

Exploring interactive
application landscape
visualizations based on
low-code automation

Nick Jansen

First supervisor: dr. ir. J.M.E.M van der Werf, UU

Second supervisor: prof. dr. S. Brinkkemper, UU

External supervisor: ir. A. Koelewijn, Mendix B.V.

2

INTRODUCTION .. 3

RESEARCH APPROACH .. 5

2.1 Research Questions .. 5
2.2 Research Methods ... 7

LITERATURE STUDY .. 11

3.1 Context .. 11
3.2 Documentation problems .. 16
3.3 Documentation solutions ... 19
3.4 Conclusions .. 22

 THE APPLICATION LANDSCAPE MAP REQUIREMENTS 24

4.1 Interview information .. 24
4.2 Results ... 24

THE APPLICATION LANDSCAPE MAP SPECIFICATION 33

5.1 Introduction ... 34
5.2 Language Structure .. 35
5.3 Landscape metamodel ... 37
5.4 Design-time map metamodel ... 50
5.5 Run-time map metamodel ... 58
5.6 Tool requirements .. 65
5.7 Proof of concept ... 74

INITIAL EVALUATION .. 75

DISCUSSION & CONCLUSIONS .. 80

8.1 Limitations ... 80
8.2 Directions for future research .. 82
8.3 Conclusions .. 87

REFERENCES ... 88

3

CHAPTER 1

Introduction

“Software is eating the world”, Marc Andreessen famously wrote in 20111. His

article addressed that almost every company must become a software company

to stay in business. The largest traditional businesses in many domains have all

been taken over or changed into software companies. Today the largest

bookseller (Amazon), video service (Netflix), music company (Spotify), taxi

company (Uber), hotel chain (Airbnb), recruitment service (LinkedIn), direct

marketing platform (Google) are all software companies. And, industries that not

have not been taken over by a dominant software company are all increasingly

relying on software, today, banks, insurers, telecom and logistics companies are

all slowly transforming into software companies. Software has changed from a

modest service provider to an enabling driver for new business models. At the

same time, modern software development methods have influenced the structure

of software systems. Today more and more organizations are moving to a

distributed software architecture, making already complex systems even more

complex [1]. Additionally, the amount of software used in enterprises is growing

each year. For a large enterprise it is not uncommon to have a landscape of

thousands of applications, and this amount increases each year.

The practice of enterprise architecture is promoted to manage these increasingly

important, complex and large application landscapes. Enterprise architecture is

concerned with designing and realizing an enterprise’s organisational structure,

business processes, information systems, and infrastructure by using a set of

coherent principles, methods and models [2].

The majority of enterprises struggle to produce EA documentation of adequate

quality. Roth et al. determined that ~77% (n=108) of EA practitioners either have

to apply huge effort to collect data or their data is of poor quality [3]. The same

study shows larger organisations easily run thousands of applications that

cooperate to support their daily operations. Managing such large landscapes

increasingly becomes more important and complex. Studies by Kaisler et al. and

Farwick et al. both reported that EA documentation is considered as time

consuming, expensive and error-prone [4], [5]. Similar, Winter et al. reported

1 Wall Street Journal, August 2011

4

that the increasing information volume of organizations combined with the high

degree of manual work during the documentation and maintenance of EA models

results in a time consuming, expensive and error-prone maintenance of EA

information [6].

The research domain and practice of enterprise architecture take a holistic view

on the enterprise and includes a plethora of principles, methods and models on

different levels of abstraction. For this thesis there will not be engaged with the

complete domain of EA but just with a part of it. Because we observed that

application landscapes are increasing in importance, complexity and size and

enterprise architects are struggling with their documentation. This thesis will

focus on the documentation of these application landscapes. The objective of the

study is to determine how application landscape documentation could be

improved.

5

CHAPTER 2

Research Approach

In order to determine how the documentation of an application landscape could

be improved several research questions have been formulated. This chapter will

first present and discuss these research questions to consequently elaborate on a

research method that aims on answering them.

2.1 Research Questions
The main question this thesis is aims to answer is:

MQ: How could the documentation of an application landscape be improved?

To guide the research several sub questions have been formulated. Once the sub

questions have been answered the main research question can also be answered.

To determine how the documentation of an application landscape can be

improved, there must first be establish what is currently wrong with it. The first

research question is formulated to inquire this. A literature study will be

performed to answer this question.

RQ1: What are the current problems with documenting an application

landscape?

Once the problems are identified, both scientific literature an industry practices

will be consulted to formulate potential solutions that can address the problems.

RQ2: How could the current problems with documenting an application

landscape be addressed?

Based on the answers to research question one and two, research question three,

four and five have been formulated. Chapter three can be consulted for the

answers to the first two research questions.

Research question one and two revealed that 1) low-code applications could be

an interesting information source for the automation of application landscape

documentation. And 2) interactive documentation could potentially overcome

the limitations of static documentation.

6

Because no architectural language exists that is based on these principles. First

the requirements for such a language will have to be gathered, this led to the

following research questions.

 RQ3: What are the requirements of an interactive language to support a

model-based application landscape?

To answer RQ3, we first investigate what type of views and on demand

information is relevant for a practitioner when a language is designed based on

low-code automation and interactivity.

RQ3.1: What type of views and on demand information should be used to

interactively visualize and analyse an application landscape model for enterprise

applications?

Once the type of visualizations is defined, there should be determined which

application landscape elements should be included per visualization. A

landscape element can be any concept relevant in an application landscape,

examples are: application, API, load balancer, ESB, etc.

RQ3.2: What landscape elements should be displayed in a relevant interactive

visualization?

Based on the determined on-demand information types, per element there has to

be established what information is relevant for practitioners.

RQ3.3: What information should be displayed on demand for each element in

a relevant interactive view?

To make sure the identified requirements are focussed on user demands, user

groups for who the systems is relevant should be defined. Based on these user

groups corresponding user stories should be formulated so all functionality can

be traced back to user demand. This way once the system is built, we can perform

a light-weight evaluation by checking if all user stories are covered in the

specification.

RQ3.4: What user groups and user stories should be addressed?

When the requirements for an architectural language are specified, there is

evaluated how a language based on these requirements can be constructed. To

do this a specification for the language is defined, this specification should

answer the following research question.

RQ4: How could an interactive language to support model-based application

landscapes be constructed?

7

2.2 Research Methods
Each research question has been answered along its own method. Table 1 gives

an overview which method was used to answer each research question.

 Literature

study

ADSRM Case study

RQ1 X

RQ2 X

RQ3.1 X

RQ3.2 X

RQ3.3 X

RQ3.4 X

RQ4 X

Table 1 Overview Research Methods.

2.2.1 Literature study

To answers research questions one and two a literature study has been performed.

The literature study targets both scientific as industry literature. There has been

chosen to include industry literature to retrieve a complete picture of the problem

domain.

2.2.2 Agile Design Science Research Model

An analysis of the research questions lead to the realization that for question 3

and 5 have a “Wicked” nature [7], [8]. Rittel who first coined the term in the

mid- 1960s defined a wicked problem as:

“A wicked problem is one for which each attempt to create a solution changes

the understanding of the problem. Wicked problems cannot be solved in a

traditional linear fashion, because the problem definition evolves as new

possible solutions are considered and/or implemented.”

RQ 3 and 5 have a wicked nature because they investigate a social context, have

no stopping rule, and have no right or wrong answer. Answering these questions

involves weighing several interacting, sometimes conflicting interests to come

to a conclusion.

To cope with the complexity of a wicked problem the Agile Design Science

Research Model as proposed by K. Conboy et al. was selected [9]. This research

method has incorporated agile methods in the established Design Science

Research Methodology by Peffers et al. [10]. By doing so the method aims to

increase the proportion of inventive IT artefacts developed. Unlike the traditional

DSRM, the ADSRM supports an evolving problem definition which is in the

nature of a wicked problem. Figure 1 presents an overview of the Agile Design

8

Science Research Model (ADSRM), everything coloured red is an extension to

the traditional DSRM.

Figure 1 Agile Design Science Research Model (ADSRM).

The original DSRM consists of a project initiation and six subsequent activities.

According to the DSRM a project can have four possible entry points.

• A problem-centered initiation in which little is known about a design

problem.

• An objective-centered initiation where little is known how the

objective of a solution impacts a problem.

• A design/development centered initiation where it is still unclear how

to design a design feature.

• A client/context initiation where an industry partner invites for

collaboration.

Once the project in initiated the DSRM describes six activities about how to

proceed.

1. Problem identification and motivation. During this first step little is

yet know about the problem, and first efforts are made in identifying

and defining it. The problem is also motivated to ensure

industrial/scientific relevance.

2. Define the objectives for a solution. During this activity requirements

for a solution are gathered.

3. Design and develop. This activity involves building the actual artefact

based on the earlier defined problem and objectives for the solution.

4. Demonstration. This activity involves testing the solution, this can be

done by experimentation simulation, a case study several other means.

5. Evaluation. Involves determining if the proposed solution solves the

defined problem.

9

6. Communication. Involves sharing the importance of the problem and

the discovered solution. This can be done through a journal publication

a presentation at a conference and many other forms.

The ADSRM adds agile concepts to each of these activities.

• To the Define the objectives for a solution activity there is added to

think both about high and low-level objectives.

• To the Design and develop activity there is added that the researcher

should explicitly consider the non-functional requirements.

• To the Demonstration activity the prescription is added that early and

frequent implementations should be considered for all design concepts,

not just for finished artefacts.

• To the Evaluation activity:

o First light evaluations methods and metrics like lean startup

are added.

o Second, evaluation by instantaneous and automated testing

at component level are added.

o And third, evaluating the agility afforded by the artefact is

added.

• To the Communication activity is added that findings should be

communicated frequently inside and outside the research team.

According to the original DSRM it is only possible to iterate once the evaluation

or communication activity is reached. Also, it is only possible to go back to the

define objectives of a solution and design & development activity. It is not

supported to go back to the Identify problem & motivate activity. But when

dealing with a wicked problem the problem can change once an initial solution

is reached. Therefore, the ADSRM grants more flexibility by allowing process

iterations all the way back to the identify problem & motivate activity and already

start iterating once the Demonstration activity is reached.

ADSRM also adds the concepts of a Problem Backlog and Hardening Sprint to

the model. The Problem Backlog concept recognizes the changing problem space

of design problems. By introducing a flexible problem backlog where all

problems are captured more flexibility is gained while designing a solution. The

Hardening Sprint acts as a mechanism to ensure rigour is added during the

research. It does so to prevent that the agility-based amendments of the ADSRM

detract from the research’s rigour. Every few iterations the Hardening Sprint is

added in the iteration process, during this sprint the focus is on enhancing rigour

that might have been missing during the regular sprints. Several key mechanisms

are used to accomplish this. The first one is Freeze the Problem, with this

mechanism the problem remains fixed for a complete sprint, by not allowing

turbulence, dynamism or improvisation a level of rigour can be applied. The

second mechanism is Freeze the Process, when this mechanism is activated,

during the sprint the ‘people over process’ principle from the agile manifesto is

neglected and there will be just focused on the process. During that specific

sprint there will be extra focus on adherence to procedure and compliance,

improvisation will not be allowed. And the last mechanism is Add to the Process,

during this mechanism additional rigour-driven parts can be added to the process

(for example extra measures during an evaluation phase).

10

Because of the agile alterations we believe the ADSRM is a good fit to solve the

research questions with a “Wicket” nature.

2.2.3 Case study

Once research question 3 is answered, sufficient knowledge is retrieved to

formulate a design for an interactive language. To formulate this design an

exploratory case study will be performed at a low-code vendor. This case study

aims to deliver a specification for the construction of an interactive language to

support model-based application landscapes.

11

CHAPTER 3

Literature Study

3.1 Context
One of the main motivations for this study is the increasing complexity of

software systems. To thoroughly understand why software is increasing in

complexity will first look at the history of software production.

In 1968, a seminal article by Melvin E. Conway was published titled “How Do

Committees Invent” [11]. In the article Conway explained the close relationship

between the structure of a design organization and the structure of the system it

designs. He argued that organizations that produce systems are constrained to

produce designs that are copies of their communication structure. This idea has

far reaching implications for the management of system design and eventually

would be called Conway’s law.

When this relationship would not be considered, Conway observed a certain

pattern how complex system could disintegrate during development. First, the

initial designer would realize the system will become large, this realization

together with other pressures in the organization this will make the temptation

irresistible to assign to more people to the design effort. Conway argues that it is

a natural temptation for the initial designer to delegate tasks when a project is

reaching his limit of comprehension. Even more so when a budget and schedule

come in to play, simply because he knows he will be charged with

mismanagement when he does not meet his schedule without having applied all

his resources. In a design effort where the resource is human effort, this means

the initial designer will be strongly incentivised to bring more people on the

project. The fallacy lies in the fact that with a design effort the relation between

input and output is not linear2. Where in for example a sewing factory placing

more people behind sewing machines will linearly result in a higher output of

produced clothing, this is not the case for a design effort. In addition, Conway’s

law states that the size of the design organization will influence the design,

resulting in a different system design. And Conway argues that this design will

2 7 years after Conway published his article in 1975 F. Brooks would publish his

landmark book entitled “The Mythical Man-Month” elaborating on this idea about
time management in software projects[43].

12

not be superior, from experience he knows that two men, if well-chosen will

come up with a better system design than a large group.

Furthermore, already in 1968 Conway pointed out the importance of flexibility

in an organization. He argued the first design is never the best possible, and

therefore the system inevitably must change leading to organizational change as

well. He pointed out that ways must be found to reward managers that keep their

organization lean and flexible.

