the woman was no longer considered separately. More
information about using convolutional neural networks to detect the player's choice can
be found in Subsection 5.4. To detect whether a supermarket visit contains a scene with
the soldier a convolutional neural network was trained via transfer learning on frames

1https://www.cntk.ai/Models/CNTK_Pretrained/AlexNet_ImageNet_CNTK.model
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from supermarket visits not containing the scene with the soldier and frames that do
contain it. All frames were resized to 227 by 227 RGB images, as that was the required
input size for the network used for transfer learning. The training set consisted of every
30th frame from 80 videos without the scene, every 3rd frame from 25 videos where the
player intervenes and every 2nd frame from 10 videos where the player remains passive.
Samples from videos where the scene takes place only include frames that actually occur
during the scene, not from the entire supermarket visit. The samples from videos where
the player intervenes or remains passive together form the training samples for videos
containing the scene with the soldier. The smaller intervals in these videos were chosen
to have similar numbers of samples per class in an unbalanced dataset, which contains
more videos without the scene with the soldier than with it. Having a similar number of
samples per class is desirable to reduce the risk of over�tting to the dominant class. Re-
ducing the frame interval between frames used for training in videos containing the scene
is essentially a variation of oversampling. The bene�t over real oversampling is that all
samples are still from real videos with small di�erences between them. Real oversampling
would add synthetic samples by duplicating existing samples or adding permutations of
images, for example by rotating them. The same intervals were used for the test set,
which consisted of 40 videos without the scene and 18 videos with the scene, divided into
13 videos where the player intervenes and 5 where the player remains passive. A new
network was trained using transfer learning on the CNTK implementation of AlexNet2 [1]
referred to earlier. The network was trained for 30 epochs with a learning rate of 0.002 for
the �rst ten epochs and 0.001 afterwards. It correctly predicted all training samples and
achieved a recall of approximately 78.2% on the test set. The full results are presented in
Subsubsection 6.2.2.

5.3.2 Determining if a supermarket visit contains a scene with the soldier

In the previous Subsubsection a convolutional neural network was discussed that achieved
the best results of all tested methods on classifying whether frames contain the scene
with the soldier. By itself this is not enough to determine whether a supermarket visit
contains the scene with the soldier. However, when classi�cations of the convolutional
neural network are combined with some additional rules, scenes with the soldier can be
detected reasonably reliably. To do so, a number of frames per supermarket visit must
be processed and the network must predict their class. Then per video the percentage
of frames, which are classi�ed as displaying the scene, is calculated. If this percentage
exceeds an experimentally set threshold, the video is judged to contain the scene with
the soldier. This method was tested on 58 videos, 40 of which did not contain the scene
with the soldier and 18 that did. Every 30th frame of these videos was processed, but the
overlay screens were �ltered out. The threshold was set at 0.2. With these settings, for
57 out of the 58 videos in the test set, the correct class could be determined. The full
results are presented in Subsubsection 6.2.3

5.4 Detecting the player's choice

Analogous to detecting whether the scene with the soldier takes place, determining what
choice the player makes in such a scene can be split into two sub-problems. The �rst is
to classify what choice individual frames depict. This is discussed in Subsubsection 5.4.1.
The second sub-problem is to determine which choice the player makes in a scene with

2https://www.cntk.ai/Models/CNTK_Pretrained/AlexNet_ImageNet_CNTK.model
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the soldier. This corresponds to the third research question and a solution is discussed in
Subsubsection 5.4.2.

5.4.1 Determining what choice a frame depicts

To determine what choice a frame depicts the same method was used as to detect whether
the scene takes place: using convolutional neural networks trained via transfer learning
on a Microsoft Cognitive Toolkit (CNTK) [3] implementation of AlexNet3 [1], based on
the original by Krizhevsky et al. [30]. The method described in the previous Subsection is
used in an iterative fashion: �rst the scene is detected and then using the same approach
the choice of the player can be detected. As was mentioned in Subsubsection 5.3.1, none
of the trained networks could correctly predict any of the test samples representing the
choice to kill both the soldier and the woman. Therefore, detecting what choice the
player makes has been reduced to a binary problem, where the only possible choices are
to intervene or to remain passive. Initially a network was trained where frames from the
entire scene were used for both of the classes. However, this caused confusion between the
classes, because the two scenes are practically the same until the point where the actual
intervention takes place. Therefore a new network was trained where the training samples
for the choice to intervene consisted only of frames depicting the actual intervention. This
was de�ned as opening the door the the room with the soldier and the woman and then
moving towards them. In most cases this was followed by the player attacking the soldier,
although it is also possible to run away, at which point the woman also runs away. The
training set consisted of 25 videos where the player intervenes. Every frame where the
intervention was in progress was processed here. It also contained 10 videos where the
player remains passive. Here, every 2nd frame was processed from the entire scene with
the soldier. The same intervals were used for the test set, which contained 13 videos
where the player intervened and 5 where the player remained passive. The network was
trained for 30 epochs with a learning rate of 0.002 for the �rst ten epochs and 0.001
afterwards, the same parameters as for detecting the scene. 100% of the frames were
correctly predicted on the training set and on the test set approximately 84.1% of the
frames were correctly predicted. The main thing that stands out is that while the recall
is high at 98.2%, the precision is only 69.2%. The most likely cause for this is that the
frames that depict an intervention show many similarities to frames where the player
remains passive. The location is the same in both cases and they both contain the soldier
and the woman. The only thing that di�ers are the actions of the player. These only take
up a minority of the screen, which means they may not have enough e�ect to distinguish
the frames where the player remains passive from those where the player intervenes. A
tailor-made convolutional neural network may be able to achieve better results, but would
also take much more time to set up. Another reason could be that there are not that
many instances where the player remains passive. Although, there are enough frames,
these are often similar because the intervals are small. If there were more unique videos
available with the scene with the soldier to train on, the variation in training samples for
each class would increase, which may make the two classes easier to separate. The full
results are presented in Subsubsection 6.3.2.

5.4.2 Determining what choice the player makes in a scene with the soldier

The convolutional neural network described in the previous section can be used to detect
which choice the player makes during a scene with the soldier. To do so, a method can be

3https://www.cntk.ai/Models/CNTK_Pretrained/AlexNet_ImageNet_CNTK.model
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used similar to the one described in Subsubsection 5.3.2, which was used to determine if a
supermarket visit contains a scene with the soldier. Per video, a percentage is calculated,
that represents how many frames are classi�ed as displaying an intervention. If this
percentage exceeds an experimentally set threshold of 0.09, the video is judged to display
a player intervening during the scene with the soldier. This method was tested on 18
videos, 13 of which contained an intervention and 5 where the player remained passive.
Every 30th frame was processed during scenes with the soldier. Only frames during the
scene were processed, not other frames during the same supermarket visit. For 17 out of
18 videos in the test set, the correct class can be determined using this method. The full
results are presented in Subsubsection 6.3.3.

6 Experiments

The experiments that were performed to test the developed methods described in Section
5 are discussed in this section along with their results. The experiments regarding the
detection of the supermarket are discussed in Subsection 6.1. Experiments about detect-
ing the scene with the soldier are discussed in Subsection 6.2. Lastly, the experiments
regarding the choice of the player are discussed in Subsection 6.3.