In 2007, McCormack, Rusnak and Baldwin took Conway’s ideas to the test in an

empirical study [12]. They compared software products that fulfilled the same

function but were developed in two different organizational structures. At the

one end was a software product developed by a commercial firm were developers

were tightly coupled with respect to location, goals, structure and behaviour. And

at the other end was a software product developed by an open source community

were the developers were much looser coupled regarding all those aspects. They

found that in all the pairs they examined the open source products were

significantly more modular than the products of the commercial firms. These

findings indicate a strong relationship between organizational structure and

software structure.

But when Conway published his ideas in 1968 the world was not yet ready to

embrace them. At the time a mechanistic management approach inspired by the

ideas of Frederick Taylor was still the most influential way to structure your

business [13]. His management ideas focused on standardization and efficiency.

Processes and tools were considered far more important than people. Doing the

work and thinking about how a certain task should be done was strictly separated.

Innovation if happening at all happened only in specialized R&D departments.

A mechanistic approach has worked perfectly for a production or service

company with limited offerings in a stable predictable business environment.

Under influence of this approach from 1945-1971 several traditional industries

experienced an unprecedented rise in business activity.

By the time the question arose how to structure a software company, Taylors

management ideas had proven themselves in practice for several decades. While

Conway’s ideas maybe have been a better fit for a software company, they just

were the unproven ideas of one scientist. Therefore, Taylors mechanistic

approach was also widely applied to software companies. This resulted in

bureaucratic organized software companies with strict procedures, specialized

departments and highly centralized authority. While a mechanistic approach is a

good fit when you want to optimize for efficiency, it is not a very good fit when

you must cope with rapid change. And software companies being design

organizations, change was inherent to their practice.

In the nineties, there was slowly realized that this mechanistic organizational

structure is a bad fit for a software company. As counterintuitive as it may sound,

people realized that in a business environment in which changing requirements

were certain it would be more efficient to favour agility over efficiency.

13

This realization lead to a new way of working now referred to as the agile

movement. In 2001 the Manifesto for Agile Software Development was

published pointing out four key values that should be followed in order to

become more flexible as a software organization. 1) Individuals and interactions

over processes and tools. 2) Working software over comprehensive

documentation. 3) Customer collaboration over contract negotiation. And 4)

responding to change over following a plan.

This simple manifesto had a huge impact on the way software would be

produced. From 2001 on a plethora of methods which fall under the agile

philosophy have been implemented at dozens of companies.

Looking back from 2018, at least two of the original signatories of the manifesto,

Martin Fowler and Ron Jeffries, argue this has happened with mixed success.

Fowler argues that much of what we see today is Faux-Agile, the result of and

Agile Industrial Complex which is imposing processes upon teams which

contradicts the agile beliefs [14]. Jeffries addresses a similar problem he calls

Dark Scrum, he argues that when Scrum is used in practice and only the activities

are implemented but the rationale of the ideas is left behind Scrum turns into

Dark Scrum [15]. For agile practices to work a fundamental shift is needed in

how we work and how power is distributed. Product software companies do a

fairly good job in this transition. But in-house software groups at banks,

governments, supply chain companies etc. have a much harder time. These

organizations are usually still structured in a more or less mechanical way. For

their complete enterprise to work it is undesirable to have a different

management style in one department. And in those organizations (unlike in

dedicated software companies) the in-house software group is just one

department. Therefore, it becomes very difficult to structure it in a different

manner while still being able to cooperate and comply with the rest of the

organization. These enterprises might implement some agile activities, but they

frequently do not fundamentally change their ways of working, resulting in

Faux-Agile or Dark Scrum.

The agile movement has addressed the alignment between the business and

developers and provided methods and principles to streamline their

communication. This has been the first step in tearing down the mechanistic

software organization.

The second step came with the introduction of DevOps. Around 2010 there was

realized that for a streamlined software development life cycle (SDLC) it was

not enough to only align the business with development. It does not matter how

good they work together, as long as the operations department is not aligned

nothing will be delivered to the user. Therefore, efforts have been made to

integrate the development and the operations department. Bas, Weber and Zhu

defined DevOps as "a set of practices intended to reduce the time between

committing a change to a system and the change being placed into normal

production, while ensuring high quality" [16].

In a software organization, the development and operations department

traditionally would be split up in two different silos. This structure has led to

14

Planning

Analysis

Design

Development

Integration &
Testing

Implementation

Maintenance

some problems over the years. For example, when the developers introduce a

bug that could crash the software during runtime the operations team would be

responsible to get the system back online even when it is in the middle of the

night. Although the developers might receive some angry messages from the

operations team, they would not feel the real pain their bugs are causing.

Furthermore, the operations team generally does not have the knowledge of the

source code to actually solve the root cause for the bug. Often the best they can

do is turn the system off and back on and ask the developer to solve their bugs.

By bringing development and operations together in a team the pains and

consequences of each other’s work become more apparent, encouraging closer

collaboration.

The challenge the DevOps movement takes on is how to integrate development

and operations in a team without losing the agile characteristics it achieved the

decade before. DevOps does so by focussing on automation and autonomy.

Activities such as testing, configuration and deployment are automated as much

as possible. The automation frees people to focus on other valuable tasks and

additionally it reduces the change of human error.

Figure 2 The Software Development Life Cycle (SDLC).

Complete team autonomy was out of reach for an agile team to achieve because

everything still had to get integrated and deployed by the operations team. But

with the inclusion of the operation engineers in the team it becomes possible to

cover the complete software development life cycle with a single team and

become autonomous. When looking at the SDLC agile focused on improving the

first part of the cycle, DevOps is focussing on the complete cyle, figure 2.

Although an autonomous team can be more efficient, they cannot cover a

Planning

Analysis

Design

Developm
ent

Integration
& Testing

Implementat
ion

Maintenan
ce

Agile

DevOps

15

complete system. Therefore, the system needs to be split up in smaller pieces,

this way each team can be responsible for a piece. Microservices have become

the de facto architectural style to split up a large system in order to achieve team

autonomy [17]. With a microservice architecture the system is built as a

distributed set of independently deployable services. This way each team can be

given the complete responsibility over a relatively small vertical slice of the

system.

But how to determine how to split up the system has been a point of elaborate

discussions in the community. The Bounded Context pattern from Domain-

Driven Design can help structuring the problem domain in smaller sections

which can help determining microservice granularity [18]. Here we see

Conway’s ideas finally adopted, because the teams will be structured around a

business capability and the architecture will reflect this structure, the

organizational structure and system structure will finally be aligned.

Although the adoption of a microservice architecture helps teams achieving

autonomy it goes at the cost of complexity [1]. Developing a distributed system

is inherently more complex that developing a monolithic application. It presents

challenges for availability, reliability, maintainability, performance, security and

testability [1]. To address these challenges, over the last decade a lot of new

technologies have been introduced. Figure 3 shows a reprint from

“Microservices: the journey so far and challenges ahead” which gives an

overview of some of these technologies [19]. The figure indicates how large and

complex the technology stack has become for developing and maintaining your

software system.

Figure 3 A microservice technologies timeline. Reprint from

“Microservices: the journey so far and challenges ahead” [19]

To conclude, autonomous teams are more efficient in a rapid changing

environment than teams that must rely upon each other. Within industry the

16

DevOps methodology is popularized to achieve this team autonomy. DevOps

relies on automation practices and distributed system architecture to achieve

autonomy. While these practices can be effective, they come at the cost of

increased complexity. The right tooling can help managing the increased

complexity. This thesis also aims to address the increased complexity with

appropriate tooling and focusses on the increased complexity in the

documentation of the application landscape.

3.2 Documentation problems
The literature study revealed two main problems with application landscape

documentation. The first problem addresses the production process of

documentation. And the second problem addresses the effective consumption of

this produced documentation. This section will discuss both identified problems.

3.2.1 Documentation production

Several authors have pointed out that Enterprise Architecture documentation3 is

hard to produce and maintain. Roth et al. determined that ~77% (n=108) of EA

practitioners either have to apply huge effort to collect data or their data is of

poor quality [3]. Studies by Kaisler et al. and Farwick et al. both reported that

EA documentation is considered as time consuming, expensive and error-prone

[4], [5]. Winter et al. reported that the increasing information volume of

organizations combined with the high degree of manual work during the

documentation and maintenance of EA models results in a time consuming,

expensive and error-prone maintenance of EA information [6].

What these studies have in common is that the observed documentation practices

all mainly rely on manual processes. Information for the documentation is

gathered through expert interviews by a single or group of solution or enterprise

architect(s). And once enough information is gathered the documentation is

manually created in static text files with static visualizations. This approach costs

much effort, is error prone and the documentation quickly gets outdated.

Automated documentation

Motivated by the problems of manual documentation, research has been

conducted on automated documentation. Buschle et al. have researched a

technique to generate EA diagrams with the use of an Enterprise Service Bus

[20]. Holm et al. researched a technique to generate EA diagrams with the use of

an automated network scanner [21]. And Farwick et al. investigated an

(semi)automated process for maintaining enterprise architecture models by

gathering information from both humans as from live systems [22]. While the

studies take an interesting approach, their focus is just on the technical

possibilities for extracting documentation. No attention is spent on

organizational and usability factors. The studies take a bottom up approach and

only investigate the possibilities with certain technology, no attention is spent on

what practitioners require.

3 Enterprise architecture documentation includes the documentation of the application
landscape.

17

To guide the research domain a study by Hauder et al. presented a set of

challenges for automated enterprise architecture [23]. They identified four major

challenge categories: data, transformation, business and organization and

tooling. The data challenges address difficulties with data quality and the

selection of the correct information sources. Transformation challenges include

the mapping from information sources to a central repository and the

maintenance of this repository. Business and organizational challenges involve

the added value of automation and its impact on the structure of the organization.

The tooling challenges include the realization of the EA with automated tooling

and integration with existing EA databases.

By synthesizing the discussed automation approaches and the results of Hauder

et al., one problem of automated application landscape documentation has

become apparent. This problem is the technological variability present in a

typical application landscape. Due to this variability it becomes very hard for an

automated approach to extract all the relevant information out of each system.

Therefore, this technological variability in an application landscape is indicated

as the biggest problem for an automated documentation approach.

Model-code gap

Fairbanks observed that architectural diagrams often do not reflect the reality of

what is happening in the source code [24]. Where architectural diagrams include

abstract concepts like components the source code normally does not, although

it is able to. Beyond that, architectural models include intentional elements like

design decisions and constraints, those cannot be expressed in source code at all.

Fairbanks names the discrepancy found between architecture models and the

source code the model-code gap.

Architecture reverse engineering approaches attempt to derive high-level models

from the source code of a system. Although this type of model gives an accurate

description of the source code, due to the model-code gap they often differ from

the models sketched by the engineers. And thus, these reverse engineering

approaches do not deliver what is required by the engineers.

To bridge the model-code gap Murphy et al. devised a system which compared

the high-level models created by the engineers with a reversed engineered model

from the source code [25]. With a mapping defined by the user the system would

produce a Reflexion Model indicating all the differences between the two

models. This way Murphy et al. attempted to bridge to model-code gap.

3.2.2 Documentation consumption

As pointed out in the previous section, the typical application landscape

documentation is created as a static text file with a static visualization. To

document the architecture of a large application landscape with static diagrams

we either require large diagrams or large documents. Documenting the

architecture in an all-encompassing diagram results in a large diagram. Splitting

this diagram in smaller diagrams results in numerous diagrams and therefore a

large document. Both are not desired when consuming documentation, the next

section will point out why not.

First, large diagrams are incomprehensible. In George Millers widely cited paper

“The Magical Number Seven, Plus or Minus Two” published in 1956 [26]. He

18

pointed out that the average number of objects an average number can hold in

working memory is seven, give or take two. Unfortunately, in

enterprise/software architecture this rule is not always considered, sometimes

resulting in a single, heavily overloaded, all-encompassing model. Rozanski and

Woods describe such a model as the worst of all worlds. They propose that the

architecture description should be split up in several views and perspectives [27].

They define a view as: “a representation of one or more structural aspects of an

architecture that illustrates how the architecture addresses one or more

concerns held by one or more of its stakeholders”. Views describe the structural

aspects of a system and perspectives describe its quality aspects. Rozanski and

Woods describe a perspective as: “An architectural perspective is a collection

of architectural activities, tactics, and guidelines that are used to ensure that a

system exhibits a particular set of related quality properties that require

consideration across a number of system’s architectural views”. Although their

approach helps to structure the documentation to the needs of its consumers. It

does not necessarily help to reduce the size of a diagram. A large application can

still require a large diagram within one view. With a static representation the

only option is to split the large diagram in several smaller, but this will inevitably

result in a large document.

Second, large documents are inconvenient. The second point of the Agile

Manifesto states “Working software over comprehensive documentation”. A

large document describing an entire application landscape is comprehensive

documentation and therefore will always come second to working software. This

makes it unlikely that the people you want involved formulating the

documentation will have sufficient time to do so. And second because large

documents are large and manually maintained, they are likely to be cumbersome

and outdated which makes it implausible they will be consulted.

19

3.3 Documentation solutions

3.3.1 Documentation production

In search for a solution to cope with the high level of technological variability in

a typical application landscape the domain of Model-Driven Engineering (MDE)

has been investigated.

 Model-driven engineering

MDE strives to raise the abstraction level in software development by working

on models instead of directly on source code. To do so MDE uses Domain-

Specific Languages (DSLs), this are languages designed for a specific domain,

context or organization which help the people in that domain describe things.

Brambilla et al. point out four reasons why software development would benefit

from the use of models [28]:

“1. Software artifacts are becoming more and more complex and therefore they

need to be discussed at different abstraction levels depending on the profile of

the involved stakeholders, phase of the development process, and objectives of

the work.

2. Software is more and more pervasive in people’s life, and the expectation is

that the need for new pieces of software or the evolution of existing ones will be

continuously increasing.

3. The job market experiences a continuous shortage of software development

skills with respect to job requests.