The following abbreviations are used in the tables in this section, where TP stands for
the number of true positives, FP for the number of false positives, TN for the number of
true negatives and FN for the number of false negatives:

• Rec = recall/true positive rate = TP
TP+FN

• FPR = false positive rate = FP
FP+TN

• TNR = true negative rate = TN
TN+FP

• FNR = false negative rate = FN
FN+TP

• Prec = precision = TP
TP+FP

• Acc = accuracy = TP+TN
TP+FP+TN+FN

• F1 = F1-score = 2∗TP
2∗TP+FP+FN

6.1 Detecting the supermarket

Detecting the supermarket was split into two separate sub-problems: determining whether
a frame displays the supermarket and determining when a visit to the supermarket begins
and ends in a video. Several datasets were used to test the methods developed to solve
these problems. These datasets are described in Subsubsection 6.1.1. The results regard-
ing classifying whether a frame contains the supermarket are presented in Subsubsection
6.1.2 and regarding determining the beginning and ending of a visit to the supermarket in
Subsubsection 6.1.3. In this Subsection for the purposes of calculating statistics such as
precision and recall, segments with the supermarket were considered as positive samples
and videos without it as negative samples.

21



6.1.1 Description of datasets

To predict whether a frame contains the supermarket, both a SVM and a K-nearest
neighbor classi�er were trained using features consisting of bag-of-visual-words histograms
of SIFT descriptors as described in Subsubsection 5.2.1. Several datasets were used to test
both these classi�ers. Initially only the training and main test sets were used. Later the
extended sets and additional test sets were added to test the performance of the program
on cases more realistic to handling unseen data after this project has been completed.
The extended training and test sets were also used to test the developed methods that
determine the beginning and ending of a visit to the supermarket. All datasets used in this
Subsection are described below with their abbreviations used in the tables in parentheses:

• Training set (Train): the training set consisted of 50 segments that contain a visit
to the supermarket as its positive samples. Features were computed for every 30th

frame. Frames not containing the supermarket or that contain an overlay screen or
screen fading were excluded. 30 videos not containing the supermarket were used
as the negative samples. Here, features were computed for every 60th frame. There
were 11435 positive samples and 12341 negative samples.

• Main test set (Test 1): the main test set consisted of 50 segments that contain a visit
to the supermarket as its positive samples. Features were computed for every 30th

frame. Frames not containing the supermarket or that contain an overlay screen or
screen fading were excluded. 20 videos not containing the supermarket were used
as the negative samples. Here, features were computed for every 30th frame. There
were 12028 positive samples and 19901 negative samples.

• Second test set (Test 2a): the second test set consisted of 12 previously unseen
videos where the supermarket was visited once. Features were computed for every
30th frame, including frames that did not display the supermarket or frames that
contained an overlay screen. Features were not computed for frames occurring
during screen fading as these do not have a clear label4. There were 2248 positive
samples and 14696 negative samples.

• Second test set overlay screens (Test 2b): the second test set, but now only the
frames displaying overlay screens. There were 859 negative samples. This test set
and the test set described below (second test set without supermarket) were used to
determine whether the false positives were primarily caused by the overlay screens,
by frames not containing the supermarket or more or less evenly distributed across
both.

• Second test set without supermarket (Test 2c): the second test set, but now only
the frames occurring before and after a visit to the supermarket. There were 13837
negative samples.

• Third test set(Test 3): the remaining videos that were not yet used in the other test
or training sets. All these videos contain multiple visits to the supermarket for a
total of 13 visits to the supermarket. Features were computed for every 30th frame
containing the supermarket for a total of 1834 positive samples.

• Second test set frame averages (Test 2 Avg): a test set used to test if calculating
features for the average of all 30 frames in an interval instead of only calculating

4In these frames the supermarket fades in or out. Here it is not clear at what degree of fading the

supermarket is clearly visible and what the frame's label should be.
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features for every 30th frame would give better results. The same data was used as
for the regular second test set. Because all 30 frames were needed to calculate an
average there are slightly fewer samples than in the regular second test set. There
were 2246 positive samples and 14686 negative samples.

• Negative test set frame averages (Test Neg Avg): a test set used to test if calculating
features for the average of all 30 frames in an interval instead of only calculating
features for every 30th frame would give better results. The test set consisted of 10
videos not containing the supermarket that were also used in the main test set. The
averages were calculated of every 30 frames. There were 11178 negative samples.

• Unrelated videos (Unrelated): 14 videos not containing footage of `This War of
Mine' where features were computed for every 200th frame. These videos violate the
assumption made in Subsection 4.1 that all videos being processed contain footage
of `This War of Mine'. This dataset was used to test how well the method performs
if this assumption is violated or how well it generalizes without performing any
adaptation to other domains. There were 1758 negative samples.

• Extended training set(Train Ext): the same videos as in the regular training set, but
now every 30th frame of the positive samples was used, except for frames occurring
during screen fading as these do not have a clear label (i.e. frames before and after
the appearance and disappearance of the supermarket were also processed in these
videos, instead of only frames displaying the supermarket). Additionally, every 30th

frame of the negative videos was used. The frames that were added here were unseen
during the training of SVMs on the regular training set, so in the tables below for
the SVM with a linear kernel this dataset consists of a mixture of samples seen
during training and unseen negative samples. There were 11435 positive samples
and 67277 negative samples.

• Extended main test set (Test Ext): the same videos as in the regular test set, but
now every 30th frame of every video was used, except for frames occurring during
screen fading in positive samples as these do not have a clear label. There were
12028 positive samples and 63029 negative samples.

• Scene times training set: the extended training set, but now frames occurring during
screen fading are included as well. This mimics an unseen video being processed
after completion of this project. This dataset was used to determine the thresholds
for the method described in Subsubsection 5.2.2.

• Scene times test set: the extended main test set, but now frames occurring during
screen fading are included as well for the same reason as in the scene times training
set. This dataset was used to test the method described in Subsubsection 5.2.2.

6.1.2 Classifying frames

The results of the SVM classi�er with a linear kernel using bag-of-visual-words histograms
of SIFT descriptors on all test sets are presented in Table 1. These same features were
also used to train a K-nearest neighbor classi�er, of which the results are given in Table
2. As the results of the K-nearest neighbor classi�er were considerably lower than of
the SVM, the SVM was selected for further processing. This is also the reason the K-
nearest neighbor classi�er has not been tested on all datasets (as several of these were not
developed until after the choice to use the SVM for further processing was made).
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Rec FPR TNR FNR Prec Acc F1
Train 0.99659 0.00583 0.99417 0.00341 0.99372 0.99533 0.99515
Test 1 0.94505 0.03794 0.96206 0.05496 0.93772 0.95565 0.94137
Test 2a 0.83185 0.03048 0.96952 0.16815 0.80673 0.95125 0.81910
Test 2b N/A 0.01397 0.98603 N/A N/A 0.98603 N/A
Test 2c N/A 0.03158 0.96842 N/A N/A 0.96842 N/A
Test 3 0.94820 N/A N/A 0.05180 N/A 0.94820 0.97341
Test 2 Avg 0.77605 0.03915 0.96085 0.22395 0.75194 0.93633 0.76380
Test Neg Avg N/A 0.06800 0.93200 N/A N/A 0.93200 N/A
Unrelated N/A 0.19056 0.80944 N/A N/A 0.80944 N/A
Train Ext 0.99659 0.03548 0.96542 0.00341 0.82682 0.96918 0.90380
Test Ext 0.94505 0.03925 0.96075 0.05496 0.82126 0.95823 0.87881

Table 1: Results of the SVM with a linear kernel on all datasets before `temporal smooth-
ing'. All results are rounded to 5 decimals.