4. Software development is not a self-standing activity: it often imposes

interactions with non- developers (e.g., customers, managers, business

stakeholders, etc.) which need some mediation in the description of the technical

aspects of development.”

Although these benefits appear as a good reason to adopt MDE, a global shift in

development practices has yet stayed out. Proper tool support has often been

blamed for the lacking adoption of MDE [29]–[32]. But, Whittle et al. argue that

this is only partially true, in 2015 they have published an extensive taxonomy

about all the tool-related issues affecting the adoption of MDE [33]. They did so

by placing tooling within a broader organizational context, their analysis resulted

in four broad problem themes; technical factors, internal organizational factors,

external organization factors and social factors. Each of these themes has

several categories which have in turn sub-categories. For the complete taxonomy

the paper should be consulted. In this section the main observations of each

theme will be discussed.

Technical factors, one clear observation by Whittle et al. was that MDE can be

effective but it takes effort to make it work. Most of their interviewees where

successful with MDE but they had either build their own tools or made extensive

customizations to standard tools. This indicates that the tools at that time where

more are barrier to success rather than an enabler. Furthermore, the usability of

20

the tools was often poor, available tools could be very powerful, but it was very

difficult for the user to access that power. Moreover, the tools did not consider

the way how people think, people had to adapt their thinking to the technology

instead of the other way around. This includes a lack of attention to the problem-

solving process, the tools only provided adequate support once there was known

how to solve a problem, but they did not offer support for reaching that solution

in the first place. At last the tools often introduced accidental complexity. This

means that in practice to optimize usage of the tool often a lot of extra manual

work had to be done.

Internal organizational factors, Whittle et al. observed that at the time there was

a strong need for tailoring. This means either the tailoring of the tool to the

organization, the tailoring of the organization to the tool or building your own

tool that fits the organization naturally. All this required tailoring presented a

barrier for the adoption of MDE. Furthermore, there is no structured method for

knowing which MDE tools are appropriate for which jobs. There is an

organizational risk were one successful MDE project leads to applying the MDE

technology at several non-appropriate projects. Moreover, MDE can present a

curious paradox, where it once was developed to improve portability. In practice

issues with versioning and migration often come up reducing the portability.

Finally, the way how DSLs spread and grow through an organization is often not

under control, this can lead to unacceptable required maintenance, education and

tooling costs.

External organizational factors, expectations about what MDE can deliver

within an organization are often not well managed. Vendors promise tooling on

a high level of abstraction were in reality the abstraction level of the tool is very

close to code. Also, the involved costs of the tooling and the indirect cost of

training, process change, and cultural shift can act as a barrier for the adoption

of MDE. With regards to certification the use of MDE tooling can have both a

positive or negative effect depending on the industry and country the company

resides in.

Social factors, Whittle et al. taxonomy points out that in general different

organizational roles react differently to the adoption of MDE. Software architects

tend to embrace MDE because it puts them in control, they can for example

encode their architectural rules which forces developers to follow them. Code

gurus tend not to embrace MDE because they are afraid, they lose control.

Hobbyist programmers also tend to avoid MDE, they are afraid it risks taking

away their creativity (similar like a carpenter would not want to risk building

Ikea furniture the rest of his life). Managers react differently to MDE depending

on their current context and background. In general, MDE requires a

fundamental shift in how people work, this will not always be embraced.

Next to all these factors that hamper the adoption of MDE the collective focus

on what the real benefits of MDE are might also be off [34]. MDE originated out

of the hands of some very technical developers. From the beginning their focus

was on the technological factors of MDE and code generation was seen as the

holy grail. Now thirty years later this perception is still omnipresent, but recent

research has shown that code generation is actually not the key business driver

for adopting MDE [34]. It turns out that the main advantages are in the support

that MDE provides in documenting a good software architecture, an activity the

technology focussed developers where never very fond off. The focus on code

21

generation led to a marketing strategy where MDE was framed as a technology

that could do the same things faster and cheaper. However, this is not usually

enough motivation for companies to risk adopting MDE; rather, companies that

adopt MDE do so because it can enable business that otherwise would not be

possible [34].

Low-code

Since several years a specific version of MDE named low-code is quickly

gaining industrial adoption [35]. A low-code platform is a domain specific,

model-driven engineering platform focused on the development of enterprise

applications. It provides a set of domain specific languages (DSLs) a developer

can use to build enterprise applications. Low-code limits its focus on enterprise

applications and thereby is able to deliver a better user experience than earlier

MDE platforms.

Because it is possible to develop any enterprise application with a low-code

platform. The enterprise can develop its entire application landscape with a low-

code platform. Because, every application built by a low-code platform is

constructed by the same set of DSLs every application will have the same

internal structure. This consistency in structure can potentially overcome the

problems of technological variation found in a typical application landscape.

3.3.2 Documentation consumption

The second problem to address regards document consumption. We have

identified that static diagrams and text files are not fit for the documentation of

an application landscape. In search of a solution the domain of information

visualizations has been investigated.

Interactive visualizations

In 1996, Ben Schneiderman published a seminal article titled: “They Eyes Have

It: A Task by Data Type Taxonomy for Information Visualizations” [36].

Schneiderman argued that while a page of information is easy to explore, it

becomes harder when the information reaches the size of a book or even a

library. Therefore, he argued rapid and high-resolution colour displays should

be utilized to present large amounts of information in an orderly and user-

controlled way. He discovered a principle that summarizes the many visual

design guidelines for designing these interactive visualizations. The principle is

known as the Visual Information Seeking Mantra:

Overview first, zoom and filter, then details-on-demand

Although the principle is based on the design guidelines available in 1996 it still

holds true today and is found in most interactive visualizations [37]. To sort out

all the different visualizations Schneiderman included a type by task taxonomy

for information visualizations. The taxonomy identifies seven data types on

which a visualization could be based, combined with seven tasks user could want

to perform.

Data types:

1-dimensional: Linear data types e.g. text documents, source code.

2-dimensional: Planar or map data e.g. maps, floorplans, layouts.

3-dimensional: Real world objects e.g. molecules, buildings.

22

Temporal: Data with a time dimension e.g. medical records, project

management.

Multi-dimensional: Data with multiple dimensions, found in most relational and

statistical databases.

Tree: Data with a parent child structure e.g. family trees.

Network: Data where items need to be linked to n number of other

items e.g. trade networks, social interaction networks.

Tasks:

Overview: Gain an overview of the entire collection.

Zoom: Zoom in on items of interest

Filter: Filter out uninteresting items.

Details-on-demand: Select an item or group and get details when needed.

Relate: View relationships among items.

History: Keep a history of actions to support undo, replay, and

progressive refinement.

Extract: Allow extraction of sub-collections and of the query

parameters.

The static documentation of an application landscape perfectly fits

Schneiderman’s description of information that is hard to explore due to its size.

Investigating if his approach on information visualization will be beneficial for

an application landscape is therefore worthwhile.

Because an application landscape essentially is a network of applications

connected through dataflows. The network data type would be the most relevant

information structure for an application landscape. According to Lee et al., tasks

on a network visualization can be categorized as topology based or attribute

based [38]. Topology based tasks include finding adjacent nodes or determining

a path between nodes. Attribute based tasks include e.g. searching for all nodes

with a certain attribute value or edges without a specific attribute value. The use

cases of research questions 5 will address which kind of tasks will be relevant

for an interactive network visualization of an application landscape.

3.4 Conclusions
Based on the literature study, research question one and two can now be

answered.

RQ1: What are the current problems with documenting an application

landscape?

In this chapter we identified two main problems of application landscape

documentation. The first problem addresses the production process of the

documentation. We observed that the production process is time-consuming,

expensive and error prone due to its manual nature. To solve this, several

automated documentation studies have been conducted. But the high level of

technological variability in a typical application landscape is a big hurdle for

automated documentation. The second problem addresses the consumption

process of the documentation. We have identified that static diagrams and text

files are not fit for the documentation of an application landscape. The next

section will address these identified problems.

23

RQ2: How could the current problems with documenting an application

landscape be addressed?

The first problem automated application landscape documentation is currently

facing is technological variability. This problem could potentially be addressed

by basing the automation on a low-code platform.

The second problem is the usage of static text files and visualizations in

application landscape documentation. We have identified these static files as

unfit for documenting an application landscape due to the size of the involved

information. This problem could potentially be addressed by adopting an

interactive visualization approach.

Both solutions will potentially work supplementary to each other. An

automated approach would have to deliver a structured metamodel with the

application landscape information. Such a metamodel is precisely required

when creating an interactive visualization.

24

CHAPTER 4

 The Application

Landscape Map

Requirements

First this section will present some information about the conducted interviews.

Second, the results to research question three will be presented.

RQ3: What are the requirements of an interactive language to support a

model-based application landscape?

4.1 Interview information
A total of 18 interviews have been held with 14 different practitioners. Three

interviews have been conducted in a group of three, one interviews has be

conducted in a group of four and all other interviews have been conducted one

on one. Some practitioners have only been interviewed once were others two,

three or even four times. The group of practitioners consisted of 4 developers, 4

solution architects, 2 enterprise architects, 2 product managers and 2 directors of

a low-code vendor. To structure the interviews a semi-structured interview

protocol was used. The protocol followed the same structure as the formulated

research questions.

4.2 Results

4.2.1 Views and information themes

RQ3.1: What type of visualizations and on demand information should be used

to interactively visualize and analyse an application landscape model for

enterprise applications?

The interviews indicated that in practice little usage is made of textbook

architecture frameworks. Practitioners considered them to be too complex and

25

extensive to support them effectively in practice. When asked about the practices

they did use to visualize an existing application landscape their responses were

mixed. Some interviewees mainly used improvised informal drawings to

visualize an application landscape. While others argued they did not really

bother about visualizing the as-is situation because the landscape was familiar

to them and it changed too quickly. These interviewees mainly worked on the

to-be landscape diagrams and did so using informal drawings. When asked about

how new hires are familiarized with the landscape, they did reckon an accurate

overview of the as-is situation would be useful.

One interviewee explained his usage of Simon Browns C4 model [39]. This

model is an industry approach used to describe the static structure of a software

system as a map. It uses a set of four diagrams on different levels of detail to

acts as a map through the system. The notation is simple and intuitive, similar to

informal boxes and lines drawings. The interviewee had used it during a project

and was positive about the approach of the model. He pointed out that a similar

approach could also work on application landscape level.

When the C4 model was discussed with other practitioners they responded

positive on the approach but commented that the static structure is not the

complete picture a landscape. It was suggested to make a distinction between a

design-time and run-time representation of the landscape. This distinction

should be made because where the C4 model only had to deal with a single

system and therefore a single unit of deployment, a landscape approach would

have to deal with multiple units of deployment. Having multiple units of

deployment can lead to discrepancies between the design-time and run-time

landscape. This can happen due to the configuration freedom engineers have

when deploying an application. Therefore, practitioners argued both a design-

time and a run-time visualization would be interesting. Furthermore, they

addressed it would be interesting to know how often certain API calls are made

in production.

To summarize the results for RQ3.1 with regards to the views, the interviewees

pointed out the need for a structural view on the landscape from both a design-

time and a run-time perspective.

With respect to the relevant on-demand information three themes emerged from

the analysis of the interviews. The first theme regards integrations, in all

interview’s information about the integrations between applications was

regarded as one of the most valuable aspects for an application landscape.

Alongside it the concern was raised that they should be rendered in a smart way

because else the picture would get cluttered due to the amount of integrations

going on in a typical application landscape. To address this problem one of the

interviewees proposed it would help to just show a single relationship between

each application and API. All concrete integrations could get shown on-demand

once the relationship would be selected. The second theme that came forward

was data. On application landscape level practitioners addressed it to be

interesting to gain insight in what data is stored in what application. Likewise,

integrations, the amount of data entities in an application can be huge. Therefore,

26

measures should be taken to represent the entities in a meaningful way. The last

theme that emerged was about security. Mainly architects addressed that

security information would be very useful for them to have on a landscape level.

It would enable them to easily do compliance checking on certain aspects of the

application landscape.

Next to addressing the relevant views and required on-demand information some

interviewees also came up with several useful requirements for a protentional

tool. First multiple interviewees stressed the need for a filtering mechanism.

Application landscapes at large organizations can consist of hundreds and

sometimes even thousands of applications. Therefore, a filtering mechanism is

essential to give a user the power to just render what is relevant to him or her.

Secondly there was mentioned that an option to label certain elements in the

visualization would be of great help. This way a user could determine himself to

create groups of elements he/she thinks are meaningful. Subsequently

interviewees proposed it would be useful to have the ability to cluster elements

with the same label to one rendered element, this would enable users to reduce

the number of elements in the visualization. At last there was mentioned that a

user should be able to save the view he created on the landscape by filtering and

clustering elements, this way it would be easily retrievable for later usage.

The following three lists summarize the results of RQ3.1.

Views:

• Structural design-time view

• Structural run-time view

On demand information themes:

• Integrations

• Data

• Security

Tool requirements:

• Filtering

• Labelling

• Clustering

• Saving custom views

4.2.2 Application landscape elements

RQ3.2: What landscape elements should be displayed in a relevant view?

Research question 3.1 pointed out the need for a structural view on both the

design-time and run-time application landscape. The results of research question

3.2 will present the elements of an application landscape that should be included

in these views.

In all cases, the interviewees reported the need for a simple representation for

both views. Meaning the view should include a minimal number of different

27

“boxes” and “lines”. In contrast to for example the ArchiMate modelling

language in which a plethora of different elements, lines and arrowheads are

included. Interviewees stressed to keep the views as simple and intuitive as

possible to keep them accessible to a wide range of organizational roles and not

just to trained architects.

The interviews surfaced for the design-time view five relevant elements and for

the run-time view three relevant elements. Table 2 gives an overview of the

elements per view.