Rec FPR TNR FNR Prec Acc F1
Train 0.83542 0.01629 0.98371 0.16458 0.97939 0.91239 0.90169
Test 1 0.69081 0.01629 0.95709 0.30920 0.90680 0.85678 0.78420
Test 2a 0.67082 0.02443 0.97557 0.32918 0.80771 0.93514 0.73293
Test 3 0.70229 N/A N/A 0.29771 N/A 0.70229 0.82511
Unrelated N/A 0.03641 0.96360 N/A N/A 0.96360 N/A

Table 2: K-nearest neighbor classi�er results on 5 datasets. K was set to the square root
of the number of training samples. All results are rounded to 5 decimals.

Table 1 also contains the results of the SVM with a linear kernel on features calculated
for the averages of frame intervals instead of only every 30th frame. As can be seen in
the table, this method turned out to perform worse. Therefore, `temporal smoothing'
was developed to improve the classi�cation results. The results of this method on all
datasets where no frame averaging had been performed are presented in Tables 3 up to
and including Table 11. From these results it can be seen that a window size of 2 achieved
the best results on the majority of the datasets, which is why it was chosen as the �nal
window size.

Rec FPR TNR FNR Prec Acc F1
No smoothing 0.99659 0.00583 0.99417 0.00341 0.99372 0.99533 0.99515
Window 10 0.99756 0.00332 0.99668 0.00245 0.99642 0.99710 0.99699
Window 8 0.99808 0.00332 0.99678 0.00192 0.99642 0.99735 0.99725
Window 6 0.99825 0.00324 0.99676 0.00175 0.99651 0.99745 0.99738
Window 4 0.99843 0.00308 0.99692 0.00157 0.99668 0.99765 0.99755
Window 2 0.99878 0.00230 0.99700 0.00122 0.99677 0.99786 0.99777

Table 3: Results of the SVM with a linear kernel on the training set after `temporal
smoothing' with di�erent window sizes. All results are rounded to 5 decimals.
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Rec FPR TNR FNR Prec Acc F1
No smoothing 0.94505 0.03794 0.96206 0.05496 0.93772 0.95565 0.94137
Window 10 0.94837 0.03417 0.96583 0.05163 0.94374 0.95925 0.94605
Window 8 0.94987 0.03337 0.96664 0.05013 0.94507 0.96032 0.94746
Window 6 0.95128 0.03301 0.96699 .04872 0.94570 0.96107 0.94848
Window 4 0.95336 0.03216 0.96784 0.04664 0.94714 0.96239 0.95024
Window 2 0.95627 0.03151 0.96849 0.04373 0.94831 0.96389 0.95227

Table 4: Results of the SVM with a linear kernel on the main test set after `temporal
smoothing' with di�erent window sizes. All results are rounded to 5 decimals.

Rec FPR TNR FNR Prec Acc F1
No smoothing 0.83185 0.03048 0.96952 0.16815 0.80673 0.95125 0.81910
Window 10 0.83585 0.02885 0.97115 0.16415 0.81589 0.95320 0.82575
Window 8 0.83719 0.02831 0.97169 0.16281 0.81897 0.95385 0.82798
Window 6 0.83630 0.02735 0.97265 0.16370 0.82384 0.95456 0.83002
Window 4 0.83541 0.02749 0.97251 0.16459 0.82296 0.95432 0.82914
Window 2 0.83585 0.02735 0.97265 0.16415 0.82376 0.95450 0.82976

Table 5: Results of the SVM with a linear kernel on the second test set after `temporal
smoothing' with di�erent window sizes. All results are rounded to 5 decimals.

Rec FPR TNR FNR Prec Acc F1
No smoothing N/A 0.01397 0.98603 N/A N/A 0.98603 N/A
Window 10 N/A 0.01397 0.98603 N/A N/A 0.98603 N/A
Window 8 N/A 0.01281 0.98719 N/A N/A 0.98719 N/A
Window 6 N/A 0.01281 0.98719 N/A N/A 0.98719 N/A
Window 4 N/A 0.01397 0.98603 N/A N/A 0.98603 N/A
Window 2 N/A 0.01513 0.98487 N/A N/A 0.98487 N/A

Table 6: Results of the SVM with a linear kernel on only the overlay screens of the second
test set after `temporal smoothing' with di�erent window sizes. All results are rounded
to 5 decimals.

Rec FPR TNR FNR Prec Acc F1
No smoothing N/A 0.03158 0.96842 N/A N/A 0.96842 N/A
Window 10 N/A 0.02941 0.97059 N/A N/A 0.97059 N/A
Window 8 N/A 0.02884 0.97116 N/A N/A 0.97116 N/A
Window 6 N/A 0.02782 0.97218 N/A N/A 0.97218 N/A
Window 4 N/A 0.02761 0.97239 N/A N/A 0.97239 N/A
Window 2 N/A 0.02732 0.97268 N/A N/A 0.97268 N/A

Table 7: Results of the SVM with a linear kernel on only the frames before the start
and after the end of a visit to the supermarket in the second test set after `temporal
smoothing' with di�erent window sizes. All results are rounded to 5 decimals.
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Rec FPR TNR FNR Prec Acc F1
No smoothing 0.94820 N/A N/A 0.05180 N/A 0.94820 0.97341
Window 10 0.94984 N/A N/A 0.05016 N/A 0.94984 0.97427
Window 8 0.95256 N/A N/A 0.04744 N/A 0.95256 0.97571
Window 6 0.95420 N/A N/A 0.04580 N/A 0.95420 0.97656
Window 4 0.95638 N/A N/A 0.04362 N/A 0.95638 0.97770
Window 2 0.95638 N/A N/A 0.04362 N/A 0.95638 0.97770

Table 8: Results of the SVM with a linear kernel on the third test set after `temporal
smoothing' with di�erent window sizes. All results are rounded to 5 decimals.

Rec FPR TNR FNR Prec Acc F1
No smoothing N/A 0.19056 0.80944 N/A N/A 0.80944 N/A
Window 10 N/A 0.17463 0.82537 N/A N/A 0.82537 N/A
Window 8 N/A 0.17463 0.82537 N/A N/A 0.82537 N/A
Window 6 N/A 0.17065 0.82935 N/A N/A 0.82935 N/A
Window 4 N/A 0.16212 0.83788 N/A N/A 0.83788 N/A
Window 2 N/A 0.15472 0.84528 N/A N/A 0.84528 N/A

Table 9: Results of the SVM with a linear kernel on the unrelated videos test set after
`temporal smoothing' with di�erent window sizes. All results are rounded to 5 decimals.