 Design-time view Run-time view

Application X X

Module X

API X X

Consume-relationship X X

Internal relationship X

Table 2 Elements per view, as mentioned by the interviewees.

The application element is the main building block for both the design-time as

run-time view. Where in traditional software development the unit of deployment

is freely interpreted by each software engineer. In low-code the application is set

as the deployable unit of which cannot be deviated. An application is built up

through a set of domain specific languages covering UI, application logic, data

and much more. A developer is free to determine himself how he structures a

system. He can choose to build a system as one large MDE application or he can

choose to build a system as a set of interacting smaller applications. But he will

always only be able to work in and deploy application files. Therefore, the

application being the unit of deployment is a sensible main building block for the

two structural views.

The inside of an application is structured in several modules. A module serves as

a folder to group a set of coherent DSL files. Therefore, the module is also one

of the main structural elements.

An application can expose APIs and consume APIs of other applications. In

essence an exposed API is just a DSL file stored in a module. But interviewees

addressed it would be interesting to know what applications are connected to

what specific APIs of an application. Therefore, it makes sense to represent the

APIs as its own element in a view to make explicit to what APIs applications are

connecting.

28

The consume-relationship represents all connections an application is making to

a specific API. Interviewees suggested bundling these connections in a cluster

for each application API pair would support the readability of the view. Details

about integrations should become accessible on-demand.

The internal relationship is an element which shows the connections between

modules within an application. Interviewees addressed the relevance of these

connections to gain information about internal application coupling.

The interviewees mentioned only for the design-time view a visualization of the

internals of an application would be interesting.

4.2.3 On demand information

RQ3.3: What information should be displayed on demand for each element in

a relevant interactive view?

During the interviews there has been extensively discussed what information

would be relevant to display per element per view. This section will present the

findings of these discussions. Table 3 presents what information should be

available on demand for the elements in the design-time map, table 4 does the

same for the run-time map. Additional information about each table and property

can be found in the specification of the ALM in chapter 5.

 General Integration Data Security

Application

Application name X

Application source X

Development line X

Revision number X

Labels X

Location X

Consumed operation table X

Published operation table X

Data table X

Data access table X

Module

Module name X

Labels X

Module usage table X

Used by module table X

Data table X

API

API name X

API type X

Source application X

29

Version X

Labels X

Published operation list X

Connection protocol X

Authentication protocol X

Consume Relationship

Source application name X

Target API name X

Consumed operations table X

Connection protocol X

Internal relationship

Source module X

Target module X

Integration table X

Table 3 Design-time view element information.

 General Integration Data Security

Deployed Application

Application name X

Instance id X

Source X

Version X

Location X

Consumed operations table X

Published operations table X

Deployed API

API name X

Source application X

Source app instance id X

Source module X

Version X

API type X

API location X

Link to generated doc X

Published operations table X

Configured consume Relationship

Source application name X

Target API name X

Target API type X

Connection protocol X

Consumed operation table X

Table 4 Run-time view element information.

30

4.2.4 User groups and stories

RQ3.4: What user groups and user stories should be addressed?

The interviews revealed several user groups for which the automated

documentation approach is relevant. In this section these user groups will first

be presented followed by a set of user stories that are relevant for these user

groups. The user stories are grouped by the information themes identified in

RQ3.1. The next chapter proposes a specification for a system based on the

identified requirements. To evaluate if all the identified user stories are

addressed in this specification, each user story is numbered, in the specification

there will be referenced to these user story numbers once they are addressed.

A. New developers

First, the ALM can help new developers during their onboarding process.

Because the ALM automatically provides an up to date map of the complete

landscape, new developers will always have an up to date map they can use to

find their way around in the new environment. This while experienced

developers will not be bothered maintaining the map.

B. Experienced developers

Second, experienced developers can use the map to perform analysis on (parts)

of the landscape or to easily learn about parts of the landscape they are not

familiar with.

C. Solution architects

Third, solution architects can use the map to easily do compliance analysis. This

way they can check if everyone is adhering to the agreed architectural principles.

General

1. As a new developer, I want to know what applications exist in my

company.

2. As a new developer, I want to know where the file of the application

model is stored.

3. As a new developer, I want to know which developers have access to

which application in the company.

4. As a new developer, I want to know where I can find the

documentation of an API.

5. As a new/experienced developer, I want to have an overview of all

elements with a specific label.

6. As a new developer, I want to know of which modules an application

is constructed.

7. As an experienced developer, I want to know at which URL a specific

application instance in a specific environment is deployed.

8. As an experienced developer, I want to know how much instances of

an application are deployed in a specific environment.

9. As an experienced developer, I want to know how a specific instance

of an application is configured in a specific environment.

31

10. As an experienced developer, I want to know the impact on the

application landscape when I would deploy another development

line/revision.

Integration landscape level

11. As a new developer, I want to know what APIs are published in my

company.

12. As a new developer, I want to know the types of the APIs in my

company.

13. As a new/experienced developer, I want to know what applications are

consuming the services of a specific API.

14. As a new developer, I want to know who has integrated with a specific

external API before.

15. As a new/experienced developer, I want to know if the intended usage

of an API is internal or public.

16. As a new developer, I want to know the operations an API is

publishing.

17. As a new developer, I want to know the operations an application is

consuming and publishing through APIs.

18. As a solution architect, I want to know which applications have access

to a published operation.

19. As a solution architect, I want to know which user roles have access to

a published operation.

20. As a solution architect, I want to know from which modules and files

API calls are coming.

21. As a solution architect, I want to know if we are consuming external

APIs.

Integration module level

22. As an experienced developer, I want to know how tightly the modules

in my application are coupled.

23. As an experienced developer, I want to know how much modules a

specific module is using.

24. As an experienced developer, I want to know how much a specific

module is used by all other modules.

25. As an experienced developer, I want to know how much a specific

module is used by a specific other module.

26. As an experienced developer, I want to know of what type the

incoming and outgoing usages in a module are.

27. As an experienced developer, I want to know how much of usages are

unique.

Integration run-time map

28. As an experienced developer, I want to know how frequent the

operation in a consume relationship is being called during run-time.

29. As an experienced developer, I want to know how frequent the

published operations of a specific API instance are called during run-

time.

32

30. As an experienced developer, I want to know how frequent all APIs of

a specific application instance are called during run-time.

31. As an experienced developer, I want to know how frequent a specific

application is calling operations from a specific API.

32. As an experienced developer, I want to know the average request size

of an API call.

33. As an experienced developer, I want to know the average response size

of an API call.

Data

34. As an experienced developer, I want to know what data is stored in a

specific application.

35. As an experienced developer, I want to know what data is stored in a

specific module.

36. As an experienced developer, I want to know the state of an entity

stored in an application/module.

37. As an experienced developer, I want to know the original owner is of

a copy of an entity.

38. As an experienced developer, I want to know if an entity has relevant

documentation.

Security

39. As a solution architect, I want to know what connection protocol is

used for each application/API.

40. As a solution architect, I want to know what authentication protocol is

used for each API.

41. As a solution architect, I want to know what kind of access a specific

user role has to a specific attribute in an entity.

33

CHAPTER 5

The Application

Landscape Map

Specification

RQ4: How could an interactive language to support model-based application

landscapes be constructed?

To answer research question four, a specification for a system has been

formulated. In the specification an application landscape metamodel is

proposed that should be automatically filled from a set of low-code

applications. To evaluate if it is possible to automate this process an expert

interview with a product manager from one of the leading MDE vendors has

been conducted. The product manager confirmed the possibility and explained

that the application models created with their platform could be easily queried

and manipulated through their application model SDK. Furthermore, he

confirmed that the application models combined with their online platform

contained all the required information of the application landscape metamodel.

34

5.1 Introduction
This is the specification of the Application Landscape Map (from here on

referred to as ALM). In this specification the intention of the ALM is explained,

along how it should be constructed and for what purposes it can be used.

5.1.1 Objective

The objective of the AALM is to serve as a simple solution to provide an

understanding of an application landscape constructed from MDE applications.

5.1.2 Principles

The AALM aims to achieve this objective by adhering to four principles.

First, the map should be interactive, so the user can explore the landscape as

he/she sees fit. The user should be in control of what is rendered and what is not.

Second, the map should be simple to understand and intuitive to use. The learning

curve of the map should be minimal to keep it as accessible as possible.

Third, the map should be consistent with its actual source. Everything shown on

the map should be possible to trace back to the application models.

Fourth, the map should always be up to date. This means it should be possible to

generate the map form the source code/application models.

5.1.3 Scope

Where enterprise architecture modelling languages like ArchiMate cover a broad

scope including the business, application and technical domain. This first version

of the ALM only focuses on the application domain.

5.1.4 Overview

The ALM is inspired by the C4 model of Simon Brown, it likewise aims to

construct a map of a software system. However, the focus of the ALM is

different, where the C4 model focusses on building a map for a single application

the ALM aims to build a map for landscape of applications.

This first version serves as a starting point from which more initiatives can get

included. Possible initiatives can be found in the discussion of this thesis.

35

5.2 Language Structure
Most architectural languages provide a static representation of the architecture

and separate the design of the language from an implementation in a tool. This

approach helps to keep the language generic and tool independent. But separating

the language from its implementation also means some of the dynamic

characteristic software has to offer are not fully utilized. The ALM is structured

differently, it does combine the design of the language with the implementation

in a tool. Thereby it aims to provide a dynamic representation of the landscape.

In order to provide this dynamic representation, the ALM has a layered structure

of metamodels as shown in figure 4.

Figure 4 ALM metamodel structure.

First all relevant information from the application models is automatically

extracted and stored in the ALM metamodel. Once this model is filled it holds

all the information for the entire application landscape, this way it can serve as a

central repository for information about the application landscape. The logical

version of this metamodel is elaborated in chapter 3.

Second, the ALM metamodel is mapped to several view specific metamodels.

These metamodels adhere to a view specific data structure and only store the data

relevant for the view. The included views in the specification are a design-time

and a run-time view. The metamodels of these views are about what data should

be represented for this specific view. Chapter 4 and 5 elaborate on the design-

time and run-time metamodels.

36

Third, a tool can use the view specific metamodels to base a visualization of the

landscape on them. This last tooling layer is responsible for how the data is

represented in a user interface for each specific view. The tooling layer is about

how the data should be represented to the user. Chapter 6 elaborates on the

requirements to which a tool implementing the ALM should adhere.

To address the relationships between the entities in the subsequent chapters use

has been made of the UML relations notation, figure 5.

Figure 5 UML relations notation.

37

5.3 Landscape metamodel
In order to automate the documentation of an application landscape and to

provide an interactive visualization, a structured metamodel of the landscape is

required. The metamodel of the ALM serves as a central repository for all the

required information about the landscape. This metamodel should be

automatically filled form the application models. The user of the ALM is not

meant to directly interact with the landscape metamodel. To facilitate interaction

in the ALM, the landscape metamodel is first mapped to a view specific

metamodel which in turn can be used by a user facing tool. This chapter will give

the specification for the central landscape metamodel of the ALM. Chapter 4 and

5 will give a specification for two views on this metamodel, the design-time map

and the run-time map. The complete metamodel is too large to conveniently print

on paper, figure 6. Therefore, it is split up in several parts, each paragraph will

discuss one of these parts. Entities that do not belong to a part but are included

for reference are made light grey. The metamodel only stores those entities that

are relevant to the ALM, it therefore is not a complete metamodel of an

application landscape.

Figure 6 Complete application landscape metamodel.

38

5.3.1 Application

Figure 7 Application landscape metamodel part 1.

Application Landscape

In the ALM metamodel there can only exist one Application Landscape entity.

It exists on the highest level and everything else is connected to it. The

Application Landscape can have multiple Application entities.

Application

The Application is the unit of deployment in the ALM. It is part of a single

Application Landscape and it consists of one or more Modules.

AppName String variable containing the name the user has given to the

application.

Source String variable in which the source of the application is

stored. This can be “Internal” or “Third-party”, internal means it is part of the

MDE landscape to which the ALM should have full access. Third-party means

it is an application to which the ALM has minimal or no access.

Location String variable containing the location of an application

model. This can be on a local workstation, but also in cloud storage.

Branch String variable containing a specific development branch of

an application. For each stored branch a separate Application entity should be

created.

39

Revision String variable containing a specific revision of a branch in

an application. For each stored revision a separate Application entity should be

created.

Module

The Module is the building block of an application. It enables a developer to

make a logical grouping of related files in an application. Except for some best

practices there are no technical restrictions to how a developer should structure

his application in modules.

Name String variable containing the name of the module.

File

Instead of using code, an MDE application is build up from a set of DSLs

(domain specific languages). Each file is structured along the format of a DSL.

A domain specific language is a computer language specialized in a specific

domain. In the next paragraph all the relevant DSLs for enterprise applications

are discussed. A module is built up from a set files that each adhere to the

structure of a specific DSLs.

Name String variable containing the name of the File.

5.3.2 File

This paragraph gives an overview of all the Files available to a module. It will

also clarify the relation of the files to the domain specific languages. In the

consecutive paragraphs each file type will be discussed in more detail.

Figure 8 Application landscape metamodel part 2.

Application Security File

File covering security aspects relevant for the complete application.

Module Security File

File covering the security aspects relevant for a module.

Data Model File

File specifying the structure and contents of a data model in an application.

Service File

Set of files that enables the application to consume and publish several types of

services.

40

Authentication String variable describing what authentication

protocol is set to access the service.

ConnectionProtocol String variable containing the connection protocol

that is required to connect with the service.

Documentation String variable containing documentation added

by the user.

Logic File

File that specifies how application logic is handled.

Return Type String variable containing the return type of the logic file.

5.3.3 File relation to DSLs

Figure 9 File relationship to DSL.