Rec FPR TNR FNR Prec Acc F1
No smoothing 0.99659 0.03548 0.96452 0.00341 0.82682 0.96918 0.90380
Window 10 0.99755 0.03373 0.96627 0.00245 0.83409 0.97082 0.90853
Window 8 0.99799 0.03356 0.96644 0.00201 0.83482 0.97102 0.90914
Window 6 0.99808 0.03294 0.96706 0.00192 0.83741 0.97157 0.91071
Window 4 0.99825 0.03277 0.96723 0.00175 0.83811 0.97173 0.91120
Window 2 0.99834 0.03190 0.96810 0.00166 0.84176 0.97250 0.91339

Table 10: Results of the SVM with a linear kernel on the extended training set after
`temporal smoothing' with di�erent window sizes. All results are rounded to 5 decimals.

Rec FPR TNR FNR Prec Acc F1
No smoothing 0.94505 0.03925 0.96075 0.05496 0.82126 0.95823 0.87881
Window 10 0.94812 0.03608 0.96392 0.05188 0.83375 0.96139 0.88726
Window 8 0.94962 0.03549 0.96451 0.05038 0.83623 0.96212 0.88932
Window 6 0.95062 0.03489 0.96511 0.04938 0.83870 0.96279 0.89116
Window 4 0.95195 0.03417 0.96583 0.04805 0.84166 0.96360 0.89341
Window 2 0.95261 0.03348 0.96652 0.04739 0.84449 0.96429 0.89530

Table 11: Results of the SVM with a linear kernel on the extended main test set after
`temporal smoothing' with di�erent window sizes. All results are rounded to 5 decimals.

The SVM with a linear kernel performed well on its own, but the false positives were
often clustered, which led to the method described in Subsubsection 5.2.2 erroneously
detecting scenes from these clustered false positives. A SVM with a Radial Basis Function
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trained on the extended training set classi�ed fewer frames without the supermarket as
containing the supermarket. The results of this SVM can be found in Table 12.

Rec FPR TNR FNR Prec Acc F1
Train 0.99650 0.00016 0.99984 0.00350 0.99983 0.99823 0.99816
Test 1 0.87313 0.01050 0.98950 0.12687 0.98045 0.94566 0.92370
Test 2a 0.73754 0.00871 0.99129 0.26246 0.92833 0.95763 0.82201
Test 2b N/A 0 1 N/A N/A 1 N/A
Test 2c N/A 0.00867 0.99133 N/A N/A 0.99133 N/A
Test 3 0.94875 N/A N/A 0.05125 N/A 0.94875 0.97370
Unrelated N/A 0.04039 0.95961 N/A N/A 0.95961 N/A
Train Ext 0.99502 0.00245 0.99755 0.00498 0.98571 0.99718 0.99034
Test Ext 0.86448 0.01036 0.98964 0.13552 0.94091 0.96958 0.90108

Table 12: Results of the SVM with a Radial Basis Function (RBF) kernel on various
datasets after `temporal smoothing' with window size 2. All results are rounded to 5
decimals.

6.1.3 Start and end frames of a supermarket visit

The method described in Subsubsection 5.2.2 was used to detect the start and end frames
of supermarket visits based on the classi�ed frames from two SVMs, one with a linear
kernel and one with a Radial Basis Function (RBF) kernel. The results of the used
method on the scene times training set can be found in Table 13. It contains the results
for the frames classi�ed by both of the SVMs. A scene start or end was considered to be
correctly identi�ed when it fell within 90 frames of the actual start of the annotations.
The 90 frame margin was chosen for two reasons. First, screen fading can occur which
can lead to incorrect predictions. Second, the annotations consisted of the start and
end times in seconds. These times were then converted to frames using a function from
OpenCV's VideoCapture class. However, because the annotations were in seconds and
there are generally 30 frames per second in the videos in the dataset, the annotations can
be slightly o� the true start or end frames of a supermarket visit. When a scene start has
been identi�ed too early or too late, four categories were used to indicate how large the
discrepancy between the predicted and true start or end was. Only if at least 1 scene start
or end fell in a category, was the category incorporated in the table below. The table also
includes entries for the overall numbers of scene starts and ends that were predicted too
early or too late.
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SVM with linear kernel SVM with RBF kernel
Videos without supermarket where
no scene was detected

27 30

Scene starts correctly identi�ed 48 48
Scene starts identi�ed less than
500 frames too early

1 1

Scene starts identi�ed too early
overall

1 1

Scene starts identi�ed between
1000 and 2000 frames too late

1 1

Scene starts identi�ed too late
overall

1 1

Scene starts identi�ed where no
scene occurred

21 0

Scene ends correctly identi�ed 42 49
Scene ends identi�ed less than 500
frames too early

2 1

Scene ends identi�ed too early
overall

2 1

Scene ends identi�ed less than 500
frames too late

2 0

Scene ends identi�ed between 500
and 1000 frames too late

2 0

Scene ends identi�ed between 1000
and 2000 frames too late

1 0

Scene ends identi�ed more than
2000 frames too late

1 0

Scene ends identi�ed too late
overall

6 0

Scene ends identi�ed where no
scene occurred

21 0

Table 13: Results of the supermarket visit detection method on the videos in the scene
times training set after classi�cation by a SVM with a linear kernel and a SVM with a
Radial Basis Function (RBF) kernel. There were 50 supermarket visits and 30 videos
without the supermarket in the dataset used here.

In Table 13 it can be seen that the frames classi�ed by the SVM with the RBF kernel
achieve much better results in identifying scene starts and ends on the training set. The
results for the scene times test set are presented in Table 14. In this table an additional
category has been added for scenes that have been detected as two separate scenes instead
of one. The videos in this category are also still incorporated into scene starts and ends
that were predicted too early or too late, but as these are not false positives, they are not
incorporated into scene starts or ends that were identi�ed when no scene occurred. The
SVM with the RBF kernel also performs better on the test set, especially in not detecting
as many scenes incorrectly.

28



SVM with linear kernel SVM with RBF kernel
Videos without supermarket where
no scene was detected

14 17

Scene starts correctly identi�ed 49 47
Scene starts identi�ed between
1000 and 2000 frames too early

0 1

Scene starts identi�ed too early
overall

0 1

Scene starts identi�ed less than
500 frames too late

0 1

Scene starts identi�ed between 500
and 1000 frames too late

1 0

Scene starts identi�ed more than
2000 frames too late

0 1

Scene starts identi�ed too late
overall

1 2

Scene starts identi�ed where no
scene occurred

23 8

Scene starts identi�ed that were
part of a previous scene

2 3

Scene ends correctly identi�ed 40 39
Scene ends identi�ed less than 500
frames too early

0 1

Scene ends identi�ed between 500
and 1000 frames too early

0 1

Scene ends identi�ed between 1000
and 2000 frames too early

1 1

Scene ends identi�ed more than
2000 frames too early

4 6

Scene ends identi�ed too early
overall

5 9

Scene ends identi�ed less than 500
frames too late

1 0

Scene ends identi�ed between 500
and 1000 frames too late

2 2

Scene ends identi�ed between 1000
and 2000 frames too late

1 0

Scene ends identi�ed more than
2000 frames too late

1 0

Scene ends identi�ed too late
overall

5 2

Scene ends identi�ed where no
scene occurred

23 8

Scene ends identi�ed that were
part of a previous scene

2 3

Table 14: Results of the supermarket visit detection method on the videos in the scene
times test set after classi�cation by a SVM with a linear kernel and a SVM with a Radial
Basis Function (RBF) kernel. There were 50 supermarket visits and 20 videos without
the supermarket in the dataset used here.
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6.2 Detecting the scene with the soldier

Detecting whether the scene with the soldier takes place was split into two sub-problems:
determining whether a frame displays the scene and determining whether a supermarket
visit contains a scene with the soldier. The datasets used to train and test the methods
used to solve these problems are described in Subsubsection 6.2.1. The results regarding
classifying whether a frame does or does not display the scene are presented in Subsub-
section 6.2.2. The results of determining whether a supermarket visit contains a scene
with the soldier are given in Subsubsection 6.2.3. In this Subsection for the purposes of
calculating statistics such as precision and recall, segments with the scene were considered
as positive samples and segments without it as negative samples.