Each type of file is a realization of a corresponding domain specific language.

The DSL specifies the grammar and syntax for the problem domain of the DSL.

The files are created by users and follow this DSL grammar and syntax to solve

problems specific to each user.

41

5.3.4 Security and Data File

Figure 10 Application landscape metamodel part 3.

Entity

A Data Model File consists of a set of Entities that store data about certain

objects in the application domain. Each Entity can have several Attributes

describing the Entity in more detail. For each Entity several access rules can get

defined.

Name String variable containing the name of the entity.

42

Documentation Short description of the entity, the developer is free to input

any text he wishes.

Attribute

Each Entity can have several Attributes that store certain aspects of the Entity.

Name String value containing the name of the attribute.

Type String value containing the data type of the attribute type.

Value The value to be stored in the in attribute.

Exposed Boolean value storing if the attribute is exposed externally of the

application.

Access Rule

An Access Rule defines which Module Roles have access to which Entity.

Attribute Access

Attribute Access defines for each Module role in an Access Rule the type of

access the role has to an attribute.

Module Roles

Module Roles can be assigned to the Module Security File. They store different

user roles with respect to the specific module. In the Application Security File,

the modules roles are grouped in User Roles.

Name String value containing the name of the module role.

User Roles

In an Application Security File, a set of User Roles can get defined describing

the user of the application. Each User Role is a combination of a several Module

Roles.

43

5.3.5 Service File

Figure 11 Application landscape metamodel part 4.

Service files can be of two types, either consuming or publishing. A consuming

services extract data from an API and publishing services act as an API to expose

data to external software.

SOAP Service File

The first supported integration type is a SOAP Service. A SOAP Service file

consists of a list of several SOAP Operations.

WSDL Location String value containing the location of the WSDL file, this can

be an URL or a location path on a specific machine.

REST Service File

The second supported integration pattern is a REST service. A Rest Service File

consist of a list of several Resources.

URL Location String value containing the URL required to access the

REST Service

44

Version String value containing the version number that is intended

to be accessed.

Service X

In the current specification of the ALM only SOAP and REST services are

included. The Consumed Service X entity represents all the other services that

are possible to consume for an application but are not yet included in the

metamodel. For example; events, hyperlinks, file imports, SSO integration.

SOAP Operation

Concrete imported operation of the SOAP service, this operation can be called

in a logic element.

Name String value containing the name of the SOAP operation.

Logic File String value containing the name of the Logic File it is

calling.

REST Operation

Concrete imported operation of the REST services, this operation can be called

in a logic element.

HTTP Method String value containing the HTTP method of the REST

operation, this can for example be; GET, PUT, DELETE etc.

Operation path String value containing the path that need to be added to the

URL location to access the operation. This path can include parameters.

Logic File String value containing the name of the Logic File it is

calling.

Resource

Data object which is exposed by the publishing REST Service. A REST service

uses the notion of resources to structure several operations on a data object.

Name String value containing the name of the resource/data object.

Parameter

Both SOAP and REST operations can include parameters to make the operations

more flexible.

Name String variable containing the name of the parameter.

Data Type String variable containing the data type of the parameter.

Value String variable containing the value of the parameter.

45

5.3.6 Logic File

Figure 12 Application landscape metamodel part 5.

Logic Element

A Logic File consists of several Logic Elements that each perform a specific task.

Chaining these Logic Elements together in a diagram creates a Logic File.

Id String value containing the Id of the Logic Element.

Call SOAP Service

The Call SOAP Service, Logic Element handles the calls to SOAP services in a

logic file. The ALM metamodel only stores the operation the service wants to

execute along with its potentially required parameters.

Operation String value containing the name of the operation the

developer wants to execute.

Parameter List List of parameters that might be required by the Operation.

Call REST Service

The Call REST Service, Logic Element handles the calls to REST services in a

logic file. The ALM metamodel only stores the operation the service wants to

execute along with its potentially required parameters.

46

Operation String variable containing the complete path required to call

the REST operation.

Parameter List List of parameters that might be required by the Operation.

Retrieve Entity

The Retrieve Entity, Logic Element handles the retrieving of entities from a Data

Model File to the Logic File.

Entity String value containing the name of the Entity it wants to

retrieve.

Call Logic File

The Call Logic File, Logic Element handles the calling of other Logic Files. By

letting a logic files call other logic files it becomes possible to abstract away from

certain parts in a complex logic structure.

Logic File String value containing the name of the Logic File it is

calling.

47

5.3.7 Deployment

This part of the metamodel covers the run-time side of an application landscape.

Separate entities are used to store the run-time data of the relevant design-time

entities.

Figure 13 Application landscape metamodel part 6.

Deployed Application Instance

The Application entity is the deployable unit in the ALM. Therefore, there also

exist Deployed Application Instance entities that store all the different deployed

instances of an application. The Deployed Application Instance consist of several

configured services. These configured service entities store the configuration

information for the available design-time services.

App Name String value containing the name of the deployed

application.

Version String value containing the version of the deployed

application, this value is a combination of the Branch and Revision values of the

Application entity.

Configured Location URL String value containing the URL to access the

homepage of the application.

Instance Id String value containing an Id for the specific deployed

application. This Id is required because it is possible to deploy the same

application with the same version several times.

Environment

A Deployed Application Instance is always deployed to a certain Environment.

The Environment entity is used to store all the different environments that exist

48

in a company. Examples are; test, acceptance, production region 1, production

region 2.

Environment Name String value containing the name of the Environment.

Configured REST Service

This entity stores the configurations required to deploy a service.

Configured URL Location String value containing the configured URL to

access the Service.

Configured REST Service

This entity stores the configurations required to deploy a service.

Configured URL Location String value containing the configured URL to

access the Service.

Log Item

For each executed Logic Element in a deployed application a Log Item entity

should be formed. These Log Items can be used to analyze an represent runtime

behavior of a specific deployed application.

Timestamp Value containing the exact time at which the Logic Element

was executed.

Activity Id String value containing the Id of the activity that has been

executed.

Size Integer value containing the size of the executed operation in bytes.

49

5.3.8 Labels

Figure 14 Application landscape metamodel part 7.

Label

Labels can be used freely by a developer to assign several elements in the

application landscape to a certain group. Which groups should exist, and which

elements should be assigned to these groups is up to the developer.

Name String value containing the name of the Label.

50

5.4 Design-time map metamodel
The design-time map represents the structure of the application landscape during

design-time. The basis for the construction of this map is static analysis of

application models. It therefore only includes what connections are made in the

application model files. How these connections are being utilized once deployed

can be found in the run-time map. The map aims to provide a comprehensible

interactive representation of the application landscape during design-time.

5.4.1 Metamodel

Figure 15 Design-time map metamodel.

The syntax for the design-time map is depicted in the metamodel in figure 15.

Each element in the metamodel relates to a structural element that can be found

on a rendering of the design-time map. The relations between the elements show

the syntax that is allowed.

5.4.2 Element syntax

Application

The application is the main building block of the landscape map. It is an atomic

structure of deployment that offers a specific set of functionalities to a

51

determined user group. An application consists of one or more modules that

make up the internal structure of the application.

Module

A module is the internal building block of an application. Modules can have a

specific goal determined by the application developer, although this does not

have to be the case. The developer has complete freedom how to structure the

modules within an application and determine which purpose they should serve.

The developer can create as much modules as he/she sees fit.

API

An API provides a structured interface to interact with an application. An API is

always published by a single module. An API can be targeted by multiple

consumers.

because an application consists of modules an API is part of an application.

Consume Relationship

While an API can be targeted by multiple consume relationships coming from

several applications, each individual application can have only one consume

relationship to a specific API.

Module-Module Relationship

Modules within an application do not need APIs to integrate with each other.

Because they reside in the same application, they can directly interact with one

and another. The module to module relationship represents these interactions.

5.4.3 Element properties

Each element of the application map contains a set of properties providing

information about the specific element. Tooling should present these properties

in a meaningful way to the user. All the element properties should be

automatically mapped from the application landscape metamodel to the design-

time map metamodel.

Application

AppName String variable containing the name given to the application.

Source Enumeration variable, possible options: “Internal”, “Third-

party”. The source property gives information about the origin of the application.

The application map is meant to show all applications within control of the user

plus the first layer of context to these applications.

Location String variable in which the location of the source code/application

model file can be found.

DevelopmentLine Dropdown menu containing all development lines of the

application. By selecting a specific development line all application properties

and integrations are set to the information found in the source code/application

model of that development line.

52

Revision Dropdown menu containing all revisions of the application. By

selecting a specific revision all application properties and integrations should be

set to the information found in the source code/application model of that revision.

Labels Array containing all the labels given to the Application.

AccesDevelopers String variable containing the names of all developers or

developer groups that have access to the application model.

Data Table representing the data stored in the Application. The table should

include the columns; Module, Domain Model, Entity, Attribute, Ownership,

State, User Role, Module Role, Access and Documentation. The first three

columns Module, Domain Model and Entity together give the location of an

Attribute. The Attribute is the lowest level on which data is stored. The

remaining columns give information about the data on Attribute or Entity level.

The Ownership column shows on entity level what application is the original

owner of the entity. When entities are shared among applications it happens the

application that stores the entity is not the original owner. For these shared

entities the State column shows what has happened to the imported Entity, for

example if it was changed or just enriched. The following three columns; User

Role, Module Role and Access, give on an attribute level the access level per

User/Module Role. These access levels are: None, Read and Read/Write. The

Documentation column shows on an entity level the documentation of the user.

It is no problem that this Data table element contains a wide range of data

columns, it is up to tooling to represent this data in an understandable manner.

Chapter 6 will elaborate on this aspect and will give requirements for tooling.

ConsumedOperations Table including all the operations the application

is consuming. The table should contain the columns; PublisherApp,

PublisherAPI, Operation.

PublishedOperations Table including all the operations the application

is publishing. The table should contain the columns; Publishing API, Publishing

Operation, Consuming Apps, API location. The columns Publishing API,

Published Operation and API location should only contain one value where the

Consuming Apps column can contain a list of multiple apps.

Module

ModuleName String variable containing the name given to the module.

Labels Array containing all the labels given to the Module.

Data Table representing the data stored in the Module. The table should

include the columns; Domain Model, Entity, Attribute, Ownership, State, User

Role, Module Role, Access and Documentation. The first two columns Domain

Model and Entity together give the location of an Attribute. The Attribute is the

lowest level on which data is stored. The remaining columns give information

about the data on Attribute or Entity level. The Ownership column shows on

entity level what application is the original owner of the entity. When entities are

shared among applications it happens the application that stores the entity is not

the original owner. For these shared entities the State column shows what has

53

happened to the imported Entity, for example if it was changed or just enriched.

The following three columns; User Role, Module Role and Access, give on an

attribute level the access level per User/Module Role. These access levels are:

None, Read and Read/Write. The Documentation column shows on an entity

level the documentation of the user. It is no problem that this Data table element

contains a wide range of data columns, it is up to tooling to represent this data in

an understandable manner. Chapter 6 will elaborate on this aspect and will give

requirements for tooling.

UsageOfOtherModules Table showing all the usage the module is making

of other modules. The table should contain the columns; IntegrationType,

ListIntegratedModules. Each integrated module should be split up in two

columns; AbsoluteDocumentIntegrations and UniqueDocumentIntegrations.

UsageByOtherModules Table including all the modules that are making

use of this module. The table should contain the columns; IntegrationType,

ListIntegratedModules. Each integrated module should be split up in two

columns; AbsoluteDocumentIntegrations and UniqueDocumentIntegrations.

API

APIname String variable containing the name given to the API.

Version String variable containing the version of the API. Some APIs

also store their version in the location path or name, but because this is not

obligatory and consistent for every API the version of an API is also stored in a

separate variable.

Type String variable containing the type of the API. Depending on

the platform from which the AALM is generated different options are included.

SourceApp Application object referencing to the application which is

deploying this API.

SourceModule Module object referencing to the module within an

application which is deploying this API.

Documentation Reference to the corresponding automated documentation.

For example, to a swagger.io page or a WSDL file.

Source Enumeration variable, possible options: “Internal”,

“Public”, “Third-party”. The source property gives information about the origin

and intended usage of the API. Internal and Public are both APIs controlled by

the organization constructing the ALM. A third-party API is maintained by an

external organization over which there is no control. Furthermore, an Internal

API is only meant for internal usage. A Public API is meant for usage by external

actors to the organization. The application map is meant to show all API within

control of the organization plus the first layer of context to these APIs.

ConnectionProtocol String variable containing the connection protocol

that is required for connecting to the API. Examples are: http, https.

54

Authentication String variable containing the authentication

protocol that is required to connect to the API.

Labels Array containing all the labels given to the API.

PublishedOperations Table including all the operations published by

this API. The table should contain the columns; Operation, Consuming Apps,

Design-time Access and Run-time Access. The operation column contains all the

operations published by this API. The Consumed By column stores per operation

which applications are consuming the it. The Design-time Access column stores

all the applications that have access to the operation. The Run-time Access

column stores which user roles have access to the operation during run-time.

Consume Relationship

SourceApp Application object referencing to the application which is

deploying this API.

TargetAPI API object referencing to the API which this consume

relationship is targeting.

TypeTargetAPI String variable containing the type of the API which is being

targeted.

ConnectionProtocol String variable containing the connection protocol

that is being used to connect the SourceApp to the TargetAPI. Examples are:

http, https.

ConsumedOperations Table including all the operations the application

is consuming. The table should contain the columns; Operation, Module,

Document. Each row is used to present a consumed operation, the module and

document columns show from which module and document in the application

the operation call is being made.

Module-Module Relationship

ModuleA String value containing the name of the module at one end

of the relationship.

ModuleB String value containing the name of the module at the other

end of the relationship.

Integrations Table showing the integrations between two modules. If the

relationship unidirectional the table should just have one column “A->B” if the

relationship is bidirectional the table should have another column “B->A”. “A-

>B” means the usage of ModuleA of ModuleB. Each of these columns should

consequently be split up in two columns named; “absolute document usages”

and “unique document usages”. In these columns there is shown per integration

type how many documents of the other module are being called and how many

of them are unique.

5.4.4 Mapping to the metamodel

The following table shows for each attribute in the design-time metamodel where

the corresponding data in the complete landscape metamodel can be found.

55

Application

Element

Landscape metamodel

AppName

Application.AppName

Source

Application.Source

Location

Application.Location

Developmentline

Application.Branch

Revision

Application.Revision

Labels

Label.Name

AccessDevelopers

Application.DevelopersWith

Access
DataTable Module Module.Name

 Domain Model File.Name
Entity Entity.Name
Attribute Attribute.Name
Ownership Application.Name
State Entity.State
User Role User Roles.Name
Module Role Module Roles.Name
Access Attribute Access.Access type
Documentation Entity.Documentation

ConsumedOperationsT

able

PublisherApp Application.Name

PublisherAPI File.Name
OperationList SOAPOperation.Name,

Resource.Name,

RESTOperation.HTTP

Method,

RESTOperation.OperationPat
h

PublishedOperationsTa

ble

PublishingAPI File.Name

PublishingOperation SOAPOperation.Name,

Resource.Name,

RESTOperation.HTTP
Method ,

RESTOperation.OperationPat

h
ConsumingApps Application.Name
APILocation SOAP Service

File.WSDLLocation, REST

Service File.URLLocation

Module Element

Landscape metamodel
ModuleName

Module.Name

Labels

Label.Name

DataTable DomainModel File.Name
Entity Entity.Name
Attribute Attribute.Name
Ownership Application.Name
State Entity.State
User Role User Roles.Name
Module Role Module Roles.Name
Access Attribute Access.Access type

56

Documentation Entity.Documentation

UsageOfOtherModules
Table

IntegrationType Retrieve Entity, Call Logic
File

ListIntegratedModules Module.Name
AbsoluteDocumentIntegr
ations

LogicElement.Id

UniqueDocumentIntegrat

ions

LogicElement.Id

UsageByOtherModules

Table

IntegrationType Retrieve Entity, Call Logic

File
ListIntegratedModules Module.name
AbsoluteDocumentIntegr

ations

LogicElement.Id

UniqueDocumentIntegrat

ions

LogicElement.Id

API Element

Landscape metamodel
APIName

File.Name

Version

REST Service File.Version

Type

SOAP Service File, REST

Service File
SourceApp

Application.Name

SourceModule

Module.Name

Documentation

Service File.Documentation

Source

Application.Source

ConnectionProtocol

Service

File.ConnectionProtocol

Authentication

Service File.Authentication

PublishedOperationsTa

ble

Operation SOAPOperation.Name,

Resource.Name,
RESTOperation.HTTP

Method ,

RESTOperation.OperationPat
h

Consuming Apps Application.Name
Design-time Access Application.DeverlopersWith

Access,

OperationAccess.AppName,

OperationAccess.Operation
Run-time Access Access rule.ListModuleRoles,

User Roles.ListModuleRoles

Consume

Relationship

Element

Landscape metamodel

SourceApp

Application.Name

TargetAPI

File.Name

TypeTargetAPI

SOAP Service File, REST
Service File

ConnectionProtocol

Service

File.ConnectionProtocol
ConsumedOperations

SOAPOperation.Name,

Resouce.Name,
RESTOperation.HTTPMetho

d,

57

RESTOperation.OperationPat

h

Module-Module

Relationship

Element

Landscape metamodel

ModuleA

Module.Name

ModuleB

Module.Name

A->B Table Absolute Document
Usages

LogicElement.Id

Unique Document

Usages

LogicElement.Id

B->A Table Absolute Document

Usages

LogicElement.Id

Unique Document
Usages

LogicElement.Id

Table 5 Mapping landscape metamodel to design-time metamodel.

58

5.5 Run-time map metamodel
The run-time map represents the structure and behavior of the application

landscape once it has been deployed. It visualizes a concrete deployed instance

of the structure laid out in the design-time map. The metamodel of this run-time

map only stores the entities; Deployed Applications, Configured Consume

Relationships and Deployed APIs. These three entities are configured, deployed

instances of equivalent entities found in the design-time map.

5.5.1 Metamodel

Figure 16 Run-time map metamodel.

5.5.2 Element syntax

Deployed Application

The Deployed Application element is the main building block in the run-time

map. Where in the design-time map the application element served as a blueprint

for an application. In the run-time map a Deployed Application is a concrete

configured instance of this blueprint. Depending on the deployment wishes of

the user it is possible that multiple instances of the same application will be

deployed. Each instance is its own unique object and can have its own

relationships. A Deployed Application always exists in a specific environment

which is stored in a property.

Configured Consume Relationship

A Configured Consume Relationship is a configured connection of the Consume

Relationship in the design-time map. Not every Consume Relationship in the

design-time map has to exist in the run-time map. It depends on the

configurations of the user which Consume Relationships exists and how they are

configured in each environment. The design-time map determines which

application instances can get connected to which APIs. The run-time map shows

59

if this is done and which application instances are connected to which API

instances.

While a Deployed API can be targeted by multiple Configured Consume

Relationships coming from multiple Deployed Applications, each individual

application is only allowed to have one consume relationship to a specific

Deployed API. All individual consuming operations are grouped in this

Configured Consume Relationship. Having only one relationship between each

unique application and unique API reduces the clutter formed in the metamodel

of the run-time landscape map.

Deployed API

A Deployed API element provides a structured interface to interact with a

Deployed Application. The Deployed API is always part of one Deployed

Application. A Deployed API always exists in a specific environment.

5.5.3 Element properties

Deployed Application

AppName String variable containing the name given to the application. This is

the same name as used in the design-time map.

Source Enumeration variable, possible options: “Internal”, “Third-

party”. The source property gives information about the origin of the application.

The application map is meant to show all applications within control of the user

plus the first layer of context to these applications.

Location String variable in which the web address of the deployed application

is stored.

Version String variable containing the version number of the

deployed application instance.

Environment String variable containing the name of the environment to

which this application is deployed. Examples are: Test, Acceptance, Production.

Instance String variable containing a unique code for this deployed

application instance.

Labels Array containing all the labels given to the Deployed

Application.

PublishedOperations Table including all the operations the application

is publishing along with the frequency they are consumed. The table should

contain the columns; Publishing API, Publishing Operation, Consuming Apps,

RequestSize, ResponseSize, LastHour, LastDay, LastMonth. The column

Publishing API contains the name of the API that is publishing the operation.

The column Publishing Operation contains all the operations that are being

published by the Application. The column Consuming Apps contains per

operation a list of applications that consume the operation. The RequestSize

should store the average size of a request of the operation. The ResponseSize

should store the average size of the response of the operation. The LastHour,

60

LastDay and LastMonth columns indicate how frequent the operation has been

called during run-time in de corresponding time frames.

ConsumedOperations Table including all the operations the application

is consuming along with how frequent it does so. The table should contain the

columns; PublisherApp, PublisherAPI, ConsumedOperation, RequestSize,

ResponsSize, LastHour, LastDay, LastMonth. The PublisherApp column should

store the name of the application that publishes the to consume API. The

PublisherAPI column should store the name of the API that publishes the to

consume operation. The ConsumedOperation column should store the names of

all the operations that are consumed from the API. The RequestSize should store

the average size of a request of the operation. The ResponseSize should store the

average size of the response of the operation. The LastHour, LastDay and

LastMonth columns indicate how frequent the operation has been called during

run-time in de corresponding time frames.

Configured Consume Relationship

SourceApp String variable containing the name of the application which

is consuming the target API.

TargetAPI String variable containing the name of the API which this

consume relationship is targeting.

TypeTargetAPI String variable containing the type of the API which is being

targeted.

ConnectionProtocol String variable containing the connection protocol

that is being used to connect the SourceApp to the TargetAPI. Examples are:

http, https, internal call.

ConsumedOperations Table including all the operations the SourceApp

is consuming from the TargetAPI along with how frequent it does so. The table

should contain the columns; ConsumedOperation, RequestSize, ResponsSize,

LastHour, LastDay, LastMonth. The ConsumedOperation column should store

the names of all the operations that are consumed from the API. The RequestSize

should store the average size of a request of the operation. The ResponseSize

should store the average size of the response of the operation. The LastHour,

LastDay and LastMonth columns should store how frequent the operation has

been called during run-time in de corresponding time frames.

Deployed API

APIname String variable containing the name given to the deployed API.

Version String variable containing the version of the deployed API.

AppInstance String variable containing the instanceId of its parent

application.

Type String variable containing the type of the deployed API.

Depending on the platform from which the AALM is generated different options

are included.

61

SourceApp String variable containing the name of the application which

is deploying this API.

SourceModule String variable containing the name of the module within an

application which is deploying this API.

APILocation String variable with the URL at which the deployed API is

accessible.

Documentation Reference to the corresponding automated documentation.

For example, to a swagger.io page or a WSDL file.

Source Enumeration variable, possible options: “Internal”,

“Public”, “Third-party”. The source property gives information about the origin

and intended usage of the API. Internal and Public are both APIs controlled by

the organization constructing the ALM. A third-party API is maintained by an

external organization over which there is no control. Furthermore, an Internal

API is only meant for internal usage. A Public API is meant for usage by external

actors to the organization. The application map is meant to show all APIs within

control of the organization plus the first layer of context to these APIs.

Labels Array containing all the labels given to the Deployed API.

PublishedOperations Table including all the operations the API is

publishing along with the frequency they are consumed. The table should contain

the columns; Publishing Operation, Consuming Apps, RequestSize,

ResponseSize, LastHour, LastDay, LastMonth. The column Publishing

Operation contains all the operations that are being published by the API. The

column Consuming Apps contains per operation a list of applications that

consume the operation. The RequestSize shows the average size of a request of

the operation. The ResponseSize show the average size of the response of the

operation. The LastHour, LastDay and LastMonth columns indicate how

frequent the operation has been called in de corresponding time frames.

62

5.5.4 Mapping to the metamodel

The following table shows for each attribute in the run-time metamodel where

the data in the complete landscape metamodel can be found.

Deployed Application

Landscape

metamodel
AppName

Application.AppName

Source

Application.Source

Location

Deployed Application

Instance.ConfiguredLocati
onUrl

Version

Deployed Application

Instance.Version
Environment

Environment.Environment

Name

Instance

Deployed Application
Instance.InstanceId

Labels

Label.Name

ConsumedOperationsTable PublisherApp Deployed Application

Instance.InstanceId
PublisherAPI File.Name
OperationList SOAPOperation.Name,

Resource.Name,

RESTOperation.HTTP
Method ,

RESTOperation.Operation

Path
RequestSize LogItem.ActivityId,

LogItem.Size
ResponseSize LogItem.ActivityId,

LogItem.Size
LastHour LogItem.ActivityId,

LogItem.Timestamp
LastDay LogItem.ActivityId,

LogItem.Timestamp
LastMonth LogItem.ActivityId,

LogItem.Timestamp

PublishedOperationsTable PublishingAPI File.Name
PublishingOper

ation

SOAPOperation.Name,

Resource.Name,

RESTOperation.HTTP
Method ,

RESTOperation.Operation

Path
ConsumingApp

s

Deployed Application

Instance.InstanceId
RequestSize LogItem.ActivityId,

LogItem.Size
ResponseSize LogItem.ActivityId,

LogItem.Size
LastHour LogItem.ActivityId,

LogItem.Timestamp
LastDay LogItem.ActivityId,

LogItem.Timestamp

63

LastMonth LogItem.ActivityId,

LogItem.Timestamp

Configured Consume

Relationship

Landscape

metamodel
SourceApp

Deployed Application
Instance.InstanceId

TargetAPI

File.Name, Deployed

Application
Instance.InstanceId

TypeTargetAPI

SOAP Service File, REST

Service File
ConnectionProtocol

Service

File.ConnectionProtocol

ConsumedOperationsTable ConsumedOper
ation

SOAPOperation.Name,
Resource.Name,

RESTOperation.HTTP

Method ,
RESTOperation.Operation

Path
RequestSize LogItem.ActivityId,

LogItem.Size
ResponseSize LogItem.ActivityId,

LogItem.Size
LastHour LogItem.ActivityId,

LogItem.Timestamp
LastDay LogItem.ActivityId,

LogItem.Timestamp
LastMonth LogItem.ActivityId,

LogItem.Timestamp

Deployed API

Landscape

metamodel
APIname

File.Name

Version

REST Service File.Version

AppInstance

Deployed Application

Instance.InstanceId

Type

SOAP Service File, REST
Service File

SourceApp

Deployed Application

Instance.InstanceId
SourceModule

Module.Name

APILocation

Configured SOAP
service.ConfiguredWSDLL

ocation, Configured REST

Service.ConfiguredURLLo
cation

Documentation

Configured SOAP

service.ConfiguredDocume
ntation, Configured REST

Service.ConfiguredDocum

entation
Source

Application.Source

Labels

Label.Name

64

PublishedOperationsTable PublishingOper

ation

SOAPOperation.Name,

Resource.Name,

RESTOperation.HTTP
Method,

RESTOperation.Operation

Path
ConsumingApp

s

Deployed Application

Instance.InstanceId
RequestSize LogItem.ActivityId,

LogItem.Size
ResponseSize LogItem.ActivityId,

LogItem.Size
LastHour LogItem.ActivityId,

LogItem.Timestamp
LastDay LogItem.ActivityId,

LogItem.Timestamp
LastMonth LogItem.ActivityId,

LogItem.Timestamp

Table 6 Mapping landscape metamodel to run-time metamodel

65

5.6 Tool requirements
Tooling plays an integral part in the ALM, all the metamodels are set-up to

accommodate maximal freedom for a tool. This chapter will outline a set of

requirements and propose several designs for a potential tool. The designs are

based on the user stories described in section 4.2.4. The red numbers within the

figures act as a reference to specific user stories. A number indicates the user

story is addressed by the information near the number. When a number is placed

in the bottom right corner it means the content of the entire figure acts as a

solution to the user story.