6.2.1 Description of datasets

Various datasets were used to train and test SVMs, multi-layer perceptrons and convolu-
tional neural networks to detect the scene with the soldier. These datasets are described
below:

• SVM training set (Train): the training set used for SVMs with bag-of-visual-words
features consisted of 18 segments where the scene with the soldier occurred and
40 where it did not. In all segments every 30th frame was processed. Frames not
containing the supermarket or an overlay screen were �ltered out in the segments
containing the scene. There were 1217 samples with the scene and 14735 without
it.

• SVM test set (Test): the test set used for SVMs with bag-of-visual-words features
consisted of 19 segments where the scene with the soldier occurred and 40 where it
did not. In all segments every 30th frame was processed. Frames not containing the
supermarket or an overlay screen were �ltered out in the segments containing the
scene. There were 1062 samples with the scene and 11268 without it.

• SVM region-of-interest training set (Train ROI): the training set used for SVMs
with bag-of-visual-words features from frames where the user interface had been
�ltered out consisted of 18 segments where the scene with the soldier occurred and
40 where it did not. In all segments every 30th frame was processed. Frames not
containing the supermarket or an overlay screen were �ltered out in the segments
containing the scene. There were 1217 samples with the scene and 14735 without
it.

• SVM/MLP region-of-interest test set (Test ROI): the test set used for SVMs and
multi-layer perceptrons with bag-of-visual-words features from frames where the
user interface had been �ltered out consisted of 19 segments where the scene with
the soldier occurred and 40 where it did not. In all segments every 30th frame was
processed. Frames not containing the supermarket or an overlay screen were �ltered
out in the segments containing the scene. There were 1062 samples with the scene
and 11268 without it.

• SPM SVM training set (Train SPM): the training set used for SVMs with spatial
pyramid matching (SPM). Bag-of-visual-words features were extracted from frames
where the user interface had been �ltered out. It consisted of 18 segments where the
scene with the soldier occurred and 40 where it did not. In all segments every 30th

frame was processed. Frames not containing the supermarket or an overlay screen
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were �ltered out in all segments. There were 1217 samples with the scene and 9857
without it.

• SPM SVM test set (Test SPM): the training set used for SVMs with spatial pyramid
matching (SPM). Bag-of-visual-words features were extracted from frames where the
user interface had been �ltered out. It consisted of 19 segments where the scene with
the soldier occurred and 40 where it did not. In all segments every 30th frame was
processed. Frames not containing the supermarket or an overlay screen were �ltered
out in all segments. There were 1062 samples with the scene and 7486 without it.

• MLP training set equal (Train MLP equal): the training set used to train multi-layer
perceptrons, where the number of samples for both classes has been made equal.
The same data was used as for the SVM training sets described above. For the
samples without the scene a random subset was taken from all samples in order to
have an equal number of samples per class. There were 1217 samples with the scene
and 1217 without it.

• CNN training set (Train CNN): the training set used to train a convolutional neural
network using transfer learning. It consisted of every 30th frame from 80 segments
without the scene and 35 segments with the scene. These segments contain every
3rd frame from 25 segments where the player intervened and every 2nd frame from
10 segments where the player remained passive. All frames were resized to 227 by
227 pixels. The overlay screens were �ltered out in all segments. There were 26828
samples with the scene and 18838 samples without it.

• CNN test set (Test CNN): the test set used to evaluate a convolutional neural
network that was trained using transfer learning. It consisted of every 30th frame
from 40 segments without the scene and 18 segments with the scene. These segments
contain every 3rd frame from 13 segments where the player intervened and every 2nd

frame from 5 segments where the player remained passive. All frames were resized
to 227 by 227 pixels. The overlay screens were �ltered out in all segments. There
were 12868 samples with the scene and 7486 samples without it.

• Scene detection test set (Test Scene): the test set used to test the method that
detects whether the scene with the soldier occurs based on the convolutional neural
network predictions. It consisted of the same 58 segments as in the CNN test set,
but here for every segment every 30th frame was processed for the entire segment.
I.e. for segments containing the scene frames before and after the scene were also
processed. The overlay screens were �ltered out in all segments. There were 18
segments with the scene and 40 without it.

6.2.2 Classifying frames

The results of the SVM classi�er with a linear kernel and a RBF kernel using
bag-of-visual-words histograms of SIFT descriptors are presented in Table 15. As both
of these SVMs performed poorly and many detected keypoints and descriptors were part
of the user interface (UI), additional SVMs were trained on data where the UI had been
�ltered out. The bag-of-visual-words codebooks used to generate features for these SVMs
had also been clustered on data with the UI �ltered out. This �ltering was done using
a region-of-interest (ROI) image mask. SVMs trained on data where the UI had been
�ltered out were trained with three di�erent kernels: a linear kernel, a RBF kernel and a
histogram intersection kernel. Their results are given in Table 16.
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Rec FPR TNR FNR Prec Acc F1
Train linear 0.99589 0.00081 0.99919 0.00411 0.99020 0.99893 0.99304
Test linear 0.42467 0.06425 0.93575 0.57533 0.38383 0.89173 0.40322
Train RBF 0.84717 0.00265 0.99735 0.15284 0.96355 0.98590 0.90162
Test RBF 0.38418 0.05591 0.94409 0.61582 0.39306 0.89586 0.38857

Table 15: Results of the SVMs with a linear kernel and a RBF kernel on the training and
test sets for detecting whether frames display the scene with the soldier. All results are
rounded to 5 decimals.

Rec FPR TNR FNR Prec Acc F1
Train ROI linear 0.98603 0 1 0.01397 1 0.99893 0.99297
Test ROI linear 0.62241 0.01917 0.98083 0.37759 0.75371 0.94996 0.68180
Train ROI RBF 0.98603 0 1 0.01397 1 0.99893 0.99297
Test ROI RBF 0.61111 0.01677 0.98323 0.38889 0.77446 0.95118 0.68316
Train ROI inter 1 0 1 0 1 1 1
Test ROI inter 0.64878 0.01100 0.98900 0.35122 0.84748 0.95969 0.73493

Table 16: Results of the SVMs with a linear kernel, a RBF kernel and a histogram
intersection kernel (inter) on the training and test sets for detecting whether frames display
the scene with the soldier, where the UI has been �ltered out of the data. All results are
rounded to 5 decimals.

To try to improve the results spatial pyramid matching was used with the bag-of-visual-words
features extracted from frames where the UI had been �ltered out. The codebooks used
to generate these histograms were the same as those used to generate histograms for the
regular region-of-interest bag-of-visual-words histograms (whose results were presented in
Table 16). Spatial pyramids consisting of two and three layers were used to train SVMs.
These SVMs were trained using a linear, a RBF and a histogram intersection kernel.
Their results are presented in Table 17.

Rec FPR TNR FNR Prec Acc F1
Train SPM 2-layer linear 0.97453 0 1 0.02547 1 0.99720 0.98710
Test SPM 2-layer linear 0.61864 0.03086 0.96914 0.38136 0.73987 0.92560 0.67385
Train SPM 3-layer linear 1 0 1 0 1 1 1
Test SPM 3-layer linear 0.50283 0.04168 0.95832 0.49718 0.63121 0.90173 0.55975
Train SPM 2-layer RBF 0.97206 0 1 0.02794 1 0.99693 0.98583
Test SPM 2-layer RBF 0.62429 0.02471 0.97529 0.37571 0.78184 0.93168 0.69424
Train SPM 3-layer RBF 1 0 1 0 1 1 1
Test SPM 3-layer RBF 0.43597 0.02044 0.97956 0.56403 0.75162 0.91203 0.55185
Train SPM 2-layer inter 1 0 1 0 1 1 1
Test SPM 2-layer inter 0.68267 0.00975 0.99025 0.31733 0.90852 0.95204 0.77957
Train SPM 3-layer inter 1 0 1 0 1 1 1
Test SPM 3-layer inter 0.66855 0.00962 0.99038 0.33145 0.90793 0.95040 0.77007

Table 17: Results of the SVMs with a linear kernel, a RBF kernel and a histogram
intersection kernel (inter) on the training and test sets for detecting whether frames
display the scene with the soldier, where the UI has been �ltered out of the data and
spatial pyramid matching (SPM) was used. All results are rounded to 5 decimals.
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The results of SVMs with spatial pyramid matching were still not satisfactory. There-
fore, neural networks were tried instead. At �rst, many forms of multi-layer percep-
trons were trained and tested, but none of these performed well. The results of the
best-performing multi-layer perceptron are presented in Table 18. As these proved to not
yield results of su�cient quality, convolutional neural networks were used instead. The
confusion matrices of the convolutional neural network described in Subsubsection 5.3.1
for the training and test sets are presented in Tables 19 and 20. The statistics of this
network are presented in Table 21.

Rec FPR TNR FNR Prec Acc F1
Train MLP equal 0.99754 0.00493 0.99507 0.00247 0.99508 0.99630 0.99631
Test ROI 0.97928 0.23181 0.76819 0.02072 0.28478 0.78638 0.44124

Table 18: Results of the best-performing multi-layer perceptron on the training and test
sets for detecting whether frames display the scene with the soldier. All results are rounded
to 5 decimals.

True

class

Predicted class

Scene No scene Total

Scene 26828 0 26828

No scene 0 18838 18838

Total 26828 18838

Table 19: Confusion matrix of the predictions of a convolutional neural network on the
CNN training set.

True

class

Predicted class

Scene No scene Total

Scene 10059 2809 12868

No scene 150 7336 7486

Total 10209 10145

Table 20: Confusion matrix of the predictions of a convolutional neural network on the
CNN test set.
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Rec FPR TNR FNR Prec Acc F1
Train CNN 1 0 1 0 1 1 1
Test CNN 0.78171 0.02004 0.97996 0.21829 0.98531 0.85462 0.87178

Table 21: Results of the convolutional neural network trained via transfer learning on
the training and test set for detecting whether the scene with the soldier takes place. All
results are rounded to 5 decimals.

6.2.3 Scene detection

In Subsubsection 5.3.2 the method was described that was used to predict whether a
video contains the scene with the soldier based on the predictions of a convolutional
neural network. The results of this method are presented as a confusion matrix in Table
22. The statistics of the method are presented in Table 23.,

True

class

Predicted class

Scene No scene Total

Scene 18 0 18

No scene 1 39 40

Total 19 39

Table 22: Confusion matrix of the predictions of the scene detection method based on
convolutional neural network predictions on the scene detection test set.

Rec FPR TNR FNR Prec Acc F1
Test Scene 1 0.025 0.975 0 0.94739 0.98276 0.97297

Table 23: Results of the scene detection method on the scene detection test set. All
results are rounded to 5 decimals.

6.3 Detecting the player's choice

Analogous to detecting the supermarket and the scene with the soldier, detecting the
player's choice during a scene with the soldier was split into two sub-problems: deter-
mining which choice a frame depicts and and determining which choice is made during a
scene with the soldier. The results of the former are presented in Subsubsection 6.3.2 and
of the latter in Subsubsection 6.3.3. The datasets used for the experiments are described
in Subsubsection 6.3.1. In this Subsection, for the purposes of calculating statistics such
as recall and precision, samples from segments where the player intervened were consid-
ered positive samples and samples from segments where the player remained passive were
considered negative samples.
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6.3.1 Description of datasets

The datasets that were used to train and test the methods to detect what choice the
player makes are described below:

• First CNN training set (Train CNN): the �rst training set used to train a convolu-
tional neural network via transfer learning. For all samples the entire scene with the
soldier was taken into account. Every 3rd frame was processed in segments where
the player intervened and every 2nd frame in segments where the player remained
passive. Overlay screens were �ltered out in all segments. There were 13458 samples
from segments where the player intervened and 13370 samples from segments where
the player remained passive.

• First CNN test set (Test CNN): the �rst test set used to test a convolutional neural
network trained via transfer learning. For all samples the entire scene with the
soldier was taken into account. Every 3rd frame was processed in segments where
the player intervened and every 2nd frame in segments where the player remained
passive. Overlay screens were �ltered out in all segments. There were 6541 samples
from segments where the player intervened and 6327 samples from segments where
the player remained passive.

• Second CNN training set (Train CNN 2): the second training set used to train a
convolutional neural network via transfer learning. In segments where the player
intervened only frames during the actual intervention were processed. Every frame
was processed during interventions. Every 2nd frame during the entire scene with
the soldier was processed in segments where the player remains passive. Overlay
screens were �ltered out in all segments (although these only occurred during seg-
ments where the player remained passive, not during interventions). There were
9185 samples from segments where the player intervened and 13370 samples from
segments where the player remained passive.

• Second CNN test set (Test CNN 2): the second test set used to test a convolu-
tional neural network trained via transfer learning. In segments where the player
intervened only frames during the actual intervention were processed. Every frame
was processed during interventions. Every 2nd frame during the entire scene with
the soldier was processed in segments where the player remained passive. Overlay
screens were �ltered out in all segments (although these only occurred during seg-
ments where the player remained passive, not during interventions). There were
3383 samples from segments where the player intervened and 6327 samples from
segments where the player remained passive.