5.6.1 Filtering Elements

In large domains the complete set of applications in the design-time or run-time

map can become very large, this presents a risk of the canvas getting cluttered

with dots and lines. To avoid this from happening a filter mechanism should be

available to the user. This mechanism should allow the user to filter out each

element shown on the canvas. Filtered elements will remain to exist, but they

will not be shown on the canvas for the moment. Such a mechanism will allow

the user to determine himself what is important to show and what not.

Additionally, it should be possible to quickly filter a set of elements which all

hold the same Label.

5.6.2 Clustering Elements

To reduce the potential complexity of a landscape the tool should be able to

cluster a set of elements. Once clustered the set of elements should be rendered

as a single element with a special color or symbol indicating it is a group. When

the user clicks on the group element the context window should show what

elements it consists of. The user should be given complete freedom over how to

arrange these clusters. Additionally, it should be possible to quickly cluster a set

of elements which all hold the same Label.

5.6.3 Context window

The tool should provide both the design- and run-time map with a context

window. This context window should show the properties of the selected

element by the user.

5.6.4 User views

By filtering elements form the landscape and by grouping certain elements the

user is able to create his own user view on the landscape. The user should be able

to save this user view, so he can easily access it again. Because the landscape

map is automatically updated, and user views are created manually they can get

outdated. Therefore, once an outdated user view is loaded the tool should give

an update of all changes to the landscape since the last save.

66

5.6.5 Visualization of the design-time map

The design-time map should be able to show two different zoom levels. The first

zoom level should focus on the complete application landscape and its context

of external applications. The second zoom level should just focus on the internals

of one application and its context in the landscape.

Design-time landscape zoom

Figure 17 Design-time landscape map visualization

Figure 17 above shows how a design-time application landscape could get

presented in a graph view. The color of the applications indicates if they are

internal (light yellow) or external (orange). An application is internal when it is

controlled by the company for which the landscape is created. External

applications are controlled by another company of which the company has no

control. The color of the APIs indicates if the API is internal (blue), public (red)

or third-party(orange). An internal API is only meant for communication

between internal applications. A public API is meant to be consumed by external

applications. An third-party API is similar to an external application, it is

controlled by an external company and consumed by the landscape. The

directions of the arrows indicate consume relationships. The tail is connected to

67

the application that is consuming, and the head is connected to the API that is

consumed. All the aspects described in section 6.1-6.4 should be applied to the

landscape graph view. By double clicking on an application element the view

should shift to the design-time application zoom.

Design-time application zoom

Figure 18 Design-time single application map visualization.

Figure 18 above shows how the internals of a single application could get

visualized in a graph view. The view shows the individual modules that make up

the application and how they are connected to each other. Furthermore, it shows

the first layer of context to the application. The arrows represent direct usage

relationships because internally in an application it is not required to

communicate through APIs (although this is possible as well). Because the

arrows indicate direct usage relationships, unlike the landscape view they can be

bidirectional. The aspects described in section 6.1-6.4 should be applied to this

view as well.

Context window design

Once an element is selected in a view its properties should get displayed in a

context window. This section presents how this information should be visualized.

Application

Once the user selects an application on the design-time map the context window

should show its attributes as shown in figure 19.

68

Figure 19 Application context window design.

In the Consumed Operations table all operations should be grouped per

PublishedAPI. This way a PublishingApp can have multiple rows for several

PublishedAPIs. But a PublishedAPI just contains one row for all consumed

operations. Grouping them will this way will reduce the size of the table.

Module

Once the user selects a module on the design-time map the context window

should be visualized as shown in figure 20.

69

Figure 20 Module context window design.

API

Once the user selects an API on the design-time map the context window should

be visualized as shown in figure 21.

Figure 21 API context window design.

70

Consume relationships

The origin of a consume relationship lays in a module, but because an application

consists of modules the application can also be used as the origin in the

visualization for the landscape zoom. A consume relationship shows direction to

the to be consumed API. Once the user selects an consume relationship on the

design-time map the context window should be visualized as shown in figure 22.

Figure 22 Consume relationship context window design.

Module-Module relationship

Each unique module can only have one relationship to another unique module.

Allowing just one relationship between each module pair reduces the clutter

formed in the rendering of the landscape map. A module-module relationship

can be bi-directional. When this is the case the context window should show

information of the integrations in both directions. Once the user selects a

Module-Module relationship on the design-time map the context window should

be visualized as shown in figure 23.

Figure 23 Module-module relationship context window design.

71

5.6.6 Visualization of the run-time map

The run-time map only has to include the zoom level on which the complete

application landscape and its context are shown. The zoom level that focusses on

a single application is not relevant during run-time.

Because generally an application landscape is deployed to several environments

for testing purposes, multiple run-time maps should be generated, one map for

each unique environment. The user should be able to easily switch between these

different maps.

Run-time landscape zoom

Figure 24 Run-time map landscape visualization

Figure 24 shows a graph view for the run-time landscape. It is similar to the view

for the design-time landscape, but except of applications it shows application

instances. As exemplified in the figure it is possible to deploy multiple instances

of an application and configure both differently. The consume relationships are

dashed to indicate they represent the flow of run-time data. Furthermore, tabs are

included for each deployment environment, clicking on the tabs should let the

user easily switch between the environments.

72

Context window design

Deployed Application

Once the user selects a deployed application on the run-time map the context

window should be visualized as shown in figure 25.

Figure 25 Deployed application context window design.

Configured Consume Relationship

Once the user selects a configured consume relationship on the run-time map the

context window should be visualized as shown in figure 26.

Figure 26 Configured consume relationship context window design.

Deployed API

Once the user selects a deployed API on the run-time map the context window

should be visualized as shown in figure 27.

73

Figure 27 Deployed API context window design.

74

5.7 Proof of concept
To evaluate how a tool could look and behave, a proof of concept has been

constructed based on the specification in this document. In the current version

the landscape and application zoom levels are combined in one view, later

versions could potentially split this in two different views. The proof of concept

uses demo data and is not yet linked to application models of an MDE platform.

The proof of concept can be found at:

http://nick-jansen.nl/ALM-Graph.html

The proof of concept only stores demo data for the context window behind

elements indicated with an *.

http://nick-jansen.nl/ALM-Graph.html

75

CHAPTER 7

Initial Evaluation

An initial evaluation of the proposed specification has taken place during its

design. By adopting the ADSRM the specification has been built and evaluated

iteratively. During each interview practitioners have been asked how they

thought about the current design and how it could be improved. By using this

approach, it was possible to evaluate the design often and early in the process,

guiding the design process with practitioner feedback. Once the main design

cycle was completed all interviewees where contacted once more to ask them

about the final design. The majority of the interviewees responded positive to

the final design. One interviewee addressed that the current specification only

focusses on the as-is situation of the application landscape where the

interviewee would be more interested in support for the to-be situation. This

limitation along with several others will be elaborated in the discussion chapter.

Furthermore, the design has been evaluated by demonstrating that each user

story is addressed in the specification. The interviews resulted in a large set of

user stories presented in chapter 4.2.2. Each user story is linked to the part the

design that addresses it in chapter 5.6. This way there has been evaluated if the

design conforms to the wishes of the users.

Although most interviewees reported that the proposed tool would greatly help

them, we have not been able to prove if it would be an improvement over a

traditional application landscape production/consumption approach. To

empirically validate if our approach is an improvement. First an

implementation of the ALM specification should be developed. And second, a

large-scale experiment would have to be set up to test our automated approach

against a traditional approach. This study serves as a good starting point for

such an evaluation.

Major changes during iterative

evaluation
The ALM specification was constructed in numerous iterations. During these

iterations several large changes and many small changes have been implemented.

76

This section will elaborate on the large design changes and explain their

motivations.

Relationship visualization
The visualization of the relationships/dependencies between different

applications is an important aspect of the ALM. Before the final design was

reached several other designs have been proposed and evaluated.

One of the first designs included an arrow notation for each dependency between

two applications. This approach has been tested on a section of a large low-code

application landscape, see figure 28.

Figure 28 ALM design all dependencies visualized.

The evaluation of this design concluded that although complete, the level of

detail was to high, resulting in a complex cluttered view on the landscape.

Therefore, several other versions have been designed to explore how interactive

elements could reduce the complexity, see figure 29.

77

Figure 29 ALM folding mechanisms study.

Figure 29 shows several options how relationships between applications could

be hidden or exposed. It shows a folding mechanism which could hide/show

individual dependencies and a dropdown menu which hides all arrows and lets

the user select a specific one from a list. After evaluating these designs there was

concluded that although the complexity in amount of lines was partially reduced.

Partially because when an arrow would be “unfolded” still a large amount of

lines would remain, making it difficult to pinpoint a specific dependency. The

complexity also increased by adding more interface elements.

These conclusions led to the final design where only one arrow per application-

API pair is allowed, by selecting the arrow the details of all the individual

dependencies are shown in a context window, figure 30. This way the cluttering

of the view is reduced, and the details become available on demand in a specific

window.

Figure 30 ALM one arrow per application-API

78

API visualization

The evaluation of the design shown in figure 30 was positive about the way the

individual dependencies are hidden. But also pointed out the developers need to

specifically know which APIs are consumed by which applications.

Therefore, in the next design the APIs are included as stand-alone elements,

figure 31. This way it becomes immediately clear which APIs each application

is consuming and publishing. Besides, it becomes easier to find information

about specific APIs by simply selecting them and looking in the context window.

In the visualization the APIs should remain in the vicinity of the application that

is exposing them.

Figure 31 ALM API visualization

Design time, run time map

As discussed in the results chapter the interviewees pointed out the need for a

separate view on the run time application landscape. Due to the freedom software

engineers have when configuring and deploying an application, the run time

landscape can differ from the design time landscape.

Interviewing the software architects revealed that in some cases the same set of

applications is deployed numerous times for e.g. different regions. Such a use

case can result in a large run time landscape with a lot of repetition. To address

this use case, first a design was proposed that included a tab for each repetitive

section, which can for example be a region, figure 32. But while evaluating this

approach with the architects there was concluded that it would be confusing to

include these repetitive sections in separate tabs because it could be understood

79

as if they exist in separate environments. This is not the case because each of

these repetitive sections is connected to a single (large) production environment.

Based on this feedback there was decided it would be a better approach to use

the labeling mechanism for these kinds of repetitive sections. Because they

system should allow to cluster elements based on a label, clustering could also

be done for these different regions if they are labeled correctly. Such an approach

will reduce the size and complexity of run time landscapes including

deployments for different regions.

Figure 32 A tab for each region.

80

CHAPTER 8

Discussion & Conclusions

This study set the first steps in exploring how application landscape

documentation could be generated from low-code applications. During the study

several areas of interest emerged that revealed limitations of the current approach

but also highlighted opportunities for future work. Because they could not be

included or addressed in the current study they will be discussed in this chapter.

8.1 Limitations
First this section will discuss the limitations of the current study. The subsequent

section will address these limitations by proposing directions for future research.

L1: Limited evaluation

The current study is yet unable to prove if the proposed solution is an

improvement over a traditional documentation approach. Although the design of

the solution has been literately validated through interviews with practitioners

and their response has been positive. An empirical comparison between the

proposed solution and a traditional approach has yet to be conducted.

L2: Data population proof of concept

In the current proof of concept, the data in the data model is hardcoded to

investigate the visualization of the landscape. Although the possibility to

automatically fill the metamodel from low-code applications has been confirmed

through an expert interview. The implementation of this automation has yet to

be developed and evaluated.

L3: Visualization methods

Landesberger et al. defined three main groups for visualizing graphs: node-link

based, matrix-based and hybrid [40]. To keep a realistic scope this study just

focused on node-link visualizations. But throughout the study there was realized,

that a matrix-based visualization could have several advantages over node-link

visualization. Based on the proposed metamodel it would be relatively easily to

81

include other visualizations. But as of yet the specification is limited to just a

node-link visualization.

L4: Inclusion of non-low code applications

The strength of the automated documentation approach defined in this study is

also its weakness. Because the approach limits itself to low-code applications it

becomes achievable to create a valuable automated data model of an application

landscape. But in a typical enterprise the application landscape does not solely

consist of low code applications. In this study the design of the proposed solution

is limited to low-code applications, future research could investigate how to

include non-low code applications.

82

8.2 Directions for future research
This section will elaborate on several interesting directions future research could

take based on the results of this study.

Empirical evaluation (L1)

Because the initial responses to the proposed design have been positive. It would

be interesting for future research to empirically investigate of the proposed

solution is an improvement over a traditional documentation approach. First the

proposed specification of this study would have to be implemented. And second

a comparison study could be set up to empirically validate if the automated

interactive documentation approach is an improvement over a manual static

documentation approach. By conducting such a study, the main research question

of this study could be answered with certainty.

Data population proof of concept (L2)

Future work could focus on a proof of concept that includes automatic population

of the metamodel based on low-code applications. Several cases studies based

on different low-code vendors can be conducted to hopefully a find universal

approach for all low-code applications.