• Choice detection test set (Test Choice): the test set used to test the method to detect
which choice the player makes in a scene with the soldier based on the convolutional
neural network predictions. It consisted of the same 18 segments as in the �rst
and second CNN test sets, but here every 30th frame was processed for the entire
scene with the soldier for all segments. The overlay screens were �ltered out in all
segments. There were 13 segments where the player intervened and 5 where the
player remained passive.

6.3.2 Classifying frames

The confusion matrices of the �rst convolutional neural network on the training and test
sets are presented in Tables 24 and 25. Its statistics are given in Table 26. As there was
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a signi�cant amount of confusion between the two classes using this network, a second
convolutional neural network was trained via transfer learning. Here the samples for
interventions no longer consisted of the entire scene with the soldier, but only the actual
interventions. The confusion matrices for this second convolutional neural network on the
training and test sets are presented in Tables 27 and 28. Its statistics are given in Table
29.

True

class

Predicted class

Intervene Passive Total

Intervene 13458 0 13458

Passive 0 13370 13370

Total 13458 13370

Table 24: Confusion matrix of the predictions on the �rst CNN training set of the �rst
convolutional neural network trained via transfer learning to detect the player's choice.

True

class

Predicted class

Intervene Passive Total

Intervene 5198 1343 6541

Passive 2329 3998 6327

Total 7527 5341

Table 25: Confusion matrix of the predictions on the �rst CNN test set of the �rst
convolutional neural network trained via transfer learning to detect the player's choice.

Rec FPR TNR FNR Prec Acc F1
Train CNN 1 0 1 0 1 1 1
Test CNN 0.79468 0.36810 0.63190 0.20532 0.69058 0.71464 0.73898

Table 26: Results of the �rst convolutional neural network trained via transfer learning
on the training and test sets for detecting which choice the player makes during a scene
with the soldier. All results are rounded to 5 decimals.
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True

class

Predicted class

Intervene Passive Total

Intervene 9185 0 9185

Passive 0 13370 13370

Total 9185 13370

Table 27: Confusion matrix of the predictions on the second CNN training set of the
second convolutional neural network trained via transfer learning to detect the player's
choice.

True

class

Predicted class

Intervene Passive Total

Intervene 3321 62 3383

Passive 1479 4848 6327

Total 4800 4910

Table 28: Confusion matrix of the predictions on the second CNN test set of the second
convolutional neural network trained via transfer learning to detect the player's choice.

Rec FPR TNR FNR Prec Acc F1
Train CNN 2 1 0 1 0 1 1 1
Test CNN 2 0.98167 0.23376 0.76624 0.01833 0.69189 0.84130 0.81168

Table 29: Results of the second convolutional neural network trained via transfer learning
on the training and test sets for detecting which choice the player makes during a scene
with the soldier. All results are rounded to 5 decimals.

6.3.3 Choice detection

The method used to determine what choice the player makes during a scene with the sol-
dier was described in Subsubsection 5.4.2 (,which was analogous to the method described
in Subsubsection 5.3.2). This method was used with the second convolutional neural net-
work, of which the results were presented in the previous Subsubsection. It was tested on
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the choice detection test set. Its results are given as a confusion matrix in Table 30 and
as statistics of the predictions of scenes in Table 31.

True

class

Predicted class

Intervene Passive Total

Intervene 13 0 13

Passive 1 4 5

Total 14 4

Table 30: Confusion matrix of the predictions on the choice detection method based on
convolutional neural network predictions on the choice detection test set.

Rec FPR TNR FNR Prec Acc F1
Test CNN 2 1 0.2 0.8 0 0.92857 0.94444 0.96296

Table 31: Results of the choice detection method choice detection test set. All results are
rounded to 5 decimals.

7 Discussion

In Sections 5 and 6 possible approaches to answer the research questions and their results
are discussed. These approaches may have limitations to their usefulness or to what degree
they can be generalized. It is also possible that other methods could achieve better results.
These matters are discussed in this Section. This is done individually for each of the four
steps taken to answer the research questions. Preprocessing is discussed in Subsection
7.1, detecting the supermarket in Subsection 7.2, detecting the scene with the soldier in
Subsection 7.3 and detecting the player's choice in Subsection 7.4.

7.1 Preprocessing

Thresholds on the similarity of color histograms between frames were used to detect
overlay screens. This method was used to create a list of frame numbers where overlay
screens appear or disappear. This list was then used during further processing to deter-
mine whether a frame should be taken into account. I.e. it was used to determine which
frames should be inserted into a training or test set for solving the later problems. Color
histograms and using a list of frame numbers with a boolean to keep track of whether
a frame should be processed are both computationally inexpensive methods. The down-
side of using a boolean to do so is that all frame numbers in the list of screen changes
have to be manually veri�ed, because a wrongfully detected screen change causes exactly
the opposite frames to be processed from that frame onward until another wrongfully
detected screen change is reached. While this entire preprocessing step does not a�ect
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processing videos that were not seen during this research, it is a step that would have
to be reproduced when the methods developed during this research would be adapted
to recognizing a di�erent location with a di�erent scene in `This War of Mine' or in an
entirely di�erent game. The time saved by using a computationally cheap method over
more complex methods to detect overlay screens is for a large part nulli�ed by having to
manually verify all detected screen changes.

An alternative would be to train an additional SVM or convolutional neural network
to detect overlay screens. If an overlay screen is detected by such a method, it could be
excluded from further processing and there is no longer a need for a fault-sensitive list of
frame numbers where overlay screens appear or disappear. An additional bene�t would
be that determining where a supermarket visit ends would become easier. Currently, a
threshold is used on the number of frames where the supermarket is not detected. As was
mentioned earlier, this sometimes wrongly detects that a visit has ended when an overlay
screen is present for a prolonged period of time. When frames can be directly classi�ed
as containing an overlay screen, this can be used to determine that a supermarket visit
has not yet ended, because visits to any location in `This War of Mine' cannot end with
an overlay screen. The player has to actively move to the exit of a location or the part
of day has to end (at the end of the day, the shelter automatically moves to the scavenge
selection screen and at the end of a night a scavenging run automatically ends with the
character moving back to the shelter). Since time is paused when an overlay screen is
present, it follows that a visit to a location cannot end when an overlay screen is present.
When the overlay screen disappears the location will appear again. If the player was
at a particular location, such as the supermarket, before the overlay screen appeared,
deduction can be used to determine that the player is still at that location when the
overlay screen disappears again and that it is not a new visit to the same location.

7.2 Detecting the supermarket

In the previous Subsection a discussion was given about how a di�erent method to detect
overlay screens might be able to also improve the detection of supermarket visits. This
method could also be bene�cial for another reason, namely that the intervals used to
detect the end of a supermarket visit consist of a speci�c number of frames, which was
quite large. These large intervals were necessary to accommodate for the presence of
overlay screens near the end of a scene. When overlays themselves can be detected, the
window which needs to be looked at to determine the end of a scene could be reduced,
which would make the method more robust.

The framerate of the videos in the dataset was usually 30 frames per second, but
if videos with a higher framerate were to be presented, the thresholds would not be as
e�ective (because the time considered would be smaller). Unfortunately, the classi�cation
results were not perfect so some kind of threshold is necessary. The window size could be
adapted to the framerate of the video for which it is used to solve this potential problem.

A method such as the one described in the previous Subsection would not help with
reducing the number of falsely detected scenes. These are caused by clusters of incor-
rectly classi�ed frames. In general the performance of the SVM used to predict whether
a frame contains the supermarket is good. However, when it classi�es a frame incorrectly,
it often classi�es a sequence of frames incorrectly leading to these incorrectly detected
supermarket visits. Temporal smoothing improved the classi�cation results a little, but
not enough to prevent falsely detected supermarket visits. To further reduce the number
of falsely detected scenes the classi�cation method would need to be improved or changed.
A possible improvement would be to use spatial pyramid matching, which was used to
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try and improve the detection of the scene with the soldier. There, it did lead to an
improvement, but the overall results were not yet satisfactory, which lead to the need for
a convolutional neural network. Spatial pyramid matching could lead to a larger improve-
ment in detecting the supermarket, because the di�erences between the supermarket and
other locations in the game are larger than those between the di�erent possible scenes in
the supermarket. Therefore, it is possible that the spatial relationships in frames would
be better captured through spatial pyramid matching, because the di�erence between
classes is bigger. In turn, that might lead to a reduction in false positives in the frame
classi�cations.

A di�erent possibility would be to use a di�erent classi�cation method entirely. For
detecting the scene with the soldier, convolutional neural networks turned out to perform
better than SVMs. The same could be possible for detecting the supermarket. The
downside is that a convolutional neural network is a black box method, so it would no
longer be possible to inspect the decision boundary or the words in the codebook used for
SVMs, reducing the interpretability of the process. If a neural network would be used,
it would probably be better to construct a new neural network from scratch, instead of
training a network through transfer learning, because a domain-speci�c network is likely
to be more able to closely model the di�erences in the data, than adapting a network
from a di�erent domain, which starts out with features modeled on di�erent data.

7.3 Detecting the scene with the soldier

Many approaches were tried to detect the scene with the soldier. Yet, only one of the most
complex methods, convolutional neural networks, achieved satisfactory results, which
shows that this is not a simple problem to solve. A convolutional neural network was
trained via transfer learning from an AlexNet5 [1] implementation. A tailor-made net-
work would probably achieve even better results on separating the segments with and
without the scene, but would also require a lot more work to set up properly. Addition-
ally, it would be a very domain-speci�c network, that would likely not scale well to other
problems. Although the convolutional neural network used to detect the scene with the
soldier does have an increase of 10 percent of recall over the second-best method, a SVM
with bag-of-visual-words histograms using spatial pyramid matching, the absolute recall
is still only 78.2%. For this reason, in order to detect whether a segment contains the
scene with the soldier, a threshold on the percentage of frames classi�ed as the scene with
the soldier was still necessary. The downside of a threshold is its lack of scalability. A
new threshold would have to be determined for every other scene the process, that was
developed as part of this research, would be adapted to. A tailor-made network may have
an advantage in this regard. If the recall would become high enough with such a network,
the frames classi�ed as the scene could also be used to identify where the scene takes
place, instead of the current method where a threshold is used on the entire segment to
determine if that segment contains the scene with the soldier, but which does not give
information about where in a supermarket visit the scene takes place.

The current process does have an advantage in its possibility to be generalized. The
fact that AlexNet could be adapted to a di�erent domain through transfer learning not
only speaks of the quality of the features in its network, but it also indicates that the
process of detecting a speci�c scene in gameplay videos of `This War of Mine' is easier
to generalize. After all, to get good results it was not necessary to build a new network
from scratch (although doing so may improve the results at the expense of costing a lot
of time). To detect other scenes, the same AlexNet network could be used to train new

5https://www.cntk.ai/Models/CNTK_Pretrained/AlexNet_ImageNet_CNTK.model
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networks through transfer learning by giving it enough training data of such other scenes.
The general power of convolutional neural networks means it is likely that the process can
also be successfully generalized to di�erent scenes and games.

7.4 Detecting the player's choice

The convolutional neural network that was used to detect the player's choice was trained
via transfer learning from the same implementation of AlexNet5 [1] as the network used
to detect the scene with the soldier. Therefore, for the same reasons as discussed in the
previous Subsubsection a tailor-made network may be able to achieve better results. Pre-
sumably also at the expense of generalizability like before. The same concerns about using
thresholds to detect whether the scene with the soldier takes place, as described in the
previous Subsubsection, can also be applied to the threshold used to detect which choice
the player makes. Additionally, as was already mentioned in Subsubsection 5.4.1, the
relatively small number of available videos with each of the choices to extract frames from
for training may also have a�ected the results. Therefore, having more videos available
that display the scene with the soldier may also be able to improve the results.

8 Conclusions

In Section 4 formal research questions were asked about each of the three sub-problems:
detecting the supermarket, detecting the scene with the soldier and detecting the player's
choice. Their corresponding research questions are asked in Subsections 4.2 up to and
including 4.4. The formal answers to these questions are given below:

• Research question 1.1: to predict if a frame containing gameplay footage of `This
War of Mine' displays the supermarket location a SVM can be used. This SVM is
trained with bag-of-visual-words histograms of SIFT features of frames displaying
the supermarket against frames not displaying the supermarket. The predictions can
be slightly improved by using `temporal smoothing', which adjusts the prediction of
a frame if all surrounding frames have a di�erent predicted class.

• Research question 1.2: the start and end of a visit to the supermarket in gameplay
footage of `This War of Mine' can be determined by using the predictions about
whether individual frames contain the supermarket. By �nding a series of consec-
utive frames which are predicted to display the supermarket and using thresholds
on the percentage of frames classi�ed as displaying the supermarket, the starts and
ends of supermarket visits can be determined. The results can be slightly improved
by detecting loading screens at the starts and ends of supermarket visits to get more
precise start and end frames.

• Research question 2: determining if a scene takes place where a soldier attempts to
rape a woman in a supermarket in gameplay footage of `This War of Mine' can be
achieved by training a convolutional neural network via transfer learning to detect
if a frame displaying a supermarket visit contains the scene with the soldier or a
di�erent scene. A threshold on the percentage of frames that have been predicted
as displaying the scene with the soldier can then be used to determine whether the
scene with the soldier takes place during a supermarket visit.

• Research question 3: determining whether the player chooses to intervene or re-
main passive in a video displaying a scene from `This War of Mine' where a soldier
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attempts to rape a woman in a supermarket can be achieved by training a convolu-
tional neural network via transfer learning to detect if a frame displaying this scene
contains an intervention or a player that remains passive. A threshold on the per-
centage of frames that have been predicted as displaying an intervention can then
be used to determine which choice the player made in a video containing the scene
with the soldier. Detecting that the player killed both the soldier and the woman
turned out to not be possible using this approach due to a shortage of videos where
this choice is made.

This research has shown that the process of analyzing a scene can be largely automated.
There is a need for domain knowledge to tune the various thresholds that were used, but
recognizing individual frames is automated using multiple machine learning methods. The
trained methods can also be used in an automated way on new samples, which were not
seen during this research. To predict which choices a player makes in any new data, no
additional work is required. The current system can be used to process any such data.
The process developed during this research can be adapted to di�erent scenes, which
makes it a valuable step in the �nal goal of the overarching research project to be able to
build a decision tree of the behavioral choices made by a player playing the game.
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