Visualization methods (L3)

This study has scoped itself to node-link visualizations for the application

landscape. But while conducted the research we came across some use cases for

which the node-link visualization might not be the best fit. When one wants to

analyze the structure of a large set of elements the node-link visualization does

not scale well. Although a filtering mechanism was included in the design of the

interactive node-link visualization, in some situations a practitioner might want

to analyze the complete set of elements. For these cases a matrix visualization

might be helpful. The main advantage of a matrix view is that it scales much

better than a node-link visualization. Where at some point a node-link

visualization turns into an incomprehensible cloud of lines and arrows, a matrix

stays clean and comprehensible. The main disadvantage is the increased

difficulty to follow paths between the analyzed elements. Figure 33 presents an

example of a matrix view, visualizing the relationships between all modules in a

large low-code application.

83

Figure 33 Matrix visualization of a large low-code application.

In a matrix each module is put both on the x- and the y-axis, the cells indicate if

there exists a relationship between the module on the x- and y-axis of the cell.

The matrix reserves 2 cells for each relationship between the two modules. One

cell at the upper half of the diagonal and one cell at the lower half (the diagonal

itself shows where each module meets itself). Symmetric matrices indicate there

just exists a relationship between two modules. Asymmetric matrices also give

the direction of the relationship. In the asymmetric matrix in figure 33 a colored

cell indicates the module on the y-axis is used by the module in the x-axis. Unlike

a general relationship in a symmetric matrix, a used by relationship naturally

does not have to go in both directions, therefore the matrix becomes asymmetric.

The ordering of the rows and columns plays an important role in a matrix

visualization. The order of rows and columns can be freely modified as long as

the same happens on both axes. Different ordering strategies exist, including

ordering by frequency, cluster, name and layer. These ordering strategies can be

a powerful tool to analyze a complex application/landscape. Ordering by cluster

can for example reveal several sets of tightly coupled modules in a large

application. When faced with the refactoring of a monolithic application to

microservices this can be valuable information. Furthermore, ordering by layer

can reveal cyclic dependencies that indicates software complexity, this

information can be input for refactoring projects.

84

Based on the metamodel proposed in this thesis it would be possible to construct

a matrix visualization next to a graph visualization. The matrix visualization

could be used for 1) a single application indicating the relationships between its

modules. 2) an application landscape indicating the relationships between its

applications. Or 3) an application landscape with all application modules

exposed, this way we can analyze the relationships between modules residing in

different applications.

Due to the large amount of information an application/landscape matrix could

potentially visualize, an interactive approach would be interesting to investigate.

Based on the knowledge gained knowledge in this study we propose the

following interactive controls for the matrix visualization, figure 34. The

controls should be able to do the following:

Dependency direction: Select the direction of relationships represented in

the matrix visualization.

Order: Select the ordering algorithm of the matrix,

different ordering algorithms facilitate different

types of analysis.

Included dependencies: Select the type of dependencies that should be

included in the matrix. In a low-code application,

numerous different dependencies between

modules exist, the user should be able to select

which one he would like to include in his analysis.

Opacity: Set the opacity of the cells to visualize how strong

a relationship between two modules is. By

allowing a user to set his own low and high limit,

he is in control of what he considers a strong or

weak relationship.

Selected cell: Context window displaying general information

for the at the time selected cell in the matrix.

85

Figure 34 Proposed interactive controls matrix visualization

Based on a large low-code application a proof of concept has been constructed.

It was built to experiment with an interactive visualization and different ordering

mechanisms. The proof of concept can be found at:

http://nick-jansen.nl/ALM-DSM.html

Inclusion of non-low code applications (L4)

As discussed at the limitations, the current solution only includes low-code

applications. Unfortunately, the typical application landscape contains a lot more

variation, therefore it would be interesting to investigate how non-low-code

applications could be included in the metamodel. The usages of stubs or network

scanners could potentially provide solutions.

Model modification

This study focused its scope on the reconstruction and analysis of the current

application landscape. An interesting next step would be to investigate if it would

help practitioners to make alterations on the abstraction level of an application

landscape. And if so, how these changes should be pushed back to the individual

application models. Figure 35 illustrates all the steps, step 1 and 2 has been the

focus of this study, step 3 lays open for future research.

http://nick-jansen.nl/ALM-DSM.html

86

Figure 35 Application landscape activities.

Evolutionary architecture

Evolutionary architecture as proposed by Ford et al. is defined as [41]:

“An evolutionary architecture supports guided, incremental change across

multiple dimensions.”

Figure 36 Evolutionary architecture fitness functions. Reprint from

“Building evolutionary architectures : support constant change” [41].

Ford et al. propose that the relevant quality attributes of a software architecture

should be continuously measured through a defined protocol, also called fitness

functions, figure 36 illustrates this concept. This way after each commit

engineers could receive feedback on the impact their changes have on the

software architecture. Making them aware of the potentially architecture eroding

effects of their changes. This way they can be guided at each increment to make

decisions in line with the agreed upon architecture. The hard part of

implementing evolutionary architecture is defining these fitness functions.

Future research could investigate if an application landscape metamodel as

proposed in this study could be and interesting source of information for defining

these fitness functions.

87

8.3 Conclusions
This thesis set out to answer the following question:

MQ: How could the documentation of an application landscape be improved?

A literature study first identified two potential problems with current application

landscape documentation. First, we observed that due to its manual nature the

current production process of application landscape documentation is time-

consuming, expensive and error prone. To solve this, several automated

documentation studies have been conducted. But the high level of technological

variability in a typical application landscape is a big hurdle for these automated

documentation approaches. Second, we have identified that static diagrams and

text files are not fit for the documentation of an application landscape.

Consequently, the same literature study found two potential solutions to these

identified problems. The first problem of technological variability can potentially

be addressed by basing automation on a low-code platform. And the second

problem of static text files and visualizations being unfit for application

landscape documentation could potentially be addressed by adopting an

interactive visualization approach.

To test these findings there has been investigated what practitioners would

require of a documentation approach based on low-code automation and

interactive visualizations. The ADSRM was chosen as a research method and by

conducting a series of interviews the requirements for a system have been

formulated.

Based on these requirements a case study has been conducted. This case study

led to the specification of the Application Landscape Map. The ALM illustrates

how a documentation approach based on low-code automation and interactive

visualizations could look like. This specification attempts to answer the main

research question. At last a discussion elaborates on the limitations and future

directions of the proposed system. Because there only has been conducted a case

study at a single company its generalizability is still questionably. But because

the initial response has been positive this study serves as a promising starting

point for future research.

88

References

[1] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,”

2017.

[2] M. Lankhorst, Enterprise architcture at work: Modelling,

communication an analysis., Third Edit. Springer Science & Business

Media, 2009.

[3] S. Roth, M. Hauder, M. Farwick, R. Breu, and F. Matthes, “Enterprise

architecture documentation: Current practices and future directions,”

Wi, no. 2013, pp. 912–925, 2013.

[4] M. Farwick, R. Breu, B. Agreiter, S. Ryll, K. Voges, and I. Hanschke,

“Requirements for Automated Enterprise Architecture Model

Maintenance-A Requirements Analysis based on a Literature Review

and an Exploratory Survey. SECTISSIMO View project Software

Quality Assurance View project REQUIREMENTS FOR

AUTOMATED ENTERPRISE ARCH,” 2011.

[5] S. H. Kaisler, F. Armour, and M. Valivullah, “Enterprise Architecting:

Critical Problems,” in Proceedings of the 38th Annual Hawaii

International Conference on System Sciences, 2007, vol. 37, no. 4, p.

224b–224b.

[6] K. Winter et al., “Association for Information Systems

INVESTIGATING THE STATE-OF-THE-ART IN ENTERPRISE

ARCHITECTURE MANAGEMENT METHODS IN LITERATURE

AND PRACTICE Recommended Citation "INVESTIGATING

THE STATE-OF-THE-ART IN ENTERPRISE ARCHITECTURE

MANAGEMENT METHODS IN ,” 2010.

[7] H. W. J. Rittel and M. M. Webber, “Dilemmas in a General Theory of

Planning*,” 1973.

[8] J. Conklin, “Social Complexity Wicked Problems,” 2001.

89

[9] K. Conboy, R. Gleasure, and E. Cullina, “LNCS 9073 - Agile Design

Science Research,” LNCS, vol. 9073, pp. 168–180, 2015.

[10] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A

Design Science Research Methodology for Information Systems

Research.”

[11] M. Conway, “How do committees invent?,” Datamation, vol. 14, no. 4,

pp. 28–31, 1968.

[12] A. Maccormack, J. Rusnak, and C. Baldwin, “Exploring the Duality

between Product and Organizational Architectures: A Test of the

"Mirroring" Hypothesis,” 2007.

[13] F. W. Taylor, “Scientific Management,” Sociol. Rev., vol. a7, no. 3, pp.

266–269, Jul. 1914.

[14] M. Fowler, “The State of Agile Software in 2018,” 2018. [Online].

Available: https://martinfowler.com/articles/agile-aus-2018.html.

[Accessed: 21-Jan-2019].

[15] R. Jeffries, “Dark Scrum,” 2016. [Online]. Available:

https://ronjeffries.com/articles/016-09ff/defense/. [Accessed: 21-Jan-

2019].

[16] L. Bass, I. M. Weber, and L. Zhu, DevOps : a software architect’s

perspective. .

[17] S. Newman, Building Microservices. 2015.

[18] E. Evans, Domain-driven design : tackling complexity in the heart of

software. Addison-Wesley, 2004.

[19] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov,

“Microservices: The journey so far and challenges ahead,” IEEE Softw.,

vol. 35, no. 3, pp. 24–35, 2018.

[20] M. Buschle, S. Grunow, F. Matthes, M. Ekstedt, M. Hauder, and S.

Roth, “Automating Enterprise Architecture Documentation using an

Enterprise Service Bus,” Am. Conf. Inf. Syst. (AMCIS 2012), pp. 1–14,

2012.

[21] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt, “Automatic data

90

collection for enterprise architecture models,” Softw. Syst. Model., vol.

13, no. 2, pp. 825–841, 2014.

[22] M. Farwick, B. Agreiter, R. Breu, S. Ryll, K. Voges, and I. Hanschke,

“Automation processes for enterprise architecture management,” Proc.

- IEEE Int. Enterp. Distrib. Object Comput. Work. EDOC, no. October,

pp. 340–349, 2011.

[23] M. Hauder, F. Matthes, and S. Roth, “Challenges for automated

enterprise architecture documentation,” Lect. Notes Bus. Inf. Process.,

vol. 131 LNBIP, pp. 21–39, 2012.

[24] G. Fairbanks, Just Enough Software Architecture. 2010.

[25] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software Reflexion

Models: Bridging the gap between Source and High Level Models,”

IEEE Trans. Softw. Eng., vol. 27, no. 4, pp. 364–380, 2001.

[26] G. A. Miller, “"The Magical Number Seven, Plus or Minus Two: Some

Limits on Our Capacity for Processing..,” vol. (Mar). 1963.

[27] J. Brownell, “Opening the ‘Taj’: The Culture of Fantasy,” Cornell Hotel

Restaur. Adm. Q., vol. 31, no. 2, pp. 19–23, 1990.

[28] N. Rozanski and E. Woods, Software systems architecture : working

with stakeholders using viewpoints and perspectives. Addison-Wesley,

2012.

[29] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software

engineering in practice. 2012.

[30] J. Den Haan, “8 reasons why model-driven approaches (will) fail,”

2008. [Online]. Available: https://www.infoq.com/articles/8-reasons-

why-MDE-fails.

[31] A. Kuhn, G. C. Murphy, and C. A. Thompson, “An Exploratory Study

of Forces and Frictions affecting Large-Scale Model-Driven

Development.”

[32] M. Staron, “Adopting Model Driven Software Development in

Industry-A Case Study at Two Companies Software Center View

project Adopting Model Driven Software Development in Industry-A

Case Study at Two Companies.”

91

[33] F. Tomassetti, A. Tiso, F. Ricca, M. Torchiano, and G. Reggio,

“POLITECNICO DI TORINO Repository ISTITUZIONALE Maturity

of Software Modelling and Model Driven Engineering: a Survey in the

Italian Industry / Maturity of Software Modelling and Model Driven

Engineering: a Survey in the Italian Industry Maturity of Software

Modelling and Model Driven Engineering: a Survey in the Italian

Industry,” no. Spain, pp. 14–15, 2012.

[34] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal,

“A taxonomy of tool-related issues affecting the adoption of model-

driven engineering,” Softw. Syst. Model., vol. 16, no. 2, pp. 313–331,

2015.

[35] J. Whittle, J. Hutchinson, and M. Rouncefield, “The State of Practice in

Model-Driven Engineering,” Software, IEEE, vol. 31, no. 3, pp. 79–85,

2014.

[36] J. Rymer, C. Mines, A. Vizgaitis, and A. Reese, “The Forrester WaveTM:

Low-Code Development Platforms For AD&D Pros, Q4 2017.”

[Online]. Available:

https://reprints.forrester.com/#/assets/2/225/’RES137262’/reports.

[Accessed: 22-Jan-2019].

[37] B. Shneiderman, “The Eyes Have It: A Task by Data Type Taxonomy

for Information Visualizations,” 1996.

[38] Scott Murray, Interactive Data Visualization for the Web: An

Introduction to Designing with - Scott Murray - ككك Google. 2017.

[39] B. Lee, C. Plaisant, C. Sims, J.-D. Fekete, N. Henry, and C. Sims Parr,

“Task taxonomy for graph visualization,” pp. 1–5, 2006.

[40] S. Brown, “The C4 model for software architecture.” [Online].

Available: https://c4model.com/. [Accessed: 24-Jan-2019].

[41] T. Von Landesberger et al., “Visual Analysis of Large Graphs: State-

of-the-Art and Future Research Challenges,” vol. 30, no. 6, pp. 1–28,

2011.

[42] N. Ford, R. Parsons, and P. Kua, Building evolutionary architectures :

support constant change. O’Reilly Media, 2017.

[43] F. P. Brooks, “The Mythical Man-Month.” 1975.

